

This page intentionally left blank

Data Structures and the
Java Collections Framework

This page intentionally left blank

Data Structures and the
Java Collections Framework

Third Edition

William J. Collins

Lafayette College

JOHN WILEY & SONS, INC.

Vice President and Executive Publisher: Donald Fowley

Executive Editor: Beth Lang Golub

Editorial Assistants: Michael Berlin, Elizabeth Mills

Marketing Manager: Chris Ruel

Senior Production Manager: Janis Soo

Assistant Production Editor: Annabelle Ang-Bok

Designers: Seng Ping Ngieng

Cover Photo: Jose Ignacio Soto/iStockphoto

This book was set in 10/12 Times Roman by Laserwords and printed and bound by Malloy Lithographers. The cover was printed by Malloy

Lithographers.

This book is printed on acid free paper.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than 200 years, helping

people around the world meet their needs and fulfill their aspirations. Our company is built on a foundation of principles that include

responsibility to the communities we serve and where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global

effort to address the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are addressing

are carbon impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and community and

charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright 2011 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or

transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under

Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization

through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923,

website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley &

Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748–6011, fax (201)748–6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their courses during the next

academic year. These copies are licensed and may not be sold or transferred to a third party. Upon completion of the review period, please

return the evaluation copy to Wiley. Return instructions and a free of charge return shipping label are available at www.wiley.com/go/

returnlabel. Outside of the United States, please contact your local representative.

Library of Congress Cataloging-in-Publication Data

Collins, William J. (William Joseph)

Data structures and the Java collections framework / William Collins. – 3rd ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-48267-4 (paperback)

1. Java (Computer program language) 2. Data structures (Computer science) I. Title.

QA76.73.J38C657 2011

005.7′3–dc22

2010043311

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

www.wiley.com/go/citizenship
www.copyright.com
http://www.wiley.com/go/permissions
www.wiley.com/go/returnlabel
www.wiley.com/go/returnlabel

To Jayden—my fountain of youth

—W.J.C.

This page intentionally left blank

BRIEF CONTENTS

Preface xvii

C H A P T E R 0
Introduction to Java 1

C H A P T E R 1
Object-Oriented Concepts 27

C H A P T E R 2
Additional Features of Programming and Java 59

C H A P T E R 3
Analysis of Algorithms 105

C H A P T E R 4
The Java Collections Framework 133

C H A P T E R 5
Recursion 155

C H A P T E R 6
Array-Based Lists 233

C H A P T E R 7
Linked Lists 267

C H A P T E R 8
Stacks and Queues 329

vii

viii BRIEF CONTENTS

C H A P T E R 9
Binary Trees 377

C H A P T E R 10
Binary Search Trees 401

C H A P T E R 11
Sorting 457

C H A P T E R 12
Tree Maps and Tree Sets 501

C H A P T E R 13
Priority Queues 551

C H A P T E R 14
Hashing 599

C H A P T E R 15
Graphs, Trees, and Networks 643

A P P E N D I X 1
Additional Features of the JAVA Collections Framework 701

A P P E N D I X 2
Mathematical Background 705

A P P E N D I X 3
Choosing a Data Structure 721

References 725

Index 727

CONTENTS

Preface xvii

C H A P T E R 0
Introduction to Java 1

Chapter Objectives 1

0.1 Java Fundamentals 1

0.1.1 Primitive Types 2

0.1.2 The char Type 2

0.2 Classes 3

0.2.1 The String Class 4

0.2.2 Using javadoc Notation for Method

Specifications 5

0.2.3 Equality of References and Equality of

Objects 7

0.2.4 Local Variables 9

0.2.5 The Scanner Class 12

0.3 Arrays 17

0.4 Arguments and Parameters 19

0.5 Output Formatting 22

Crossword Puzzle 24

Programming Exercises 25

C H A P T E R 1
Object-Oriented Concepts 27

Chapter Objectives 27

1.1 Data Abstraction 27

1.2 Abstract Methods and Interfaces 28

1.2.1 Abstract Data Types and Data

Structures 31

1.2.2 An Interface and a Class that

Implements the Interface 31

1.2.3 Using the FullTimeEmployee

Class 35

1.3 Inheritance 37

1.3.1 The protected Visibility

Modifier 39

1.3.2 Inheritance and Constructors 43

1.3.3 The Subclass Substitution Rule 43

1.3.4 Is-a versus Has-a 47

1.4 Information Hiding 48

1.5 Polymorphism 48

1.6 The Unified Modeling Language 49

Summary 52

Crossword Puzzle 54

Concept Exercises 55

Programming Exercises 56

Programming Project 1.1: A CalendarDate

Class 58

C H A P T E R 2
Additional Features of Programming
and Java 59

Chapter Objectives 59

2.1 Static Variables, Constants and Methods 59

2.2 Method Testing 61

2.2.1 More Details on Unit Testing 64

2.3 Exception Handling 68

2.3.1 Propagating Exceptions 71

2.3.2 Unit Testing and Propagated

Exceptions 74

2.3.3 Checked Exceptions 77

2.3.4 The finally Block 81

2.4 File Output 81

2.5 System Testing 91

2.6 The Java Virtual Machine 92

2.6.1 Pre-Initialization of Fields 92

2.6.2 Garbage Collection 92

2.7 Packages 93

ix

x CONTENTS

2.8 Overriding the Object Class’s equals

Method 94

Summary 97

Crossword Puzzle 98

Concept Exercises 99

Programming Exercises 100

Programming Project 2.1: An Integrated Web

Browser and Search Engine, Part 1 102

C H A P T E R 3
Analysis of Algorithms 105

Chapter Objectives 105

3.1 Estimating the Efficiency of Methods 105

3.1.1 Big-O Notation 106

3.1.2 Getting Big-O Estimates Quickly 110

3.1.3 Big-Omega, Big-Theta and Plain

English 116

3.1.4 Growth Rates 117

3.1.5 Trade-Offs 119

3.2 Run-Time Analysis 121

3.2.1 Timing 121

3.2.2 Overview of the Random Class 122

Summary 126

Crossword Puzzle 127

Concept Exercises 128

Programming Exercises 130

Programming Project 3.1: Let’s Make a

Deal! 131

C H A P T E R 4
The Java Collections
Framework 133

Chapter Objectives 133

4.1 Collections 133

4.1.1 Collection Classes 134

4.1.2 Storage Structures for Collection

Classes 136

4.2 Some Details of the Java Collections

Framework 136

4.2.1 Abstract Classes 137

4.2.2 Parameterized Types 140

4.2.3 The Collection Interface 141

4.2.4 The List Interface 147

Summary 150

Crossword Puzzle 151

Concept Exercises 152

Programming Exercises 152

Programming Project 4.1: Wear a Developer’s Hat

and a User’s Hat 153

C H A P T E R 5
Recursion 155

Chapter Objectives 155

5.1 Introduction 155

5.2 Factorials 156

5.2.1 Execution Frames 159

5.3 Decimal to Binary 162

5.4 Towers of Hanoi 167

5.4.1 Analysis of the move Method 177

5.5 Searching an Array 179

5.6 Backtracking 191

5.6.1 An A-maze-ing Application 195

5.7 Indirect Recursion 208

5.8 The Cost of Recursion 209

Summary 210

Crossword Puzzle 211

Concept Exercises 212

Programming Exercises 214

Programming Project 5.1: Iterative Version of the

Towers of Hanoi 219

Programming Project 5.2: Eight Queens 221

Programming Project 5.3: A Knight’s Tour 222

Programming Project 5.4: Sudoku 225

Programming Project 5.5: Numbrix 227

CONTENTS xi

C H A P T E R 6
Array-Based Lists 233

Chapter Objectives 233

6.1 The List Interface 234

6.2 The ArrayList Class 234

6.2.1 Method Specifications for the

ArrayList Class 235

6.2.2 A Simple Program with an

ArrayList Object 244

6.2.3 The ArrayList Class’s Heading and

Fields 246

6.2.4 Definition of the One-Parameter add

Method 248

6.3 Application: High-Precision Arithmetic 251

6.3.1 Method Specifications and Testing of

the VeryLongInt Class 252

6.3.2 Fields in the VeryLongInt

Class 253

6.3.3 Method Definitions of the

VeryLongInt Class 254

Summary 257

Crossword Puzzle 258

Concept Exercises 259

Programming Exercises 259

Programming Project 6.1: Expanding the

VeryLongInt Class 263

Programming Project 6.2: An Integrated Web

Browser and Search Engine, Part 2 264

C H A P T E R 7
Linked Lists 267

Chapter Objectives 267

7.1 What is a Linked List? 267

7.2 The SinglyLinkedList Class—A

Singly-Linked, Toy Class! 268

7.2.1 Fields and Method Definitions in the

SinglyLinkedList Class 273

7.2.2 Iterating through a

SinglyLinkedList Object 276

7.3 Doubly-Linked Lists 281

7.3.1 A User’s View of the LinkedList

Class 282

7.3.2 The LinkedList Class versus the

ArrayList Class 282

7.3.3 LinkedList Iterators 285

7.3.4 A Simple Program that uses a

LinkedList Object 291

7.3.5 Fields and Heading of the

LinkedList Class 294

7.3.6 Creating and Maintaining a

LinkedList Object 296

7.3.7 Definition of the Two-Parameter add

Method 298

7.4 Application: A Line Editor 300

7.4.1 Design and Testing of the Editor

Class 304

7.4.2 Method Definitions for the Editor

Class 308

7.4.3 Analysis of the Editor Class

Methods 312

7.4.4 Design of the EditorUser

Class 312

7.4.5 Implementation of the EditorUser

Class 313

Summary 315

Crossword Puzzle 316

Concept Exercises 317

Programming Exercises 318

Programming Project 7.1: Expanding the

SinglyLinkedList Class 320

Programming Project 7.2: Implementing the

remove() Method in

SinglyLinkedListIterator 322

Programming Project 7.3: Making a Circular

Singly Linked List Class 322

Programming Project 7.4: Alternative

Implementation of the LinkedList

Class 323

Programming Project 7.5: Expanding the Line

Editor 323

Programming Project 7.6: An Integrated Web

Browser and Search Engine, Part 3 328

xii CONTENTS

C H A P T E R 8
Stacks and Queues 329

Chapter Objectives 329

8.1 Stacks 329

8.1.1 The Stack Class 329

8.1.2 A Fatal Flaw? 333

8.1.3 Stack Application 1: How Compilers

Implement Recursion 334

8.1.4 Stack Application 2: Converting from

Infix to Postfix 338

8.1.5 Prefix Notation 343

8.2 Queues 347

8.2.1 The Queue Interface 348

8.2.2 Implementations of the Queue

Interface 349

8.2.3 Computer Simulation 350

8.2.4 Queue Application: A Simulated Car

Wash 351

Summary 365

Crossword Puzzle 366

Concept Exercises 367

Programming Exercises 368

Programming Project 8.1: Making the Speedo’s

Car Wash Simulation More Realistic 369

Programming Project 8.2: Design, Test, and

Implement a Program to Evaluate a

Condition 371

Programming Project 8.3: Maze-Searching,

Revisited 374

Programming Project 8.4: Fixing the Stack

Class 375

C H A P T E R 9
Binary Trees 377

Chapter Objectives 377

9.1 Definition of Binary Tree 377

9.2 Properties of Binary Trees 378

9.3 The Binary Tree Theorem 383

9.4 External Path Length 385

9.5 Traversals of a Binary Tree 386

Summary 393

Crossword Puzzle 394

Concept Exercises 395

C H A P T E R 10
Binary Search Trees 401

Chapter Objectives 401

10.1 Binary Search Trees 402

10.1.1 The BinarySearchTree

Implementation of the Set

Interface 403

10.1.2 Implementation of the

BinarySearchTree Class 411

10.2 Balanced Binary Search Trees 430

10.2.1 AVL Trees 435

10.2.2 The Height of an AVL Tree 436

10.2.3 The AVLTree Class 438

10.2.4 Runtime Estimates 441

Summary 442

Crossword Puzzle 443

Concept Exercises 444

Programming Exercises 448

Programming Project 10.1: An Alternate

Implementation of the Binary-Search-Tree

Data Type 449

Programming Project 10.2: Printing a

BinarySearchTree Object 451

Programming Project 10.3: The

fixAfterInsertion Method 451

Programming Project 10.4: The

fixAfterDeletion Method 455

C H A P T E R 11
Sorting 457

Chapter Objectives 457

11.1 Introduction 457

CONTENTS xiii

11.2 Simple Sorts 458

11.2.1 Insertion Sort 459

11.2.2 Selection Sort 461

11.2.3 Bubble Sort 463

11.3 The Comparator Interface 465

11.4 How Fast Can we Sort? 468

11.4.1 Merge Sort 470

11.4.2 The Divide-and-Conquer Design

Pattern 476

11.4.3 Quick Sort 477

11.5 Radix Sort 489

Summary 493

Crossword Puzzle 494

Concept Exercises 495

Programming Exercises 497

Programming Project 11.1: Sorting a File into

Ascending Order 497

C H A P T E R 12
Tree Maps and Tree Sets 501

Chapter Objectives 501

12.1 Red-Black Trees 501

12.1.1 The Height of a Red Black

Tree 503

12.2 The Map Interface 504

12.3 The TreeMap Implementation of the

SortedMap Interface 509

12.3.1 The TreeMap Class’s Fields and

Embedded Entry Class 512

12.3.2 Method Definitions in the TreeMap

Class 513

12.4 Application of the TreeMap Class: a Simple

Thesaurus 517

12.4.1 Design, Testing, and Implementation

of the Thesaurus Class 518

12.4.2 Design and Testing of the

ThesaurusUser Class 521

12.4.3 Implementation of the

ThesaurusUser Class 523

12.5 The TreeSet Class 525

12.5.1 Implementation of the TreeSet

Class 528

12.5.2 Application: A Simple Spell

Checker 530

Summary 536

Crossword Puzzle 537

Concept Exercises 538

Programming Exercises 539

Programming Project 12.1: Spell Check,

Revisited 540

Programming Project 12.2: Word

Frequencies 542

Programming Project 12.3: Building a

Concordance 543

Programming Project 12.4: Approval Voting 545

Programming Project 12.5: An Integrated Web

Browser and Search Engine, Part 4 548

C H A P T E R 13
Priority Queues 551

Chapter Objectives 551

13.1 Introduction 551

13.2 The PriorityQueue Class 552

13.3 Implementation Details of the

PriorityQueue Class 553

13.3.1 Fields and Method Definitions in

the PriorityQueue Class 557

13.4 The heapSort Method 567

13.4.1 Analysis of heapSort 572

13.5 Application: Huffman Codes 573

13.5.1 Huffman Trees 575

13.5.2 Greedy Algorithm Design

Pattern 578

13.5.3 The Huffman Encoding

Project 578

Summary 590

Crossword Puzzle 591

Concept Exercises 592

xiv CONTENTS

Programming Exercises 594

Programming Project 13.1: Decoding a

Huffman-Encoded Message 595

Programming Project 13.2: An Integrated Web

Browser and Search Engine, Part 5 597

C H A P T E R 14
Hashing 599

Chapter Objectives 599

14.1 A Framework to Analyze Searching 599

14.2 Review of Searching 600

14.2.1 Sequential Search 600

14.2.2 Binary Search 601

14.2.3 Red-Black-Tree Search 602

14.3 The HashMap Implementation of the Map

Interface 603

14.3.1 Hashing 604

14.3.2 The Uniform Hashing

Assumption 609

14.3.3 Chaining 609

14.3.4 Implementation of the HashMap

Class 612

14.3.5 Analysis of the containsKey

Method 614

14.3.6 The HashIterator Class 615

14.3.7 Creating a Symbol Table by

Hashing 617

14.4 The HashSet Class 625

14.5 Open-Address Hashing (optional) 626

14.5.1 The remove Method 627

14.5.2 Primary Clustering 631

14.5.3 Double Hashing 632

Summary 635

Crossword Puzzle 636

Concept Exercises 637

Programming Exercises 639

Programming Project 14.1: The Double Hashing

Implementation of the HashMap Class 640

Programming Project 14.2: An Integrated Web

Browser and Search Engine, Part 6 640

C H A P T E R 15
Graphs, Trees, and Networks 643

Chapter Objectives 643

15.1 Undirected Graphs 643

15.2 Directed Graphs 647

15.3 Trees 648

15.4 Networks 649

15.5 Graph Algorithms 650

15.5.1 Iterators 650

15.5.2 Connectedness 658

15.5.3 Generating a Minimum Spanning

Tree 659

15.5.4 Finding the Shortest Path through a

Network 663

15.5.5 Finding the Longest Path through a

Network? 667

15.6 A Network Class 669

15.6.1 Method Specifications and Testing

of the Network Class 671

15.6.2 Fields in the Network Class 680

15.6.3 Method Definitions in the Network

Class 681

15.7 Backtracking Through A Network 686

Summary 689

Crossword Puzzle 690

Concept Exercises 691

Programming Exercises 693

Programming Project 15.1: The Traveling

Salesperson Problem 694

Programming Project 15.2: Backtracking through a

Network 695

Programming Project 15.3: Determining Critical

Activities in a Project Network 697

Programming Project 15.4: An Integrated Web

Browser and Search Engine, Part 7 698

CONTENTS xv

A P P E N D I X 1
Additional Features of the JAVA
Collections Framework 701

A1.1 Introduction 701

A1.2 Serialization 701

A1.3 Fail-Fast Iterators 703

A P P E N D I X 2
Mathematical Background 705

A2.1 Introduction 705

A2.2 Functions and Sequences 705

A2.3 Sums and Products 706

A2.4 Logarithms 707

A2.5 Mathematical Induction 708

A2.6 Induction and Recursion 719

Concept Exercises 719

A P P E N D I X 3
Choosing a Data Structure 721

A3.1 Introduction 721

A3.2 Time-Based Ordering 721

A3.3 Index-Based Ordering 721

A3.4 Comparison-Based Ordering 722

A3.5 Hash-Based Ordering 723

A3.6 Space Considerations 723

A3.7 The Best Data Structure? 724

References 725

Index 727

This page intentionally left blank

PREFACE

This book is intended for an object-oriented course in data structures and algorithms. The implementation

language is Java, and it is assumed that students have taken a first course in programming, not necessarily

in Java. That course should have covered the fundamental statements and data types, as well as arrays.

Chapter 0 supplies the material on Java that is fundamental to the remaining chapters, so it serves as a

review for those with previous experience in Java, and brings Java novices up to speed.

WHAT’S NEW IN THE THIRD EDITION

This edition presents two major changes from the second edition. First, the Scanner class has replaced

the BufferedReader and StringTokenizer classes. The Scanner class’s versatility supports pattern

matching as well as keyboard input and file input. Second, there is an increased emphasis on testing. In

particular, the unit-testing features of JUnit 4 are introduced in Chapter 2 and integrated in applications

throughout the remaining chapters.

THE JAVA COLLECTIONS FRAMEWORK

One of the distinctive features of this text is its emphasis on the Java Collections Framework, part of

the java.util package. Basically, the framework is a hierarchy with interfaces at each level except the

lowest, and collection classes that implement those interfaces at the lowest level. The collection classes

implement most of the data structures studied in a second computer-science course, such as a resizable array

class, a linked-list class, a stack class, a queue class, a balanced binary-search-tree class, a priority-queue

class, and a hash-map class.

There are several advantages to using the Java Collections Framework. First, students will be working

with code that has been extensively tested; they need not depend on modules created by the instructor or

textbook author. Second, the framework is available for later courses in the curriculum and beyond. Third,

although the primary emphasis is on using the Java Collections Framework, the framework classes are not

treated simply as “black boxes.” For each such class, the heading and fields are provided, and one method

definition is dissected. This exposition takes away some of the mystery that would otherwise surround the

class, and allows students to see the efficiency and succinctness of professionals’ code.

The version of the Java Collections Framework we will be working with includes type parameters.

Type parameters, sometimes called “generic types,” “generics,” or “templates,” were added to the Java

language starting with Java 5.0. With type parameters, there is no need to downcast the return value from

a collection, and many errors can be detected at compile-time that previously were discoverable only at

run-time.

To complement generics, three other features have been added: boxing, unboxing, and an enhanced

for statement. The elements in generic collections must be objects, often from a wrapper class such as

Integer. If a primitive value appears where a collection method requires a wrapper element as an argu-

ment, boxing automatically converts the primitive value to the corresponding wrapper element. Conversely,

xvii

xviii PREFACE

if a wrapper-class element appears where a primitive value is needed, unboxing automatically converts

that element to the corresponding primitive value. Finally, the enhanced for statement—often called a

“for-each” statement—has a sleek structure for iterating through a collection. The net effect of these new

features of Java is to improve productivity by relegating to the compiler many of the “boiler-plate” details

related to casting and iterating.

OTHER IMPLEMENTATIONS CONSIDERED

As important as the Java Collections Framework implementations are, they cannot be the exclusive focus

of such a fundamental course in data structures and algorithms. Approaches that differ from those in the

framework deserve consideration. For example, the HashMap class utilizes chaining, so there is a separate

section on open addressing, and a discussion of the trade-offs of one design over the other. Also, there is

coverage of data structures (such as a weighted digraph class) and algorithms (such as Heap Sort) that are

not yet included in the Java Collections Framework.

Sometimes, the complexity of the framework classes is mitigated by first introducing simpler

versions of those classes. For example, the SinglyLinkedList class—not in the Java Collections

Framework—helps to pave the way for the more powerful LinkedList class, which is in the framework.

And the BinarySearchTree class prepares students to understand the framework’s TreeMap class,

based on red-black trees.

This text satisfies another important goal of a data structures and algorithms course: Students have the

opportunity to develop their own data structures. There are programming projects in which data structures

are either created “from the ground up” or extended from examples in the chapters. And there are many

other projects to develop or extend applications that use the Java Collections Framework.

JUNIT AND TEST-FIRST DEVELOPMENT

Students realize that methods with no compile-time errors may still be a long way from correct, but they

often need help in learning how to systematically test their methods. As described in Chapter 2, JUnit is

an Open Source platform for the testing of units, that is, methods. For example, to test a findMedian

method, a FindMedianTest class is developed. The FindMedianTest class consists mainly of methods

that test findMedian. When all the test methods in FindMedianTest have been passed, the student’s

confidence in the correctness of findMedian is increased.

Instead of writing the tests after a method has been defined, we employ a “test-first” strategy. As

soon as a method’s specifications have been written, the tests for that method are coded. This ensures

that the tests are based on the specifications only, not on the definition of the method. These tests are run

on a “stub” version of the method to be tested, and all of the tests will fail. Then the method definition

is written, and the tests are run on that version of the method. Corrections to the method are made as

necessary until, eventually, all tests succeed. The test-first paradigm is introduced in Chapter 2 and utilized

in subsequent chapters.

PEDAGOGICAL FEATURES

This text offers several features that may improve the teaching environment for instructors and the learning

environment for students. Each chapter starts with a list of objectives, and most chapters conclude with

several major programming assignments. Each chapter also has a crossword puzzle, from Crossword

PREFACE xix

Weaver—to help students learn the key words and phrases in an enjoyable setting—and a variety of

exercises. The answers to all of the exercises are available to the instructor.

Each data structure is carefully described, with the specifications for each method given in javadoc

notation. Also, there are examples of how to call the method, and the results of that call. To reinforce

the important aspects of the material and to hone students’ coding skills in preparation for programming

projects, there is a suite of 23 lab experiments. The organization of these labs is described later in this

preface.

SUPPORT MATERIAL

The website for all of the support material is www.wiley.com/college/collins/

That website has links to the following information for students:

• The suite of 23 labs. Lab 0 starts with a brief overview of the lab format.

• The source codes for all classes developed in the text.

• Applets for projects that have a strong visual component.

Additionally, instructors can obtain the following from the website:

• PowerPoint slides for each chapter (approximately 1500 slides).

• Answers to every exercise and lab experiment.

SYNOPSES OF THE CHAPTERS

Chapter 0 serves as an introduction to the Java language for those whose first course was in some other

language. For students who are already familiar with Java, the chapter consists mostly of review material,

but the treatment of the Scanner class is worth perusing.

Chapter 1 focuses on the fundamentals of object-oriented programming: encapsulation, inheritance

and polymorphism. For a concrete illustration of these topics, an interface is created and implemented, and

the implementation is extended. The relationship between abstract data types and interfaces is explored, as

is the corresponding connection between data structures and classes. The Universal Modeling Language

provides a design tool to depict the interrelationships among interfaces, classes and subclasses.

Chapter 2 introduces unit testing with the free package JUnit. This is a vital topic in programming,

so method testing—before the method is defined—is emphasized in virtually all subsequent applications,

programming assignments and lab experiments. The chapter also includes some additional features of the

Java language. For example, there are sections on exception handling, file output, and the Java Virtual

Machine. Also, there is a section on the Object class’s equals method, why that method should be

overridden, and how to accomplish the overriding.

Finally, Chapter 2 introduces a “theme” project: to develop an integrated web browser and search

engine. This project, based on a paper by Newhall and Meeden [2002], continues through six of the

remaining chapters, and clearly illustrates the practical value of understanding data structures. In the first

part of the project, students develop a graphical user interface—a version of this interface is available

to instructors who prefer to provide this part of the project to students. The remaining six parts involve

an ArrayList object, a LinkedList object, a TreeMap object, a PriorityQueue object, a HashMap

object, and a Digraph object.

www.wiley.com/college/collins/

xx PREFACE

Chapter 3, Analysis of Algorithms , starts by defining functions to estimate a method’s execution-time

requirements, both in the average and worst cases. Big-O notation provides a convenient tool for estimating

these estimates. Because Big-O notation yields environment-independent estimates, these results are then

compared with actual run-times, which are determined with the help of the Random class and the nanoTime

method.

Chapter 4 outlines the Java Collections Framework. We start with some preliminary material

on collection classes in general, type parameters and the iterator design-pattern. The remainder of the

chapter presents part of the major interface hierarchy (Collection and List) and its implementations

(ArrayList and LinkedList).

Chapter 5, on recursion, represents a temporary shift in emphasis from data structures to algorithms.

There is a gradual progression from simple examples (factorial and decimal-to-binary) to more powerful

examples (binary search and backtracking). The mechanism for illustrating the execution of recursive

methods is the execution frame. Backtracking is introduced, not only as a design pattern, but as another

illustration of creating polymorphic references through interfaces. And the same BackTrack class is used

for maze-searching and solving eight queens, knight’s tour, Sudoku, and Numbrix.

In Chapter 6, we study the Java Collections Framework’s ArrayList class. An ArrayList object

is a smart array: automatically resizable, and with methods to handle insertions and deletions at any

index. The design starts with the method specifications for some of the most widely-used methods in the

ArrayList class. There follows a brief outline of the implementation of the class. The application of the

ArrayList class, high-precision arithmetic, is essential for public-key cryptography. This application is

extended in a lab and in a programming project. Several JUnit 4 tests are included in the chapter, and the

remaining tests are available from the book’s website.

Chapter 7 presents linked lists. A discussion of singly-linked lists leads to the development of a prim-

itive SinglyLinkedList class. This serves mainly to prepare students for the framework’s LinkedList

class. LinkedList objects are characterized by linear-time methods for inserting, removing or retrieving

at an arbitrary position. This property makes a compelling case for list iterators: objects that traverse a

LinkedList object and have constant-time methods for inserting, removing or retrieving at the “current”

position. The framework’s design is doubly-linked and circular, but other approaches are also considered.

The application is a small line-editor, for which list iterators are well suited. Testing entails an interesting

feature: the testing of protected methods. The line-editor application is extended in a programming project.

Stacks and queues are the subjects of Chapter 8. The framework’s Stack class has the expected push,

pop, and peek methods. But the Stack class also allows elements to be inserted or removed anywhere

in a Stack object, and this permission violates the definition. Students can use the Stack class—with

care—or develop their own version that satisfies the definition of a stack. There are two applications of

stacks: the implementation of recursion by a compiler, and the conversion from infix to postfix. This latter

application is expanded in a lab, and forms the basis for a project on evaluating a condition.

The Java Collections Framework has a Queue interface, but that interface supports the removal of

any element from a queue! As with the Stack class, students can tolerate this flaw and use a class—such

as LinkedList —that implements the Queue interface. Or they can create their own implementation

that does not violate the definition of a queue. The specific application of queues, calculating the average

waiting time at a car wash, falls into the general category of computer simulation .

Chapter 9 focuses on binary trees in general, as a prelude to the material in Chapters 10 through

13. The essential features of binary trees are presented, including both botanical (root, branch, leaf) and

familial (parent, child, sibling) terms. Binary trees are important for understanding later material on AVL

trees, decision trees, red-black trees, heaps, and Huffman trees.

PREFACE xxi

In Chapter 10, we look at binary search trees, including a BinarySearchTree class, and explain the

value of balanced binary search trees. Rotations are introduced as the mechanism by which re-balancing

is accomplished, and AVL trees are offered as examples of balanced binary search trees. An AVLTree

class, as a subclass of BinarySearchTree, is outlined; the crucial methods, fixAfterInsertion and

fixAfterDeletion, are left as programming projects.

Sorting is the theme of Chapter 11. Estimates of the lower bounds for comparison-based sorts are

determined. A few simple sorts are defined, and then we move on to two sort methods provided by the

framework. Quick Sort sorts an array of a primitive type, and Merge Sort works for an array of objects

and for implementations of the List interface. A lab experiment compares all of these sort algorithms on

randomly-generated integers.

The central topic of Chapter 12 is how to use the TreeMap class. A map is a collection in which

each element has a unique key part and also a value part. In the TreeMap implementation of the Map

interface, the elements are stored in a red-black tree, ordered by the elements’ keys. There are labs to

guide students through the details of re-structuring after an insertion or removal. The application consists

of searching a thesaurus for synonyms, and JUnit 4 testing is again illustrated. The TreeSet class has a

TreeMap field in which each element has the same, dummy value-part. The application of the TreeSet

class is a simple spell-checker, which is also thoroughly tested.

Chapter 13 introduces the PriorityQueue class. This class is part of the Java Collections Frame-

work and, like the Stack class and Queue interface in Chapter 8, allows methods that violate the definition

of a priority queue. The class utilizes a heap to provide insertions in constant average time, and removal of

the smallest-valued element in logarithmic worst time. The application is in the area of data compression:

Given a text file, generate a minimal, prefix-free encoding. There is a project assignment to convert the

encoded message back to the original text file.

Chapter 14 investigates hashing. The Java Collections Framework has a HashMap class for elements

that consist of unique-key/value pairs. Basically, the average time for insertion, removal, and searching is

constant! This average speed is exploited in an application (and JUnit 4 tests) to create a simple symbol

table. The Java Collections Framework’s implementation of hashing, using chained hashing, is compared

to open-address hashing.

The most general data structures—graphs, trees, and networks—are presented in Chapter 15. There

are outlines of the essential algorithms: breadth-first traversal, depth-first traversal, finding a minimum

spanning tree, and finding the shortest or longest path between two vertices. The only class developed

is the (directed) Network class, with an adjacency-map implementation. Other classes, such as Undi

rectedGraph and UndirectedNetwork, can be straightforwardly defined as subclasses of Network.

The Traveling Salesperson Problem is investigated in a lab, and there is a programming project to solve

that problem—not necessarily in polynomial time! Another backtracking application is presented, with the

same BackTrack class that was introduced in Chapter 5.

The website includes all programs developed in each chapter, all JUnit 4 tests, and applets, where

appropriate, to animate the concepts presented.

APPENDIXES

Appendix 1 has two additional features of the Java Collections Framework. Each of the collection classes in

the framework is serializable, that is, an instance of the class can be conveniently stored to an output stream,

and the instance can later be re-constituted from an input stream (de-serialization). Framework iterators

are fail-fast : During an iteration through a collection, there should be no insertions into or removals from

xxii PREFACE

the collection except by the iterator. Otherwise, the integrity of that iterator may be compromised, so an

exception will be thrown as soon as the iterator’s unreliability has been established.

Appendix 2 contains the background that will allow students to comprehend the mathematical aspects

of the chapters. Summation notation and the rudimentary properties of logarithms are essential, and the

material on mathematical induction will lead to a deeper appreciation of recursion as well as the analysis

of binary trees.

Appendix 3, “Choosing a Data Structure,” can be viewed as a summary of the eight major data

structures in the book. These collection classes are categorized according to their ordering of elements (for

example, time-based for stacks and queues) and according to their performance of standard operations (for

example, the TreeMap class requires logarithmic-in-n time to search for a key). Table A3.1 summarizes

the summary.

ORGANIZATION OF THE LABS

There are 23 web labs associated with this text. For both students and instructors, the initial Uniform

Resource Locator (URL) is www.wiley.com/college/collins.

The labs do not contain essential material, but provide reinforcement of the text material. For example,

after the ArrayList and LinkedList classes have been investigated, there is a lab to perform some timing

experiments on those two classes.

The labs are self-contained, so the instructor has considerable flexibility in assigning the labs:

a. they can be assigned as closed labs;

b. they can be assigned as open labs;

c. they can be assigned as ungraded homework.

In addition to the obvious benefit of promoting active learning, these labs also encourage use of the

scientific method. Basically, each lab is set up as an experiment. Students observe some phenomenon,

such as creating a greedy cycle to solve the Traveling Salesperson Problem. They then formulate and

submit a hypothesis—with their own code—about the phenomenon. After testing and, perhaps, revising

their hypothesis, they submit the conclusions they drew from the experiment.

ACKNOWLEDGEMENTS

Joshua Bloch, lead designer of the Java Collections Framework, gave valuable insights on type parameters

and their impact on the Java Collections Framework.

Chun Wai Liew of Lafayette College helped to incorporate JUnit into this edition of the text.

I am indebted to the suggestions and corrections of the reviewers: Dean Hendrix (Auburn University),

Benjamin Kuperman (Oberlin College), Andrew Haas (State University of New York—Albany), Kathy

Liszka (University of Akron), Paul Bladek (Edmonds Community College), Siva Jasthi (Metropolitan State

University), Hashem Anwari (Northern Virginia Community College), Alan Peslak (Nova Southeastern

University), H. K. Dai (Oklahoma State University), Jiang Li (Austin Peay State University), Paul J.

Wagner (University of Wisconsin—Eau Claire), John Mallozzi (Iona College), Robert Goldberg (Queens

College), and Michael Clancy (University of California—Berkeley).

www.wiley.com/college/collins

Introduction to Java CHAPTER 0

This is a book about programming: specifically, about understanding and using data structures and

algorithms. The Java Collections Framework has a considerable number of data structures and

algorithms. Subsequent chapters will focus on what the framework is and how to use the framework

in your programs. For this information to make sense to you, you will need to be familiar with certain

aspects of Java that we present in this chapter. All of the material is needed, either for the framework

itself or to enable you to use the framework in your programming projects.

CHAPTER OBJECTIVES

1. Learn (or review) the fundamentals of Java, including classes, objects and messages.

2. Be able to use javadoc in writing method specifications.

3. Incorporate the Scanner class into your programming.

4. Understand the significance of the fact that a copy of the argument is stored in the corre-

sponding parameter when a method is called.

5. Understand the details of arrays and output formatting.

0.1 Java Fundamentals

Every Java program is a collection of classes. Basically, a class consists of variables, called fields , together

with functions, called methods , that operate on those fields. A program is executed when a special method,

the main method, is called by the run-time system (also known as the Java Virtual Machine). The heading

of this method is fixed, as shown in the following program:

public class HelloWorld

{

public static void main (String [] args)

{

System.out.println ("Hello, world!");

} // method main

} // class HelloWorld

The main method in this program calls another method, println, to produce the following output to the

console window:

Hello, world!

1

2 CHAPTER 0 Introduction to Java

Console output, that is, output to the console window on your monitor, is handled by the methods

System.out.print, System.out.println, and System.out.printf (see Section 0.5).

0.1.1 Primitive Types

A primitive type is a collection of values, together with operations that can be performed on those values.

For example, the reserved word int denotes the primitive type whose values are integers in the range from

about −2 billion to 2 billion, and whose operations are addition, subtraction, and so on. A variable—also

called an instance—of type int is a location in computer memory that can hold one value of type int. The

term “variable” is used because the value stored can change during the execution of a program. Instead of

specifying the location’s address, we provide an identifier (that is, a name) and the Java compiler associates

the identifier with a location. For example, here is a declaration for an int variable whose identifier is

score:

int score;

By a standard abuse of language, we say that score is a variable instead of saying that score is an

identifier for a variable. An assignment statement allows us to store a value in a variable. For example,

score = 0;

stores the value 0 in the variable score. A subsequent assignment can change the value stored:

score = 88;

The left-hand side of an assignment statement must be a variable, but the right-hand side can be an arbitrary

expression: any legal combination of symbols that has a value. For example, we can write

score = (score + 3) / 10;

If score had the value 88 prior to the execution of this assignment statement, then after its execution, score

would have the value 9. Note that the division operator, /, returns the result of integer division because

the two operands, 91 and 10, are both integers.

Another operator in the int type is %, the modulus operator , which returns the integer remainder

after integer division. For example, 91 % 10 returns the remainder, 1, when 91 is divided by 10. Similarly,

87 % 2 returns 1, (−37) % 5 returns −2, and 10 % 91 returns 10.

Java supports eight primitive types, summarized in Table 0.1.

0.1.2 The char Type

The char type stores characters in the Unicode collating sequence, which includes all of the ASCII

characters such as ‘a’, ‘A’, ‘?’, and ‘ ’, the blank character. For example, suppose we write

char delimiter = ' ';

Then delimiter is a variable of type char and contains the value ' '. The Unicode collating sequence

also includes other—that is, non-Roman, alphabets—such as Greek, Cyrillic, Arabic, and Hebrew. The

Unicode collating sequence holds up to 65,536 (= 216) distinct characters, but only about half of them have

been assigned as of now. To include a character such as ☺ in a program, you provide an escape sequence:

0.2 Classes 3

Table 0.1 The Primitive Types

Primitive Type Range Size

int −2,147,483,648 to 2,147,483,647 4 bytes

long –263 to 263 −1 8 bytes

short −128 to 127 2 bytes

byte −64 to 63 1 byte

double −1.7976931348623157 * 10308 to 8 bytes

1.7976931348623157 * 10308

(15 digits of precision)

float −3.4028235 * 1038 to 4 bytes

3.4028235 * 1038

(6 digits of precision)

char 2 bytes

boolean false, true 1 byte

a sequence of symbols that starts with the backslash character, ‘\’ and designates a single character. For

example, the escape sequence for the smiley-face character, ☺, is ‘\u263A’, so we can write

char c = '\u263A';

to declare a char variable c and assign the smiley-face character to c.

More importantly, escape sequences are used for print control. For example, ‘\n’ represents the

new-line character and ‘\t’ represents the tab character. The execution of

System.out.println ("We can control\n\noutput with \tprint-control\t\t characters");

will produce output of

We can control

output with print-control characters

An escape sequence is also needed to print a double quote—otherwise, the double quote would signify

the end of the string to be output. For example, the execution of

System.out.println ("His motto was \"Don't sweat the nickels and dimes!\"");

will produce output of

His motto was "Don't sweat the nickels and dimes!"

0.2 Classes

In addition to primitive types such as int and char, Java provides programmers with the ability to create

powerful new types called “classes.” Given a problem, we develop classes—or utilize already existing

classes—that correspond to components of the problem itself. A class combines the passive components

(fields) and active components (methods) into a single entity. This grouping increases program modularity :

4 CHAPTER 0 Introduction to Java

the separation of a program into components that are coherent units. Specifically, a class is isolated from

the rest of the program, and that makes the whole program easier to understand and to modify.

In Section 0.2.1, we investigate the class concept in more detail by looking at a specific example:

the String class, the most widely used of Java’s pre-declared classes.

0.2.1 The String Class

To start with a simple example, we consider the String class. Actually, the String class is somewhat

intricate, with several fields and dozens of methods. But as we will focus on using the String class, we

will ignore the fields, and look at only a few of the methods. In Chapter 1, we will introduce a new class

and investigate its fields as well as its methods.

An object is an instance of a class; in other words, an object is a variable that contains fields and

can call methods. In the context of using the String class, an object can be thought of as a variable that

contains a string —a sequence of characters—and can call the String class’s methods. This gives rise to

two questions:

1. How are String objects declared?

2. How do String objects call String methods?

The answer to the first question is somewhat surprising: String objects, in fact, objects of any class,

cannot be declared in Java. Instead, we declare variables, called reference variables , that can contain the

address of an object. For example, we can declare

String s1;

Then s1 is not a String object, but a variable that can contain the address of a String object.1 In order

for s1 to actually contain such a reference, the space for a String object must be allocated, then the fields

in that newly created String object must be initialized, and finally, the address of that String object

must be assigned to s1. We combine these three steps into a single assignment statement. For example, if

we want s1 to be a reference to an empty String object, we write:

s1 = new String();

The right-hand side of this assignment statement accomplishes several tasks. The new operator allocates

space in memory for a String object, calls a special method known as a “constructor” to initialize the

fields in the object, and returns the address of that newly created object; that address is assigned to s1. A

constructor is a method whose name is the same as the class’s name and whose purpose is to initialize

the object’s fields. In this example, the fields are initialized to the effect that the newly created String

object represents an empty string, that is, a string that contains no characters.

The constructor just mentioned has no parameters, and is called the default constructor . The String

class also has a constructor with a String-reference parameter. Here is the heading of that constructor:

public String (String original)

The parameter original is of type reference-to-String. When this constructor is called, the

argument—inside the parentheses—will be assigned to the parameter, and then the body of the

constructor (the statements inside the braces) will be executed. For an example of a call to this

1In the languages C and C++, a variable that can contain the address of another variable is called a pointer variable.

0.2 Classes 5

constructor, the following statement combines the declaration of a reference variable and the assignment

to that variable of a reference to a newly constructed String object:

String s2 = new String ("transparent");

When this statement is executed, the space for a new String object is allocated, the fields in that

newly created String object are initialized to the effect that the new String object represents the string

"transparent", and the address of that new String object is assigned to the String reference s2.

Now that s1 and s2 contain live references, the objects referenced by s1 and s2 can invoke

any String method.2 For example, the length method takes no parameters and returns the number of

characters in the calling object, that is, the object that invokes the length method. We can write

System.out.println (s1.length());

The output will be 0. If, instead, we write

System.out.println (s2.length());

then the output will be 11 because the calling object contains the string "transparent".

The default constructor and the constructor with a String-reference parameter have the same name,

String, but have different parameter lists. Java allows method overloading : the ability of a class to have

methods with the same method identifier but different parameter lists. In order to clarify exactly what

method overloading entails, we define a method’s signature to consist of the method identifier together

with the number and types of parameters, in order. Method overloading is allowed for methods with

different signatures. For example, consider the following method headings:

public String findLast (int n, String s)

public String findLast (String s, int n)

In this example, the first method’s parameter list starts with an int parameter, but the second method’s

parameter list starts with a String parameter, so the two methods have different signatures. It is legal for

these two methods to be defined in the same class; that is, method overloading is permitted. Contrast this

example with the following:

public String findLast (int n, String s)

public int findLast (int j, String t)

Here the two methods have the same signature—notice that the return type is irrelevant in determining

signature—so it would be illegal to define these two methods in the same class.

0.2.2 Using javadoc Notation for Method Specifications

The String class has a method that returns a copy of a specified substring—a contiguous part of—the

calling string object. To make it easier for you to understand this method, we will supply the method’s

specification. A method specification is the explicit information a user will need in order to write code

that invokes the method.

2Except String constructors, which are invoked by the new operator. For that reason, and the fact that constructors do not have a return

type, the developers of the Java language do not classify a constructor as a method (see Arnold, 1996). But for the sake of simplicity, we

lump constructors in with the methods of a class.

6 CHAPTER 0 Introduction to Java

The method specification will include javadoc notation. javadoc is a program that converts Java

source code and a specially formatted block of comments into Application Programming Interface (API)

code in Hypertext Markup Language (HTML) for easy viewing on a browser. Because javadoc is available

on any system that has Java, javadoc format has become the standard for writing method specifications.

Each comment block starts with “/**”, each subsequent line starts with “*”, and the final line in a block

has “*/”. The complete specification consists of the javadoc comments and the method heading:

/**

* Returns a copy of the substring, between two specified indexes, of this String

* object.

*

* @param beginIndex – the starting position (inclusive) of the substring.

* @param endIndex – the final position (exclusive) of the substring.

*

* @return the substring of this String object from indexes beginIndex (inclusive)

* to endIndex (exclusive).

*

* @throws IndexOutOfBoundsException – if beginIndex is negative, or if

* beginIndex is greater than endIndex, or if endIndex is greater than

* length().

*

*/

public String substring (int beginIndex, int endIndex)

The first sentence in a javadoc comment block is called the postcondition: the effect of a legal call to

the method. The comment block also indicates parameters (starting with @param), the value returned

(@return), and what exceptions can be thrown (@throws). An exception , such as IndexOutOfBounds

Exception, is an object created by an unusual condition, typically, an attempt at invalid processing.

Section 2.2 covers the topic of exceptions, including how they are thrown and how they are caught. To

avoid confusing you, we will omit @throws comments for the remainder of this chapter.

To illustrate the effect of calls to this method, here are several calls in which the calling object is

either an empty string referenced by s1 or the string “transparent” referenced by s2:

s1.substring (0, 0) // returns reference to an empty string

s1.substring (0, 1) // error: 2nd argument > length of calling object

s2.substring (1, 4) // returns reference to copy of "ran", a 3-character string

s2.substring (5, 10) // returns reference to copy of "paren", a 5-character string

s2.substring (5, 11) // returns reference to copy of "parent", a 6-character string

There are several points worth mentioning about the comment block. In the postcondition and elsewhere,

“this String object” means the calling object. What is returned is a reference to a copy of the substring.

And the last character in the designated substring is at endIndex -1, not at endIndex.

The javadoc comment block just given is slightly simpler than the actual block for this substring

method in the String class. The actual javadoc comment block includes several html tags: <pre>,

<blockquote>, and <code>. And if you viewed the description of that method from a browser—that is,

after the javadoc program had been executed for the String class—you would see the comments in an

easier-to-read format. For example, instead of

0.2 Classes 7

* @return the substring of this String object from indexes beginIndex (inclusive)

* to endIndex (exclusive).

you would see

Returns:

the substring of this String object from indexes beginIndex (inclusive)

to endIndex (exclusive).

The on-line Java documentation is generated with javadoc. And the documentation about a method in one

class may include a hyperlink to another class. For example, the heading for the next() method in the

Scanner class is given as

public String next()

So if you are looking at the documentation of the next() method and you want to see some information

on the String class, all you need to do is click on the String link.

Throughout the remainder of this text, we will regularly use javadoc to provide information about a

method. You should try to use javadoc to describe your methods.

0.2.3 Equality of References and Equality of Objects

Reference variables represent an advance over the pointer mechanism of Java’s predecessors, C and C++.

A pointer variable could be assigned any memory address, and this often led to hard-to-find errors. In

contrast, if a reference variable contains any address, it must be the address of an object created by the new

operator. To indicate that a reference variable does not contain an address, we can assign to that variable

a special value, indicated by the reserved word null:

String s3 = null;

At this point, s3 does not contain an address, so it would be illegal to write

s3.length()

In object-oriented parlance, when a method is invoked, a message is being sent to the calling object.

The term “message” is meant to suggest that a communication is being sent from one part of a program

to another part. For example, the following message returns the length of the String object referenced

by s2:

s2.length()

This message requests that the object referenced by s2 return its length, and the value 11 is returned.

The form of a message consists of a reference followed by a dot—called the member-selection opera-

tor —followed by a method identifier followed by a parenthesized argument list.

Make sure you understand the difference between a null reference (such as s3), and a reference

(such as s1) to an empty string. That distinction is essential to an understanding of Java’s object-reference

model.

The distinction between objects and references is prominent in comparing the equals method and

the == operator. Here is the method specification for equals:

/**

* Compares this String object to a specified object:

8 CHAPTER 0 Introduction to Java

* The result is true if and only if the argument is not null and is a String object

* that represents the same sequence of characters as this String object.

*

* @param anObject - the object to compare this String against.

*

* @return true - if the two String objects are equal; false otherwise.

*

*/

public boolean equals (Object anObject)

The parameter’s type suggests that the calling object can be compared to an object of any type, not just

to a String object. Of course, false will be returned if the type is anything but String. The Object

class is discussed in Chapter 1.

The == operator simply compares two references : true is returned if and only if the two references

contain the same address. So if str1 and str2 are referencing identical String objects that are at different

addresses,

str1.equals (str2)

will return true because the String objects are identical, but

str1 == str2

will return false because the str1 and str2 contain different addresses.

Finally, you can create a String object without invoking the new operator. For example,

String str0 = "yes",

str3 = "yes";

Because the underlying strings are identical, only one String object is constructed, and both str0 and

str3 are references to that object. In such cases, we say that the String object has been interned .

Figure 0.1 has several examples, and contrasts the String method equals with the reference

operator ==.

The reason the output is different for the first and third calls to println in Figure 0.1 is that the

equals method compares strings and the == operator compares references. Recall that each time the new

operator is invoked, a new String object is created. So, as shown in Figure 0.2, s4 is a reference to

String s4 = new String ("restful"),

s5 = new String ("restful"),

s6 = new String ("peaceful"),

s7 = s4,

s8 = "restful",

s9 = "restful";

System.out.println (s4.equals (s5)); // the output is "true"

System.out.println (s4.equals (s6)); // the output is "false"

System.out.println (s4 == s5); // the output is "false"

System.out.println (s4 == s7); // the output is "true"

System.out.println (s4 == s8); // the output is "false"

System.out.println (s8 == s9); // the output is "true"

FIGURE 0.1 Illustration of the effect of the equals method and == operator

0.2 Classes 9

s4

s5

s6

s7

s8

s9

restful

restful

peaceful

restful

FIGURE 0.2 An internal view of the references and objects in Figure 0.1

a String object whose value is “restful”, and s5 is a reference to a different String object whose value

is also “restful”.

0.2.4 Local Variables

Variables declared within a method—including the method’s parameters—are called local variables . For

example, the following method has two local variables, n and j:

/**

* Determines if a specified integer greater than 1 is prime.

*

* @param n – the integer whose primality is being tested.

*

* @return true – if n is prime.

*

*/

public static boolean isPrime (int n)

{

if (n == 2)

return true;

if (n % 2 == 0)

return false;

10 CHAPTER 0 Introduction to Java

for (int j = 3; j * j <= n; j = j + 2)

if (n % j == 0)

return false;

return true;

} // method isPrime

Local variables must be explicitly initialized before they are used. For example, suppose we have

public void run()

{

int k;

System.out.println (isPrime (k));

} // method run

Compilation will fail, with an error message indicating that “variable k might not have been initialized.”

The phrase “might not have been initialized” in the error message suggests that the compiler does not

perform a detailed analysis of the method’s code to determine if, in fact, the variable has been properly

initialized. For example, the same error message will be generated by the following method:

public void run()

{

int k;

boolean flag = true;

if (flag)

k = 20;

if (!flag)

k = 21;

System.out.println (isPrime (k));

} // method run

Clearly, if we look at this method as a whole, the variable k does receive proper initialization. But if

each statement is considered on its own, no such guarantee can be made. The following slight variant is

acceptable because the if-else statement is treated as a unit:

public void run()

{

int k;

boolean flag = true;

if (flag)

k = 20;

else

k = 21;

System.out.println (isPrime (k));

} // method run

0.2 Classes 11

The scope of an identifier is the region of a program to which that identifier’s declaration applies. In

the isPrime method, the scope of the parameter n is the entire function definition, but the scope of the

variable j is only the for statement. A compile-time error results if an attempt is made to access an

identifier outside of its scope: for example, if we tried to print out the value of j outside of the for

statement in the isPrime method. This restriction of identifiers to specific code segments—and not, for

example, to an entire method—promotes modularity.

To see how it is possible to declare the same identifier more than once in a class, we need to define

what a “block” is. A block is an enclosed sequence of declarations and/or statements enclosed in curly

braces { }. For a field identifier, its enclosing block is the entire class enclosed by the curly braces. It is

permissible to re-declare the field identifier within a method in the class. But it is illegal to re-declare

a local identifier within its block. Special case: for a variable identifier declared in the header of a for

statement, its scope is the entire for statement. So it is possible to have two for statements in the same

method with identical variable identifiers declared in the headers of those for statements (but that identifier

cannot also be declared outside of those for statements as a local variable of the method). The following

class illustrates the scopes of several identifiers.

public class Scope

{

boolean t = true;

int x = 99;

double sample = 8.1;

public void sample (double x)

{

double y = 5;

x = 5.3;

for (int t = 0; t < 3; t++)

{

int i = t + 4;

System.out.println (i + t + x);

} // end of int t’s scope; end of i’s scope

for (int t = 0; t < 7; t++)

x = t; // end of the scope of this version of int t

} // method sample; end of double x’s scope; end of y’s scope

public void original()

{

System.out.println (t + " " + x + " " + sample);

} // method original

} // class Scope; end of boolean t’s scope; end of int x’s scope; end of double sample’s scope

All three fields—t, x and sample—are re-declared within the method sample. But the scope of those

three fields includes the method original. And note that there is no ambiguity when sample is used

12 CHAPTER 0 Introduction to Java

both as a field identifier and as a method identifier, because a method identifier is always followed by

parentheses.

0.2.5 The Scanner Class

One of the recent improvements in Java is provided by the Scanner class in java.util. A Scanner

object operates on text : a sequence of lines, separated by end-of-line markers. The text may be input from

the keyboard, input from a file, or a string. There are Scanner methods to return the rest of the current

line, to return the next primitive value, and to return the next string.

Let’s start with the three key constructors. Here is a declaration of a Scanner object that will read

input from the keyboard:

Scanner sc = new Scanner (System.in);

The following declares a Scanner object that will read from the file named “myFile.dat”:

Scanner scanner = new Scanner (new File ("myFile.dat"));

If, instead, we want to scan over the String object line, we can declare the following:

Scanner lineScanner = new Scanner (line);

We can now use the Scanner object sc declared above to read in an int value representing a test score:

int score = sc.nextInt();

In order to understand how the nextInt method works, we need to introduce some terminology. A scanner

subdivides the text into tokens separated by delimiters . In the case of the nextInt method, the delimiters

are whitespace characters: blanks, end-of-line markers, newline characters, tabs, and so on. The tokens are

everything else. The scanning proceeds as follows: First, all whitespace is skipped over. Then the token is

read in. If the characters in the token represent an int value, that value is stored in the variable score.

In Section 2.2 of Chapter 2, there is a discussion of what happens if the token does not represent an int

value.

We can read in and add up scores until a sentinel of −1 is read. In the following program, we need

to utilize the class java.util.Scanner in the package java.util. Because we will often want several

classes from java.util, we specify that we want all of the classes from that package to be available.

How? By denoting java.util.* in the import directive, we notify the compiler that the entire package

java.util is to be made available.

In this program, and in all subsequent programs in this book, the main method consists of a single

line. A new instance of the class is created with a call to the class’s default constructor (automatically

supplied by the compiler), and this new instance invokes its run method. Here is the complete file:

import java.util.*; // for the Scanner class

public class Sum

{

public static void main (String[] args)

{

new Sum().run();

} // method main

0.2 Classes 13

public void run()

{

final int SENTINEL = -1;

final String INPUT_PROMPT = "\nPlease enter a test score (or " +

SENTINEL + " to quit): ";

final String SUM_MESSAGE = "\n\nThe sum of the scores is ";

Scanner sc = new Scanner (System.in);

int score,

sum = 0;

while (true)

{

System.out.print (INPUT_PROMPT);

score = sc.nextInt();

if (score == SENTINEL)

break;

sum += score;

} // while

System.out.println (SUM_MESSAGE + sum);

} // method run

} // class Sum

A noteworthy feature of this program is the structure of the while statement. The loop continues until

the sentinel is read in. The execution of the break statement causes an abrupt exit of the loop; the next

statement to be executed is the println that outputs the sum. The loop has only one entrance and only

one exit, and that helps us to understand the action of the loop. Also, there is only one place where the

prompt is printed, and only one place where input is read.

In that program, why did we use a sentinel instead of allowing the end user to terminate the loop

by not entering more values? When sc.next() is called, the program will pause until a non-whitespace

value is entered (followed by a pressing of the Enter key). In other words, a sentinel is needed to terminate

keyboard input. For scanning a line or a file, there will rarely be a sentinel, so a call to the next() method

should be preceded by a call to the Scanner class’s hasNext() method, which returns true if there is

still another token to be scanned in, and false otherwise. This will ensure that the call to next() will not

cause an abnormal termination due to the lack of a next token.

In the class Sum, the end-user was prompted to enter a single int value per line. In general, a

line may have several int values, or even no int values. For example, we could have the following:

Scanner sc = new Scanner (System.in);

int score1 = sc.nextInt(),

score2 = sc.nextInt(),

score3 = sc.nextInt();

14 CHAPTER 0 Introduction to Java

Here is a sample sequence of lines, with the second line blank:

85

95 87

The variables score1, score2, and score3 will now have the values 85, 95, and 87, respectively.

For a slightly more complicated example, the following program reads from a file. Each line in the

file consists of a student’s name and grade point average. The output is the name of the student with the

highest grade point average. There is no sentinel. Instead, the scanning continues as long as the input file

has another token, that is, any sequence of characters excluding whitespace. As indicated previously, the

hasNext() method returns true if and only if there are any tokens remaining in the file. The next()

method returns the next token as a string.

import java.util.*; // for the Scanner class

import java.io.*; // for the File class

public class HighestGPA

{

public static void main (String[] args) throws FileNotFoundException

{

new HighestGPA().run();

} // method main

public void run() throws FileNotFoundException

{

final double NEGATIVE_GPA = -1.0;

final String NO_VALID_INPUT =

"Error: the given file has no valid input.";

final String BEST_MESSAGE =

"\n\nThe student with the highest grade point average is ";

Scanner fileScanner = new Scanner (new File ("students.dat"));

String name,

bestStudent = null;

double gpa,

highestGPA = NEGATIVE_GPA;

while (fileScanner.hasNextLine())

{

Scanner lineScanner = new Scanner (fileScanner.nextLine());

name = lineScanner.next();

gpa = lineScanner.nextDouble();

if (gpa > highestGPA)

0.2 Classes 15

{

highestGPA = gpa;

bestStudent = name;

} // if

} // while

if (highestGPA == NEGATIVE_GPA)

System.out.println (NO_VALID_INPUT);

else

System.out.println (BEST_MESSAGE + bestStudent);

} // method run

} // class HighestGPA

The significance of the clause throws FileNotFoundException is explained in Section 2.3.3 of

Chapter 2. As described in Section 0.4, the variable bestStudent is initialized to avoid a “might not

have been initialized” error message when bestStudent is printed. Note, for example, that if the file

“students.dat” is empty, the loop will not be executed, and so bestStudent will not be assigned a value

in the loop.

Here are sample contents of the file “students.dat”:

Larry 3.3

Curly 3.7

Moe 3.2

The corresponding output is:

The student with the highest grade point average is Curly

In the above program, the name of the input file was “hard-wired,” that is, actually specified in the code.

It is more realistic for the end-user to enter, from the keyboard, the input-file path. Then we need two

scanner objects: one to read in the input-file path, and another to read the input file itself. Because a

file path may contain blank spaces, we cannot invoke the next() method to read in the input-file path.

Instead, we call the nextLine() method, which advances the scanner past the current line, and returns

(the remainder of) the current line, excluding any end-of-line marker. Here is the code that replaces the

declaration and assignment to fileScanner in that program:

final String IN_FILE_PROMPT = "Please enter the path for the input file: ";

Scanner keyboardScanner = new Scanner (System.in);

System.out.print (IN_FILE_PROMPT);

String inFileName = keyboardScanner.nextLine();

Scanner fileScanner = new Scanner (new File (inFileName));

Here are sample input and output for the resulting program, with the input in boldface:

Please enter the path for the input file: students.dat

The student with the highest grade point average is Curly

16 CHAPTER 0 Introduction to Java

Keep in mind that the next() method skips over whitespace and returns the next token, but the

nextLine() method skips past the current line, and returns that current line, excluding any end-of-line

marker. Similarly, the hasNext() method returns true if and only if there is another token in

the text, while the hasNextLine() method returns true if and only if there is at least one more

character—including whitespace—in the text. So if the text has a line of blanks remaining, or even an

extra end-of-line marker, hasNext() will return false, but hasNextLine() will return true.

The above example illustrates a pattern we will see over and over in the remaining chapters. A

keyboard scanner scans in the path of an input file, a file scanner scans in the lines in the file, and a line

scanner scans over a single line.

In the next example, a scanner retrieves each word in a line, and the word is converted to lower-case

and printed. The scanner is declared in a method whose only parameter is a line to be parsed into words:

public void run()

{

split ("Here today gone tomorrow");

} // method run

public void split (String line)

{

Scanner sc = new Scanner (line);

while (sc.hasNext())

System.out.println (sc.next().toLowerCase());

} // method split

The output will be

here

today

gone

tomorrow

Unfortunately, if the input contains any non-alphabetic, non-whitespace characters, those characters will

be included in the tokens. For example, if the call is

split ("Here today, gone tomorrow.");

The output will be

here

today,

gone

tomorrow.

We can override the default delimiter of whitespace with the useDelimiter (String pattern)

method, which returns a (reference to a) Scanner object. For example, if we want the delimiter to be

any positive number of non-alphabetic characters, we can explicitly indicate that as follows:

Scanner sc = new Scanner (line).useDelimiter ("[∧a-zA-Z]+");

In the argument to the useDelimiter method, the brackets specify a group of characters, the ‘∧’ specifies

the complement of the characters that follow, and ‘+’ is shorthand for any positive number of occurrences

0.3 Arrays 17

of the preceding group. In other words, we are defining a delimiter as any sequence of one or more

occurrences of characters that are non-alphabetic. So if we have included the above useDelimiter call,

and we have

split ("Here today, gone tomorrow.");

then the output will be

here

today

gone

tomorrow

Finally, suppose we want to allow a word to have an apostrophe. Then we include the apostrophe in the

class whose complement defines the delimiters:

Scanner sc = new Scanner (line).useDelimiter ("[∧a-zA-Z’]+");

If the call is

split ("You’re 21?? I’ll need to see some ID!");

then the output will be

you’re

i’ll

need

to

see

some

id

You are now prepared to do Lab 0: The Scanner Class

Cultural Note: The Scanner class enables a user to process a regular expression: a format for identifying

patterns in a text. The arguments to the useDelimiter methods shown previously are simple examples

of regular expressions. In general, regular expressions provide a powerful but somewhat complex means

of finding strings of interest in a text. For more information on handling regular expressions in Java, see

http://www.txt2re.com and (Habibi, 2004).

0.3 Arrays

An array is a collection of elements, of the same type, that are stored contiguously in memory. Contiguous

means “adjacent,” so the individual elements are stored next to each other.3 For example, we can create

an array of five String objects as follows:

String [] names = new String [5];

3Actually, all that matters is that, to a user of an array, the elements are stored as if they were contiguous.

http://www.txt2re.com

18 CHAPTER 0 Introduction to Java

Here the new operator allocates space for an array of five String references (each initialized to null by

the Java Virtual Machine), and returns a reference to the beginning of the space allocated. This reference

is stored in names.

In order to specify one of the individual elements in an array, an index is used. An index is an

integer expression in square brackets; the value of the expression determines which individual element is

being denoted. The smallest allowable index is 0. For example,

names [0] = "Cromer";

will store a reference to “Cromer” at the zeroth entry in the array (referenced by) names.

The size of an array is fixed once the array has been created, but the size need not be determined at

compile-time. For example, we can do the following:

public void processInput (String s)

{

int n = new Scanner (s).nextInt();

String [] names = new String [n];

. . .

When the processInput method is executed at run time, names will be assigned a reference to an array

of n string references, all of which are initialized to null. An array is an object, even though there is

no corresponding class. We loosely refer to names as an “array,” even though “array reference” is the

accurate term.

The capacity of an array, that is, the maximum number of elements that can be stored in the array,

is stored in the array’s length field. For example, suppose we initialize an array when we create it:

double [] weights = {107.3, 112.1, 114.4, 119.0, 117.4};

We can print out the capacity of this array as follows:

System.out.println (weights.length);

The output will be

5

For an array x, the value of any array index must be between 0 and x.length-1, inclusive. If the value

of an index is outside that range, ArrayIndexOutOfBoundsException (See Section 2.3 of Chapter 2

for a discussion of exception handling) will be thrown, as in the following example:

final int MAX = 10;

double [] salaries = new double [MAX];

for (int i = 0; i <= MAX; i++)

salaries [i] = 0.00;

For the first ten iterations of the loop, with i going from 0 through 9, each element in the array is initialized

to 0.00. But when i gets the value 10, an ArrayIndexOutOfBoundsException is thrown because i’s

value is greater than the value of salaries.length-1, which is 9.

0.4 Arguments and Parameters 19

0.4 Arguments and Parameters

In Java, the relationship between arguments (when a method is called) and parameters (in the called

method’s heading) is straightforward: a copy of the value of the argument is assigned to the parameter.

So the argument is not affected by the method call. For example, consider the following program:

public class Nothing

{

public static void main (String[] args)

{

new Nothing().run();

} // method main

public void run()

{

int k = 30;

triple (k);

System.out.println (k);

} // method run

public void triple (int n)

{

n = n * 3;

} // method triple

} // class Nothing

The output will be 30. When the method triple (int n) is called, a copy of the value of the argument

k is assigned to the parameter n. So at the beginning of the execution of the call, n has the value 30. At the

end of the execution of the call, n has the value 90, but the argument k still has the value 30. Incidentally,

the name of the parameter has no effect: the result would have been the same if the parameter had been

named k instead of n.

Next, we look at what happens if the argument is of type reference. As with primitive arguments,

a reference argument will not be affected by the method call. But a much more important issue is “What

about the object referenced by the argument?” If the object is an array, then the array can be affected by

the method call. For example, here is a simple program in which an array is modified during a method

call:

public class Swap

{

public static void main (String[] args)

{

new Swap().run();

} // method main

public void run()

{

20 CHAPTER 0 Introduction to Java

double[] x = {5.0, 8.0, 12.2, 20.0};

swap (x, 1, 2);

System.out.println (x [1] + " " + x [2]);

} // method run

public void swap (double[] a, int i, int j)

{

double temp = a [i];

a [i] = a [j];

a [j] = temp;

} // method swap

} // class Swap

The output will be

12.2 8.0

In the array referenced by x, the elements at indexes 1 and 2 have been swapped.

For objects other than arrays, whether the object can be affected by the method call depends on the

class of which the object is an instance. For example, the String class is immutable, that is, there are

no methods in the String class that can modify an already constructed String object. So if a String

reference is passed as an argument in a method call, the String object will not be affected by the call.

The following program illustrates the immutability of String objects.

public class Immutable

{

public static void main (String[] args)

{

new Immutable().run();

} // method main

public void run()

{

String s = "yes";

flip (s);

System.out.println (s);

} // method run

public void flip (String t)

{

t = new String ("no");

} // method flip

} // class Immutable

The output will be “yes”. The flip method constructed a new String object, but did not affect the

original String object referenced by s. Figure 0.3 shows the relationship between the argument s and the

parameter t at the start of the execution of the call to the flip method. Figure 0.4 shows the relationship

between s and t at the end of the execution of the method call.

0.4 Arguments and Parameters 21

s

t

yes

FIGURE 0.3 The relationship between the argument s and the parameter t at the start of the execution of the

flip method in the class Immutable

s

t

yes

no

FIGURE 0.4 The relationship between the argument s and the parameter t at the end of the execution of the

flip method in the class Immutable

Some built-in classes are mutable. For example, the following program illustrates the mutability of Scanner

objects.

import java.util.*; // for the Scanner class

public class Mutable

{

public static void main (String[] args)

{

new Mutable().run();

} // method main

public void run()

{

Scanner sc = new Scanner ("yes no maybe");

System.out.println (sc.next());

advance (sc);

System.out.println (sc.next());

} // method run

public void advance (Scanner scanner)

{

scanner.next();

} // method advance

} // class Mutable

The output from this program will be

yes

maybe

22 CHAPTER 0 Introduction to Java

The string “no” was returned when scanner.next() was called in the advance method, and that call

advanced the current position of the Scanner object (referenced by both sc and scanner) beyond where

“no” is. Because of this alteration of the Scanner object, the second call to println in the run method

prints out “maybe”.

To summarize this section, an argument is never affected by a method call. But if the argument is a

reference, the corresponding object may (for example, an array object or a Scanner object) or may not

(for example, a String, Integer, or Double object) be affected by the call.

0.5 Output Formatting

What do you think the output will be from the following code fragment?

double grossPay = 800.40;

System.out.println (grossPay);

The output will not be

800.40

but rather

800.4

To get two fractional digits printed, we need to convert grossPay to a string with two fractional digits. This

is accomplished by first creating an instance of the DecimalFormat class (in the package java.text)

with a fixed format that includes two fractional digits, and then applying that object’s format method to

grossPay. The code is

DecimalFormat d = new DecimalFormat ("0.00");

double grossPay = 800.40;

System.out.println (d.format (grossPay));

The fixed format, “0.00”, is the argument to the DecimalFormat constructor. That format specifies that

the String object returned by the format method will have at least one digit to the left of the decimal

point and exactly two digits to the right of the decimal point. The fractional part will be rounded to two

decimal digits; for example, suppose we have

DecimalFormat d = new DecimalFormat ("0.00");

double grossPay = 800.416;

System.out.println (d.format (grossPay));

Then the output will be

800.42

To make the output look more like a dollar-and-cents amount, we can ensure that grossPay is immediately

preceded by a dollar sign, and a comma separates the hundreds digit from the thousands digit:

DecimalFormat d = new DecimalFormat (" $#,###.00");

double grossPay = 2800.4;

System.out.println (d.format (grossPay));

0.5 Output Formatting 23

The output will be

$2,800.40

The DecimalFormat class is in the package java.text, so that package must be imported at the begin-

ning of the file in which the formatting is performed.

An alternative to the output formatting just described is provided by the printf method, which is

similar to the printf function in the C language. For example, the following will print grossPay with at

least one digit to the left of the decimal point and exactly two digits (rounded) to the right of the decimal

point:

System.out.printf ("%1.2f", grossPay);

The first field is called the format , an expression in quotes that starts with a percent sign. The character

‘f’—called a “flag”—signifies that grossPay will be printed with fractional digits. The “1.2”—the “width”

and “precision”—signifies that there will be at least one digit (even if it is a zero) to the left of the decimal

point, and exactly two digits (rounded) to the right of the decimal point. For example, suppose we have

double grossPay = 1234.567;

System.out.printf ("%1.2f", grossPay);

Then the output will be

1234.57

If there are additional values to be printed, the format for each value starts with a percent sign inside the

format. For example,

double grossPay = 1234.567;

String name = "Jonathan Rowe";

System.out.printf ("%s %1.2f", name, grossPay);

The ‘s’ flag indicates a string. The output will be

Jonathan Rowe 1234.57

We can ensure there will be a comma between the hundreds and thousands digits by including the comma

flag, ‘,’. For example, suppose we have

double grossPay = 1234.567;

String name = "Jonathan Rowe";

System.out.printf ("%s $%,1.2f", name, grossPay);

Then the output will be

Jonathan Rowe $1,234.57

More details on formatting in the printf method can be found in the Format class in the package

java.util.

24 CHAPTER 0 Introduction to Java

CROSSWORD PUZZLE

1

2

3

4

5 6

7

8

9

www.CrosswordWeaver.com

ACROSS DOWN

3. A variable that can contain the address of an object.

6. The region of a program to which an identifier’s
 declaration applies.

7. The separation of a program into components that
 are coherent units.

8. A new, that is, non-primitive type.

9. In a class, a method whose name is the same as the
 class’s name and whose purpose is to initialize a calling
 object’s fields.

1. The ability of a class to have methods with
 the same method identifier but different
 parameter lists.

2. A method’s identifier together with the
 number and types of parameters in order.

4. Adjacent, as when individual elements are
 stored next to each other.

5. An instance of a class.

6. A class that is useful for parsing keyboard
 input, file input and strings.

www.CrosswordWeaver.com

Programming Exercises 25

PROGRAMMING EXERCISES

0.1 The package java.lang includes the Integer class. In that class, what is the definition of MAX_VALUE ? The

number 0x7fffffff is in hexadecimal , that is, base 16, notation. To indicate hexadecimal notation, start with

“0x”, followed by the hexadecimal value. In hexadecimal, there are sixteen digits: 0, 1, 2, . . ., 9, a, b, c, d,

e, and f. The digits 0 through 9 have the same value as in decimal, and the letters ‘a’ through ‘f’ have the

following decimal values:

a 10

b 11

c 12

d 13

e 14

f 15

The decimal representation of hexadecimal 7ffffff is

7 ∗ 167 + 15 ∗ 166 + 15 ∗ 165 + 15 ∗ 164 + 15 ∗ 163 + 15 ∗ 162 + 15 ∗ 161 + 15

= 2147483647

Similarly, the decimal value of MIN_VALUE is −2147483648. Hypothesize the decimal value of each of the

following:

Integer.MAX_VALUE + 1

Math.abs (Integer.MIN_VALUE)

Test your hypotheses with a small program that calls the System.out.println method.

0.2 Suppose we have the following:

int a = 37,

b = 5;

System.out.println (a - a / b * b - a % b);

Hypothesize what the output will be. Test your hypothesis by executing a small program that includes that code.

Can you find another pair of positive int values for a and b that will produce different output? Explain.

0.3 Hypothesize the output from the following:

System.out.println (1 / 0);

System.out.println (1.0 / 0);

Test your hypotheses by executing a small program that includes that code.

0.4 In the String class, read the specification for the indexOf method that takes a String parameter. Then

hypothesize the output from the following

System.out.println ("The snow is now on the ground.".indexOf ("now"));

Test your hypothesis by executing a small program that includes that code.

26 CHAPTER 0 Introduction to Java

0.5 In the String class, read the specification for the indexOf method that takes a String parameter and an

int parameter. Then hypothesize the output from the following

System.out.println ("The snow is now on the ground.".indexOf ("now", 8));

Test your hypothesis by executing a small program that includes that code.

0.6 Write and run a small program in which an input string is read in and the output is the original string with each

occurrence of the word “is” replaced by “was”. No replacement should be made for an embedded occurrence,

such as in “this” or “isthmus”.

0.7 Write and run a small program in which an input string is read in and the output is the original string with each

occurrence of the word “is” replaced by “is not”. No replacement should be made for an embedded occurrence,

such as in “this” or “isthmus”.

0.8 Write and run a small program in which the end user enters three lines of input. The first line contains a string,

the second line contains a substring to be replaced, and the third line contains the replacement substring. The

output is the string in the first line with each occurrence of the substring in the second line replaced with

the substring in the third line. No replacement should be made for an embedded occurrence, in the first line of

the substring in the second line.

0.9 Study the following method:

public void mystery (int n)

{

System.out.print ("For n = " + n);

while (n > 1)

if (n % 2 == 0)

n = n / 2;

else

n = 3 * n + 1;

System.out.println (", the loop terminated.");

} // method mystery

Trace the execution of this method when n = 7. In the same class as the method mystery, develop a main

method and a run method to show that the while statement in the method mystery successfully terminates

for any positive integer n less than 100. Cultural note: It can be shown that this method terminates for all int

values greater than 0, but it is an open question whether the method terminates for all integer values greater

than 0.

Object-Oriented Concepts CHAPTER 1

CHAPTER OBJECTIVES

1. Compare a user’s view of a class with a developer’s view of that class.

2. Understand how inheritance promotes code re-use.

3. Understand how polymorphic references can be useful.

4. Be able to create class diagrams in the Unified Modeling Language.

1.1 Data Abstraction

A user of a class concentrates on the class’s method specifications, that is, what a class provides. A

developer of a class, on the other hand, focuses on the class’s fields and method definitions, that is, how

the class is defined. This separation—called data abstraction—of what from how is an essential feature

of object-oriented programming. For example, programmers who use the String class will not care about

the fields that represent a string or how the methods are defined. Such details would be of no help when

you are trying to develop a class that uses the String class, but were essential to the developers of the

String class.

In general, suppose you are a programmer who is developing class A, and during development, you

decide that you will need the services of class B. If someone else has already completed the definition of

class B, you should simply use that class rather than re-inventing the wheel. But even if you must define

the class, B yourself, you can simply create the method specifications for class B and postpone any further

work on class B until after you have completed the development of class A. By working with class B’s

method specifications, you increase the independence of class A: its effectiveness will not be affected by

any changes to class B that do not affect the method specifications of class B.

When users focus on what a class provides to users rather than on the implementation details of

that class, they are applying the Principle of Data Abstraction: A user’s code should not access the

implementation details of the class used.

One important application of the Principle of Data Abstraction is that if class A simply uses class

B, then class A’s methods should not access class B’s fields. In fact, class B’s fields should be accessed

only in class B’s method definitions. This turns out to be a benefit to users of class B because they will

be unaffected if the developer of class B decides to replace the old fields with new ones. For example,

suppose the following definition is made outside of the String class:

String name;

Currently, one of the fields in the String class is an int field named count. But an expression such as

name.count

would be a violation of the Principle of Data Abstraction because whether or not the String class has a

count field is an implementation detail. The developer of the String class is free to make any changes

to the String class that do not affect the method specifications.

27

28 CHAPTER 1 Object-Oriented Concepts

Most programming languages, including Java, have features that enable a developer of a class to force

users to adhere to the Principle of Data Abstraction. These enforcement features are collectively known as

“information hiding.” We will discuss information hiding in Section 1.5 after we have introduced several

of the relevant features.

We noted earlier that the Principle of Data Abstraction is a benefit to users of a class because they

are freed from reliance on implementation details of that class. This assumes, of course, that the class’s

method specifications provide all of the information that a user of that class needs. The developer of a class

should create methods with sufficient functionality that users need not rely on any implementation details.

That functionality should be clearly spelled out in the method specifications. In particular, the user should

be told under what circumstances a method call will be legal, and what the effect of a legal call will be.

In a method specification, the first sentence in a javadoc comment block is called the postcondition:

the effect of a legal call to the method. The information relating to the legality of a method call is

known as the precondition of the method. The precondition may be stated explicitly within or after the

postcondition (for example, “The array must be sorted prior to making this call.”) or implicitly from the

exception information (for example, any call that throws an exception is illegal). The interplay between a

method’s precondition and postcondition determines a contract between the developer and the user. The

terms of the contract are as follows:

If the user of the method ensures that the precondition is true before the method is invoked, the developer

guarantees that the postcondition will be true at the end of the execution of the method.

We can summarize our discussion of classes so far by saying that from the developer’s perspective, a class

consists of fields and the definitions of methods that act on those fields. A user’s view is an abstraction

of this: A class consists of method specifications.

The Java Collections Framework is, basically, a hierarchy of thoroughly tested classes that are

useful in a variety of applications. The programs in this book will use the Java Collections Framework,

so those programs will not rely on the definitions of the framework’s methods. We will provide method

specifications and an overview of most of the classes. Occasionally, to give you experience in reading the

code of professional programmers, you will get to study the fields and some of the method definitions.

In Section 1.2, we see the value of classes that have undefined methods.

1.2 Abstract Methods and Interfaces

Up to now, we have used method specifications for the purpose of promoting data abstraction. That is, a user

should focus on the method specifications in a class and ignore the class’s fields and method definitions.

Some methods don’t even have a definition, and it turns out that this can be helpful to programmers. For

example, suppose we want to create classes for circles, rectangles and other figures. In each class, there

will be methods to draw the figure and to move the figure from one place on the screen to another place

on the screen. The Circle class, for example, will have a draw method and a move method based on the

center of the circle and its radius. Here are two method specifications and related constant identifiers that

will apply to all of the figure classes:

final static int MAX_X_COORD = 1024;

final static int MAX_Y_COORD = 768;

/**

* Draws this Figure object centered at the given coordinates.

*

1.2 Abstract Methods and Interfaces 29

* @param x – the X coordinate of the center point of where this Figure object

* will be drawn.

* @param y – the Y coordinate of the center point of where this Figure object

* will be drawn.

*

*/

public void draw(int x, int y)

/**

* Moves this Figure object to a position whose center coordinates are specified.

*

* @param x – the X coordinate of the center point of where this Figure object

* will be moved to.

* @param y – the Y coordinate of the center point of where this Figure object

* will be moved to.

*

*/

public void move (int x, int y)

Each different type of figure will have to provide its own definitions for the draw and move methods.

But by requiring that those definitions adhere to the above specifications, we introduce a consistency to

any application that uses the figure classes. A user of one of those classes knows the exact format for the

draw and move methods—and that will still be true for classes corresponding to new figure-types.

Java provides a way to enforce this consistency: the interface. Each method heading is followed by a

semicolon instead of a definition. Such a method is called an abstract method . An interface is a collection

of abstract methods and constants. There are no defined methods and no fields. For example, here is the

interface for figures:

public interface Figure

{

final static int MAX_X_COORD = 1024;

final static int MAX_Y_COORD = 768;

/**

* Draws this Figure object centered at the given coordinates.

*

* @param x – the X coordinate of the center point of where this Figure

* object will be drawn.

* @param y – the Y coordinate of the center point of where this Figure

* object will be drawn.

*

*/

void draw(int x, int y);

/**

* Moves this Figure object to a position whose center coordinates are

* specified.

*

30 CHAPTER 1 Object-Oriented Concepts

* @param x – the X coordinate of the center point of where this Figure

* object will be moved to.

* @param y – the Y coordinate of the center point of where this Figure

* object will be moved to.

*

*/

void move (int x, int y);

} // interface Figure

The interface Figure has two constants (MAX_X_COORD and MAX_Y_COORD) and two abstract methods,

(draw and move). In any interface, all of the method identifiers and constant identifiers are public, so the

declarations need not include the visibility modifier public.

When a class provides method definitions for an interface’s methods, the class is said to implement

the interface. The class may also define other methods. For example, here is part of a declaration of the

Circle class:

public class Circle implements Figure

{

// declaration of fields:

private int xCoord,

yCoord,

radius;

// constructors to initialize x, y and radius:

...

/** (javadoc comments as above)

*/

public draw (int x, int y)

{

xCoord = x;

yCoord = y;

// draw circle with center at (xCoord, yCoord) and radius:

...

} // method draw

// definitions for move and any other methods:

...

} // class Circle

The reserved word implements signals that class Circle provides method definitions for the methods

whose specifications are in the interface Figure. Interfaces do not include constructors because construc-

tors are always class specific. The incompleteness of interfaces makes them uninstantiable, that is, we

cannot create an instance of a Figure object. For example, the following is illegal:

Figure myFig = new Figure(); // illegal

In the method specifications in the Figure interface, the phrase “this Figure object” means “this object

in a class that implements the Figure interface.”

Of what value is an interface? In general, an interface provides a common base whose method

specifications are available to any implementing class. Thus, an interface raises the comfort level of users

1.2 Abstract Methods and Interfaces 31

because they know that the specifications of any method in the interface will be adhered to in any class

that implements the interface. In practice, once a user has seen an interface, the user knows a lot about any

implementing class. Unlike the interface, the implementing class will have constructors, and may define

other methods in addition to those specified in the interface.

1.2.1 Abstract Data Types and Data Structures

An abstract data type consists of a collection of values, together with a collection of operations on those

values. In object-oriented languages such as Java, abstract data types correspond to interfaces in the sense

that, for any class that implements the interface, a user of that class can:

a. create an instance of that class; (“instance” corresponds to “ value”)

b. invoke the public methods of that class (“public method” corresponds to “operation”).

A data structure is the implementation of an abstract data type. In object-oriented languages, a developer

implements an interface with a class. In other words, we have the following associations:

general term object-oriented term

abstract data type Interface

data structure class

A user is interested in abstract data types—interfaces—and a class’s method specifications, while a devel-

oper focuses on data structures, namely, a class’s fields and method definitions. For example, one of the

Java Collections Framework’s interfaces is the List interface; one of the classes that implement that inter-

face is LinkedList. When we work with the List interface or the LinkedList method specifications,

we are taking a user’s view. But when we consider a specific choice of fields and method definitions in

LinkedList, we are taking a developer’s view.

In Chapter 0, we viewed the String class from the user’s perspective: what information about the

String class is needed by users of that class? A user of a class writes code that includes an instance

of that class. Someone who simply executes a program that includes an instance of a class is called an

end-user . A developer of a class actually creates fields and method definitions. In Section 1.2.2, we will

look at the developer’s perspective and compare the user’s and developer’s perspectives. Specifically,

we create an interface, and utilize it and its implementing classes as vehicles for introducing several

object-oriented concepts.

1.2.2 An Interface and a Class that Implements the Interface

This section is part of an extended example that continues through the rest of the chapter and illustrates

several important object-oriented concepts. Let’s create a simple interface called Employee for the employ-

ees in a company. The information for each employee consists of the employee’s name and gross weekly

pay. To lead into the method specifications, we first list the responsibilities of the interface, that is, the

services provided to users of any class that implements the Employee interface. The responsibilities of

the Employee interface are:

1. to return the employee’s name;

2. to return the employee’s gross pay;

3. to return a String representation of an employee.

32 CHAPTER 1 Object-Oriented Concepts

These responsibilities are refined into the following interface:

import java.text.DecimalFormat;

public interface Employee

{

final static DecimalFormat MONEY = new DecimalFormat (" $0.00");

// a class constant used in formatting a value in dollars and cents

/**

* Returns this Employee object’s name.

*

* @return this Employee object’s name.

*

*/

String getName();

/**

* Returns this Employee object’s gross pay.

*

* @return this Employee object’s gross pay.

*

*/

double getGrossPay();

/**

* Returns a String representation of this Employee object with the name

* followed by a space followed by a dollar sign followed by the gross

* weekly pay, with two fractional digits (rounded).

*

* @return a String representation of this Employee object.

*

*/

String toString();

} // interface Employee

The identifier MONEY is a constant identifier—indicated by the reserved word final. The reason for

declaring a MONEY object is to facilitate the conversion of a double value such as gross pay into a string

in dollars-and-cents format suitable for printing. Instead of having a separate copy of the MONEY object

for each instance of each class that implements the Employee interface, there is just one MONEY object

shared by all instances of implementing classes. This sharing is indicated by the reserved word static.

The phrase “this Employee object” means “the calling object in a class that implements the

Employee interface.”

The Employee interface’s method specifications are all that a user of any implementing class will

need in order to invoke those methods. A developer of the class, on the other hand, must decide what fields

to have and then define the methods. A convenient categorization of employees is full-time and part-time.

Let’s develop a FullTimeEmployee implementation of the Employee interface.

1.2 Abstract Methods and Interfaces 33

For example, a developer may well decide to have two fields: name (a String reference) and

grossPay (a double). The complete method definitions are developed from the fields and method spec-

ifications. For example, here is a complete declaration of the FullTimeEmployee class; the next few

sections of this chapter will investigate various aspects of the declaration.

import java.text.DecimalFormat;

public class FullTimeEmployee implements Employee

{

private String name;

private double grossPay;

/**

* Initializes this FullTimeEmployee object to have an empty string for the

* name and 0.00 for the gross pay.

*

*/

public FullTimeEmployee()

{

final String EMPTY_STRING = "";

name = EMPTY_STRING;

grossPay = 0.00;

} // default constructor

/**

* Initializes this FullTimeEmployee object’s name and gross pay from a

* a specified name and gross pay.

*

* @param name - the specified name.

* @param grossPay - the specified gross pay.

*

*/

public FullTimeEmployee (String name, double grossPay)

{

this.name = name;

this.grossPay = grossPay;

} // 2-parameter constructor

/**

* Returns the name of this FullTimeEmployee object.

*

* @return the name of this FullTimeEmployee object.

*

*/

public String getName()

{

34 CHAPTER 1 Object-Oriented Concepts

return name;

} // method getName

/**

* Returns the gross pay of this FullTimeEmployee object.

*

* @return the gross pay of this FullTimeEmployee object.

*

*/

public double getGrossPay()

{

return grossPay;

} // method getGrossPay

/**

* Returns a String representation of this FullTimeEmployee object with the

* name followed by a space followed by a dollar sign followed by the gross

* weekly pay, with two fractional digits (rounded), followed by "FULL TIME".

*

* @return a String representation of this FullTimeEmployee object.

*

*/

public String toString()

{

final String EMPLOYMENT_STATUS = "FULL TIME";

return name + MONEY.format (grossPay) + EMPLOYMENT_STATUS;

// the format method returns a String representation of grossPay.

} // method toString

} // class FullTimeEmployee

In the two-parameter constructor, one of the parameters is name. The reserved word this is used to

distinguish between the scope of the field identifier name and the scope of the parameter name. In any

class, the reserved word this is a reference to the calling object, so this.name refers to the name field

of the calling object, and name by itself refers to the parameter name. Similarly, this.grossPay refers

to the calling object’s grossPay field, and grossPay by itself refers to the parameter grossPay.

In the other methods, such as toString(), there is no grossPay parameter. Then the appearance

of the identifier grossPay in the body of the toString() method refers to the grossPay field of the

object that called the toString() method.

The same rule applies if a method identifier appears without a calling object in the body of a method.

For example, here is the definition of the hasNextLine() method in the Scanner class:

public boolean hasNextLine()

{

saveState();

String result = findWithinHorizon(

".*("+LINE_SEPARATOR_PATTERN+")|.+$", 0);

1.2 Abstract Methods and Interfaces 35

revertState();

return (result != null);

}

There is no calling-object reference specified for the invocation of the saveState() method, and so

the object assumed to be invoking saveState() is the object that called hasNextLine(). Similarly,

the methods findWithinHorizon and revertState are being called by that same object. Here is the

general rule, where a member is either a field or a method:

If an object has called a method and a member appears without an object reference in the method

definition, the member is part of the calling object.

As you can see from the declaration of the FullTimeEmployee class, in each method definition there is

at least one field that appears without an object reference. In fact, in almost every method definition in

almost every class you will see in subsequent chapters, there will be at least one field that appears without

an object (reference). Then the field is part of the calling object.

1.2.3 Using the FullTimeEmployee Class

As an example of how to use the FullTimeEmployee class, we can find the best-paid of the full-time

employees in a company. The information for each employee will be on one line in a file, and the name

of the file will be scanned in from System.in.

For convenience, the following Company class includes a main method. For the sake of an object

orientation, that main method simply invokes the Company class’s run method on a newly constructed

Company instance; all of the main methods from here on will be one-liners. The run method calls a

findBestPaid method to return the best-paid full-time employee, or null if there were no employees

scanned in. Finally, the findBestPaid method invokes a getNextEmployee method to handle the details

of constructing a FullTimeEmployee instance from a name and a gross pay.

Here is the complete program file, with three Scanner objects, one to scan the name of the file of

employees, one to scan over that file, and one to scan a line in that file:

import java.util.*; // for the Scanner class

import java.io.*; // for the FileNotFoundException class – see Section 2.3

public class Company

{

public static void main (String[] args) throws FileNotFoundException

{

new Company().run();

} // method main

/**

* Determines and prints out the best paid of the full-time employees

* scanned in from a specified file.

*

*/

public void run() throws FileNotFoundException // see Section 2.3

36 CHAPTER 1 Object-Oriented Concepts

{

final String INPUT_PROMPT = "Please enter the path for the file of employees: ";

final String BEST_PAID_MESSAGE =

"\n\nThe best-paid employee (and gross pay) is ";

final String NO_INPUT_MESSAGE =

"\n\nError: There were no employees scanned in.";

String fileName;

System.out.print (INPUT_PROMPT);

fileName = new Scanner (System.in).nextLine();

Scanner sc = new Scanner (new File (fileName));

FullTimeEmployee bestPaid = findBestPaid (sc);

if (bestPaid == null)

System.out.println (NO_INPUT_MESSAGE);

else

System.out.println (BEST_PAID_MESSAGE + bestPaid.toString());

} // method run

/**

* Returns the best paid of all the full-time employees scanned in.

*

* @param sc – the Scanner object used to scan in the employees.

*

* @return the best paid of all the full-time employees scanned in,

* or null there were no employees scanned in.

*

*/

public FullTimeEmployee findBestPaid (Scanner sc)

{

FullTimeEmployee full,

bestPaid = new FullTimeEmployee();

while (sc.hasNext())

{

full = getNextEmployee (sc);

if (full.getGrossPay() > bestPaid.getGrossPay())

bestPaid = full;

} //while

if (bestPaid.getGrossPay() == 0.00)

return null;

return bestPaid;

} // method findBestPaid

/**

* Returns the next full-time employee from the file scanned by a specified Scanner

1.3 Inheritance 37

* object.

*

* @param sc – the Scanner object over the file.

*

* @return the next full-time employee scanned in from sc.

*

*/

private FullTimeEmployee getNextEmployee (Scanner sc)

{

Scanner lineScanner = new Scanner (sc.nextLine());

String name = lineScanner.next();

double grossPay = lineScanner.nextDouble();

return new FullTimeEmployee (name, grossPay);

} // method getNextEmployee

} // class Company

The above code is available from the Chapter 1 directory of the book’s website. If the file name scanned

in from System.in is “full.in1”, and the corresponding file contains

a 1000.00

b 3000.00

c 2000.00

then the output will be

The best-paid employee (and gross pay) is b $3000.00 FULL TIME

As noted earlier, we should use existing classes whenever possible. What if a class has most, but not all,

of what is needed for an application? We could simply scrap the existing class and develop our own, but

that would be time consuming and inefficient. Another option is to copy the needed parts of the existing

class and incorporate those parts into a new class that we develop. The danger with that option is that

those parts may be incorrect or inefficient. If the developer of the original class replaces the incorrect or

inefficient code, our class would still be erroneous or inefficient. A better alternative is to use inheritance,

explained in Section 1.3.

1.3 Inheritance

We should write program components that are reusable. For example, instead of defining a method that

calculates the average gross pay of 10 employees, we would achieve wider applicability by defining a

method that calculates the average gross pay of any number of employees. By writing reusable code, we

not only save time, but we also avoid the risk of incorrectly modifying the existing code.

One way that reusability can be applied to classes is through a special and powerful property of

classes: inheritance. Inheritance is the ability to define a new class that includes all of the fields and some

or all of the methods of an existing class. The previously existing class is called the superclass . The new

class, which may declare new fields and methods, is called the subclass . A subclass may also override

38 CHAPTER 1 Object-Oriented Concepts

existing methods by giving them method definitions that differ from those in the superclass.1 The subclass

is said to extend the superclass.

For an example of how inheritance works, let’s start with the class FullTimeEmployee defined in

Section 1.2.2. Suppose that several applications use FullTimeEmployee. A new application involves find-

ing the best-paid, full-time hourly employee. For this application, the information on an hourly employee

consists of the employee’s name, hours worked (an int value) and pay rate (a double value). Assume

that each employee gets time-and-a-half for overtime (over 40 hours in a week). If the hourly employee

did not work any overtime, the gross pay is the hours worked times the pay rate. Otherwise, the gross pay

is 40 times the pay rate, plus the overtime hours times the pay rate times 1.5.

We could alter FullTimeEmployee by adding hoursWorked and payRate fields and modifying the

methods. But it is risky to modify, for the sake of a new application, a class that is being used successfully

in existing applications. The underlying concept is known as the Open-Closed Principle: Every class

should be both open (extendible through inheritance) and closed (stable for existing applications).

Instead of rewriting FullTimeEmployee, we will create HourlyEmployee, a subclass of

FullTimeEmployee. To indicate that a class is a subclass of another class, the subclass identifier is

immediately followed by the reserved word extends. For example, we can declare the HourlyEmployee

class to be a subclass of FullTimeEmployee as follows:

public class HourlyEmployee extends FullTimeEmployee

{

...

Each HourlyEmployee object will have the information from FullTimeEmployee—name and gross

pay—as well as hours worked and pay rate. These latter two will be fields in the HourlyEmployee

class. To lead us into a discussion of the relationship between the FullTimeEmployee fields and the

HourlyEmployee fields, here is a constructor to initialize an HourlyEmployee instance from a name,

hours worked, and pay rate (MAX_REGULAR_HOURS is a constant identifier with a current value of 40, and

OVERTIME_FACTOR is a constant identifier with a current value of 1.5).

/**

* Initializes this full-time HourlyEmployee object’s name, hours worked, pay rate, and

* gross pay from a a specified name, hours worked and pay rate. If the hours worked

* is at most MAX_REGULAR_HOURS, the gross pay is the hours worked times

* the pay rate. Otherwise, the gross pay is MAX_REGULAR_HOURS times the

* pay rate, plus the pay rate times OVERTIME_FACTOR for all overtime hours.

*

* @param name - the specified name.

* @param hoursWorked - the specified hours worked.

* @param payRate - the specified pay rate.

*

*/

public HourlyEmployee (String name, int hoursWorked, double payRate)

{

this.name = name;

this.hoursWorked = hoursWorked;

this.payRate = payRate;

1Don’t confuse method overriding with method overloading (discussed in Section 0.2.1 of Chapter 0): having two methods in the same class

with the same method identifier but different signatures.

1.3 Inheritance 39

if (hoursWorked <= MAX_REGULAR_HOURS)

{

regularPay = hoursWorked * payRate;

overtimePay = 0.00;

} // if

else

{

regularPay = MAX_REGULAR_HOURS * payRate;

overtimePay = (hoursWorked - MAX_REGULAR_HOURS) *

(payRate * OVERTIME_FACTOR);

} // else

grossPay = regularPay + overtimePay;

} // 3-parameter constructor

Notice that in the definition of this 3-parameter constructor for HourlyEmployee, the name and

grossPay fields from the FullTimeEmployee class are treated as if they had been declared as fields in

the HourlyEmployee class. The justification for this treatment is that an HourlyEmployee object is also

a FullTimeEmployee object, so every FullTimeEmployee field is also an HourlyEmployee field. But

the name and grossPay fields in the FullTimeEmployee class were given private visibility, which pre-

cludes their usage outside of the declaration of the FullTimeEmployee class. Can we change the visibility

of those fields to public? That would be a bad choice, because then any user’s code would be allowed

to access (and modify) those fields. What we need is a visibility modifier for a superclass field that allows

access by subclass methods but not by arbitrary user’s code. The solution is found in the next section.

1.3.1 The protected Visibility Modifier

We noted above that subclass methods—but not user’s code in general—should be able to access superclass

fields. This suggests that we need a visibility modifier that is less restrictive than private (to allow

subclass access) but more restrictive than public (to prohibit access by arbitrary user’s code). The

compromise between private and public visibility is protected visibility. We change the declaration

of the FullTimeEmployee fields as follows:

protected String name;

protected double grossPay;

These declarations enable any subclass of FullTimeEmployee to access the name and grossPay fields

as if they were declared within the subclass itself. This makes sense because an HourlyEmployee object

is a FullTimeEmployee object as well. So the HourlyEmployee class has two inherited fields (name

and grossPay) as well as those explicitly declared in HourlyEmployee (hoursWorked, payRate, and

for convenience, regularPay and overtimePay).

The subclass HourlyEmployee can access all of the fields, from FullTimeEmployee, that have

the protected modifier. Later on, if a subclass of HourlyEmployee is created, we would want that

subclass’s methods to be able to access the HourlyEmployee fields—as well as the FullTimeEmployee

fields. So the declarations of the HourlyEmployee fields should also have the protected modifier:

protected int hoursWorked;

protected double payRate,

regularPay,

overtimePay;

40 CHAPTER 1 Object-Oriented Concepts

The HourlyEmployee class will have a default constructor as well as the 3-parameter constructor defined

earlier in Section 1.3. The FullTimeEmployee methods getName and getGrossPay are inherited as is

by the HourlyEmployee class. The getHoursWorked, getPayRate, getRegularPay, and getOver

timePay methods are explicitly defined in the HourlyEmployee class.

The toString() method from the FullTimeEmployee class will be overridden in Hourly

Employee to include the word “HOURLY”. The override can be accomplished easily enough: we copy

the code from the toString() method in FullTimeEmployee, and append “HOURLY” to the String

returned:

return name + MONEY.format (grossPay) + "HOURLY";

But, as noted at the end of Section 1.2.3, copying code is dangerous. Instead, the definition of toString()

in the HourlyEmployee class will call the toString() method in the FullTimeEmployee class. To

call a superclass method, use the reserved word super as the calling object:

return super.toString() + "HOURLY";

Here is the complete HourlyEmployee.java file:

import java.text.DecimalFormat;

public class HourlyEmployee extends FullTimeEmployee implements Employee

{

// for full-time hourly employees

public final static int MAX_REGULAR_HOURS = 40;

public final static double OVERTIME_FACTOR = 1.5;

protected int hoursWorked;

protected double payRate,

regularPay,

overtimePay;

/**

* Initializes this full-time HourlyEmployee object to have an empty string for

* the name, 0 for hours worked, 0.00 for the pay rate, grossPay, regularPay

* and overtimePay.

*

*/

public HourlyEmployee()

{

hoursWorked = 0;

payRate = 0.00;

regularPay = 0.00;

overtimePay = 0.00;

} // default constructor

1.3 Inheritance 41

/**

* Initializes this full-time HourlyEmployee object’s name and gross pay from a

* a specified name, hours worked and pay rate. If the hours worked is

* at most MAX_REGULAR_HOURS, the gross pay is the hours worked times

* the pay rate. Otherwise, the gross pay is MAX_REGULAR_HOURS time the

* pay rate, plus the pay rate times OVERTIME_FACTOR for all overtime hours.

*

* @param name - the specified name.

* @param hoursWorked - the specified hours worked.

* @param payRate - the specified pay rate.

*

*/

public HourlyEmployee (String name, int hoursWorked, double payRate)

{

this.name = name;

this.hoursWorked = hoursWorked;

this.payRate = payRate;

if (hoursWorked <= MAX_REGULAR_HOURS)

{

regularPay = hoursWorked * payRate;

overtimePay = 0.00;

} // if

else

{

regularPay = MAX_REGULAR_HOURS * payRate;

overtimePay = (hoursWorked - MAX_REGULAR_HOURS) *

(payRate * OVERTIME_FACTOR);

} // else

grossPay = regularPay + overtimePay;

} // 3-parameter constructor

/**

* Returns the hours worked by this full-time HourlyEmployee object.

*

* @return the hours worked by this full-time HourlyEmployee object.

*

*

public int getHoursWorked()

{

return hoursWorked;

} // method getHoursWorked

/**

* Returns the pay rate of this full-time HourlyEmployee object.

*

* @return the pay rate this full-time HourlyEmployee object.

*

*/

42 CHAPTER 1 Object-Oriented Concepts

public double getPayRate()

{

return payRate;

} // method getPayRate

/**

* Returns the regular pay of this full-time HourlyEmployee object.

*

* @return the regular pay this full-time HourlyEmployee object.

*

*/

public double getRegularPay()

{

return regularPay;

} // method getRegularPay

/**

* Returns the overtime pay of this full-time HourlyEmployee object.

*

* @return the overtime pay this full-time HourlyEmployee object.

*

*/

public double getOvertimePay()

{

return overtimePay;

} // method getOvertimePay

/**

* Returns a String representation of this full-time HourlyEmployee object with the

* name followed by a space followed by a dollar sign followed by the gross pay

* (with two fractional digits) followed by "FULL TIME HOURLY".

*

* @return a String representation of this full-time HourlyEmployee object.

*

*/

public String toString()

{

final String FULL_TIME_STATUS = "HOURLY";

return super.toString() + FULL_TIME_STATUS;

} // method toString

} // class HourlyEmployee

A final note on the visibility modifier protected: It can be applied to methods as well as to fields.

For example, the visibility modifier for the getNextEmployee method in the Company class should be

changed from private to protected for the sake of potential subclasses of Company. One such subclass

is introduced in Section 1.3.3.

1.3 Inheritance 43

Section 1.3.2 continues our discussion of inheritance by examining the interplay between inheritance

and constructors.

1.3.2 Inheritance and Constructors

Constructors provide initialization for instances of a given class. For that reason, constructors are never

inherited. But whenever a subclass constructor is called, the execution of the subclass constructor starts

with an automatic call to the superclass’s default constructor. This ensures that at least the default ini-

tialization of fields from the superclass will occur. For example, the FullTimeEmployee class’s default

constructor is automatically invoked at the beginning of a call to any HourlyEmployee constructor.

That explains how the name and grossPay fields are initialized in the HourlyEmployee class’s default

constructor.

What if the superclass has a constructor but no default constructor? Then the first statement in

any subclass constructor must explicitly call the superclass constructor. A call to a superclass constructor

consists of the reserved word super followed by the argument list, in parentheses. For example, suppose

some class B’s only constructor has an int parameter. If C is a subclass of B and C has a constructor with a

String parameter, that constructor must start out by invoking B’s constructor. For example, we might have

public C (String s)

{

super (s.length()); // explicitly calls B’s int-parameter constructor

...

} // String-parameter constructor

So if a superclass explicitly defines a default (that is, zero-parameter) constructor, there are no restrictions

on its subclasses. Similarly, if the superclass does not define any constructors, the compiler will

automatically provide a default constructor, and there are no restrictions on the subclasses. But if a

superclass defines at least one constructor and does not define a default constructor, the first statement in

any subclass’s constructor must explicitly invoke a superclass constructor.

1.3.3 The Subclass Substitution Rule

Just as the Company class used FullTimeEmployee, we can find the best-paid hourly employee with the

help of an HourlyCompany class, which uses the HourlyEmployee class. HourlyCompany, a subclass of

the Company class described in Section 1.2.3, differs only slightly from the Company class. Specifically,

the main method invokes the HourlyCompany class’s run method on a newly constructed Hourly

Company instance. Also, the getNextEmployee method is overridden to scan in the information for

an HourlyEmployee object; to enable this overriding, we must change the visibility modifier of the

Company class’s getNextEmployee method from private to protected. Interestingly, the run and

findBestPaid methods, which deal with full-time (not necessarily hourly) employees, are inherited, as

is, from the Company class.

Assume the input file consists of

a 40 20

b 45 20

c 40 23

Then the output will be

The best-paid hourly employee (and gross pay) is b $950.00 FULL TIME HOURLY

44 CHAPTER 1 Object-Oriented Concepts

Here is the HourlyCompany.java file:

import java.util.*;

import java.io.*;

public class HourlyCompany extends Company

{

public static void main (String[] args) throws FileNotFoundException

{

new HourlyCompany().run();

} // method main

/**

* Returns the next hourly employee from the specified Scanner object.

*

* @param sc – the Scanner object used to scan in the next employee.

*

* @return the next hourly employee scanned in from sc.

*

*/

protected HourlyEmployee getNextEmployee (Scanner sc)

{

Scanner lineScanner = new Scanner (sc.nextLine());

String name = lineScanner.next();

int hoursWorked = lineScanner.nextInt();

double payRate = lineScanner.nextDouble();

return new HourlyEmployee (name, hoursWorked, payRate);

} // method getNextEmployee

} // class HourlyCompany

Recall, from the inherited findBestPaid method, the following assignment:

full = getNextEmployee (sc);

The left-hand side of this assignment is (a reference to) a FullTimeEmployee object. But the value

returned by the call to getNextEmployee is a reference to an HourlyEmployee object. Such an arrange-

ment is legal because an HourlyEmployee is a FullTimeEmployee. This is an application of the Subclass

Substitution Rule:

Subclass Substitution Rule

Whenever a reference-to-superclass-object is called for in an evaluated expression, a reference-to-

subclass-object may be substituted.

1.3 Inheritance 45

Specifically, the left-hand side of the above assignment is a reference to a FullTimeEmployee object,

so a reference to a FullTimeEmployee object is called for on the right-hand side of that assignment.

So it is legal for that right-hand side expression to be a reference to an HourlyEmployee object; it is

important to note that for an HourlyEmployee object, the toString() method includes “HOURLY”.

The returned reference is assigned to the FullTimeEmployee reference full, which is then used to

update the FullTimeEmployee reference bestPaid. When the value of bestPaid is returned to the

run method and the message bestPaid.toString() is sent, the output includes “HOURLY”. Why?

The reason is worth highlighting:

When a message is sent, the version of the method invoked depends on the run-time type of the object

referenced, not on the compile-time type of the reference.

Starting with the construction of the new HourlyEmployee object in the getNextEmployee method,

all of the subsequent references were to an HourlyEmployee object. So the version of the toString()

method invoked by the message bestPaid.toString() was the one in the HourlyEmployee class.

Let’s take a closer look at the Subclass Substitution Rule. Consider the following:

FullTimeEmployee full = new FullTimeEmployee ();

HourlyEmployee hourly = new HourlyEmployee();

full = hourly;

In this last assignment statement, a reference-to-FullTimeEmployee is called for in the evaluation of

the expression on the right-hand side, so a reference-to-HourlyEmployee may be substituted: an Hourly

Employee is a FullTimeEmployee.

But the reverse assignment is illegal:

FullTimeEmployee full = new FullTimeEmployee ();

HourlyEmployee hourly = new HourlyEmployee ();

hourly = full; // illegal

On the right-hand side of this last assignment statement, the compiler expects a reference-to-

HourlyEmployee, so a reference-to-FullTimeEmployee is unacceptable: a FullTimeEmployee is not

necessarily an HourlyEmployee. Note that the left-hand side of an assignment statement must consist

of a variable, which is an expression. But that left-hand-side variable is not evaluated in the execution of

the assignment statement, so the Subclass Substitution Rule does not apply to the left-hand side.

Now suppose we had the following:

FullTimeEmployee full = new FullTimeEmployee ();

HourlyEmployee hourly = new HourlyEmployee ();

full = hourly;

hourly = full; // still illegal

46 CHAPTER 1 Object-Oriented Concepts

After the assignment of hourly to full, full contains a reference to an HourlyEmployee object. But

the assignment:

hourly = full;

still generates a compile-time error because the declared type of full is still reference-to-FullTime

Employee. We can avoid a compile-time error in this situation with a cast : the temporary conversion of

an expression’s type to another type. The syntax for a cast is:

(the new type)expression

Specifically, we will cast the type of full to HourlyEmployee:

FullTimeEmployee full = new FullTimeEmployee ();

HourlyEmployee hourly = new HourlyEmployee ();

full = hourly;

hourly = (HourlyEmployee) full;

To put it anthropomorphically, we are saying to the compiler, “Look, I know that the type of full is

reference-to-FullTimeEmployee. But I promise that at run-time, the object referenced will, in fact, be

an HourlyEmployee object.” The cast is enough to satisfy the compiler, because the right-hand side of

the last assignment statement now has type reference-to-HourlyEmployee. And there is no problem at

run-time either because—from the previous assignment of hourly to full—the value on the right-hand

side really is a reference-to-HourlyEmployee.

But the following, acceptable to the compiler, throws a ClassCastException at run-time:

FullTimeEmployee full = new FullTimeEmployee ();

HourlyEmployee hourly = new HourlyEmployee ();

hourly = (HourlyEmployee) full;

The run-time problem is that full is actually pointing to a FullTimeEmployee object, not to an

HourlyEmployee object.

The complete project, HourlyCompany, is in the ch1 directory of the book’s website. Lab 1’s

experiment illustrates another subclass of FullTimEmployee.

You are now prepared to do Lab 1: The SalariedEmployee Class

Before we can give a final illustration of the Subclass Substitution Rule, we need to introduce the

Object class. The Object class, declared in the file java.lang.Object.java, is the superclass of

all classes. Object is a bare-bones class, whose methods are normally overridden by its subclasses. For

example, here are the method specification and definition of the equals method in the Object class:

/**

* Determines if the calling object is the same as a specified object.

*

* @param obj - the specified object to be compared to the calling object.

*

* @return true - if the two objects are the same.

1.3 Inheritance 47

*

*/

public boolean equals (Object obj)

{

return (this == obj);

} // method equals

The definition of this method compares references , not objects, for equality. So true will be returned if and

only if the calling object reference contains the same address as the reference obj. For example, consider

the following program fragment:

Object obj1 = new Object(),

obj2 = new Object(),

obj3 = obj1;

System.out.println (obj1.equals (obj2) + "" + obj1.equals (obj3));

The output will be

false true

For that reason, this method is usually overridden by the Object class’s subclasses. We saw an example

of this with the String class’s equals method in Section 0.2.3 of Chapter 0. In that equals method,

the parameter’s type is Object, and so, by the Subclass Substitution Rule, the argument’s type can be

String, a subclass of Object. For example, we can have

if (message.equals ("nevermore"))

1.3.4 Is-a versus Has-a

You will often encounter the following situation. You are developing a class B, and you realize that the

methods of some other class, A, will be helpful. One possibility is for B to inherit all of A; that is, B will

be a subclass of A. Then all of A’s protected methods are available to B (all of A’s public methods are

available to B whether or not B inherits from A). An alternative is to define, in class B, a field whose class

is A. Then the methods of A can be invoked by that field. It is important to grasp the distinction between

these two ways to access the class A.

Inheritance describes an is-a relationship. An object in the subclass HourlyEmployee is also an

object in the superclass FullTimeEmployee, so we can say that an HourlyEmployee is-a FullTime

Employee.

On the other hand, the fields in a class constitute a has-a relationship to the class. For example,

the name field in the FullTimeEmployee class is of type (reference to) String, so we can say a

FullTimeEmployee has-a String.

Typically, if class B shares the overall functionality of class A, then inheritance of A by B is preferable.

More often, there is only one aspect of B that will benefit from A ’s methods, and then the better alternative

will be to define an A object as a field in class B. That object can invoke the relevant methods from class A.

The choice may not be clear-cut, so experience is your best guide. We will encounter this problem several

times in subsequent chapters.

With an object-oriented approach, the emphasis is not so much on developing the program as a whole

but on developing modular program-parts, namely, classes. These classes not only make the program easier

to understand and to maintain, but they are reusable for other programs as well. A further advantage to this

approach is that decisions about a class can easily be modified. We first decide what classes will be needed.

48 CHAPTER 1 Object-Oriented Concepts

And because each class interacts with other classes through its method specifications, we can change the

class’s fields and method definitions as desired as long as the method specifications remain intact.

The next section of this chapter considers the extent to which a language can allow developers of a

class to force users of that class to obey the Principle of Data Abstraction.

1.4 Information Hiding

The Principle of Data Abstraction states that a user’s code should not access the implementation details

of the class used. By following that principle, the user’s code is protected from changes to those imple-

mentation details, such as a change in fields.

Protection is further enhanced if a user’s code is prohibited from accessing the implementation details

of the class used. Information hiding means making the implementation details of a class inaccessible to

code that uses that class. The burden of obeying the Principle of Data Abstraction falls on users, whereas

information hiding is a language feature that allows class developers to prevent users from violating the

Principle of Data Abstraction.

As you saw in Section 1.3.1, Java supports information hiding through the use of the protected

visibility modifier for fields. Through visibility modifiers such as private and protected, Java forces

users to access class members only to the extent permitted by the developers. The term encapsulation

refers to the grouping of fields and methods into a single entity—the class—whose implementation details

are hidden from users.

There are three essential features of object-oriented languages: the encapsulation of fields and meth-

ods into a single entity with information-hiding capabilities, the inheritance of a class’s fields and methods

by subclasses, and polymorphism , discussed in Section 1.5.

1.5 Polymorphism

One of the major aids to code re-use in object-oriented languages is polymorphism. Polymorphism—from

the Greek words for “many” and “shapes”—is the ability of a reference to refer to different objects in a

class hierarchy. For a simple example of this surprisingly useful concept, suppose that sc is a reference

to an already constructed Scanner object. We can write the following:

FullTimeEmployee employee; // employee is of type reference-to-FullTimeEmployee

if (sc.nextLine().equals ("full time"))

employee = new FullTimeEmployee ("Doremus", 485.00);

else

employee = new HourlyEmployee ("Kokoska", 45, 20);

System.out.println (employee.toString());

Because the declared type of employee is reference-to-FullTimeEmployee, it is legal to write

employee = new FullTimeEmployee ("Doremus", 485.00);

So, by the Subclass Substitution Rule, it is also legal to write

employee = new HourlyEmployee ("Kokoska", 45, 20);

Now consider the meaning of the message

employee.toString()

1.6 The Unified Modeling Language 49

The version of the toString() method executed depends on the type of the object that employee is

referencing. If the scanned line consists of “full time”, then employee is assigned a reference to an instance

of class FullTimeEmployee, so the FullTimeEmployee class’s version of toString() is invoked. On

the other hand, if the scanned line consists of any other string, then employee is assigned a reference to an

instance of class HourlyEmployee, so the HourlyEmployee class’s version of toString() is invoked.

In this example, employee is a polymorphic reference: the object referred to can be an instance

of class FullTimeEmployee or an instance of class HourlyEmployee, and the meaning of the message

employee.toString() reflects the point made in Section 1.3.3: When a message is sent, the version of

the method invoked depends on the type of the object, not on the type of the reference. What is important

here is that polymorphism allows code re-use for methods related by inheritance. We need not explicitly

call the two versions of the toString() method.

The previous code raises a question: how can the Java compiler determine which version of

toString() is being invoked? Another way to phrase the same question is this: How can the

method identifier toString be bound to the correct definition—in FullTimeEmployee or in Hourly

Employee—at compile time, when the necessary information is not available until run time? The answer

is simple: The binding cannot be done at compile-time, but must be delayed until run time. A method

that is bound to its method identifier at run time is called a virtual method .

In Java, almost all methods are virtual. The only exceptions are for static methods (discussed in

Section 2.1) and for final methods (the final modifier signifies that the method cannot be overridden

in subclasses.) This delayed binding—also called dynamic binding or late binding —of method identifiers

to methods is one of the reasons that Java programs execute more slowly than programs in most other

languages.

Polymorphism is a key feature of the Java language, and makes the Java Collections Framework

possible. We will have more to say about this in Chapter 4, when we take a tour of the Java Collections

Framework.

Method specifications are method-level documentation tools. Section 1.6 deals with class-level doc-

umentation tools.

1.6 The Unified Modeling Language

For each project, we will illustrate the classes and relationships between classes with the Unified Modeling

Language (UML). UML is an industry-standardized language, mostly graphical, that incorporates current

software-engineering practices that deal with the modeling of systems. The key visual tool in UML is

the class diagram. For each class—except for widely used classes such as String and Random—the

class diagram consists of a rectangle that contains information about the class. The information includes

the name of the class, its attributes and operations. For the sake of simplicity, we will regard the UML

term attribute as a synonym for field. Similarly, the UML term operation will be treated as a synonym

for method. For example, Figure 1.1 shows the class diagram for the FullTimeEmployee class from

Section 1.2.2. For both attributes and operation parameters, the type follows the variable (instead of

preceding the variable, as in Java).

In a class diagram, a method’s parenthesized parameter-list is followed by the return type, provided

the method actually does return a value. Visibility information is abbreviated:

+, for public visibility

−, for private visibility

#, for protected visibility

50 CHAPTER 1 Object-Oriented Concepts

FullTimeEmployee

name: String

grossPay:int

+ FullTimeEmployee()

+ FullTimeEmployee (name: String, grossPay:double)

+ getName(): String

+ getGrossPay():double

+ toString(): String

FIGURE 1.1 A UML class-diagram for the FullTimeEmployee class

Inheritance is illustrated by a solid arrow from the subclass to the superclass. For example, Figure 1.2

shows the relationship between the HourlyEmployee and FullTimeEmployee classes in Section 1.3.

A dashed arrow illustrates the relationship between a class and the interface that class implements.

For example, Figure 1.3 augments the class diagrams from Figure 1.2 by adding the diagram for the

Employee interface.

FullTimeEmployee

name: String

grossPay:int

+ FullTimeEmployee()

+ FullTimeEmployee (name: String, grossPay:double)

+ getName(): String

+ getGrossPay():double

+ toString(): String

HourlyEmployee

hourWorked:int

payRate:double

regularPay:double

overtimePay:double

+ HourlyEmployee()

+ HourlyEmployee (name: String, hoursWorked: int, payRate: double)

+ getHoursWorked(): int

+ getPayRate(): double

+ getRegularPay(): double

+ getOvertimePay(): double

+ toString(): String

FIGURE 1.2 In UML, the notation for inheritance is a solid arrow from the subclass to the superclass

1.6 The Unified Modeling Language 51

FullTimeEmployee

name: String

grossPay:int

+ FullTimeEmployee()

+ FullTimeEmployee (name: String, grossPay:double)

+ getName(): String

+ getGrossPay():double

+ toString(): String

HourlyEmployee

hoursWorked:int

payRate:double

regularPay:double

overtimePay:double

+ HourlyEmployee()

+ HourlyEmployee (name: String, hoursWorked: int, payRate:double)

+ getHoursWorked():int

+ getPayRate():double

+ getRegularPay():double

+ getOvertimePay(): double

+ toString(): String

<<interface>>

Employee

+ getName(): String

+ getGrossPay():double

+ toString(): String

FIGURE 1.3 A UML illustration of the relationship between an interface, an implementing class, and a subclass

A non-inheritance relationship between classes is called an association , and is represented by a solid

line between the class diagrams. For example, Figure 1.4 shows an association between the Company and

FullTimeEmployee classes in the find-best-paid-employee project in Section 1.2.3.

In Figure 1.4, the symbol ‘*’ at the bottom of the association line indicates a company can have an

arbitrary number of employees. The number 1 at the top of the association line indicates that an employee

works for just one company.

Sometimes, we want to explicitly note that the class association is a has-a relationship, that is, an

instance of one class is a field in the other class. In UML, a has-a relationship is termed an aggregation ,

and is signified by a solid line between the classes, with a hollow diamond at the containing-class end.

52 CHAPTER 1 Object-Oriented Concepts

Company

+ Company()

+ main (String[] args)

+ run()

+ findBestPaid (Scanner sc): FullTimeEmployee

+ getNextEmployee (Scanner sc): FullTimeEmployee

FullTimeEmployee

name: String

grossPay:int

+ FullTimeEmployee()

+ FullTimeEmployee (name: String, grossPay:double)

+ getName(): String

+ getGrossPay():double

+ toString(): String

1

*

FIGURE 1.4 The UML representation of an association between two classes

FullTimeEmployee

String

FIGURE 1.5 Aggregation in UML: the FullTimeEmployee class has a String field

For example, Figure 1.5 shows that the FullTimeEmployee class has a String field. To avoid clutter,

the figure simply has the class name in each class diagram.

Graphical tools such as UML play an important role in outlining a project. We will be developing

projects, starting in Chapter 5, as applications of data structures and algorithms. Each such project will

include UML class diagrams.

S U M M A R Y

This chapter presents an overview of object-oriented pro-

gramming. Our focus, on the use of classes rather than

on their implementation details, is an example of data

abstraction. Data abstraction—the separation of method

specifications from field and method definitions—is a way

for users of a class to protect their code from being

Summary 53

affected by changes in the implementation details of the

class used.

The three essential features of an object-oriented

language are:

1. Encapsulation of fields and methods into a single

entity—the class—whose implementation details

are hidden from users.

2. Inheritance of a class’s fields and methods by sub-

classes.

3. Polymorphism: the ability of a reference to refer to

different objects.

The Unified Modeling Language (UML) is an industry-

standard, graphical language that illustrates the modeling

of projects.

54 CHAPTER 1 Object-Oriented Concepts

CROSSWORD PUZZLE

1 2

3

4

5

6

7 8

9

10

www.CrosswordWeaver.com

ACROSS DOWN

1. The ability of a subclass to give new
 definitions—applicable in the subclass—to
 methods defined in the superclass.

4. The ability of a reference to refer to different
 objects in a class hierarchy.

5. The separation of what a class provides to
 users from how the fields and methods are
 defined.

7. The grouping of fields and methods into a
 single entity—the class—whose implementation
 details are hidden from users.

9. A collection of abstract methods and constants;
 the object-oriented term for “abstract data type.”

10. In the Unified Modeling Language, a non-inheritance
 relationship between classes.

2. An example of an is–a relationship.

3. The principle that every class should be
 extendible through inheritance and still
 stable for existing applications.

6. The temporary conversion of an
 expression’s type to another type.

8. The superclass of all classes.

www.CrosswordWeaver.com

Concept Exercises 55

CONCEPT EXERCISES

1.1 Given that HourlyEmployee and SalariedEmployee are subclasses of FullTimeEmployee, suppose

we have:

FullTimeEmployee full = new FullTimeEmployee();

HourlyEmployee hourly = new HourlyEmployee ();

SalariedEmployee salaried = new SalariedEmployee ();

full = salaried;

Which one of the following assignments would be legal both at compile-time and at run-time?

a. salaried = (SalariedEmployee) full;

b. salaried = full;

c. salaried = (FullTimeEmployee) full;

d. hourly = (HourlyEmployee) full;

Create a small project to validate your claim.

1.2 Assume that the classes below are all in the file Polymorphism.java. Determine the output when

the project is run. Would the output be different if the call to println were System.out.println

(a.toString())?

import java.util.*;

public class Polymorphism

{

public static void main (String args [])

{

new Polymorphism().run();

} // method main

public void run()

{

Scanner sc = new Scanner (System.in));

A a;

int code = sc.nextInt();

if (code == 0)

a = new A();

else // non-zero int entered

a = new D();

System.out.println (a);

} // method run

} // class Polymorphism

56 CHAPTER 1 Object-Oriented Concepts

class A

{

public String toString ()

{

return "A";

} // method toString

} // class A

class D extends A

{

public String toString ()

{

return "D";

} // method toString

} // class D

1.3 In the Employee class, modify the toString method so that the gross pay is printed with a comma to the

left of the hundreds digit. For example, if the name is “O’Brien,Theresa” and the gross pay is 74400.00, the

toString method will return

O’Brien,Theresa $74,400.00

1.4 What can you infer about the identifier out from the following message?

System.out.println ("Eureka!");

What is the complete declaration for the identifier out? Look in java.lang.System.java.

PROGRAMMING EXERCISES

1.1 Here is a simple class—but with method specifications instead of method definitions—to find the highest age

from the ages scanned in:

public class Age

{

protected int highestAge;

/**

* Initializes this Age object.

*

*/

public Age ()

/**

* Returns the highest age of the ages scanned in from the keyboard.

Programming Exercises 57

* The sentinel is -1.

*

* @param sc – The Scanner used to scan in the ages.

*

* @return the highest age of the ages scanned in from sc.

*

*/

public int findHighestAge (Scanner sc)

} // class Age

a. Fill in the method definitions for the Age class.

b. Test your Age class by developing a project and running the project.

1.2 With the Age class in Programming Exercise 1.1.a. as a guide, develop a Salary class to scan in salaries

from the input until the sentinel (−1.00) is reached, and to print out the average of those salaries. The average

salary is the total of the salaries divided by the number of salaries.

1.3 This exercise presents an alternative to having protected fields. Modify the FullTimeEmployee class as

follows: Change the visibility of the name and grossPay fields from protected to private, and develop

public methods to get and set the values of those fields. A method that alters a field in an object is called a

mutator , and a method that returns a copy of a field is called an accessor .

Here are the method specifications corresponding to the name field:

/**

* Returns this FullTimeEmployee object’s name.

*

* @return a (reference to a) copy of this FullTimeEmployee object’s

* name.

*

*/

public String getName ()

/**

* Sets this FullTimeEmployee object’s name to a specifed string.

*

* @param nameIn – the String object whose value is assigned to this

* FullTimeEmployee object’s name.

*

*/

public void setName (String nameIn)

1.4 Create a class to determine which hourly employee in a file received the most overtime pay. The name of the

file is to be scanned in from System.in.

1.5 In the toString() method of the FullTimeEmployee class, there is a call to the format method. The

heading of that method is

public final String format(double number)

What is the definition of that method?

58 CHAPTER 1 Object-Oriented Concepts

Programming Project 1.1

A CalendarDate Class

In this project, you will develop and test a CalendarDate class. Here are the responsibilities of the class, that is,

the services that the class will provide to users:

1. to initialize a CalendarDate object to represent the date January 1, 2012;

2. to initialize a CalendarDate object from integers for the month, day-of-month and year; if the date is invalid

(for example, if the month, day-of-month and year are 6, 31 and 2006, respectively), use 1, 1, 2012;

3. return, in String form, the next date after this CalendarDate object; for example, if this CalendarDate

object represents January 31, 2012, the return value would be “February 1, 2012”;

4. return, in String form, the date prior to this CalendarDate object; for example, if this CalendarDate object

represents January 1, 2013, the return value would be “December 31, 2012”;

5. return, in String form, the day of the week on which this CalendarDate object falls; for example, if this

CalendarDate object represents the date December 20, 2012, the return value would be “Thursday”;

Part a: Create method specifications for the above responsibilities.

Part b: Develop the CalendarDate class, that is, determine what fields to declare and then define the methods.

Part c: Create a project to test your CalendarDate class. Call each CalendarDate method at least twice.

Additional Features of

Programming and Java

CHAPTER 2

In Chapter 1, the primary goal was to introduce object-oriented concepts, such as interfaces, inheritance

and polymorphism, in the context of the Java programming language. This chapter introduces more

topics on programming in general and Java in particular, and illustrates how they can aid your

programming efforts. For example, Java’s exception-handling mechanism provides programmers with

significant control over what happens when errors occur.

CHAPTER OBJECTIVES

1. Distinguish between static members and instance members.

2. Be able to develop JUnit tests for a class’s methods.

3. Be able to create try blocks and catch blocks to handle exceptions.

4. Compare file input/output with console input/output.

5. Understand the fundamentals of the Java Virtual Machine.

6. Be able to override the Object class’s equals method.

7. Understand the interplay between packages and visibility modifiers.

2.1 Static Variables, Constants and Methods

Recall, from Section 1.2.2, that a class member is either a field or method in the class1. Let’s look at some

of the different kinds of members in Java. There are two kinds of fields. An instance variable is a field

associated with an object—that is, with an instance of a class. For example, in the FullTimeEmployee

class from Chapter 1, name and grossPay are instance variables. Each FullTimeEmployee object will

have its own pair of instance variables. Suppose we declare

FullTimeEmployee oldEmployee,

currentEmployee,

newEmployee;

Then the object referenced by oldEmployee will have its own copy of the instance variables name and

grossPay, and the objects referenced by currentEmployee and newEmployee will have their own

copies also.

1In Section 4.2.3.1, we will see that a class may also have another class as a member.

59

60 CHAPTER 2 Additional Features of Programming and Java

In addition to instance variables, which are associated with a particular object in a class, we can

declare static variables , which are associated with the class itself. The space for a static variable—also

known as a class variable—is shared by all instances of the class. A field is designated as a static variable

by the reserved modifier static. For example, if a count field is to maintain information about all objects

of a class Student, we could declare the field count to be a static variable in the Student class:

protected static int count = 0;

This static variable could be incremented, for example, whenever a Student constructor is invoked. Then

the variable count will contain the total number of Student instances created.

A class may also have constant identifiers, also called “symbolic constants” or “named constants”.

A constant identifier is an identifier that represents a constant, which is a variable that can be assigned

to only once. The declaration of a constant identifier includes the reserved word final—indicating only

one assignment is allowed—as well as the type and value of the constant. For example, we can write

protected final static int SPEED_LIMIT = 65.0;

Constant identifiers promote both readability (SPEED_LIMIT conveys more information than 65.0) and

maintainability (because SPEED_LIMIT is declared in only one place, it is easy to change its value

throughout the class). There should be just one copy of the constant identifier for the entire class, rather

than one copy for each instance of the class. So a constant identifier for a class should be declared as

static; constants within a method cannot be declared as static. At the developer’s discretion, constant

identifiers for a class may have public visibility. Here are declarations for two constant class identifiers:

public final static char COMMAND_START = ‘$’;

public final static String INSERT_COMMAND = "$Insert";

To access a static member inside its class, the member identifier alone is sufficient. For example, the above

static field count could be accessed in a method in the Student class as follows:

count++;

In order to access a static member outside of its class, the class identifier itself is used as the qualifier.

For example, outside of the wrapper class Integer, we can write:

if (size == Integer.MAX_VALUE)

Here is the declaration for an often-used constant identifier in the System class:

public final static PrintStream out = nullPrintStream();

Because out is declared as static, its calls to the PrintStream class’s println method include the

identifier System rather than an instance of the System class. For example,

System.out.println ("The Young Anarchists Club will hold a special election next week" +

"to approve the new constitution.");

The static modifier is used for any constant identifier that is defined outside of a class’s methods. The

static modifier is not available within a method. For example, in the definition of the default constructor

in the FullTimeEmployee class, we had:

final String EMPTY_STRING = "";

It would have been illegal to use the static modifier for this constant.

2.2 Method Testing 61

In Chapter 1, the Employee interface declared a constant:

final static DecimalFormat MONEY = new DecimalFormat (" $0.00");

// a class constant used in formatting a value in dollars and cents

The constant identifier MONEY can be used in any class that implements the Employee interface. Recall

that any constant or method identifier in an interface automatically has public visibility.

Java also allows static methods. For example, the Math class in the package java.lang has a floor

method that takes a double argument and returns, as a double, the largest value that is less than or equal

to the argument and equal to an integer. We can write

System.out.println (Math.floor (3.7)); // output: 3.0

When floor is called, there is no calling object because the effect of the method depends only on the

double argument. To signify this situation, the class identifier is used in place of a calling object when

floor is called. A method that is called without a calling object is known as a static method, as seen

in the following heading

public static double floor (double a)

The execution of every Java application (excluding applets, servlets, and so on) starts with a static main

method. And static methods are not virtual; that is, static methods are bound to method identifiers

at compile time, rather than at run time. The reason is that static methods are associated with a class

itself rather than an object, so the issue of which object is invoking the method does not arise.

2.2 Method Testing

A method is correct if it satisfies its method specification. The most widely used technique for increasing

confidence in the correctness of a method is to test the method with a number of sample values for

the parameters. We then compare the actual results with the results expected according to the method’s

specification.

The purpose of testing is to discover errors, which are then removed. When—eventually—no errors

are discovered during testing, that does not imply that the method is correct, because there may be other

tests that would reveal errors. In general, it is rarely feasible to run all possible tests, and so we cannot

infer correctness based on testing alone. As E. W. Dijkstra has noted:

Testing can reveal the presence of errors but not the absence of errors.

The testing software we utilize is JUnit: the “J” stands for “Java,” and each method in a project is

referred to as a “unit.” JUnit is an Open Source (that is, free) unit-testing product—available from

www.junit.org—that allows the methods in a class to be tested systematically and without human

intervention—for example, without keyboard input or Graphical User Interface (GUI) mouse clicks.

The web page http://junit.sourceforge.net/README.html#Installation has information on installation. In

general, the success or failure of an individual test is determined by whether the expected result of the

test matches the actual result. The output from testing provides details for each failed test. For a simple

example, here is a test of the toString() method in the FullTimeEmployee class:

@Test

public void toStringTest1()

{

FullTimeEmployee full = new FullTimeEmployee ("a", 150.00);

www.junit.org
http://junit.sourceforge.net/README.html#Installation

62 CHAPTER 2 Additional Features of Programming and Java

String expected = "a $150.00 FULL TIME";

assertEquals (expected, full.toString());

} // method testToString1

“@Test ” is referred to as an annotation. The assertEquals method determines whether its arguments

are equal. In this case, if the two strings are equal, the test is passed. Otherwise, the test fails.

The assertEquals method is an overloaded method in the Assert class of the org.junit pack-

age. The heading for the version called above is

public static void assertEquals (java.lang.String expected, java.lang.String actual)

There are other versions of the method to compare primitive values. For example, we could have

int median = roster.findMedian();

assertEquals (82, median);

Also, there is a version to compare any two objects. Here is the method heading:

public static void assertEquals (java.lang.Object expected, java.lang.Object actual)

According to the Subclass Substitution Rule, the arguments can be instances of any class—because any

class is a subclass of Object. In fact, expected is a polymorphic reference when the AssertEquals

method is invoked: the code executed depends on the types of the objects involved. For example, with

String objects, this version has the same effect as the version in which both parameters have type String.

(But this version is slightly slower than the String-parameter version due to the run-time test to make

sure that actual is an instance of the String class.)

Finally, there are several assertArrayEquals methods for comparing two arrays of int values,

two arrays of double values, two arrays of Object references, and so on.

The details of running JUnit test classes will depend on your computing environment. Typically,

you will run the tests in an Integrated Development Environment (IDE) such as Eclipse or DrJava, and the

output of testing may combine text and graphics (for example, a green bar if all tests were successful, and

a red bar if one or more tests failed). For the sake of generality, the following test class is not tied to any

IDE, but simply prints the string returned by the getFailures() method in the runClasses class of

the package org.junit. If you are running tests in an IDE, the main method from the class below will

be ignored. Here is a complete class for testing the toString() method in the FullTimeEmployee

class—followed by a discussion of the details:

import org.junit.*;

import static org.junit.Assert.*;

import org.junit.runner.Result;

import static org.junit.runner.JUnitCore.runClasses;

public class FullTimeEmployeeTest

{

public static void main(String[] args)

{

Result result = runClasses (ToStringTest.class);

System.out.println ("Tests run = " + result.getRunCount() +

"\nTests failed = " + result.getFailures());

} // method main

protected FullTimeEmployee full;

2.2 Method Testing 63

protected String expected;

@Test

public void toStringTest1()

{

full = new FullTimeEmployee ("a", 150.00);

expected = "a $150.00 FULL TIME";

assertEquals (expected, full.toString());

} // method toStringTest1

@Test

public void toStringTest2()

{

full = new FullTimeEmployee ("b", 345.678);

expected = "b $345.678 FULL TIME"; // error!

assertEquals (expected, full.toString());

} // method toStringTest2

@Test

public void toStringTest3()

{

full = new FullTimeEmployee();

expected = " $0.00 FULL TIME";

assertEquals (expected, full.toString());

} // method toStringTest3

} // class FullTimeEmployeeTest

The line

import static org.junit.Assert.*;

allows static methods—such as assertEquals—in the Assert class to be accessed without specifying

the class name. The main method runs this cluster of tests, one after the other, in no particular order.

Because of the mistake in test 2, the output from the program is

Tests run = 3

Tests failed = [toStringTest2(FullTimeEmployeeTest): expected:<b $345.6[7]8 FULL TIME>

but was:<b $345.6[]8 FULL TIME>]

Note that the mistake—the extra “7” in the expected value—was in the test, not in the method being

tested, and was written just so you would know what is output when a test fails.

When should these tests be developed and run? Most unit-testing enthusiasts recommend that

A method’s tests should be developed before the method is defined.

The advantage to pre-definition testing is that the testing will be based on the method specification only,

and will not be influenced by the method definition. Furthermore, the tests should be run both before and

after the method is defined (and after any subsequent changes to the method definition). That will illustrate

the transition from a method that fails the tests to a method that passes the tests. But how can a method

64 CHAPTER 2 Additional Features of Programming and Java

be compiled before it is defined? To satisfy the Java compiler, each method definition can be a stub: a

definition that has only enough code to avoid a compile-time error. For example, here is a stub for the

toString() method in the FullTimeEmployee class:

public String toString()

{

return null;

} // method toString

When FullTimeEmployeeTest was run with this stub for the toString() method, all three tests failed.

(Of course, the mistake in test2 ensures that test will fail anyway.) Because this chapter introduces unit

testing intermingled with several important language features, the method testing in this chapter will be

presented after the method has been fully defined. In subsequent chapters we will adhere to the test-first

paradigm.

In Section 2.3.2 we will see how to create a stub that will fail any test even if the return type of the

method to be tested is boolean.

2.2.1 More Details on Unit Testing

In Section 2.2, we developed a test suite for the toString() method in the FullTimeEmployee class.

There was so little that could go wrong with the toString() method that we could barely justify the

testing. (In fact, in the applications in subsequent chapters, a class’s toString() method will often be

untested, but used in testing other methods.) The real purpose of the example was to show how a test

suite could be developed. What about the other methods in the FullTimeEmployee class? Should they

be tested also? Probably not. The constructors cannot be tested in isolation; in fact, you could argue that

the suite in FullTimeEmployeeTest tests the constructors as much as testing the toString() method.

Also, there is no point in testing the accessor methods getName() and getGrossPay (): they simply

return the values assigned in a constructor.

So at this point, we can be fairly confident in the correctness of the methods in the FullTime

Employee class. For the Company class from Chapter 1, which methods are suitable for testing? There is

no point in testing the main method: it simply invokes the run() method. The run() method cannot be

tested without human intervention because the end user must enter the input-file path from the keyboard.

The protected method getNextEmployee (Scanner sc) can be tested—the CompanyTest class will

be a subclass of the Company class. Finally, the findBestPaid (Scanner sc) method can and should

be tested. In fact, that method was, originally, designed to facilitate testing: The reading of file name and

printing of the best-paid employee were moved up to the run() method. This illustrates an important

aspect of method design:

In general, methods should be designed to facilitate testing.

Here is a CompanyTest class to test both the getNextEmployee and findBestPaid methods. Note that

the @Before annotation precedes any method that is automatically invoked just prior to each test.

import org.junit.*;

import static org.junit.Assert.*;

import org.junit.runner.Result;

import static org.junit.runner.JUnitCore.runClasses;

import java.util.*;

2.2 Method Testing 65

import java.io.*; // for IOException, see Section 2.3

public class CompanyTest extends Company

{

public static void main(String[] args)

{

Result result = runClasses (CompanyTest.class);

System.out.println ("Tests run = " + result.getRunCount() +

"\nTests failed = " + result.getFailures());

} // method main

protected Company company;

protected FullTimeEmployee best;

protected Scanner sc;

protected String expected;

@Before

public void runBeforeEveryTest()

{

company = new Company();

} // method runBeforeEveryTest

@Test

public void getNextEmployeeTest1()

{

sc = new Scanner ("Lucas 350.00");

expected = "Lucas $350.00 FULL TIME";

assertEquals (expected, company.getNextEmployee (sc).toString());

} // method getNextEmployeeTest1

@Test

public void findBestPaidTest1() throws IOException

{

sc = new Scanner (new File ("company.in1"));

best = company.findBestPaid (sc);

expected = "b $150.00 FULL TIME";

assertEquals (expected, best.toString());

} // method findBestPaidTest1

@Test

public void findBestPaidTest2() throws IOException

{

sc = new Scanner (new File ("company.in2"));

best = company.findBestPaid (sc);

assertEquals (null, best);

} // method findBestPaidTest2

} // class CompanyTest

66 CHAPTER 2 Additional Features of Programming and Java

The file company.in1 contains

a 100

b 149.995

c 140

The file company.in2 is empty. When the above tests were run with the versions of getNextEmployee

(Scanner sc) and findBestPaid (Scanner sc) from Chapter 1, all three test cases were successful.

For the HourlyEmployee class, the only method worthy of testing is the three-parameter construc-

tor. As noted earlier in this section, constructors cannot be tested in isolation. Instead, we will test the

getRegularPay, getOvertimePay, and getGrossPay methods. These accessor methods are worthy of

testing since they do more than simply returning values passed to a constructor. The important aspect

of the following HourlyEmployeeTest class is the testing of a boundary condition: the comparison

(>=, >, <=, <) of a variable to some fixed value; the result of the comparison determines the action

taken. Specifically, the hoursWorked is compared to 40 to determine the regular pay, overtime pay, and

gross pay. To make sure that all boundary cases are covered, there are separate tests for hoursWorked equal

to 39, 40, and 41. In comparing the expected result with the actual result for regularPay, overTimePay,

and grossPay, we should not compare double values for exact equality. So we utilize a three-parameter

assertEquals method, with the third parameter the (very small) difference we will allow between the

expected and actual double values.

Make sure that any boundary conditions are thoroughly tested.

Here is the HourlyEmployeeTest class:

import org.junit.*;

import static org.junit.Assert.*;

import org.junit.runner.Result;

import static org.junit.runner.JUnitCore.runClasses;

import java.util.*;

public class HourlyEmployeeTest

{

public static void main(String[] args)

{

Result result = runClasses (HourlyEmployeeTest.class);

System.out.println ("Tests run = " + result.getRunCount() +

"\nTests failed = " + result.getFailures());

} // method main

public static final double DELTA = 0.0000001;

protected HourlyEmployee hourly;

@Test

public void test1()

{

hourly = new HourlyEmployee ("andrew", 39, 10.00);

assertEquals (390.00, hourly.getRegularPay(), DELTA);

2.2 Method Testing 67

assertEquals (0.00, hourly.getOvertimePay(), DELTA);

assertEquals (390.00, hourly.getGrossPay(), DELTA);

} // method test1

@Test

public void test2()

{

hourly = new HourlyEmployee ("beth", 40, 20.00);

assertEquals (800.00, hourly.getRegularPay(), DELTA);

assertEquals (0.00, hourly.getOvertimePay(), DELTA);

assertEquals (800.00, hourly.getGrossPay(), DELTA);

} // method test2

@Test

public void test3()

{

hourly = new HourlyEmployee ("terry", 41, 20.00);

assertEquals (800.00, hourly.getRegularPay(), DELTA);

assertEquals (30.00, hourly.getOvertimePay(), DELTA);

assertEquals (830.00, hourly.getGrossPay(), DELTA);

} // method test3

@Test

public void test4()

{

hourly = new HourlyEmployee ("karen", 50, 10);

assertEquals (400.00, hourly.getRegularPay(), DELTA);

assertEquals (150.00, hourly.getOvertimePay(), DELTA);

assertEquals (550.00, hourly.getGrossPay(), DELTA);

} // method test4

} // class HourlyEmployeeTest

What about testing other methods? There is no rule to determine which methods in a class should be

tested. The best strategy is to assume that a method contains subtle flaws that can be revealed only by

rigorous testing.

Good testing requires great skepticism.

This can be a challenge to programmers, who tend to view their work favorably, even glowingly (“a thing

of beauty and a joy forever”). As such, programmers are ill-suited to test their own methods because the

purpose of testing is to uncover errors. Ideally the person who constructs test data should hope that the

method will fail the test. If a method fails a test and the method is subsequently revised, all tests of that

method should be re-run.

In the next section, we introduce Java’s exception-handling facilities, and consider the interplay

between exception-handling and testing.

68 CHAPTER 2 Additional Features of Programming and Java

2.3 Exception Handling

An exception is an object created by an unusual condition, typically, an attempt at invalid processing. When

an exception object is constructed, the normal flow of control is halted; the exception is said to be thrown .

Control is immediately transferred to code—either in the current method or in some other method—that

“handles” the exception. The exception handling usually depends on the particular exception, and may

involve printing an error message, terminating the program, taking other action, or maybe doing nothing.

A robust program is one that does not terminate unexpectedly from invalid user-input. We almost

always prefer programs that—instead of “crashing”—allow recovery from an error such as the input of

7.o instead of 7.0 for a double. Java’s exception-handling feature allows the programmer to avoid almost

all abnormal terminations.

For a simple introduction to exception handling, let’s start with a method that takes as a parameter

a (non-null reference to a) String object. The String represents a person’s full name, which should be

in the form “first-name middle-name last-name”. The method returns the name in the form “last-name,

first-name middle-initial.”. For example, if we have

rearrange ("John Quincy Adams"))

The String returned will be

Adams, John Q.

Here is the method specification and a preliminary definition:

/**

* Returns a specified full name in the form "last-name, first-name middle-initial.".

*

* @param fullName – a (non-null reference to a) String object that represents the

* specified full name, which should be in the form

* "first-name middle-name last-name".

*

* @return the name in the form "last-name, first-name middle-initial.".

*

*/

public String rearrange (String fullName)

{

Scanner sc = new Scanner (fullName);

String firstName = sc.next(),

middleName = sc.next(),

lastName = sc.next();

return lastName + ", " + firstName + " " + middleName.charAt (0) + ".";

} // method rearrange

The problem with this method, as currently defined, is that the execution of the method can terminate

abnormally. How? If the argument corresponding to fullName is a (reference to a) String object that

does not have at least three components separated by whitespace, a NoSuchElementException object

will be thrown. In this case, the execution of the method will terminate abnormally. Instead of an abnormal

termination, we want to allow execution to continue even if the argument corresponding to fullName

is not a reference to a String that consists of those three components. That is, we “try” to split up

fullName, and “catch” the given exception. The revised specification and definition are

2.3 Exception Handling 69

/**

* Returns a specified full name in the form "last-name, first-name middle-initial.".

*

* @param fullName – a (non-null reference to a) String object that represents the

* specified full name, which should be in the form

* "first-name middle-name last-name".

*

* @return the name in the form "last-name, first-name middle-initial." if fullName

* has three components. Otherwise, return

* "java.util.NoSuchElementException: the name is not of the form

* "first-name middle-name last-name"".

*

*/

public String rearrange (String fullName)

{

String result;

try

{

Scanner sc = new Scanner (fullName);

String firstName = sc.next(),

middleName = sc.next(),

lastName = sc.next();

result = lastName + ", " + firstName + " " + middleName.charAt (0) + ".";

} // try

catch (NoSuchElementException e)

{

result = e.toString() + ": " + ": The name is not of the form \"first-name " +

"middle-name last-name\"";

} // catch

return result;

} // method rearrange

In the execution of this method, the flow of control is as follows. Inside the try block, if fullName can

be split into first, middle, and last names, the three calls to sc.next() and the subsequent assignment

to result will be executed. The entire catch block will be skipped over, and the return statement

will be executed. But if fullName cannot be split into first, middle, and last names, one of the calls

to sc.next() will throw a NoSuchElementException object, the try block will be exited, and the

statement inside the catch block will executed. Then the return statement will be executed, as before.

In the catch block, the parameter e is (a reference to) the NoSuchElementException object

created and thrown during the execution of one of the calls to sc.next(). Specifically, e.toString()

is the string "java.util.NoSuchElementException". We will see shortly, in Section 2.3.1, how an

exception can be thrown in one method and caught in another method.

Here is a test class for the rearrange method (assume that method is in the NameChange class,

which may consist of nothing except the rearrange method):

import org.junit.*;

import static org.junit.Assert.*;

import org.junit.runner.Result;

70 CHAPTER 2 Additional Features of Programming and Java

import static org.junit.runner.JUnitCore.runClasses;

import java.util.*;

public class NameChangeTest

{

public static void main(String[] args)

{

Result result = runClasses (NameChangeTest.class);

System.out.println ("Tests run = " + result.getRunCount() +

"\nTests failed = " + result.getFailures());

} // method main

public final static String EXCEPTION = "java.util.NoSuchElementException";

public final static int EXCEPTION_LENGTH = EXCEPTION.length();

protected NameChange change;

protected String result;

@Before

public void runBeforeEveryTest()

{

change = new NameChange();

} // method runBeforeEveryTest

@Test

public void rearrangeTest1()

{

result = change.rearrange ("John Quincy Adams");

assertEquals ("Adams, John Q.", result);

} // method rearrangeTest1

@Test

public void rearrangeTest2()

{

result = change.rearrange ("John Adams");

assertEquals (EXCEPTION, result.substring (0, EXCEPTION_LENGTH));

} // method rearrangeTest2

@Test

public void rearrangeTest3()

{

result = change.rearrange ("John");

assertEquals (EXCEPTION, result.substring (0, EXCEPTION_LENGTH));

} // method rearrangeTest3

@Test

public void rearrangeTest4()

{

result = change.rearrange ("");

assertEquals (EXCEPTION, result.substring (0, EXCEPTION_LENGTH));

} // rearrangeTest4

} // class NameChangeTest

2.3 Exception Handling 71

In this example, the exception was handled—in the catch block—of the rearrange method. In the next

section, we see how to handle exceptions that are not caught within the method in which they are thrown.

2.3.1 Propagating Exceptions

What happens if an exception, such as NoSuchElementException, is thrown in a method that does not

catch that exception? Then control is transferred back to the calling method: the method that called the

method that threw the exception. This transferring of control is known as propagating the exception . For

example, the following method determines whether or not an integer scanned in is a leap year2 (one of

the exceptions is explicitly thrown, with a throw statement):

/**

* Determines if the integer scanned in is a leap year.

*

* @param sc – a (reference to) a Scanner object from which

* the year is scanned in.

*

* @return true – if the integer is a leap year; otherwise, returns false.

*

* @throws InputMismatchException – if the string scanned in from sc is not

* empty but does not consist of an integer.

* @throws NoSuchElementException – if the value scanned in from sc is an

* empty string.

*

* @throws NullPointerException – if sc is null.

* @throws IllegalArgumentException - if the value scanned in from

* sc is an integer less than 1582.

*/

public boolean isLeapYear (Scanner sc)

{

final int FIRST_YEAR = 1582; // start of Gregorian Calendar

int year = sc.nextInt();

if (year < FIRST_YEAR)

throw new IllegalArgumentException();

if ((year % 4 == 0) && (year % 100 != 0 || year % 400 == 0))

return true;

return false;

} // method isLeapYear

What can go wrong in a call to this method? One possible error, as indicated in the @throws sections of

the javadoc specification, if the string scanned in from sc is not empty but does not consist of an integer,

InputMismatchException will be thrown. This exception is not caught in the isLeapYear method,

so the exception is propagated back to the method that called isLeapYear. For example, the following

LeapYear class has a run() method that scans five lines from System.in, and determines which lines

contain leap years and which lines contain non-integers.

2Because the earth makes one full rotation around the sun in slightly less than 365.25 days, not every year divisible by 4 is a leap year.

Specifically, a leap year must be both divisible by 4 and either not divisible by 100 or divisible by 400. So 2000 was a leap year, but 2100

will not be a leap year.

72 CHAPTER 2 Additional Features of Programming and Java

import java.util.*; // for the Scanner class

public class LeapYear

{

public static void main (String args [])

{

new LeapYear().run();

} // method main

public void run()

{

final String INPUT_PROMPT = "Please enter the year: ";

Scanner sc = new Scanner (System.in);

for (int i = 0; i < 5; i++)

try

{

System.out.print (INPUT_PROMPT);

System.out.println (isLeapYear (sc));

} // try

catch (InputMismatchException e)

{

System.out.println ("The input is not an integer.");

sc.nextLine();

} // catch InputMismatchException

} // method run

public boolean isLeapYear (Scanner sc)

{

final int FIRST_YEAR = 1582; // start of Gregorian Calendar

int year = sc.nextInt();

if (year < FIRST_YEAR)

throw new IllegalArgumentException();

if ((year % 4 == 0) && (year % 100 != 0 || year % 400 == 0))

return true;

return false;

} // method isLeapYear

} // class LeapYear

For input of

2000

2100

201o

2.3 Exception Handling 73

2010

2008

the output will be:

true

false

The input is not an integer.

false

true

The above catch block includes a call to sc.nextLine(). If that call had been omitted, the output for

the above input would be

true

false

The input is not an integer.

The input is not an integer.

The input is not an integer.

Why? When the third call to sc.nextInt() in isLeapYear throws InputMismatchException for

“201o”, the scanner remains positioned on the third line instead of advancing to the fourth line. Then

the next two calls to sc.nextInt() also throw InputMismatchException for “201o”. We needed to

include sc.nextLine() in the catch block to ensure that the scanner skips over the illegal input.

It is worth noting that in a method’s specification, only propagated exceptions are included in the

@throws javadoc comments. Any exception that is caught within the method definition itself (such as we

did in the rearrange method of Section 2.3) is an implementation detail, and therefore not something

that a user of the method needs to know about.

Incidentally, without too much trouble we can modify the above run method to accommodate an

arbitrary number of input values. To indicate the end of the input, we need a value—called a sentinel —that

is not a legal year. For example, we can use "***" as the sentinel. When that value is entered from the

keyboard, InputMismatchException is thrown in the isLeapYear method and caught in the run

method, at which point a break statement terminates the execution of the scanning loop. Here is the

revised run method:

public void run()

{

final String SENTINEL = "***";

final String INPUT_PROMPT =

"Please enter the year (or " + SENTINEL + " to quit): ";

Scanner sc = new Scanner (System.in);

while (true)

{

try

{

System.out.print (INPUT_PROMPT);

System.out.println (" " + isLeapYear (sc) + "\n");

} // try

catch (InputMismatchException e)

74 CHAPTER 2 Additional Features of Programming and Java

{

if (sc.nextLine().equals (SENTINEL))

break;

System.out.println (" The input is not an integer.\n");

} // catch

} // while

} // method run

If a propagated exception is not caught in a method, the exception is propagated back to the calling method.

If the calling method does not handle the exception, then the exception is propagated back to the method

that called the calling method itself. Ultimately, if the exception has not been caught even in the main

method, the program will terminate abnormally and a message describing the exception will be printed.

The advantage to propagating an exception is that the exception can be handled at a higher level in the

program. Decisions to change how exceptions are handled can be made in one place, rather than scattered

throughout the program. Also, the higher level might have facilities not available at lower levels, such as

a Graphical User Interface (GUI) window for output.

2.3.2 Unit Testing and Propagated Exceptions

How can we test a method that propagates an exception? Right after the @Test annotation, we specify the

expected exception. For example, a test of the isLeapYear method might have

@Test (expected = InputMismatchException.class)

public void isLeapYearTest()

{

leap.isLeapYear (new Scanner ("201o"));

} // isLeapYearTest

For a complete test suite of the isLeapYear method, we cannot scan over System.in because such

tests would require human intervention. Another option is to scan over a string of lines that contain the

values to be tested. But in JUnit, test methods can be invoked in any order, and the results of one test

do not affect any other test. So to ensure that the calls to the scanner would start on successive lines, we

would have to place all tests in one method. This would be legal but inappropriate because the tests are

independent of each other.

The following test suite for the isLeapYear method has each test in a separate method, and

includes tests for InputMismatchException, NoSuchElementException, NullPointerException

and IllegalArgumentException.

Here is the test class:

import org.junit.*;

import static org.junit.Assert.*;

import org.junit.runner.Result;

import static org.junit.runner.JUnitCore.runClasses;

import java.util.*;

public class LeapYearTest

{

public static void main(String[] args)

{

Result result = runClasses (LeapYearTest.class);

System.out.println ("Tests run = " + result.getRunCount() +

"\nTests failed = " + result.getFailures());

} // method main

2.3 Exception Handling 75

protected LeapYear leap;

protected boolean answer;

@Before

public void runBeforeEveryTest()

{

leap = new LeapYear();

} // method runBeforeEveryTest

@Test

public void leapYearTest1()

{

answer = leap.isLeapYear (new Scanner ("2000"));

assertEquals (true, answer);

} // method leapYearTest1

@Test

public void leapYearTest2()

{

answer = leap.isLeapYear (new Scanner ("2100"));

assertEquals (false, answer);

} // method leapYearTest2

@Test

public void leapYearTest3()

{

answer = leap.isLeapYear (new Scanner ("1582"));

assertEquals (false, answer);

} // method leapYearTest3

@Test (expected = InputMismatchException.class)

public void leapYearTest4()

{

leap.isLeapYear (new Scanner ("201o"));

} // method leapYearTest4

@Test (expected = NoSuchElementException.class)

public void leapYearTest5()

{

leap.isLeapYear (new Scanner (""));

} // method leapYearTest5

@Test (expected = NullPointerException.class)

public void leapYearTest6()

{

leap.isLeapYear (null);

} // method leapYearTest6

@Test (expected = IllegalArgumentException.class)

public void leapYearTest7()

{

leap.isLeapYear (new Scanner ("1581"));

76 CHAPTER 2 Additional Features of Programming and Java

} // method leapYearTest7

} // class LeapYearTest

What if the exception propagated in the method being tested is not the exception expected in the testing

method? Then the testing method will generate an error message that the exception thrown was not the one

expected. Finally, what if the method being tested propagates an exception but no exception was expected

by the testing method? For example, at the start of leapYearTest5, suppose we replaced

@Test (expected = NoSuchElementException.class)

with

@Test

Then the test would generate the following error message:

Tests failed = [leapYearTest5(LeapYearTest): null]

The keyword null signifies that an exception was thrown but no exception was expected. In JUnit,

an error in running a test method occurs if an unexpected exception is thrown or if an expected exception

is not thrown. So it is an error if an exception is thrown but a different exception is expected. Errors

are included in the string returned by the getFailures()method in the runClasses class, but the term

failure is often applied only to those situations in which an assertion is tested and fails. Because testing

assertions is what unit testing is all about, errors must be removed before serious testing can begin.

We defined the above isLeapYear method before we introduced the exception-propagation feature

needed to test that method. What if, as is normally the case, we wanted to test a method before the method

is defined? Specifically, how can we create a stub that will generated an error message for all of the

above tests? If the stub returns true, leapYearTest1() will succeed, and if the stub returns false,

leapYearTest2() will succeed. Clearly, the stub cannot return either true or false. Instead, the stub

will throw an exception other than the exceptions thrown according to the specifications. For example,

public boolean isLeapYear (Scanner sc)

{

throw new UnsupportedOperationException();

} // method isLeapYear

When the test suite LeapYearTest was run on this stub, every test generated an error message (that is

good news), and the output (formatted for readability) was

Tests run = 7

Tests failed =

leapYearTest1(LeapYearTest): null

leapYearTest2(LeapYearTest): null,

leapYearTest3(LeapYearTest): null,

leapYearTest4(LeapYearTest): Unexpected exception,

expected<java.util.InputMismatchException> but

was<java.lang.UnsupportedOperationException>,

leapYearTest5(LeapYearTest): Unexpected exception,

expected<java.util.NoSuchElementException> but

was<java.lang.UnsupportedOperationException>,

leapYearTest6(LeapYearTest): Unexpected exception,

expected<java.lang.NullPointerException> but

was<java.lang.UnsupportedOperationException>,

2.3 Exception Handling 77

leapYearTest7(LeapYearTest): Unexpected exception,

expected<java.lang.IllegalArgumentException> but

was<java.lang.UnsupportedOperationException>]

2.3.3 Checked Exceptions

Exceptions related to input or output, such as when a file is not found or the end-of-file marker is

encountered while input is being read, are the most common examples of checked exceptions. With a

checked exception , the compiler checks that either the exception is caught within the method itself or—to

allow propagation of the exception—that a throws clause is appended to the method heading. For an

example of the latter, we might have

public void sample() throws IOException

{

This indicates that the sample method might throw an IOException object. If so, the exception will be

propagated back to the method that called sample. That calling method must either catch IOException

or append the same throws clause to its method heading. And so on. Checked exceptions are propagated

for the same reason that other exceptions are propagated: It might be preferable to handle all exceptions

at a higher level for the sake of uniformity, or there might be better facilities (such as a GUI window)

available at the higher level.

For an example of how a checked exception can be handled in a method, we can revise the run()

method from Section 2.3.1 to scan lines from a file and determine which lines consist of leap years. The

name of the file will be read from the keyboard in a loop that continues until the name corresponds to an

existing file. Here is the revised run() method:

public void run()

{

final String INPUT_PROMPT = "Please enter the file name: ";

Scanner keyboardScanner = new Scanner (System.in);

String fileName;

while (true)

{

System.out.print (INPUT_PROMPT);

fileName = keyboardScanner.next();

try

{

Scanner sc = new Scanner (new File (fileName));

while (sc.hasNext())

try

{

System.out.println (isLeapYear (sc));

} // try to scan a year

catch (InputMismatchException e)

{

System.out.println ("The input is not an integer.");

sc.nextLine();

} // catch input mismatch

break;

78 CHAPTER 2 Additional Features of Programming and Java

} // try to scan the name of an existing file

catch (FileNotFoundException e)

{

System.out.println (e);

} // catch file not found

} // while true

} // method run

The break statement—to exit the outer loop—is executed when the file name scanned from the

keyboard represents an existing file, and that file has been scanned for leap years. The inner-loop

condition—sc.hasNext()—is slightly preferable to sc.hasNextLine(). In particular, if the last line

in the file is blank, sc.hasNext() will return false and the execution of the inner loop will terminate, as

desired. But if the last line in the file is blank, sc.hasNextLine() will return true, and the subsequent

call to sc.nextInt() in the isLeapYear method will throw NoSuchElementException. Of course,

if that exception is caught in the run() method, then sc.hasNextLine() will not be a problem.

A checked exception must be caught or must be specified in a throws clause, and the compiler

“checks” to make sure this has been done. Which exceptions are checked, and which are unchecked? The

answer is simple: run-time exceptions are not checked, and all other exceptions are checked. Figure 2.1

shows Java’s exception hierarchy, including IOException with its subclasses (such as FileNotFound

Exception), and RuntimeException with its subclasses (such as NullPointerException).

Why are run-time exceptions not checked? The motivation behind this is that an exception such as

NullPointerException or NumberFormatException, can occur in almost any method. So appending

a throws clause to the heading of such a method would burden the developer of the method without

providing any helpful information to the reader of that method.

When an exception is thrown, the parameter classes of the subsequent catch blocks are tested, in

order, until (unless) one is found for which the thrown exception is an instance of that class. So if you

Exception

IOException RuntimeException …

FileNotFoundException …

NoSuchElementException IndexOutOfBoundsException NullPointerException …

InputMismatchException

ArrayIndexOutOfBoundsException StringIndexOutOfBoundsException

FIGURE 2.1 The exception hierarchy. In the unified modeling language, inheritance is represented with an

arrow from a subclass to its superclass

2.3 Exception Handling 79

want to ensure that all run-time exceptions are caught in a method, you can insert the following as the last

catch block:

catch (RuntimeException e)

{

// code to handle the exception

} // catch RuntimeException

If you do have a catch block for RuntimeException, make sure that catch block is not followed by a

catch block for a subclass of RuntimeException. For example, because NullPointerException is

a subclass of RuntimeException, the following sequence of catch blocks will generate a compile-time

error:

catch (RuntimeException e)

{

// code to handle the exception

} // catch RuntimeException

catch (NullPointerException e) // error!

{

// code to handle the exception

} // catch NullPointerException

The error message will inform you that the second catch block is unreachable code.

An exception can be explicitly thrown by the programmer, who gets to decide which exception class

will be instantiated and under what circumstances the exception will be thrown. For example, suppose we

want a method to return the smaller of two double values that represent prices obtained by comparison

shopping. If the prices are too far apart—say, if the difference is greater than the smaller price—we throw

an exception instead of returning the smaller price. The mechanism for explicitly throwing the exception

is the throw statement, which can be placed anywhere a statement is allowed. For example, the code may

be as in the following smaller method (the Math class’s static method abs returns the absolute value

of its argument):

public class Compare

{

public static void main (String[] args)

{

new Compare().run();

} // method main

public void run()

{

System.out.println (smaller (5.00, 4.00));

System.out.println (smaller (5.00, 20.00));

} // method run

public double smaller (double price1, double price2)

{

if (Math.abs (price1 - price2) > Math.min (price1, price2))

throw new ArithmeticException ("difference too large");

return Math.min (price1, price2);

} // method smaller

} // class Compare

80 CHAPTER 2 Additional Features of Programming and Java

If the given comparison is true, the throw statement is executed, which creates a new instance of the

exception class ArithmeticException by calling the constructor that takes a String argument. The

exception will be propagated back to the method that called smaller and the execution of the smaller

method will immediately terminate. In the above example, the exception is not caught, so the program

terminates. The output is

4.0

java.lang.ArithmeticException: difference too large

The choice of ArithmeticException as the exception class to be instantiated is somewhat arbitrary.

A user can even create new exception classes. For example,

public class UnreasonablenessException extends RuntimeException

{

public UnreasonablenessException (String s)

{

super (s);

} // constructor with String parameter

} // class UnreasonablenessException

We can rewrite the smaller method to throw this exception:

public double smaller (double price1, double price2)

{

if (Math.abs (price1 - price2) > Math.min (price1, price2))

throw new UnreasonablenessException ("difference too large");

return Math.min (price1, price2);

} // method smaller

This creates a new instance of the class UnreasonablenessException. The above program would

terminate with the message:

UnreasonablenessException: difference too large

The UnreasonablenessException class is a subclass of RuntimeException. The Runtime

Exception class handles3 some of the low-level details of exception-handling, such as keeping track of

the method the exception occurred in, the method that called that method, and so on. Such a “call stack”

sequence can help a programmer to determine the root cause of an error.

An alternative to explicitly throwing an exception is to take a default action that overcomes the

mistake. For example, here is a version of the 2-parameter constructor in the FullTimeEmployee class

that replaces a negative value for gross pay with 0.00:

public FullTimeEmployee (String name, double grossPay)

{

this.name = name;

this.grossPay = Math.max (grossPay, 0.00);

} // 2-parameter constructor

3Actually, RuntimeException consists of several constructors, each of which merely invokes the corresponding constructor in Exception,

the superclass of RuntimeException. The Exception class passes the buck to its superclass, Throwable, where the low-level details are

dealt with.

2.4 File Output 81

2.3.4 The finally Block

Under normal circumstances, any code you place after the last catch block will be executed whether or not

any exceptions were thrown in the try block. So you can place clean-up code—such as closing files—after

the last catch block. There are two drawbacks to this approach. First, there may be an exception thrown

in the try block that is not caught in a catch block. Another danger is that one of the catch blocks may

itself throw an exception that is not caught. Then the clean-up code will not be executed. To avoid these

pitfalls, Java allows a finally block after the last catch block. We can write

try

{

... // code that may throw an exception

} // try

catch (NumberFormatException e)

{

... // code to handle NumberFormatException

} // catch NumberFormatException

catch (IOException e)

{

... // code to handle IOException

} // catch IOException

finally

{

... // clean-up code; will be executed even if there are uncaught

// exceptions thrown in the try block or catch blocks.

} // finally

If your try or catch blocks may throw uncaught exceptions, you should include a finally

block—otherwise, any code placed after the last catch block may not be executed. Finally, a finally

block is required by the Java language if you have a try block without a catch block.

Lab 2 provides the opportunity for you to practice exception-handling.

You are now prepared to do Lab 2: Exception Handling

The handling of input-output exceptions is one of the essential features of file processing, discussed in

Section 2.4.

2.4 File Output

File output is only slightly different from console output. We first associate a PrintWriter reference

with a file name. For example, to associate printWriter with "scores.out":

PrintWriter printWriter = new PrintWriter (new BufferedWriter

(new FileWriter ("scores.out")));

The PrintWriter object that is referenced by printWriter can now invoke the print and println

methods. For example,

printWriter.println (line);

82 CHAPTER 2 Additional Features of Programming and Java

The output is not immediately stored in the file "scores.out". Instead, the output is stored in a buffer :

a temporary storage area in memory. After all calls to print and println have been made by print

Writer’s object, that object’s close method must be called:

printWriter.close();

The close method flushes the buffer to the file "scores.out" and closes that file.

The file-processing program we will develop in this section is based on a program from Section 0.2.5

of Chapter 0. That program calculates the sum of scores read in from the keyboard. Here is a slightly

modified version of that program, with a separate method to scan in and add up the scores:

import java.util.*; // for the Scanner class

public class Scores1

{

public final int SENTINEL = -1;

public static void main (String[] args)

{

new Scores1().run();

} // method main

public void run()

{

final String INPUT_PROMPT = "\nOn each line, enter a test score (or " +

SENTINEL + " to quit): ";

final String RESULT = "\n\nThe sum of the scores is ";

Scanner sc = new Scanner (System.in);

System.out.print (INPUT_PROMPT);

int sum = addScores (sc);

System.out.println (RESULT + sum);

} // method run

/**

* Returns the sum of the scores scanned in.

*

* @param sc – a (non-null reference to a) Scanner object from

* which the scores are scanned in.

*

* @return the sum of the scores scanned in from sc.

*

* @throws InputMismatchException – if a value scanned in from sc is not an

* integer.

*

*/

public int addScores (Scanner sc)

{

2.4 File Output 83

int score,

sum = 0;

while (true)

{

score = sc.nextInt();

if (score == SENTINEL)

break;

sum += score;

} // while

return sum;

} // method addScores

} // class Scores1

In the next version, the output goes to a file. To enable someone reading that file to confirm that the

result is correct for the given input, each score is written to the output file. IOException is caught for

output-file creation. The corresponding try block encompasses the creation of the output file and the input

loop. For the sake of simplicity, there is no try block to catch input-mismatch exceptions (arising from

input values that are not integers).

import java.util.*;

import java.io.*;

public class Scores2

{

public final int SENTINEL = -1;

public static void main (String [] args)

{

new Scores2().run();

} // method main

public void run()

{

final String INPUT_PROMPT =

"\nOn each line, enter a test score (or " + SENTINEL + " to quit): ";

final String RESULT = "\n\nThe sum of the scores is ";

PrintWriter printWriter = null; // to ensure that printWriter is initialized

// before it is closed in the finally block

try

{

Scanner sc = new Scanner (System.in);

printWriter = new PrintWriter (new BufferedWriter

(new FileWriter ("scores.out")));

System.out.print (INPUT_PROMPT);

addScores (sc, printWriter);

} // try

84 CHAPTER 2 Additional Features of Programming and Java

catch (IOException e)

{

System.out.println (e);

} // catch IOException

finally

{

printWriter.println (RESULT + sum);

printWriter.close();

} // finally

} // method run

public int addScores (Scanner sc, PrintWriter printWriter)

{

int score,

sum = 0;

while (true)

{

score = sc.nextInt();

if (score == SENTINEL)

break;

printWriter.println (score);

sum += score;

} // while

return sum;

} // method addScores

} // class Scores2

The simplification of ignoring input-mismatch exceptions leads to an unfortunate consequence: If an input-

mismatch exception is thrown, the program will terminate without printing the final sum. The output file will

be closed before the final sum is printed, and the InputMismatchException message—signifying abnor-

mal termination—will be printed. We could add a catch block for InputMismatchException right after

(or right before) the catch block for IOException. This change would not be much of an improvement:

The program would still terminate without printing the final sum, but the termination would be normal.

To enable the program to continue after an input-mismatch exception, we create a new try block

and a corresponding catch block inside the while loop. If the input contains no legal scores, we throw

an exception related to that after the while loop. Here is the revised code:

boolean atLeastOneScore = false;

while (true)

{

try

{

score = sc.nextInt();

if (score == SENTINEL)

break;

printWriter.println (score);

sum += score;

atLeastOneScore = true;

} // try

2.4 File Output 85

catch (InputMismatchException e)

{

printWriter.println (e + " " + sc.nextLine());

} // catch InputMismatchException

} // while

if (!atLeastOneScore)

throw new RuntimeException ("The input contains no legal scores. ");

Here is a sample run of the resulting program, with input in boldface:

Please enter a test score, or -1 to quit: 50

Please enter a test score, or -1 to quit: x

Please enter a test score, or -1 to quit: 80

Please enter a test score, or -1 to quit: y

Please enter a test score, or -1 to quit: -1

The execution of this project has ended.

The file scores.out will now contain the following:

50

java.lang.InputMismatchException: x

80

java.lang.InputMismatchException: y

The sum of the scores is 130

The call to nextLine() in the catch block of the addScores method allows the offending input to be

printed to the output file, and also allows the scanner to skip over that line (otherwise, the input prompt

will be continuously repeated, and the output file will continuously get copies of the exception message.

The most important fact to remember about file output is that the file writer must be explicitly closed,

or else the file will be incomplete, and probably empty (depending on whether there was an intermediate

flushing of the buffer). As we will illustrate in the next class, Scores3, we can ensure that a file writer

is closed when (if) a program terminates by enveloping the construction of the file writer in a try block,

which is followed by a finally block that closes the file writer.

For this final version of the program, we scan from an input file (with one score per line) instead

of from the keyboard. As we saw in Section 0.2.5—file input is almost identical to console input. For

example, to read from the file "scores.in1", we start with

Scanner fileScanner = new Scanner (new File ("scores.in1"));

Warning: This assumes that the file scores.in1 is in the expected directory. For some Integrated

Development Environments, the input file is assumed to be in the directory that is one level up from the

source-file directory. Sometimes, you may need to specify a full path, such as

Scanner fileScanner = new Scanner (new File

("c:\\projects\\score_project\\scores.in1"));

Two back-slashes are required because a single back-slash would be interpreted as the escape character.

Input files seldom end with a sentinel because it is too easy to forget to add the sentinel at the end

of the file. Instead, scanning continues as long as the next() or nextLine() method returns true. So for

file input, we write

while (fileScanner.hasNext())

86 CHAPTER 2 Additional Features of Programming and Java

For the sake of simplicity, if there is only one input file, we will not worry about closing that file at the

end of the program: it will automatically be closed. And when it is re-opened in a subsequent program, its

contents will be unchanged. A program that leaves many input files unclosed can run out of file descriptors,

and an IOException will be thrown.

As noted earlier in this section, closing an output file entails copying the final contents of the file

buffer to the file, so we should explicitly close each output file before the end of a program. Of course, if

the program does not terminate—due to an infinite loop, for example—the file buffer will not be copied

(unless the file was closed before the infinite loop).

The following program combines file input and file output. For the sake of generality, the program

does not “hardwire” the file names (for example, "scores.in" and "scores.out"). In response to

prompts, the end-user enters, from the keyboard, the names of the input and output files. If there is no

input file with the given name, FileNotFoundException is caught, an error message is printed, and the

end-user is re-prompted to enter the name of the input file. To allow this iteration, the try and catch

blocks that involve throwing and handling IOException are placed in an outer while loop.

What if there is no file corresponding to the output file name? Normally, this is not a problem: an

empty output file with that name will be created. But if file name is too bizarre for your system, such as

!@#$%^&*()

an IOException object (specifically, a FileNotFoundException object) will be thrown.

The following program has three try blocks:

1. an outermost try block to set up the files and process them, a catch block to handle a Number

FormatException if the input contains no legal scores, followed by a finally block to close the

file writer;

2. a try block/catch block sequence in an outer while loop to create the file scanner and file writer

from file names scanned in from the keyboard;

3. a try block/catch sequence block in an inner while loop to scan each line from the input file

and process that line, with output going to the file writer. If the input contains no legal scores, a

NumberFormatException is thrown after this loop.

Here is the program, whose general structure is the same for all file-processing programs:

import java.util.*;

import java.io.*;

public class Scores3

{

public static void main (String [] args)

{

new Scores3().run();

} // method main

public void run()

{

final String IN_FILE_PROMPT =

"\nPlease enter the name of the input file: ";

2.4 File Output 87

final String OUT_FILE_PROMPT =

"\nPlease enter the name of the output file: ";

final String RESULT = "\n\nThe sum of the scores is ";

Scanner keyboardScanner = new Scanner (System.in),

fileScanner;

PrintWriter printWriter=null; // to ensure that printWriter has been initialized

// before it is closed in the finally block

int sum = 0;

try

{

while (true)

{

try

{

System.out.print (IN_FILE_PROMPT);

fileScanner=new Scanner (new File (keyboardScanner.nextLine()));

System.out.print (OUT_FILE_PROMPT);

printWriter=new PrintWriter (new BufferedWriter

(new FileWriter (keyboardScanner.nextLine())));

sum = addScores (fileScanner, printWriter);

break;

} // try

catch (IOException e)

{

System.out.println (e);

} // catch

} // while files not OK

} // try

catch (NumberFormatException e)

{

System.out.println (e);

} // catch NumberFormatException

finally

{

printWriter.println (RESULT + sum);

printWriter.close();

} // finally

} // method run

/**

* Returns the sum of the scores scanned in.

*

* @param fileScanner – the Scanner object from which the scores are scanned

*

* @param printWriter – the PrintWriter object to which the scores are written.

* If a score generates InputMismatchException, the message

88 CHAPTER 2 Additional Features of Programming and Java

* "java.util.InputMismatchException: " precedes the score.

*

* @return the sum of the scores scanned in from fileScanner.

*

* @throws NumberFormatException – if the values scanned in do not include

* an integer.

*

*/

public int addScores (Scanner fileScanner, PrintWriter printWriter)

{

final String NO_LEGAL_SCORES_MESSAGE=

"The input contains no legal scores.";

int score,

sum=0;

boolean atLeastOneScore=false;

while (fileScanner.hasNext())

{

try

{

score=fileScanner.nextInt();

printWriter.println (score);

sum+=score;

atLeastOneScore=true;

} // try

catch (InputMismatchException e)

{

printWriter.println (e+": "+fileScanner.nextLine());

} // catch InputMismatchException

} // while more scores in input file

if (!atLeastOneScore)

throw new NumberFormatException (NO_LEGAL_SCORES_MESSAGE);

return sum;

} // method addScores

} // class Scores3

Note that the message printWriter.close() is not in a catch block because the printWriter should

be closed whether or not any exceptions are thrown.

Assume that the file "scores.in1" consists of the following four lines:

82

8z

77

99

Also, assume that there is no file named "scores.in0" or "scores3.in" in the working directory.

Whether there is already a file named "scores.out1" or not is irrelevant. Here is a sample keyboard

session, with input in boldface:

Please enter the name of the input file: scores.in0

java.io.FileNotFoundException: scores.in0 (The system cannot find the file specified)

Please enter the name of the input file: scores3.in

2.4 File Output 89

java.io.FileNotFoundException: scores3.in (The system cannot find the file specified)

Please enter the name of the input file: scores.in1

Please enter the name of the output file: scores.out1

The final contents of the file "scores.out1" will be

82

java.util.InputMismatchException: 8z

77

99

The sum of the scores is 258

With file input, it is not sufficient that the file exist in order to associate a file scanner with that file. Your

code must also account for the possibility that the file does not exist. The easy way to accomplish this is

to include a throws FileNotFoundException clause immediately after the heading of the method that

associates a file scanner with the file. The drawback to this approach is that if the file name is incorrect—if

either the file does not exist or the file name is misspelled—then the end-user will not have the opportunity

to correct the mistake.

A better alternative, as we did in the run() method of the class Scores3, is to include a try block

and catch block for FileNotFoundException. To enable end-users to recover from incorrect file names,

those blocks should be within a loop that continues until a correct file name has been entered.Similarly,

to construct a file writer, IOException must be caught or declared in a throws clause. That is why, in

the above program, the type of the relevant catch-block parameter is IOException instead of FileNot

FoundException.

There is a common thread in the above examples. The run() method handles the aspects of the

program that require the end user’s intervention, such as input from the keyboard or from a GUI window,

or interpretation, such as output to the console window or to a GUI window. Accordingly, the method

called by the run() method should be testable in JUnit.

The major problem in testing the addScores method above is that the method outputs information

to a file. So we will create an expected output file from a given input file, and check to make sure the

expected output file matches the actual file generated by the addScores method. The expected file will

have one line for each line in the input file, and will not include the final sum – because that value is not

printed in the addScores method. We will also need an exception test for an input file with no legitimate

scores, and exception tests if either the fileScanner or printWriter argument is null. Here is part

of the Scores3Test.java file:

import org.junit.*;

import static org.junit.Assert.*;

import org.junit.runner.Result;

import static org.junit.runner.JUnitCore.runClasses;

import java.util.*;

import java.io.*;

public class Scores3Test

{

public static void main(String[] args)

{

Result result = runClasses (Scores3Test.class);

90 CHAPTER 2 Additional Features of Programming and Java

System.out.println ("Tests run = " + result.getRunCount() +

"\nTests failed = " + result.getFailures());

} // method main

protected Scores3 scores;

@Before

public void runBeforeEveryTest()

{

scores = new Scores3();

} // method runBeforeEveryTest

@Test

public void scores3Test1() throws IOException

{

Scanner fileScanner = new Scanner (new File ("scores3.in1"));

PrintWriter printWriter = new PrintWriter (new BufferedWriter

(new FileWriter ("scores3.out1")));

int actualSum = scores.addScores (fileScanner, printWriter);

printWriter.close();

Scanner scActual = new Scanner (new File ("scores3.out1")),

scExpected = new Scanner (new File ("scores3.exp"));

final int INPUT_LINES = 4;

for (int i = 0; i < INPUT_LINES; i++)

assertEquals (scExpected.nextLine(), scActual.nextLine());

if (scExpected.hasNext())

fail();

} // method scores3Test1

@Test (expected = NumberFormatException.class)

public void scores3Test2() throws IOException

{

Scanner fileScanner = new Scanner (new File ("scores3.in2"));

PrintWriter printWriter = new PrintWriter (new BufferedWriter

(new FileWriter ("scores3.out2")));

int actualSum = scores.addScores (fileScanner, printWriter);

} // method scores3Test2

@Test (expected = NullPointerException.class)

public void scores3Test3() throws IOException

{

int actualSum = scores.addScores (null,

new PrintWriter (new FileWriter("scores3.out3")));

} // method scores3Test3

@Test (expected = NullPointerException.class)

2.5 System Testing 91

public void scores3Test4() throws IOException

{

int actualSum = scores.addScores (new Scanner (new File("scores3.in1")), null);

} // method scores3Test4

} // class Scores3Test

The relevant files are as follows:

scores3.in1

80

x

50

y

scores3.in2

x

y

scores3.exp

80

java.util.InputMismatchException: x

50

java.uti.InputMismatchException: y

All tests were passed.

You are now prepared to do Lab 3:

More Practice on Unit Testing

2.5 System Testing

Just as it is unusual for a class to have a single method, it is unlikely that a project will have a single class.

For a multi-class project, which class should be tested first? In an object-oriented environment, bottom-up

testing is the norm. With bottom-up testing , a project’s low-level classes—those that are used by but do

not use other classes—are tested and then integrated with higher-level classes and so on. After each of

the component classes has satisfied its tests, we can perform system testing , that is testing the project

as a whole. Inputs for the system tests are created as soon as the project specifications are created. Note

that system tests are not necessarily unit tests because system tests may entail human intervention—for

example, to enter file path from the keyboard.

The purpose of testing is to detect errors in a program (or to increase confidence that no errors exist

in the program). When testing reveals that there is an error in your program, you must then determine

what brought about the error. This may entail some serious detective work. And the purpose of detection

is correction. The entire process—testing, detection and correction—is iterative. Once an error has been

corrected, the testing should start over, because the “correction” may have created new errors.

92 CHAPTER 2 Additional Features of Programming and Java

2.6 The Java Virtual Machine

Your Java classes are compiled into a low-level but machine-independent language called Java bytecode.

For example, the bytecode version of the file HourlyEmployee.java is stored in the file Hourly

Employee.class. The bytecode files are then interpreted and executed on your computer. The program

that interprets and executes bytecode is the Java Virtual Machine. It is called a virtual machine because

it executes what is almost machine-level code. There are several advantages to this arrangement

source code −−−−−−−→ bytecode −−−−−−−→ Java Virtual Machine

instead of

source code −−−−−−−→ machine code

The main advantage is platform independence. It doesn’t matter whether your computer’s operating

system is Windows, Linux, or something else, the results of running your Java program will be exactly

(well, almost exactly) the same on all platforms. A second benefit is customized security. For example, if

the bytecode file is coming from the web, the virtual machine will not allow the application to read from

or write to the local disk. But such activities would be allowed for a local application.

The Java Virtual Machine oversees all aspects of your program’s run-time environment. In

Sections 2.6.1 and 2.6.2, we investigate two tasks of the Java Virtual Machine.

2.6.1 Pre-Initialization of Fields

One of the Java Virtual Machine’s duties is the initialization of fields just prior to the invocation of a

constructor. For example, we might have the following:

new FullTimeEmployee ("Dilbert", 345.00)

First, the new operator allocates space for a FullTimeEmployee object. Then, to ensure that each

field has at least a minimal level of initialization, the Java Virtual Machine initializes all of the class’s

fields according to their types. Reference fields are initialized to null, integer fields to 0, floating-point

fields to 0.0, char fields to the character at position 0 in the Unicode collating sequence, and boolean fields

to false. Then the specified constructor is called. Finally, the starting address of the newly constructed

FullTimeEmployee object is returned.

There is an important consequence of this pre-initialization by the Java Virtual Machine. Even if a

default constructor has an empty body—such as the one supplied by the Java compiler if your class does

not declare any constructors—all fields in the class will still get initialized.

Unlike fields, local variables are not automatically initialized. Section 0.2.4 has the details.

2.6.2 Garbage Collection

The memory for objects is allocated when the new operator is invoked, but what about de-allocation?

Specifically, what happens to the space allocated for an object that is no longer accessible? For example,

suppose an object is constructed in a method, and at the end of the execution of that method, there

are no references pointing to the object. The object is then inaccessible: garbage, so to speak. If your

program generates too much garbage, it will run out of memory, which is an error condition. Errors, unlike

exceptions, should not be caught, so an error will force the abnormal termination of your program. Are

you responsible for garbage collection, that is, for de-allocating inaccessible objects?

2.7 Packages 93

Fortunately, you need not worry about garbage collection. The Java run-time system includes a

method that performs automatic garbage collection . This method will be invoked if the new operator is

invoked but there is not enough memory available for the object specified. With the supersizing of memory

in recent years, this is an increasingly rare occurrence. To free up unused memory, the space for any object

to which there are no references can be de-allocated. The garbage collector will seek out big chunks of

garbage first, such as an array. In any event, this is all taken care of behind the scenes, so your overall

approach to the topic of garbage collection should be “Don’t worry. Be happy.”

Section 2.6 investigates the relationship between packages and visibility modifiers.

2.7 Packages

A package is a collection of related classes. For each such class, the file in which the class is declared

starts with the package declaration. For example, a file in a package of classes related to neural networks

might start with

package neuralNetwork;

For another example, the Scanner class, part of the package java.util, is in the file Scanner.java,

which starts with

package java.util;

If a file includes an instance of the Scanner class, that class can be “imported” into the file. This is done

with an import directive, starting with the reserved word import:

import java.util.Scanner;

The advantage of importing is convenience: A declaration such as

Scanner sc;

can be used instead of the fully qualified name:

java.util.Scanner sc;

Many of the classes you create will utilize at least one class from the package java.util, so you can simply

import the whole package:

importjava.util.*;//the asterisk indicates that all files from java.util will be available

Occasionally, you may prefer to use the fully qualified name. For example, suppose your project uses two

classes named Widget: one in the package com.acme and one in the package com.doodads. To declare

(a reference to) an instance of the latter, you could write

com.doodads.Widget myWidget;

Every Java file must have a class with the visibility modifier public. Also, the name of that public class

must be the same as the name of the file—without the .java extension. At the beginning of the file,

there must be import directives for any package (or file) needed by the file but not part of the file. An

exception is made for the package java.lang, which is automatically imported for any file.

A class member with no visibility modifier is said to have default visibility . A member with default

visibility can be accessed by any object (or class, in the case of a static member) in the same package

as the class in which the member is declared. That is why default visibility is sometimes referred to as

94 CHAPTER 2 Additional Features of Programming and Java

“package-friendly visibility.” All classes without a package declaration are part of an unnamed package.

But there may be more than one unnamed package so, as a general rule, if your project contains more

than one class file, each file should include a package declaration.

Technically, it is possible for a Java file to have more than one class with public visibility; all but one

of those classes must be nested , that is, declared within another class. The Java Collections Framework,

part of the package java.util, has many nested classes. Except for nested classes, a Java file is allowed to

have only one class with public visibility. Every other non-nested class must have default visibility.

Because of the way the Java language was developed, protected visibility is not restricted to

subclasses. In general, if an identifier in a class has protected visibility, that identifier can also be accessed

in any class that is in the same package as the given class. For example, any class—whether or not a

subclass—that is in the same package as FullTimeEmployee can access the name and grossPay fields

of a FullTimeEmployee object.

In the Java Collections Framework, most of the fields have default visibility or private visibility.

Almost no fields have protected visibility: Subclassing across package boundaries is discouraged in

the Java Collections Framework. Why? The main reason is philosophical: a belief that the efficiency to

users of the subclass is not worth the risk to the integrity of the subclass if the superclass is subsequently

modified. This danger is not merely hypothetical. In Java 1.1, a class in java.security was a subclass of

the Hashtable class. In Java 2, the Hashtable class was modified, and this opened a security hole in

the subclass. Subclassing represents more of a commitment than mere use. So even if a class permits

subclassing, it is not necessarily the wisest choice.

The bottom line is that protected visibility is even less restrictive than default visibility. This

corruption of the meaning of protected visibility may make you reluctant to designate your fields as

protected. An alternative is to designate the fields as private, but to create public methods to get

and set the values of those private fields. As described in Programming Exercise 1.3, an accessor method

returns a copy of a field (or a copy of the object referenced, if the field is a reference), and a mutator

method alters a field (or the object referenced by the field). The usefulness of this approach diminishes as

the number of fields increases.

The final topic in this chapter looks at the importance of overriding the Object class’s equals

method, the barriers to overriding that method, and how those barriers are overcome.

2.8 Overriding the Object Class’s equals Method

In Section 1.3.3, we saw the method specification for the equals method in the Object class, the

superclass of all classes. Here is that specification:

/**

* Determines if this Object object is the same as a specified Object

* object.

*

* @param obj – the Object object to be compared to the calling Object object.

*

* @return true – if the two objects are the same.

*

*/

public boolean equals (Object obj)

This method, as with the other methods in the Object class, is intended to be overridden by subclasses,

which can compare field values, for example. The object class has no fields, so what does it compare?

2.8 Overriding the Object Class’s equals Method 95

It compares references, specifically, the calling object reference with the argument reference. Here is the

definition:

public boolean equals (Object obj)

{

return this == obj;

} // method equals

As we saw in Section 1.3.2, in any class, the reserved word this is a reference to the calling object. For

example, suppose the call is

obj1.equals (obj2)

Then in the definition of the equals method, this is a reference to the object that is also referenced by

obj1, and obj is a reference to the object that is also referenced by obj2.

Because the Object class’s equals method compares references, any class with an equals method

should define its own version of that method. For example, suppose we decide to add an equals method

to the FullTimeEmployee class. The first question is: Should we overload, that is,

public boolean equals (FullTimeEmployee full)

or override, that is,

public boolean equals (Object obj)

?

Overloading equals—that is, having a different parameter list than the version inherited from the Object

class—can be done fairly simply. The only obstacle is that double values should not be directly tested

for equality; note, for example, that System.out.println (.4==10.0 - 9.6) outputs “false”, (but

System.output.println (.4==1.0 - .6) outputs “true”). Here is the definition:

public boolean equals (FullTimeEmployee full)

{

return name.equals (full.name) ""

MONEY.format (grossPay).equals (MONEY.format (full.grossPay));

} // overloading method equals

Recall that the format method rounds off the value in the grossPay field, so we need not compare

grossPay and full.grossPay for equality. This version compares objects, not references, and so the

value true would be printed by each of the following:

System.out.println (new FullTimeEmployee ("a", 100.00).equals

(new FullTimeEmployee ("a", 100.00)));

System.out.println (new HourlyEmployee ("a", 10, 10.00).equals

(new FullTimeEmployee ("a", 100.00)));

The overloaded version works well as long as the type of the calling object is known, at compile-time,

to be FullTimeEmployee (or subclass of FullTimeEmployee). Sadly, that is not always the case. For

example, many of the classes in the Java Collections Framework store a collection of objects. Those classes

96 CHAPTER 2 Additional Features of Programming and Java

have a contains method to determine if a given object occurs in the collection. The contains method’s

heading is

public boolean contains (Object obj)

Typically, in testing for containment, the equals method is invoked, with obj as the calling object. For

a given application, the collection may consist of FullTimeEmployee objects. But when the equals

method—called by contains—is compiled, the only information available about the calling object is its

declared type: Object. Therefore, the compiler generates bytecode for a call to the equals method in the

Object class, which takes an Object parameter. At run time, when the class of the object (referenced

by) obj is available, the version of the Object-parameter equals method executed will be the one in

the Object class unless that method has been overridden. Whether the equals method has been overloaded

is irrelevant!

Now that we have established the significance of overriding the Object class’s equals method,

let’s see how to do it. We will take the FullTimeEmployee class as an example. The basic idea is simple:

if the type of the argument object is not FullTimeEmployee, return false. Otherwise, as we did earlier

in this section, compare the values returned by the toString() method of the calling object and the

argument object. Here are some sample results:

System.out.println (new FullTimeEmployee ("a", 100.00).equals

("yes")); // false

System.out.println (new FullTimeEmployee ("a", 100.00).equals

(new FullTimeEmployee ("a", 100.00))); // true

System.out.println (new FullTimeEmployee ("a", 100.00).equals

(new FullTimeEmployee ("b", 100.00))); // false

System.out.println (new FullTimeEmployee ("a", 100.00).equals

(new FullTimeEmployee ("a", 200.00))); // false

Here is the full definition:

public boolean equals (Object obj)

{

if (!(obj instanceof FullTimeEmployee))

return false;

FullTimeEmployee full = (FullTimeEmployee)obj;

return name.equals (full.name) &&

MONEY.format (grossPay).equals (MONEY.format (full.grossPay));

} // method equals

To summarize this section:

1. Every class whose instances might be elements of a collection should have an equals method that

overrides the Object class’s equals method.

2. The instanceof operator returns true if and only if, at run-time, the object referenced by the left

operand is an instance of the class that is the right operand.

3. Before comparing the calling object with the argument object, cast the parameter type, Object, to

the class in which equals is being defined.

Programming Exercise 2.11 has even more information about the equals method.

Summary 97

S U M M A R Y

The static modifier is used for identifiers that apply to

a class as a whole, rather than to a particular instance of

a class. Constants should be declared to be static, because

then there will be only one copy of the constant, instead of

one copy for each instance of the class. To access a static

identifier outside of its class, the class identifier—rather

than an object—is the qualifier.

JUnit is an Open Source software product that

allows the methods in a class to be tested without human

intervention. The tests are developed as soon as the

method specifications are created. In general, methods

should be designed to facilitate testing without human

intervention, so input from System.in and output to

System.out should be avoided in methods to be tested.

An exception is an object that signals a special

situation, usually that an error has occurred. An exception

can be handled with try/catch blocks. The sequence of

statements in the try block is executed. If, during exe-

cution, an exception is thrown (indicating that an error

has occurred), the appropriate catch block is executed

to specify what, if anything, is to be done.

File output is similar to console-oriented output,

except that a PrintWriter object is explicitly created

to write to the specified output file. The output is not

immediately sent to the output file, but rather to a buffer.

At the conclusion of file processing, the buffer is flushed

to the output file by a call to the close method.

The Java run-time, also known as the Java Vir-

tual Machine, is a program that interprets and exe-

cutes the bytecode output from a Java compiler. Among

other tasks, the Java Virtual Machine is responsible for

pre-initialization of fields, de-allocation of inaccessible

objects, and managing threads.

A package is a collection of related classes. An

identifier with no visibility modifier is said to have default

visibility . Java is “package friendly.” That is, an identifier

with default visibility can be accessed by any object (or

class, in the case of a static member) in the same package

as the class in which the identifier is declared. If a given

class’s identifier has protected visibility, that identifier

can be accessed in any subclass of the given class, even in

a different package. Unfortunately, that identifier may also

be accessed in any class—even if not a subclass—within

the given package’s class.

The equals method in the Object class should

be overridden for any class C whose instances might

become elements of a collection. The overriding method

invokes the instanceof method to return false for

any argument object that is not an instance of class C, and

then casts the Object class to class C in order to make

the appropriate comparison(s).

98 CHAPTER 2 Additional Features of Programming and Java

CROSSWORD PUZZLE

ACROSS DOWN

6. An object created by an unusual condition, typically, an
 attempt at invalid processing.

8. An identifier associated with a class itself rather than with
 an instance of the class is called a _______ identifier.

9. A reserved-word modifier associated with a location that
 can be assigned to only once.

10. A method in the PrintWriter class that ensures a file
 is complete by flushing the output buffer.

1. The kind of exception for which the compiler
 confirms that the exception is caught within
 the method or that a throws clause is appended
 to the method’s heading.

2. When an exception is thrown in a method that
 does not catch the exception, the transferring of
 control back to the calling method is referred to
 as ___________ the exception.

3. A class member that can be accessed in any
 class within the same package as the given class
 or in any subclass of the given class is said to
 have ________ visibility.

4. A class member that can be accessed in any
 class within the same package as the given class,
 but not elsewhere, is said to have _________
 visibility.

5. A program that does not terminate unexpectedly
 from invalid user-input is called a _________
 program.

7. A collection of related classes.

1 2 3

4 5

6

7

8

9

10

www.CrosswordWeaver.com

www.CrosswordWeaver.com

Concept Exercises 99

CONCEPT EXERCISES

2.1 The System class in java.lang has a class constant identifier that has been extensively used in Chapters

0, 1 and 2. What is that constant identifier? Why should a class’s constant identifiers be static ? Should a

method’s constant identifiers be static ? Explain.

2.2 Create a catch block that will handle any exception. Create a catch block that will handle any input/output

exception. Create a catch block that will handle any run-time exception.

2.3 What is wrong with the following skeleton?

try

{

...

} // try

catch (IOException e)

{

...

} // catch IOException

catch (FileNotFoundException e)

{

...

} // catch FileNotFoundException

2.4 Suppose fileScanner is a Scanner object for reading from an input file, and printWriter is a Print

Writer object for writing to an output file. What will happen if, at the end of a program, you forget to close

fileScanner ? What will happen if, at the end of a program, you do not close printWriter ?

2.5 What does “bottom-up” testing mean with respect to the classes in a project?

2.6 Suppose we create a two-dimensional array (literally, an array in which each element is an array). The following

creates an int array with 50000 rows and 100000 columns:

int [][] a = new int [50000][100000];

If this code is executed, the program terminates abnormally, and the message is

java.lang.OutOfMemoryError

Exception in thread "main"

Why wasn’t memory re-allocated by the garbage collector? Hypothesize whether this abnormal termination be

handled with a try-block and catch-block. Test your hypothesis and explain.

2.7 Can a protected field be accessed outside of the class in which it is declared and subclasses of that class?

What does the following statement mean? “Subclassing represents more of a commitment than mere use.”

2.8 Arrays are strange objects because there is no array class. But an array object can call methods from the

Object class. Determine and explain the output from the following code:

int [] a = new int [10];

int [] b = new int [10];

a [3] = 7;

b [3] = 7;

System.out.println (a.equals(b));

100 CHAPTER 2 Additional Features of Programming and Java

PROGRAMMING EXERCISES

2.1 Develop the specification for a method that scans one line that is supposed to contain three double values

and returns the largest. Throw all possible exceptions. Start with a stub for your method and create a test class

to test your method. Re-test your method as you define it. Finally, include a main method and a run()

method that calls the method you developed.

2.2 Develop the specification for a method that scans (what are supposed to be) double values from a file and

returns the largest. Throw all possible exceptions. Start with a stub for your method and create a test class

to test your method. Re-test your method as you define it. Finally, include a main method and a run()

method that calls the method you developed.

2.3 Modify the run method for the Company class to scan from an input file and write to an output file. Include

a re-prompt if either the input or output path is incorrect.

2.4 Hypothesize what is wrong with the following method:

public static boolean isEven (int i)

{

if (i % 2 == 0)

return true;

if (i % 2 != 0)

return false;

} // method isEven

Test your hypothesis by calling this method from a run() method. Can a try-block and catch-block

handle the problem? Explain.

2.5 Hypothesize the output from the following:

System.out.println (null + "null");

Test your hypothesis. Provide the code in the String class that explains why the output is what it is.

2.6 Give an example to show that private visibility is more restrictive than default visibility. Give an example

to show that default visibility is more restrictive than protected visibility. Give an example to show that

protected visibility is more restrictive than public visibility. In each case, test your code to make sure

that the more restrictive choice generates a compile-time error message. No error message should be generated

for the less restrictive choice.

2.7 Protectedness transfers across packages, but only within a subclass, and only for objects whose type is that

subclass. For a bare-bones illustration, suppose we have class A declared in package APackage:

package APackage;

public class A

{

protected int t;

} // class A

Also, suppose that classes C and D are subclasses of A and that C and D are in a different package from

A. Then within class D, the t field is treated as if it were declared in D instead of in A. Here are possible

declarations for classes C and D:

import APackage.*;

public class C extends A { }

Programming Exercises 101

Class D is declared in another file. For each of the four accesses of t in the following declaration of class D,

hypothesize whether the access is legal or illegal:

import APackage.*;

public class D extends A

{

public void meth()

{

D d = new D();

d.t = 1; // access 1

t = 2; // access 2

A a = new A();

a.t = 3; // access 3

C c = new C();

c.t = 4; // access 4

} method meth

} // class D

Test your hypotheses by creating and running a project that includes the above files.

2.8 Re-do Programming Exercise 1.2 to print out the number of above-average salaries. Use an array field to hold

the salaries, and assume there will be at most 10 salaries in the input.

2.9 Study the specification of the arraycopy method in the System class, and then write a short program that

uses the arraycopy method to copy all the elements of an array to another array. Output the elements in

the destination array to make sure the copying actually occurred.

2.10 Re-do Programming Exercise 2.8 if the input can contain an arbitrary number of salaries.

Hint: Start with an array of length 10. Whenever the number of salaries in the input exceeds the current

length of the array field, create a new array of twice that length, copy the old array to the new array—see

Programming Exercise 2.9—and then assign the new array (reference) to the old array (reference).

2.11 According to the full method specification in the Object class, any override of the Object class’s equals

method should satisfy the following five properties:

1. reflexivity , that is, for any non-null reference x,

x.equals (x)

should return true.

2. symmetry , that is, for any non-null references x and y,

x.equals (y)

should return the same result as

y.equals (x)

3. transitivity , that is, for any references x, y and z if

x.equals (y)

returns true, and

y.equals (z)

102 CHAPTER 2 Additional Features of Programming and Java

returns true, then

x.equals (z)

should return true.

4. consistency , that is, for any non-null references x and y, multiple invocations of

x.equals (y)

should consistently return true or consistently return false, provided no information used in equals

comparisons on the objects is modified.

5. actuality , that is, for any non-null reference x,

x.equals (null)

should return false.

For the FullTimeEmployee class’s equals method (see Section 2.7), provide examples to support the

claim that the equals method satisfies those five properties. You are not being asked to prove that the

FullTimeEmployee class’s equals method satisfies those properties.

2.12 Create and run a test class for the equals method defined in Section 2.7 for the FullTimeEmployee

class.

Programming Project 2.1

An Integrated Web Browser and Search Engine, Part 1

Note: This project assumes familiarity with developing graphical user interfaces.

This is the first part of a seven-part project to create an integrated web browser and search engine. The

remaining parts are in Chapters 6, 7, 12, 13, 14 and 15. The project is based on a paper by Newhall and Meeden

[2002].

Basically, all the project does at this stage is to display web pages. Initially the output area of the Graphical

User Interface (GUI) window displays the home page. That page has a link to another page, and if the end user

clicks on the link, that page will be displayed in the output area. In addition to the output area, the GUI window

will also have four buttons: one to go forward (currently disabled), one to go backward (currently disabled), one

to display the home page (enabled), and one to conduct a search (currently disabled). Finally, the GUI window

will have an input line that allows an end user to enter a file path; when the Enter key is pressed, that file (that

is, that page) will be displayed.

Analysis The following specifications apply to the GUI:

1. The size of the window will be 700 pixels wide and 500 pixels high.

2. The upper-left-hand corner of the window will have x-coordinate 150 and y-coordinate 250.

3. Each of the four buttons on the top of the window will be 80 pixels wide and 30 pixels high. The

foreground color of the Home button will be green, and the foreground color of the other three buttons will

be red.

4. The input line will be 50 pixels wide.

5. The output area will be scrollable in both directions.

Programming Exercises 103

Here is a diagram of the GUI:

<== >== Home Search

(the input line)

(the output area)

6. The only tags allowed in a page are link tags, for example,

< a href = browser.in4 > browser4 < /a >

In this example, the only part that will appear in the output area is browser4.

7. For simplicity, all links (such as browser.in4 above) will come from the same directory, and all

link ‘‘nicknames’’ (such as browser4 above) will consist of a single word.

8. In the output area, the foreground color of each link’s nickname should be blue.

9. A line in a page may have several link tags, but no tag will be split between two lines.

10. If a page clicked on or typed in does not exist, the following error message should appear in the output

area:

Web page not found: HTTP 404

At that point, the end user can click on the Home button, can enter a new file path in the input line, or

can close the application.

Hints:

1. Use the layout manager FlowLayout.

2. Use a JTextField for the input line and a JTextPane (made scrollable as a JScrollPane) for

the output area. A JTextPane component supports embedded links (as JButton objects).

3. Use a separate listener class so that there can be a listener object for each link that is clicked on.

Here is a sample home page:

In Xanadu did Kubla Khan

A stately pleasure-dome decree:

(continued on next page)

104 CHAPTER 2 Additional Features of Programming and Java

(continued from previous page)

Where Alph, the sacred river, ran

Through caverns browser2 measureless to man

Down to a sunless sea.

When that page is displayed in the output area, it will appear as

In Xanadu did Kubla Khan

A stately pleasure-dome decree:

Where Alph, the sacred river, ran

Through caverns browser2 measureless to man

Down to a sunless sea.

If the end user now clicks on browser2, the contents of browser.in2 will be displayed. Here are the contents

of browser.in1, browser.in2, browser.in4, and browser.in5 (browser.in3 does not exist):

browser.in1:

In Xanadu did Kubla Khan

A stately pleasure-dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down browser2 to a sun-

less browser4 sea.

browser.in2:

In Xanadu did Kubla Khan

A stately browser3 pleasure-dome decree:

Where Alph, the sacred river, the browser4 ran

Through caverns measureless to man

Down to a browser5 sunless sea.

browser.in4

In Xanadu did browser1 Kubla Khan

A stately pleasure-dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

browser.in5:

In Xanadu did browser2 Kubla Khan

A stately pleasure-dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

Analysis of Algorithms CHAPTER 3

As noted in Section 2.2, a correct method is one that satisfies its specification. In defining a method, the

first goal is to make sure the method is correct, and unit testing allows us to increase our confidence

in a method’s correctness. But if the method’s execution time or memory requirements are excessive,

the method may be of little value to the application. This chapter introduces two tools for measuring a

method’s efficiency. The first tool provides an estimate, based on studying the method, of the number of

statements executed and number of variables allocated in a trace of the method. The second tool entails

a run-time analysis of the method. Both tools are useful for comparing the efficiency of methods, and

the tools can complement each other.

CHAPTER OBJECTIVES

1. Be able to use Big-O (and Big-Theta) notation to estimate the time and space requirements of

methods.

2. Be able to conduct run-time analyses of methods.

3.1 Estimating the Efficiency of Methods

The correctness of a method depends only on whether the method does what it is supposed to do. But

the efficiency of a method depends to a great extent on how that method is defined. How can efficiency

be measured? We could test the method repeatedly, with different arguments. But then the analysis would

depend on the thoroughness of the testing regimen, and also on the compiler, operating system and computer

used. As we will see in Section 3.2, run-time analysis can have blaring weaknesses, mainly due to the

“noise” of other processes that are executing at the same time as the method being tested.

At this stage, we prefer a more abstract analysis that can be performed by directly investigating the

method’s definition. We will ignore all memory restrictions, and so, for example, we will allow an int

variable to take on any integer value and an array to be arbitrarily large. Because we will study the method

without regard to a specific computer environment, we can refer to the method as an algorithm , that is, a

finite sequence of explicit instructions to solve a problem in a finite amount of time.

The question then is, how can we estimate the execution-time requirements of a method from the

method’s definition? We take the number of statements executed in a trace of a method as a measure of

the execution-time requirements of that method. This measure will be represented as a function of the

“size” of the problem. Given a method for a problem of size n , let worstTime(n) be the maximum—over

all possible parameter/input values—number of statements executed in a trace of the method.

For example, let’s determine worstTime(n) for the following method, which returns the number of

elements greater than the mean of an array of non-negative double values. Here n refers to the length of

the array.

105

106 CHAPTER 3 Analysis of Algorithms

/**

* Returns the number of elements in a non-empty array that are greater than

* the mean of that array.

*

* @param a – an array of double values

* @param mean – the sum of the elements in a, divided by a.length.

*

* @return the number of elements in a that are greater than mean

*

*/

public static int aboveMeanCount (double[] a, double mean)

{

int n = a.length,

count = 0;

for (int i = 0; i < n; i++)

if (a [i] > mean)

count++;

return count;

} // method aboveMeanCount

There are six statements that will be executed only once: the assignment of the arguments to the parameters

a and mean; the initialization of n, count and i; and the return of count. Within the for statement,

i will be compared to n a total of n + 1 times, i will be incremented n times and the comparison of

a [i] to mean will be made n times. If n − 1 elements have the value 1.0 and the other element has the

value 0.0, then a [i] will be greater than mean a total of n − 1 times, so count will be incremented

n − 1 times. The total number of statements executed in the worst case, that is, worstTime(n), is

6 + (n + 1) + n + n + (n − 1) = 4n + 6

Sometimes we will also be interested in the average-case performance of a method. We define average-

Time(n) to be the average number of statements executed in a trace of the method. This average is taken

over all invocations of the method, and we assume that each set of n parameter/input values for a call

is equally likely. For some applications, that assumption is unrealistic, so averageTime(n) may not be

relevant.

In the for loop of the just completed example, a [i] will be greater than mean, on average, half

of the time, so count will be incremented only n/2 times. Then averageTime(n) is 3.5n + 7.

Occasionally, especially in Chapters 5 and 11, we will also be interested in estimating the space

requirements of a method. To that end, we define worstSpace(n) to be the maximum number of variables

allocated in a trace of the method, and averageSpace(n) to be the average number of variables allocated

in a trace of the method. For an array, we treat each element—that is, indexed variable—to be a separate

variable. So an array of length n would contribute n variables. The aboveMeanCount method does not

create an array; worstSpace(n) = averageSpace(n) = 5.

3.1.1 Big-O Notation

We need not calculate worstTime(n) and averageTime(n)—or worstSpace(n) and averageSpace(n)—

exactly since they are only crude approximations of the time requirements of the corresponding method.

Instead, we approximate those functions by means of “Big-O” notation, defined in the next paragraph.

Because we are looking at the method by itself, this “approximation of an approximation” is quite satis-

factory for giving us an idea of how fast the method will be.

3.1 Estimating the Efficiency of Methods 107

The basic idea behind Big-O notation is that we often want to determine an upper bound for the

behavior of a function, that is, to determine how bad the performance of the function can get. For example,

suppose we are given a function f. If some function g is, loosely speaking, an upper bound for f , then

we say that f is Big-O of g . When we replace “loosely speaking” with specifics, we get the following

definition:

Let g be a function that has non-negative integer arguments and returns a non-negative value for all

arguments. A function f is said to be O(g) if for some positive constant C and some non-negative

constant K,

f(n) ≤ C g(n) for all n ≥ K.

If f is O(g), pronounced “big-oh of g”, we can also say “f is of order g”.

The idea behind Big-O notation is that if f is O(g) then eventually f is bounded above by some

constant times g , so we can use g as a crude upper-bound estimate of the function f .

By a standard abuse of notation, we often associate a function with the value it calculates. For

example, let g be the function defined by

g(n) = n3, for n = 0, 1, 2, . . .

Instead of writing O(g) we write O(n3).

The following three examples will help you to understand the details of Big-O notation. Then, in

Section 3.1.2, we will describe how to arrive at Big-O estimates without going through the details.

Example 3.1

Let f be the function worstTime defined for the aboveMeanCount method in Section 3.1 and repeated here:

public static int aboveMeanCount (double[] a, double mean)

{

int n = a.length,

count = 0;

for (int i = 0; i < n; i++)

if (a [i] > mean)

count++;

return count;

} // method aboveMeanCount

Then

f(n) = 4n + 6, for n = 0, 1, 2, . . .

Show that f is O(n).

108 CHAPTER 3 Analysis of Algorithms

SOLUTION

We need to find non-negative constants C and K such that f(n) ≤ C∗n for all n ≥ K. We will show that each

term in the definition of f is less than or equal to some constant times n for n greater than or equal to some

non-negative integer. Right away, we get:

4n ≤ 4n for n ≥ 0, and

6 ≤ 6n for n ≥ 1.

So for any n ≥ 1,

f(n) ≤ 4n + 6n = 10n.

That is, for C = 10 and K = 1, f(n) ≤ C∗n for all n ≥ K. This shows that f is O(n).

In general, if f is a polynomial of the form

ai n
i + ai−1n i−1 + · · · + a1n + a0

then we can establish that f is O(n i) by choosing K = 1, C = |ai | + |ai−1| + · · · + |a1| + |a0| and pro-

ceeding as in Example 3.1.

The next example shows that we can ignore the base of a logarithm when determining the order of

a function.

Example 3.2

Let a and b be positive constants. Show that if f is O(loga n) then f is also O(logb n).

SOLUTION

Assume that f is O(loga n). Then there are non-negative constants C and K such that for all n ≥ K,

f(n) ≤ C ∗ loga n

By a fundamental property of logarithms (see Section A2.4 of Appendix 2),

loga n = (loga b) ∗ (logb n) for any n > 0.

Let C1 = C ∗ loga b.

Then for all n ≥ K, we have

f(n) ≤ C ∗ loga n = C ∗ loga b ∗ logb n = C1 ∗ logb n,

and so f is O(logb n).

Because the base of the logarithm is irrelevant in Big-O estimates, the base is usually omitted. For example,

you will often see O(log n) instead of O(log2 n) or O(log10 n).

The final example in this introduction to Big-O notation illustrates the significance of nested loops

in estimating worstTime(n).

3.1 Estimating the Efficiency of Methods 109

Example 3.3

Show that worstTime(n) is O(n2) for the following nested loop:

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

System.out.println (i + j);

SOLUTION

For this nested loop, every trace will entail the execution of the same number of statements. So worstTime(n)

and averageTime(n) will be equal. And that is frequently the case.

In the outer loop, the initialization of i is executed once, the continuation condition, i < n, is

executed n + 1 times, and i is incremented n times. So far, we have

1 + (n + 1) + n

statements executed. For each of the n iterations of the outer loop, the initialization of j is executed once, the

continuation condition, j < n, is executed n + 1 times, j is incremented n times, and the call to println

is executed n times. That increases the number of statements executed by

n(1 + (n + 1) + n)

The total number of statements executed is

1 + (n + 1) + n + n(1 + (n + 1) + n) = 2n2 + 4n + 2

Since the same number of statements will be executed in every trace, we have

worstTime(n) = 2n2 + 4n + 2

By the same technique used in Example 3.1,

worstTime(n) ≤ 8n2 for all n ≥ 1.

We conclude that worstTime(n) is O(n2).

In Example 3.3, the number of statements executed in the outer loop is only 2n + 2, while 2n2 + 2n

statements are executed in the inner loop. In general, most of the execution time of a method with nested

loops is consumed in the execution of the inner(most) loop. So that is where you should devote your

efforts to improving efficiency.

Note that Big-O notation merely gives an upper bound for a function. For example, if f is O(n2),

then f is also O(n2 + 5n + 2), O(n3) and O(n10 + 3). Whenever possible, we choose the smallest element

from a hierarchy of orders, of which the most commonly used are shown in Figure 3.1. For example,

if f (n) = n + 7 for n = 0, 1, 2, . . . , it is most informative to say that f is O(n)—even though f is also

O(n log n) and O(n3). Similarly, we write O(n) instead of O(2n + 4) or O(n − log n), even though

O(n) = O(2n + 4) = O(n − log n); see Exercise 3.9.

Figure 3.2 shows some more examples of functions and where they fit in the order hierarchy.

110 CHAPTER 3 Analysis of Algorithms

O(1) ⊂ O(log n) ⊂ O(n1/2) ⊂ O(n) ⊂ O(n log n) ⊂ O(n2) ⊂ O(n3) ⊂ . . . ⊂ O(2n) . . .

FIGURE 3.1 Some elements in the Big-O hierarchy. The symbol “⊂” means “is contained in”. For example,

every function that is in O(1) is also in O(log n)

Order Sample Function

O(1) f (n) = 3000

O(log n) f (n) = (n ∗ log2(n+1) + 2)/(n + 1)

O(n) f (n) = 500 log2 n + n/100000

O(n log n) f (n) = log2 nn //see Section A2.4 of Appendix 2

O(n2) f (n) = n ∗ (n + 1)/2

O(2n) f (n) = 3500 n100 + 2n

FIGURE 3.2 Some sample functions in the order hierarchy

One danger with Big-O notation is that it can be misleading when the values of n are small. For example,

consider the following two functions for n = 0, 1, 2,

f (n) = 1000 n is O(n)

and

g(n) = n2/10 is O(n2)

But f (n) is larger than g(n) for all values of n less than 10,000.

The next section illustrates how easy it can be to approximate worstTime(n)—or averageTime(n)—

with the help of Big-O notation.

3.1.2 Getting Big-O Estimates Quickly

By estimating the number of loop iterations in a method, we can often determine at a glance an upper

bound for worstTime(n). Let S represent any sequence of statements whose execution does not include a

loop statement for which the number of iterations depends on n . The following method skeletons provide

paradigms for determining an upper bound for worstTime(n).

Skeleton 1. worstTime(n) is O(1):

S

For example, for the following constructor from Chapter 1, worstTime(n) is O(1):

public HourlyEmployee (String name, int hoursWorked, double payRate)

{

this.name = name;

this.hoursWorked = hoursWorked;

this.payRate = payRate;

if (hoursWorked <= MAX_REGULAR_HOURS)

{

regularPay = hoursWorked * payRate;

3.1 Estimating the Efficiency of Methods 111

overtimePay = 0.00;

} // if

else

{

regularPay = MAX_REGULAR_HOURS * payRate;

overtimePay = (hoursWorked - MAX_REGULAR_HOURS) * (payRate * 1.5);

} // else

grossPay = regularPay + overtimePay;

} // 3-parameter constructor

Because n is not specified or implied, the number of statements executed is constant—no

matter what n is—so worstTime(n) is O(1). It follows that for the following method in the

HourlyCompany class, worstTime(n) is also O(1):

protected FullTimeEmployee getNextEmployee (Scanner sc)

{

String name = sc.next();

int hoursWorked = sc.nextInt();

double payRate = sc.nextDouble();

return new HourlyEmployee (name, hoursWorked, payRate);

} // method getNextEmployee

Note that the execution of S may entail the execution of millions of statements. For example:

double sum = 0;

for (int i = 0; i < 10000000; i++)

sum += Math.sqrt (i);

The reason that worstTime(n) is O(1) is that the number of loop iterations is constant and

therefore independent of n . In fact, n does not even appear in the code. In any subsequent

analysis of a method, n will be given explicitly or will be clear from the context, so you

needn’t worry about “What is n?”

Skeleton 2. worstTime(n) is O(log n):

while (n > 1)

{

n = n / 2;

S

} // while

Let t(n) be the number of times that S is executed during the execution of the while

statement. Then t(n) is equal to the number of times that n can be divided by 2 until

n equals 1. By Example A2.2 in Section A2.5 of Appendix 2, t(n) is the largest integer

≤ log2 n . That is, t(n) = floor(log2 n).1 Since floor(log2 n) ≤ log2 (n) for any positive

integer n , we conclude that t(n) is O(log n) and so worstTime(n) is also O(log n).

The phenomenon of repeatedly splitting a collection in two will re-appear time and again

in the remaining chapters. Be on the lookout for the splitting: it signals that worstTime(n)

will be O(log n).

1floor(x) returns the largest integer that is less than or equal to x.

112 CHAPTER 3 Analysis of Algorithms

The Splitting Rule

In general, if during each loop iteration, n is divided by some constant greater than 1, worstTime(n) will

be O(log n) for that loop.

As an example of the Splitting Rule, here—from the Arrays class in the package

java.util—is the most widely known algorithm in computer science: the Binary Search

Algorithm. Don’t get hung up in the details; we will study a binary search algorithm

carefully in Chapter 5. Here, n refers to the size of the array being searched.

/**

* Searches the specified array of ints for the specified value using the

* binary search algorithm. The array must be sorted (as

* by the sort method, above) prior to making this call. If it

* is not sorted, the results are undefined. If the array contains

* multiple elements with the specified value, there is no guarantee which

* one will be found.

*

* @param a the array to be searched.

* @param key the value to be searched for.

* @return index of the search key, if it is contained in the list;

* otherwise, (-(insertion point) - 1). The

* insertion point is defined as the point at which the

* key would be inserted into the array a: the index of the first

* element greater than the key, or a.length, if all

* elements in the array are less than the specified key. Note

* that this guarantees that the return value will be greater than

* or equal to 0 if and only if the key is found.

* @see #sort(int[])

*/

public static int binarySearch(int[] a, int key)

{

int low = 0;

int high = a.length-1;

while (low <= high)

{

int mid = (low + high) > > 1; // same effect as (low + high) / 2,

// but see Programming Exercise 3.5

int midVal = a[mid];

if (midVal < key)

low = mid + 1;

else if (midVal > key)

high = mid - 1;

else

return mid; // key found

} // while

return -(low + 1); // key not found.

} // method binarySearch

3.1 Estimating the Efficiency of Methods 113

At the start of each loop iteration, the area searched is from index low through index high,

and the action of the loop reduces the area searched by half. In the worst case, the key is not

in the array, and the loop continues until low > high. In other words, we keep dividing

n by 2 until n = 0. (Incidentally, this repeated dividing by 2 is where the “binary” comes

from in Binary Search Algorithm.) Then, by the Splitting Rule, worstTime(n) is O(log n)

for the loop. And with just a constant number of statements outside of the loop, it is clear

that worstTime(n) is O(log n) for the entire method.

Skeleton 3. worstTime(n) is O(n):

for (int i = 0; i < n; i++)

{

S

} // for

The reason that worstTime(n) is O(n) is simply that the for loop is executed n times. It

does not matter how many statements are executed during each iteration of the for loop:

suppose the maximum is k statements, for some positive integer k . Then the total number

of statements executed is ≤ kn . Note that k must be positive because during each iteration,

i is incremented and tested against n.

As we saw in Section 3.1, worstTime(n) is O(n) for the aboveMeanCount method. But

now we can obtain that estimate simply by noting that the loop is executed n times.

public static int aboveMeanCount (double[] a, double mean)

{

int n = a.length,

count = 0;

for (int i = 0; i < n; i++)

if (a [i] > mean)

count++;

return count;

} // method aboveMeanCount

For another example of a method whose worstTime(n) is O(n), here is another method

from the Arrays class of the package java.util. This method performs a sequential

search of two arrays for equality; that is, the search starts at index 0 of each array, and

compares the elements at each index until either two unequal elements are found or the

end of the arrays is reached.

/**

* Returns true if the two specified arrays of longs are

* equal to one another. Two arrays are considered equal if both

* arrays contain the same number of elements, and all corresponding pairs

* of elements in the two arrays are equal. In other words, two arrays

* are equal if they contain the same elements in the same order. Also,

* two array references are considered equal if both are null.

*

* @param a one array to be tested for equality.

* @param a2 the other array to be tested for equality.

* @return true if the two arrays are equal.

*/

public static boolean equals (long[] a, long[] a2)

{

114 CHAPTER 3 Analysis of Algorithms

if (a==a2)

return true;

if (a==null || a2==null)

return false;

int length = a.length;

if (a2.length != length)

return false;

for (int i=0; i<length; i++)

if (a[i] != a2[i])

return false;

return true;

} // method equals

Skeleton 4. worstTime(n) is O(n log n):

int m;

for (int i = 0; i < n; i++)

{

m = n;

while (m > 1)

{

m = m / 2;

S

} // while

} // for

The for loop is executed n times. For each iteration of the for loop, the while loop

is executed floor(log2 n) times—see Example 2 above—which is ≤ log2 n . Therefore

worstTime(n) is O(n log n). We needed to include the variable m because if the inner loop

started with while (n > 1), the outer loop would have terminated after just one iteration.

In Chapter 11, we will encounter several sorting algorithms whose worstTime(n) is

O(n log n), where n is the number of items to be sorted.

Skeleton 5. worstTime(n) is O(n2):

a. .afor (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

{

S

} // for j

The number of times that S is executed is n2. That is all we need to know to conclude

that worstTime(n) is O(n2). In Example 3.3, we painstakingly counted the exact number

of statements executed and came up with the same result.

b. .bfor (int i = 0; i < n; i++)

for (int k = i; k < n; k++)

{

S

} // for k

3.1 Estimating the Efficiency of Methods 115

The number of times that S is executed is

n + (n − 1) + (n − 2) + · · · + 3 + 2 + 1 =

n
∑

k=1

k

As shown in Example A2.1 of Appendix 2, the above sum is equal to

n(n + 1)/2,

which is O(n2). That is, worstTime(n) is O(n2).

The selectionSort method, developed in Chapter 11, uses the above skeleton. Here,

n refers to the size of the array to be sorted.

/**

* Sorts a specified array of int values into ascending order.

* The worstTime(n) is O(n * n).

*

* @param x – the array to be sorted.

*

*/

public static void selectionSort (int [] x)

{

// Make x [0 . . . i] sorted and <= x [i + 1] . . .x [x.length -1]:

for (int i = 0; i < x.length -1; i++)

{

int pos = i;

for (int j = i + 1; j < x.length; j++)

if (x [j] < x [pos])

pos = j;

int temp = x [i];

x [i] = x [pos];

x [pos] = temp;

} // for i

} // method selectionSort

There are n − 1 iterations of the outer loop; when the smallest values are at indexes x

[0], x [1], . . . x [n − 2], the largest value will automatically be at index x [n − 1]. So

the total number of inner-loop iterations is

(n − 1) + (n − 2) + . . . + 1 =

n−1
∑

i=1

i = n(n − 1)/2

We conclude that worstTime(n) is O(n2).

c. .cfor (int i = 0; i < n; i++)

{

S

} // for i

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

{

S

} // for j

116 CHAPTER 3 Analysis of Algorithms

For the first segment, worstTime(n) is O(n), and for the second segment, worstTime(n)

is O(n2), so for both segments together, worstTime(n) is O(n + n2), which is equal to

O(n2). In general, for the sequence

A

B

if worstTime(n) is O(f) for A and worstTime(n) is O(g) for B, then worstTime(n) is

O(f + g) for the sequence A, B.

3.1.3 Big-Omega, Big-Theta and Plain English

In addition to Big-O notation, there are two other notations that you should know about: Big-Omega and

Big-Theta. Whereas Big-O provides a crude upper bound for a function, Big-Omega supplies a crude lower

bound. Here is the definition:

Let g be a function that has non-negative integer arguments and returns a non-negative value for all

arguments. We define �(g) to be the set of functions f such that for some positive constant C and

some non-negative constant K,

f(n) ≥ C g(n) for all n ≥ K.

If f is in �(g) we say that f is “Big-Omega of g”. Notice that the definition of Big-Omega differs from

the definition of Big-O only in that the last line has f (n) ≥ Cg(n) instead of f (n) ≤ Cg(n), as we had for

Big-O.

All of the Big-O examples from Section 3.1.1 are also Big-Omega examples. Specifically, in

Example 3.1, the function f defined by

f (n) = 2n2 + 4n + 2, for n = 0, 1, 2, . . .

is �(n2): for C = 2 and K = 0, f (n) > Cn2 for all n ≥ K . Also, for all of the code skeletons and methods

in Section 3.1.2, we can replace O with � as a bound on worstTime(n).

Big-Omega notation is used less frequently than Big-O notation because we are usually more inter-

ested in providing an upper bound than a lower bound for worstTime(n) or averageTime(n). That is, “can’t

be any worse than” is often more relevant than “can’t be any better than.” Occasionally, knowledge of a the-

oretical lower bound can guide those trying to come up with an optimal algorithm. And in Chapter 11, we

establish the important result that for any comparison-based sort method, averageTime(n)—and therefore,

worstTime(n)—is �(n log n).

A somewhat artificial example shows that Big-O and Big-Omega are distinct. Let f be the function

defined by

f (n) = n , for n = 0, 1, 2, . . .

Clearly, f is O(n), and therefore, f is also O(n2). But f is not �(n2). And that same function f is clearly

�(n), and therefore �(1). But f is not O(1). In fact, the Big-Omega hierarchy is just the reverse of the

Big-O hierarchy in Figure 3.1. For example,

�(n2) ⊂ �(n log n) ⊂ �(n) ⊂ �(1)

3.1 Estimating the Efficiency of Methods 117

In most cases the same function will serve as both a lower bound and an upper bound, and this leads us

to the definition of Big-Theta:

Let g be a function that has non-negative integer arguments and returns a non-negative value for all

arguments. We define �(g) to be the set of functions f such that for some positive constants C1 and

C2, and some non-negative constant K,

C1 g(n) ≤ f(n) ≤ C2 g(n) for all n ≥ K.

The idea is that if f is �(g), then eventually (that is, for all n ≥ K), f (n) is bounded below by some

constant times g(n) and also bounded above by some constant times g(n). In other words, to say that a

function f is �(g) is exactly the same as saying that f is both O(g) and �(g). When we establish that a

function f is �(g), we have “nailed down” the function f in the sense that f is, roughly, bounded above

by g and also bounded below by g .

As an example of Big-Theta, consider the function f defined by

f (n) = 2n2 + 4n + 2, for n = 0, 1, 2, . . .

We showed in Example 3.3 that f is O(n2), and earlier in this section we showed that f is �(n2). We

conclude that f is �(n2).

For ease of reading, we adopt plain-English terms instead of Big-Theta notation for several families

of functions in the Big-Theta hierarchy. For example, if f is �(n), we say that f is “linear in n”. Table 3.1

shows some English-language replacements for Big-Theta notation.

We prefer to use plain English (such as “constant,” “linear,” and “quadratic”) whenever possible.

But as we will see in Section 3.1.5, there will still be many occasions when all we specify is an upper

bound—namely, Big O—estimate.

3.1.4 Growth Rates

In this section, we look at the growth rate of functions. Specifically, we are interested in how rapidly a

function increases based on its Big-Theta classification. Suppose we have a method whose worstTime(n)

is linear in n . Then we can write:

worstTime(n) ≈ C n , for some constant C (and for sufficiently large values of n).

What will be the effect of doubling the size of the problem, that is, of doubling n?

worstTime(2n) ≈ C 2 n

= 2 C n

≈ 2 worstTime(n)

In other words, if we double n , we double the estimate of worst time.

Table 3.1 Some English-language equivalents to Big-Theta notation

Big-Theta English

�(c), for some constant c ≥ 0 constant

�(log n) logarithmic in n

�(n) linear in n

�(n log n) linear-logarithmic in n

�(n2) quadratic in n

118 CHAPTER 3 Analysis of Algorithms

Similarly, if a method has worstTime(n) that is quadratic in n , we can write:

worstTime(n) ≈ C n2, for some constant C (and for sufficiently large values of n).

Then

worstTime(2n) ≈ C (2n)2

= C 4 n2

= 4 C n2

≈ 4 worstTime(n)

In other words, if we double n , we quadruple the estimate of worst time. Other examples of this kind of

relationship are explored in Concept Exercise 3.7, Concept Exercise 11.5 and in later labs.

Figure 3.3 shows the relative growth rates of worstTime(n) for several families of functions.

worstTime(n)

quadratic in n
linear-logarithmic in n

linear in n

logarithmic in n

constant

n

FIGURE 3.3 The graphs of worstTime(n) for several families of functions

Figure 3.4 indicates why Big-Theta differences eventually dominate constant factors in estimating

the behavior of a function. For example, if n is sufficiently large, t1(n) = n2/100 is much greater than

t2(n) = 100 n log2 n . But the phrase “if n is sufficiently large” should be viewed as a warning. Note that

t1 is smaller than t2 for arguments less than 100,000. So whether Big-Theta (or Big-O or Big-Omega) is

relevant may depend on how large the size of your problem might get.

Figure 3.4 has a concrete example of the differences between several families in the Big-Theta

hierarchy. For a representative member of the family—expressed as a function of n—the time to execute

that many statements is estimated when n equals one billion.

Some of the differences shown in Figure 3.4 are worth exploring. For example, there is a huge

difference between the values of log2 n and n . In Chapter 10, we will study a data structure—the binary

search tree—for which averageTime(n) is logarithmic in n for inserting, removing, and searching, but

worstTime(n) is linear in n for those methods.

3.1 Estimating the Efficiency of Methods 119

Function of n Time Estimate

log2 n .0024 seconds

n 17 minutes

n log2 n 7 hours

n2 300 years

FIGURE 3.4 Estimated time to execute a given number of statements for various functions of n when n =

1,000,000,000 and 1,000,000 statements are executed per second. For example, to execute n log2 n statements

takes approximately 7 hours

Another notable comparison in Figure 3.4 is between n log2 n and n2. In Chapter 11, on sort

methods, we will see tangible evidence of this difference. Roughly speaking, there are two categories

of sort methods: fast sorts, whose averageTime(n) is linear-logarithmic in n , and simple sorts, whose

averageTime(n) is quadratic in n .

All of the methods we have seen so far are polynomial-time methods. A polynomial-time method

is one for which worstTime(n) is O(n i) for some positive integer i . For example, a method whose

worstTime(n) is (O n2) is a polynomial-time method. Similarly, a method whose worstTime(n) is (O log n)

is polynomial-time because (O log n) ⊂ O (n).

When we try to develop a method to solve a given problem, we prefer polynomial-time methods

whenever possible. For some methods, their run time is so long it is infeasible to run the methods for large

values of n . Such methods are in the category of exponential-time methods. An exponential-time method is

one whose worstTime(n) is �(x n) for some real number x > 0. Then we say worstTime(n) is exponential

in n . For example, a method whose worstTime(n) is �(2n) is an exponential-time method. Chapter 5 has

an example of an exponential-time method, and Labs 7 and 9 have two more exponential-time methods.

As you might expect, a polynomial-time method cannot also be exponential-time (Concept Exercise 3.10).

The existence of exponential-time methods gives rise to an interesting question: For a given

exponential-time method, might there be a polynomial-time method to solve the same problem? In some

cases, the answer is no. An intractable problem is one for which any method to solve the problem is

an exponential-time method. For example, a problem that requires 2n values to be printed is intractable

because any method to solve that problem must execute at least �(2n) statements. The problem in

Chapter 5 for which an exponential-time method is supplied is an intractable problem. The problem in

Lab 9 is also intractable, but the problem in Lab 7 has a polynomial-time solution.

Lab 23 investigates the Traveling Salesperson Problem, for which the only known methods to solve

the problem are exponential-time methods. The most famous open question in computer science is whether

the Traveling Salesperson Problem is intractable. There may be a polynomial-time method to solve that

problem, but no one has found one, and most experts believe that no such method is possible.

If we are working on a single method only, it may be feasible to optimize that method’s

averageTime(n) and worstTime(n), with the intent of optimizing execution time. But for the management

of an entire project, it is usually necessary to strike a balance. The next section explores the relevance of

other factors, such as memory utilization and project deadlines.

3.1.5 Trade-Offs

In the previous section we saw how to estimate a method’s execution-time requirements. The same Big-O

(or Big-Omega or Big-Theta) notation can be used to estimate the memory requirements of a method.

Ideally, we will be able to develop methods that are both fast enough and small enough. But in the real

120 CHAPTER 3 Analysis of Algorithms

world, we seldom attain the ideal. More likely, we will encounter one or more of the following obstacles

during programming:

1. The program’s estimated execution time may be longer than acceptable according to the performance

requirements. Performance requirements , when given, state the time and space upper-bounds for all

or part of a program.

2. The program’s estimated memory requirements may be larger than acceptable according to the per-

formance requirements. This situation frequently arises for hand-held devices.

3. The program may require understanding a technique about which the programmer is only vaguely

familiar. This may create an unacceptable delay of the entire project.

Often, a trade-off must be made: a program that reduces one of the three obstacles may intensify the other

two. For example, if you had to develop a project by tomorrow, you would probably ignore time and

space constraints and focus on understanding the problem well enough to create a project. The point is

that real-life programming involves hard decisions. It is not nearly enough that you can develop programs

that run. Adapting to constraints such as those mentioned above will make you a better programmer by

increasing your flexibility.

We can incorporate efficiency concerns into the correctness of a method by including performance

requirements in the method’s specification (but see Programming Exercise 3.5). For example, part of the

specification for the Quick Sort method in Chapter 11 is:

The worstTime (n) is O(n2).

Then for a definition of that method to be correct, worstTime(n) would have to be O(n2). Recall that

the Big-O estimates provide upper bounds only. But the class developer is free to improve on the upper

bounds for average time or worst time. For example, there is a way to define that sort method so that

worstTime(n) is linear-logarithmic in n .

We want to allow developers of methods the flexibility to improve the efficiency of those methods

without violating the contract between users and developers. So any performance requirements in method

specifications will be given in terms of upper-bounds (that is, Big-O) only. Here are three conventions

regarding the Big-O estimates in method specifications:

0. If a class stores a collection of elements, then unless otherwise noted, the variable n refers to the

number of elements in the collection.

1. For many methods, worstTime(n) is O(1). If no estimate of worstTime(n) is given, you may assume

that worstTime(n) is O(1).

2. Often, averageTime(n) has the same Big-O estimate as worstTime(n), and then we will specify the

worstTime(n) estimate only. When they are different, we will specify both.

When we analyze the time (or space) efficiency of a specific method definition, we will determine lower

as well as upper bounds, so we will use Big-Theta notation—or the English-language equivalent: constant,

linear-in-n , and so on.

Up until now, we have separated concerns about correctness from concerns about efficiency. Accord-

ing to the Principle of Data Abstraction, the correctness of code that uses a class should be independent

of that class’s implementation details. But the efficiency of that code may well depend on those details. In

other words, the developer of a class is free—for the sake of efficiency—to choose any combination of

fields and method definitions, provided the correctness of the class’s methods do not rely on those choices.

For example, suppose a class developer can create three different versions of a class:

3.2 Run-Time Analysis 121

A: correct, inefficient, does not allow users to access fields;

B: correct, somewhat efficient, does not allow users to access fields;

C: correct, highly efficient, allows users to access fields.

In most cases, the appropriate choice is B. Choosing C would violate the Principle of Data Abstraction

because the correctness of a program that uses C could depend on C’s fields.

Big-O analysis provides a cross-platform estimate of the efficiency of a method. The following

section explores an execution-time tool for measuring efficiency.

3.2 Run-Time Analysis

We have seen that Big-O notation allows us to estimate the efficiency of methods independently of any

particular computing environment. For practical reasons, we may also want to estimate efficiency within

some fixed environment. Why settle for estimates? For one thing,

In multi-programming environments such as Windows, it is very difficult to determine how long a single

task takes.

Why? Because there is so much going on behind the scenes, such as the maintaining the desktop clock,

executing a wait-loop until a mouse click occurs, and updating information from your mailer and browser.

At any given time, there might be dozens of such processes under control of the Windows Manager. And

each process will get a time slice of several milliseconds. The bottom line is that the elapsed time for a

task is seldom an accurate measure of how long the task took.

Another problem with seeking an exact measure of efficiency is that it might take a very long

time—O(forever). For example, suppose we are comparing two sorting methods, and we want to determine

the average time each one takes to sort some collection of elements. The time may depend heavily on

the particular arrangement of the elements chosen. Because the number of different arrangements of n

distinct elements is n!, it is not feasible to generate every possible arrangement, run the method for each

arrangement, and calculate the average time.

Instead, we will generate a sample ordering that is in “no particular order.” The statistical concept

corresponding to “no particular order” is randomness. We will use the time to sort a random sample as an

estimate of the average sorting time. We start with a discussion of timing because, as we will see later,

one aspect of randomness depends on the result of a timing method.

3.2.1 Timing

To assist in the timing of methods, Java supplies nanoTime(), a static method in the System class of

java.lang. This method returns a long whose value is the number of nanoseconds—that is, billionths

of a second—elapsed since some fixed but arbitrary time. To estimate how much execution time a task

consumes, we calculate the time immediately before and immediately after the code for the task. The

difference in the two times represents the elapsed time. As noted previously, elapsed time is a very, very

crude estimate of the time the task consumed. The following code serves as a skeleton for estimating the

time expended by a method:

final String ANSWER_1 = "The elapsed time was ";

final double NANO_FACTOR = 1000000000.0; // nanoseconds per second

122 CHAPTER 3 Analysis of Algorithms

final String ANSWER_2 = " seconds.";

long startTime,

finishTime,

elapsedTime;

startTime = System.nanoTime();

// Perform the task:

...

// Calculate the elapsed time:

finishTime = System. nanoTime();

elapsedTime = finishTime - startTime;

System.out.println (ANSWER_1 + (elapsedTime / NANO_FACTOR) + ANSWER_2);

This skeleton determines the elapsed time for the task in seconds, with fractional digits. For example,

if startTime has the value 885161724000 and finishTime has the value 889961724000, then

elapsedTime has the value 4800000000, that is, four billion and eight hundred million. Then

elapsedTime/NANO_FACTOR has the value 4.8 (seconds).

We will use the time to process a random sample of values as an estimate of the average processing

time. Section 3.2.2 contains an introduction to—or review of—the Random class, part of the package

java.util.

3.2.2 Overview of the Random Class

If each number in a sequence of numbers has the same chance of being selected, the sequence is said to

be uniformly distributed . A number so selected from a uniformly-distributed sequence is called a random

number . And a method that, when repeatedly called, returns a sequence of random numbers is called a

random-number generator .

The Random class in java.util supplies several random-number generators. We will look at three

of those methods. Strictly speaking, the sequence of numbers returned by repeated calls to any one of

those methods is a pseudo-random-number sequence because the numbers calculated are not random at

all—they are determined by the code in the method. The numbers appear to be random if we do not see

how they are calculated. If you look at the definition of this method in the Random class, the mystery and

appearance of randomness will disappear.

Here is the method specification for one of the random-number generators:

/**

* Returns a pseudo-random int in the range from 0 (inclusive) to a specified int

* (exclusive).

*

* @param n – the specified int, one more than the largest possible value

* returned.

*

* @return a random int in the range from 0 to n -1, inclusive.

*

* @throws IllegalArgumentException – if n is less than or equal to zero.

3.2 Run-Time Analysis 123

*

*/

public int nextInt (int n)

For example, a call to nextInt (100) will return a random integer in the range from 0 to 99, inclusive.

For another example, suppose we want to simulate the roll of a die. The value from one roll of a

die will be an integer in the range 1 . . . 6, inclusive. The call to nextInt (6) returns an int value in

the range from 0 to 5, inclusive, so we need to add 1 to that returned value. Here is the code to print out

that pseudo-random die roll:

Random die = new Random();

int oneRoll = die.nextInt (6) + 1;

System.out.println (oneRoll);

The value calculated by the nextInt (int n) method depends on the seed it is given. The variable

seed is a private long field in the Random class. The initial value of seed depends on the constructor

called. If, as above, the Random object is created with the default constructor, then seed is initialized to

System.nanoTime(). The other form of the constructor has a long parameter, and seed is initialized

to the argument corresponding to that parameter. Each time the method nextInt (int n) is called,

the current value of the seed is used to determine the next value of the seed, which determines the int

returned by the method.

For example, suppose that two programs have

Random die = new Random (800);

for (int i = 0; i < 5; i++)

System.out.println (die.nextInt (6) + 1);

The output from both programs would be exactly the same:

3

5

3

6

2

This repeatability can be helpful when we want to compare the behavior of programs, as we will in

Chapters 5—15. In general, repeatability is an essential feature of the scientific method.

If we do not want repeatability, we use the default constructor. Recall that the default constructor

initializes the seed to System.nanoTime().

Here are two other random-number generators in the Random class:

/**

* Returns a pseudo-random int in the range from Integer.MIN_VALUE to

* Integer.MAX_VALUE.

*

*

* @return a pseudo-random int in the range from Integer.MIN_VALUE to

* Integer.MAX_VALUE.

124 CHAPTER 3 Analysis of Algorithms

*

*/

public int nextInt ()

/**

* Returns a pseudo-random double in the range from 0.0 (inclusive) to

* 1.0 (exclusive).

*

*/

public double nextDouble ()

The following program combines randomness and timing with repeated calls to the selectionSort

method of Section 3.1.2. The higher levels of the program—input, output, and exception handling—are

handled in the run() method. The randomTimer method generates an array of random integers, calls

the selectionSort method, and calculates the elapsed time. The randomTimer method is not unit-tested

because timing results will vary widely from computer to computer. The unit tests for selectionSort

and other sort methods are in the Chapter 11 directory of the website’s source code section.

import java.util.*;

public class TimingRandom

{

public static void main (String[] args)

{

new TimingRandom().run();

} // method main

public void run()

{

final int SENTINEL = -1;

final String INPUT_PROMPT = "\nPlease enter the number of"+

" integers to be sorted (or " + SENTINEL + " to quit): ";

final String ANSWER_1 = "The elapsed time was ";

final double NANO_FACTOR = 1000000000.0; // nanoseconds per second

final String ANSWER_2 = " seconds.";

Scanner sc = new Scanner (System.in);

long elapsedTime;

while (true)

{

try

{

System.out.print (INPUT_PROMPT);

int n = sc.nextInt();

if (n == SENTINEL)

break;

elapsedTime = randomTimer (n);

3.2 Run-Time Analysis 125

System.out.println (ANSWER_1 +

(elapsedTime / NANO_FACTOR) + ANSWER_2);

} // try

catch (Exception e)

{

System.out.println (e);

sc.nextLine();

} // catch

} // while

} // method run

/**

* Determines the elapsed time to sort a randomly generated array of ints.

*

* @param n – the size of the array to be generated and sorted.

*

* @return the elapsed time to sort the randomly generated array.

*

* @throws NegativeArraySizeException – if n is less than 0.

*

*/

public long randomTimer (int n)

{

Random r = new Random();

long startTime,

finishTime,

elapsedTime;

int[] x = new int [n];

for (int i = 0; i < n; i++)

x [i] = r.nextInt();

startTime = System.nanoTime();

// Sort x into ascending order:

selectionSort (x);

// Calculate the elapsed time:

finishTime = System.nanoTime();

elapsedTime = finishTime - startTime;

return elapsedTime;

} // method randomTimer

/**

* Sorts a specified array of int values into ascending order.

* The worstTime(n) is O(n * n).

*

* @param x – the array to be sorted.

*

*/

public static void selectionSort (int [] x)

{

126 CHAPTER 3 Analysis of Algorithms

// Make x [0 ... i] sorted and <= x [i + 1] ... x [x.length -1]:

for (int i = 0; i < x.length - 1; i++)

{

int pos = i;

for (int j = i + 1; j < x.length; j++)

if (x [j] < x [pos])

pos = j;

int temp = x [i];

x [i] = x [pos];

x [pos] = temp;

} // for i

} // method selectionSort

} // class TimingRandom

The number of iterations of the while loop is independent of n , so for the run() method, worstTime(n)

is determined by the estimate of worstTime(n) for randomTimer. The randomTimer method has a loop

to generate the array, and worstTime(n) for this generation is O(n). Then randomTimer calls selection

Sort. In Section 3.1.2, we showed that worstTime(n) for selectionSort is O(n2). Since the number of

iterations is the same for any arrangement of the n elements, averageTime(n) is O(n2). In fact, n2 provides

a crude lower bound as well as a crude upper bound, so averageTime(n) is quadratic in n . Then we expect

the average run time—over all possible arrangements of n doubles—to be quadratic in n . As suggested in

Section 3.2, we use the elapsed time to sort n pseudo-random doubles as an approximation of the average

run time for all arrangements of n doubles.

The elapsed time gives further credence to that estimate: for n = 50000, the elapsed time is 19.985

seconds, and for n = 100000, the elapsed time is 80.766 seconds. The actual times are irrelevant since

they depend on the computer used, but the relative times are significant: when n doubles, the elapsed

time quadruples (approximately). According to Section 3.1.4 on growth rates, that ratio is symptomatic of

quadratic time.

Randomness and timing are also combined in the experiment in Lab 4: You are given the unreadable

(but runnable) bytecode versions of the classes instead of source code.

You are now prepared to do Lab 4:

Randomness and Timing of Four Mystery Classes

S U M M A R Y

Big-O notation allows us to quickly estimate an upper

bound on the time/space efficiency of methods. Because

Big-O estimates allow function arguments to be arbitrarily

large integers, we treat methods as algorithms by ignoring

the space requirements imposed by Java and a particular

computing environment. In addition to Big-O notation,

we also looked at Big-� notation (for lower bounds) and

Big-� notation (when the upper-bound and lower-bound

are roughly the same).

Run-time analysis allows methods to be tested on

a specific computer. But the estimates produced are often

very crude, especially in a multiprogramming environ-

ment. Run-time tools include the nanoTime() method

and several methods from the Random class.

Crossword Puzzle 127

CROSSWORD PUZZLE

ACROSS DOWN

 7. The private long field in the Random class whose
 initial value depends on the constructor called.

 9. A finite sequence of explicit instructions to solve a
 problem in a finite amount of time.

10. A function of g that is both Big O of g and Big
 Omega of g is said to be _________ of g.

1. The rule that states “In general, if during each
 loop iteration, n is divided by some constant
 greater than 1, worstTime(n) will be O(log n)
 for that loop.”

2. A problem for which for which any method to
 solve the problem is an exponential-time method
 is said to be ______________.

3. A method whose worstTime(n) is bounded below
 by x to the n for some real number x > 1.0 is said
 to be an ___________ time method.

4. A function of n, the problem size, that returns the
 maximum (over all possible parameter/input values)
 number of statements executed in a trace of the
 method.

5. A hallmark of the Scientific Method, and the reason
 we do not always want a random seed for the random
 number generator in the Random class.

6. A function of n that is Big Theta of n-squared is said to
 be _________ in n.

8. A static method in the System class that returns a long
 whose value is the number of billionths of a second
 elapsed since some fixed but arbitrary time.

1

2 3 4 5

6 7

8

9

10

www.CrosswordWeaver.com

www.CrosswordWeaver.com

128 CHAPTER 3 Analysis of Algorithms

CONCEPT EXERCISES

3.1 Create a method, sample (int n), for which worstTime(n) is O(n) but worstTime(n) is not linear in n .

Hint: O(n) indicates that n may be (crudely) viewed as an upper bound, but linear-in-n indicates that n may

be (crudely) viewed as both an upper bound and a lower bound.

3.2 Study the following algorithm:

i = 0;

while (!a [i].equals (element))

i++;

Assume that a is an array of n elements and that there is at least one index k in 0 ... n - 1 such that a

[k].equals (element).

Use Big-O notation to estimate worstTime(n). Use Big-� and Big-� notation to estimate worstTime(n). In

plain English, estimate worstTime(n).

3.3 Study the following method:

/**

* Sorts a specified array of int values into ascending order.

* The worstTime(n) is O(n * n).

*

* @param x – the array to be sorted.

*

*/

public static void selectionSort (int [] x)

{

// Make x [0 ... i] sorted and <= x [i + 1] ... x [x.length -1]:

for (int i = 0; i < x.length - 1; i++)

{

int pos = i;

for (int j = i + 1; j < x.length; j++)

if (x [j] < x [pos])

pos = j;

int temp = x [i];

x [i] = x [pos];

x [pos] = temp;

} // for i

} // method selectionSort

a. For the inner for statement, when i = 0, j takes on values from 1 to n - 1, and so there are n - 1

iterations of the inner for statement when i = 0. How many iterations are there when i = 1? When

i = 2?

b. Determine, as a function of n, the total number of iterations of the inner for statement as i takes on

values from 0 to n – 2.

c. Use Big-O notation to estimate worstTime(n). In plain English, estimate worstTime(n)—the choices are

constant, logarithmic in n , linear in n , linear-logarithmic in n , quadratic in n and exponential in n .

3.4 For each of the following functions f , where n = 0, 1, 2, 3, . . . , estimate f using Big-O notation and plain

English:

Concept Exercises 129

a. f (n) = (2 + n) * (3 + log(n))

b. f (n) = 11 * log(n) + n/2 − 3452

c. f (n) = 1 + 2 + 3 +· · · + n

d. f (n) = n * (3 + n) − 7 * n

e. f (n) = 7 * n + (n − 1) * log (n − 4)

f. f (n) = log (n2)+ n

g. f (n) =
(n + 1) ∗ log(n + 1) − (n + 1) + 1

n

h. f (n) = n + n/2 + n/4 + n/8 + n/16 + · · ·

3.5 In the Order Hierarchy in Figure 3.1, we have . . . , O(log n), O(n1/2), Show that, for integers n > 16,

log2 n < n1/2. Hint from calculus: Show that for all real numbers x > 16, the slope of the function log2 x

is less than the slope of the function x1/2. Since log2(16) == 161/2, we conclude that for all real numbers

x > 16, log2 x < x1/2.

3.6 For each of the following code segments, estimate worstTime(n) using Big � notation or plain English. In

each segment, S represents a sequence of statements in which there are no n-dependent loops.

a. for (int i = 0; i * i < n; i++)

S

b. for (int i = 0; Math.sqrt (i) < n; i++)

S

c. int k = 1;

for (int i = 0; i < n; i++)

k *= 2;

for (int i = 0; i < k; i++)

S

Hint: In each case, 2 is part of the answer.

3.7 .a. Suppose we have a method whose worstTime(n) is linear in n . Estimate the effect of tripling n on run

time—the actual time to execute the method in a particular computing environment. That is, estimate

runTime(3n) in terms of runTime(n).

b. Suppose we have a method whose worstTime(n) is quadratic in n . Estimate the effect of tripling n on

run time—the actual time to execute the method in a particular computing environment. That is, estimate

runTime(3n) in terms of runTime(n).

c. Suppose we have a method whose worstTime(n) is constant. Estimate the effect of tripling n on run

time—the actual time to execute the method in a particular computing environment. That is, estimate

runTime(3n) in terms of runTime(n).

3.8 This exercise proves that the Big-O families do not constitute a strict hierarchy. Consider the function f ,

defined for all non-negative integers as follows:

n , if n is even;

f (n) =

0, if n is odd

Define a function g on all non-negative integers such that f is not O(g) and g is not O(f).

130 CHAPTER 3 Analysis of Algorithms

3.9 Show that O(n) = O(n + 7). Hint: use the definition of Big-O.

3.10 Show that if f (n) is polynomial in n , f (n) cannot be exponential in n .

3.11 Suppose, for some method, worstTime(n) = nn . Show that the method is an exponential-time method (that

is, worstTime(n) is �(xn) for some real number x > 1.0). But show that worstTime(n) is not �(xn)—that is,

Big Theta of xn —for any real number x > 1.0.

3.12 This exercise illustrates some anomalies of �(1).

a. Define f (n) to be 0 for all n ≥ 0. Show that f is not �(1), but f is �(0).

b. Define f (n) to be (n + 2)/(n + 1) for all n ≥ 0. Show that f is �(1)—and so can be said to be

“constant”—even though f is not a constant function.

3.13 .a. Assume that worstTime(n) = C (statements) for some constant C and for all values of n ≥ 0. Determine

worstTime(2n) in terms of worstTime(n).

b. Assume that worstTime(n) = log2 n (statements) for all values of n ≥ 0. Determine worstTime(2n) in

terms of worstTime(n).

c. Assume that worstTime(n) = n (statements) for all values of n ≥ 0. Determine worstTime(2n) in terms of

worstTime(n).

d. Assume that worstTime(n) = n log2 n (statements) for all values of n ≥ 0. Determine worstTime(2n) in

terms of worstTime(n).

e. Assume that worstTime(n) = n2 (statements) for all values of n ≥ 0. Determine worstTime(2n) in terms

of worstTime(n).

f. Assume that worstTime(n) = 2n (statements) for all values of n ≥ 0. Determine worstTime(n + 1) in terms

of worstTime(n). Determine worstTime(2n) in terms of worstTime(n).

3.14 If worstTime(n) is exponential in n for some method sample, which of the following must be true about

that method?

a. worstTime(n) is O(2n).

b. worstTime(n) is �(2n).

c. worstTime(n) is �(2n).

d. worstTime(n) is O(nn).

e. none of the above.

PROGRAMMING EXERCISES

3.1 In mathematics, the absolute value function returns a non-negative integer for any integer argument. Develop

a run method to show that the Java method Math.abs (int a) does not always return a non-negative

integer.

Hint: See Programming Exercise 0.1.

Programming Exercises 131

3.2 Assume that r is (a reference to) an object in the Random class. Show that the value of the following

expression is not necessarily in the range 0 . . . 99:

Math.abs (r.nextInt()) % 100

Hint: See Programming Exercise 3.1.

3.3 Develop a run method that initializes a Random object with the default constructor and then determines the

elapsed time for the nextInt() method to generate 123456789.

3.4 Suppose a method specification includes a Big-O estimate for worstTime(n). Explain why it would be impos-

sible to create a unit test to support the Big-O estimate.

3.5 In the binarySearchmethod in Section 3.1.2, the average of low and high was calculated by the following

expression

(low + high) > > 1

Compare that expression to

low + ((high - low) > > 1)

The two expressions are mathematically equivalent, and the first expression is slightly more efficient, but will

return an incorrect result for some values of low and high. Find values of low and high for which the

first expression returns an incorrect value for the average of low and high. Hint: The largest possible int

value is Integer.MAX_VALUE, approximately 2 billion.

Programming Project 3.1

Let’s Make a Deal!

This project is based on the following modification—proposed by Marilyn Vos Savant—to the game show “Let’s

Make a Deal.” A contestant is given a choice of three doors. Behind one door there is an expensive car; behind

each of the other doors there is a goat.

After the contestant makes an initial guess, the announcer peeks behind the other two doors and eliminates

one of them that does not have the car behind it. For example, if the initial guess is door 2 and the car is behind

door 3, then the announcer will show that there is a goat behind door 1.

If the initial guess is correct, the announcer will randomly decide which of the other two doors to eliminate.

For example, if the initial guess is door 2 and the car is behind door 2, the announcer will randomly decide whether

to show a goat behind door 1 or a goat behind door 3. After the initial guess has been made and the announcer

has eliminated one of the other doors, the contestant must then make the final choice.

Develop and test a program to determine the answer to the following questions:

1. Should the contestant stay with the initial guess, or switch?

2. How much more likely is it that an always-switching contestant will win instead of a never-switching contestant?

For the sake of repeatability, the following system tests used a seed of 100 for the random-number generator.

(continued on next page)

132 CHAPTER 3 Analysis of Algorithms

(continued from previous page)

System Test 1:

Please enter the number of times the game will be played: 10000

Please enter 0 for a never-switching contestant or 1 for always-switching: 0

The number of wins was 3330

System Test 2:

Please enter the number of times the game will be played: 10000

Please enter 0 for a never-switching contestant or 1 for always-switching: 1

The number of wins was 6628

Based on the output, what are your answers to the two questions given above?

Suppose, instead of working with three doors, the number of doors is input, along with the number of times

the game will be played. Hypothesize how likely it is that the always-switching contestant will win. Modify and

then run your project to confirm or reject your hypothesis. (Keep hypothesizing, and modifying and running your

project until your hypothesis is confirmed.)

Hint for Hypothesis: Suppose the number of doors is n , where n can be any positive integer greater than

2. For an always-switching contestant to win, the initial guess must be incorrect, and then the final guess must be

correct. What is the probability, with n doors, that the initial guess will be incorrect? Given that the initial guess is

incorrect, how many doors will the always-switching contestant have to choose from for the final guess (remember

that the announcer will eliminate one of those doors)? The probability that the always-switching contestant will

win is the probability that the initial guess is incorrect times the probability that the final guess is then correct.

The Java Collections

Framework

CHAPTER 4

The Java Collections Framework is an assortment of related interfaces and classes in the package

java.util. For most of the classes in the Java Collections Framework, each instance is a collection,

that is, each instance is composed of elements. The collection classes can have type parameters, a new

feature of Java, so that a user can specify the type of the elements when declaring an instance of a

collection class. In this chapter, we will take a brief tour of the Java Collection Framework’s collection

classes, along with the new features that enhance the utilization of those classes.

CHAPTER OBJECTIVES

1. Understand what a collection is, and how contiguous collections differ from linked collections.

2. Be able to create and manipulate parameterized collections.

3. Identify several of the methods in the Collection interface.

4. Describe a design pattern in general, and the iterator design pattern in particular.

5. Compare the ArrayList and LinkedList implementations of the List interface.

6. Be able to utilize boxing/unboxing and the enhanced for statement.

4.1 Collections

A collection is an object that is composed of elements. The elements can be either values in a primitive

type (such as int) or references to objects. For a familiar example, an array is a collection of elements,

of the same type, that are stored contiguously in memory. Contiguous means “adjacent,” so the individual

elements are stored next to each other1. For example, we can create an array of five String elements

(strictly speaking, each element is a reference to a String object) as follows:

String [] names = new String [5];

Here the new operator allocates space for an array of five String references, (each initialized to null by

the Java Virtual Machine), and returns a reference to the beginning of the space allocated. This reference

is stored in names.

1Actually, all that matters is that, to a user of an array, the elements are stored as if they were contiguous, so an element can be accessed

directly from its index.

133

134 CHAPTER 4 The Java Collections Framework

There is an important consequence of the fact that arrays are stored contiguously: an individual

element in an array can be accessed without first accessing any of the other individual elements. For

example, names [2] can be accessed immediately—we need not access names [0] and names [1]

first in order to reach names [2]. This random access property of arrays will come in handy in several

subsequent chapters. In each case we will need a storage structure in which an element can be accessed

quickly given its relative position, so an array will be appropriate in each case.

There are several drawbacks to arrays. First, the size of an array is fixed: Space for the entire array (of

primitive values or references) must be allocated before any elements can be stored in the array. If that size

is too small, a larger array must be allocated and the contents of the smaller array copied to the larger array.

Another problem with arrays is that the programmer must provide all the code for operating on an

array. For example, inserting and deleting in an array may require that many elements be moved. Suppose

an array’s indexes range from 0 to 999, inclusive, and there are elements stored in order in the locations at

indexes 0 to 755. To insert an element into the location with index 300, we must first move the elements at

indexes 300 to 755 into the locations at indexes 301 to 756. Figure 4.1 shows the effect of such an insertion.

Alice

(before inserting Kalena) (after inserting Kalena)

Andrew

.

.

.

.

.

.

Kaitlin

Karen

Karl

Zelda

Zooey

Alice

Andrew

.

.

.

.

.

.

Kaitlin

Kalena

Karen

Karl

Zelda

Zooey

0

1

299

300

301

755

756

999

0

1

299

300

301

756

757

999

302

FIGURE 4.1 Insertion in an array: to insert “Kalena” at index 300 in the array on the left, the elements at

indexes 300, 301, . . . , 756 must first be moved, respectively, to indexes 301, 302, . . . , 757

In your programming career up to now, you have had to put up with the above disadvantages of

arrays. Section 4.1.1 describes an alternative that is almost always superior to arrays: instances of collection

classes.

4.1.1 Collection Classes

Most of what we will do from here on involves collection classes. A collection class is a class in which

each instance is a collection of elements, and each element is (a reference to) an object. For example,

a String object can be an element, or a FullTimeEmployee object can be an element. Values in a

4.1 Collections 135

primitive type are not objects, so we cannot create an instance of a collection class in which each element

is of type int. But for each primitive type, there is a corresponding class, called a wrapper class , whose

purpose is to enable a primitive type to be represented by (that is, wrapped inside) a class. For example,

there is an Integer class, and we can create an Integer object from an int j as follows:

new Integer (j)

The new operator returns a reference to an Integer object. Table 4.1 provides several important

conversions.

Table 4.1 Some Important Conversion Formulas

int i;

Integer myInt;

String s;

Object obj;

TO OBTAIN FROM EXAMPLE

Integer int myInt = i; //see Section 4.2.2

int Integer i = myInt; //see Section 4.2.2

String int s = Integer.toString(i);

String Integer s = myInt.toString();

Object Integer obj = myInt; //by Subclass Substitution Rule

Object String obj = s; //by Subclass Substitution Rule

int String i = new Integer (s); //if s consists of an int

Integer String myInt = new Integer (s); // if s consists of an int

Integer Object myInt = (Integer)obj;//if obj references an Integer

String Object s = (String)obj;//if obj references a String

The Java Collections Framework includes a number of collection classes that have wide applicability.

All of those collection classes have some common methods. For example, each collection class has an

isEmpty method whose method specification is:

/**

* Determines if this collection has no elements.

*

* @return true – if this collection has no elements.

*

*/

public boolean isEmpty()

Suppose myList is an instance of the collection class ArrayList, and myList has four elements. The

execution of

System.out.println (myList.isEmpty());

will produce output of

false

Of course, a method specification does not indicate how the method’s task will be accomplished. In

subsequent chapters, we will investigate some of the details for several collection classes. But we can now

introduce a simple classification of collection classes according to the way the elements are stored.

136 CHAPTER 4 The Java Collections Framework

4.1.2 Storage Structures for Collection Classes

Instances of a collection class usually consume memory in proportion to the number of elements in the

collection. So the way such a collection is stored in memory can have a substantial impact on the space

efficiency of a program. One straightforward way to store a collection instance in memory is to store, in an

array, a reference to each element in the collection. That is, an array could be a field in the collection class.

Such a class is called a contiguous-collection class . For example, the ArrayList class in Chapter 6

has an array field, and (a reference to) each element in an ArrayList instance is stored in that instance’s

array. So ArrayList is a contiguous-collection class. We will study contiguous-collection classes in

Chapters 6, 8 and 13. For many applications of contiguous-collection classes, the random-access feature

of an array is a great asset.

What about the disadvantages, cited earlier, of an array: the size of an array is fixed, and the

programmer is responsible for writing all the code that works with the array? With a contiguous-collection

class, those are problems for the developer of the class, not for users of the class. Basically, the developer

of a contiguous collection class writes the code—once—for methods that manipulate the array. Any user

of that collection class simply invokes the appropriate methods for the given application. The user may

not even be aware that there is an array field in the class, and by the Principle of Data Abstraction, would

not rely on that field anyway.

You probably have not appreciated the random access feature of arrays. That’s because you have

probably not yet seen an alternative to arrays for storing a collection of elements in memory. We now

briefly describe a structure that competes with the array for storing the elements in a collection object.

Instead of a contiguous relationship, the elements are related by links. A link is another name for a

reference. Basically, each element is housed in a special object called an entry (sometimes called a node).

Within each entry object there will be at least one link to another entry object. In a linked-collection class,

the elements in each instance are stored in entries. Figures 4.2–4.4 show parts of three linked collections.

We will explore linked collections in Chapters 7, 10, 12, 14 and 15.

exhale mellow serene

FIGURE 4.2 Part of a linked collection—a singly-linked list —in which each entry contains an element and a

reference to the next entry in the linked collection

exhale mellow serene

FIGURE 4.3 Part of a linked collection—a doubly-linked list —in which each entry contains an element, a

reference to the previous entry and a reference to the next entry

4.2 Some Details of the Java Collections Framework

In this section we present a little more information about the Java Collections Framework. The Java

Collections Framework consists of a thoroughly tested assortment of interfaces and classes. The classes

represent widely used data structures and algorithms. For most applications in which a collection is needed,

the framework provides the appropriate class. By utilizing the framework classes, you improve your

productivity by not “re-inventing the wheel.”

One of the impediments to understanding the framework is its sheer size; over 200 methods in the

eight classes we will study. Fortunately, there is a lot of duplication. For example, as noted in Section 4.1.1,

4.2 Some Details of the Java Collections Framework 137

Eric null

Allen nullnull Soumya null

Jack nullnull

FIGURE 4.4 Part of a linked collection—a binary search tree—in which each entry contains an element and

references to three other entries

each of those classes has an isEmpty method. In fact, the definitions of many of the methods are the same

in several classes. One of the unifying tools in the framework is the interface, which imposes method

headings on implementing classes. Section 4.2.1 introduces another, similar unifying tool: the abstract

class.

4.2.1 Abstract Classes

An abstract class is a class that is allowed to have abstract methods as well as defined methods. The

abstract methods must be defined in each subclass (unless the subclass is also abstract). Here is a bare-bones

example of an abstract class:

public abstract class Parent

{

/**

* Returns the String object "I am".

*

* @returns "I am".

*

*/

public String getPrefix()

{

return "I am";

} // method getPrefix

/**

* Returns a String object.

*

* @return a String object.

*

*/

public abstract String getClassName();

} // class Parent

138 CHAPTER 4 The Java Collections Framework

An abstract class is denoted by the abstract modifier at the beginning of its declaration. And within

an abstract class, each abstract method’s heading must include the modifier abstract before the return

type, and a semicolon after the method heading. Because the Parent class lacks a definition for one of

its methods, we cannot instantiate the Parent class. That is, we cannot define a Parent object:

Parent p = new Parent (); // illegal because Parent is an abstract class

We can now declare two subclasses, Child1 and Child2, of Parent.

public class Child1 extends Parent

{

/**

* Returns the String object "Child1".

*

* @return the String object "Child1".

*

*/

public String getClassName()

{

return "Child1";

} // method getClassName

} // class Child1

public class Child2 extends Parent

{

/**

* Returns the String object "Child2".

*

* @return the String object "Child2".

*

*/

public String getClassName()

{

return "Child2";

} // method getClassName

} // class Child2

The main benefit of abstract methods is that they promote flexibility (defined methods may be, but need

not be, overridden in subclasses) and consistency (abstract-class headings must be identical in subclasses).

For example, we can now do the following:

Parent p;

int code;

// Get the value for code;

...

if (code == 1)

p = new Child1();

else

4.2 Some Details of the Java Collections Framework 139

p = new Child2();

System.out.println (p.getPrefix() + p.getClassName());

The variable p is a polymorphic reference, so the version of getClassName called depends on the

type—Child1 or Child2—of the object referenced by p. The output will be “I am Child1” or “I am

Child2”, depending on the value of the variable code.

The Java Collections Framework has quite a few abstract classes: AbstractCollection,

AbstractList, AbstractSet, and others. Typically, one of these classes will declare as abstract any

method whose definition depends on fields in the subclasses, and define any method whose definition

does not depend on those fields.

For now, a practical application of abstract classes is developed in Lab 5.

You are now prepared to do Lab 5: A Class for Regular Polygons

Here are a few more details on the relationship between interfaces, abstract classes and fully defined

classes:

1. If a class implements some but not all of the methods in an interface, then the class would have to

be declared as an abstract class—and therefore cannot be instantiated.

2. An interface can extend one or more other interfaces. For example, we could have:

public interface Container extends Collection, Comparable

{...

Container has abstract methods of its own, and also inherits abstract methods from the interfaces

Collection and Comparable.

3. A class can extend at most one other class; by default, the Object class is the superclass of every

class. Multiple inheritance—the ability of a class to have more than one immediate superclass—is

illegal in Java. Multiple inheritance is illegal because of the danger of ambiguity. For example, view-

ing a teaching assistant as both a student and an employee, we could have a TeachingAssistant

class that is the immediate subclass of classes Student and StaffMember. Now suppose classes

Student and StaffMember each has its own getHolidays() method. If we define:

TeachingAssistant teacher = new TeachingAssistant();

which getHolidays() method does teacher.getHolidays() invoke? There is no way to tell,

and that is why Java outlaws multiple inheritance. C++ allows multiple inheritance, but complex

rules and disambiguating language are needed to make it work.

4. A class can implement more than one interface. For example, we could have:

class NewClass implements Interface1, Interface2

{...

This feature, especially when combined with feature 3, allows us to come close to achieving multiple

inheritance. We can write:

class NewClass extends OldClass implements Interface1, Interface2

{

140 CHAPTER 4 The Java Collections Framework

There is no ambiguity when a method is invoked because any methods in an interface are abstract, and

any non-final superclass method can be explicitly overridden—that is, re-defined—in the subclass. For

example, suppose OldClass, Interface1, and Interface2 all have a writeOut() method, and we

have

NewClass myStuff = new NewClass();

...

myStuff.writeOut();

Which version of the writeOut method will be invoked? Certainly not the version from Interface1 or

Interface2, because those methods must be abstract. If NewClass implements a writeOut() method,

that is the one that will be invoked. Otherwise, the version of writeOut defined in (or inherited by)

OldClass will be invoked.

4.2.2 Parameterized Types

When collection classes were introduced in Section 4.1.1, we noted that the element type has to be a

reference type: primitive types are not allowed. Starting with J2SE (that is, Java 2 Platform, Standard

Edition) version 5.0, a class’s element type can be specified, in angle brackets, when an instance of the

class is declared. For example, suppose we want to declare and initialize an ArrayList object to hold

a collection of grade point averages in which each grade point average will be stored as a Double. You

don’t have to know the details of the ArrayList class: You will learn some of those in Chapter 6. The

declaration and initialization of the ArrayList object is as follows:

ArrayList <Double> gpaList = new ArrayList <Double>();

Only elements of type Double can be inserted into gpaList; an attempt to insert a String or Integer

element will be disallowed by the compiler. As a result, you can be certain that any element retrieved

from gpaList will be of type Double.

Let’s see how elements can be inserted and retrieved from gpaList. In the ArrayList class, the

add method inserts the element argument at the end of the ArrayList object. For example,

gpaList.add (new Double (2.7));

will append to the end of gpaList a (reference to a) Double object whose double value is 2.7.

For retrievals, the get method returns the element in the ArrayList object at a specified index. So

we can access the element at index 0 as follows:

Double gpa = gpaList.get (0);

Notice that we don’t need to cast the expression on the right-hand side to Double because the element at

index 0 of gpaList must be of type Double.

Now suppose we want to add that grade point average to a double variable sum, initialized to 0.0.

The method doubleValue() in the Double class returns the double value corresponding to the calling

Double object. The assignment to sum is

sum = sum + gpa.doubleValue();

In this example, ArrayList<Double> is a parameterized type. A parameterized type consists of a class

or interface identifier followed, in angle brackets, by a list of one or more class identifiers separated by

4.2 Some Details of the Java Collections Framework 141

commas. Typically, a parameterized type starts with a collection-class identifier, and the element type is

enclosed in angle brackets. A parameterized type is sometimes called a “generic type”, and the language

feature permitting parameterized types is called “generics”.

Parameterized collection classes improve your productivity as a programmer. You don’t have to

remember what the element type of a collection is, because that type is specified when the collection

is declared, as we did with ArrayList<Double>. If you make a mistake and try to insert an element

of type String for example, you will be notified at compile-time. Without parameterized types, the

insertion would be allowed, but the assignment of (Double)gpaList.get(0) to gpa would generate a

ClassCastException at run time. And this exception, if uncaught, could crash a critical program.

In the previous example, the conversions from double to Double and from Double to double

are annoyances. To simplify your working with parameterized collection classes, the Java compiler auto-

matically translates primitive values into wrapper objects: the technical term is boxing . For example, the

insertion into gpaList can be accomplished as follows:

gpaList.add (2.7); // instead of gpaList.add (new Double (2.7));

Unboxing translates a wrapper object into its primitive value. For example, to increment the above double

variable sum by the value of the Double object gpa, we simply write

sum = sum + gpa; // instead of sum = sum + gpa.doubleValue();

Unboxing eliminates the need for you to invoke the doubleValue() method, and that makes your code

easier to read.

The general idea behind parameterized types and boxing/unboxing is to simplify the programmer’s

work by assigning to the compiler several tasks that would otherwise have to be performed by the

programmer.

Section 4.2.3 introduces the backbone of the Java Collections Framework: the Collection interface.

4.2.3 The Collection Interface

The Java Collections Framework consists basically of a hierarchy. There are interfaces and abstract classes

at every level except the lowest, and the lowest level has implementations of interfaces and extensions of

abstract classes. At the top of the hierarchy are two interfaces, Collection and Map.

In this section, we will focus on the Collection interface. For the sake of specificity, Figure 4.5

presents the Collection interface in UML notation, with the methods listed in alphabetical order. Don’t

worry if some of the method headings are puzzling to you (or make no sense at all). You will learn all

you will need to know in subsequent chapters, when we look at implementations of the interface.

As indicated in Figure 4.5, the Collection interface has E—for “element”—as the type parameter .

That is, E is replaced with an actual class, such as Double or FullTimeEmployee, in the declaration of

an instance of any class that implements the interface. For example, part of the ArrayList heading is

public class ArrayList <E> implements Collection<E> ...

Here is an instance of the ArrayList class with FullTimeEmployee elements:

ArrayList<FullTimeEmployee>employeeList = new ArrayList <FullTimeEmployee>();

In this example, FullTimeEmployee is the actual class of the elements: the class that replaces the type

parameter E when the ArrayList class is instantiated.

142 CHAPTER 4 The Java Collections Framework

<<interface>>

Collection

+ add (element: E): boolean

+ addAll (c: Collection<? extends E>): boolean

+ clear()

+ contains (obj: Object): boolean

+ containsAll (c: Collection<?>): boolean

+ equals (obj: Object): boolean

+ hashCode(): int

+ isEmpty(): boolean

+ iterator(): Iterator<E>

+ remove (obj: Object): boolean

+removeAll (c: Collection<?>): boolean

+ retainAll (c: Collection<?>): boolean

+ size(): int

+ toArray(): Object[]

+ toArray (a: T[]): T[]

E

FIGURE 4.5 The Collection interface. In UML, a type parameter—in this case, E—is shown in a dashed

rectangle in the upper-right-hand corner of the interface or class

If you wanted to, you could create your own class that fully implements the Collection interface.

That is, sort of, what happens in Lab 6. Only a few methods are realistically defined; the others just throw

an exception. For example,

public int hashCode()

{

throw new UnsupportedOperationException();

}

Such definitions satisfy the compiler, so the resulting class, ArrayCollection, is instantiable. That is,

we can create and initialize an ArrayCollection object:

ArrayCollection<Integer> collection = new ArrayCollection<Integer>();

You are now prepared to do Lab 6: The ArrayCollection Class

4.2 Some Details of the Java Collections Framework 143

4.2.3.1 Iterators

The Collection interface provides a core of methods useful for applications. But each application will

almost certainly have some specialized tasks that do not correspond to any method in the Collection

interface. Important Note: In the following examples, “Collection object” is shorthand for “object in

a class that implements the Collection interface”, and “Collection class” is shorthand for “class that

implements the Collection interface.”

1. Given a Collection object of students, print out each student who made the Dean’s List.

2. Given a Collection object of words, determine how many are four-letter words.

3. Given a Collection object of club members, update the dues owed for each member.

4. Given a Collection object of full-time employees, calculate the average salary of the employees.

Surely, we cannot create a class that would provide a method for any task in any application—the number

of methods would be limitless. But notice that in each of the four examples above, the task entails access-

ing each element in a Collection object. This suggests that we need to allow users of a Collection

class to be able to construct a loop that accesses each element in a Collection object. As we will

see when we look at classes that implement the Collection interface, developers can straightforwardly

construct such a loop. Why? Because a developer has access to the fields in the class, so the devel-

oper knows how the class is organized. And that enables the developer to loop through each element in

the instance.

According to the Principle of Data Abstraction, a user’s code should not access the implementation

details of a Collection class. The basic problem is this: How can any implementation of the

Collection interface allow users to loop through the elements in an instance of that class without

violating the Principle of Data Abstraction? The solution is in the use of iterators. Iterators are objects

that allow the elements of Collection objects to be accessed in a consistent way without accessing the

fields of the Collection class.

Inside each class that implements the Collection interface, there is an iterator class that allows

a user to access each element in the collection. Each iterator class must itself implement the following

Iterator interface:

public interface Iterator<E>

{

/**

* Determines if this Iterator object is positioned at an element in

* this Collection object.

*

* @return true – if this Iterator object is positioned at an element

* in this Collection object.

*

*/

boolean hasNext ();

/**

* Advances this Iterator object, and returns the element this

* Iterator object was positioned at before this call.

*

* @return the element this Iterator object was positioned at when

144 CHAPTER 4 The Java Collections Framework

* this call was made.

*

* @throws NoSuchElementException – if this Iterator object is not

* positioned at an element in the Collection object.

*

*/

E next ();

/**

* Removes the element returned by the most recent call to next().

* The behavior of this Iterator object is unspecified if the underlying

* collection is modified – while this iteration is in progress – other

* than by calling this remove() method.

*

* @throws IllegalStateException – if next() had not been called

* before this call to remove(), or if there had been an

* intervening call to remove() between the most recent

* call to next() and this call.

*

void remove ();

} // interface Iterator<E>

For each class that implements the Collection interface, its iterator class provides the methods for

traversing any instance of that Collection class. In other words, iterators are the behind-the-scenes

workhorses that enable a user to access each element in any instance of a Collection class.

How can we associate an iterator object with a Collection object? The iterator() method

in the Collection class creates the necessary connection. Here is the method specification from the

Collection interface:

/**

* Returns an Iterator object over this Collection object.

*

* @return an Iterator object over this Collection object.

*

*/

Iterator<E> iterator();

The value returned is (a reference to) an Iterator object, that is, an object in a class that implements

the Iterator interface. With the help of this method, a user can iterate through a Collection object

For example, suppose that myColl is (a reference to) an instance of a Collection object with String

elements, and we want to print out each element in myColl that starts with the letter ‘a’. We first create

an iterator object:

Iterator<String> itr = myColl.iterator();

The variable itr is a polymorphic reference: it can be assigned a reference to an object in any class

that implements the Iterator<String> interface. And myColl.iterator() returns a reference to an

Iterator<String> object that is positioned at the beginning of the myColl object.

4.2 Some Details of the Java Collections Framework 145

The actual iteration is fairly straightforward:

String word;

while (itr.hasNext ())

{

word = itr.next();

if (word.charAt (0) == 'a')

System.out.println (word);

} // while

Incidentally, do you see what is wrong with the following?

// Incorrect!

while (itr.hasNext ())

if (itr.next().charAt (0) == 'a')

System.out.println (itr.next());

Because of the two calls to itr.next(), if the next word returned during a loop iteration starts with the

letter ‘a’, the word after that word will be printed.

Very often, all we want to do during an iteration is to access each element in the collection. For such

situations, Java provides an enhanced for statement (sometimes referred to as a for-each statement). For

example, the previous (correct) iteration through myColl can be abbreviated to the following:

for (String word : myColl)

if (word.charAt (0) == 'a')

System.out.println (word);

The colon should be interpreted as “in”, so the control part of this for statement can be read “For each

word in myColl.” The effect of this code is the same as before, but some of the drudgery—creating and

initializing the iterator, and invoking the hasNext() and next() methods—has been relegated to the

compiler.

Here is a complete example of iterating over a Collection object by using an enhanced for

statement. You don’t have to know the details of ArrayList class, the particular implementation of the

Collection interface. You will learn those details in Chapter 6. For the sake of simplicity, Arithm

eticException and InputMismatchException are caught in the same catch block.

// Calculates the mean grade-point-average

import java.util.*;

public class EnhancedFor

{

public static void main (String [] args)

{

new EnhancedFor().run();

} // method main

public void run()

{

final double MIN_GPA = 0.0,

146 CHAPTER 4 The Java Collections Framework

MAX_GPA = 4.0,

SENTINEL = -1.0;

final String INPUT_PROMPT = "Please enter a GPA in the range" +

" from " + MIN_GPA + " to " + MAX_GPA + ", inclusive (or " +

SENTINEL + " to quit): ";

final String RANGE_ERROR = "The grade point average must" +

" be at least " + MIN_GPA + " and at most " + MAX_GPA + ".";

final String MESSAGE = "\n\nThe mean GPA is ";

final String NO_VALID_INPUT = "\n\nError: there were no valid " +

"grade-point-averages in the input.";

ArrayList<Double> gpaList = new ArrayList<Double>();

Scanner sc = new Scanner (System.in);

double oneGPA,

sum = 0.0;

while (true)

{

try

{

System.out.print (INPUT_PROMPT);

oneGPA = sc.nextDouble();

if (oneGPA == SENTINEL)

break;

if (oneGPA < MIN_GPA || oneGPA > MAX_GPA)

throw new ArithmeticException (RANGE_ERROR);

gpaList.add (oneGPA); // inserts at end of gpaList

} // try

catch (Exception e)

{

System.out.println (e + "\n");

sc.nextLine();

} // catch Exception

} // while

for (Double gpa : gpaList)

sum += gpa;

if (gpaList.size() > 0)

System.out.println (MESSAGE +

(sum / gpaList.size()));

else

System.out.println(NO_VALID_INPUT);

} // method run

} // class EnhancedFor

4.2 Some Details of the Java Collections Framework 147

The enhanced for statement simplifies your code, and that makes your programs easier to understand.

So you should use an enhanced for statement whenever possible, that is, if you were to use an iterator

instead, the only iterator methods invoked would be hasNext() and next(). You cannot use an enhanced

for statement if the collection may be modified during the iteration. For example, if you wanted to delete,

from gpaList, each grade-point-average below 1.0, you would need to explicitly set up an iterator:

Iterator<Double> itr = gpaList.iterator();

while (itr.hasNext())

if (itr.next() < 1.0)

itr.remove();

4.2.3.2 Design Patterns

In Section 4.2.3.1, we stated a problem, namely, how can the developer of a Collection class allow

users to loop through one of its instances without violating the Principle of Data Abstraction? The solution

to the problem was to employ an iterator. As such, the use of iterators is an example of a design pattern: a

generic programming technique that can be applied in a variety of situations. As we will see in subsequent

chapters, the iterator pattern plays an important role in an assortment of applications.

Throughout the text, we will identify several design patterns and corresponding applications. The

basic idea is that each design pattern provides you with a problem that occurs frequently and the outline

of a solution. You may have to “tweak” the solution for a particular instance of the problem, but at least

you will not be re-inventing the wheel.

In Section 4.2.4, we briefly introduce an extension of the Collection interface and three classes

that implement that extension.

4.2.4 The List Interface

Java Collection Framework’s List interface extends the Collection interface by providing some index-

related methods. For example, there is a get method that returns the element at a given index. In any

List object, that is, in any instance of a class that implements the List interface, the elements are stored

in sequence, according to an index. For example, a List object pets might have the elements arranged as

follows: “dog”, “cat”, “iguana”, “gerbil”, “cat”. Here “dog” is at index 0, “gerbil” is at index 3. Duplicate

elements are allowed: “cat” appears at index 1 and at index 4.

When viewed as a language-independent entity, a list is an abstract data type. Within Java, the List

interface is abstract in the sense that it is not tied down to any particular implementation. In fact, in the

Java Collections Framework, the List interface is not directly implemented. Instead, the abstract class

AbstractList partially implements the List interface, and leaves the rest of the implementation to

subclasses, namely, ArrayList and LinkedList. See Figure 4.6.

The ArrayList class implements the List interface with an underlying array2, and the LinkedList

class implements the List interface with the underlying linked structure shown in Figure 4.3. We will

get to the details in Chapters 6 and 7, respectively. To give you an idea of some of the methods in both

classes, the following class creates and manipulates a List of random Integer objects.

import java.util.*;

public class RandomList

2The Stack class also implements the List interface with an underlying array, but the definition of a stack severely restricts access to the

array, so we will ignore the Stack class in this discussion.

148 CHAPTER 4 The Java Collections Framework

{

public static void main (String[] args)

{

new RandomList ().run();

} // method main

public void run()

{

final int SEED = 111;

List<Integer> randList = new ArrayList<Integer>();

Random r = new Random (SEED);

// Insert 10 random integers, in the range 0...99, into randList:

for (int i = 0; i < 10; i++)

randList.add (r.nextInt(100)); // insertion

// Print out randList:

System.out.println (randList);

// See if 22 is in randList:

if (randList.contains (22))

System.out.println ("Yes, 22 is in randList.");

else

System.out.println ("No, 22 is not in randList.");

// Print out the Integer at index 3:

System.out.println (randList.get (3) + "is at index 3");

// Remove the Integer at index 6:

randList.remove (6);

// Insert a new random Integer at index 5:

randList.add (5, r.nextInt (100));

// Print out randList.

System.out.println (randList);

// Remove all even Integers:

Iterator<Integer> itr = randList.iterator();

while (itr.hasNext())

if (itr.next() % 2 == 0)

itr.remove();

// Print out randList;

System.out.println (randList);

} // method run

} // class RandomList

4.2 Some Details of the Java Collections Framework 149

<<interface>>

Collection

E

<<interface>>

List

E

AbstractList

E

LinkedList

E

Stack

E

ArrayList

E

FIGURE 4.6 Part of the Java Collections Framework hierarchy dealing with the List interface. In UML, an

abstract-class identifier is italicized

The line

System.out.println (randList);

is equivalent to

System.out.println (randList.toString());

The toString method returns a String representation of randList. Every class in the Java Collections

Framework has a toString() method, so all the elements in an instance of one of those classes can be

output with a single call to println.

Because an ArrayList object stores its elements in an underlying array, when the element at index

6 is removed, each element at a higher index is moved to the location at the next lower index. So the

element that was at index 7 is then at index 6, the element that was at index 8 is then at index 7, and so

on. When a new element is inserted at index 5, each element located at that index or higher is moved to

the next higher index. So the element that was at index 5 is then at index 6, the element that was at index

6 is then at index 7, and so on.

The output is

[93, 70, 57, 97, 9, 20, 84, 12, 97, 65]

No, 22 is not in randList.

97 is at index 3

150 CHAPTER 4 The Java Collections Framework

[93, 70, 57, 97, 9, 60, 20, 12, 97, 65]

[93, 57, 97, 9, 97, 65]

We could not use an enhanced for statement to iterate over randList because we needed to remove

some of that object’s elements, not merely access them.

In the program, randList is declared as a polymorphic reference and then immediately initialized

as a reference to an ArrayList object. To re-run the program with a LinkedList object, the only change

is the constructor call:

List<Integer> randList = new LinkedList<Integer>();

How do the two versions compare? Part of the program—printing the Integer at index 3—is executed

more quickly with an ArrayList object because of the random-access ability of the underlying array. And

part of it—removing all even Integer elements—is executed more quickly with a LinkedList object.

That’s because an entry in a linked list can be removed by adjusting links: no movement of elements is

needed. In general, there is no “best” implementation of the List interface.

S U M M A R Y

A collection is an object that is composed of elements.

The elements may be stored contiguously , that is, at con-

secutive locations in memory. Another option is a linked

structure, in which each element is stored in a special

object called an entry that also includes a reference to

another entry.

A collection class is a class of which each instance

is a collection. The Java Collections Framework, part

of the package java.util, includes a number of collec-

tion classes that have wide applicability. Each of those

classes can be parameterized , which means that the ele-

ment class is specified when the collection-class object

is created. And for any instance of one of those classes,

an iterator can be defined. An iterator is an object that

allows an instance of a collection class to loop through

the elements in that class without violating the Principle

of Data Abstraction.

To simplify the programmer’s work of inserting

elements into an instance of a parameterized class,

Java automatically boxes primitive values into the corre-

sponding wrapper elements. Similarly, wrapper elements

retrieved from a parameter-class instance are automati-

cally unboxed into the corresponding primitive value. A

further simplification of Java is the enhanced for state-

ment, which automates most of the routine code to access

each element during an iteration.

The Collection interface consists of 15 method

specifications for accessing and manipulating an instance

of a class that implements the Collection interface.

The List interface adds several index-related

methods to the Collection interface. The List inter-

face is partially implemented by the AbstractList

class, and fully implemented by the ArrayList and

LinkedList classes.

Crossword Puzzle 151

CROSSWORD PUZZLE

1 2

3

4 5

6

7

8

9

10

www.CrosswordWeaver.com

ACROSS DOWN

5. Objects that allow the elements of Collection objects
 to be accessed in a consistent way without accessing the
 fields of the Collection class.

9. A class or interface identifier followed, in angle brackets,
 by a list of one or more class identifiers separated by
 commas.

10. A class whose purpose is to enable a primitive type to be
 represented by (that is, wrapped inside) a class.

1. A class in which each instance is a collection
 of elements.

2. The translation, by the compiler, of a wrapper
 object into its primitive value.

3. A generic programming technique that can be
 applied in a variety of situations.

4. The property by which an individual element in
 an array can be accessed without first accessing
 any of the other individual elements.

6. A dummy type that is enclosed in angle brackets
 in the declaration of a class or interface.

7. An object that is composed of elements.

8. In a linked collection, a special object that houses
 an element and at least one link to another entry.

www.CrosswordWeaver.com

152 CHAPTER 4 The Java Collections Framework

CONCEPT EXERCISES

4.1 What is a collection? What is a collection class? What is a Collection class? Give an example of a collection

that is not an instance of a collection class. Programming Project 4.1 has an example of a collection class that

is not a Collection class.

4.2 An array is a collection, even though there is no array class. But an array of objects can be converted into an

instance of the ArrayList class. Look in the file Arrays.java in the package java.util to determine the generic

algorithm (that is, static method) that converts an array of objects into an ArrayList of those objects. How

can that ArrayList then be printed without a loop?

4.3 .a. Identify each of the following as either an interface or a class:

Collection

LinkedList

Iterator

AbstractList

b. What is the difference between an interface and an abstract class?

c. Of what value is an abstract class? That is, to what extent can an abstract class make a programmer more

productive?

4.4 What is a list?

PROGRAMMING EXERCISES

4.1 For each of the following, create and initialize a parameterized instance, add two elements to the instance, and

then print out the instance:

a. an ArrayList object, scoreList, of Integer objects;

b. a LinkedList object, salaryList, of Double objects;

4.2 Develop a main method in which two ArrayList objects are created, one with String elements and one

with Integer elements. For each list, add three elements to the list, remove the element at index 1, add an

element at index 0, and print out the list.

4.3 Find an ArrayList method, other than a constructor, that is not also a method in the LinkedList class.

Find a LinkedList method, other than a constructor, that is not also a method in the ArrayList class.

4.4 Suppose we have the following:

LinkedList<String> team = new LinkedList<String> ();

team.add ("Garcia");

Iterator<String> itr = team.iterator();

Integer player = itr.next ();

What error message will be generated? When (at compile-time or at run-time)? Test your hypotheses.

4.5 Use the ArrayList class three times. First, create an ArrayList object, team1, with elements of type

String. Add three elements to team1. Second, create team2, another ArrayList object with elements of

type String. Add four elements to team2. Finally, create an ArrayList object, league, whose elements

are ArrayList objects in which each element is of type String. Add team1 and team2 to league.

Programming Exercises 153

Programming Project 4.1

Wear a Developer’s Hat and a User’s Hat

In this project, you will get to be a developer of a parameterized class, and then become a user of that class. To

start with, here are method specifications for the parameterized class, Sequence, with E the type parameter:

/**

* Initializes this Sequence object to be empty, with an initial capacity of ten

* elements.

*

*/

public Sequence()

/**

* Initializes this Sequence object to be empty, with a specified initial

* capacity.

*

* @param capacity – the initial capacity of this Sequence object.

*

* @throw IllegalArgumentException – if capacity is non-positive.

*

*/

public Sequence (int n)

/**

* Returns the number of elements in this Sequence object.

*

* @return the number of elements in this Sequence object.

*

*/

public int size()

/**

* Appends a specified element to this Sequence object.

*

* @param element – the element to be inserted at the end of this

* Sequence object.

*

*/

public void append (E element)

/**

* Returns the element at a specified index in this Sequence object.

* The worstTime(n) is constant, where n is the number of elements in this

* Sequence object.

*

* @param k – the index of the element returned.

(continued on next page)

154 CHAPTER 4 The Java Collections Framework

(continued from previous page)

*

* @return the element at index k in this Sequence object.

*

* @throws IndexOutOfBoundsException – if k is either negative or greater

* than or equal to the number of elements in this Sequence

* Sequence object.

*

*/

public E get (int k)

/**

* Changes the element at a specified index in this Sequence object.

* The worstTime(n) is constant, where n is the number of elements in this

* Sequence object.

*

* @param k – the index of the element returned.

* @param newElement – the element to replace the element at index k in

* this Sequence object.

*

* @throws IndexOutOfBoundsException – if k is either negative or greater

* than or equal to the number of elements in this Sequence

* object.

*

*/

public void set (int k, E newElement)

Part 1 Create unit tests based on the method specifications and stubs.

Part 2 Define the methods in the Sequence class.

Hint: use the following fields:

protected E [] data;

protected int size; // the number of elements in the Sequence, not the

// capacity of the data array

Note 1: for the append method, if the data array is currently full, its capacity must be increased before the new

element can be appended. See Programming Exercise 2.10 to see how to accomplish the expansion.

Note 2: for methods that may throw an exception, do not include catch blocks. Instead, the exception will be

propagated, so the handling can be customized for the application.

Part 3 Test the method definitions in your Sequence class.

Recursion CHAPTER 5

One of the skills that distinguish a novice programmer from an experienced one is an understanding

of recursion. The goal of this chapter is to give you a feel for situations in which a recursive method

is appropriate. Along the way you may start to see the power and elegance of recursion, as well as its

potential for misuse. Recursion plays a minor role in the Java Collections Framework: two of the sort

methods are recursive, and there are several recursive methods in the TreeMap class. But the value of

recursion extends far beyond these methods. For example, one of the applications of the Stack class

in Chapter 8 is the translation of recursive methods into machine code. The sooner you are exposed to

recursion, the more likely you will be able to spot situations where it is appropriate—and to use it.

CHAPTER OBJECTIVES

1. Recognize the characteristics of those problems for which recursive solutions may be

appropriate.

2. Compare recursive and iterative methods with respect to time, space, and ease of development.

3. Trace the execution of a recursive method with the help of execution frames.

4. Understand the backtracking design pattern.

5.1 Introduction

Roughly, a method is recursive if it contains a call to itself.1 From this description, you may initially fear

that the execution of a recursive method will lead to an infinite sequence of recursive calls. But under

normal circumstances, this calamity does not occur, and the sequence of calls eventually stops. To show

you how recursive methods terminate, here is the skeleton of the body of a typical recursive method:

if (simplest case)

solve directly

else

make a recursive call with a simpler case

This outline suggests that recursion should be considered whenever the problem to be solved has these

two characteristics;

1. The simplest case(s) can be solved directly.

2. Complex cases of the problem can be reduced to simpler cases of the same form as the original

problem.

1A formal definition of “recursive” is given later in this chapter.

155

156 CHAPTER 5 Recursion

Incidentally, if you are familiar with the Principle of Mathematical Induction, you may have observed that

these two characteristics correspond to the base case and inductive case, respectively. In case you are not

familiar with that principle, Section A2.5 of Appendix 2 is devoted to mathematical induction.

As we work through the following examples, do not be inhibited by old ways of thinking. As each

problem is stated, try to frame a solution in terms of a simpler problem of the same form. Think recursively!

5.2 Factorials

Given a positive integer n , the factorial of n , written n!, is the product of all integers between n and 1,

inclusive. For example,

4! = 4 ∗ 3 ∗ 2 ∗ 1 = 24

and

6! = 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 720

Another way to calculate 4! is as follows:

4! = 4 ∗ 3!

This formulation is not helpful unless we know what 3! is. But we can continue to calculate factorials in

terms of smaller factorials (Aha!):

3! = 3 ∗ 2!

2! = 2 ∗ 1!

Note that 1! Can be calculated directly; its value is 1. Now we work backwards to calculate 4!:

2! = 2 ∗ 1! = 2 ∗ 1 = 2

3! = 3 ∗ 2! = 3 ∗ 2 = 6

Finally, we get

4! = 4 ∗ 3! = 4 ∗ 6 = 24

For n > 1, we reduce the problem of calculating n! to the problem of calculating (n − 1)!. We stop

reducing when we get to 1!, which is simply 1. For the sake of completeness2, we define 0! to be 1.

There is a final consideration before we specify, test and define the factorial method: what about

exceptions? If n is less than zero, we should throw an exception—IllegalArgumentException is

appropriate. And because n! is exponential in n , the value of n! will be greater than Long.MAX_VALUE

for not-very-large values of n . In fact, 21!> Long.MAX_VALUE, so we should also throw IllegalArgum

entException for n > 20.

Here is the method specification:

/**

* Calculates the factorial of a non-negative integer, that is, the product of all

* integers between 1 and the given integer, inclusive. The worstTime(n) is O(n),

2The calculation of 0! occurs in the study of probability: The number of combinations of n things taken k at a time is calculated as n!/(k ! (n

− k)!). When n = k , we get n!/(n!) (0!), which has the value 1 because 0! = 1. And note that 1 is the number of combinations of n things

taken n at a time.

5.2 Factorials 157

* where n is the given integer.

*

* @param n the integer whose factorial is calculated.

*

* @return the factorial of n

*

* @throws IllegalArgumentException if n is less than 0 or greater than 20 (note

* that 21! > Long.MAX_VALUE).

*

*/

public static long factorial (int n)

Note that factorial has a static modifier in its heading (see Section 2.1 in Chapter 2). Why? All

the information needed by the method is provided by the parameter, and the only effect of a call to the

method is the value returned. So a calling object would neither affect nor be affected by an invocation

of the method. As noted in Chapter 2, we adhere to the test-first model. So the test class, based on the

method specification only, is developed before the method itself is defined. Here is the test class, with

special emphasis on boundary conditions, and including the usual stub within the test class itself:

import org.junit.*;

import static org.junit.Assert.*;

import org.junit.runner.Result;

import static org.junit.runner.JUnitCore.runClasses;

import java.util.*;

public class FactorialTest

{

public static void main(String[] args)

{

Result result = runClasses (FactorialTest.class);

System.out.println ("Tests run = " + result.getRunCount() +

"\nTests failed = " + result.getFailures());

} // method main import org.junit.*;

@Test

public void factorialTest1()

{

assertEquals (24, factorial (4));

} // method factorialTest1

@Test

public void factorialTest2()

{

assertEquals (1, factorial (0));

} // method factorialTest2

@Test

158 CHAPTER 5 Recursion

public void factorialTest3()

{

assertEquals (1, factorial (1));

} // method factorialTest3

@Test

public void factorialTest4()

{

assertEquals (2432902008176640000L, factorial (20));

} // method factorialTest4

@Test (expected = IllegalArgumentException.class)

public void factorialTest5()

{

factorial (21);

} // method factorialTest5

@Test (expected = IllegalArgumentException.class)

public void factorialTest6 ()

{

factorial (-1);

} // method factorialTest6

public static long factorial (int n)

{

throw new UnsupportedOperationException();

} // method factorial

} // class FactorialTest

As expected, all tests of the factorial method failed.

We now define the factorial method. For the sake of efficiency, checking for values of n less than

0 or greater than 20 should be done just once, instead of during each recursive call. To accomplish this,

we will define a wrapper method that throws an exception for out-of-range values of n , and (otherwise)

calls a recursive method to actually calculate n!. Here are the method definitions.

public static long factorial (int n)

{

final int MAX_INT = 20; // because 21! > Long.MAX_VALUE

final String ERROR_MESSAGE = "The value of n must be >= 0 and <= " +

Integer.toString (MAX_INT);

if (n < 0 || n > MAX_INT)

throw new IllegalArgumentException (ERROR_MESSAGE);

return fact (n);

} // method factorial

5.2 Factorials 159

/**

* Calculates n!.

*

* @param n the integer whose factorial is calculated.

*

* @return n!.

*

*/

protected static long fact (int n)

{

if (n <= 1)

return 1;

return n * fact (n - 1);

} // method fact

The testing of the wrapper method, factorial, incorporates the testing of the wrapped method, fact.

The book’s website has similar test classes for all recursive functions in this chapter.

Within the method fact, there is a call to the method fact, and so fact, unlike factorial, is a

recursive method. The parameter n has its value reduced by 1 with each recursive call. But after the final

call with n = 1, the previous values of n are needed for the multiplications. For example, when n = 4,

the calculation of n * fact (n - 1) is postponed until the call to fact (n - 1) is completed. When

this finally happens and the value 6 (that is, fact (3)) is returned, the value of 4 for n must be available

to calculate the product.

Somehow, the value of n must be saved when the call to fact (n - 1) is made. That value must

be restored after the call to fact (n - 1) is completed so that the value of n * fact (n - 1) can be

calculated. The beauty of recursion is that the programmer need not explicitly handle these savings and

restorings; the compiler and computer do the work.

5.2.1 Execution Frames

The trace of a recursive method can be illustrated through execution frames : boxes that contain information

related to each invocation of the method. Each execution frame includes the values of parameters and

other local variables. Each frame also has the relevant part of the recursive method’s code—especially the

recursive calls, with values for the arguments. When a recursive call is made, a new execution frame will

be constructed on top of the current one; this new frame is destroyed when the call that caused its creation

has been completed. A check mark indicates either the statement being executed in the current frame or the

statement, in a previous frame, whose recursive call created (immediately or eventually) the current frame.

At any time, the top frame contains information relevant to the current execution of the recursive

method. For example, here is a step-by-step, execution-frame trace of the fact method after an initial call

of fact (4):

The analysis of the fact method is fairly clear-cut. The execution-time requirements correspond to

the number of recursive calls. For any argument n, there will be exactly n - 1 recursive calls. During each

recursive call, the if statement will be executed in constant time, so worstTime(n) is linear in n . Recursive

methods often have an additional cost in terms of memory requirements. For example, when each recursive

call to fact is made, the return address and a copy of the argument are saved. So worstSpace (n) is also

linear in n .

160 CHAPTER 5 Recursion

Step 0:

Frame 0

Step 1:

Frame 1

Frame 0

Step 2:

Frame 2

n = 4

� return 4 * fact(3);

n = 4

� return 4 * fact(3);

n = 3

� return 3 * fact(2);

n = 2

� return 2 * fact(1);

Frame 1

Frame 0

Step 3:

Frame 3

1

Frame 2

Frame 1

Frame 0

n = 4

� return 4 * fact(3);

n = 3

� return 3 * fact(2);

n = 4

� return 4 * fact(3);

n = 3

� return 3 * fact(2);

n = 2

� return 2 * fact(1);

n = 1

� return 1;

5.2 Factorials 161

Step 4:

Frame 2

2

n = 2

� return 2 *(1);

Frame 1

Frame 0

Step 5:

Frame 1

6

Frame 0

Step 6:

Frame 0

24

n = 4

� return 4 * fact(3);

n = 3

� return 3 * fact(2);

n = 4

� return 4 * fact(3);

n = 3

� return 3 * 2;

n = 4

� return 4 * 6;

Recursion can often make it easier for us to solve problems, but any problem that can be solved

recursively can also be solved iteratively. An iterative method is one that has a loop instead of a recursive

call. For example, here is an iterative method to calculate factorials. No wrapper method is needed because

there are no recursive calls.

/**

* Calculates the factorial of a non-negative integer, that is, the product of all

* integers between 1 and the given integer, inclusive. The worstTime(n) is O(n),

* where n is the given integer.

*

* @param n the non-negative integer whose factorial is calculated.

*

* @return the factorial of n

*

* @throws IllegalArgumentException if n is less than 0 or greater than 20 (note

* that 21! > Long.MAX_VALUE).

162 CHAPTER 5 Recursion

*

*/

public static long factorial (int n)

{

final int MAX_INT = 20; // because 21! > Long.MAX_VALUE

final String ERROR_MESSAGE = "The value of n must be >= 0 and <= " +

Integer.toString (MAX_INT);

if (n < 0 || n > MAX_INT)

throw new IllegalArgumentException (ERROR_MESSAGE);

long product = n;

if (n == 0)

return 1;

for (int i = n-1; i > 1; i–)

product = product * i;

return product;

} // method factorial

This version of factorial passed all of the tests in FactorialTest. For this version of factorial,

worstTime(n) is linear in n , the same as for the recursive version. But no matter what value n has, only

three variables (n, product and i) are allocated in a trace of the iterative version, so worstSpace(n)

is constant, versus linear in n for the recursive version. Finally, the iterative version follows directly

from the definition of factorials, whereas the recursive version represents your first exposure to a new

problem-solving technique, and that takes some extra effort.

So in this example, the iterative version of the factorial method is better than the recursive

version. The whole purpose of the example was to provide a simple situation in which recursion was

worth considering, even though we ultimately decided that iteration was better. In the next example, an

iterative alternative is slightly less appealing.

5.3 Decimal to Binary

Humans count in base ten, possibly because we were born with ten fingers. Computers count in base two

because of the binary nature of electronic switches. One of the tasks a computer performs is to convert from

decimal (base ten) to binary (base two). Let’s develop a method to solve a simplified version of this problem:

Given a nonnegative integer n , determine its binary equivalent.

For example, if n is 25, the binary equivalent is 11001 = 1 * 24 + 1 * 23 + 0 * 22 + 0 * 21 + 1 * 20.

For a large int value such as one billion, the binary equivalent will have about 30 bits. But 30 digits of

zeros and ones are too big for an int or even a long. So we will store the binary equivalent in a String

object. The method specification is:

/**

*

* Determines the binary equivalent of a non-negative integer. The worstTime(n)

* is O(log n), where n is the given integer.

5.3 Decimal to Binary 163

*

* @param n the non-negative integer, in decimal notation.

*

* @return a String representation of the binary equivalent of n.

*

* @throws IllegalArgumentException if n is negative.

*/

public static String getBinary (int n)

The test class for this method can be found on the book’s website, and includes the following test:

@Test (expected = IllegalArgumentException.class)

public void getBinaryTest5()

{

getBinary (-1);

} // method getBinaryTest5

There are several approaches to solving this problem. One of them is based on the following

observation:

The rightmost bit has the value of n % 2 ; the other bits are the binary equivalent of n/2. (Aha!)

For example, if n is 12, the rightmost bit in the binary equivalent of n is 12% 2, namely, 0; the remaining

bits are the binary equivalent of 12/2, that is, the binary equivalent of 6. So we can obtain all the bits as

follows:

12 / 2 = 6; 12 % 2 = 0

6 / 2 = 3; 6 % 2 = 0

3 / 2 = 1; 3 % 2 = 1

1

When the quotient is 1, the binary equivalent is simply 1. We concatenate (that is, join together) these bits

from the bottom up, so that the rightmost bit will be joined last. The result would then be

1100

The following table graphically illustrates the effect of calling getBinary (12):

n n / 2 n % 2 Result

12

6

3
1

6

3

1

0

0

1

1
1
0
0

164 CHAPTER 5 Recursion

This discussion suggests that we must perform all of the calculations before we return the result. Speaking

recursively, we need to calculate the binary equivalent of n/2 before we append the value of n % 2. In

other words, we need to append the result of n % 2 to the result of the recursive call.

We will stop when n is 1 or 0, and 0 will occur only if n is initially 0. As we did in Section 5.2,

we make getBinary a wrapper method for the recursive getBin method. The method definitions are:

public static String getBinary (int n)

{

if (n < 0)

throw new IllegalArgumentException();

return getBin (n);

} // method getBinary

public static String getBin (int n)

{

if (n <= 1)

return Integer.toString (n);

return getBin (n / 2) + Integer.toString (n % 2);

} // method getBin

We are assured that the simple case of n <= 1 will eventually be reached because in each execution of

the method, the argument to the recursive call is at most half as big as the method parameter’s value.

Here is a step-by-step, execution-frame trace of the getBin method after an initial call of getBin

(12):

The final value returned is the string:

1100

And that is the binary equivalent of 12.

As we noted earlier, the order of operands in the String expression of the last return statement

in getBin enables us to postpone the final return until all of the bit values have been calculated. If the

order had been reversed, the bits would have been returned in reverse order. Recursion is such a powerful

tool that the effects of slight changes are magnified.

Step 0:

Frame 0

Step 1:

n = 12

� return getBin (6) + Integer.toString (0);

Frame 1

Frame 0
n = 12

� return getBin (6) + Integer.toString (0);

n = 6

� return getBin (3) + Integer.toString (0);

5.3 Decimal to Binary 165

Step 2:

Frame 2

Frame 1

Frame 0

n = 3

� return getBin (1) + Integer.toString (1);

n = 12

� return getBin (6) + Integer.toString (0);

n = 6

� return getBin (3) + Integer.toString (0);

Step 3:

Frame 3

“1”

Frame 2

n = 1

� return “1”;

n = 3

� return getBin (1) + Integer.toString (1);

Frame 1

Frame 0

Step 4:

Frame 2

“11”

Frame 1

n = 12

� return getBin (6) + Integer.toString (0);

n = 6

� return getBin (3) + Integer.toString (0);

n = 6

� return getBin (3) + Integer.toString (0);

n = 3

� return “1” + Integer.toString (1);

166 CHAPTER 5 Recursion

Frame 0

Step5:

Frame 1

“110”

Frame 0

Step 6:

Frame 0

“1100”

n = 12

� return getBin (6) + Integer.toString (0);

n = 12

� return getBin (6) + Integer.toString (0);

n = 6

� return “11” + Integer.toString (0);

n = 12

� return “110” + Integer.toString (0);

As usually happens with recursive methods, the time and space requirements for getBin are esti-

mated by the number of recursive calls. The number of recursive calls is the number of times that n can

be divided by 2 until n equals 1. As we saw in Section 3.1.2 of Chapter 3, this value is floor(log2 n), so

worstTime(n) and worstSpace(n) are both logarithmic in n .

A user can call the getBinary method from the following run method (in a BinaryUser class

whose main method simply calls new BinaryUser().run()):

public static void run()

{

final int SENTINEL = -1;

final String INPUT_PROMPT =

"\nPlease enter a non-negative base-10 integer (or " +

SENTINEL + " to quit): ";

final String RESULT_MESSAGE = "The binary equivalent is ";

Scanner sc = new Scanner (System.in);

int n;

while (true)

{

try

{

5.4 Towers of Hanoi 167

System.out.print (INPUT_PROMPT);

n = sc.nextInt();

if (n == SENTINEL)

break;

System.out.println (RESULT_MESSAGE + getBinary (n));

} // try

catch (Exception e)

{

System.out.println (e);

sc.nextLine();

}// catch Exception

}// while

} // method run

You are invited to develop an iterative version of the getBinary method. (See Programming Exercise 5.2.)

After you have completed the iterative method, you will probably agree that it was somewhat harder to

develop than the recursive method. This is typical, and probably obvious: recursive solutions usually flow

more easily than iterative solutions to those problems for which recursion is appropriate. Recursion is

appropriate when larger instances of the problem can be reduced to smaller instances that have the same

form as the larger instances.

You are now prepared to do Lab 7: Fibonacci Numbers

For the next problem, an iterative solution is much harder to develop than a recursive solution.

5.4 Towers of Hanoi

In the Towers of Hanoi game, there are three poles, labeled ‘A’, ‘B’ and ‘C’, and several, different-sized,

numbered disks, each with a hole in the center. Initially, all of the disks are on pole ‘A’, with the largest

disk on the bottom, then the next largest, and so on. Figure 5.1 shows the initial configuration if we started

with four disks, numbered from smallest to largest.

1
2

3
4

A B C

FIGURE 5.1 The starting position for the Towers of Hanoi game with four disks

The object of the game is to move all of the disks from pole ‘A’ to pole ‘B’; pole ‘C’ is used for

temporary storage3. The rules of the game are:

1. Only one disk may be moved at a time.

2. No disk may ever be placed on top of a smaller disk.

3. Other than the prohibition of rule 2, the top disk on any pole may be moved to either of the other

two poles.

3In some versions, the goal is to move the disks from pole ‘A’ to pole ‘C’, with pole ‘B’ used for temporary storage.

168 CHAPTER 5 Recursion

1
2

4 3
A B C

FIGURE 5.2 The game configuration for the Towers of Hanoi just before moving disk 4 from pole ‘A’ to pole

‘B’

We will solve this problem in the following generalization: Show the steps to move n disks from an origin

pole to a destination pole, using the third pole as a temporary. Here is the method specification for this

generalization:

/**

* Determines the steps needed to move n disks from an origin to a destination.

* The worstTime(n) is O(2n).

*

* @param n the number of disks to be moved.

* @param orig the pole where the disks are originally.

* @param dest the destination pole

* @param temp the pole used for temporary storage.

*

* @return a String representation of the moves needed, where each

* move is in the form "Move disk ? from ? to ?\n".

*

* @throws IllegalArgumentException if n is less than or equal to 0.

*/

public static String moveDisks (int n, char orig, char dest, char temp)

The test class for moveDisks can be found on the book’s website, and includes the following test:

@Test

public void moveDisksTest1()

{

assertEquals ("Move disk 1 from A to B\nMove disk 2 from A to C\n" +

"Move disk 1 from B to C\nMove disk 3 from A to B\n" +

"Move disk 1 from C to A\nMove disk 2 from C to B\n" +

"Move disk 1 from A to B\n", moveDisks (3, 'A', 'B', 'C'));

} // method moveDisksTest1

Let’s try to play the game with the initial configuration given in Figure 5.1. We are immediately faced

with a dilemma: Do we move disk 1 to pole ‘B’ or to pole ‘C’? If we make the wrong move, we may

end up with the four disks on pole ‘C’ rather than on pole ‘B’.

Instead of trying to figure out where disk 1 should be moved initially, we will focus our attention

on disk 4, the bottom disk. Of course, we can’t move disk 4 right away, but eventually, disk 4 will have

to be moved from pole ‘A’ to pole ‘B’. By the rules of the game, the configuration just before moving

disk 4 must be as shown in Figure 5.2.

Does this observation help us to figure out how to move 4 disks from ‘A’ to ‘B’? Well, sort of. We

still need to determine how to move three disks (one at a time) from pole ‘A’ to pole ‘C’. We can then

move disk 4 from ‘A’ to ‘B’. Finally, we will need to determine how to move three disks (one at a time)

from ‘C’ to ‘B’.

5.4 Towers of Hanoi 169

The significance of this strategy is that we have reduced the problem from figuring how to move four

disks to one of figuring how to move three disks. (Aha!) We still need to determine how to move three

disks from one pole to another pole.

But the above strategy can be re-applied. To move three disks from, say, pole ‘A’ to pole ‘C’, we

first move two disks (one at a time) from ‘A’ to ‘B’, then we move disk 3 from ‘A’ to ‘C’, and finally,

we move two disks from ‘B’ to ‘C’. Continually reducing the problem, we eventually face the trivial task

of moving disk 1 from one pole to another.

There is nothing special about the number 4 in the above approach. For any positive integer n we

can describe how to move n disks from pole ‘A’ to pole ‘B’: if n = 1, we simply move disk 1 from pole

‘A’ to pole ‘B’. For n > 1,

1. First, move n − 1 disks from pole ‘A’ to pole ‘C’, using pole ‘B’ as a temporary.

2. Then move disk n from pole ‘A’ to pole ‘B’.

3. Finally, move n − 1 disks from pole ‘C’ to pole ‘B’, using pole ‘A’ as a temporary.

This does not quite solve the problem because, for example, we have not described how to move n − 1

disks from ‘A’ to ‘C’. But our strategy is easily generalized by replacing the constants ‘A’, ‘B’, and ‘C’

with variables origin, destination , and temporary . For example, we will initially have

origin = 'A'

destination = 'B'

temporary = 'C'

Then the general strategy for moving n disks from origin to destination is as follows:

If n is 1, move disk 1 from origin to destination .

Otherwise,

1. Move n − 1 disks (one at a time) from origin to temporary ;

2. Move disk n from origin to destination;

3. Move n − 1 disks (one at a time) from temporary to destination .

The following recursive method incorporates the above strategy for moving n disks. If n = 1, the String

representing the move, namely, "Move disk 1 from " + orig + " to " + dest + "\n" is simply

returned. Otherwise, the String object returned consists of three String objects concatenated together,

namely, the strings returned by

move (n - 1, orig, temp, dest)

"Move disk " + n + " from " + orig + " to " + dest + "\n"

move (n - 1, temp, dest, orig)

When the final return is made, the return value is the complete sequence of moves. This String object

can then be printed to the console window, to a GUI window, or to a file. For the sake of efficiency, the

test for n ≤ 0 is made—once—in a wrapper method moveDisks that calls the move method. Here is the

method specification for moveDisks:

/**

* Determines the steps needed to move disks from an origin to a destination.

* The worstTime(n) is O(2n).

*

* @param n the number of disks to be moved.

170 CHAPTER 5 Recursion

* @param orig the pole where the disks are originally.

* @param dest the destination pole

* @param temp the pole used for temporary storage.

*

* @return a String representation of the moves needed.

*

* @throws IllegalArgumentException if n is less than or equal to 0.

*/

public static String moveDisks (int n, char orig, char dest, char temp)

The test class for moveDisks can be found on the book’s website. The definitions of moveDisks and

move are as follows:

public static String moveDisks (int n, char orig, char dest, char temp)

{

if (n <= 0)

throw new IllegalArgumentException();

return move (n, orig, dest, temp);

} // method moveDisks

/**

* Determines the steps needed to move disks from an origin to a destination.

* The worstTime(n) is O(2n).

*

* @param n the number of disks to be moved.

* @param orig the pole where the disks are originally.

* @param dest the destination pole

* @param temp the pole used for temporary storage.

*

* @return a String representation of the moves needed.

*

*/

public static String move (int n, char orig, char dest, char temp)

{

final String DIRECT_MOVE =

"Move disk " + n + " from " + orig + " to " + dest + "\n";

if (n == 1)

return DIRECT_MOVE;

String result = move (n - 1, orig, temp, dest);

result += DIRECT_MOVE;

result += move (n - 1, temp, dest, orig);

return result;

} // method move

It is difficult to trace the execution of the move method because the interrelationship of parameter and

argument values makes it difficult to keep track of which pole is currently the origin, which is the

destination and which is the temporary. In the following execution frames, the parameter values are the

argument values from the call, and the argument values for subsequent calls come from the method code

and the current parameter values. For example, suppose the initial call is:

move (3, 'A', 'B', 'C');

5.4 Towers of Hanoi 171

Then the parameter values at step 0 will be those argument values, so we have:

n = 3

orig = 'A'

dest = 'B'

temp = 'C'

Because n is not equal to 1, the recursive part is executed:

String result = move (n - 1, orig, temp, dest);

result += DIRECT_MOVE;

result += move (n - 1, temp, dest, orig);

return result;

The values of those arguments are obtained from the parameters’ values, so the statements are

equivalent to:

String result = move (2, 'A', 'C', 'B');

result = "Move disk 3 from A to B\n";

result = move (2, 'C', 'B', 'A');

return result;

Make sure you understand how to obtain the parameter values and argument values before you try to

follow the trace given below.

Here is a step-by-step, execution-frame trace of the move method when the initial call is:

move (3, 'A', 'B', 'C');

value of result

Step 0:

n = 3

orig = 'A'

dest = 'B'

temp = 'C'

result += move (2,'C','B','A');

�String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";

return result;

Step 1:

n = 2

orig = 'A'

dest = 'C'

temp = 'B'

result += move (1,'B','C','A');

�String result = move (1, 'A', 'B', 'C');

result += "Move disk 2 from A to C\n";

return result;

172 CHAPTER 5 Recursion

n = 3

orig = 'A'

dest = 'B'

temp = 'C'

result += move (2,'C','B','A');

�String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";

return result;

Step 3:

n = 2

orig = 'A'

dest = 'C'

temp = 'B'

result += move (1,'B','C','A');

String result = move (1, 'A', 'B', 'C');

�result += "Move disk 2 from A to C\n";

return result;

Move disk 1 from A to B

Move disk 2 from A to C

Step 2:

Move disk 1 from A to B

n = 2

orig = 'A'

dest = 'C'

temp = 'B'

�

n = 1

orig = 'A'

dest = 'B'

temp = 'C'

� return "Move disk 1 from A to B\n";

String result = move (1, 'A', 'B', 'C');

result += "Move disk 2 from A to C\n";

result += move (1, 'B', 'C', 'A');

return result;

n = 3

orig = 'A'

dest = 'B'

temp = 'C'

result += move (2,'C','B','A');

�String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";

return result;

5.4 Towers of Hanoi 173

Step 5:

n = 2

orig = 'A'

dest = 'C'

temp = 'B'

�result += move (1,'B','C','A');

String result = move (1, 'A', 'B', 'C');

result += "Move disk 2 from A to C\n";

return result;

n = 1

orig = 'B'

dest = 'C'

temp = 'A'

� return "Move disk 1 from B to C\n";

Move disk 1 from A to B

Move disk 2 from A to C

Move disk 1 from B to C

Step 4:

n = 3

orig = 'A'

dest = 'C'

temp = 'B'

�String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";

result += move (2, 'C', 'B', 'A');

return result;

n = 2

orig = 'A'

dest = 'C'

temp = 'B'

String result = move (1, 'A', 'B', 'C');

result += "Move disk 2 from A to C\n";

�result += move (1, 'B', 'C', 'A');

return result;

n = 3

orig = 'A'

dest = 'B'

temp = 'C'

result += move (2,'C','B','A');

�String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";

return result;

174 CHAPTER 5 Recursion

Step 8:

n = 2

orig = 'C'

dest = 'B'

temp = 'A'

result += move (1,'A','B','C');

�String result = move (1, 'C', 'A', 'B');

result += "Move disk 2 from C to B";

return result;

n = 3

orig = 'A'

dest = 'B'

temp = 'C'

�result += move (2,'C','B','A');

String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";

return result;

Step 6:

n = 3

orig = 'A'

dest = 'B'

temp = 'C'

String result = move (2, 'A', 'C', 'B');

�result += "Move disk 3 from A to B\n";

result += move (2, 'C', 'B', 'A');

return result;

Move disk 1 from A to B

Move disk 2 from A to C

Move disk 1 from B to C

Move disk 3 from A to B

Step 7:

n = 3

orig = 'A'

dest = 'B'

temp = 'C'

String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";

�result += move (2, 'C', 'B', 'A');

return result;

n = 3

orig = 'A'

dest = 'B'

temp = 'C'

result += move (2,'C','B','A');

�String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";

return result;

5.4 Towers of Hanoi 175

Step 10:

Move disk 1 from A to B

Move disk 2 from A to C

Move disk 1 from B to C

Move disk 3 from A to B

Move disk 1 from C to A

Move disk 1 from C to B

n = 2

orig = 'C'

dest = 'B'

temp = 'A'

result += move (1,'A','B','C');

String result = move (1, 'C', 'A', 'B');

�result += "Move disk 2 from C to B\n";

return result;

n = 3

orig = 'A'

dest = 'B'

temp = 'C'

�result += move (2,'C','B','A');

String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";

return result;

n = 2

orig = 'C'

dest = 'B'

temp = 'A'

�String result = move (1, 'C', 'A', 'B');

result += "Move disk 2 from C to B\n";

result += move (1, 'A', 'B', 'C');

return result;

Move disk 1 from A to B

Move disk 2 from A to C

Move disk 1 from B to C

Move disk 3 from A to B

Move disk 1 from C to A

n = 3

orig = 'A'

dest = 'B'

temp = 'C'

String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";

�result += move (2, 'C', 'B', 'A');

return result;

Step 9:

orig = 'C'

dest = 'A'

temp = 'B'

�return "Move disk 1 from C to A\n";

n = 1

176 CHAPTER 5 Recursion

Move disk 1 from A to B

Move disk 2 from A to C

Move disk 1 from B to C

Move disk 3 from A to B

Move disk 1 from C to A

Move disk 2 from C to B

Move disk 1 from A to B

n = 2

orig = 'C'

dest = 'B'

temp = 'A'

�result += move (1,'A','B','C');

String result = move (1, 'C', 'A', 'B');

result += "Move disk 2 from C to B\n";

return result;

n = 3

orig = 'A'

dest = 'B'

temp = 'C'

�result += move (2,'C','B','A');

String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";

return result;

Step 12:

orig = 'A'

dest = 'B'

temp = 'C'

� "Move disk 1 from A to B\n";

n = 3

orig = 'A'

dest = 'B'

temp = 'C'

String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";

�result += move (2, 'C', 'B', 'A');

return result;

n = 1

Step 11:

n = 2

orig = 'C'

dest = 'B'

temp = 'A'

String result = move (1, 'C', 'A', 'B');

result += "Move disk 2 from C to B\n";

�result += move (1, 'A', 'B', 'C');

return result;

5.4 Towers of Hanoi 177

Notice the disparity between the relative ease in developing the recursive method and the rela-

tive difficulty in tracing its execution. Imagine what it would be like to trace the execution of move

(15,'A','B','C'). Fortunately, you need not undergo such torture. Computers handle this type of

tedious detail very well. You “merely” develop the correct program and the computer handles the execu-

tion. For the move method—as well as for the other recursive methods in this chapter—you can actually

prove the correctness of the method. See Exercise 5.5.

The significance of ensuring the precondition (see the @throws specification) is illustrated in the

move method. For example, let’s see what would happen if no exception were thrown and move were

called with 0 as the first argument. Since n would have the value 0, the condition of the if statement would

be false, and there would be a call to move (-1,...). Within that call, n would still be unequal to 1, so

there would be a call to move (-2,...) then to move (-3,....), move (-4,...), move (-5,...),

and so on. Eventually, saving all those copies of n would overflow an area of memory called the stack . This

phenomenon known is as infinite recursion . A StackOverflowError—not an exception—is generated,

and the execution of the project terminates. In general, infinite recursion is avoided if each recursive call

makes progress toward a “simplest” case. And, just to be on the safe side, the method should throw an

exception if the precondition is violated.

A recursive method does not explicitly describe the considerable detail involved in its execution.

For this reason, recursion is sometimes referred to as “the lazy programmer’s problem-solving tool.” If

you want to appreciate the value of recursion, try to develop an iterative version of the move method.

Programming Project 5.1 provides some hints.

5.4.1 Analysis of the move Method

What about worstTime(n)? In determining the time requirements of a recursive method, the number of

calls to the method is of paramount importance. To get an idea of the number of calls to the move method,

look at the tree in Figure 5.3.

As illustrated in Figure 5.3, the first call to the move method has n as the first argument. During that

call, two recursive calls to the move method are made, and each of those two calls has n - 1 as the first

move (n, ...)

move (n-1, ...)

move (n-2, ...)

...

move (n-2, ...)

move (1, ...) move (1, ...) ...

move (n-2, ...) move (n-2, ...)

move (n-1, ...)

FIGURE 5.3 A schematic of the number of calls to the move method

178 CHAPTER 5 Recursion

argument. From each of those calls, we get two more calls to move, and each of those four calls has n - 2

as the first argument. This process continues until, finally, we get calls with 1 as the first argument.

To calculate the total number of calls to the move method, we augment the tree in Figure 5.3 by

identifying levels in the tree, starting with level 0 at the top, and include the number of calls at each level.

At level 0, the number of calls is 1(= 20). At level 1, the number of calls is 2 (= 21). In general, at level

k there are 2k calls to the move method. Because there are n levels in the tree and the top is level 0, the

bottom must be level n − 1, where there are 2n−1 calls to the move method. See Figure 5.4.

From Figure 5.4, we see that the total number of calls to the move method is

20 + 21 + 22 + 23 + ... + 2n−1 =

n−1
∑

k=0

2k

By Example A2.6 in Appendix 2, this sum is equal to 2n − 1. That is, the number of calls to the move

method is 2n − 1. We conclude that, for the move method, worstTime(n) is exponential in n; specifically,

worstTime(n) is �(2n). In fact, since any definition of the move method must return a string that has

2n − 1 lines, the Towers of Hanoi problem is intractable. That is, any solution to the Towers of Hanoi

problem must take exponential time.

The memory requirements for move are modest because although space is allocated when move is

called, that space is deallocated when the call is completed. So the amount of additional memory needed

for move depends, not simply on the number of calls to move, but on the maximum number of started-

but-not-completed calls. We can determine this number from the execution frames. Each time a recursive

call is made, another frame is constructed, and each time a return is made, that frame is destroyed. For

example, if n = 3 in the original call to move, then the maximum number of execution frames is 3. In

general, the maximum number of execution frames is n. So worstSpace(n) is linear in n .

We now turn our attention to a widely known search technique: binary search. We will develop a

recursive method to perform a binary search on an array. Lab 9 deals with the development of an iterative

version of a binary search.

move (n, ...)

move (n-1, ...)

move (n-2, ...)

...

move (n-2, ...)

move (1, ...) move (1, ...) ...

move (n-2, ...) move (n-2, ...)

move (n-1, ...)

level # of calls

0 20

1 21

2 22

n-1 2n−1

FIGURE 5.4 The relationship between level and number of calls to the move method in the tree from Figure 5.3

5.5 Searching an Array 179

5.5 Searching an Array

Suppose you want to search an n-element array for an element. We assume that the element class imple-

ments the Comparable<T> interface (in java.lang):

public interface Comparable<T>

{

/**

* Returns an int less than, equal to or greater than 0, depending on

* whether the calling object is less than, equal to or greater than a

* specified object.

*

* @param obj – the specified object that the calling object is compared to.

*

* @return an int value less than, equal to, or greater than 0, depending on

* whether the calling object is less than, equal to, or greater than

* obj, respectively.

*

* @throws ClassCastException – if the calling object and obj are not in the

* same class.

*

*/

public int compareTo(T obj)

} // interface Comparable<T>

For example, the String class implements the Comparable<String> interface, so we can write the

following:

String s = "elfin";

System.out.println (s.compareTo ("elastic"));

The output will be greater than 0 because “elfin” is lexicographically greater than “elastic”; in other

words, “elfin” comes after “elastic” according to the Unicode values of the characters in those two strings.

Specifically, the ‘f” in “elfin” comes after the ‘a’ in “elastic”.

The simplest way to conduct the search is sequentially: start at the first location, and keep checking

successively higher locations until either the element is found or you reach the end of the array. This

search strategy, known as a sequential search , is the basis for the following generic algorithm (that is,

static method):

/**

* Determines whether an array contains an element equal to a given key.

* The worstTime(n) is O(n).

*

* @param a the array to be searched.

* @param key the element searched for in the array a.

*

* @return the index of an element in a that is equal to key, if such an element

* exists; otherwise, -1.

*

* @throws ClassCastException, if the element class does not implement the

* Comparable interface.

180 CHAPTER 5 Recursion

*

*/

public static int sequentialSearch (Object[] a, Object key)

{

for (int i = 0; i < a.length; i++)

if (((Comparable) a [i]).compareTo (key) == 0)

return i;

return -1;

} // sequentialSearch

Because the element type of the array parameter is Object, the element type of the array argument can be

any type. But within the sequentialSearch method, the compiler requires that a [i] must be cast to

a type that implements the Comparable<Object> interface. For the sake of simplicity, we use the “raw”

type Comparable instead of the equivalent Comparable<Object>.

The sequentialSearch method is not explicitly included in the Java Collections Framework. But

it is the basis for several of the method definitions in the ArrayList and LinkedList classes, which are

in the framework.

For an unsuccessful sequential search of an array, the entire array must be scanned. So both

worstTime(n) and averageTime(n) are linear in n for an unsuccessful search. For a successful sequen-

tial search, the entire array must be scanned in the worst case. In the average case, assuming each location

is equally likely to house the element sought, we probe about n/2 elements. We conclude that for a

successful search, both worstTime(n) and averageTime(n) are also linear in n .

Can we improve on these times? Definitely. In this section we will develop an array-based search

technique for which worstTime(n) and averageTime(n) are only logarithmic in n . And in Chapter 14,

we will encounter a powerful search technique—hashing—for which averageTime(n) is constant, but

worstTime(n) is still linear in n .

Given an array to be searched and a value to be searched for, we will develop a binary search, so

called because the size of the region searched is divided by two at each stage until the search is completed.

Initially, the first index in the region is index 0, and the last index is at the end of the array. One important

restriction is this: A binary search requires that the array be sorted .

We assume, as above, that the array’s element class implements the Comparable interface.

Here is the method specification, identical to one in the Arrays class in the package java.util:

/**

* Searches the specified array for the specified object using the binary

* search algorithm. The array must be sorted into ascending order

* according to the <i>natural ordering</i> of its elements (as by

* <tt>Sort(Object[]</tt>), above) prior to making this call. If it is

* not sorted, the results are undefined. If the array contains multiple

* elements equal to the specified object, there is no guarantee which

* one will be found. The worstTime(n) is O(log n).

*

* @param a the array to be searched.

* @param key the value to be searched for.

*

* @return index of the search key, if it is contained in the array;

* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The

* <i>insertion point</i> is defined as the point at which the

* key would be inserted into the array: the index of the first

* element greater than the key, or <tt>a.length</tt>, if all

* elements in the array are less than the specified key. Note

5.5 Searching an Array 181

* that this guarantees that the return value will be >= 0 if

* and only if the key is found.

*

* @throws ClassCastException if the array contains elements that are not

* <i>mutually comparable</i> (for example, strings and integers),

* or the search key in not mutually comparable with the elements

* of the array.

* @see Comparable

* @see #sort(Object[])

*/

public static int binarySearch (Object[] a, Object key)

In javadoc, the html tag <tt> signifies code, <i> signifies italics, and > signifies the greater than

symbol, ‘>’. The symbol ‘>’ by itself would be interpreted as part of an html tag. The “#” in one of the

@see lines creates a link to the given sort method in the document generated through javadoc; that line

expands to

See Also:

sort(Object[])

The BinarySearchTest class is available from the book’s website, and includes the following test (names

is the array of String elements from Figure 5.5):

@Test

public void binarySearchTest6()

{

assertEquals (-11, binarySearch (names, "Joseph"));

} // method binarySearchTest6

For the sake of utilizing recursion, we will focus on the first and last indexes in the region being searched.

Initially, first = 0 and last = a.length - 1. So the original version of binarySearch will be a

wrapper that simply calls

return binarySearch (a, 0, a.length - 1, key);

The corresponding method heading is

public static int binarySearch (Object[] a, int first, int last, Object key)

For defining this version of the binarySearch method, the basic strategy is this: We compare the element

at the middle index of the current region to the key sought. If the middle element is less than the key, we

recursively search the array from the middle index + 1 to index last. If the middle element is greater

than the key, we recursively search the array from index first to the middle index − 1. If the middle

element is equal to the key, we are done.

Assume, for now, that first <= last. Later on we’ll take care of the case where first > last.

Following the basic strategy given earlier, we start by finding the middle index:

int mid = (first + last) >> 1;

The right-hand-side expression uses the right-shift bitwise operator, >>, to shift the binary representation

of (first + last) to the right by 1. This operation is equivalent to, but executes faster than

int mid = (first + last) / 2;

182 CHAPTER 5 Recursion

The middle element is at index mid in the array a. We need to compare (the element referenced by) a

[mid] to (the element referenced by) key. The compareTo method is ideal for the comparison, but that

method is not defined in the element class, Object. Fortunately, the compareTo method is defined in any

class that implements the Comparable interface. So we cast a [mid] to a Comparable object and then

call the method compareTo:

Comparable midVal = (Comparable)a [mid];

int comp = midVal.compareTo (key);

If the result of this comparison is <0, perform a binary search on the region from mid + 1 to last and

return the result of that search. That is:

if (comp < 0)

return binarySearch (a, mid + 1, last, key);

Otherwise, if comp > 0, perform a binary search on the region from first to mid - 1 and return the

result. That is,

if (comp > 0)

return binarySearch (a, first, mid - 1, key);

Otherwise, return mid, because comp == 0 and so a [mid] is equal to key.

For example, let’s follow this strategy in searching for “Frank” in the array names shown in

Figure 5.5. That figure shows the state of the program when the binarySearch method is called to

find “Frank”.

The assignment:

mid = (first + last) >> 1;

gives mid the value (0 + 9)/2, which is 4.

first mid last a [mid] key

0 4 9 Ed Frank

Ada a [0]

Ben a [1]

Carol a [2]

Dave a [3]

Ed a [4]

Frank a [5]

Gerri a [6]

Helen a [7]

Iggy a [8]

Joan a [9]

FIGURE 5.5 The state of the program at the beginning of the method called binarySearch (names, 0, 9,

"Frank"). The parameter list is Object[] a, int first, int last and Object key. (For simplicity, we

pretend that names is an array of Strings rather than an array of references to Strings)

5.5 Searching an Array 183

The middle element, “Ed”, is less than “Frank”, so we perform a binary search of the region from

mid + 1 to last. The call is

binarySearch (a, mid + 1, last, key);

The parameter first gets the value of the argument mid + 1. During this execution of binarySearch,

the assignment

mid = (first + last) >> 1;

gives mid the value (5 + 9)/2, which is 7, so midVal is “Helen”. See Figure 5.6.

The middle element, “Helen”, is greater than “Frank”, so a binary search is performed on the region

from indexes 5 through 6. The call is

binarySearch (a, first, mid - 1, key);

The parameter last gets the value of the argument mid - 1. During this execution of binarySearch,

the assignment

mid = (first + last) >> 1;

gives mid the value (5 + 6)/2, which is 5, so the middle element is “Frank”. See Figure 5.7.

Success! The middle element is equal to key, so the value returned is mid, the index of the middle

element.

The only unresolved issue is what happens if the array does not have an element equal to key. In

that case, we want to return -insertion Point - 1, where insertionPoint is the index where key

could be inserted without disordering the array. The reason we don’t return -insertionPoint is that we

would have an ambiguity if insertionPoint were equal to 0: a return of 0 could be interpreted as the

index where key was found.

How can we determine what value to give insertionPoint? If first > last initially, we must

have an empty region, with first = 0 and last = -1, so insertionPoint should get the value of

first mid last a [mid] key

5 7 9 Helen Frank

Ada a [0]

Ben a [1]

Carol a [2]

Dave a [3]

Ed a [4]

Frank a [5]

Gerri a [6]

Helen a [7]

Iggy a [8]

Joan a [9]

FIGURE 5.6 The state of the program at the beginning of the binary search for “Frank” in the region from

indexes 5 through 9

184 CHAPTER 5 Recursion

first mid last a [mid] key

5 5 6 Frank Frank

Ada a [0]

Ben a [1]

Carol a [2]

Dave a [3]

Ed a [4]

Frank a [5]

Gerri a [6]

Helen a [7]

Iggy a [8]

Joan a [9]

FIGURE 5.7 The state of the program at the beginning of the binary search for “Frank” in the region from

indexes 5 through 6

first. Otherwise we must have first <= last during the first call to binarySearch. Whenever

first <= last at the beginning of a call to binarySearch, we have

first <= mid <= last

So mid + 1 < = last + 1 and first - 1 < = mid - 1.

If comp < 0, we call

binarySearch (a, mid + 1, last, key);

At the beginning of that call, we have

first <= last + 1

On the other hand, if comp > 0, we call

binarySearch (a, first, mid - 1, key);

At the beginning of that call, we have

first - 1 <= last

In either case, at the beginning of the call to binarySearch, we have

first <= last + 1

So when we finally get first > last, we must have

first = last + 1

But any element with an index less than first must be less than key, and any element with an index

greater than last must be greater than key, so when we finish, first is the smallest index of any element

greater than key. That is where key should be inserted.

5.5 Searching an Array 185

Here is the complete definition:

public static int binarySearch(Object[] a, int first, int last, Object key)

{

if (first <= last)

{

int mid = (first + last) >> 1;

Comparable midVal = (Comparable)a [mid];

int comp = midVal.compareTo (key);

if (comp < 0)

return binarySearch (a, mid + 1, last, key);

if (comp > 0)

return binarySearch (a, first, mid - 1, key);

return mid; // key found

} // if first <= last

return -first - 1; // key not found; belongs at a[first]

} // method binarySearch

Here is a BinarySearchUser class that allows an end-user to enter names for which a given array will

be searched binarily:

public class BinarySearchUser

{

public static void main (String[] args)

{

new BinarySearchUser ().run();

} // method main

public void run()

{

final String ARRAY_MESSAGE =

"The array on which binary searches will be performed is:\n" +

"Ada, Ben, Carol, Dave, Ed, Frank, Gerri, Helen, Iggy, Joan";

final String SENTINEL = "***";

final String INPUT_PROMPT =

"\n\nPlease enter a name to be searched for in the array (or " +

SENTINEL + " to quit): ";

final String[] names = {"Ada", "Ben", "Carol", "Dave", "Ed", "Frank",

"Gerri", "Helen", "Iggy", "Joan"};

final String FOUND = "That name was found at index ";

final String NOT_FOUND = "That name was not found, but could be " +

"inserted at index ";

String name;

Scanner sc = new Scanner (System.in);

int index;

System.out.println (ARRAY_MESSAGE);

186 CHAPTER 5 Recursion

while (true)

{

System.out.print (INPUT_PROMPT);

name = sc.next();

if (name.equals(SENTINEL))

break;

index = binarySearch (names, 0, names.length - 1, name);

if (index >= 0)

System.out.println (FOUND + index);

else

System.out.println (NOT_FOUND + (-index - 1));

} // while

} // method run

public static int binarySearch(Object[] a, int first, int last, Object key)

{

if (first <= last)

{

int mid = (first + last) >> 1;

Comparable midVal = (Comparable)a [mid];

int comp = midVal.compareTo (key);

if (comp < 0)

return binarySearch (a, mid + 1, last, key);

if (comp > 0)

return binarySearch (a, first, mid - 1, key);

return mid; // key found

} // if first <= last

return -first - 1; // key not found; belongs at a[first]

} // method binarySearch

} // class BinarySearchUser

Here is a step-by-step, execution-frame trace of the binarySearch method after an initial call of

binarySearch (names, 0, 9, "Dan");

Note that “Dan” is not in the array names.

Frame 0

Step 0:

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,

 “Gerri”, “Helen”, “Iggy”, “Joan”]

first = 0

last = 9

key = “Dan”

mid = 4

midVal = “Ed”

comp is > 0

return binarySearch (a, 0, 3, “Dan”);

5.5 Searching an Array 187

Frame 1

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,

 “Gerri”, “Helen”, “Iggy”, “Joan”]

first = 0

last = 3

key = “Dan”

mid = 1

midVal = “Ben”

comp is < 0

return binarySearch (a, 2, 3, “Dan”);

Frame 0

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,

 “Gerri”, “Helen”, “Iggy”, “Joan”]

first = 0

last = 9

key = “Dan”

mid = 4

m idVal = “Ed”

comp is > 0

Step 2:

Frame 2

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,

 “Gerri”, “Helen”, “Iggy”, “Joan”]

first = 2

last = 3

key = “Dan”

mid = 2

midVal = “Carol”

comp is < 0

return binarySearch (a, 3, 3, “Dan”);

return binarySearch (a, 0, 3, “Dan”);

Step 1:

Frame 1

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,

 “Gerri”, “Helen”, “Iggy”, “Joan”]

first = 0

last = 3

key = “Dan”

mid = 1

midVal = “Ben”

comp is < 0

return binarySearch (a, 2, 3, “Dan”);

188 CHAPTER 5 Recursion

Frame 1

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,

 “Gerri”, “Helen”, “Iggy”, “Joan”]

first = 0

last = 3

key = “Dan”

mid = 1

midVal = “Ben”

comp is < 0

return binarySearch (a, 2, 3, “Dan”);

Frame 3

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,

 “Gerri”, “Helen”, “Iggy”, “Joan”]

first = 3

last = 3

key = “Dan”

mid = 3

m idVal = “Dave”

comp is > 0

Step 3:

Frame 2

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,

 “Gerri”, “Helen”, “Iggy”, “Joan”]

first = 2

last = 3

key = “Dan”

mid = 2

midVal = “Carol”

comp is < 0

return binarySearch (a, 3, 3, “Dan”);

return binarySearch (a, 3, 2, “Dan”);

Frame 0

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,

 “Gerri”, “Helen”, “Iggy”, “Joan”]

first = 0

last = 9

key = “Dan”

mid = 4

midVal = “Ed”

comp is > 0

return binarySearch (a, 0, 3, “Dan”);

5.5 Searching an Array 189

Frame 2

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,

 “Gerri”, “Helen”, “Iggy”, “Joan”]

first = 2

last = 3

key = “Dan”

mid = 2

midVal = “Carol”

comp is < 0

return binarySearch (a, 3, 3, “Dan”);

Frame 4

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,

 “Gerri”, “Helen”, “Iggy”, “Joan”]

first = 3

last = 2

key = “Dan”

Step 4:

Frame 3

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,

 “Gerri”, “Helen”, “Iggy”, “Joan”]

first = 3

last = 3

key = “Dan”

mid = 3

midVal = “Dave”

comp is > 0

return binarySearch (a, 3, 2, “Dan”);

return −3−1;

−4

−4

Frame 0

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,

 “Gerri”, “Helen”, “Iggy”, “Joan”]

first = 0

last = 9

key = “Dan”

mid = 4

midVal = “Ed”

comp is > 0

return binarySearch (a, 0, 3, “Dan”);

190 CHAPTER 5 Recursion

Frame 0

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,

 “Gerri”, “Helen”, “Iggy”, “Joan”]

first = 0

last = 9

key = “Dan”

mid = 4

midVal = “Ed”

comp is > 0

return binarySearch (a, 0, 3, “Dan”);

−4

−4

Frame 1

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,

 “Gerri”, “Helen”, “Iggy”, “Joan”]

first = 0

last = 3

key = “Dan”

mid = 1

midVal = “Ben”

comp is < 0

return binarySearch (a, 2, 3, “Dan”);

−4

How long does the binarySearch method take? We need to make a distinction between an unsuc-

cessful search, in which the element is not found, and a successful search, in which the element is found.

We start with an analysis of an unsuccessful search.

During each execution of the binarySearch method in which the middle element is not equal to

key, the size of the region searched during the next execution is, approximately, halved. If the element

sought is not in the array, we keep dividing by 2 as long as the region has at least one element. Let n

represent the size of the region. The number of times n can be divided by 2 until n = 0 is logarithmic in

n—this is, basically, the Splitting Rule from Chapter 3. So for a failed search, worstTime(n) is logarithmic

in n . Since we are assuming the search is unsuccessful, the same number of searches will be performed

in the average case as in the worst case, so averageTime(n) is logarithmic in n for a failed search.

The worst case for a successful search requires one less call to the binarySearch method than the

worst case (or average case) for an unsuccessful search. So for a successful search, worstTime(n) is still

logarithmic in n . In the average case for a successful search, the analysis—see Concept Exercise 5.15—is

more complicated, but the result is the same: averageTime(n) is logarithmic in n .

During each call, a constant amount of information is saved: the entire array is not saved, only

a reference to the array. So the space requirements are also logarithmic in n , for both successful and

unsuccessful searches and for both the worst case and the average case.

5.6 Backtracking 191

In the Arrays class of the java.util package, there is an iterative version of the binary search

algorithm. In Lab 8, you will conduct an experiment to compare the time to recursively search an array

of int s, iteratively search an array of int s, and iteratively search an array of Integer s. Which of the

three do you think will be slowest?

You are now prepared to do Lab 8: Iterative Binary Search

Lab 9 introduces another recursive method whose development is far easier than its iterative coun-

terpart. The method for generating permutations is from Roberts’ delightful book, Thinking Recursively

[Roberts, 1986].

You are now prepared to do Lab 9: Generating Permutations

Section 5.6 deals with another design pattern (a general strategy for solving a variety of problems):

backtracking. You have employed this strategy whenever you had to re-trace your steps on the way to

some goal. The BackTrack class also illustrates the value of using interfaces.

5.6 Backtracking

The basic idea with backtracking is this: From a given starting position, we want to reach a goal position.

We repeatedly choose, maybe by guessing, what our next position should be. If a given choice is valid—that

is, the new position might be on a path to the goal—we advance to that new position and continue. If a

choice leads to a dead end, we back up to the previous position and make another choice. Backtracking

is the strategy of trying to reach a goal by a sequence of chosen positions, with a re-tracing in reverse

order of positions that cannot lead to the goal.

For example, look at the picture in Figure 5.8. We start at position P0 and we want to find a path to

the goal state, P14. We are allowed to move in only two directions: north and west. But we cannot “see”

any farther than the next position. Here is a strategy: From any position, we first try to go north; if we

are unable to go north, we try to go west; if we are unable to go west, we back up to the most recent

position where we chose north and try to choose west instead. We never re-visit a position that has been

discovered to be a dead end. The positions in Figure 5.8 are numbered in the order they would be tried

according to this strategy.

Figure 5.8 casts some light on the phrase “re-tracing in reverse order.” When we are unable to go

north or west from position P4, we first back up to position P3, where west is not an option. So we back

up to P2. Eventually, this leads to a dead end, and we back up to P1, which leads to the goal state.

When a position is visited, it is marked as possibly being on a path to the goal, but this marking

must be undone if the position leads only to a dead end. That enables us to avoid re-visiting any dead-end

position. For example, in Figure 5.8, P5 is not visited from P8 because by the time we got to P8, P5 had

already been recognized as a dead end.

We can now refine our strategy. To try to reach a goal from a given position, enumerate over all

positions directly accessible from the given position, and keep looping until either a goal has been reached

or we can no longer advance to another position. During each loop iteration, get the next accessible

position. If that position may be on a path to a goal, mark that position as possibly leading to a goal and,

if it is a goal, the search has been successful; otherwise, attempt to reach a goal from that position, and

mark the position as a dead end if the attempt fails.

192 CHAPTER 5 Recursion

P15 (GOAL)

P14

P13

P12

P11 P10 P9 P8 P1

P0

P6 P5 P2

P7 P3

P4

FIGURE 5.8 Backtracking to obtain a path to a goal. The solution path is P0, P1, P8, P9, P10, P11, P12, P13,

P14, P15

Make sure you have a good understanding of the previous paragraph before you proceed. That

paragraph contains the essence of backtracking. The rest of this section and Section 5.6.1 are almost

superfluous by comparison.

Instead of developing a backtracking method for a particular application, we will utilize a generalized

backtracking algorithm from Wirth [1976, p.138]. We then demonstrate that algorithm on a particular

application, maze searching. Four other applications are left as programming projects in this chapter.

And Chapter 15 has another application of backtracking: a programming project for searching a network.

Backtracking is a design pattern because it is a generic programming technique that can be applied in a

variety of contexts.

The BackTrack class below is based on one in Noonan [2000]. The details of the application

class will be transparent to the BackTrack class, which works through an interface, Application. The

Application interface will be implemented by the particular application.

A user (of the BackTrack class) supplies:

• the class implementing the Application interface (note: to access the positions available from a

given position, the iterator design-pattern is employed, with a nested iterator class);

• a Position class to define what “position” means for this application;

The Application methods are generalizations of the previous outline of backtracking. Here is the Appli

cation interface:

import java.util.*;

public interface Application

{

/**

* Determines if a given position is legal and not a dead end.

*

* @param pos - the given position.

*

* @return true if pos is a legal position and not a dead end.

*/

boolean isOK (Position pos);

5.6 Backtracking 193

/**

* Indicates that a given position is possibly on a path to a goal.

*

* @param pos the position that has been marked as possibly being on a

* path to a goal.

*/

void markAsPossible (Position pos);

/**

* Indicates whether a given position is a goal position.

*

* @param pos the position that may or may not be a goal position.

*

* @return true if pos is a goal position; false otherwise.

*/

boolean isGoal (Position pos);

/**

* Indicates that a given position is not on any path to a goal position.

*

* @param pos the position that has been marked as not being on any path to

* a goal position.

*/

void markAsDeadEnd (Position pos);

/**

* Converts this Application object into a String object.

*

* @return the String representation of this Application object.

*/

String toString();

/**

* Produces an Iterator object that starts at a given position.

*

* @param pos the position the Iterator object starts at.

*

* @return an Iterator object that accesses the positions directly

* available from pos.

*/

Iterator<Position> iterator (Position pos);

} // interface Application

The BackTrack class has two responsibilities: to initialize a BackTrack object from a given application

object, and to try to reach a goal position from a given position. The method specifications are

/**

* Initializes this BackTrack object from an application.

194 CHAPTER 5 Recursion

*

* @param app the application

*/

public BackTrack (Application app)

/**

* Attempts to reach a goal through a given position.

*

* @param pos the given position.

*

* @return true if the attempt succeeds; otherwise, false.

*/

public boolean tryToReachGoal (Position pos)

The only field needed is (a reference to) an Application. The definition of the constructor is straightfor-

ward. The definition of the tryToReachGoal method is based on the outline of backtracking given above:

To “enumerate over all positions accessible from the given position,” we create an iterator. The phrase

“attempt to reach a goal from that position” becomes a recursive call to the method tryToReachGoal.

The complete BackTrack class, without any application-specific information, is as follows:

import java.util.*;

public class BackTrack

{

protected Application app;

/**

* Initializes this BackTrack object from an application.

*

* @param app the application

*/

public BackTrack (Application app)

{

this.app = app;

} // constructor

/**

* Attempts to reach a goal through a given position.

*

* @param pos the given position.

*

* @return true if the attempt succeeds; otherwise, false.

*/

public boolean tryToReachGoal (Position pos)

{

Iterator<Position> itr = app.iterator (pos);

while (itr.hasNext())

{

5.6 Backtracking 195

pos = itr.next();

if (app.isOK (pos))

{

app.markAsPossible (pos);

if (app.isGoal (pos) || tryToReachGoal (pos))

return true;

app.markAsDeadEnd (pos);

} // pos may be on a path to a goal

} // while

return false;

} // method tryToReachGoal

} // class BackTrack

Let’s focus on the tryToReachGoal method, the essence of backtracking. We look at the possible choices

of moves from the pos parameter. There are three possibilities:

1. One of those choices is a goal position. Then true is returned to indicate success.

2. One of those choices is valid but not a goal position. Then another call to tryToReachGoal is made,

starting at the valid choice.

3. None of the choices is valid. Then the while loop terminates and false is returned to indicate

failure to reach a goal position from the current position.

The argument to tryToReachGoal represents a position that has been marked as possibly being on a

path to a goal position. Whenever a return is made from tryToReachGoal, the pre-call value of pos is

restored, to be marked as a dead end if it does not lead to a goal position.

Now that we have developed a framework for backtracking, it is straightforward to utilize this

framework to solve a variety of problems.

5.6.1 An A-maze-ing Application

For one application of backtracking, let’s develop a program to try to find a path through a maze. For

example, Figure 5.9 has a 7-by-13 maze, with a 1 representing a corridor and a 0 representing a wall.

The only valid moves are along a corridor, and only horizontal and vertical moves are allowed; diagonal

moves are prohibited. The starting position is in the upper left-hand corner and the goal position is in the

lower-right-hand corner.

1 1 1 0 1 1 0 0 0 1 1 1 1

1 0 1 1 1 0 1 1 1 1 1 0 1

1 0 0 0 1 0 1 0 1 0 1 0 1

1 0 0 0 1 1 1 0 1 0 1 1 1

1 1 1 1 1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1

FIGURE 5.9 A maze: 1 represents a corridor and 0 represents a wall. Assume the starting position is in the

upper left-hand corner, and the goal position is in the lower right-hand corner

196 CHAPTER 5 Recursion

A successful traversal of this maze will show a path leading from the start position to the goal

position. We mark each such position with the number 9. Because there are two possible paths through

this maze, the actual path chosen will depend on how the iterator class orders the possible choices. For

the sake of specificity, assume the order of choices is north, east, south, and west. For example, from the

position at coordinates (5, 8), the first choice would be (4, 8), followed by (5, 9), (6, 8), and (5, 7).

From the initial position at (0, 0), the following positions are recorded as possibly being on a

solution-path:

(0, 1) // moving east

(0, 2) // moving east

(1, 2) // moving south

(1, 3) // moving east

(1, 4) // moving east

(0, 4) // moving north

(0, 5) // moving east;

This last position is a dead end, so we “undo” (0, 5) and (0, 4), backtrack to (1, 4) and then record the

following as possibly leading to the goal:

(2, 4) // moving south

(3, 4) // moving south

(3, 5) // moving east;

From here we eventually reach a dead end. After we undo (3, 5) and re-trace to (3, 4), we advance—without

any further backtracking—to the goal position. Figure 5.10 uses 9’ to show the corresponding path through

the maze of Figure 5.9, with dead-end positions marked with 2’s.

For this application, a position is simply a pair: row, column. The Position class is easily developed:

public class Position

{

protected int row,

column;

/**

* Initializes this Position object to (0, 0).

*/

public Position ()

{

row = 0;

9 9 9 0 2 2 0 0 0 2 2 2 2

1 0 9 9 9 0 2 2 2 2 2 0 2

1 0 0 0 9 0 2 0 2 0 2 0 2

1 0 0 0 9 2 2 0 2 0 2 2 2

1 1 1 1 9 0 0 0 0 1 0 0 0

0 0 0 0 9 0 0 0 0 0 0 0 0

0 0 0 0 9 9 9 9 9 9 9 9 9

FIGURE 5.10 A path through the maze of Figure 5.9. The path positions are marked with 9’s and the dead-end

positions are marked with 2’s

5.6 Backtracking 197

column = 0;

} // default constructor

/**

* Initializes this Position object to (row, column).

*

* @param row the row this Position object has been initialized to.

* @param column the column this Position object has been initialized to.

*/

public Position (int row, int column)

{

this.row = row;

this.column = column;

} // constructor

/**

* Determines the row of this Position object.

*

* @return the row of this Position object.

*/

public int getRow ()

{

return row;

} // method getRow

/**

* Determines the column of this Position object.

*

* @return the column of this Position object.

*/

public int getColumn ()

{

return column;

} // method getColumn

} // class Position

For this application, the Application interface is implemented in a Maze class. The only fields are a

grid to hold the maze and start and finish positions. Figure 5.11 has the UML diagrams for the Maze class

and Application interface.

Except for the Maze class constructor and the three accessors (getGrid was developed for the sake of

testing), the method specifications for the Maze class are identical to those in the Application interfaces

given earlier. For the embedded MazeIterator class, the constructor’s specification is provided, but the

method specifications for the hasNext, next and remove methods are boilerplate, so we need not list

them. Here are the specifications for the Maze and MazeIterator constructors:

/**

* Initializes this Maze object from a file scanner over a file.

*

* @param fileScanner - the scanner over the file that holds the

* maze information.

*

* @throws InputMismatchException - if any of the row or column values are non-

* integers, or if any of the grid entries are non-integers.

* @throws NumberFormatException - if the grid entries are integers but neither

* WALL nor CORRIDOR

198 CHAPTER 5 Recursion

<<interface>>

Application

+ isOK (pos: Position): boolean

+ markAsPossible (pos: Position)

+ goalReached (pos: Position): boolean

+ markAsDeadEnd (pos: Position)

+ toString(): String

+ iterator (pos: Position): Iterator<Position>

Maze

grid: byte[][]

start: Position

finish: Position

+ Maze (fileScanner: Scanner)

+ isOK (pos: Position): boolean

+ markAsPossible (pos: Position)

+ goalReached (pos: Position): boolean

+ markAsDeadEnd (pos: Position)

+ iterator (pos: Position): Iterator

+ getStart(): Position

+ getFinish(): Position

+ getGrid(): byte[][]

+ toString(): String

Position

row: int

column: int

+ Position()

+ Position (row: int, column int)

+ getRow(): int

+ getColumn(): int

FIGURE 5.11 The class diagram for the Maze class, which implements the Application interface and has

grid, start, and finish fields

*/

public Maze (Scanner fileScanner)

/**

* Initializes this MazeIterator object to start at a given position.

*

* @param pos the position the Iterator objects starts at.

*/

public MazeIterator (Position pos)

5.6 Backtracking 199

The MazeTest class, available on the book’s website, starts by declaring a maze field and then creating

a maze (the one shown in Figure 5.9) from a file:

protected Maze maze;

@Before

public void runBeforeEachTest() throws IOException

{

fileScanner = new Scanner (new File ("maze.txt"));

maze = new Maze (fileScanner);

} // method runBeforeEachTest

Here are four of the boundary-condition tests of the isOK method:

@Test

public void isOKTest1()

{

Position pos = new Position (0, 0);

assertEquals (true, maze.isOK (pos));

} // isOKTest1

@Test

public void isOKTest2()

{

Position pos = new Position (6, 12);

assertEquals (true, maze.isOK (pos));

} // isOKTest2

@Test

public void isOKTest3()

{

Position pos = new Position (7, 0);

assertEquals (false, maze.isOK (pos));

} // isOKTest3

@Test

public void isOKTest4()

{

Position pos = new Position (0, 13);

assertEquals (false, maze.isOK (pos));

} // isOKTest4

Here is the complete Maze class, including the embedded MazeIterator class:

import java.util.*;

public class Maze implements Application

{

public static final byte WALL = 0;

public static final byte CORRIDOR = 1;

public static final byte PATH = 9;

public static final byte DEAD_END = 2;

protected Position start,

finish;

200 CHAPTER 5 Recursion

protected byte[][] grid;

/**

* Initializes this Maze object from a file scanner over a file.

*

* @param fileScanner - the scanner over the file that holds the

* maze information.

*

* @throws InputMismatchException - if any of the row or column values are non-

* integers, or if any of the grid entries are non-integers.

* @throws NumberFormatException - if the grid entries are integers but neither

* WALL nor CORRIDOR

*/

public Maze (Scanner fileScanner)

{

int rows = fileScanner.nextInt(),

columns = fileScanner.nextInt();

grid = new byte [rows][columns];

start = new Position (fileScanner.nextInt(),

fileScanner.nextInt());

finish = new Position (fileScanner.nextInt(),

fileScanner.nextInt());

for (int i = 0; i < rows; i++)

for (int j = 0; j < columns; j++)

{

grid [i][j] = fileScanner.nextByte();

if (grid [i][j] != WALL "" grid [i][j] != CORRIDOR)

throw new NumberFormatException ("At position (" + i + ", " + j + "), " +

grid [i][j] + " should be " +

WALL + " or " + CORRIDOR + ".");

} // for j

} // constructor

/**

* Determines if a given position is legal and not a dead end.

*

* @param pos - the given position.

*

* @return true if pos is a legal position and not a dead end.

*/

public boolean isOK (Position pos)

{

return pos.getRow() >= 0 "" pos.getRow() < grid.length ""

pos.getColumn() >= 0 "" pos.getColumn() < grid [0].length ""

grid [pos.getRow()][pos.getColumn()] == CORRIDOR;

5.6 Backtracking 201

} // method isOK

/**

* Indicates that a given position is possibly on a path to a goal.

*

* @param pos the position that has been marked as possibly being on a path

* to a goal.

*/

public void markAsPossible (Position pos)

{

grid [pos.getRow ()][pos.getColumn ()] = PATH;

} // method markAsPossible

/**

* Indicates whether a given position is a goal position.

*

* @param pos the position that may or may not be a goal position.

*

* @return true if pos is a goal position; false otherwise.

*/

public boolean isGoal (Position pos)

{

return pos.getRow() == finish.getRow() ""

pos.getColumn() == finish.getColumn();

} // method isGoal

/**

* Indicates that a given position is not on any path to a goal position.

*

* @param pos the position that has been marked as not being on any path to a

* goal position.

*/

public void markAsDeadEnd (Position pos)

{

grid [pos.getRow()][pos.getColumn()] = DEAD_END;

} // method markAsDeadEnd

/**

* Converts this Application object into a String object.

*

* @return the String representation of this Application object.

*/

public String toString ()

{

String result = "\n";

202 CHAPTER 5 Recursion

result += start.getRow() + " " + start.getColumn() + "\n";

result += finish.getRow() + " " + finish.getColumn() + "\n";

for (int row = 0; row < grid.length; row++)

{

for (int column = 0; column < grid [0].length; column++)

result += String.valueOf (grid [row][column]) + ‘ ’;

result += "\n";

} // for row = 0

return result;

} // method toString

/**

* Produces an Iterator object, over elements of type Position, that starts at a given

* position.

*

* @param pos - the position the Iterator object starts at.

*

* @return the Iterator object.

*/

public Iterator<Position> iterator (Position pos)

{

return new MazeIterator (pos);

} // method iterator

/**

* Returns the start position of this maze.

*

* @return – the start position of this maze

*

*/

public Position getStart()

{

return start;

} // method getStart

/**

* Returns the finish position of this maze.

*

* @return – the finish position of this maze

*

*/

public Position getFinish()

{

return finish;

} // method getFinish

/**

* Returns a 2-dimensional array that holds a copy of the maze configuration.

*

* @return - a 2-dimensional array that holds a copy of the maze configuration.

*

*/

5.6 Backtracking 203

public byte[][] getGrid()

{

byte[][] gridCopy = new byte[grid.length][grid[0].length];

for (int i = 0; i < grid.length; i++)

for (int j = 0; j < grid[i].length; j++)

gridCopy[i][j] = grid[i][j];

return gridCopy;

} // method getGrid

protected class MazeIterator implements Iterator<Position>

{

protected static final int MAX_MOVES = 4;

protected int row,

column,

count;

/**

* Initializes this MazeIterator object to start at a given position.

*

* @param pos the position the Iterator objects starts at.

*/

public MazeIterator (Position pos)

{

row = pos.getRow();

column = pos.getColumn();

count = 0;

} // constructor

/**

* Determines if this MazeIterator object can advance to another

* position.

*

* @return true if this MazeIterator object can advance; false otherwise.

*/

public boolean hasNext ()

{

return count < MAX_MOVES;

} // method hasNext

/**

* Advances this MazeIterator object to the next position.

*

* @return the position advanced to.

*/

public Position next ()

{

Position nextPosition = new Position();

204 CHAPTER 5 Recursion

switch (count++)

{

case 0: nextPosition = new Position (row-1, column); // north

break;

case 1: nextPosition = new Position (row, column+1); // east

break;

case 2: nextPosition = new Position (row+1, column); // south

break;

case 3: nextPosition = new Position (row, column-1); // west

} // switch;

return nextPosition;

} // method next

public void remove ()

{

// removal is illegal for a MazeIterator object

throw new UnsupportedOperationException();

} // method remove

} // class MazeIterator

} // class Maze

To show how a user might utilize the Maze class, we develop a MazeUser class. The MazeUser class

creates a maze from a file scanner. There is a method to search for a path through the maze. The output

is either a solution or a statement that no solution is possible. The method specifications (except for the

usual main method) are

/**

* Runs the application.

*/

public void run()

/**

* Searches for a solution path through the maze from the start position

*

*

* @param maze – the maze to be searched

*

* @return true – if there is a path through the maze; otherwise, false.

*

*/

public boolean searchMaze (Maze maze)

Figure 5.12 has the UML class diagrams that illustrate the overall design. Because the Position class is

quite simple and its diagram is in Figure 5.11, its class diagram is omitted.

The implementation of the MazeUser class is as follows:

import java.io.*;

5.6 Backtracking 205

MazeUser

+ main (args: String[])

+ run()

searchMaze (maze: Maze): boolean

Maze

grid: byte[][]

start: Position

finish: Position

+ Maze (fileScanner: Scanner)

+ isOK (pos: Position): boolean

+ markAsPossible (pos: Position)

+ goalReached (pos: Position): boolean

+ markAsDeadEnd (pos: Position)

+ toString(): String

+ iterator (pos: Position): Iterator

+ getStart(): Position

+ getFinish(): Position

BackTrack

app: Application

+ BackTrack (app: Application)

+ tryToReachGoal(pos: Position):boolean

<<interface>>

Application

+ isOK (pos: Position): boolean

+ markAsPossible (pos: Position)

+ goalReached (pos: Position): boolean

+ markAsDeadEnd (pos: Position)

+ toString(): String

+ iterator (pos: Position): Iterator<Position>

+ getGrid(): byte[][]

FIGURE 5.12 The UML class diagrams for the maze-search project

import java.util.*;

public class MazeUser

{

public static void main (String[] args)

{

new MazeUser().run();

} // method main

public void run()

206 CHAPTER 5 Recursion

{

final String INPUT_PROMPT =

"\n\nPlease enter the path for the file whose first line contains the " +

"number of rows and columns,\nwhose 2nd line the start row and column, " +

"whose 3rd line the finish row and column, and then the maze, row-by-row: ";

final String INITIAL_STATE =

"\nThe initial state is as follows (0 = WALL, 1 = CORRIDOR):\n";

final String START_INVALID = "The start position is invalid.";

final String FINISH_INVALID = "The finish position is invalid.";

final String FINAL_STATE =

"The final state is as follows (2 = DEAD END, 9 = PATH):\n";

final String SUCCESS = "\n\nA solution has been found:";

final String FAILURE = "\n\nThere is no solution:";

Maze maze = null;

Scanner keyboardScanner = new Scanner (System.in),

fileScanner = null;

String fileName;

while (true)

{

try

{

System.out.print (INPUT_PROMPT);

fileName = keyboardScanner.next();

fileScanner = new Scanner (new File (fileName));

break;

} // try

catch (IOException e)

{

System.out.println ("\n" + e);

} // catch IOException

} // while

try

{

maze = new Maze (fileScanner);

System.out.println (INITIAL_STATE + maze);

Scanner stringScanner = new Scanner (maze.toString());

Position start = new Position (stringScanner.nextInt(), stringScanner.nextInt()),

finish = new Position (stringScanner.nextInt(), stringScanner.nextInt());

if (!maze.isOK (start))

System.out.println (START_INVALID);

else if (!maze.isOK (finish))

System.out.println (FINISH_INVALID);

5.6 Backtracking 207

else

{

if (searchMaze (maze, start))

System.out.println (SUCCESS);

else

System.out.println (FAILURE);

System.out.println (FINAL_STATE + maze);

} // else valid search

} // try

catch (InputMismatchException e)

{

System.out.println ("\n" + e + ": " + fileScanner.nextLine());

} // catch InputMismatchException

catch (NumberFormatException e)

{

System.out.println ("\n" + e);

} // catch NumberFormatException

catch (RuntimeException e)

{

System.out.println ("\n" + e);

System.out.println (FINAL_STATE + maze);

} // catch NumberFormatException

} // method run

/**

* Performs the maze search.

*

* @param maze – the maze to be searched.

*

* @return true – if there is a path through this maze; otherwise, false

*

*/

public boolean searchMaze (Maze maze)

{

Position start = maze.getStart();

maze.markAsPossible (start);

BackTrack backTrack = new BackTrack (maze);

if (maze.isGoal (start) || backTrack.tryToReachGoal (start))

return true;

maze.markAsDeadEnd (start);

return false;

} // method searchMaze

} // class MazeUser

In this project, and in general, the run method is not tested because it involves end-user input and output.

All of the files, including the Application interface and the BackTrack, Position, Maze, MazeTest,

MazeUser, and MazeUserTest (for the searchMaze method) classes, are available from the book’s

website.

208 CHAPTER 5 Recursion

1 0 1 1 0 1 1 0

1 0 1 1 0 1 1 0

1 0 1 1 0 1 1 0

.

.

.

1 0 1 1 0 1 1 0

1 0 1 1 0 1 1 0

1 1 1 1 1 1 1 1

FIGURE 5.13 A worst-case maze: in columns 1, 4, 7, . . . , every row except the last contains a 0; every other

position in the maze contains a 1. The start position is in the upper-left corner, and the finish position is in the

lower-right corner

How long does the tryToReachGoal method in the BackTrack class take? Suppose the maze has

n positions. In the worst case, such as in Figure 5.13, every position would be considered, so worstTime(n)

is linear in n . And with more than half of the positions on a path to the goal position, there would be at

least n/2 recursive calls to the tryToReachGoal method, so worstSpace(n) is also linear in n .

Projects 5.2, 5.3, 5.4, and 5.5 have other examples of backtracking. Because the previous project

separated the backtracking aspects from the maze traversing aspects, the BackTrack class and Applica

tion interface are unchanged. The Position class for Projects 5.2, 5.3, and 5.5 is the same Position

class declared earlier, and the Position class for Project 5.4 is only slightly different.

We will re-visit backtracking in Chapter 15 in the context of searching a network. And, of course,

the BackTrack class and Application interface are the same as given earlier.

At the beginning of this chapter we informally described a recursive method as a method that called

itself. Section 5.7 indicates why that description does not suffice as a definition and then provides a

definition.

5.7 Indirect Recursion

Java allows methods to be indirectly recursive. For example, if method A calls method B and method B

calls method A, then both A and B are recursive. Indirect recursion can occur in the development of a

grammar for a programming language such as Java.

Because indirect recursion is legal, we cannot simply define a method to be recursive if it calls

itself. To provide a formal definition of recursive, we first define active. A method is active if it is being

executed or has called an active method. For example, consider a chain of method calls

A B C D

That is, A calls B, B calls C, and C calls D. When D is being executed, the active methods are

D, because it is being executed;

C, because it has called D and D is active;

B, because it has called C and C is active;

5.8 The Cost of Recursion 209

A, because it has called B and B is active.

We can now define “recursive.” A method is recursive if it can be called while it is active. For example,

suppose we had the following sequence of calls:

A B C D

Then B, C, and D are recursive because each can be called while it is active.

When a recursive method is invoked, a certain amount of information must be saved so that infor-

mation will not be written over during the execution of the recursive call. This information is restored

when the execution of the method has been completed. This saving and restoring, and other work related

to the support of recursion, carry some cost in terms of execution time and memory space. Section 5.8

estimates the cost of recursion, and attempts to determine whether that cost is justified.

5.8 The Cost of Recursion

We have seen that a certain amount of information is saved every time a method calls itself. This information

is collectively referred to as an activation record because it pertains to the execution state of the method

that is active during the call. In fact, an activation record is created whenever any method is called; this

relieves the compiler of the burden of determining if a given method is indirectly recursive.

Essentially, an activation record is an execution frame without the statements. Each activation record

contains:

a. the return address, that is, the address of the statement that will be executed when the call has been

completed;

b. the value of each argument: a copy of the corresponding argument is made (if the type of the argument

is reference-to-object, the reference is copied);

c. the values of the local variables declared within the body of the called method.

After the call has been completed, the previous activation record’s information is restored and the execution

of the calling method is resumed. For methods that return a value, the value is placed on top of the previous

activation record’s information just prior to the resumption of the calling method’s execution. The calling

method’s first order of business is to get that return value.

There is an execution-time cost of saving and restoring these records, and the records themselves

take up space. But these costs are negligible relative to the cost of a programmer’s time to develop

an iterative method when a recursive method would be more appropriate. Recursive methods, such as

move, tryToReachGoal, and permute (from Lab 9) are far simpler and more elegant than their iterative

counterparts.

How can you decide whether a recursive method or iterative method is more appropriate? Basically, if

you can readily develop an iterative solution, go for it. If not, you need to decide if recursion is appropriate

for the problem. That is, if complex cases of the problem can be reduced to simpler cases of the same

form as the original and the simplest case(s) can be solved directly, you should try to develop a recursive

method.

If an iterative method is not easy to develop, and recursion is appropriate, how does recursion compare

with iteration? At worst, the recursive will take about as long (and have similar time/space performance)

210 CHAPTER 5 Recursion

as the iterative version. At best, developing the recursive method will take far less time than the iterative

version, and have similar time/space performance. See, for example, the move, tryToReachGoal, and

permute methods. Of course, it is possible to design an inefficient recursive method, such as the original

version of fib in Lab 7, just as iterative methods can have poor performance.

In this chapter we have focused on what recursion is. We postpone to Chapter 8 a discussion of

the mechanism, called a stack , by which the compiler implements the saving and restoring of activation

records. As we saw in Chapter 1, this abstraction—the separation of what is done from how it is done—is

critically important in problem solving.

S U M M A R Y

The purpose of this chapter was to familiarize you with

the basic idea of recursion so you will be able to under-

stand the recursive methods in subsequent chapters and

to design your own recursive methods when the need

arises.

A method is recursive if it can be called while it

is active—an active method is one that either is being

executed or has called an active method.

If an iterative method to solve a problem can read-

ily be developed, then that should be done. Otherwise,

recursion should be considered if the problem has the

following characteristics:

1. Complex cases of the problem can be reduced to

simpler cases of the same form as the original

problem.

2. The simplest case(s) can be solved directly.

For such problems, it is often straightforward to develop

a recursive method. Whenever any method (recursive or

not) is called, a new activation record is created to pro-

vide a frame of reference for the execution of the method.

Each activation record contains

a. the return address, that is, the address of the state-

ment that will be executed when the call has been

completed;

b. the value of each argument: a copy of the corre-

sponding argument is made (if the type of the argu-

ment is reference-to-object, the reference is copied);

c. the values of the method’s other local variables;

Activation records make recursion possible because they

hold information that might otherwise be destroyed if

the method called itself. When the execution of the cur-

rent method has been completed, a return is made to the

address specified in the current activation record. The

previous activation record is then used as the frame of

reference for that method’s execution.

Any problem that can be solved with recursive

methods can also be solved iteratively, that is, with a

loop. Typically, iterative methods are slightly more effi-

cient than their recursive counterparts because far fewer

activation records are created and maintained. But the

elegance and coding simplicity of recursion more than

compensates for this slight disadvantage.

A backtracking strategy advances step-by-step

toward a goal. At each step, a choice is made, but when

a dead end is reached, the steps are re-traced in reverse

order; that is, the most recent choice is discarded and a

new choice is made. Backtracking was deployed for the

maze-search application above, and can be used in Pro-

gramming Projects 5.2 (eight-queens), 5.3 (knight’s tour),

5.4 (Sudoku), and 5.5 (Numbrix).

Crossword Puzzle 211

CROSSWORD PUZZLE

1

2

3

4

5 6

7

8

9

10

www.CrosswordWeaver.com

ACROSS DOWN

3. The strategy of trying to reach a goal by
 a sequence of chosen positions, with a

re-tracing in reverse order of positions that
cannot lead to the goal.

6. For the move method, worstSpace(n) is
_________ in n.

7. A precondition of the binarySearch
method is that the array is __________.

8. What is generated when infinite recursion
occurs.

9. Boxes that contain information (both
 variables and code) related to each
 invocation of the method.

1. The mechanism by which the compiler
 implements the saving and restoring of
 activation records.

2. In the binarySearch method, the index
 where the key could be inserted without
 disordering the array.

4. A method is _______ if it can be called
 while it is active.

5. A method is _____ if it is being
 executed or has called an active
 method.

10. The information that is saved every time
 a method is called.

www.CrosswordWeaver.com

212 CHAPTER 5 Recursion

CONCEPT EXERCISES

5.1 What is wrong with the following underlying method for calculating factorials?

/**

* Calculates the factorial of a non-negative integer, that is, the product of all

* integers between 1 and the given integer, inclusive. The worstTime(n) is O(n),

* where n is the given integer.

*

* @param n the non-negative integer whose factorial is calculated.

*

* @return the factorial of n

*

*/

public static long fact (int n)

{

if (n <= 1)

return 1;

return fact (n+1) / (n+1);

} // fact

5.2 Show the first three steps in an execution-frames trace of the move method after an initial call of

move (4, 'A', 'B', 'C');

5.3 Perform an execution-frames trace to determine the output from the following incorrect version of the

recPermute method (from Lab 9) after an initial call to

permute ("ABC");

invokes

recPermute ([‘A’, ‘B’, ‘C’], 0);

/**

* Finds all permutations of a subarray from a given position to the end of the array.

*

* @param c an array of characters

* @param k the starting position in c of the subarray to be permuted.

*

* @return a String representation of all the permutations.

*

*/

public static String recPermute (char[] c, int k)

{

if (k == c.length - 1)

return String.valueOf (c) + "\n";

else

{

String allPermutations = new String();

char temp;

Concept Exercises 213

for (int i = k; i < c.length; i++)

{

temp = c [i];

c [i] = c [k + 1];

c [k + 1] = temp;

allPermutations += recPermute (String.valueOf (c).toCharArray(), k+1);

} // for

return allPermutations;

} // else

} // method recPermute

5.4 Perform an execution-frames trace to determine the output from the following incorrect version of the

recPermute method (from Lab 9) after an initial call to

permute ("ABC");

invokes

recPermute ([‘A’, ‘B’, ‘C’], 0);

/**

* Finds all permutations of a subarray from a given position to the end of the array.

*

* @param c an array of characters

* @param k the starting position in c of the subarray to be permuted.

*

* @return a String representation of all the permutations.

*

*/

public static String recPermute (char[] c, int k)

{

if (k == c.length - 1)

return String.valueOf (c) + "\n";

else

{

String allPermutations = new String();

char temp;

for (int i = k; i < c.length; i++)

{

allPermutations += recPermute (String.valueOf (c).toCharArray(), k+1);

temp = c [i];

c [i] = c [k];

c [k] = temp;

} // for

return allPermutations;

} // else

} // method recPermute

214 CHAPTER 5 Recursion

5.5 Use the Principle of Mathematical Induction (Appendix 1) to prove that the move method in the Towers of

Hanoi example is correct, that is, for any integer n > = 1, move (n, orig, dest, temp) returns the

steps to move n disks from pole orig to pole dest.

Hint: for n = 1, 2, 3, . . . , let Sn be the statement:

move (n, orig, dest, temp) returns the steps to move n disks from any pole orig to any

other pole dest.

a. base case. Show that S1 is true.

b. inductive case. Let n be any integer greater than 1 and assume Sn−1 is true. Then show that Sn is true.

According the code of the move method, what happens when move (n, orig, dest, temp) is

called and n is greater than 1?

5.6 In an execution trace of the move method in the Towers of Hanoi application, the number of steps is equal to

the number of recursive calls to the move method plus the number of direct moves. Because each call to the

move method includes a direct move, the number of recursive calls to the move method is always one less

than the number of direct moves. For example, in the execution trace shown in the chapter, n = 3. The total

number of calls to move is 2n − 1 = 7. Then the number of recursive calls to move is 6, and the number

of direct moves is 7, for a total of 13 steps (recall that we started at Step 0, so the last step is Step 12). How

many steps would there be for an execution trace with n = 4?

5.7 Show that, for the recursive binarySearch method, averageTime(n) is logarithmic in n for a successful

search.

Hint: Let n represent the size of the array to be searched. Because the average number of calls is a non-

decreasing function of n , it is enough to show that the claim is true for values of n that are one less than a

power of 2. So assume that

n = 2k − 1, for some positive integer k .

In a successful search,

one call is sufficient if the item sought is half-way through the region to be searched;

two calls are needed if the item sought is one-fourth or three-fourths of the way through that region;

three calls are needed if the item sought is one-eighth, three-eighths, five-eighths or seven-eighths of the way

through the region;

and so on.

The total number of calls for all successful searches is

(1 ∗ 1) + (2 ∗ 2) + (3 ∗ 4) + (4 ∗ 8) + (5 ∗ 16) + · · · + (k ∗ 2k−1)

The average number of calls, and hence an estimate of averageTime(n), is this sum divided by n . Now use

the result from Exercise 2.6 of Appendix 2 and the fact that

k = log2 (n + 1)

5.8 If a call to the binarySearch method is successful, will the index returned always be the smallest index

of an item equal to the key sought? Explain.

PROGRAMMING EXERCISES

5.1 Develop an iterative version of the getBinary method in Section 5.3. Test that method with the same

BinaryTest class (available on the book’s website) used to test the recursive version.

Programming Exercises 215

5.2 Develop an iterative version of the permute method (from Lab 9). Here is the method specification:

/**

* Finds all permutations of a specified String.

*

* @param s - the String to be permuted.

*

* @return a String representation of all the permutations, with a line separator

* (that is, "\n") after each permutation.

*/

public static String permute (String s)

For example, if the original string is “BADCGEFH”, the value returned would be

ABCDEFGH

ABCDEFHG

ABCDEGFH

ABCDEGHF

ABCDEHFG

and so on. Test your method with the same PermuteTest method developed in Lab 9 to test the recursive

version.

Hint: One strategy starts by converting s to a character array c. Then the elements in c can be easily

swapped with the help of the index operator, []. To get the first permutation, use the static method sort in

the Arrays class of java.util. To give you an idea of how the next permutation can be constructed from the

current permutation, suppose, after some permutations have been printed,

c = ['A', 'H', 'E', 'G', 'F', 'D', 'C', 'B']

What is the smallest index whose character will be swapped to obtain the next permutation? It is index 2,

because the characters at indexes 3 through 7 are already in reverse alphabetical order: ‘G’ > ‘F’ > ‘D’ >

‘C’ > ‘B’. We swap ‘E’ with ‘F’, the smallest character greater than ‘E’ at an index greater than 2. After

swapping, we have

c = ['A', 'H', 'F', 'G', 'E', 'D', 'C', 'B']

We then reverse the characters at indexes 3 through 7 to get those characters into increasing order:

c = ['A', 'H', 'F', 'B', 'C', 'D', 'E', 'G'],

the next higher permutation after ‘A’, ‘H’, ‘E’, ‘G’, ‘F’, ‘D’, ‘C’, ‘B’.

Here is an outline:

public static String permute (String s)

{

int n = s.length();

boolean finished = false;

char[] c = s.toCharArray();

String perms = "";

Arrays.sort (c); // c is now in ascending order

216 CHAPTER 5 Recursion

while (!finished)

{

perms += String.valueOf (c));

// In 0 ... n-1, find the highest index p such that

// p = 0 or c [p - 1] < c [p].

...

if (p == 0)

finished = true;

else

{

// In p ... n-1, find the largest index i such that c [i] > c [p - 1].

...

// Swap c [i] with c [p - 1].

// Swap c [p] with c [n-1], swap c [p+1] with c[n-2],

// swap c [p+2] with c [n-3], ...

...

} // else

} // while

return perms;

} // method permute

In the above example, p - 1 = 2 and i = 4, so c [p - 1], namely, ‘E’ is swapped with c [i],

namely, ‘F’.

Explain how strings with duplicate characters are treated differently in this method than in the recursive

version.

5.3 Given two positive integers i and j , the greatest common divisor of i and j , written

gcd (i, j)

is the largest integer k such that

(i % k = 0) and (j % k = 0).

For example, gcd (35, 21) = 7 and gcd (8, 15) = 1. Test and develop a wrapper method and a wrapped

recursive method that return the greatest common divisor of i and j . Here is the method specification for the

wrapper method:

/**

* Finds the greatest common divisor of two given positive integers

*

* @param i – one of the given positive integers.

* @param j – the other given positive integer.

*

Programming Exercises 217

* @return the greatest common divisor of iand j.

*

* @throws IllegalArgumentException – if either i or j is not a positive integer.

*

*/

public static int gcd (int i, int j)

Big hint: According to Euclid’s algorithm, the greatest common divisor of i and j is j if i % j = 0. Otherwise,

the greatest common divisor of i and j is the greatest common divisor of j and (i % j).

5.4 A palindrome is a string that is the same from right-to-left as from left-to-right. For example, the following

are palindromes:

ABADABA

RADAR

OTTO

MADAMIMADAM

EVE

For this exercise, we restrict each string to upper-case letters only. (You are asked to remove this restriction

in the next exercise.)

Test and develop a method that uses recursion to check for palindromes. The only parameter is a string that

is to be checked for palindromity. The method specification is

/**

* Determines whether a given string of upper-case letters is a palindrome.

* A palindrome is a string that is the same from right-to-left as from left-to-right.

*

* @param s – (a reference to) the given string

*

* @return true – if the string s is a palindrome; otherwise, false.

*

* @throws NullPointerException – if s is null.

* @throws IllegalArgumentException – if s is the empty string.

*

*/

public static boolean isPalindrome (String s)

5.5 Expand the recursive method (and test class) developed in Programming Exercise 5.4 so that, in testing to

see whether s is a palindrome, non-letters are ignored and no distinction is made between upper-case and

lower-case letters. Throw IllegalArgumentException if s has no letters. For example, the following

are palindromes:

Madam, I’m Adam.

Able was I ’ere I saw Elba.

A man. A plan. A canal. Panama!

Hint: The toUpperCase() method in the String class returns the upper-case String corresponding to

the calling object.

218 CHAPTER 5 Recursion

5.6 .a. Test and develop a wrapper method power and an underlying recursive method that return the result of

integer exponentiation. The method specification of the wrapper method is

/**

* Calculates the value of a given integer raised to the power of a second integer.

* The worstTime(n) is O(n), where n is the second integer.

*

* @param i – the base integer (to be raised to a power).

* @param n – the exponent (the power i is to be raised to).

*

* @return the value of i to the nth power.

*

* @throws IllegalArgumentException – if n is a negative integer or if i raised to

* to the n is greater than Long.MAX_VALUE.

*

*/

public static long power (long i, int n)

Hint: We define 00 = 1, so for any integer i , i 0 = 1. For any integers i> 0 and n > 0,

i n = i∗i n−1

b. Develop an iterative version of the power method.

c. Develop an underlying recursive version called by the power method for which worstTime(n) is logarithmic

in n .

Hint: If n is even, power (i, n) = power (i * i, n/2); if n is odd, power (i, n) = i *

in - 1 = i * power (i * i, n/2).

For testing parts b and c, use the same test suite you developed for part a.

5.7 Test and develop a recursive method to determine the number of distinct ways in which a given amount of

money in cents can be changed into quarters, dimes, nickels, and pennies. For example, if the amount is 17

cents, then there are six ways to make change:

1 dime, 1 nickel and 2 pennies;

1 dime and 7 pennies;

3 nickels and 2 pennies;

2 nickels and 7 pennies;

1 nickel and 12 pennies;

17 pennies.

Here are some amount/ways pairs. The first number in each pair is the amount, and the second number is the

number of ways in which that amount can be changed into quarters, dimes, nickels and pennies:

17 6

5 2

10 4

25 13

42 31

61 73

99 213

Programming Exercises 219

Here is the method specification:

/**

* Calculates the number of ways that a given amount can be changed

* into coins whose values are no larger than a given denomination.

*

* @param amount – the given amount.

* @param denomination – the given denomination (1 = penny,

* 2 = nickel, 3 = dime, 4 = quarter).

*

* @return 0 – if amount is less than 0; otherwise, the number of ways

* that amount can be changed into coins whose values are no

* larger than denomination.

*

*/

public static int ways (int amount, int denomination)

For the sake of simplifying the ways method, either develop an enumerated type Coin or develop a coins

method that returns the value of each denomination. Thus, coins (1) returns 1, coins (2) returns 5,

coins (3) returns 10, and coins (4) returns 25.

Hint: The number of ways that one can make change for an amount using coins no larger than a quarter is

equal to the number of ways that one can make change for amount —25 using coins no larger than a quarter

plus the number of ways one can make change for amount using coins no larger than a dime.

5.8 Modify the maze-search application to allow an end user to enter the maze information directly, instead of in

a file. Throw exceptions for incorrect row or column numbers in the start and finish positions.

5.9 Modify the maze-search application so that diagonal moves would be valid.

Hint: only the MazeIterator class needs to be modified.

Programming Project 5.1

Iterative Version of the Towers of Hanoi

Develop an iterative version of the moveDisks method in the Towers of Hanoi game. Test your version with the

same test suite, on the book’s website, developed for the recursive version.

Hint: We can determine the proper move at each stage provided we can answer the following three questions:

1. Which disk is to be moved?

To answer this question, we set up an n-bit counter , where n is the number of disks, and initialize that counter

to all zeros. The counter can be implemented as an n-element array of zeros and ones, or as an n-element array

of boolean values. That is the only array you should use for this project.

For example, if n = 5, we would start with

00000

Each bit position corresponds to a disk: the rightmost bit corresponds to disk 1, the next rightmost bit to

disk 2, and so on.

(continued on next page)

220 CHAPTER 5 Recursion

(continued from previous page)

At each stage, the rightmost zero bit corresponds to the disk to be moved, so the first disk to be moved is,

as you would expect, disk 1.

After a disk has been moved, we increment the counter as follows: starting at the rightmost bit and working

to the left, keep flipping bits (0 to 1, 1 to 0) until a zero gets flipped. For example, the first few increments and

moves are as follows:

00000 // move disk 1

00001 // move disk 2

00010 // move disk 1

00011 // move disk 3

00100 // move disk 1

00101 // move disk 2

After 31 moves, the counter will contain all ones, so no further moves will be needed or possible. In general,

2n − 1 moves and 2n − 1 increments will be made.

2. In which direction should that disk be moved?

If n is odd, then odd-numbered disks move clockwise:

A B C

and even-numbered disks move counter clockwise:

A B C

If n is even, even-numbered disks move clockwise and odd-numbered disks move counter clockwise.

If we number the poles 0, 1, and 2 instead of ‘A’, ‘B’, and ‘C’, then movements can be accomplished simply

with modular arithmetic. Namely, if we are currently at pole k , then

k = (k + 1) % 3;

achieves a clockwise move, and

k = (k + 2) % 3;

achieves a counter-clockwise move. For the pole on which the just moved disk resides, we cast back to a

character:

char(k + ‘A’)

3. Where is that disk now?

Keep track of where disk 1 is. If the counter indicates that disk 1 is to be moved, use the answer to question 2

to move that disk. If the counter indicates that the disk to be moved is not disk 1, then the answer to question

2 tells you where that disk is now. Why? Because that disk cannot be moved on top of disk 1 and cannot be

moved from the pole where disk 1 is now.

Programming Exercises 221

Programming Project 5.2

Eight Queens

(This problem can be straightforwardly solved by using the BackTrack class and implementing the Application

interface.) Test and develop an EightQueens class to place eight queens on a chess board in such a way that

no queen is under attack from any other queen. Also, test and develop an EightQueensUser classsimilar to the

MazeUser class in Section 5.6.1.

Analysis A chess board has eight rows and eight columns. In the game of chess, the queen is the most powerful

piece: she can attack any piece in her row, any piece in her column, and any piece in either of her diagonals. See

Figure 5.14.

Q

FIGURE 5.14 Positions vulnerable to a queen in chess. The arrows indicate the positions that can be

attacked by the queen ‘Q’ in the center of the figure

The output should show the chess board after the placement of the eight queens. For example:

0

1

2

3

4

5

6

7

0

Q

1

Q

Q

2

Q

3

Q

4

Q

5

Q

6

Q

7

Hint: There must be exactly one queen in each row and exactly one queen in each column. There is no input:

start with a queen at (0, 0), and place a queen in each column. A valid position is one that is not in the same

row, column or diagonal as any queen placed in a previous column. The QueensIterator constructor should

advance to row 0 of the next column. The next method should advance to the next row in the same column. So

(continued on next page)

222 CHAPTER 5 Recursion

(continued from previous page)

the first time the tryToReachGoal method in the BackTrack class (which cannot be modified by you) is called,

the choices are:

(0, 1) // invalid: in the same row as the queen at (0, 0)

(1, 1) // invalid: in the same diagonal as the queen at (0, 0)

(2, 1) // valid

When the tryToReachGoal method is called again, the choices are:

(0, 2) // invalid: in the same row as the queen at (0, 0)

(1, 2) // invalid: in the same diagonal as the queen at (1, 2)

(2, 2) // invalid: in the same row as the queen at (1, 2)

(3, 2) // invalid: in the same diagonal as the queen at (1, 2)

(4, 2) // valid

Programming Project 5.3

A Knight’s Tour

(This problem can be straightforwardly solved by using the BackTrack class and implementing the Application

interface.) Test and develop a KnightsTour class to show the moves of a knight in traversing a chess board. Also,

test and develop a KnightsTourUser class—similar to the MazeUser class in Section 5.6.1. The Backtrack

class and Application interface are not to be modified by you.

Analysis A chess board has eight rows and eight columns. From its current position, a knight’s next position will

be either two rows and one column or one row and two columns from the current position. For example, Figure 5.15

shows the legal moves of a knight at position (5, 3), that is, row 5 and column 3.

0

1

2

3 K7 K0

K4 K3

4 K6 K1

K5 K2

5 K

6

7

0 1 2 3 4 5 6 7

FIGURE 5.15 For a knight (K) at coordinates (5, 3), the legal moves are to the grid entries labeled K0

through K7

For simplicity, the knight starts at position (0, 0). Assume the moves are tried in the order given in Figure 5.15. That is,

from position (row, column), the order tried is:

(row − 2, column + 1)

Programming Exercises 223

(row − 1, column + 2)

(row + 1, column + 2)

(row + 2, column + 1)

(row + 2, column − 1)

(row + 1, column − 2)

(row − 1, column − 2)

(row − 2, column − 1)

Figure 5.16 shows the first few moves.

0

1

2

3

4

5

6

7

0 1 2 3 4

1 3

5

8

6

2 4

9

6

7

10

5

7

FIGURE 5.16 The first few valid moves by a knight that starts at position (0, 0) and iterates according to the

order shown in Figure 5.15. The integer at each filled entry indicates the order in which the moves were made

For the nine moves, starting at (0, 0), in Figure 5.16, no backtracking occurs. In fact, the first 36 moves are

never backtracked over. But the total number of backtracks is substantial: over 3 million. The solution obtained by the

above order of iteration is:

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

1 38 55 34 3 36 19 22

54 47 2 37 20 23 4 17

39 56 33 46 35 18 21 10

48 53 40 57 24 11 16 5

59 32 45 52 41 26 9 12

44 49 58 25 62 15 6 27

31 60 51 42 29 8 13 64

50 43 30 61 14 63 28 7

Notice that the 37th move, from position (1, 3), does not take the first available choice—to position (3, 2)—nor the

second available choice—to position (2, 1). Both of those choices led to dead ends, and backtracking occurred. The

third available choice, to (0, 1), eventually led to a solution.

(continued on next page)

224 CHAPTER 5 Recursion

(continued from previous page)

System Test 1 (the input is in boldface)

Enter the starting row and column: 0 0

Starting at row 0 and column 0, the solution is

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

1 38 55 34 3 36 19 22

54 47 2 37 20 23 4 17

39 56 33 46 35 18 21 10

48 53 40 57 24 11 16 5

59 32 45 52 41 26 9 12

44 49 58 25 62 15 6 27

31 60 51 42 29 8 13 64

50 43 30 61 14 63 28 7

Note: The lines are not part of the output; they are included for readability.

System Test 2

Enter the starting row and column: 3 5

Starting at row 3 and column 5, the solution is

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

33 42 35 38 31 40 19 10

36 57 32 41 20 9 2 17

43 34 37 30 39 18 11 8

56 51 58 21 28 1 16 3

59 44 29 52 47 22 7 12

50 55 46 27 62 15 4 23

45 60 53 48 25 6 13 64

54 49 26 61 14 63 24 5

This solution requires 11 million backtracks. Some starting positions, for example (0, 1), require over 600 million

backtracks. But for every possible starting position, there is a solution.

Programming Exercises 225

Programming Project 5.4

Sudoku

(This problem can be solved by using the BackTrack class and implementing the Application interface.) Sudoku

(from the Japanese “single number”) is a puzzle game in which the board is a 9-by-9 grid, further subdivided into

nine 3-by-3 minigrids. Initially, each cell in the grid has either a single digit or a blank. For example, here (from

http://en.wikipedia.org/wiki/Sudoku) is a sample initial configuration:

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 97

The rules of the game are simple: Replace each blank cell with a single digit so that each row, each column, and

each minigrid contain the digits 1 through 9. For example, in the above grid, what digit must be stored in the cell

at row 6 and column 5? (The row numbers and column numbers start at 0, so the cell at (6, 5) is in the upper

right-hand corner of the bottom center minigrid.) The value cannot be

1, because there is already a 1 in that minigrid

2, because there is already a 2 in row 6

3, because there is already a 3 in column 5

4, because there is already a 4 in that minigrid

5, because there is already a 5 in column 5

6, because there is already a 6 in row 6

8, because there is already an 8 in that minigrid (and in row 6)

9, because there is already a 9 in that minigrid

By a process of elimination, we conclude that the digit 7 should be placed in the cell at (6, 5). Using logic only,

you can determine the complete solution to the puzzle. If you click on the link above, you will see the solution.

(continued on next page)

http://en.wikipedia.org/wiki/Sudoku

226 CHAPTER 5 Recursion

(continued from previous page)

Instead of solving Sudoku puzzles by logic, you can solve them with backtracking. You would not want to

do this by hand, because for some Sudoku puzzles, over 100,000 backtracks would be needed. But you can solve

any Sudoku puzzle with the help of the BackTrack class (which you are not allowed to modify). You will need

to supply a Sudoku class that implements the Application interface, and a SudokuUser class (similar to the

MazeUser class in Section 5.6.1). You may want to modify the Position class from Section 5.6.1 to include a

digit field. Then the iteration will be over the digit values that a position can take on, and the SudokuIterator

constructor will advance to the next position in the grid whose digit value is 0.

The initial configuration will be supplied from a file in which each line has a row, column, and digit-value.

For example,

0 1 6 4 6 3

0 3 1 5 0 7

0 5 4 5 3 9

0 7 5 5 5 1

1 2 8 5 8 4

1 3 3 6 0 5

1 5 5 6 8 2

1 6 6 7 2 7

2 0 2 7 3 2

2 8 1 7 5 6

3 0 8 7 6 9

3 3 4 8 1 4

3 5 7 8 3 5

3 8 6 8 5 8

4 2 6 8 7 7

For the SudokuTest class, include a test to make sure the iterator method starts at the appropriate row

and column, and the next method advances the position’s digit. For one test of the isOK method, the initial

configuration should have 2 in (0, 0) and 1 in (0, 1); after several calls to the next() method, the isOK method

should return true. To test the isGoal method, the initial configuration should be a complete solution except for

a blank in (8, 8); isGoal should eventually return true.

Also include tests for the following:

InputMismatchException, if the row or column is not an int, or if the value is not a byte.

ArrayIndexOutOfBoundsException, if the row or column is not in the range 0 . . . 8, inclusive.

IllegalArgumentException, if the value is not a single digit or duplicates the value in the same row, same

column, or same minigrid.

IllegalStateException, if there is no solution to the puzzle.

Include tests in which the solution is found.

Programming Exercises 227

Programming Project 5.5

Numbrix

(This problem can be straightforwardly solved by using the BackTrack class and implementing the Application

interface.) Numbrix, invented by Marilyn vos Savant, is a number-positioning puzzle. You start with a square

grid—we will use a 9 × 9 grid for example. Initially, some of the grid has been filled in with integers in the

range from 1 through 81. The goal is to complete the grid so that each number (except 81) is connected to the

next higher number either horizontally or vertically.

Here is an initial state:

31 0 33 0 39 0 45 0 47

0 29 0 35 0 41 0 49 0

25 0 0 0 0 0 0 0 51

0 23 0 0 0 0 0 53 0

9 0 0 0 0 0 0 0 79

0 1 0 0 0 0 0 77 0

7 0 0 0 0 0 0 0 81

0 3 0 17 0 67 0 73 0

5 0 15 0 65 0 69 0 71

Here is the final state:

31 32 33 34 39 40 45 46 47

30 29 28 35 38 41 44 49 48

25 26 27 36 37 42 43 50 51

24 23 22 21 58 57 54 53 52

9 10 11 20 59 56 55 78 79

8 1 12 19 60 61 76 77 80

7 2 13 18 63 62 75 74 81

6 3 14 17 64 67 68 73 72

5 4 15 16 65 66 69 70 71

Design, test and write and program to solve any Numbrix puzzle. The first line of the input file will contain the

grid’s side length, and each subsequent line will contain the row, column and value of some initial entry in the

grid.

System Test 1 (input in boldface)

Please enter the path for the file that contains, on the first line, the grid length, and then, on each other line, the

row, column, and value of each non-zero entry in the initial state: numbrix.in1

(continued on next page)

228 CHAPTER 5 Recursion

(continued from previous page)

The initial state is as follows:

31 0 33 0 39 0 45 0 47

0 29 0 35 0 41 0 49 0

25 0 0 0 0 0 0 0 51

0 23 0 0 0 0 0 53 0

9 0 0 0 0 0 0 0 79

0 1 0 0 0 0 0 77 0

7 0 0 0 0 0 0 0 81

0 3 0 17 0 67 0 73 0

5 0 15 0 65 0 69 0 71

A solution has been found. The final state is as follows:

31 32 33 34 39 40 45 46 47

30 29 28 35 38 41 44 49 48

25 26 27 36 37 42 43 50 51

24 23 22 21 58 57 54 53 52

9 10 11 20 59 56 55 78 79

8 1 12 19 60 61 76 77 80

7 2 13 18 63 62 75 74 81

6 3 14 17 64 67 68 73 72

5 4 15 16 65 66 69 70 71

Note: The file numbrix.in1 consists of the following:

9 4 8 79

0 0 31 5 1 1

0 2 33 5 7 77

0 4 39 6 0 7

0 6 45 6 8 81

0 8 47 7 1 3

1 1 29 7 3 17

1 3 35 7 5 67

1 5 41 7 7 73

1 7 49 8 0 5

2 0 25 8 2 15

2 8 51 8 4 65

3 1 23 8 6 69

3 7 53 8 8 71

4 0 9

Programming Exercises 229

System Test 2 (input in boldface)

Please enter the path for the file that contains, on the first line, the grid length, and then, on each other line, the

row, column, and value of each non-zero entry in the initial state: numbrix.in2

The initial state is as follows:

9 0 7 0 1 0 73 0 77

0 11 0 5 0 71 0 75 0

15 0 0 0 0 0 0 0 79

0 17 0 0 0 0 0 65 0

25 0 0 0 0 0 0 0 63

0 27 0 0 0 0 0 61 0

37 0 0 0 0 0 0 0 59

0 41 0 33 0 53 0 51 0

39 0 43 0 45 0 47 0 49

A solution has been found:

The final state is as follows:

9 8 7 6 1 72 73 76 77

10 11 12 5 2 71 74 75 78

15 14 13 4 3 70 81 80 79

16 17 18 19 20 69 66 65 64

25 24 23 22 21 68 67 62 63

26 27 28 29 30 55 56 61 60

37 36 35 34 31 54 57 58 59

38 41 42 33 32 53 52 51 50

39 40 43 44 45 46 47 48 49

Note: The file numbrix.in2 consists of the following:

9 4 8 63

0 0 9 5 1 27

0 2 7 5 7 61

0 4 1 6 0 37

0 6 73 6 8 59

0 8 77 7 1 41

1 1 11 7 3 33

1 3 5 7 5 53

1 5 71 7 7 51

1 7 75 8 0 39

2 0 15 8 2 43

2 8 79 8 4 45

3 1 17 8 6 47

3 7 65 8 8 49

4 0 25

(continued on next page)

230 CHAPTER 5 Recursion

(continued from previous page)

Also include tests for the following:

InputMismatchException, if the row or column is not an int, or if the value is not an int.

ArrayIndexOutOfBoundsException, if the row or column is not in the range 0 . . . grid length, inclusive.

IllegalArgumentException, if the value is greater than grid length squared or duplicates a value already in

the grid.

IllegalStateException, if there is no solution to the puzzle.

Hint: The implementation is simplified if you assume that one of the original values in the grid is 1, as in System

Tests 1 and 2. After you have tested your implementation with that assumption, remove the assumption. Here are

two system tests in which 1 is not one of the original values in the grid:

System Test 3 (input in boldface)

Please enter the path for the file that contains, on the first line, the grid length, and then, on each other line, the

row, column, and value of each non-zero entry in the initial state: numbrix.in3

The initial state is as follows:

75 76 81 66 65 14 13 8 7

74 0 0 0 0 0 0 0 6

73 0 0 0 0 0 0 0 5

72 0 0 0 0 0 0 0 4

55 0 0 0 0 0 0 0 23

54 0 0 0 0 0 0 0 24

45 0 0 0 0 0 0 0 25

44 0 0 0 0 0 0 0 26

43 42 41 40 39 34 33 28 27

A solution has been found:

The final state is as follows:

75 76 81 66 65 14 13 8 7

74 77 80 67 64 15 12 9 6

73 78 79 68 63 16 11 10 5

72 71 70 69 62 17 2 3 4

55 56 57 58 61 18 1 22 23

54 53 52 59 60 19 20 21 24

45 46 51 50 37 36 31 30 25

44 47 48 49 38 35 32 29 26

43 42 41 40 39 34 33 28 27

Programming Exercises 231

Note: The file numbrix.in3 consists of the following:

9 4 8 23

0 0 75 5 0 54

0 1 76 5 8 24

0 2 81 6 0 45

0 3 66 6 8 25

0 4 65 7 0 44

0 5 14 7 8 26

0 6 13 8 0 43

0 7 8 8 1 42

0 8 7 8 2 41

1 0 74 8 3 40

1 8 6 8 4 39

2 0 73 8 5 34

2 8 5 8 6 33

3 0 72 8 7 28

3 8 4 8 8 27

4 0 55

System Test 4 (input in boldface)

Please enter the path for the file that contains, on the first line, the grid length, and then, on each other line, the

row, column, and value of each non-zero entry in the initial state: numbrix.in4

The initial state is as follows:

25 0 0 0 0

0 3 0 0 0

0 0 0 16 0

0 5 0 0 0

0 0 9 0 0

A solution has been found:

The final state is as follows:

25 24 23 22 21

2 3 18 19 20

1 4 17 16 15

6 5 10 11 14

7 8 9 12 13

Note: The file numbrix.in4 consists of the following:

5

0 0 25

1 1 3

2 3 16

3 1 5

4 2 9

This page intentionally left blank

Array-Based Lists CHAPTER 6

We begin this chapter by introducing the Java Collection Framework’s List interface, which extends

the Collection interface by providing some index-related methods. For example, there is a get

method that returns the element at a given index. In any List object, that is, in any instance of a class

that implements the List interface, the elements are stored in sequence, according to an index. For

example, a List object pets might have the elements arranged as follows: ‘‘dog’’, ‘‘cat’’, ‘‘iguana’’,

‘‘gerbil’’. Here ‘‘dog’’ is at index 0, and ‘‘gerbil’’ is at index 3.

The main focus of this chapter is the user’s view of the ArrayList class. We start by investigating the

method specifications. We then briefly turn to the developer’s view: The Java Collection Framework’s

ArrayList class implements the List interface with an underlying array that allows constant-time access

of any element from its index. We finish up the chapter with an application in the area of public-key

cryptography.

As with all of the other collection classes in the Java Collections Framework, the ArrayList class is

parameterized, and the element class is the type parameter, so it would be more appropriate to refer to the

class as ArrayList<E>. When a user creates an instance of the ArrayList<E> class, the user specifies

the element type that will replace the type parameter E. For example, to create an empty ArrayList

object whose elements must be of type (reference to) String, we write

ArrayList<String> myList = new ArrayList<String>();

As we saw in Chapter 4, the only stipulation on the element type is that it cannot be a primitive type,

such as int (but the wrapper class Integer is acceptable).

Chapter 7 covers another List implementation, the LinkedList class The ArrayList and

LinkedList classes have their own advantages and disadvantages: there is no “best” List implemen-

tation. A major goal of the two chapters is to help you recognize situations in which one of the classes

would be preferable to the other.

CHAPTER OBJECTIVES

1. Recognize the methods in the List interface that are not in the Collection interface.

2. Understand the user’s view of the ArrayList class.

3. Be able to decide when an ArrayList is preferable to an array—and vice versa.

4. Understand the VeryLongInt class from both the user’s view and the developers’ view.

233

234 CHAPTER 6 Array-Based Lists

6.1 The List Interface

The List interface extends the Collection interface with methods that have an index as either a param-

eter or a return type. Here are thumbnail sketches of five of the methods. For each method below, E (for

“element”) is the type parameter.

// Returns the element at position index in this List object. The worstTime(n) is O(n).

E get (int index);

// Replaces the element that was at position index in this List object with the

// parameter element, and returns the previous occupant. The worstTime(n) is O(n).

E set (int index, E element);

// Returns the index of the first occurrence of obj in this List object, if obj

// appears in this List object.. Otherwise, returns -1. The worstTime(n) is O(n).

int indexOf (Object obj);

// Inserts element at position index in this List object; every element that

// was at a position >= index before this call is now at the next higher position.

// The worstTime(n) is O(n).

void add (int index, E element);

// Removes and returns the element at position index in this List object; every

// element that was at a position > index before this call is now at the next lower

// position. The worstTime(n) is O(n).

E remove (int index);

Any implementation of this interface may improve on the time-estimate upper bounds for the methods;

and, in fact, for the ArrayList class (see following), worstTime(n) is O(1) for both the get and set

methods. We cannot give examples of calls to the List methods because interfaces cannot be instantiated,

but the above five methods should give you the idea that many of the methods in a List object are

index based. Of course, we also have some holdovers from the Collection interface: the methods size,

isEmpty, contains, clear, and so on. And the add (E element) method specifies that the element

is inserted at the end of the list.

Section 6.2 introduces the ArrayList class, which implements the List interface. We will empha-

size the user’s perspective of the ArrayList class by studying the method specifications. In Section 6.3,

we take a quick look at the developer’s perspective: the actual fields and method definitions in the Java

Collections Framework. Then we return to the user’s view with an application of the ArrayList class.

6.2 The ArrayList Class

As we will see shortly, an ArrayList object can be thought of as an improved version of the one-

dimensional array. Like an array, the ArrayList class supports random access of its elements, that is,

any element can be accessed in constant time, given only the index of the element. But unlike an array,

an ArrayList object’s size (as well as its capacity) is automatically maintained during the execution of

a program. Also, there are ArrayList methods for inserting and deleting at any index—if you insert or

delete in an array, you must write the code to open up or close up the space. Finally, if you want to insert

an element into an array that is already full, you must write the code (to create a new array, copy the old

array to the new array, and so on). With an ArrayList object, such expansions are handled automatically.

6.2 The ArrayList Class 235

Figure 6.1 has the big picture from the user’s perspective: the method heading for each public method

in the ArrayList class. Except for the constructors, the headings are in alphabetical order by method

identifier. The type parameter E may appear as the return type as well as the element type of a parameter.

Section 6.2.1 has more detail: the method specifications, with examples, for several ArrayList

methods.

public ArrayList (int initialCapacity)

public ArrayList()

public ArrayList (Collection<? extends E> c) // See Section 6.2.1

public boolean add (E element) // inserts at back

public void add (int index, E element)

public boolean addAll (Collection<? extends E> c)

public boolean addAll (int index, Collection<? extends E> c)

public void clear() // worstTime (n) is O(n)

public Object clone()

public boolean contains (Object obj)

public boolean containsAll (Collection<?> c)

public void ensureCapacity (int minCapacity)

public boolean equals (Object obj)

public E get (int index) // worstTime (n) is constant

public int hashCode()

public int indexOf (Object obj)

public boolean isEmpty()

public Iterator<E> iterator()

public int lastIndexOf (Object element)

public ListIterator<E> listIterator()

public ListIterator<E> listIterator (final int index)

public boolean remove (Object obj)

public E remove (int index)

public boolean removeAll (Collection<?> c)

public boolean retainAll (Collection<?> c)

public E set (int index, E element)

public int size()

public List<E> subList (int fromIndex, int toIndex)

public Object[] toArray()

public T[] toArray (T[] a)// ClassCastException unless T extends E

public String toString()

public void trimToSize()

FIGURE 6.1 Public methods in the class ArrayList<E>, where E is the type parameter. Except for the

constructors, the method headings are in alphabetical order by method identifier

6.2.1 Method Specifications for the ArrayList Class

The method specifications following use javadoc, and will yield specifications that are similar to, but

shorter than, those provided with Sun’s Application Programming Interface (API). You are strongly urged

to consult that API to get the full details of each specification. The phrase “this ArrayList object” refers

to the calling object.

236 CHAPTER 6 Array-Based Lists

Each method’s time requirements are specified with Big-O notation because we are merely estab-

lishing an upper bound: a specific implementation of the method may reduce that upper bound. If no time

estimate for a method is given, you may assume that worstTime(n) is constant. If a method’s average-time

estimate is the same as the worst-time estimate, only the worst-time estimate is given.

The following method specifications give you a user’s view of the ArrayList class. For each

method, we include an example and a comparison with an array.

1. Constructor with initial-capacity parameter

/**

* Initializes this ArrayList object to be empty, with the specified initial capacity.

*

* @param initialCapacity the initial capacity of the list.

*

* @throws IllegalArgumentException – if the specified initial capacity is negative

*

*

*/

public ArrayList (int initialCapacity)

Example The following creates an empty ArrayList object called fruits, with String elements

and an initial capacity of 100:

ArrayList<String> fruits = new ArrayList<String> (100);

Note: There is also a default constructor. For example,

ArrayList<String> fruits = new ArrayList<String>();

simply constructs an empty ArrayList object with a default initial capacity (namely, 10).

Comparison to an array: An array object can be constructed with a specified initial capacity. For

example,

String [] vegetables = new String [10];

makes vegetables an array object with null references at indexes 0 through 9. Unlike an

ArrayList object, an array object can consist of primitive elements. For example,

double [] salaries = new double [200];

constructs an array object whose elements will be of type double and whose initial capacity is 200.

2. Copy constructor

/**

* Constructs a list containing the elements of the specified collection, in the order

* they are stored in the specified collection. This ArrayList object has an

* initial capacity of 110% the size of the specified collection. The worstTime(n)

* is O(n), where n is the number of elements in the specified collection.

*

6.2 The ArrayList Class 237

* @param c – the specified collection whose elements this ArrayList object is

* initialized from.

*

*/

public ArrayList (Collection<? extends E> c)

Example Suppose that myList is an ArrayList object whose elements are the Strings ‘‘yes’’,

‘‘no’’, and ‘‘maybe’’. We can create another ArrayList object that initially contains a copy of myList
as follows:

ArrayList<String> newList = new ArrayList<String> (myList);

Note 1: This constructor is called the copy constructor .

Note 2: The argument corresponding to the parameter c must be an instance of a class (not necessarily

the ArrayList class) that implements the Collection interface. And the element type must be the

same as the element type of the calling object or a subclass of that type.

For example, if intList is an ArrayList object whose elements are of type Integer (a subclass

of Object), we can create an ArrayList object of type Object as follows:

ArrayList<Object> objList = new ArrayList<Object> (intList);

At this point, all of the elements in objList are of type Integer, but we can add elements of type

Object (and, therefore, elements of type Integer) to objList.

It might seem that it would be sufficient for the parameter type to be Collection<E> instead

of Collection<? extends E>. After all, an instance of the class ArrayList<Object> is legal

as the argument corresponding to a parameter of type Collection<E>, so by the Subclass Sub-

stitution Rule, an instance of any subclass of ArrayList<Object> would also be legal. But even

though Integer is a subclass of Object, ArrayList<Integer> is not allowed as a subclass of

ArrayList<Object>.1 Otherwise, the following code fragment would be able to violate the type

restrictions by adding a string to an ArrayList of Integer:

ArrayList<Integer> intList = new ArrayList<Integer>();

ArrayList<Object> objList = intList; // illegal!

objList.add ("oops");

Then intList would have “oops” at index 0.

Note 3: The new ArrayList object contains a copy of the elements in c. Strictly speaking, those

elements are references , not objects; the objects referenced are not copied. For this reason, the copy

constructor is said to produce a shallow copy .

Note 4: The clone() method is an alternative, but less desirable way to obtain a shallow copy of

an ArrayList object. Here is the method specification:

/**

* Returns a shallow copy of this ArrayList object.

1This phenomenon is called invariant subtyping , and it is required for type safety. Why? The element type of a parameterized collection is

not available at run time, so the type checking of elements cannot be done at run time. This is in contrast to arrays, whose element type is

available at run time. As a result, arrays use covariant subtyping ; for example, String[] is a subclass of Object[].

238 CHAPTER 6 Array-Based Lists

* The worstTime(n) is O(n).

*

* @return a shallow copy of this ArrayList object.

*/

public Object clone()

For example, if myList is an ArrayList object, we can create a shallow copy of myList as follows:

ArrayList<String> newList = (ArrayList<String>)myList.clone();

Unfortunately, there is no assurance of type safety, so the assignment will be made even if myList is

an ArrayList object with Integer elements. See Programming Exercise 6.4 for details. For more

discussion of clone drawbacks, see Bloch 2001, pages 45–52.

Comparison to an array: An array object can be copied with the static method arraycopy in

the System of the package java.lang. For example,

System.arraycopy (vegetables, i, moreVeggies, 0, 3);

performs a shallow copy of the array object vegetables, starting at index i, to the array object

moreVeggies, starting at index 0. A total of 3 elements are copied.

3. One-parameter add method

/**

* Appends the specified element to the end of this ArrayList object.

* The worstTime(n) is O(n) and averageTime(n) is constant.

*

* @param element – the element to be appended to this ArrayList object

*

* @return true (as per the general contract of the Collection.add method)

*

*/

public boolean add (E element)

Note. According to the general contract of the add method in the Collection interface, true is

returned if the element is inserted. So this ArrayList method will always return true. Then why

bother to have it return a value? Because if we replace the return type boolean with void, then

the ArrayList class would no longer implement the Collection interface. Incidentally, there are

some implementations—the TreeSet class, for example—of the Collection interface that do not

allow duplicate elements, so false will sometimes be returned when a TreeSet object calls this

version of the add method.

Example We can insert items at the end of an ArrayList object as follows:

ArrayList<String> fruits = new ArrayList<String> (100);

fruits.add ("oranges");

fruits.add ("apples");

fruits.add ("durian");

fruits.add ("apples");

The ArrayList object fruits will now have “oranges” at index 0, “apples” at index 1, “durian”

at index 2, and “apples” at index 3.

6.2 The ArrayList Class 239

Comparison to an array: To insert into an array, an index must be specified:

String [] vegetables = new String [10];

vegetables [0] = "carrots";

vegetables [1] = "broccoli";

vegetables [2] = "spinach";

vegetables [3] = "corn";

4. The size method

/**

* Determines the number of elements in this ArrayList object.

*

* @return the number of elements in this ArrayList object.

*

*/

public int size()

Example Suppose we create an ArrayList object as follows:

ArrayList<String> fruits = new ArrayList<String> (100);

fruits.add ("oranges");

fruits.add ("apples");

fruits.add ("durian");

fruits.add ("apples");

Then

System.out.println (fruits.size());

will output 4.

Comparison to an array: Arrays have nothing that corresponds to a size() method. The length

field contains the capacity of the array, that is, the maximum number of elements that can be inserted

into the array, not the current number of elements in the array.

5. The get method

/**

* Returns the element at the specified index.

*

* @param index – the index of the element to be returned.

*

* @return the element at the specified index

*

* @throws IndexOutOfBoundsException – if index is less than 0 or greater

* than or equal to size()

*/

public E get (int index)

Note: Since no time estimates are given, you may assume that worstTime(n) is constant.

Example Suppose we start by constructing an ArrayList object:

ArrayList<String> fruits = new ArrayList<String> (100);

240 CHAPTER 6 Array-Based Lists

fruits.add ("oranges");

fruits.add ("apples");

fruits.add ("durian");

fruits.add ("apples");

Then

System.out.println (fruits.get (2));

will output ‘‘durian’’.

Comparison to an array: The get method is similar to, but weaker than, the index operator for

arrays. For example, suppose we start by constructing an array object:

String [] vegetables = new String [10];

vegetables [0] = "carrots";

vegetables [1] = "broccoli";

vegetables [2] = "spinach";

vegetables [3] = "corn";

Then

System.out.println (vegetables [1]);

Will output “broccoli”. But we can also overwrite that element:

vegetables [1] = "potatoes";

In contrast, the following is illegal if fruits is an ArrayList object:

fruits.get (1) = "pears"; // illegal

6. The set method

/**

*

* Replaces the element at the specified index in this ArrayList object with the

* specified element.

*

* @param index – the index of the element to be replaced.

* @param element – the element to be stored at the specified index

*

* @return the element previously stored at the specified index

*

* @throws IndexOutOfBoundsException – if index is less than 0 or greater

* than or equal to size()

*/

public E set (int index, E element)

Note: The worstTime(n) is constant.

Example Suppose we start by constructing an ArrayList object:

ArrayList<String> fruits = new ArrayList<String> (100);

fruits.add ("oranges");

fruits.add ("apples");

6.2 The ArrayList Class 241

fruits.add ("durian");

fruits.add ("apples");

Then

System.out.println (fruits.set (2, "bananas"));

will change the element at index 2 to ‘‘bananas’’ and output ‘‘durian’’, the element that had been at

index 2 before the set method was invoked.

Comparison to an array: As noted in the comparison for the get method, an array’s index operator

can be used on the left-hand side of an assignment statement. For example, if vegetables is an

array object,

vegetables [1] = "potatoes";

will change the element at index 1 to “potatoes”.

7. Two-parameter add method

/**

* Inserts the specified element at the specified index in this ArrayList object.

* All elements that were at positions greater than or equal to the specified

* index have been moved to the next higher position. The worstTime(n) is

* O(n).

*

* @param index – the index at which the specified element is to be inserted.

* @param element – the element to be inserted at the specified index

*

* @throws IndexOutOfBoundsException – if index is less than 0 or greater

* than size().

*/

public void add (int index, E element)

Example Suppose we start by constructing an ArrayList object:

ArrayList<String> fruits = new ArrayList<String> (100);

fruits.add ("oranges");

fruits.add ("apples");

fruits.add ("durian");

fruits.add ("apples");

Then

fruits.add (1, "cherries");

for (int i = 0; i < fruits.size(); i++)

System.out.println (fruits.get (i));

will produce output of

oranges

cherries

apples

durian

apples

242 CHAPTER 6 Array-Based Lists

Comparison to an array: For an insertion anywhere except at the end of the array object, the code

must be written to open up the space. For example, suppose we start by constructing an array object:

String [] vegetables = new String [10];

vegetables [0] = "carrots";

vegetables [1] = "broccoli";

vegetables [2] = "spinach";

vegetables [3] = "corn";

We can insert “lettuce” at index 1 as follows:

for (int j = 4; j > 1; j--)

vegetables [j] = vegetables [j – 1];

vegetables [1] = "lettuce";

The array vegetables now consists of “carrots”, “lettuce”, “broccoli”, “spinach”, “corn”, null,

null, null, null, null. Note that an insertion in a full array will throw an ArrayIndexOutOf

Bounds exception.

8. The remove method with an index parameter

/**

* Removes the element at the specified index in this ArrayList object.

* All elements that were at positions greater than the specified index have

* been moved to the next lower position. The worstTime(n) is O(n).

*

* @param index – the index of the element to be removed.

*

* @return the element removed the specified index

*

* @throws IndexOutOfBoundsException – if index is less than 0 or greater

* than or equal to size()

*/

public E remove (int index)

Example Suppose we start by constructing an ArrayList object:

ArrayList<String> fruits = new ArrayList<String> (100);

fruits.add ("oranges");

fruits.add ("apples");

fruits.add ("durian");

fruits.add ("apples");

Then we can remove (and return) the element at index 2 as follows:

System.out.println (fruits.remove (2));

The output will be ‘‘durian’’, and fruits will now contain ‘‘oranges’’, ‘‘apples’’, and ‘‘apples’’.

Comparison to an array: For removal anywhere except at the end of an array, the code must be

written to close up the space. For example, suppose we start by creating an array object:

String [] vegetables = new String [10];

vegetables [0] = "carrots";

vegetables [1] = "broccoli";

vegetables [2] = "spinach";

6.2 The ArrayList Class 243

vegetables [3] = "corn";

vegetables [4] = "potatoes";

vegetables [5] = "squash";

Then we can remove the element at index 2 as follows:

for (int j = 2; j < 5; j++)

vegetables [j] = vegetables [j + 1];

The array vegetables now consists of “carrots”, “broccoli”, “corn”, “potatoes”, “squash”, null,

null, null, null and null.

9. The indexOf method

/**

* Searches for the first occurrence of a specified element, testing for equality with

* the equals method. The worstTime(n) is O(n).

*

* @param obj – the element to be searched for.

*

* @return the index of the first occurrence of obj in this ArrayList object; if

* obj is not in this ArrayList object, -1 is returned.

*

*/

public int indexOf (Object obj)

Example Suppose we start by constructing an ArrayList object:

ArrayList<String> fruits = new ArrayList<String> (100);

fruits.add ("oranges");

fruits.add ("apples");

fruits.add ("durian");

fruits.add ("apples");

Then

System.out.println (fruits.indexOf ("apples"));

will output 1, and

System.out.println (fruits.indexOf ("kiwi"));

will output −1.

Note: The type of the parameter element is Object, not E, so the following is legal:

System.out.println (fruits.indexOf (new Integer (8)));

Of course, the output will be −1, because all the elements in fruits are of type String.

Comparison to an array: An explicit search must be conducted to determine if an element occurs

in an array. For example, suppose we start by creating an array object:

String [] vegetables = new String [10];

vegetables [0] = "carrots";

vegetables [1] = "broccoli";

vegetables [2] = "spinach";

244 CHAPTER 6 Array-Based Lists

vegetables [3] = "corn";

vegetables [4] = "potatoes";

vegetables [5] = "squash";

If myVeg is a String variable, we can print the index of the first occurrence of myVeg in the

vegetables array as follows:

boolean found = false;

for (int j = 0; j < 6 && !found; j++)

if (vegetables [j].equals (myVeg))

{

System.out.println (j);

found = true;

} // if

if (!found)

System.out.println (-1);

If myVeg does not occur in the array object vegetables, −1 will be output.

These represent just a sampling of the ArrayList class’s methods, but even at this point you can see

that an ArrayList object is superior, in most respects, to an array object. For example, an ArrayList

object’s size and capacity are automatically maintained, but an array object’s size and capacity must be

explicitly maintained by the programmer.

6.2.2 A Simple Program with an ArrayList Object

Perhaps you need more convincing that ArrayList objects are more convenient than array objects. Here

is a simple program that creates an ArrayList object from a file of words (one word per line), and

then searches for a word in the ArrayList object, removes all instances of a word, appends a word and

converts a word to upper case. The resulting ArrayList object is then printed out—with a single call to

println. Because this is an illustrative program, there are no constant identifiers.

import java.util.*;

import java.io.*;

public class ArrayListExample

{

public static void main (String[] args)

{

new ArrayListExample().run();

} // method main

public void run()

{

ArrayList<String> aList = new ArrayList<String>();

Scanner keyboardScanner = new Scanner (System.in),

fileScanner;

String inFilePath,

word;

6.2 The ArrayList Class 245

try

{

System.out.print ("\n Please enter the path for the input file: ");

inFilePath = keyboardScanner.nextLine();

fileScanner = new Scanner (new File (inFilePath));

while (fileScanner.hasNext())

{

word = fileScanner.next();

System.out.println (word);

aList.add (word);

} // while not end of file

System.out.print ("\n\n Please enter the word you want to search for: ");

word = keyboardScanner.next();

if (aList.indexOf (word) >= 0)

System.out.println (word + " was found.\n\n");

else

System.out.println (word + " was not found.\n\n");

System.out.print ("Please enter the word you want to remove: ");

word = keyboardScanner.next();

int removalCount = 0;

while (aList.remove (word))

removalCount++;

if (removalCount == 0)

System.out.println (word + " was not found, so not removed.\n\n");

else if (removalCount == 1)

System.out.println ("The only instance of " + word +

" was removed.\n\n");

else

System.out.println ("All " + removalCount + " instances of " +

word + " were removed.\n\n");

System.out.print ("Please enter the word you want to append: ");

word = keyboardScanner.next();

aList.add (word);

System.out.println (word + " was appended.\n\n");

System.out.print ("Please enter the word you want to upper case: ");

word = keyboardScanner.next();

int position = aList.indexOf (word);

if (position >= 0)

{

aList.set (position, word.toUpperCase());

System.out.println (word + " was converted to upper-case.\n\n");

} // if word is in aList

else

System.out.println (word +

" was not found, so not upper-cased.\n\n");

246 CHAPTER 6 Array-Based Lists

System.out.println ("Here is the final version:\n" + aList);

// same as aList.toString()

} // try

catch (IOException e)

{

System.out.println (e);

} // catch

} // method run

} // class ArrayListExample

When this program was run, the file a.in1 contained the following words, one per line:

Don’t get mad Don’t get even Get over it all and get on with

Here is a sample run, with input in boldface:

Please enter the path for the input file: a.in1

Please enter the word you want to search for: even

even was found.

Please enter the word you want to remove: all

The only instance of all was removed.

Please enter the word you want to append: life

life was appended.

Please enter the word you want to convert to upper case: over

over was converted to upper-case.

Here is the final version:

[Don’t, get, mad, Don’t, get, even, Get, OVER, it, and, get, on, with, life]

In the above program, each removal takes linear time. Programming Exercise 6.8 suggests how to perform

all removals in a single loop. And you are invited, in Programming Exercise 6.9, to endure the grind of

converting the program from ArrayList-based to array-based.

In Sections 6.2.3 and 6.2.4, we briefly put on a developer’s hat and look at the ArrayList class

heading, fields and a few method definitions. In Section 6.3, we return to a user’s perspective with an

application of the ArrayList class.

6.2.3 The ArrayList Class’s Heading and Fields

Here is the heading of the ArrayList class:

public class ArrayList<E> extends AbstractList<E>

implements List<E>, RandomAccess, Cloneable, java.io.Serializable

6.2 The ArrayList Class 247

This says that the ArrayList class is a subclass of the class AbstractList, and implements four

interfaces: List, RandomAccess, Cloneable, and Serializable. Figure 6.2 has a UML diagram to

indicate where the ArrayList class fits in the Java Collections Framework, with a solid-line arrow from

an extension (to a class or interface) and a dashed-line arrow from a class to an interface implemented by

the class.

The AbstractCollection class provides a minimal implementation of the Collection interface,

just as the AbstractList class provides a “bare bones” implementation of the List interface. As we

saw in Section 6.1, the List interface extends the Collection interface by including some index-related

methods, such as get (int index) and remove (int index).

Basically, a class that implements the Cloneable interface must have a method that returns a shallow

copy of the calling object. For a description of the clone() method, see Note 4 on the copy constructor

(method number 2) in Section 6.2.1. The RandomAccess interface ensures that if an implementation of

the List interface satisfies the random-access property (with an underlying array), then any sub-list of that

list will also satisfy the random-access property. The Serializable interface, discussed in Appendix 1,

has to do with saving objects to a stream (such as a disk file), which is called serialization , and restoring

those object from the stream, called deserialization .

<<interface>>

Collection

E

<<interface>>

List

AbstractCollection
E E

<<interface>>

Cloneable

<<interface>>

Serializable

AbstractList

 E

ArrayList

E

<<interface>>

RandomAccess

FIGURE 6.2 The UML diagram to illustrate the relative position of the ArrayList<E> class in the Java

Collections Framework

248 CHAPTER 6 Array-Based Lists

It may come as no surprise to you that the ArrayList class has an array field:

private transient E[] elementData;

The reserved word transient indicates that this field is not saved during serialization (see Appendix 1).

That is, each element would be saved, but not the entire array. The field is private instead of protected

because the developers of the Java Collections Framework were opposed to giving users who subclass

direct access to a superclass’s fields. See Section 2.6 for a discussion of this choice.

The only other field defined in the ArrayList class is

private int size;

So an ArrayList object has an array field to store the elements and an int field to keep track of the

number of elements.

We will finish up our developer’s view of the ArrayList class by studying the implementation of

the add method that appends an element to the end of the calling ArrayList object.

6.2.4 Definition of the One-Parameter add Method

To give you an idea of how expansion of an ArrayList object is accomplished, let’s look at the definition

of the one-parameter add method:

public boolean add (E element)

{

ensureCapacity (size + 1);

elementData [size++] = element;

return true;

}

The call to the ensureCapacity method expands the underlying array, if necessary, to accommodate the

new element; we’ll get to the details of that method momentarily. Then the new element, element, is

inserted at index size in the array, size is incremented, and true is returned. Suppose that fruits has

been constructed as an empty ArrayList by a default-constructor call, and the next message is

fruits.add ("oranges");

After that message is processed, the elementData and size fields in fruits will have the contents

shown in Figure 6.3.

Now let’s get back to the ensureCapacity method. If the underlying array is not filled to capac-

ity, then the call to ensureCapacity does nothing. But if size == elementData.length, then the

argument size + 1 must be greater than elementData.length, so we need to expand the array. First,

the array’s current reference, elementData, is copied to oldData:

E oldData [] = elementData;

This does not make a copy of the array, just a copy of the reference. Then a new array object is constructed:

elementData = (E[]) new Object [newCapacity];

where (because the argument was size + 1) the variable newCapacity was given a value about 50%

larger than oldData.length. The cast was necessary because the new operator must be applied to a

“real” type, not to a type parameter (such as E). Finally, the arraycopy method in the System class is

6.2 The ArrayList Class 249

elementData

oranges

null

null

null
size

null
1

null

null

null

null

null

FIGURE 6.3 The contents of the elementData and size fields in the ArrayList object fruits after the

message fruits.add ("oranges") is sent. As usual, we pretend that the non-null elements in the array are

objects; in fact, the elements are references to objects

called to copy all the elements from oldData to elementData; the number of elements copied is the

value of size.

Here is the complete definition:

public void ensureCapacity(int minCapacity)

{

modCount++; // discussed in Appendix 1

int oldCapacity = elementData.length;

if (minCapacity > oldCapacity)

{

E oldData[] = elementData;

int newCapacity = (oldCapacity * 3) / 2 + 1;

if (newCapacity < minCapacity) // can’t happen if argument is size + 1

newCapacity = minCapacity;

elementData = (E[]) new Object [newCapacity];

System.arraycopy(oldData, 0, elementData, 0, size);

}

}

To see the effect of an expansion, suppose that the ArrayList object fruits already has ten elements

and the following message is sent:

fruits.add ("cantaloupes");

Figure 6.4 shows the effect of this message on the elementData and size fields of fruits.

What are the time estimates of the one-parameter add method? Let n represent the number of

elements in the calling ArrayList object. In the worst case, we will have n = elementData.length,

and so, in the ensureCapacity method, we will have minCapacity > oldCapacity. Then the call to

arrayCopy entails copying n elements from oldData to elementData. We conclude that worstTime(n)

is linear in n .

250 CHAPTER 6 Array-Based Lists

fruits.elementData

oranges

bananas [1]

kiwi

apples
fruits.size

pears
11

oranges

grapes

plums

peaches

[9]

cantaloupes

apricots

null [11]

null [12]

null [13]

null [14]

null [15]

[0]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

FIGURE 6.4 The contents of the elementData and size fields in the ArrayList object fruits, if fruits

already had ten elements when the message fruits.add ("cantaloupes") was sent. As usual, we pretend

that the non-null elements in the array are objects instead of references

What about the average case? The only occasion for copying occurs when n = elementD

ata.length. But then, by the details of the ensureCapacity method, no copying would have occurred

in the previous n/3 (approximately) calls to the one-parameter add method. So in n/3 + 1 calls to that

add method, the total number of elements copied would be n , and the average number of elements copied

per call would be about 3. We conclude, since the only non-constant-time code in the ensureCapacity

method is in the initialization of elementData and in the call to arrayCopy, that averageTime(n) is

constant for the one-parameter add method.

Incidentally, the developers of the ArrayList class could have doubled oldCapacity instead of

increasing it by about 50%. There is a trade-off: with doubling, additional space is allocated immediately,

but then there will be a longer period before the next re-sizing occurs. In fact, in the C++ analogue of

the ArrayList class, the old capacity is doubled when a re-sizing occurs.

The previous examination of fields and implementation details is intended just to give you the flavor

of the developer’s view of the ArrayList class. A few more ArrayList method-definitions are covered

in Lab 10. Of course, all of the ArrayList definitions are available in the ArrayList (or AbstractList

or AbstractCollection) class of java.util.

6.3 Application: High-Precision Arithmetic 251

You are now prepared to do Lab 10: More Details on the ArrayList Class

Section 6.3 presents an application of the ArrayList class, so the emphasis once again is on the user’s

viewpoint.

6.3 Application: High-Precision Arithmetic

We now introduce high-precision arithmetic as an application of the ArrayList class. We will get to the

details shortly, but it is worth recalling that the use of a class is independent (except for efficiency) of how

the class is implemented. So we are not locked in to any particular implementation of the ArrayList

class.

In public-key cryptography (see Simmons [1992]), information is encoded and decoded using integers

more than 100 digits long. The essential facts about the role of these very long integers in public-key

cryptography are:

1. It takes relatively little time—O(n3)—to generate a very long integer with n digits that is prime2.

For example, suppose we want to generate a prime number that has 500 digits. Then the number of

loop iterations required is approximately 5003 = 125, 000, 000.

2. It takes a very long time—currently, �(10n/2)—to determine the prime factors of a very long integer

with n digits that is not prime. For example, suppose we want to factor a non-prime with 500 digits.

Then the number of loop iterations required is approximately (10500/2) = 10250.

3. Assume that you have generated p and q , two very long integers that are prime. You then calculate

another prime e to be greater than pq . The product pq can be calculated quickly, and you supply this

product, and e, to anyone who wants to send you a message, M. First, the sender splits the message

M up into sequences of characters M1, M2, The sequence Mi is then treated as a very long

integer Vi by concatenating the bits in each character in Mi. The encrypted integer corresponding

to Vi is Ve
i % pq . That is, we raise Vi to the power e and then take the remainder when the result

of that exponentiation is divided by pq . This seems complicated, but in fact, the calculation can be

performed relatively quickly. (See Simmons, [1992] for details.) The encoded message, as well as pq

and e, are public, that is, transmitted over an insecure channel such as a telephone, postal service,

or computer network.

4. But decoding the message requires knowing the values of p and q . Since determining the factors p

and q takes a prohibitively long time, only you can decode the message.

Very long integers require far greater precision than is directly available in programming languages. We

will now design and implement a simple version of the VeryLongInt class. Exercise 6.5 asks you to

amplify this version, Lab 12 involves the testing of the amplified version, and Programming Assignment

6.1 further expands the VeryLongInt class.

For an industrial-strength class that is applicable to public-key cryptography, see the BigInteger

class in java.math. The BigInteger class includes efficient methods for primality testing, multiplication,

and modular exponentiation.

2An integer p > 1 is prime if the only positive-integer factors of p are 1 and p itself.

252 CHAPTER 6 Array-Based Lists

6.3.1 Method Specifications and Testing of the VeryLongInt Class

There will be only three methods: A very long integer can be constructed from a string, converted to a

string, or incremented by another very long integer. Here are the method specifications, with examples:

1. /**

* Initializes this VeryLongInt object from the digit characters in a

* given String object.

* There are no leading zeros, except for 0 itself, which has a single ‘0’.

* The worstTime(n) is O(n), where n represents the number of characters in s.

*

* @param s – the given String object.

*

* @throws NullPointerException – if s is null.

* @throws IllegalArgumentException – if s contains no digit characters.

*

*/

public VeryLongInt (String s)

Example Suppose we have

VeryLongInt veryLong = new VeryLongInt ("11223?344556677889900");

Then veryLong will be initialized to the VeryLongInt object whose integer value is

11223344556677889900. The ‘?’ is ignored because it is not a digit character. The value is greater

than the largest int value.

2. /** Returns a String representation of this VeryLongInt object. The worstTime(n) is

* O(n), where n represents the number of digits in this VeryLongInt object.

*

* @return a String representation of this VeryLongInt object in the form ‘[’ followed

* by the digits, separated by commas and single spaces, followed by ‘]’.

*

*/

public String toString()

Example Suppose we have

VeryLongInt veryLong = new VeryLongInt ("52?481");

System.out.println (veryLong); // same as

// System.out.println (veryLong.toString());

The output would be

[5, 2, 4, 8, 1]

3. /**

* Increments this VeryLongInt object by a specified VeryLongInt object.

* The worstTime(n) is O(n), where n is the number of digits in the larger of this

* VeryLongInt object (before the call) and the specified VeryLongInt object.

*

* @param otherVeryLong – the specified VeryLongInt object to be added to

* this VeryLongInt object.

*

6.3 Application: High-Precision Arithmetic 253

* @throws NullPointerException – if otherVeryLong is null.

*

*/

public void add (VeryLongInt otherVeryLong)

Example Suppose that newInt and oldInt are VeryLongInt objects with values of 328 and 97,

respectively, and the message sent is

newInt.add (oldInt);

Then the value of newInt has become 425.

Note: This method performs the arithmetic operation of addition. Contrast that to the ArrayList

class’s one-paramter add method, which appends the argument to the calling ArrayList object.

The book’s website has a VeryLongIntTest class, with the following fields:

protected VeryLongInt very;

protected String answer;

That class also includes the following tests, one for a constructor call with an argument that has no digits,

and one for a simple addition:

@Test (expected = IllegalArgumentException.class)

public void testConstructorWithNoDigits()

{

very = new VeryLongInt ("x t?.o");

} // method testConstructorWithNoDigits

@Test

public void testAdd()

{

very = new VeryLongInt ("99");

VeryLongInt other = new VeryLongInt ("123");

very.add (other);

answer = very.toString();

assertEquals ("[2, 2, 2]", answer);

} // method testAdd

6.3.2 Fields in the VeryLongInt Class

As often happens in developing a class, the major decision involves the field(s) to represent the class.

Should we store a very long integer in an array-based structure such as an ArrayList, or would a linked

structure be better? (An array itself is not a good idea because then we would have to write the code—for

example, to keep track of the number of elements in the array—instead of simply calling methods). In this

chapter, we will use the ArrayList class and represent each very long integer as a sequence of digits. In

Chapter 7, we will consider a linked structure.

Which is the appropriate relationship between VeryLongInt and ArrayList: is-a (inheritance)

or has-a (aggregation)? That is, should VeryLongInt be a subclass of ArrayList, or should VeryL

ongInt have a field of type ArrayList ? The primary purpose of the VeryLongInt class is to perform

arithmetic; as such, it shares little functionality with the ArrayList class. So it makes more sense to say

254 CHAPTER 6 Array-Based Lists

“a VeryLongInt object has-an ArrayList field” than “a VeryLongInt object is-an ArrayList object.”

The only field in the VeryLongInt class will be an ArrayList object whose elements are of type

Integer:

protected ArrayList<Integer> digits;

Each element in the ArrayList object digits will be an Integer object whose value is a single digit

(Exercise 6.6 expands each value to a five-digit integer).

Figure 6.5 has the UML diagram for the VeryLongInt class.

VeryLongInt

digits: ArrayList<Integer>

+ VeryLongInt (s: String)

+ toString(): String

+ add (otherVeryLong: VeryLongInt)

FIGURE 6.5 The class diagram for the VeryLongInt class

6.3.3 Method Definitions of the VeryLongInt Class

The digits in the ArrayList field digits will be stored from left-to-right, that is, in their normal order.

For example, if the underlying integer value of a VeryLongInt object is 328, we would store the 3 at

index 0 in digits, the 2 at index 1, and the 8 at index 2.

Notice that by having the insertions take place at the end of the ArrayList object, we take advantage

of the average-case speed of the ArrayList class’s one-parameter add method, which is not related to

the VeryLongInt method named add. If, instead, we stored a number in reverse order, we would be

repeatedly inserting at the front of the ArrayList object digits. Exercise 6.7 explores the effect on

efficiency if the digits are stored in reverse order.

We now define the String -parameter constructor, the toString() method and the add method.

While we do we will keep in mind the strengths (fast random access and fast end-insertions) and weakness

(slow insertions at other-than-the-end positions) of the ArrayList class.

For the String-parameter constructor, we loop through the characters in s. For each character in

s, if the character is a digit character, we convert that character to the corresponding digit by subtracting

the Unicode representation of ‘0’ from the character. For example,

'7' – '0' = 7

Finally, we append that digit (as an Integer) to digits. The ArrayList field digits never needs

resizing during the execution of this constructor because that field is constructed with initial capacity of

s.length(). Here is the code:

public VeryLongInt (String s)

{

final char LOWEST_DIGIT_CHAR = '0';

digits = new ArrayList<Integer> (s.length());

char c;

int digit;

6.3 Application: High-Precision Arithmetic 255

boolean atLeastOneDigit = false;

for (int i = 0; i < s.length(); i++)

{

c = s.charAt (i);

if (Character.isDigit(c))

{

digit = c - LOWEST_DIGIT_CHAR;

digits.add (digit); // digit is boxed to an Integer object

atLeastOneDigit = true;

} // if a digit

} // for

if (!atLeastOneDigit)

throw new IllegalArgumentException();

} // constructor with string parameter

How long will this method take? Assume that there are n characters in the input. Then the loop will be

executed n times. For the ArrayList class’s one-parameter add method, averageTime (n) is constant,

so for this constructor, averageTime(n) is linear in n (that is, O(n) and �(n)). As we saw in the analysis

of that add method, if n represents the number of elements in the ArrayList object, worstTime(n) is

O(n) for n calls to that add method, So for this constructor in the VeryLongInt class, worstTime(n)

is O(n). In fact, because worstTime(n) ≥ averageTime(n) and averageTime(n) is �(n), worstTime(n) must

be �(n). We conclude that worstTime(n) is linear in n .

For the toString() method, we simply invoke the ArrayList class’s toString() method:

public String toString()

{

return digits.toString();

} // method toString

For an example of a call to this method, if veryLong is a VeryLongInt object with a value of 6713, the

output from the call to

System.out.println (veryLong); // same as System.out.println (veryLong.toString());

will be

[6, 7, 1, 3]

For this method, worstTime(n) is linear in n , the number of digits in the calling VeryLongInt object.

To convince yourself of this estimate, look at the definition of the toString() method in the Abstract

Collection class, a superclass of ArrayList.

Finally, we tackle the add (VeryLongInt otherVeryLong) method in the VeryLongInt class.

We obtain partial sums by adding otherVeryLong to the calling object digit-by-digit, starting with the

least significant digit in each number. Each partial sum, divided by 10, is appended to the end of the

ArrayList object sumDigits, which is initially empty.

Because we will be using the ArrayList class’s one-parameter add method on the partial sums,

we must reverse sumDigits after adding so that the most significant digit will end up at index 0. For

example, suppose newInt is a VeryLongInt object with the value 328 and oldInt is a VeryLongInt

object with the value 47. If the message is

newInt.add (oldInt);

256 CHAPTER 6 Array-Based Lists

then after adding and appending the partial sums to the VeryLongInt object sum, sum will have the value

573. When this is reversed—by the generic algorithm reverse in the Collections class of the package

java.util—the sum will be correct. Note that the add method in the ArrayList class is used to

append a digit to the end of sumDigits; the ArrayList class’s add method does not perform arithmetic.

Here is the definition of the add method in the VeryLongInt class:

public void add (VeryLongInt otherVeryLong)

{

final int BASE = 10;

int largerSize,

partialSum,

carry = 0;

if (digits.size() > otherVeryLong.digits.size())

largerSize = digits.size();

else

largerSize = otherVeryLong.digits.size();

ArrayList<Integer> sumDigits = new ArrayList<Integer> (largerSize + 1);

for (int i = 0; i < largerSize; i++)

{

partialSum = least (i) + otherVeryLong.least (i) + carry;

carry = partialSum / BASE;

sumDigits.add (partialSum % BASE);

} // for

if (carry == 1)

sumDigits.add (carry);

Collections.reverse (sumDigits);

digits = sumDigits;

} // method add

The call to the least method with an argument of i returns the ith least significant digit in the calling

object’s digits field. The units (rightmost) digit is considered the 0th least significant digit, the tens digit

is considered the 1st least significant digit, and so on. For example, suppose that the calling VeryLongInt

object has the value 3284971, and i has the value 2. Then the digit returned by the call to least (2) will

be 9 because 9 is the 2nd least significant digit in the calling object’s digits field; the 0th least-significant

digit is 1 and the 1st least-significant digit is 7. The method definition is:

/** Returns the ith least significant digit in digits if i is a non-negative int less than

* digits.size(). Otherwise, returns 0.

*

* @param i – the number of positions from the right-most digit in digits to the

* digit sought.

*

* @return the ith least significant digit in digits, or 0 if there is no such digit.

*

* @throws IndexOutOfBoundsException – if i is negative.

Summary 257

*

*/

protected int least (int i)

{

if (i >= digits.size())

return 0;

return digits.get (digits.size() - i - 1);

} // least

For the least method, worstTime(n) is constant because for the size and get methods in the ArrayList

class, worstTime(n) is constant.

We can now estimate the time requirements for the VeryLongInt class’s add method. Assume, for

simplicity, that the calling object and otherVeryLongInt are very long integers with n digits. There will

be n iterations of the for loop in the definition of the add method, and during each iteration, a digit is

appended to sumDigits. For appending n elements to the end of an ArrayList, worstTime(n) is linear

in n; see Exercise 6.2. The reverse generic algorithm also takes linear-in-n time, so for the add method

in the VeryLongInt class, worstTime(n) is linear in n .

The book’s website has a class, VeryLongIntUser, to demonstrate how an end user might work

with the VeryLongInt class. The run method inputs a line from the keyboard, calls a process method

to parse the line and invoke the appropriate method,, and outputs the result of processing to the screen.

For the testing of that process method, see the test class, VeryLongIntUserTest, also on the book’s

website.

Programming Exercise 6.7 expands on the VeryLongInt class. You should complete that exercise

before you attempt to do Lab 11.

You are now prepared to do Lab 11: Expanding the VeryLongInt Class

Exercise 7.7 explores the modifications needed to develop the VeryLongInt class with digits a

LinkedList field instead of an ArrayList field.

S U M M A R Y

In this chapter we introduced the List interface, which

extends the Collection interface by adding several

index-based methods. We then studied the ArrayList

class, an implementation of the List interface that allows

random-access—that is, constant-time access—of any

element from its index. Using an ArrayList object is

similar to using an array, but one important difference

is that ArrayList objects are automatically resizable.

When an ArrayList outgrows the current capacity of

its underlying array, an array of 1.5 times that size is

created, and the old array is copied to the larger array.

This is similar to what hermit crabs do each time they

outgrow their shell. A further advantage of ArrayList

object over arrays is that, for inserting and deleting, users

are relieved of the burden of writing the code to make

space for the new entry or to close up the space of the

deleted entry.

The application of the ArrayList class was

in high-precision arithmetic, an essential component of

public-key cryptography.

258 CHAPTER 6 Array-Based Lists

CROSSWORD PUZZLE

1 2 3

4

5

6

7 8

9

10

www.CrosswordWeaver.com

ACROSS DOWN

1. The immediate superclass of ArrayList.

5. Currently, determining the prime factors
 of a non-prime very long integer of n
 digits requires_________ in n time.

6. The fact that String[] is a subclass of
 Object[] is an example of
 ____________ subtyping.

7. A constructor that initializes the calling
 object to a copy of the argument
 corresponding to the given parameter.

9. The fact that ArrayList<String> is not
 a subclass of ArrayList<Object> is an
 example of ____________ subtyping.

10. In public-key cryptography, information
 is encoded and decoded using
 ______________.

2. The __________ method, because it
 does not guarantee type safety, is
 inferior to the copy constructor for
 obtaining a copy of an ArrayList object.

3. An interface that extends the Collection
 interface with methods that have an
 index as either a parameter or a return
 type.

4. Because the elements in any Collection
 object are references, the ArrayList’s
 copy constructor is said to produce a
 ______ copy.

8. A positive integer greater than 1 that
 has no positive-integer factors other
 than 1 and itself is called a
 ____________ number.

www.CrosswordWeaver.com

Programming Exercises 259

CONCEPT EXERCISES

6.1 State two advantages, and one disadvantage, of using an ArrayList object instead of an array object.

6.2 Show that, for the task of appending n elements to an ArrayList object, worstTime(n) is linear in n .

6.3 The one-parameter add method in the ArrayList class always returns true. Would it make sense to change

the return type from boolean to void ? Explain.

6.4 For the one-parameter add method in the ArrayList class, estimate worstSpace(n) and averageSpace(n).

6.5 In choosing fields for the VeryLongInt class, we decided to use, rather than inherit from, the ArrayList

class. Why?

Hint: How much commonality is there between the methods in the ArrayList class and the methods in the

VeryLongInt class?

6.6 Suppose you modified the VeryLongInt class as follows: each element in digits consists of a five-digit

integer. What effect do you think this will have on Big-O time? What about run-time?

6.7 Suppose, in developing the VeryLongInt class, we decide that digits will contain the integer in reverse

order. For example, if the constructor call is:

VeryLongInt veryLong = new VeryLongInt ("386");

we would have (Integer elements with values) 6, 8, 3 in positions 0 through 2, respectively of digits.

Re-design this constructor so that worstTime(n) is still linear in n.

6.8 Which parts of the VeryLongInt methods would have to be re-written if digits were an array object of

int elements instead of an ArrayList object of Integer elements?

6.9 How can a user of the VeryLongInt class easily create a VeryLongInt object that is a copy of an already

existing VeryLongInt object?

PROGRAMMING EXERCISES

6.1 Hypothesize the output from the following code, and then test your hypothesis with a small program that

includes the code:

ArrayList<String> letters = new ArrayList<String>();

letters.add ("f");

letters.add (1, "i");

letters.add ("e");

letters.add (1, "r");

letters.add ("e");

letters.add (4, "z");

System.out.println (letters);

letters.remove ("i");

int index = letters.indexOf ("e");

letters.remove (index);

letters.add (2, "o");

System.out.println (letters);

260 CHAPTER 6 Array-Based Lists

6.2 For each of the following program segments, hypothesize if the segment would generate a compile-time error,

a run-time exception, or neither. Then test your hypotheses with a main method that includes each segment.

a. ArrayList<String> myList = new ArrayList<String>();

myList.add ("yes");

myList.add (7);

b. ArrayList<Double> original = new ArrayList<Double>();

original.add (7);

c. ArrayList<Integer> original = new ArrayList<Integer>();

double x = 7;

original.add (x);

d. ArrayList<String> newList = new ArrayList<String>();

newList.add ("yes");

Integer answer = (Integer)newList.get (0);

6.3 Suppose we have the following code:

ArrayList<String> myList = new ArrayList<String>();

myList.add ("Karen");

myList.add ("Don");

myList.add ("Mark");

ArrayList<String> temp = new ArrayList<String> (myList);

ArrayList<String> sameList = myList;

myList.add (1, "Courtney");

Hypothesize what the contents of myList, temp, and sameList will be after this last insertion. Then test

your hypothesis with a main method that includes the code.

6.4 Hypothesize what will happen when the following code fragment is run, and then test your hypothesis:

ArrayList<String> original = new ArrayList<String>();

original.add ("yes");

ArrayList<Integer> copy = (ArrayList<Integer>)original.clone();

System.out.println (copy.get (0));

Hint: This exercise illustrates why the copy constructor is superior to the clone() method.

6.5 Expand the VeryLongInt class by testing and defining methods that have the following method specifica-

tions:

a. /**

* Initializes this VeryLongInt object from a given int.

*

* @param n – the int from which this VeryLongInt is initialized.

*

* @throws IllegalArgumentException – if n is negative.

*

*/

public VeryLongInt (int n)

Programming Exercises 261

b. /**

* Returns the number of digits in this VeryLongInt object.

*

* @return the number of digits in this VeryLongInt object.

*

*/

public int size()

c. /**

* Returns true if this VeryLongInt object is less than another VeryLongInt

* object. The worstTime(n) is O(n).

*

* @param otherVeryLong – the other VeryLongInt object.

*

* @return true – if this VeryLongInt is less than otherVeryLong.

*

* @throws NullPointerException – if otherVeryLong is null

*

*/

public boolean less (VeryLongInt otherVeryLong)

d. /**

* Returns true if this VeryLongInt object is greater than another VeryLongInt

* object. The worstTime(n) is O(n).

*

* @param otherVeryLong – the other VeryLongInt object.

*

* @return true – if this VeryLongInt is greater than otherVeryLong.

*

* @throws NullPointerException – if otherVeryLong is null

*

*/

public boolean greater (VeryLongInt otherVeryLong)

e. /**

* Returns true if this VeryLongInt object is equal to a specified object.

* The worstTime(n) is O(n).

*

* @param obj – the specified object that this VeryLongInt is compared to.

*

* @return true – if this VeryLongInt is equal to obj.

*

*/

public boolean equals (Object obj)

f. /**

* Stores a Fibonacci number in this VeryLongInt object.

*

* @param n – the index in the Fibonacci sequence

*

* @throws IllegalArgumentException – if n is not positive

*

262 CHAPTER 6 Array-Based Lists

*/

public void fibonacci (int n)

Example Suppose the following message is sent

tempInt.fibonacci (100);

Then tempInt’s value will be 354224848179261915075—the 100th Fibonacci number.

Hint: Mimic the iterative design of the Fibonacci function from Lab 7. Both i and n will be ordinary int

variables, but previous, current and temp will be VeryLongInt objects. After the loop, instead of

returning current, the calling object is modified by assigning to digits a copy of current.digits.

6.6 Assume that myList is (a reference to) an ArrayList<Double> object and that both i and j are int

variables with values in the range from 0 to myList.size() -1, inclusive. Hypothesize what the following

accomplishes, and then test your hypothesis.

myList.set (i, myList.set (j, myList.get (i)));

6.7 Describe how to find the method definitions for the ArrayList class in your computing environment.

6.8 Modify the simple program in Section 6.2.2 so that all removals are performed in a single loop.

Hint: Create a temporary ArrayList object to hold the un-removed elements. What is a drawback to this

approach?

6.9 Convert the simple program in Section 6.2.2 into one that uses an array object instead of an ArrayList

object.

6.10 Modify the simple program in Section 6.2.2 to use a binary search instead of the sequential search used in

the call to the indexOf method. The Collections class in java.util has a binarySearch method

and a sort method.

6.11 Suppose scoreList is an ArrayList object of Integer elements, and the following message is sent:

scoreList.remove (3);

Does this message remove the element at index 3, or remove the first occurrence of new Integer (3)?

Test your hypothesis.

6.12 Suppose we create the following ArrayList instance:

ArrayList<String> words = new ArrayList<String>();

And then we insert several words into words. Write the code to print out each element of words that has

exactly four letters. You should have three different versions of the code:

a. using an index;

b. using an explicit iterator;

c. using an enhanced for statement.

6.13 Test and define the following method

/**

* In a given ArrayList, remove all duplicates.

* The worstTime(n) is O(n2).

*

* @param list - the given ArrayList.

*

Programming Exercises 263

* @return – An ArrayList that is identical to list except only the first

* occurrence of duplicate elements remains.

*

* @throws NullPointerException - if list is null.

*

*/

public static <T> ArrayList <T> uniquefy (ArrayList <T> list)

For example, suppose myList consists of references to Integer objects with the following values, in

sequence

3, 8, 6, 4, 8, 7, 8, 9, 4

Then the ArrayList returned by the call to uniquefy (myList) will consist of references to Integer

objects with the following values, in sequence

3, 8, 6, 4, 7, 9

Programming Project 6.1

Expanding the VeryLongInt Class

In the VeryLongInt class, test and define a multiply method and a factorial method. Here is the method

specification for multiply:

/** Stores in this VeryLongInt object the product of its pre-call value and the value

* of a specified VeryLongInt object. The worstTime(n) is O(n * n), where n is

* the maximum of the number of digits in the pre-call value of this

* VeryLongInt object and the number of digits in the specified VeryLongInt object.

*

* @param otherVeryLong – the specified VeryLongInt object to be multiplied by

* this VeryLongInt object.

*

* @throws NullPointerException – if otherVeryLong is null

*

*/

public void multiply (VeryLongInt otherVeryLong)

For factorial:

/**

* Stores, in this VeryLongInt object, the product of all integers between 1 and

* specified integer n. The worstTime(n) is O(n log (n!)): n multiplications, and

* each product has fewer digits than log (n!), the number of digits in n!

*

* @param n – the number whose factorial will be stored in this VeryLongInt

* object.

*

* @throws IllegalArgumentException – if n is negative.

(continued on next page)

264 CHAPTER 6 Array-Based Lists

(continued from previous page)

*

*/

public void factorial (int n)

Use unit testing to test your methods.

Programming Project 6.2

An Integrated Web Browser and Search Engine, Part 2

This is the second part of a sequence of related projects to create an integrated web browser and search engine.

Problem Convert a text file into a list of tokens, one per line.

Analysis A program that transforms an input file in one form into an output file in another form is called a filter. For

the sake of further parts of this project, you will transform an input file into a list. Develop a Filter class with the

following two methods:

/**

* Initializes this Filter object from the paths for the input file

* and common words.

*

* @param inFilePath - the path for the input file.

* @param commonFilePath - the path for the file with the common words.

*

* @throws IOException - if either file does not exist.

*

*/

public Filter (String inFilePath, String commonFilePath) throws IOException

/**

* Creates the ArrayList of tokens from the input file.

*

* @return – an ArrayList of tokens.

*

*

*/

public ArrayList<String> createList()

1. The tokens in the returned ArrayList will not include common words such as “a”, “and”, and “in”. The

end-user will specify a file of common words, one per line. Here are the (sample) contents of that file:

a

an

and

are

Programming Exercises 265

did

down

in

the

where

to

You should assume that the file of common words is large enough so that it should be read in only once, and

stored without a lot of unused space (the title of this chapter is a hint for the storage structure). Each search

of the common words should take O(log n) time in the worst case. The file of common words may not be

in alphabetical order, but the stored common words should be in alphabetical order (see Collections.java in

java.util).

2. The tokens will not include tags from the input file, that is, all characters between ‘<’ and ‘>’. You may

assume that each ‘<’ will be followed on the same line by a matching ‘>’. You may assume that the text

between two link tags consists of a single word. That is, you might have singleword.

For example, suppose a line in the input file consists of

Caverns are browser2 measureless to man

Then the tokens would be

caverns

browser2

measureless

man

3. Other than the restrictions of 1 and 2 above, the returned ArrayList will consist of all words, lowercased, in

the input file; each word has only letters, digits, hyphens, and apostrophes.

4. After unit-testing your Filter class, develop a FilterUser class similar to the VeryLongIntUser class in

Section 6.3.3. The FilterUser class scans in the path names for the input file and the common-words file.

Include appropriate messages and re-prompts for incorrect input.

The filter you will be creating in this project is essential for a search engine because the relevance of a

document is based on the words the document contains.

Here is sample input for the FilterUser class:

kubla.in1

common.in1

If the file “kubla.in1” consists of

Caverns are browser2 measureless to man.

and the file “common.in1” is as shown above, then the contents of the returned ArrayList will be

caverns

browser2

(continued on next page)

266 CHAPTER 6 Array-Based Lists

(continued from previous page)

measureless

man

Here is more sample input for the FilterUser class:

kubla.in3

common.in1

If the file “kubla.in3” consists of:

In Xanadu did Kubla Khan

A stately pleasure-dome decree:

Where Alph, the sacred browser4 river, ran

Through caverns browser2 measureless to man

Down to a sunless sea.

Sea’s sea and

down

then the contents of the returned ArrayList will be

xanadu

kubla

khan

stately

pleasure-dome

decree

alph

sacred

browser4

river

ran

through

caverns

browser2

measureless

man

sunless

sea

sea’s

sea

Hint for removing tags: Treat an entire tag as a delimiter. See http://www.txt2re.com for details.

http://www.txt2re.com

Linked Lists CHAPTER 7

In this chapter we continue our study of collection classes by introducing the LinkedList class, part

of the Java Collections Framework. Like the ArrayList class, the LinkedList class implements the

List interface, so you are already familiar with most of the LinkedList method headings. There are

some significant performance differences between the two classes. For example, LinkedList objects

lack the random-access feature of ArrayList objects: to access a LinkedList’s element from an

index requires a loop. But LinkedList objects allow constant-time insertions and deletions, once the

insertion-point or deletion-point has been accessed.

We will start with a general discussion of linked lists, and then introduce a simple linked structure, the

SinglyLinkedList class. This toy class serves mainly to prepare you for the more powerful, and more

complicated, LinkedList class. The application of the LinkedList class, a line editor, takes advantage

of a LinkedList iterator’s ability to insert or remove in constant time.

CHAPTER OBJECTIVES

1. Be able to develop new methods for the SinglyLinkedList class.

2. Understand the LinkedList class from a user’s perspective.

3. Given an application that requires a list, be able to decide whether an ArrayList or a

LinkedList would be more appropriate.

4. Compare several choices of fields for the LinkedList class and, for each choice, be able to

create a LinkedList object.

7.1 What is a Linked List?

Before we start investigating the LinkedList class, let’s spend a little time on the general concept of a

linked list. A linked list is a List object (that is, an object in a class that implements the List interface)

in which the following property is satisfied:

Each element is contained in an object, called an Entry object, which also includes a reference, called a link ,

to the Entry object that contains the next element in the list.

For the Entry object that holds the last element, there is no “next” element.

For example, Figure 7.1 shows part of a linked list.

Some linked lists also satisfy the following property:

Each Entry object includes a link to the Entry object that contains the previous element in the list.

267

268 CHAPTER 7 Linked Lists

exhale mellow serene

FIGURE 7.1 Part of a linked list

exhale mellow serene

FIGURE 7.2 Part of a doubly-linked list

A linked list that satisfies the second property is called a doubly-linked list . Otherwise, it is called a

singly-linked list . For example, Figure 7.2 shows part of a doubly-linked list with three elements, and they

happen to be in alphabetical order.

We have intentionally omitted any indication of how the first and last elements are identified, and what

is stored in their previous and next links, respectively. In Section 7.3, we’ll see that there are several options.

Most of this chapter is devoted to doubly-linked lists, but we will start by studying singly-linked

lists because, as you might imagine, they are easier to develop (they are also less powerful).

7.2 The SinglyLinkedList Class—A Singly-Linked, Toy Class!

We now create a class, SinglyLinkedList, that implements the List interface of the Java Collections

Framework. As suggested by Figure 7.1, the basic idea is to link the elements together in a chain: with each

element we will include a reference to the next element in the collection. You will have the opportunity

to expand on this SinglyLinkedList class in Lab 12 and in three of the programming projects at the

end of this chapter.

The SinglyLinkedList class has very little functionality, and is not part of the Java Collections

Framework. You will never use it for application programs. Why bother to learn it in the first place?

You should view the SinglyLinkedList class as a “toy” class that highlights the concepts of links and

iterators, two essential features of the Java Collections Framework. And, like any other toy, you will have

the opportunity to play with the SinglyLinkedList class: to add new fields and methods, and to alter the

definitions of existing methods. You will study the SinglyLinkedList class mainly to make it easier for

you to understand the LinkedList class, which is in the Java Collections Framework. The LinkedList

class, doubly-linked, is quite powerful but also somewhat complex.

The elements in a SinglyLinkedList object are not stored contiguously, so with each element we

must provide information on how to get to the next element in the collection. First, we create a class to

hold a reference to an element and a “next” reference. In this Entry class, there are no specified methods

(of course, there is a default constructor) and two fields, with E the type parameter:

protected class Entry<E>

{

protected E element;

protected Entry<E> next;

} // class Entry

The next field in an Entry holds a reference to another Entry object. A reference to an Entry object is

called a link . For example, Figure 7.3 depicts a sequence of linked entries; each element is a (reference

to a) String object. We use an arrow to indicate that the next field at the base of the arrow contains

7.2 The SinglyLinkedList Class—A Singly-Linked, Toy Class! 269

mellow peacefulserene null

FIGURE 7.3 Part of a singly-linked list of three String elements

a reference to the Entry object pointed to by the tip of the arrow. And, for the sake of simplicity, we

pretend that the type of element is String rather than reference-to-String. In the last Entry object,

the next field has the value null, which indicates that there is no subsequent Entry object.

The Entry class will be embedded in the SinglyLinkedList class. A class that is embedded in

another class is called a nested class . This embedding allows the SinglyLinkedList class to access the

two fields in an Entry object directly (a good thing, too, because the Entry class has no methods). The

Entry class has protected visibility for the sake of future subclasses of SinglyLinkedList.

The SinglyLinkedList class will implement the Collection interface in the Java Collections

Framework. As with all other Collection classes, the SinglyLinkedList class is parameterized, with

E as the type parameter:

public class SinglyLinkedList<E> extends AbstractCollection<E>

implements List<E>

We need not provide realistic implementations for each of the abstract methods in the List interface. For

methods we are not interested in, their definitions will simply throw an exception. To start with, we will

implement only five methods: a default constructor, isEmpty, addToFront, size, and contains. Here

are the method specifications:

1. Default constructor

/**

* Initializes this SinglyLinkedList object to be empty, with elements to be of

* type E.

*

*/

public SinglyLinkedList()

Note. Saying that a SinglyLinkedList object is empty means that the collection has no elements

in it.

2. The isEmpty method

/**

* Determines if this SinglyLinkedList object has no elements.

*

* @return true – if this SinglyLinkedList object has no elements; otherwise,

* false.

*

*/

public boolean isEmpty ()

Example If we start with

SinglyLinkedList<Double> myLinked = new SinglyLinkedList<Double>();

System.out.println (myLinked.isEmpty ());

270 CHAPTER 7 Linked Lists

The output would be

true

because the object referenced by myLinked has no elements.

3. The addToFront method

/**

* Adds a specified element to the front of this SinglyLinkedList object.

*

* @param element – the element to be inserted (at the front).

*

*/

public void addToFront (E element)

Note 1. Elements are inserted only at the front of a SinglyLinkedList object (This allows for

a simpler implementation). For example, suppose the SinglyLinkedList object referenced by

myLinked consists of “yes”, “no”, and “maybe” in that order, and the message is

myLinked.addToFront ("simple");

Then the SinglyLinkedList object referenced by myLinked will consist of “simple”, “yes”, “no”,

and “maybe” in that order.

Note 2. The method identifier addToFront is used instead of add because the add (E element)

in the List interface specifies that element must be inserted at the end of the list, and that is

somewhat more difficult than inserting at the front.

4. The size method

/**

* Determines the number of elements in this SinglyLinkedList object.

* The worstTime(n) is O(n).

*

* @return the number of elements.

*

*/

public int size ()

Example Suppose the SinglyLinkedListobject referenced by myLinked consists of the elements

‘‘simple’’, ‘‘yes’’, ‘‘no’’, and ‘‘maybe’’ in that order. If the message is

System.out.println (myLinked.size ());

then the output will be

4

5. The contains method

/**

* Determines if this SinglyLinkedList object contains a specified element.

* The worstTime(n) is O(n).

*

7.2 The SinglyLinkedList Class—A Singly-Linked, Toy Class! 271

* @param obj – the specified element being sought.

*

* @return true - if this SinglyLinkedList object contains obj; otherwise,

* false.

*

*/

public boolean contains (Object obj)

Note. The user of this method is responsible for ensuring that the equals method is explicitly defined

for the class that includes obj and the elements in the SinglyLinkedList. Otherwise, as noted in

Section 2.7, the Object class’s version of equals will be applied:

public boolean equals (Object obj)

{

return (this == obj);

}

This methods test whether the reference to the calling object contains the same address as the reference

obj. Because equality-of-references is tested instead of equality-of-elements, false will be returned

if the calling-object reference and obj are references to distinct but identical objects!

Here, from the book’s website, is a test suite for these methods:

import org.junit.*;

import static org.junit.Assert.*;

import org.junit.runner.Result;

import static org.junit.runner.JUnitCore.runClasses;

import java.util.*;

public class SinglyLinkedTest

{

public static void main(String[] args)

{

Result result = runClasses (SinglyLinkedTest.class);

System.out.println ("Tests run = " + result.getRunCount() +

"\nTests failed = " + result.getFailures());

} // method main

protected SinglyLinkedList<String> list;

@Before

public void runBeforeEachTest()

{

list = new SinglyLinkedList<String>();

} // method runBeforeEachTest

@Test

public void testSize1()

{

assertEquals (0, list.size());

} // method testSize1

272 CHAPTER 7 Linked Lists

@Test

public void testAdd()

{

list.addToFront ("Greg");

list.addToFront ("Brian");

list.addToFront ("Berkin");

assertEquals ("[Berkin, Brian, Greg]", list.toString());

// Note: AbstractCollection implements toString()

} // testAdd

@Test

public void testSize2()

{

list.addToFront ("Greg");

list.addToFront ("Brian");

list.addToFront ("Berkin");

assertEquals (3, list.size());

} // testSize2

@Test

public void testContains1()

{

list.addToFront ("Greg");

list.addToFront ("Brian");

list.addToFront ("Berkin");

assertEquals (true, list.contains("Brian"));

} // testContains1

@Test

public void testContains2()

{

list.addToFront ("Greg");

list.addToFront ("Brian");

list.addToFront ("Berkin");

assertEquals (false, list.contains("Jack"));

} // testContains2

@Test

public void testContains3()

{

list.addToFront ("Greg");

list.addToFront ("Brian");

list.addToFront ("Berkin");

assertEquals (false, list.contains(7));

} // testContains2

} // class SinglyLinkedTest

All tests failed initially, with the usual stub (throw new UnsupportedOperationExcep

tion();) for each SinglyLinkedList method.

7.2 The SinglyLinkedList Class—A Singly-Linked, Toy Class! 273

These few methods do not provide much in the way of functionality: we cannot remove an element

and, what’s worse, we cannot even retrieve the elements. But we have enough to consider fields and

method definitions.

7.2.1 Fields and Method Definitions in the SinglyLinkedList Class

Something is missing from Figure 7.3: a reference to the first Entry object. This missing “link” will be

a field in the SinglyLinkedList class, in fact, the only field:

protected Entry<E> head;

Suppose a SinglyLinkedList object is constructed as follows:

SinglyLinkedList<Integer> scoreList = new SinglyLinkedList<Integer>();

To make scoreList a reference to an empty SinglyLinkedList object, all the default constructor has

to do is to initialize the head field to null. Since a reference field is automatically initialized to null,

we need not define the default constructor, but we will do so for the sake of being explicit:

public SinglyLinkedList()

{

head = null;

} // default constructor

Now we can move on to the definitions of the isEmpty, addToFront, size, and contains methods.

How can the isEmpty() method determine if the list has no elements? By testing the head field:

public boolean isEmpty ()

{

return head == null;

} // method isEmpty

The definition of the addToFront (E element) method is not quite so easy to develop. For inspiration,

suppose we add a fourth element to the front of a singly-linked list consisting of the three elements from

Figure 7.3. Figure 7.4 shows the picture before the fourth element is added.

According to the method specification for the addToFront method, each new element is inserted at

the front of a SinglyLinkedList object. So if we now add “calm” to the front of this list, we will get

the list shown in Figure 7.5.

In general, how should we proceed if we want to insert the element at the front of the calling

SinglyLinkedList object? We start by constructing a new Entry object and assigning (a reference to)

the new element to that Entry object’s element field. What about the Entry object’s next field? The

reference we assign to the next field should be a reference to what had been the first Entry before this

head

mellow peacefulserene null

FIGURE 7.4 A SinglyLinkedList object of three String elements

274 CHAPTER 7 Linked Lists

head

calm

mellow peacefulserene null

FIGURE 7.5 The SinglyLinkedList object from Figure 2.5 after inserting “calm” at the front of the list

call to addToFront. In other words, we should assign head to the next field of the new Entry object.

Finally, we adjust head to reference the new Entry object. The complete definition is:

public void addToFront (E element)

{

Entry<E> newEntry = new Entry<E>();

newEntry.element = element;

newEntry.next = head;

head = newEntry;

} // method addToFront

Figures 7.6a through 7.6d show the effect of executing the first four statements in this method when “calm”

is inserted at the front of the SinglyLinkedList object shown in Figure 7.4.

For the definition of the size method, we initialize a local int variable, count, to 0 and a local

Entry reference, current, to head. We then loop until current is null, and increment count and

current during each loop iteration. Incrementing count is a familiar operation, but what does it mean to

head

newEntry

null null

mellow serene peaceful null

FIGURE 7.6a The first step in inserting “calm” at the front of the SinglyLinkedList object of Figure 7.4:

constructing a new Entry object (whose two fields are automatically pre-initialized to null)

head

newEntry

calm null

mellow serene peaceful null

FIGURE 7.6b The second step in inserting “calm” at the front of the SinglyLinkedList object of Figure 7.4:

assigning the object-reference element to the element field of the newEntry object

7.2 The SinglyLinkedList Class—A Singly-Linked, Toy Class! 275

head

mellow serene peaceful null

newEntry

calm

FIGURE 7.6c The third step in inserting “calm” at the front of the SinglyLinkedList object of Figure 7.4:

assigning head to the next field of the newEntry object

head

mellow

newEntry

calm

serene nullpeaceful

FIGURE 7.6d The fourth step in inserting “calm” at the front of the SinglyLinkedList object of Figure 7.4.

The SinglyLinkedList object is now as shown in Figure 7.5

“increment current ”? That means to change current so that current will reference the next Entry

after the one current is now referencing. That is, we set

current = current.next;

Here is the definition of the size method:

public int size ()

{

int count = 0;

for (Entry<E> current = head; current != null; current = current.next)

count++;

return count;

} // method size

The loop goes through the entire SinglyLinkedList object, and so worstTime(n) is linear in n (as is

averageTime(n)). Note that if we add a size field to the SinglyLinkedList class, the definition of the

size() method becomes a one-liner, namely,

return size;

But then the definition of the addToFront method would have to be modified to maintain the value of

the size field. See Programming Exercise 7.7.

Finally, for now, we develop the contains method. The loop structure is similar to the one in

the definition of the size method, except that we need to compare element to current.element. For

the sake of compatibility with the LinkedList class in the Java Collections Framework, we allow null

276 CHAPTER 7 Linked Lists

elements in a SinglyLinkedList object. So we need a separate loop for the case where element is

null. Here is the code:

public boolean contains (Object obj)

{

if (obj == null)

{

for (Entry<E> current = head; current != null; current = current.next)

if (obj == current.element)

return true;

} // if obj == null

else

for (Entry<E> current = head; current != null; current = current.next)

if (obj.equals (current.element))

return true;

return false;

} // method contains

With these definitions, all tests passed in SinglyLinkedTest.

As we discussed in Section 7.2, in the note following the method specification for contains

(Object obj), make sure that the definition of the equals method in the element’s class compares

elements for equality. We needed a special case for obj == null because the message obj.equals

(current.element) will throw NullPointerException if obj is null.

One important point of the SinglyLinkedList class is that a linked structure for storing a collection

of elements is different from an array or ArrayList object in two key respects:

1. The size of the collection need not be known in advance. We simply add elements at will. So we do

not have to worry, as we would with an array, about allocating too much space or too little space.

But it should be noted that in each Entry object, the next field consumes extra space: it contains

program information rather than problem information.

2. Random access is not available. To access some element, we would have to start by accessing the

head element, and then accessing the next element after the head element, and so on.

7.2.2 Iterating through a SinglyLinkedList Object

We have not yet established a way for a user to loop through the elements in a SinglyLinkedList object.

The solution, as we saw in Section 4.2.3.1, is to develop an Iterator class for SinglyLinkedList

objects, that is, a class that implements the Iterator interface, and of which each instance will iterate

over a SinglyLinkedList object.

The SinglyLinkedListIterator class will be a protected class embedded within the

SinglyLinkedList class. We want our Iterator object to be positioned at an Entry so we can easily

get the next element and determine if there are any more elements beyond where the Iterator object is

positioned. For now1, the SinglyLinkedListIterator class will have only one field:

protected Entry<E> next;

1In Project 7.1, two additional fields are added to the SinglyLinkedListIterator class.

7.2 The SinglyLinkedList Class—A Singly-Linked, Toy Class! 277

We will fully implement only three methods: a default constructor, next() and hasNext(). The

remove() method will simply throw an exception. Here is an outline of the class:

protected class SinglyLinkedListIterator implements Iterator<E>

{

protected Entry<E> next;

/**

* Initializes this SinglyLinkedListIterator object

*

*/

protected SinglyLinkedListIterator()

{

. . .

} // default constructor

/**

* Determines if this Iterator object is positioned at an element in this

* SinglyLinkedIterator object.

*

* @return true - if this Iterator object is positioned at an element;

* otherwise, false.

*/

public boolean hasNext()

{

. . .

} // method hasNext

/**

* Returns the element this Iterator object was (before this call)

* positioned at, and advances this Iterator object.

*

* @return - the element this Iterator object was positioned at.

*

* @throws NullPointerException – if this Iterator object was

* not postioned at an element before this call.

*/

public E next()

{

. . .

} // method next

public void remove()

{

throw new UnsupportedlOperationException();

} // method remove

} // class SinglyLinkedListIterator

278 CHAPTER 7 Linked Lists

Note that the SinglyLinkedIterator class has E as its type parameter because SinglyLinkedList

Iterator implements Iterator<E>.

In defining the three methods, there are three “next”s we will be dealing with:

a next field in the SinglyLinkedListIterator class;

a next() method in the SinglyLinkedListIterator class;

a next field in the Entry class.

You will be able to determine the correct choice based on the context—and the presence or absence of

parentheses.

An interface does not have any constructors because an interface cannot be instantiated, so the

Iterator interface had no constructors. But we will need a constructor for the SinglyLinkedList

Iterator class. Otherwise, the compiler would generate a default constructor and the Java Virtual

Machine would simply, but worthlessly, initialize the next field to null. What should the constructor

initialize the next field to? Where we want to start iterating? At the head of the SinglyLinkedList:

protected SinglyLinkedListIterator()

{

next = head;

} // default constructor

This method can access head because the SinglyLinkedListIterator class is embedded in the

SinglyLinkedList class, where head is a field.

The hasNext() method should return true as long as the next field (in the SinglyLinkedList

Iterator class, not in the Entry class) is referencing an Entry object:

public boolean hasNext ()

{

return next != null;

} // method hasNext

The definition of the remove() method will simply throw an exception, so all that remains is the definition

of the next() method. Suppose we have a SinglyLinkedList of two String elements and the default

constructor for the SinglyLinkedListIterator has just been called. Figure 7.7 shows the current

situation (as usual, we pretend that a String object itself, not a reference, is stored in the element field

of an Entry object):

head

next

Karen Marie null

FIGURE 7.7 The contents of the next field in the SinglyLinkedListIterator class just after the

SinglyLinkedListIterator’s constructor is called

7.2 The SinglyLinkedList Class—A Singly-Linked, Toy Class! 279

Since we are just starting out, what element should the next() method return? The element returned

should be “Karen”, that is, next.element. And then the next field should be advanced to point to

the next Entry object That is, the SinglyLinkedListIterator’s next field should get the reference

stored in the next field of the Entry object that the SinglyLinkedListIterator’s next field is

currently pointing to. We can’t do anything after a return, so we save next.element before advancing

next, and then we return (a reference to) the saved element. Here is the definition:

public E next()

{

E theElement = next.element;

next = next.next;

return theElement;

} // method next

Now that we have a SinglyLinkedListIterator class, we can work on the problem of iterating through

a SinglyLinkedList object. First, we have to associate a SinglyLinkedListIterator object with

a SinglyLinkedList object. The iterator() method in the SinglyLinkedList class creates the

necessary connection:

/**

* Returns a SinglyLinkedListIterator object to iterate over this

* SinglyLinkedList object.

*

*/

public Iterator<E> iterator()

{

return new SinglyLinkedListIterator();

} // method iterator

The value returned is a (reference to a) SinglyLinkedListIterator. The specified return type has

to be Iterator<E> because that is what the iterator() method in the Iterator interface calls for.

Any class that implements the Iterator interface—such as SinglyLinkedListIterator—can be the

actual return type.

With the help of this method, a user can create the appropriate iterator. For example, if myLinked

is a SinglyLinkedList object of Boolean elements, we can do the following:

Iterator<Boolean> itr = myLinked.iterator();

The variable itr is a polymorphic reference: it can be assigned a reference to an object in any class

(for example, SinglyLinkedListIterator) that implements the Iterator<Boolean> interface. And

myLinked.iterator() returns a reference to an object in the SinglyLinkedListIterator class,

specifically, to an object that is positioned at the beginning of the myLinked object.

The actual iteration is straightforward. For example, to print out each element:

while (itr.hasNext ())

System.out.println (itr.next ());

Or, even simpler, with the enhanced for statement:

for (Boolean b : myList)

System.out.println (b);

280 CHAPTER 7 Linked Lists

Now that we have added a new method to the SinglyLinkedList class, we need to test this method, and

that entails testing the next() method in the SinglyLinkedListIterator class. The book’s website

includes these tests. The other methods in the SinglyLinkedClass were re-tested, and passed all tests.

For a complete example of iteration, the following program method reads in a non-empty list of

grade-point-averages from the input, stores each one at the front of a SinglyLinkedList object, and

then iterates through the collection to calculate the sum. Finally, the average grade-point-average is printed.

import java.util.*;

public class SinglyLinkedExample

{

public static void main (String [] args)

{

new SinglyLinkedExample().run();

} // method main

public void run()

{

final double SENTINEL = -1.0;

final String INPUT_PROMPT = "\nPlease enter a GPA (or " +

SENTINEL + " to quit): ";

final String AVERAGE_MESSAGE = "\n\nThe average GPA is ";

final String NO_VALID_INPUT =

"\n\nError: there were no valid grade-point-averages in the input.";

SinglyLinkedList<Double> gpaList = new SinglyLinkedList<Double>();

Scanner sc = new Scanner (System.in);

double oneGPA,

sum = 0.0;

while (true)

{

try

{

System.out.print (INPUT_PROMPT);

oneGPA = sc.nextDouble();

if (oneGPA == SENTINEL)

break;

gpaList.addToFront (oneGPA);

} // try

catch (Exception e)

{

System.out.println (e);

sc.nextLine();

} // catch

7.3 Doubly-Linked Lists 281

} // while

for (Double gpa : gpaList)

sum += gpa;

if (gpaList.size() > 0)

System.out.println(AVERAGE_MESSAGE + (sum/gpaList.size ()));

else

System.out.println (NO_VALID_INPUT);

} // method run

} // class SinglyLinkedExample

The SinglyLinkedList class, including its embedded Entry and SinglyLinkedListIterator

classes, is available from the course website, as is SinglyLinkedTest and SinglyLinkedExample.

In Lab 12, you have the opportunity to define several other methods in the SinglyLinkedList

class.

You are now prepared to do Lab 12:

Expanding the SinglyLinkedList Class

Also, there are several Programming Exercises and a Programming Project related to the

SinglyLinkedList class. But now that you have some familiarity with links, we turn to the

focal point of this chapter: doubly-linked lists.

7.3 Doubly-Linked Lists

Suppose we want to insert “placid” in front of “serene” in the doubly-linked list partially shown in

Figure 7.2 and repeated here:

exhale mellow serene

First we need to get a reference to the Entry object that holds “serene”; that will take linear-in-n time,

on average, where n is the size of the linked list. After that, as shown in Figure 7.8, the insertion entails

constructing a new Entry object, storing “placid” as its element, and adjusting four links (the previous and

next links for “placid”, the next link for the predecessor of “serene”, and the previous link for “serene”).

In other words, once we have a reference to an Entry object, we can insert a new element in front of that

Entry object in constant time.

The process for removal of an element in a doubly-linked list is similar. For example, suppose we

want to remove “mellow” from the partially shown linked list in Figure 7.8. First, we get a reference

to the Entry object that houses “mellow”, and this takes linear-in-n time, on average. Then, as shown

in Figure 7.9, we adjust the next link of the predecessor of “mellow” and the previous link of the

successor of “mellow”. Notice that there is no need to adjust either of the links in the Entry object that

houses “mellow” because that object is not pointed to by any other Entry object’s links.

The bottom line in the previous discussion is that it takes linear-in-n time to get a reference to

an Entry object that houses an element, but once the reference is available, any number of insertions,

removals or retrievals can be accomplished in constant time for each one.

282 CHAPTER 7 Linked Lists

exhale mellow serene

placid

FIGURE 7.8 The partially shown doubly-linked list from Figure 7.2 after “placid” is inserted in front of “serene”

exhale mellow serene

placid

FIGURE 7.9 The partially shown linked list from Figure 7.8 after “mellow” removed

Now that you have a rough idea of what a doubly-linked list looks like and can be manipulated, we

are ready to study the LinkedList class, the Java Collection Framework’s design and implementation of

doubly-linked lists. First as always, we start with a user’s perspective, that is, with the method specifications.

7.3.1 A User’s View of the LinkedList Class

Because the LinkedList class implements the List interface, LinkedList objects support a variety of

index-based methods such as get and indexOf. The indexes always start at 0, so a LinkedList object

with three elements has its first element at index 0, its second element at index 1, and its third element at

index 2.

As we did with the ArrayList class, let’s start with the big picture from the user’s point of view.

Figure 7.10 has the method headings for the public methods in the LinkedList class. The LinkedList

class is a parameterized type, with E as the type parameter representing the type of an element. Method

specifications can be obtained from the Application Programmer Interface (API).

Section 7.3.2 has more details (still from the user’s view): those LinkedList methods that are in

some way different from those of the ArrayList class.

7.3.2 The LinkedList Class versus the ArrayList Class

Let’s compare the LinkedList and ArrayList classes from a user’s perspective. The LinkedList

class does not have a constructor with an initial-capacity parameter because LinkedList objects grow

and shrink as needed. And the related methods ensureCapacity and trimToSize are also not need for

the LinkedList class.

The LinkedList class has several methods, such as removeFirst() and getLast(), that are not

in the ArrayList class. For each of these methods, worstTime(n) is constant, where n represents the

number of elements in the calling object. These methods are provided only for the convenience of users.

They do not represent an increase in the functionality of LinkedList objects. For example, if myList is

a non-empty LinkedList object, the message

myList.removeFirst()

can be replaced with

myList.remove (0)

7.3 Doubly-Linked Lists 283

public LinkedList()

public LinkedList (Collection<? extends E> c)

public boolean add (E element) // element inserted at back; worstTime(n) is constant

public void add (int index, E element)

public void addAll (Collection<? extends E> c)

public boolean addAll (int index, Collection<? extends E> c)

public boolean addFirst (E element)

public boolean addLast (E element)

public void clear() // worstTime(n) is O(n)

public Object clone()

public boolean contains (Object obj)

public boolean containsAll (Collection<?> c)

public E element()

public boolean equals (Object obj)

public E get (int index) // worstTime(n) is O(n)

public E getFirst ()

public E getLast ()

public int hashCode()

public int indexOf (Object obj)

public boolean isEmpty()

public Iterator<E> iterator()

public int lastIndexOf (Object obj)

public ListIterator<E> listIterator() // iterate backward or forward

public ListIterator<E> listIterator (final int index)

public boolean offer (E element)

public E peek()

public E poll()

public E pop()

public void push (E e)

public E remove()

public boolean remove (Object obj)

public E remove (int index)

public boolean removeAll (Collection<?> c)

public E removeFirst() // worstTime(n) is constant

public E removeLast() // worstTime(n) is constant

public boolean retainAll (Collection<?> c)

public E set (int index, E element) // worstTime(n) is O(n)

public int size()

public List<E> subList (int fromIndex, int toIndex)

public Object[] toArray()

public T[] toArray (T[] a)

public String toString()

FIGURE 7.10 Method headings for the public methods in the LinkedList class. Except for the constructors,

the headings are in alphabetical order by method identifier

And this last message takes only constant time. But if myList were a non-empty ArrayList object, the

same message,

myList.remove (0)

requires linear-in-n time.

284 CHAPTER 7 Linked Lists

There are some other performance differences between LinkedList objects and ArrayList objects.

Here are method specifications of some other LinkedList methods that have different worst times than

their ArrayList counterparts.

1. The one-parameter add method

/**

* Appends a specified element to (the back of) this LinkedList object.

*

* @param element – the element to be appended.

*

* @return true – according to the general contract of the Collection interface’s

* one-parameter add method.

*

*/

public boolean add (E element)

Note. The worstTime(n) is constant. With an ArrayList object, the worstTime(n) is linear in n

for the one-parameter add method, namely, when the underlying array is at full capacity. This

represents a significant difference for a single insertion. For multiple back-end insertions, the time

estimates for the ArrayList and LinkedList classes are similar. Specifically, for n back-end

insertions, worstTime(n) is linear in n for both the ArrayList class and the LinkedList class.

And averageTime(n), for a single call to add, is constant for both classes.

Example Suppose we have the following:

LinkedList<String> fruits = new LinkedList<String>();

fruits.add ("apples");

fruits.add ("kumquats");

fruits.add ("durian");

fruits.add ("limes");

The LinkedListobject fruits now contains, in order, ‘‘apples’’, ‘‘kumquats’’, ‘‘durian’’, and ‘‘limes’’.

2. The get method

/**

* Finds the element at a specified position in this LinkedList object.

* The worstTime(n) is O(n).

*

* @param index – the position of the element to be returned.

*

* @return the element at position index.

*

* @throws IndexOutOfBoundsException – if index is less than 0 or greater than

* or equal to size().

*/

public E get (int index)

Note. This method represents a major disadvantage of the LinkedList class compared to the

ArrayList class. As noted in the method specification, the LinkedList version of this method has

worstTime(n) in O(n)—in fact, worstTime(n) is linear in n in the current implementation. But for

7.3 Doubly-Linked Lists 285

the ArrayList version, worstTime(n) is constant. So if your application has a preponderance of list

accesses, an ArrayList object is preferable to a LinkedList object.

Example Suppose the LinkedList object fruits consists of ‘‘apples’’, ‘‘kumquats’’, ‘‘durian’’,

and ‘‘limes’’, in that order. Then the message

fruits.get (1)

would return ‘‘kumquats’’; recall that list indexes start at zero.

3. The set method

/**

* Replaces the element at a specified index with a specified element.

* The worstTime(n) is O(n).

*

* @param index – the specified index where the replacement will occur.

* @param element – the element that replaces the previous occupant at

* position index.

*

* @return the previous occupant (the element replaced) at position index.

*

* @throws IndexOutOfBoundsException – if index is either less than 0 or

* greater than or equal to size().

*

*/

public E set (int index, E element)

Note. For the ArrayList version of this method, worstTime(n) is constant.

Example Suppose the LinkedList object fruits consists of ‘‘apples’’, ‘‘kumquats’’, ‘‘durian’’,

and ‘‘limes’’, in that order. We can change (and print) the element at index 2 with the following:

System.out.println (fruits.set (2, "kiwi"));

The elements in the LinkedList object fruits are now ‘‘apples’’, ‘‘kumquats’’, ‘‘kiwi’’, and ‘‘limes’’,

and the output will be ‘‘durian’’.

When we looked at the ArrayList class, iterators were ignored. That neglect was due to the fact

that the random-access property of ArrayList objects allowed us to loop through an ArrayList

object in linear time by using indexes. LinkedList objects do not support random access (in constant

time), so iterators are an essential component of the LinkedList class.

7.3.3 LinkedList Iterators

In the LinkedList class, the iterators are bi-directional: they can move either forward (to the next element)

or backward (to the previous element). The name of the class that defines the iterators is ListItr. The

ListItr class—which implements the ListIterator interface—is embedded as a private class in

the LinkedList class. So a ListItr object cannot be directly constructed by a user; instead there

are LinkedList methods to create a ListItr object, just as there was a SinglyLinkedList method

(namely, iterator()), to create a SinglyLinkedListIterator object.

286 CHAPTER 7 Linked Lists

There are two LinkedList methods that return a (reference to a) ListIterator object, that is, an

object in a class that implements the ListIterator interface. Their method specifications are as follows:

1. The start-at-the-beginning listIterator method

/**

* Returns a ListIterator object positioned at the beginning of this LinkedList

* object.

*

* @return a ListIterator object positioned at the beginning of this LinkedList

* object.

*

*/

public ListIterator<E> listIterator()

Example Suppose that fruits is a LinkedList object. Then we can create a ListItr object to

iterate through fruits as follows:

ListIterator<String> itr1 = fruits.listIterator();

2. The start anywhere listIterator method

/**

* Returns a ListIterator object positioned at a specified index in this LinkedList

* object. The worstTime(n) is O(n).

*

* @param index – the specified index where the returned iterator is positioned.

*

* @return a ListIterator object positioned at index.

*

* @throws IndexOutOfBoundsException – if index is either less than zero or

* greater than size().

*

*/

public ListIterator<E> listIterator (final int index)

Example Suppose the LinkedList object fruits consists of ‘‘apples’’, ‘‘kumquats’’, ‘‘durian’’,

and ‘‘limes’’, in that order. The following statement creates a ListIterator object positioned at

‘‘durian’’:

ListIterator<String> itr2 = fruits.listIterator (2);

Figure 7.11 has the method headings for all of the methods in the ListItr class. We will look at some

of the details—from a user’s viewpoint—of these methods shortly.

We can iterate forwardly with an enhanced for statement (or the pair hasNext() and next()), just

as we did with the SinglyLinkedList class in Section 7.2.2. For example, suppose the LinkedList

object fruits consists of “kumquats”, “bananas”, “kiwi”, and “apples”, in that order. We can iterate

through fruits from the first element to the last element as follows:

for (String s : fruits)

System.out.println (s);

7.3 Doubly-Linked Lists 287

public void add (E element)

public boolean hasNext()

public boolean hasPrevious()

public E next()

public int nextIndex()

public E previous()

public int previousIndex()

public void remove()

public void set (E element)

FIGURE 7.11 Method headings for all of the public methods in the ListItr class. For each method,

worstTime(n) is constant !

The output will be:

kumquats

bananas

kiwi

apples

For backward iterating, there is a hasPrevious() and previous() pair. Here are their method specifi-

cations:

IT1. The hasPrevious method

/**

* Determines whether this ListIterator object has more elements when traversing

* in the reverse direction.

*

* @return true – if this ListIterator object has more elements when traversing

* in the reverse direction; otherwise, false.

*

*/

public boolean hasPrevious()

Example Suppose the LinkedList object fruits consists of the elements ‘‘kumquats’’,

‘‘bananas’’, ‘‘kiwi’’, and ‘‘apples’’, in that order. The output from

ListIterator<String> itr = listIterator (2);

System.out.println (itr.hasPrevious());

will be

true

But the output from

ListIterator<String> itr = listIterator(); // itr is positioned at index 0

System.out.println (itr.hasPrevious());

will be

false

288 CHAPTER 7 Linked Lists

IT2. The previous method

/**

* Retreats this ListIterator object to the previous element, and returns that

* element.

*

* @return the element retreated to in this ListIterator object.

*

* @throws NoSuchElementException – if this ListIterator object has no

* previous element.

*

*/

public E previous()

Example Suppose the LinkedList object fruits consists of ‘‘kumquats’’, ‘‘bananas’’, ‘‘kiwi’’,

and ‘‘apples’’, in that order. If we have

ListIterator<String> itr = fruits.listIterator();

System.out.println (itr.next() + " " + itr.next() + " " + itr.previous());

the output will be

kumquats bananas bananas

Think of the “current” position in a LinkedList object as the index where the ListIterator is

positioned. Here is how the next() and previous() methods are related to the current position:

• The next() method advances to the next position in the LinkedList object, but returns the

element that had been at the current position before the call to next().

• The previous() method first retreats to the position before the current position, and then returns

the element at that retreated-to position.

The next() method is similar to the post-increment operator ++, and the previous() method is

similar to the pre-decrement operator --. Suppose, for example, we have

int j = 4,

k = 9;

System.out.println (j++);

System.out.println (--k);

The output will be

4

8

Because the previous() method returns the previous element, we must start “beyond” the end

of a LinkedList object to iterate in reverse order. For example, suppose the LinkedList object

fruits consists of “kumquats”, “bananas”, “kiwi”, and “apples”, in that order, and we have

ListIterator itr = fruits.listIterator (fruits.size()); // fruits has size() – 1 elements

while (itr.hasPrevious())

System.out.println (itr.previous());

7.3 Doubly-Linked Lists 289

The output will be:

apples

kiwi

bananas

kumquats

Of course, the LinkedList object fruits has not changed. It still consists of “kumquats”,

“bananas”, “kiwi”, and “apples”, in that order.

We can do even more. The ListItr class also has add, remove and set methods. Here are

the method specifications and examples (as usual, E is the type parameter representing the class

of the elements in the LinkedList object):

IT3. The add method

/**

* Inserts a specified element into the LinkedList object in front of (before) the element

* that would be returned by next(), if any, and in back of (after) the element that would

* be returned by previous(), if any. If the LinkedList object was empty before this

* call, then the specified element is the only element in the LinkedList object.

*

* @param element – the element to be inserted.

*

*/

public void add (E element)

Example Suppose the LinkedList object fruits consists of ‘‘kumquats’’, ‘‘bananas’’, ‘‘kiwi’’,

and ‘‘apples’’, in that order. We can insert repeatedly insert ‘‘pears’’ after each element in fruits
as follows:

ListIterator<String> itr = fruits.listIterator();

while (itr.hasNext())

{

itr.next();

itr.add ("pears");

} // while

During the first iteration of the above while loop, the call to next() returns “kumquats” and

(before returning) advances to “bananas”. The first call to add ("pears") inserts “pears” in front

of “bananas”. During the second iteration, the call to next() returns “bananas” and advances to

“kiwi”. The second call to add ("pears") inserts “pears” in front of “kiwi”. And so on. At the

completion of the while statement, the LinkedList object fruits consists of

“kumquats”, “pears”, “bananas”, “pears”, “kiwi”, “pears”, “apples”, “pears”

Note. If the ListItr is not positioned at any element (for example, if the LinkedList object is

empty), each call to the ListIterator class’s add method will insert an element at the end of

the LinkedList object.

290 CHAPTER 7 Linked Lists

IT4. The remove method

/**

* Removes the element returned by the most recent call to next() or previous().

* This method can be called only once per call to next() or previous(), and can

* can be called only if this ListIterator’s add method has not been called since

* the most recent call to next() or previous().

*

* @throws IllegalStateException – if neither next() nor previous() has been

* called, or if either this ListIterator’s add or remove method has

* been called since the most recent call to next() or previous().

*

*/

public void remove()

Example Suppose the LinkedList object fruits consists of ‘‘kumquats’’, ‘‘pears’’, ‘‘bananas’’,

‘‘pears’’, ‘‘kiwi’’, ‘‘pears’’, ‘‘apples’’, and ‘‘pears’’, in that order. We can remove every other element

from fruits as follows:

ListIterator<String> itr = fruits.listIterator (1); // NOTE: starting index is 1

while (itr.hasNext())

{

itr.next();

itr.remove();

if (itr.hasNext())

itr.next();

} // while

Now fruits consists of ‘‘kumquats’’, ‘‘bananas’’, ‘‘kiwi’’, and ‘‘apples’’, in that order. If we eliminate

the if statement from the above loop, every element except the first element will be removed.

IT5. The set method

/**

* Replaces the element returned by the most recent call to next() or previous() with

* the specified element. This call can be made only if neither this ListIterator’s add

* nor remove method have been called since the most recent call to next() or

* previous().

*

* @param element – the element to replace the element returned by the most

* recent call to next() or previous().

*

* @throws IllegalStateException – if neither next() nor previous() have been

* called, or if either this ListIterator’s add or remove method have been

* called since the most recent call to next() or previous().

*

*/

public void set (E element)

Example Suppose the LinkedList object fruits consists of ‘‘kumquats’’, ‘‘bananas’’, ‘‘kiwi’’,

and ‘‘apples’’, in that order. We can iterate through fruits and capitalize the first letter of each fruit

as follows:

7.3 Doubly-Linked Lists 291

String aFruit;

char first;

ListIterator<String> itr = fruits.listIterator();

while (itr.hasNext())

{

aFruit = itr.next();

first = Character.toUpperCase (aFruit.charAt (0));

aFruit = first + aFruit.substring (1); // substring from index 1 to end

itr.set (aFruit);

} // while

The LinkedList object fruits now consists of ‘‘Kumquats’’, ‘‘Bananas’’, ‘‘Kiwi’’, and ‘‘Apples’’.

Programming Exercise 7.4 considers all possible sequences of calls to the add, next, and remove

methods in the ListItr class.

As noted in Figure 7.11, all of the ListItr methods take only constant time. So if you iterate through

a LinkedList object, for each call to the ListItr object’s add or remove method, worstTime(n) is

constant. With an ArrayList object, for each call to add (int index, E element) or remove (int

index), worstTime(n) is linear in n . And the same linear worst-time would apply for adding and removing

if you decided to iterate through an ArrayList. The bottom line here is that a LinkedList object is

faster than an ArrayList object when you have a lot of insertions or removals.

What if you need to access or replace elements at different indexes in a list? With an ArrayList

object, for each call to get (int index) or set (int index, E element), worstTime(n) is constant.

With a LinkedList object, for each call to get (int index) or set (int index, E element),

worstTime(n) is linear in n . If instead, you iterate through a LinkedList object, and use the ListItr

methods next() and set (E element) for accessing and replacing elements, each iteration takes linear-

in-n time. So if the elements to be accessed or replaced are at indexes that are far apart, an ArrayList

object will be faster than a LinkedList object.

To summarize the above discussion:

� If a large part of the application consists of iterating through a list and making insertions and/or

removals during the iterations, a LinkedList object can be much faster than an ArrayList
object.

� If the application entails a lot of accessing and/or replacing elements at widely varying indexes,

an ArrayList object will be much faster than a LinkedList object.

7.3.4 A Simple Program that uses a LinkedList Object

The following program accomplishes the same tasks as the simple ArrayList program in Section 6.2.2.

But the code has been modified to take advantage of the LinkedList class’s ability to perform constant-

time insertions or removals during an iteration.

292 CHAPTER 7 Linked Lists

import java.util.*;

import java.io.*;

public class LinkedListExample

{

public static void main (String[] args)

{

new LinkedListExample().run();

} // method main

public void run()

{

LinkedList<String> aList = new LinkedList<String>();

Scanner keyboardScanner = new Scanner (System.in),

fileScanner;

String inFilePath,

word;

try

{

System.out.print ("\n\nPlease enter the path for the input file: ");

inFilePath = keyboardScanner.nextLine();

fileScanner = new Scanner (new File (inFilePath));

while (fileScanner.hasNext())

aList.add (fileScanner.next());

System.out.print ("\nPlease enter the word you want to search for: ");

word = keyboardScanner.next();

if (aList.indexOf (word) >= 0)

System.out.println (word + " was found.\n\n");

else

System.out.println (word + " was not found.\n\n");

System.out.print ("Please enter the word you want to remove: ");

word = keyboardScanner.next();

int removalCount = 0;

ListIterator<String> itr = aList.listIterator();

while (itr.hasNext())

if (itr.next().equals (word))

{

itr.remove();

removalCount++;

} // if another instance of word has been discovered

if (removalCount == 0)

System.out.println (word +

" was not found, so not removed.\n\n");

7.3 Doubly-Linked Lists 293

else if (removalCount == 1)

System.out.println ("The only instance of " + word +

" was removed.\n\n");

else

System.out.println ("All " + removalCount + " instances of " +

word + " were removed.\n\n");

System.out.print ("Please enter the word you want to append: ");

word = keyboardScanner.next();

aList.add (word);

System.out.println (word + " was appended.\n\n");

System.out.print (

"Please enter the word you want to convert to upper case: ");

word = keyboardScanner.next();

String currentWord;

boolean found = false;

itr = aList.listIterator();

while (itr.hasNext() && !found)

{

currentWord = itr.next();

if (word.equals (currentWord))

{

itr.set (word.toUpperCase());

System.out.println (word +

" was converted to upper case.\n\n");

found = true;

} // found word to convert to upper case

} // while

if (!found)

System.out.println (word +

" was not found, so not upper-cased.\n\n");

System.out.println ("Here is the final version:\n" + aList);

} // try

catch (IOException e)

{

System.out.println (e);

} // catch

} // method run

} // class LinkedListExample

For removing all instances of a word, the iterator-based version above is clearly faster than repeatedly

invoking aList.remove (word). For converting a word to upper case, the iterator-based version above

requires only one iteration. The version in Section 6.2.2 requires two iterations: one to get the index,

in aList, of the word to by upper cased, and one more for the call to aList.set (index, word.

toUpperCase()).

294 CHAPTER 7 Linked Lists

Lab 13 has an experiment on LinkedList iterators.

You are now prepared to do Lab 13:

Working with LinkedList Iterators

Now that you have seen both the ArrayList and LinkedList classes, you can run a timing experiment

on them.

You are now prepared to do Lab 14:

Timing the ArrayList and LinkedList Classes

In Section 7.3.5, we briefly look at a developer’s view of the LinkedList class. Specifically, we compare

various alternatives for the fields in the LinkedList class. For the choice made in the Java Collections

Framework, we develop a LinkedList object, and then, to give you the flavor of that implementation,

we investigate the definition of the two-parameter add method.

7.3.5 Fields and Heading of the LinkedList Class

For the implementation of the LinkedList class, the primary decision is what the fields will be. For the

sake of code re-use (beneficial laziness), we first consider the SinglyLinkedList class. Can we expand

that class to satisfy all of the method specifications for the LinkedList class? The problem comes with

the upper bounds of worstTime(n) for some of the LinkedList methods.

For example, the addLast method’s postcondition states that any implementation of that method

should take constant time. Recall that the SinglyLinkedList class had one field only:

protected Entry<E> head; // reference to first entry

The embedded Entry class had two fields, an element and a reference to the next entry:

protected E element;

protected Entry<E> next;

Clearly, it will take linear-in-n time to add an element to the back of a SinglyLinkedList object. We can

get around this difficulty by adding to the SinglyLinkedList class a tail field that holds a reference

to last entry in a SinglyLinkedList object. Figure 7.12 shows an example of a SinglyLinkedList

object with these fields.

We can now define the addLast method without much difficulty (see Programming Exercise 7.3.a).

Implementing the removeLast presents a much more serious problem. We would need to change the

(reference stored in the) next field of the Entry object preceding the Entry object referenced by tail.

And for that task, a loop is needed, so worstTime(n) would be linear in n . That would violate the

performance requirement of the removeLast method that specifies worstTime (n) must be constant.

7.3 Doubly-Linked Lists 295

head tail

Betsy Don Eric null

FIGURE 7.12 A singly-linked list with head and tail fields

So we must abandon a singly-linked implementation of the LinkedList class because of the given

performance specifications. But the idea mentioned previously—having head and tail fields—suggests

a viable alternative. The nested Entry class will support a doubly-linked list by having three fields:

protected E element;

protected Entry<E> previous, // reference to previous entry

next; // reference to next entry

Figure 7.13 shows this doubly-linked version of the three-element list from Figure 7.12.

head tail

null Betsy Don Eric null

FIGURE 7.13 A doubly-linked list with head and tail fields

With this version, we can implement the LinkedList class with method definitions that satisfy

the given performance specifications. You will get to flesh out the details of the doubly-linked, head&tail

implementation if you undertake Project 7.4.

The Java Collection Framework’s implementation of the LinkedList class is doubly-linked, but

does not have head and tail fields. Instead, there is a header field, which contains a reference to a

special Entry object, called a “dummy entry” or “dummy node.” We will discuss the significance of the

dummy entry shortly. The class starts as follows:

public class LinkedList<E> extends AbstractSequentialList<E>,

implements List<E>,

Queue<E>,

java.lang.Cloneable,

java.io.Serializable

{

private transient int size = 0;

private transient Entry<E> header = new Entry<E> (null, null, null);

The size field keeps track of the number of elements in the calling LinkedList object. As noted in

Chapter 6, the transient modifier merely indicates that this field is not saved if the elements in a

LinkedList object are serialized, that is, saved to an output stream. (Appendix 1 discusses serialization.)

The nested Entry class has three fields, one for an element, and two for links. The only method in

the Entry class is a constructor that initializes the three fields. Here is the complete Entry class

296 CHAPTER 7 Linked Lists

private static class Entry<E>

{

E element;

Entry<E> next;

Entry<E> previous;

Entry(E element, Entry<E> next, Entry<E> previous) {

this.element = element;

this.next = next;

this.previous = previous;

} // constructor

} // class Entry<E>

The element field will hold (a reference to) the Entry object’s element; next will contain a reference

to the Entry one position further in the LinkedList object, and previous will contain a reference to

the Entry one position earlier in the LinkedList object.

Under normal circumstances, an object in a nested class has implicit access back to the enclosing

object. For example, the nested ListItr class accesses the header field of the enclosing LinkedList

object. But if the nested class is declared to be static, no such access is available. The Entry class is

a stand-alone class, so it would have been a waste of time and space to provide such access.

We can now make sense of the definition of the header field in the LinkedList class. That field

initially references an Entry in which all three fields are null; see Figure 7.14.

header previous

null null null

nextelement

FIGURE 7.14 The header field in the LinkedList class

The header field always points to the same dummy entry, and the dummy entry’s element field

always contains null. The next field will point to the Entry object that houses the first element in the

LinkedList object, and the previous field will point to the Entry object that houses the last element in

the LinkedList object. Having a dummy entry instead of head and tail fields ensures that every Entry

object in a linked list will have both a previous Entry object and a next Entry object. The advantage to

this approach is that insertions and removals can be made without making a special case for the first and

last elements in the list.

7.3.6 Creating and Maintaining a LinkedList Object

To get a better idea of how the fields in the LinkedLinked class and Entry class work in concert, let’s

create and maintain a LinkedList object. We start with a call to the default constructor:

LinkedList<String> names = new LinkedList<String>();

As shown in Figure 7.15, the default constructor makes the previous and next fields in the dummy

entry point to the dummy entry itself. It turns out that this simplifies the definitions of the methods that

insert or delete elements.

Next, we append an element to that empty LinkedList object:

names.add ("Betsy");

7.3 Doubly-Linked Lists 297

null

names.size

0

previousnames.header element next

FIGURE 7.15 An empty LinkedList object, names

At this point, “Betsy” is both the first element in names and the last element in names. So the dummy

entry both precedes and follows the Entry object that houses “Betsy”. Figure 7.16 shows the effect of the

insertion.

In general, adding an element at the end of a LinkedList object entails inserting the corresponding

Entry object just before the dummy entry. For example, suppose the following message is now sent to

the LinkedList object in Figure 7.16:

names.add ("Eric");

What is the effect of appending “Eric” to the end of the LinkedList object names? Eric’s Entry object

will come before the dummy entry and after Betsy’s Entry object. See Figure 7.17.

names.

header

null Betsy

names.size

1

FIGURE 7.16 The effect of inserting “Betsy” at the back of the empty LinkedList object in Figure 7.15

names.

header

null Betsy Eric

names.size

2

FIGURE 7.17 A two-element LinkedList object. The first element is “Betsy” and the second element is “Eric”

298 CHAPTER 7 Linked Lists

As you can see from Figure 7.17, a LinkedList object is stored circularly. The dummy entry

precedes the first entry and follows the last entry. So we can iterate through a LinkedList object in the

forward direction by starting at the first entry and repeatedly calling the next() method until we get to

the dummy entry. Or we can iterate through a LinkedList object in the reverse direction by starting at

the dummy entry and repeatedly calling the previous() method until we get to the first entry.

Finally, let’s see what happens when the two-parameter add method is invoked. Here is a sample call:

names.add (1, "Don");

To insert “Don” at index 1, we need to insert “Don” in front of “Eric”. To accomplish this, we need to

create an Entry object that houses “Don”, and adjust the links so that Entry object follows the Entry

object that houses “Betsy” and precedes the Entry object that houses “Eric”. Figure 7.18 shows the result.

names.

header

null Betsy Don Eric

names.size

3

FIGURE 7.18 The LinkedList object from Figure 7.17 after the insertion of “Don” in front of “Eric” by the

call names.add (1, "Don")

From the above examples, you should note that when an element is inserted in a LinkedList object,

no other elements in the list are moved . In fact, when an element is appended with the LinkedList class’s

one-parameter add method, there are no loops or recursive calls, so worstTime(n) is constant. What about

an insertion at an index? Section 7.4 investigates the definition of the two-parameter add method.

7.3.7 Definition of the Two-Parameter add Method

To finish up this foray into the developer’s view of the LinkedList class, we will look at the definition

of the two-parameter add method. Here is the method specification:

/**

* Inserts a specified element at a specified index.

* All elements that were at positions greater than or equal to the specified index

* before this call are now at the next higher position. The worstTime(n) is O(n).

*

* @param index – the specified index at which the element is to be inserted.

* @param element – the specified element to be inserted.

*

* @throws IndexOutOfBoundsException – if index is less than zero or greater

* than size().

*

*/

public void add (int index, E element)

7.3 Doubly-Linked Lists 299

For inserting an element at position index, the hard work is getting a reference to the Entry object that is

currently at position index. This is accomplished—in the private method entry—in a loop that starts

at header and moves forward or backward, depending on whether index < size/2.

Once a reference, e, to the appropriate Entry has been obtained, element is stored in a new

entry that is put in front of e by adjusting a few previous and next references. These adjustments are

accomplished in the private addBefore method:

/**

* Inserts an Entry object with a specified element in front of a specified Entry object.

*

* @param element – the element to be in the inserted Entry object.

* @param e – the Entry object in front of which the new Entry object is to be

* inserted.

*

* @return – the Entry object that houses the specified element and is in front

* of the specified Entry object.

*

*/

private Entry<E> addBefore (E element, Entry<E> e)

{

Entry<E> newEntry = new Entry<E>(element, e, e.previous);// insert newEntry in

// front of e

newEntry.previous.next = newEntry; // make newEntry follow its predecessor

newEntry.next.previous = newEntry; // make newEntry precede its successor, e

size++;

modCount++; // discussed in Appendix 1

return newEntry;

}

Here, basically, is the definition of the two-parameter add method

public void add (int index, E element)

{

if (index == size)

addBefore (element, header);

else

addBefore (element, entry (index));

}

The bottom line in all of this is that to insert an Entry object in front of another Entry object, worstTime(n)

is constant, but to get (a reference to) the Entry object at a given index, worstTime(n) is linear in n

(because of the loop in the entry method). The insertion is accomplished by adjusting references, not by

moving elements.

The actual definition of the two-parameter add method is a one-liner:

public void add (int index, A element)

{

addBefore(element, (index==size ? header : entry(index)));

}

300 CHAPTER 7 Linked Lists

The ‘?’ and ‘:’ are part of the shorthand for the usual if/else statement2. The advantage of having a

dummy entry is that every entry, even the first or last entry, has a predecessor and a successor, so there

is no need for a special case to insert at the front or back of a LinkedList object.

The flow of the remove (int index) method is similar to that of add (int index, E

element). We first get a reference, e, to the Entry object at position index, and then adjust the

predecessor and successor of e’s Entry.

As an application of the LinkedList class, we develop a line editor in Section 7.5.

7.4 Application: A Line Editor

A line editor is a program that manipulates text, line by line. At one time, line editors were state-of-the-art,

but with the advent of full-screen editors (you move the cursor to the line you want to edit), line editors

are seldom used. Linux/Unix and Windows still have a line editor, but they are used only when full-screen

editors are unavailable—for example, after a system crash.

We assume that each line is at most 75 characters long. The first line of the text is thought of as

line 0 (just as Java programmers refer to their zero-th child), and one of the lines is designated as the

current line. Each editing command begins with a dollar sign, and only editing commands begin with a

dollar sign. There are seven editing commands. Here are four of the commands; the remaining three, and

two system tests, are specified in Programming Project 7.5.

1. $Insert

Each subsequent line, up to the next editing command, will be inserted in the text. If there is a

designated current line, each line is inserted before that current line. Otherwise, each line is inserted

at the end of the text; that is, the current line is then considered to be a dummy line beyond the last

line of text. For example, suppose the text is empty and we have the following:

$Insert

Water, water every where,

And all the boards did shrink;

Water, water every where,

Nor any drop to drink.

2For example, instead of writing

if (first > second)

big = first;

else

big = second;

we can simply write:

big = (first > second) ? first : second;

This can be read as “If first is greater than second, assign to big the value of first. Otherwise, assign to big the value of second.”

The syntax for a conditional expression is:

condition ? expression_t : expression_f

The semantics is this: if the condition has the value true, then the value of the conditional expression is the value of expression_t.

Otherwise, the value of the conditional expression is the value of expression_f. If you like to write cryptic code, you’ll love the conditional

operator, one of the legacies that Java got from C. Note that it is the only ternary operator in Java. That means it has three operands.

7.4 Application: A Line Editor 301

Then after the insertions, the text would be as follows, with a caret ‘> ’ indicating the current line:

Water, water every where,

And all the boards did shrink;

Water, water every where,

Nor any drop to drink.

>

For another example, suppose the text is:

Now is the

time for

>citizens to come to

the

aid of their country.

The sequence

$Insert

all

good

will cause the text to become

Now is the

time for

all

good

>citizens to come to

the

aid of their country.

2. $Delete m n

Each line in the text between lines m and n , inclusive, will be deleted. The current line becomes the

first line after the last line deleted. So if the last line of text is deleted, the current line is beyond any

line in the text.

For example, suppose the text is

Now is the

time for

all

>good

citizens to come to

the

aid of their country.

Then the command

$Delete 2 4

will cause the text to become

Now is the

time for

302 CHAPTER 7 Linked Lists

>the

aid of their country.

If the next command is

$Delete 3 3

then the text becomes:

Now is the

time for

the

>

The following error messages should be printed when appropriate:

Error: The first line number is greater the second.

Error: The first line number is less than 0.

Error: The second line number is greater than the last line number.

Error: The command should be followed by two integers.

3. $Line m
Line m becomes the current line. For example, if the text is

Mairzy doats

an dozy doats

>an liddle lamsy divy.

then the command

$Line 0

will make line 0 the current line:

>Mairzy doats

an dozy doats

an liddle lamsy divy.

An error message should be printed if m is either less than 0 or greater than the number of lines in

the text or if no integer is entered. See command 2 above.

4. $Done
This terminates the execution of the text editor. The entire text is printed.

An error message should be printed for any illegal command, such as “$End”, “$insert”, or “Insert”.

System Test 1 (Input is boldfaced):

Please enter a line; a command must start with a $.

$Insert

Please enter a line; a command must start with a $.

Yesterday, upon the stair,

Please enter a line; a command must start with a $..

I shot an arrow into the air.

7.4 Application: A Line Editor 303

Please enter a line; a command must start with a $.

It fell to earth, I know not where.

Please enter a line; a command must start with a $.

I met a man who wasn’t there.

Please enter a line; a command must start with a $.

$Delete 1 2

Please enter a line; a command must start with a $.

$Line 2

Please enter a line; a command must start with a $.

$Insert

Please enter a line; a command must start with a $.

He wasn’t there again today.

Please enter a line; a command must start with a $.

Oh how I wish he’d go away.

Please enter a line; a command must start with a $.

$Done

Here is the final text:

Yesterday, upon the stair,

I met a man who wasn’t there.

He wasn’t there again today.

Oh how I wish he’d go away.

>

System Test 2 (Input is boldfaced):

Please enter a line; a command must start with a $.

Insert

Error: not one of the given commands.

Please enter a line; a command must start with a $.

$Insert

Please enter a line; a command must start with a $.

There is no patch for stupidity.

Please enter a line; a command must start with a $.

$Line

Error: the command must be followed by a blank, followed by an integer.

Please enter a line; a command must start with a $.

$Line 2

Error: the number is greater than the number of lines in the text.

Please enter a line; a command must start with a $.

$Line 0

304 CHAPTER 7 Linked Lists

Please enter a line; a command must start with a $.

$Insert

Please enter a line; a command must start with a $.

As Kevin Mittnick said,

Please enter a line; a command must start with a $.

$Delete 0

Error: the command must be followed by a space, followed by an integer,

followed by a space, followed by an integer.

Please enter a line; a command must start with a $.

$Done

Here is the final text:

As Kevin Mittnick said,

> There is no patch for stupidity.

7.4.1 Design and Testing of the Editor Class

We will create an Editor class to solve this problem. To separate the editing aspects from the input/output

aspects, there will be an EditorUser class that reads from an input file and prints to an output file. Then

the same Editor class could later be used in an interactive program , that is, a program in which the

input is entered in response to outputs. That later program could have a graphical user interface or use

console input/output. The design and implementation of the EditorUser class will be developed after we

complete work on the Editor class.

Before we decide what fields and methods the Editor class should contain, we ask what does an

editor have to do? From the commands given above, some responsibilities can be determined:

• to interpret whether the line contains a legal command, an illegal command or a line of text

• to carry out each of the four commands

When one of the errors described occurs, the offending method cannot print an error message because

we want to separate editing from input/output. We could have the method return the error message as a

String, but what if a method that is supposed to return a String has an error? You will encounter such

a method in Project 7.1. For the sake of consistency, each error will throw a RunTimeException; the

argument will have the specific error message. For example, in the Editor class we might have

throw new RunTimeException ("Error: not one of the given commands.\n");

Each error message can then be printed in the EditorUser class when the exception is caught. RunTime

Exception is the superclass of most the exceptions thrown during execution: NullPointerException,

NumberFormatException, NoSuchElementException, and so on.

Here are the method specifications for a default constructor and the five methods outlined previously.

To ensure that each command method is properly invoked, a user has access only to the interpret method,

which in turn invokes the appropriate command method.

/**

* Initializes this Editor object.

*

7.4 Application: A Line Editor 305

*/

public Editor()

/**

* Intreprets whether a specified line is a legal command, an illegal command

* or a line of text.

*

* @param s – the specified line to be interpreted.

*

* @return the result of carrying out the command, if s is a legal command, and

* return null, if s is a line of text.

*

* @throws RunTimeException – if s is an illegal command; the argument

* indicates the specific error.

*

*/

public String interpret (String s)

/**

* Inserts a specified line in front of the current line.

*

* @param s – the line to be inserted.

*

* @throws RunTimeException – if s has more than MAX_LINE_LENGTH

* characters.

*

*/

protected void insert (String s)

/**

* Deletes a specified range of lines from the text, and sets the current line

* to be the line after the last line deleted.

*

* @param m – the beginning index of the range of lines to be deleted.

* @param n – the ending index of the range of lines to be deleted.

*

* @throws RunTimeException – if m is less than 0 or if n is less than m or if

* n is greater than or equal to the number of lines of text.

*

*/

protected void delete (int m, int n)

/**

* Makes a specified index the index of the current line in the text.

*

* @param m – the specified index of the current line.

*

306 CHAPTER 7 Linked Lists

* @throws RunTimeException – if m is less than 0 or greater than the

* number of lines of text.

*

*/

protected void setCurrentLineNumber (int m)

/**

* Returns the final version of the text.

*

* @return the final version of the text.

*

*/

protected String done()

The book’s website includes a test suite, EditorTest. EditorTest is a subclass of Editor to allow the

testing of the protected methods in the Editor class. For example, here is a simple test of the insert

method:

@Test

public void testInsert()

{

editor.interpret ("$Insert");

editor.insert ("a");

editor.insert ("b");

String actual = editor.interpret ("$Done"),

expected = " a\n b\n> \n";

assertEquals (expected, actual);

} // method testInsert

Note that this test does not access the protected fields of the Editor class because there is no guarantee

that those fields will be relevant to the definition of the insert method. Recall from Chapter 2 that unit

testing applies only to a method’s specification.

Another interesting feature of the EditorTest class is that tests that expect a RuntimeException

to be thrown must have a catch block to ensure that the appropriate exception message is included, and

must throw RuntimeException within that catch block! For example, here is one of the tests:

@Test (expected = RuntimeException.class)

public void testInterpretBadLine()

{

try

{

editor.interpret ("$Delete 7 x");

} // try

catch (RuntimeException e)

{

assertEquals ("java.lang.RuntimeException: " +

Editor.TWO_INTEGERS_NEEDED, e.toString());

throw new RuntimeException();

} // catch RuntimeException

} // method testInterpretBadLine

7.4 Application: A Line Editor 307

There is one more issue related to EditorTest: what can we use as a stub for each method in Editor

so that all of the tests will initially fail? We cannot use the normal stub

throw new UnsupportedOperationException();

because UnsupportedOperationException is a subclass of RuntimeException. So, instead the stub

will be

throw new OutOfMemoryError();

As expected, all tests initially failed.

In order to define the Editor methods, we have to decide what fields we will have. One of the fields

will hold the text, so we’ll call it text. The text will be a sequence of strings, and we will often need

to make insertions/deletions in the interior of the text, so text should be (a reference to) an instance of

the LinkedList class (surprise!). To keep track of the current line, we will have a ListIterator field,

current. A boolean field, inserting, will determine whether the most recent command was $Insert.

Here are the constant identifiers and fields:

public final static char COMMAND_START = ‘$’;

public final static String INSERT_COMMAND = "$Insert";

public final static String DELETE_COMMAND = "$Delete";

public final static String LINE_COMMAND = "$Line";

public final static String DONE_COMMAND = "$Done";

public final static String BAD_LINE_MESSAGE =

"Error: a command should start with " + COMMAND_START + ".\n";

public final static String BAD_COMMAND_MESSAGE =

"Error: not one of the given commands.\n";

public final static String INTEGER_NEEDED =

"Error: The command should be followed by a blank space, " +

"\nfollowed by an integer.\n";

public final static String TWO_INTEGERS_NEEDED =

"Error: The command should be followed by a blank space, " +

"\nfollowed by an integer, followed by a blank space, " +

"followed by an integer.\n";

public final static String FIRST_GREATER =

"Error: the first line number given is greater than the second.\n";

public final static String FIRST_LESS_THAN_ZERO =

"Error: the first line number given is less than 0.\n";

public final static String SECOND_TOO_LARGE =

"Error: the second line number given is greater than the " +

"\nnumber of the last line in the text.\n";

308 CHAPTER 7 Linked Lists

public final static String M_LESS_THAN_ZERO =

"Error: the number is less than 0.\n";

public final static String M_TOO_LARGE =

"Error: the number is larger than the number of lines in the text.\n";

public final static String LINE_TOO_LONG =

"Error: the line exceeds the maximum number of characters allowed, ";

public final static int MAX_LINE_LENGTH = 75;

protected LinkedList<String> text;

protected ListIterator<String> current;

protected boolean inserting;

The delete method can be invoked only if the command line has two integers. So we will have an

auxiliary method, protected void tryToDelete (Scanner sc), which calls delete provided there

are two integers in the command line. There is a similar auxiliary method for the setCurrentLineNumber

method. The Figure 7.19 has the UML diagram for the Editor class.

7.4.2 Method Definitions for the Editor Class

As usual, the default constructor initializes the fields:

public Editor()

{

text = new LinkedList<String>();

Editor

text: LinkedList<String>

current: ListIterator<String>

inserting: boolean

+ Editor()

+ interpret (s: String): String

insert (s: String)

tryToDelete (sc: Scanner)

delete (m: int; n: int)

tryToSetCurrentLineNumber (sc: Scanner)

setCurrentLineNumber (m: int)

done(): String

FIGURE 7.19 The class diagram for the Editor class

7.4 Application: A Line Editor 309

current = text.listIterator();

inserting = false;

} // default constructor

We can estimate the time requirements for this method because it does not call any other methods in the

Editor class. In general, the time requirements for a given method depend on the time for the methods

called by the given method. The worstTime(n), where n is the number of lines of text, is constant. For

the remainder of the Editor class’s methods, we postpone an estimate of worstTime(n) until all of the

methods have been defined.

The interpret method proceeds as follows. There are special cases if the line is blank or if the first

character in the line is not ‘$’: the insert method is invoked if inserting is true; otherwise, a bad-line

exception is thrown. If the first character in the line is ‘$’, the line is scanned and action appropriate to the

command is taken. For the $Delete and $Line commands, the remaining tokens must first be checked—to

make sure they are integers—before the delete and setCurrentLineNumber methods can be called.

That allows the delete and setCurrentLineNumber methods to have int parameters.

Here is the definition of the interpret method:

public String interpret (String s)

{

Scanner sc = new Scanner (s);

String command;

if (s.length() == 0 || s.charAt (0) != COMMAND_START)

if (inserting)

insert (s);

else

throw new RuntimeException (BAD_LINE_MESSAGE);

else

{

command = sc.next();

if (command.equals (INSERT_COMMAND))

inserting = true;

else

{

inserting = false;

if (command.equals (DELETE_COMMAND))

tryToDelete (sc);

else if (command.equals (LINE_COMMAND))

tryToSetCurrentLineNumber (sc);

else if (command.equals (DONE_COMMAND))

return done();

else

throw new RuntimeException (BAD_COMMAND_MESSAGE);

} // command other than insert

} // a command

return null;

} // method interpret

310 CHAPTER 7 Linked Lists

The definition of the insert method is straightforward. The only error checking is for a too-long line;

otherwise, the parameter s is inserted into the text in front of the current line. The method definition is:

protected void insert (String s)

{

if (s.length() > MAX_LINE_LENGTH)

throw new RuntimeException (LINE_TOO_LONG +

MAX_LINE_LENGTH + "\n");

current.add (s);

} // insert

The $Delete command can fail syntactically, if the line does not have two integers, or semantically, if the

first line number is either greater than the second or less than zero, or if the second line number is greater

than the last line in the text. The tryToDelete method checks for syntax errors:

protected void tryToDelete (Scanner sc)

{

int m = 0,

n = 0;

try

{

int m = sc.next();

int n = sc.next();

}// try

catch (RuntimeException e)

{

throw new RuntimeException (TWO_INTEGERS_NEEDED);

} // not enough integer tokens

delete (m, n);

} // method tryToDelete

The call to the delete method must be outside of the try block so that the run-time exceptions thrown

within the delete method will pass through tryToDelete and back to the method that calls interpret,

instead of being caught in tryToDelete’s catch block.

The delete method checks for semantic errors. If there are no errors, The ListIterator object

current is positioned at line m, and a loop removes lines m through n. Then current will automatically

be positioned beyond the last line removed. Here is the definition of the delete method:

protected void delete (int m, int n)

{

if (m > n)

throw new RuntimeException (FIRST_GREATER);

if (m < 0)

throw new RuntimeException (FIRST_LESS_THAN_ZERO);

if (n >= text.size())

throw new RuntimeException (SECOND_TOO_LARGE);

current = text.listIterator (m);

for (int i = m; i <= n; i++)

7.4 Application: A Line Editor 311

{

current.next();

current.remove ();

} // for

} // method delete

The tryToSetCurrentLineNumber method is similar to tryToDelete, except there is only one integer

expected on the command line:

protected void tryToSetCurrentLineNumber (Scanner sc)

{

int m = 0;

try

{

int m = sc.next();

} // try

catch (RuntimeException e)

{

throw new RuntimeException (INTEGER_NEEDED);

} // no next token or token not an integer

setCurrentLineNumber (m);

} // method tryToSetCurrentLineNumber

The setCurrentLineNumber method, called if there are no syntactic errors, checks for semantic errors,

and if none are found, re-positions current to the line whose line number is m. Here is the definition of

the setCurrentLineNumber method:

protected void setCurrentLineNumber (int m)

{

if (m < 0)

throw new RuntimeException (M_LESS_THAN_ZERO);

if (m > text.size())

throw new RuntimeException (M_TOO_LARGE);

current = text.listIterator (m);

} // method setCurrentLineNumber

Finally, the done method returns a String representation of the text: suitable for printing. We create itr,

a ListIterator object (specifically, a ListItr object) to iterate through the LinkedList object text.

The current line should have a ‘> ’ in front of it. But how can we determine when the line that itr is

positioned at is the same as the line that current is positioned at? Here is one possibility:

itr.equals (current)

The ListItr class does not define an equals method, so the Object class’s version of equals is

invoked. But that method compares references, not objects. The references will never be the same since

they were, ultimately, allocated by different calls to the ListItr constructor. So that approach will not

work.

Alternatively, we could compare elements:

itr.next().equals (current.next())

312 CHAPTER 7 Linked Lists

But this could give incorrect information if the text had duplicate lines. The safe way to compare is by

the nextIndex() method, which returns the index of the element that the iterator is positioned at. Here

is the method definition:

protected String done()

{

ListIterator<String> itr = text.listIterator();

while (itr.hasNext())

if (itr.nextIndex() == current.nextIndex())

s = s + "> " + itr.next() + ‘\n’;

else

s = s + " " + itr.next() + ‘\n’;

if (!current.hasNext())

s = s + "> " + ‘\n’;

return s;

} // method done

7.4.3 Analysis of the Editor Class Methods

To estimate the time requirements for the methods in the Editor class, let n represent the size of the

text—this is not necessarily the same as the n used as a parameter in several methods. The delete method

calls the one-parameter listIterator (int index) method, for which worstTime(n) is linear in n .

There is then a loop in which some elements in the text are removed; each removal takes constant time.

This number of elements is certainly less than or equal to n , the total number of elements in the text. So

for the delete method, worstTime(n) is linear in n .

The setCurrentLineNumber method also calls the listIterator (int index) method, and

that makes the worstTime(n) linear in n for the setCurrentLineNumber method. The done method

loops through the text, so its worstTime(n) is also linear in n . All other methods take constant time, except

those whose worstTime(n) is linear in n owing to their calling the delete, setCurrentLineNumber, or

done methods.

7.4.4 Design of the EditorUser Class

We will create another class, EditorUser, to illustrate the use of input and output files for editing text.

The paths for the input and output files are scanned in from the keyboard, and a file scanner and file

writer for those two files are declared and opened in the run() method. The only other responsibility

of the EditorUser class is to edit the input file. Here are the method specifications for the editText()

method.

/**

* Edits the text by performing the input-file commands

*

* @param fileScanner – a Scanner object over the input file

* @param printWriter – a PrintWriter object that holds the edited text.

*

*/

public void editText (Scanner fileScanner, PrintWriter printWriter)

7.4 Application: A Line Editor 313

Figure 7.20 has all the UML class diagrams for this project.

Editor

text: LinkedList<String>

current: ListIterator<String>

inserting: boolean

+ Editor()

+ interpret (s: String): String

insert (s: String)

tryToDelete (sc: Scanner)

delete (m: int; n: int)

tryToSetCurrentLineNumber (sc: Scanner)

setCurrentLineNumber (m: int)

done(): String

EditorUser

+ main (args: String[])

+ run():

+ editText (fileScanner: Scanner,

fileWriter: PrintWriter)

FIGURE 7.20 Class diagrams for the Editor project

The book’s website has the EditorUserTest class to test the editText method.

7.4.5 Implementation of the EditorUser Class

The run() method is similar to the file-oriented run() method of the Scores3 class in Chapter 2:

public void run()

{

Scanner fileScanner = null;

PrintWriter printWriter = null;

final String IN_FILE_PROMPT =

"\n\nPlease enter the path for the input file: ";

314 CHAPTER 7 Linked Lists

final String OUT_FILE_PROMPT =

"\n\nPlease enter the path for the output file: ";

final String IO_EXCEPTION_MESSAGE = "The file was not found.\n\n";

Scanner keyboardScanner = new Scanner (System.in);

String inFilePath,

outFilePath;

boolean pathsOK = false;

while (!pathsOK)

{

try

{

System.out.print (IN_FILE_PROMPT);

inFilePath = keyboardScanner.nextLine();

fileScanner = new Scanner (new File (inFilePath));

System.out.print (OUT_FILE_PROMPT);

outFilePath = keyboardScanner.nextLine();

printWriter = new PrintWriter (new FileWriter (outFilePath));

pathsOK = true;

} // try

catch (IOException e)

{

System.out.println (IO_EXCEPTION_MESSAGE + e);

} // catch I/O exception

} // while

editText (fileScanner, printWriter);

printWriter.close();

} // method run

The editText() method loops through the input file, with a try-block and a catch-block to handle all

of the editing errors that may occur. During each loop iteration, the interpret method is called. The

return value from this call will be null unless the command is “$Done”, in which case the final text is

printed.

Here is the definition:

public void editText (Scanner fileScanner, PrintWriter printWriter)

{

final String FINAL_MESSAGE =

"\n\n***********************\nHere is the final text:\n";

String line = new String(),

result = new String();

while (true)

Summary 315

{

try

{

line = fileScanner.nextLine();

printWriter.println (line);

result = editor.interpret (line);

} // try

catch (RuntimeException e)

{

printWriter.println (e);

} // catch RuntimeException

if (line.equals (Editor.DONE_COMMAND))

{

printWriter.println (FINAL_MESSAGE + result);

break;

} // line is done command

} // while

} // method editText

This method accesses the public constant DONE_COMMAND from the Editor class. That enables us to

avoid the dangerous practice of defining the same constant identifier twice. The danger is that this identifier

might be re-defined in a subsequent application, for example, if the developer of the Editor class decided

to change the command-start symbol from ‘$’ to ‘#’.

S U M M A R Y

A linked list is a List object (that is, an object in a

class that implements the List interface) in which the

following property is satisfied:

Each element is contained in an object, called an

Entry object, that also includes a reference, called

a link , to another Entry object. For each Entry
object except the one that holds the last element in

the collection, the link is to the Entry object that

contains the next element in the collection.

A linked list that also satisfies the following property:

Each Entry object except the first also includes a

link to the Entry object that contains the previous

element.

is called a doubly-linked list . Otherwise, it is called a

singly-linked list .

The SinglyLinkedList class implements a

singly-linked list. The purpose of developing the

SinglyLinkedList class is to introduce you to the

topics of links and iterators, and thus to prepare you for

the focal point of the chapter: the LinkedList class,

part of the Java Collections Framework. LinkedList

objects lack the random-access ability of ArrayList

objects. But, by using an iterator, an element can be added

to or removed from a LinkedList in only constant

time; for adding to or removing from an ArrayList

object, worstTime(n) is linear in n . This advantage of

LinkedList objects is best suited for consecutive inser-

tions and deletions because, for the task of getting to the

index of the first insertion or deletion, worstTime(n) is

linear in n .

The Java Collection Framework’s implementation

of the LinkedList class stores the elements in a circu-

lar, doubly-linked structure with a dummy entry. Another

possible implementation is a non-circular, doubly-linked

structure with head and tail fields.

The application, a simple line editor, took advan-

tage of the LinkedList class’s ability to quickly

make consecutive insertions and deletions anywhere in

a LinkedList object.

316 CHAPTER 7 Linked Lists

CROSSWORD PUZZLE

1 2

3

4 5

6

7

8

9

10

www.CrosswordWeaver.com

DOWNACROSS

 6. A class that is embedded in another
 class is called a ___________ class.

 8. The only operator in Java that has three
 operands (separated by ‘?’ and ‘:’).

10. A linked list in which each Entry object
 includes a link to the Entry object that
 contains the previous element in the list.

1. A program that edits text, line-by-line.

2. In the LinkedList class, the method that
 associated the calling object with an
 iterator that can move forward or
 backward is __________ ().

3. The worstTime(n) for the public
 methods in the Listltr class.

4. The class that catches the expectations
 thrown in the Editor class.

5. The field in the LinkedList class that
 contains a reference to a special Entry
 object, called a “dummy entry.”

7. In the SinglyLinkedList or LinkedList
 class, the method that associated the
 calling object with an iterator that can
 move forward only is __________ ().

9. In a linked list entry, a reference to the
 entry that contains the next element in
 the linked list.

www.CrosswordWeaver.com

Concept Exercises 317

CONCEPT EXERCISES

7.1 In the SinglyLinkedList class, define the following method without using an iterator.

/**

* Finds the element at a specified position in this LinkedList object.

* The worstTime(n) is O(n).

*

* @param index – the position of the element to be returned.

*

* @return the element at position index.

*

* @throws IndexOutOfBoundsException – if index is less than 0 or greater than

* or equal to size().

*/

public E get (int index)

7.2 Re-do Concept Exercise 7.1 by using an iterator.

7.3 Suppose we added each of the following methods to the ArrayList class:

public boolean addFirst (E element);

public boolean addLast (E element);

public E getFirst();

public E getLast();

public E removeFirst();

public E removeLast();

Estimate worstTime(n) for each method.

7.4 The listIterator() method can be called by a LinkedList object, but is not defined within the

LinkedList class. In what class is that listIterator() method defined? What is that definition?

7.5 One of the possibilities for fields in the LinkedList class was to have head and tail fields, both of type

Entry, where the Entry class had element and next fields, but no previous field. Then we would have

a singly-linked list.

a. Define the addLast method for this design. Here is the method specification:

/**

* Appends a specified element to (the back of) this LinkedList object.

*

* @param element – the element to be appended.

*

* @return true.

*

*/

public boolean addLast (E element)

b. The definition of the removeLast() method would need to make null the next field in the Entry

object before the Entry object tail. Could we avoid a loop in the definition of removeLast() if, in the

LinkedList class, we added a beforeTail field that pointed to the Entry object before the Entry

object tail ? Explain.

318 CHAPTER 7 Linked Lists

7.6 How can you distinguish between a call to the add (E element) method in the LinkedList class and

a call to the add (E element) method in the ListItr class?

7.7 Explain how to remove “Don” from the LinkedList object in Figure 7.18. Explain why, for the definition

of the method remove (Object obj), worstTime(n) is linear in n?

7.8 In the Java Collections Framework, the LinkedList class is designed as a circular, doubly-linked list with a

dummy entry (pointed to by the header field). What is the main advantage of this approach over a circular,

doubly-linked list with head and tail fields?

7.9 For the three methods in the EditorUser class, estimate worstTime(n), where n represents the number of

lines of text.

PROGRAMMING EXERCISES

7.1 Use the SinglyLinkedList class three times. First, create a SinglyLinkedList object, team1,

with elements of type String. Add three elements to team1. Second, create team2, another

SinglyLinkedList object with elements of type String. Add four elements to team2. Finally, create

a SinglyLinkedList object, league, whose elements are SinglyLinkedList objects of teams.

Add team1 and team2 to league.

7.2 Hypothesize the output from the following method segment:

LinkedList<Character> letters = new LinkedList<Character>();

ListIterator<Character> itr = letters.listIterator();

itr.add (‘f’);

itr.add (‘t’);

itr.previous();

itr.previous();

itr.add (‘e’);

itr.add (‘r’);

itr.next();

itr.add (‘e’);

itr.add (‘c’);

itr = letters.listIterator();

itr.add (‘p’);

System.out.println (letters);

Test your hypothesis.

7.3 Rewrite the code in Programming Exercise 7.2 without using an iterator. For example, you would

start with:

LinkedList<Character> letters = new LinkedList<Character>();

letters.add (0, ‘f’);

Test your revision.

Programming Exercises 319

7.4 Rewrite the code in Exercise 7.2 with a native array. For example, you would start with:

char [] letters = new char [10];

letters [0] = ‘f’;

Test your revision.

7.5 Hypothesize the error in the following code:

LinkedList<Double> duesList = new LinkedList<Double>();

ListItr<Double> itr = duesList.listIterator();

Test your hypothesis.

7.6 Suppose we have the following:

LinkedList<Double> weights = new LinkedList<Double>();

ListIterator<Double> itr;

weights.add (5.3);

weights.add (2.8);

itr = weights.listIterator();

Hypothesize which of the following sequences of messages would now be legal:

a. itr.add (8.8); itr.next(); itr.remove();

b. itr.add (8.8); itr.remove(); itr.next();

c. itr.next(); itr.add (8.8); itr.remove();

d. itr.next(); itr.remove(); itr.add (8.8);

e. itr.remove(); itr.add (8.8); itr.next();

f. itr.remove(); itr.next(); itr.add (8.8);

Test your hypotheses.

7.7 Suppose you decided to rewrite the VeryLongInt class, from Chapter 6, with a LinkedList instead

of an ArrayList. The main change is to replace each occurrence of the identifier ArrayList with

LinkedList. Another change, in the String -parameter constructor, is to replace

digits = new ArrayList<Integer> (s.length());

with

digits = new LinkedList<Integer>();

But the add method will now take quadratic time because the least method will now take linear time.

Modify the least method—including its heading—so that its worstTime(n) will be constant. Make the

corresponding changes to the add method so that method will take only linear time.

320 CHAPTER 7 Linked Lists

7.8 Rewrite the insert method in the Editor class to insert the given line after the current line. For example,

if the text is

>I was

older then

and the command is

$Insert

so much

then the text becomes

I was

>so much

older then

The newly added line becomes the current line.

7.9 Modify the EditorUser class to work with commands entered from the keyboard instead of a file. The

output should go to the console window. Test your changes by entering, from the keyboard, the lines in

editor.in1 from the Editor directory on the book’s website.

7.10 Unit test and define the following method:

/**

* Removes the first and last 4-letter word from a given LinkedList<String> object.

* Each word will consist of letters only.

* The worstTime(n) is O(n).

*

* @param list – the LinkedList<String> object.

*

* @throws NullPointerException – if list is null.

* @throws NoSuchElementException - if list is not null, but list has no 4-letter

* words or only one 4-letter word.

*

*/

public static void bleep (LinkedList<String> list)

Programming Project 7.1

Expanding the SinglyLinkedList Class

Expand the SinglyLinkedList class from Lab 12 by providing genuine definitions—not just thrown

exceptions—for each of the following methods:

/**

* Adds a specified element at the back of this SinglyLinkedList object.

*

* @param element – the element to be inserted.

*

Programming Exercises 321

* @return true.

*

*/

public boolean add (E element)

/**

* Inserts the elements of this SinglyLinkedList object into an array in the same

* order as in this SinglyLinkedList object. The worstTime(n) is O(n).

*

* @return a reference to the array that holds the same elements, in the same

* order, as this SinglyLinkedList object.

*

*/

public Object [] toArray ()

/**

* Determines if this SinglyLinkedList object contains all of the elements from a

* specified collection.

*

* @param c – the specified collection.

*

* @return true – if this SinglyLinkedList object contains each element of c;

* otherwise, return false.

*

* @throws NullPointerException – if c is null.

*

*/

public boolean containsAll (Collection<?> c)

/**

* Determines if this SinglyLinkedList object is equal to obj.

*

* @param obj – an object whose equality to this SinglyLinkedList object is

* being tested.

*

* @return true – if obj is a SinglyLinkedList object of the same size as this

* SinglyLinkedList object, and at each index, the element in this

* SinglyLinkedList object is equal to the element at the same

* index in obj.

*

*/

public boolean equals (Object obj)

For unit testing, modify the SinglyLinkedTest class from the book’s website.

322 CHAPTER 7 Linked Lists

Programming Project 7.2

Implementing the remove() Method in SinglyLinkedListIterator

1. Modify the SinglyLinkedListIterator class by implementing the remove() method. Here are revised

fields that class and a revised definition of the next() method:

protected Entry previous, // reference to Entry before lastReturned Entry

lastReturned, // reference to Entry with element returned

// by most recent call to next() method.

next; // reference to Entry with element that will be

// returned by subsequent call to next() method

public E next ()

{

if (lastReturned != null)

previous = lastReturned;

lastReturned = next;

next = next.next;

return lastReturned.element;

} // method next

2. For unit testing of your remove() method, update the SinglyLinkedTest class.

Programming Project 7.3

Making a Circular Singly Linked List Class

Modify the SinglyLinkedList class to be circular. That is, the entry after the last entry should be the entry

referenced by head. Here is an example, with three elements:

head

true false maybe

The only methods you need to implement are the five methods listed in Section 7.2 and the iterator() method

from Section 7.2.2. You will also need to test those methods.

Programming Exercises 323

Programming Project 7.4

Alternative Implementation of the LinkedList Class

Implement the LinkedList class with head and tail fields instead of a header field that points to a dummy

entry. Your implementation should be doubly-linked, that is, each Entry object should have a reference to the

previous Entry object and a reference to the next Entry object. You get to choose whether your implementation

will be circular. The Entry class will be unchanged from the header implementation, but the ListItr class will

need to be modified.

Create a LinkedListTest class to test your LinkedList and ListItr classes.

Programming Project 7.5

Expanding the Line Editor

Expand the Line Editor project by implementing the following additional commands:

5. $Change %X%Y%

Effect: In the current line, each occurrence of the string given by X will be replaced by the string given by Y.

Example Suppose the current line is

bear ruin’d choirs, wear late the sweet birds sang

Then the command

$Change %ear%are%

will cause the current line to become

bare ruin’d choirs, ware late the sweet birds sang

If we then issue the command

$Change %wa%whe%

the current line will be

bare ruin’d choirs, where late the sweet birds sang

Notes:

a. If either X or Y contains a percent sign, it is the end-user’s responsibility to choose another delimiter. For

example,

$Change #0.16#16%#

(continued on next page)

324 CHAPTER 7 Linked Lists

(continued from previous page)

b. The string given by Y may be the null string. For example, if current line is

aid of their country.

then the command

$Change %of %%

will change the current line to

aid their country.

c. If the delimiter occurs fewer than three times, the error message to be generated is

*** Error:Delimiter must occur three times. Please try again.

6. $Last

Effect: The line number of the last line in the text has been returned.

Example Suppose the text is

I heard a bird sing

> in the dark of December.

A magical thing

and a joy to remember.

The command

$Last

will cause 3 to be returned. The text and the designation of the current line are unchanged.

7. $GetLines m n

Effect: Each line number and line in the text, from lines m through n, inclusive, will be returned.

Example Suppose the text is

Winston Churchill once said that

> democracy is the worst

form of government

except for all the others.

The command

$GetLines 0 2

will cause the following to be returned:

0 Winston Churchill once said that

1 democracy is the worst

2 form of government

The text and the designation of the current line are unchanged.

Programming Exercises 325

Note: If no line numbers are entered, the entire text should be returned. For example,

$GetLines

is the command to return the entire text, with line numbers.

As with the delete command, an error message should be generated if (1) m is greater than n or if (2) m is

less than 0 or if (3) n is greater than the last line number in the text.

Expand the EditorTest class to validate your changes.

System Test 1 (For simplicity, prompts are omitted. Error messages and the values returned by $GetLines and

$Last are shown in boldface):

$Insert

You can fool

some of the people

some of the times,

but you cannot foul

all of the people

all of the time.

$Line 2

$GetLines 2 1

Error: The first line number is greater than the second.

$ GetLines 2 2

2 some of the times,

$Change %s%%

$GetLines 2 2

2 some of the time,

$Change %o%so

Error: Delimiter must occur three times. Please try again.

$Change %o%so%

$GetLines 2 2

2 some sof the time,

Change

Error: a command should start with $.

$Change %sof%of%

$GetLines 2 2

2 some of the time,

$Line 0

$Insert

Lincoln once said that

you can fool

some of the people

all the time and

all of the time and

(continued on next page)

326 CHAPTER 7 Linked Lists

(continued from previous page)

$Last

10

$GetLines 0 10

0 Lincoln once said that

1 you can fool

2 some of the people

3 all the time and

4 all of the time and

5 You can fool

6 some of the people

7 some of the time,

8 but you cannot foul

9 all of the people

10 all of the time.

$Line 5

$Change %Y%y%

$GetLines 5 5

5 you can fool

$Line 6

$Change %some%all%

$GetLines 6 6

6 all of the people

$Line 8

$Change %ul%ol%

$GetLines 8 8

8 but you cannot fool

$Line 9

$Change %ee%eo%

$GetLines 9 9

9 all of the people

$Delete 3 3

$GetLines 0 10

Error: The second line number is greater than the number of the last line in

the text.

$Last

9

$GetLines 0 9

0 Lincoln once said that

1 you can fool

2 some of the people

3 all of the time and

4 you can fool

Programming Exercises 327

5 all of the people

6 some of the time,

7 but you cannot fool

8 all of the people

9 all of the time.

$Done

Here is the final text:

Lincoln once said that

you can fool

some of the people

> all of the time and

you can fool

all of the people

some of the time,

but you cannot fool

all of the people

all of the time.

System Test 2

$Insert

Life is full of

successes and lessons.

$Delete 1 1

$Insert

wondrous oppurtunities disguised as

hopeless situations.

$Last

2

$GetLines

0 Life is full of

1 wondrous oppurtunities disguised as

2 hopeless situations.

$Line 1

$Change %ur%or%

$GetLines 0 2

0 Life is full of

1 wondrous opportunities disguised as

2 hopeless situations.

$Done

Here is the final text:

Life is full of

> wondrous opportunities disguised as

hopeless situations.

328 CHAPTER 7 Linked Lists

Programming Project 7.6

An Integrated Web Browser and Search Engine, Part 3

In this part of the project, you will add functionality to the forward and backward buttons in your browser. Up

to now, the end user can type a URL in the input line, can click on the home button, and can click on a link (if

there is one) in the currently displayed page. Your revisions will allow the end user to go backward or forward to

other web pages in the current chain.

According to standard web-browser protocol, you cannot go where you already are. So, for example, if you

are on the home page, nothing happens if you click on the Home button. Also, whenever a new page is printed,

all forward links are removed. For example, if you click on browser2, then browser4, then back, then home, the

forward button would now be disabled (and colored red), so you could not click Forward to get to browser4.

The only class you will be altering is your listener class.

The web pages you can use to test your project—home.in1, browser.in1, browser.in2, browser.in4, and

browser.in5—are the same as in Programming Project 2.1 from Chapter 2.

When a button is enabled, its color should be green.

When a button is disabled, its color should be red.

Here are some system tests that your project must pass.

System Test 1:

click on browser2, browser4, back (browser2 appears), enter browser.in5 in the

input line, click on back (browser2 appears), forward (browser5 appears)

At this point, the Forward button is disabled.

System Test 2:

click on browser2, browser4, back (browser2 appears), home, back

(browser2 appears), back (home appears), forward (browser2 appears),

forward (home appears)

At this point, the Forward button is disabled.

Stacks and Queues CHAPTER 8

In this chapter we introduce two more abstract data types: stacks and queues. Stacks and queues

can be modified in only a very limited way, so there are straightforward implementations, that is,

data structures, of the corresponding data types. Best of all, stacks and queues have a wide variety of

applications. We’ll start with stacks because a stack is somewhat easier to implement than a queue.

CHAPTER OBJECTIVES

1. Understand the defining properties of stacks and queues, and how these properties are violated

by the Java Collections Framework’s Stack class and Queue interface.

2. For both stacks and queues, be able to develop contiguous and linked implementations that

do not violate their defining properties.

3. Explore the use of stacks in the implementation of recursion and in converting from infix

notation to postfix notation.

4. Examine the role of queues in computer simulation.

8.1 Stacks

A stack is a finite sequence of elements in which the only element that can be removed is the element

that was most recently inserted. That element is referred to as the top element on the stack.

For example, a tray-holder in a cafeteria holds a stack of trays. Insertions and deletions are made

only at the top. To put it another way, the tray that was most recently put on the holder will be the next

one to be removed. This defining property of stacks is sometimes called “Last In, First Out,” or LIFO.

In keeping with this view, an insertion is referred to as a push, and a removal as a pop. For the sake of

alliteration, a retrieval of the top element is referred to as a peek .

Figure 8.1a shows a stack with three elements and Figures 8.1b, c and d show the effect of two pops

and then a push.

In Section 8.1.1, we define the Stack class, and note its assets and liabilities.

8.1.1 The Stack Class

The Java Collection Framework’s Stack class is a legacy class: It was created even before there was a

Java Collections Framework. It is a subclass of another legacy class, Vector, which was retrofitted to

implement the List interface. In fact, the Vector class is virtually equivalent to the ArrayList class

that we studied in Chapter 6.

The Stack class’s essential methods—push, pop, and peek—were easily defined once the devel-

opers decided whether the top of the stack should be at the front or back of the underlying array. Which

329

330 CHAPTER 8 Stacks and Queues

17

13 13 21

28 28 28 28

(a) (b) pop (c) pop (d) push 21

FIGURE 8.1 A stack through several stages of pops and pushes: 17 and 13 are popped and then 21 is pushed. In

each figure, the highest element is the top element

do you think would be faster for the pop and push methods? For removing the front element in an array,

worstTime(n) and averageTime(n) are both linear in n , whereas removing the last element in an array takes

only constant time in both the worst and average cases. For inserting at the front of an array, worstTime(n)

and averageTime(n) are both linear in n , whereas inserting at the back of an array takes only constant

time on average, but linear-in-n time in the worst case (when the array is full). So it is clearly faster for

the top element to be at the back of the underlying array. See Figure 8.2.

Here are the Stack class’s heading and method specifications for the only constructor and the push,

pop and peek methods1:

public class Stack<E> extends Vector<E>

/**

* Creates an empty Stack.

*/

public Stack()

/**

* Pushes an element onto the top of this stack.

* The worstTime(n) is O(n) and averageTime(n) is constant.

*

* @param element: the element to be pushed onto this stack.

* @return the element argument.

*/

public E push (E element)

/**

* Removes the element at the top of this stack and returns that

* element.

* The worstTime(n) and averageTime(n) are constant.

*

* @return the element at the top of this stack.

* @throws EmptyStackException if this stack is empty.

*/

public E pop()

/**

* Returns the element at the top of this stack without removing it

* from the stack.

1Strictly speaking, the pop and peek method headings include the modifier synchronized: a keyword related to concurrent programming,

which is beyond the scope of this book and irrelevant to our discussion. For more details on synchronization and concurrent programming,

see the Java Tutorials at java.sun.com.

8.1 Stacks 331

null null null null null null null null null null

0 1 2 3 4 5 6 7 8 9

a null null null null null null null null null

0 1 2 3 4 5 6 7 8 9

a b null null null null null null null null

0 1 2 3 4 5 6 7 8 9

a b c null null null null null null null

0 1 2 3 4 5 6 7 8 9

a b null null null null null null null null

0 1 2 3 4 5 6 7 8 9

the initial array

after ‘a’ is pushed

after ‘b is pushed

after ‘c’ is pushed

after pop is called

FIGURE 8.2 The effect of three pushes and a pop on the underlying array of an instance of the Java Collection

Framework’s Stack class. The Stack class’s constructor automatically creates an array of length 10

* The worstTime(n) and averageTime(n) are constant.

*

* @return the element at the top of this stack.

* @throws EmptyStackException if this stack is empty.

*/

public E peek()

The following program utilizes each of the above methods, as well as several List methods you saw in

Chapters 6 and 7.

import java.util.∗;

public class StackExample

{

public static void main (String[] args)

332 CHAPTER 8 Stacks and Queues

{

new StackExample().run();

} // method main

public void run()

{

Stack<Character> myStack = new Stack<Character>();

System.out.println ("push " + myStack.push (‘a’));

System.out.println ("push " + myStack.push (‘b’));

System.out.println ("push " + myStack.push (‘c’));

System.out.println ("pop " + myStack.pop());

System.out.println ("top = " + myStack.peek());

System.out.println ("push " + myStack.push (‘d’));

System.out.println ("The stack now has " + myStack.size() + " elements.");

System.out.println ("\nHere are the contents of the stack, from top to bottom:");

for (int i = myStack.size() - 1; i >= 0; i–)

System.out.println (myStack.get (i));

System.out.println ("\nHere are the contents of the stack, starting from index 0:");

for (Character c : myStack)

System.out.println (c);

System.out.println (

"\nHere are the contents of the stack, from top to bottom, during destruction:");

while (!myStack.isEmpty())

System.out.println (myStack.pop());

System.out.println ("The stack now has " + myStack.size() + " elements.");

} // method run

} // class StackExample

And here is the corresponding output:

push a

push b

push c

pop c

top = b

push d

The stack now has 3 elements.

Here are the contents of the stack, from top to bottom:
d

b

a

Here are the contents of the stack, starting at index 0:
a

b

d

8.1 Stacks 333

Here are the contents of the stack, from top to bottom, during destruction:
d

b

a

The stack now has 0 elements.

The first iteration in the above program uses a list index and the get method to access each element,

starting at the top of the stack. The second iteration illustrates a curious feature of the Stack class: The

standard iteration—with an enhanced for statement—accesses the elements starting from the bottom of

the stack! The same bottom-up access would apply if you called

System.out.println (myStack);

The third iteration represents destructive access: the top element is repeatedly popped and printed until the

stack is empty.

8.1.2 A Fatal Flaw?

The Stack class is part of the Java Collections Framework, so that class is always available to you

whenever you use the Java language. And the fact that the Stack class implements the List interface can

occasionally come in handy. For example, as in the above program, you can access each of the elements

without removing them, and each access (or modification) takes constant time. Unfortunately, you can also

remove an element other than the element that was most recently inserted, and this violates the definition

of a stack . For example, you can have the following:

Stack<String> badStack = new Stack<String>();

badStack.push ("Larry");

badStack.push ("Curly");

badStack.push ("Moe");

badStack.remove (1); // removes Curly

We will let the convenience of the Stack class override our disapproval of the just noted defect. But

if you regard the violation as a fatal flaw, you have (at least) two options, one utilizing inheritance and

one utilizing aggregation. For the first option, you can undertake Programming Project 8.4, and create a

PureStack class that extends Stack, but throws UnsupportedOperationException for any attempt

to remove an element that is not at the top of the stack. And the iterator goes from top to bottom, instead

of from bottom to top. This is, essentially, the approach used for the Stack class in C#, a member of

Microsoft’s. NET family of languages.

Another option for a PureStack class is to allow access, modification or removal only of the most

recently inserted element. This stringency would allow only a few methods: a default constructor, a copy

constructor (so you can non-destructively access a copy of a stack, instead of the original), push, pop,

peek, size, and isEmpty. This is the idea behind the stack class in C++, a widely used language.

A straightforward way to create such a PureStack class is with aggregation: the only field is a list

whose type is ArrayList or LinkedList. For example, the definition of the pop method—in either

implementation—is as follows:

public E pop()

{

return list.remove (list.size() - 1);

} // method pop

334 CHAPTER 8 Stacks and Queues

In fact, all the definitions—in either implementation—are one-liners. See Programming Exercise 8.1

for an opportunity to develop the LinkedList implementation, and Programming Exercise 8.2 for the

ArrayList implementation.

Now let’s look at a couple of important applications.

8.1.3 Stack Application 1: How Compilers Implement Recursion

We saw several examples of recursive methods in Chapter 5. In adherence to the Principle of Abstraction,

we focused on what recursion did and ignored the question of how recursion is implemented by a compiler

or interpreter. It turns out that the visual aids—execution frames—are closely related to this implemen-

tation. We now outline how a stack is utilized in implementing recursion and the time-space implications

for methods, especially recursive methods.

Each time a method call occurs, whether it is a recursive method or not, the return address in the

calling method is saved. This information is saved so the computer will know where to resume execution

in the calling method after the execution of the called method has been completed. Also, the values of the

called method’s local variables must be saved. This is done to prevent the destruction of that information

in the event that the method is—directly or indirectly—recursive. As we noted in Chapter 5, the compiler

saves this method information for all methods, not just the recursive ones (this relieves the compiler of the

burden of determining if a given method is indirectly recursive). This information is collectively referred

to as an activation record or stack frame.

Each activation record includes:

a. the return address, that is, the address of the statement that will be executed when the call has been

completed;

b. the value of each argument: a copy of the corresponding argument is made (if the type of the argument

is reference-to-object, the reference is copied);

c. the values of the called method’s other local variables;

Part of main memory—the stack —is allocated for a run-time stack onto which an activation record is

pushed when a method is called and from which an activation record is popped when the execution of

the method has been completed. During the execution of that method, the top activation record contains

the current state of the method. For methods that return a value, that value—either a primitive value or a

reference—is pushed onto the top of the stack just before there is a return to the calling method.

How does an activation record compare to an execution frame? Both contain values, but an activation

record has no code. Of course, the entire method, in bytecode, is available at run-time. So there is no need

for a checkmark to indicate the method that is currently executing.

For a simple example of activation records and the run-time stack, let’s trace the execution of a

getBinary method that invokes the getBin method from Chapter 5. The return addresses have been

commented as RA1 and RA2.

/**

*

* Determines the binary equivalent of a non-negative integer. The worstTime(n)

* is O(log n).

*

* @param n the non-negative integer, in decimal notation.

*

* @return a String representation of the binary equivalent of n.

8.1 Stacks 335

*

* @throws IllegalArgumentException if n is negative.

*/

public static String getBinary (int n)

{

if (n < 0)

throw new IllegalArgumentException();

return getBin (n); // RA1

} // method getBinary

public static String getBin (int n)

{

if (n <= 1)

return Integer.toString (n);

return getBin (n / 2) + Integer.toString (n % 2); // RA2

} // method getBin

The getBin method has the formal parameter n as its only local variable, and so each activation record

will have two components:

a. the return address;

b. the value of the formal parameter n.

Also, because the getBin method returns a String reference, a copy of that String reference is pushed

onto the stack just before a return is made. For simplicity, we will pretend that the String object itself

is pushed.

Assume that the value of n is 6. When getBin is called from the getBinary method, an activation

record is created and pushed onto the stack, as shown in Figure 8.3.

RA1

6n

Activation Stack

FIGURE 8.3 The activation stack just prior to getBin’s first activation. RA1 is the return address

Since n > 1, getBin is called recursively with 3 (that is, 6/2) as the value of the argument. A

second activation record is created and pushed onto the stack. See Figure 8.4.

RA1

6

Activation Stack
(two records)

RA2

3n

n

FIGURE 8.4 The activation stack just prior to the second activation of getBin

336 CHAPTER 8 Stacks and Queues

Since n is still greater than 1, getBin is called again, this time with 1 (that is, 3/2) as the value of

the argument. A third activation record is created and pushed. See Figure 8.5.

RA1

6

Activation Stack
(three records)

RA2

3

RA2

1

n

n

n

FIGURE 8.5 The activation stack just prior to the third activation of getBin

Since n ≤ 1, the top activation record is popped, the String “1” is pushed onto the top of the stack

and a return is made to the address RA2. The resulting stack is shown in Figure 8.6.

The concatenation at RA2 in getBin is executed, yielding the String "1" + Integer.toString

(3 % 2), namely, "11". The top activation record on the stack is popped, the String “11” is pushed,

and another return to RA2 is made, as shown in Figure 8.7.

RA1

6

Activation Stack
(two records)

RA2

3

n

n

“1”

FIGURE 8.6 The activation stack just after the completion of the third activation of getBin

RA1

6n

Activation Stack

“11”

FIGURE 8.7 The activation stack just after the completion of the second activation of getBin

8.1 Stacks 337

The concatenation at RA2 is "11" + Integer.toString (6 % 2), and the value of that String

object is “110”. The stack is popped once more, leaving it empty, and “110”, the binary equivalent of 6,

is pushed. Then a return to RA1—at the end of the getBinary method—is made.

The above discussion should give you a general idea of how recursion is implemented by the

compiler. The same stack is used for all method calls. And so the size of each activation record must be

saved with each method call. Then the correct number of bytes can be popped. For the sake of simplicity,

we have ignored the size of each activation record in the above discussion.

The compiler must generate code for the creation and maintenance, at run time, of the activation

stack. Each time a call is made, the entire local environment must be saved. In most cases, this overhead

pales to insignificance relative to the cost in programmer time of converting to an iterative version, but

this conversion is always feasible.

On those rare occasions when you must convert a recursive method to an iterative method, one

option is to simulate the recursive method with an iterative method that creates and maintains its own

stack of information to be saved. For example, Project 8.3 requires an iterative version of the (recursive)

tryToReachGoal method in the backtracking application from Chapter 5. When you create your own

stack, you get to decide what is saved. For example, if the recursive version of the method contains a

single recursive call, you need not save the return address. Here is an iterative, stack-based version of the

getBinary method (see Programming Exercise 5.1 for an iterative version that is not stack-based, and

see Programming Exercise 8.3 for a related exercise).

/**

*

* Determines the binary equivalent of a non-negative integer. The worstTime(n)

* is O(log n).

*

* @param n the non-negative integer, in decimal notation.

*

* @return a String representation of the binary equivalent of n.

*

* @throws IllegalArgumentException if n is negative.

*/

public static String getBinary (int n)

{

Stack<Integer> myStack = new Stack<Integer>();

String binary = new String();

if (n < 0)

throw new IllegalArgumentException();

myStack.push (n % 2);

while (n > 1)

{

n /= 2;

myStack.push (n % 2);

} // pushing

while (!myStack.isEmpty())

binary += myStack.pop();

return binary;

} // method getBinary

338 CHAPTER 8 Stacks and Queues

What is most important is that you not overlook the cost, in terms of programmer time, of making

the conversion from a recursive method to an iterative method. Some recursive methods, such as the

factorial method, can easily be converted to iterative methods. Sometimes the conversion is nontrivial,

such as for the move and tryToReachGoal methods of Chapter 5 and the permute method of Lab 9.

Furthermore, the iterative version may well lack the simple elegance of the recursive version, and this may

complicate maintenance.

You certainly should continue to design recursive methods when circumstances warrant. That is,

whenever the problem is such that complex instances of the problem can be reduced to simpler instances

of the same form, and the simplest instance(s) can be solved directly. The above discussion on the activation

stack enables you to make better-informed tradeoff decisions.

8.1.4 Stack Application 2: Converting from Infix to Postfix

In Section 8.1.3, we saw how a compiler or interpreter could implement recursion. In this section we

present another “internal” application: the translation of arithmetic expressions from infix notation into

postfix notation. This can be one of the key tasks performed by a compiler as it creates machine-level

code, or by an interpreter as it evaluates an arithmetic expression.

In infix notation, a binary operator is placed between its operands. For example, Figure 8.8 shows

several arithmetic expressions in infix notation.

a + b

b - c * d

(b - c) * d

a - c - h / b * c

a - (c - h) / (b * c)

FIGURE 8.8 Several arithmetic expressions in infix notation

For the sake of simplicity, we initially restrict our attention to expressions with single-letter identifiers,

parentheses and the binary operators +, −, ∗, and /.

The usual rules of arithmetic apply:

1. Operations are normally carried out from left to right. For example, if we have

a + b - c

then the addition will be performed first.

2. If the current operator is + or − and the next operator is ∗ or /, then the next operator is applied

before the current operator. For example, if we have

b + c ∗ d

then the multiplication will be carried out before the addition. For

a - b + c ∗ d

the subtraction is performed first, then the multiplication and, finally, the addition.

We can interpret this rule as saying that multiplication and division have “higher precedence” than

addition and subtraction.

8.1 Stacks 339

3. Parentheses may be used to alter the order indicated by rules 1 and 2. For example, if we have

a - (b + c)

then the addition is performed first. Similarly, with

(a - b) ∗ c

the subtraction is performed first.

Figure 8.9 shows the order of evaluation for the last two expressions in Figure 8.8.

c h b * ca - - / a (c h) (b * c)- - /

1 2 1 2

3
3

4 4

FIGURE 8.9 The order of evaluation for the last two expressions in Figure 8.8

The first widely used programming language was FORTRAN (from FORmula TRANslator), so

named because its compiler could translate arithmetic formulas into machine-level code. In early (pre-1960)

compilers, the translation was performed directly. But direct translation is awkward because the machine-

level code for an operator cannot be generated until both of its operands are known. This requirement

leads to difficulties when either operand is a parenthesized subexpression.

8.1.4.1 Postfix Notation

Modern compilers do not translate arithmetic expressions directly into machine-level code. Instead, they

can utilize an intermediate form known as postfix notation . In postfix notation, an operator is placed

immediately after its operands. For example, given the infix expression a + b, the postfix form is a b

+. For a + b ∗ c, the postfix form is a b c ∗ + because the operands for + are a and the product of

b and c. For (a + b) ∗ c, the postfix form is a b + c ∗. Since an operator immediately follows its

operands in postfix notation, parentheses are unnecessary and therefore not used. Figure 8.10 shows several

arithmetic expressions in both infix and postfix notation.

Infix Postfix

a - b + c * d a b - c d * +

a + c - h/b * r a c + h b/r * -

a + (c - h)/(b * r) a c h - b r * /+

FIGURE 8.10 Several arithmetic expressions in both infix and postfix notation

How can we convert an arithmetic expression from infix notation into postfix notation? Let’s view the

infix notation as a string of characters and try to produce the corresponding postfix string. The identifiers in

the postfix string will be in the same order as they are in the infix string, so each identifier can be appended

340 CHAPTER 8 Stacks and Queues

to the postfix string as soon as it is encountered. But in postfix notation, operators must be placed after their

operands. So when an operator is encountered in the infix string, it must be saved somewhere temporarily.

For example, suppose we want to translate the infix string

a - b + c ∗ d

into postfix notation. (The blanks are for readability only—they are not, for now, considered part of the

infix expression.) We would go through the following steps:

‘a’ is appended to postfix, which is now the string "a"

‘-’ is stored temporarily

‘b’ is appended to postfix, which is now the string "ab"

When ‘+’ is encountered, we note that since it has the same precedence as ‘-’, the subtraction should be

performed first by the left-to-right rule (Rule 1, above). So the ‘-’ is appended to the postfix string, which

is now "ab-" and ‘+’ is saved temporarily. Then ‘c’ is appended to postfix, which now is "ab-c".

The next operator, ‘∗’, must also be saved somewhere temporarily because one of its operands

(namely ‘d’) has not yet been appended to postfix. But ‘∗’ should be retrieved and appended to postfix

before ‘+’ since multiplication has higher precedence than addition.

When ‘d’ is appended to postfix, the postfix string is "ab-cd". Then ‘∗’ is appended, making the

postfix string "ab-cd∗". Finally, ‘+’ is appended to postfix, and the final postfix representation is

"ab-cd∗+"

The temporary storage facility referred to in the previous paragraph is handled conveniently with a stack

to hold operators. The rules governing this operatorStack are:

R1. Initially, operatorStack is empty.

R2. For each operator in the infix string,

Loop until the operator has been pushed onto operatorStack:

If operatorStack is empty or the operator has greater precedence than

the operator on the top of operatorStack then

Push the operator onto operatorStack.

else

Pop operatorStack and append that popped operator to the

postfix string.

R3. Once the end of the input string is encountered,

Loop until operatorStack is empty:

Pop operatorStack and append that popped operator to the postfix

string.

For example, Figure 8.11 shows the history of the operator stack during the conversion of

a + c - h / b ∗ r

to its postfix equivalent.

8.1 Stacks 341

Infix Expression: a + c - h/b ∗ r

infix operatorStack postfix

a (empty) a

+ + a

c + ac

- - ac+

h - ac+h

/ -/ ac+h

b -/ ac+hb

* -∗ ac+hb/

r -∗ ac+hb/r

- ac+hb/r∗

(empty) ac+hb/r∗-

FIGURE 8.11 The conversion of a + c - h/b ∗ r to postfix notation. At each stage, the top of

operatorStack is shown as the rightmost element

How are parentheses handled? When a left parenthesis is encountered in the infix string, it is imme-

diately pushed onto operatorStack, but its precedence is defined to be lower than the precedence of any

binary operator. When a right parenthesis is encountered in the infix string, operatorStack is repeatedly

popped, and the popped element appended to the postfix string, until the operator on the top of the stack

is a left parenthesis. Then that left parenthesis is popped but not appended to postfix, and the scan of the

infix string is resumed. This process ensures that parentheses will never appear in postfix notation.

For example, when we translate a ∗ (b + c) into postfix, the operators ‘∗’, ‘(’, and ‘+’ would

be pushed and then all would be popped (last-in, first-out) when the right parenthesis is encountered. The

postfix form is

a b c + ∗

For a more complex example, Figure 8.12 (next page) illustrates the conversion of

x - (y ∗ a / b - (z + d ∗ e) + c) / f

into postfix notation.

8.1.4.2 Transition Matrix

At each step in the conversion process, we know what action to take as long as we know the current

character in the infix string and the top character on the operator stack. We can therefore create a matrix

to summarize the conversion. The row indexes represent the possible values of the current infix character.

The column indexes represent the possible values of the top character on the operator stack. The matrix

entries represent the action to be taken. Such a matrix is called a transition matrix because it directs the

transition of information from one form to another. Figure 8.13 (page 343) shows the transition matrix for

converting a simple expression from infix notation to postfix notation.

The graphical nature of the transition matrix in Figure 8.13 enables us to see at a glance how to

convert simple expressions from infix to postfix. We could now design and implement a program to do just

that. The program may well incorporate the transition matrix in Figure 8.13 for the sake of extensibility.

342 CHAPTER 8 Stacks and Queues

Infix Expression: x - (y ∗ a / b - (z + d ∗ e) + c) / f

Infix operatorStack postfix

x (empty) x

- - x

(-(x

y -(xy

* -(∗ xy

a -(∗ xya

/ -(/ xya∗

b -(/ xya∗b

- -(- xya∗b/

(-(-(xya∗b/

z -(-(xya∗b/z

+ -(-(+ xya∗b/z

d -(-(+ xya∗b/zd

* -(-(+∗ xya∗b/zd

e -(-(+∗ xya∗b/zde

) -(-(+ xya∗b/zde∗

-(-(xya∗b/zde∗+

-(- xya∗b/zde∗+

+ -(+ xya∗b/zde∗+-

c -(+ xya∗b/zde*+-c

) -(xya*b/zde*+-c+

- xya*b/zde*+-c+

/ -/ xya*b/zde*+-c+

f -/ xya*b/zde*+-c+f

- xya*b/zde*+-c+f/

(empty) xya*b/zde*+-c+f/-

Postfix Expression: x y a * b / z d e * + - c + f / -

FIGURE 8.12 The conversion of x - (y * a/b - (z + d * e) + c)/f from infix to postfix. At each stage,

the top of operatorStack is shown as the rightmost element

More complex expressions can be accommodated by expanding the matrix. For the conversion, there would

be a switch statement with one case for each matrix entry.

8.1.4.3 Tokens

A program that utilized a transition matrix would probably not work with the characters themselves because

there are too many possible (legal) values for each character. For example, a transition matrix that used

a row for each legal infix character would need 52 rows just for an identifier. And if we changed the

specifications to allow multi-character identifiers, we would need millions of rows!

Instead, the legal characters would usually be grouped together into “tokens.” A token is the smallest

meaningful unit in a program. Each token has two parts: a generic part that holds its category and a specific

8.1 Stacks 343

empty

empty

*,/

*,/

+,-

+,-

(

(

)

ACTION
TAKEN

Identifier
Append to

postfix
Append to

postfix

Top character on operator stack

Append to
postfix

Append to
postfix

Pop;
pitch ‘(’

Pop to
postfix

Pop to
postfix

Pop to
postfix

Pop to
postfix

Pop to
postfix

Pop to
postfix

Pop to
postfix

Error

Push Push Push

Done

Push

Push

Push

Push

Push Push

Error

I
n
f
i
x

c
h
a
r
a
c
t
e
r

FIGURE 8.13 The transition matrix for converting simple expressions from infix notation to postfix notation

part that enables us to recapture the character(s) tokenized. For converting simple infix expressions to

postfix, the token categories would be: identifier, rightPar, leftPar, addOp (for ‘+’ and ‘-’),

multOp (for ‘∗’ and ‘/’), and empty (for a dummy value). The specific part would contain the index,

in the infix string, of the character tokenized. For example, given the infix string

(first + last) / sum

to tokenize "last", we would set its category to identifier and its index to 9.

The structure of tokens varies widely among compilers. Typically, the specific part of a variable

identifier’s token contains an address into a table, called a symbol table. At that address would be stored

the identifier, an indication that it is a variable identifier, its type, initial value, the block it is declared in

and other information helpful to the compiler. There is a symbol table in the project of Lab 15, and the

creation of a symbol table is the subject of an application in Chapter 14.

In Lab 15, a complete infix-to-postfix project is developed, with tokens and massive input-editing.

You are now prepared to do Lab 15: Converting from Infix to Postfix

8.1.5 Prefix Notation

In Section 8.1.4 we described how to convert an infix expression into postfix notation. Another possibility

is to convert from infix into prefix notation , in which each operator immediately precedes its operands2.

Figure 8.14 shows several expressions in both infix and prefix notation.

2Prefix notation was invented by Jan Lukasiewicz, a Polish logician. It is sometimes referred to as Polish Notation . Postfix notation is then

called Reverse Polish Notation .

344 CHAPTER 8 Stacks and Queues

Infix Prefix

a - b - a b

a - b * c - a * b c

(a - b) * c * - a b c

a - b + c * d + - a b * c d

a + c - h / b * d - + a c * / h b d

a + (c - h) / (b * d) + a / - c h * b d

FIGURE 8.14 Several arithmetic expressions in both infix and prefix notation

How can we convert an arithmetic expression from infix to prefix? As in infix-to-postfix, we will

need to save each operator until both of its operands have been obtained. But we cannot simply append

each identifier to the prefix string as soon as it is encountered. Instead, we will need to save each identifier,

in fact, each operand, until its operator has been obtained.

The saving of operands and operators is easily accomplished with the help of two stacks, operand

Stack and operatorStack. The precedence rules for operatorStack are exactly the same as we saw

in converting from infix to postfix. Initially, both stacks are empty. When an identifier is encountered

in the infix string, that identifier is pushed onto operandStack. When an operator is encountered, it is

pushed onto operatorStack if that stack is empty. Otherwise, one of the following cases applies:

1. If the operator is a left parenthesis, push it onto operatorStack (but left parenthesis has lowest

precedence).

2. If the operator has higher precedence than the top operator on operatorStack, push the operator

onto operatorStack.

3. If the operator’s precedence is equal to or lower than the precedence of the top operator on operat

orStack, pop the top operator, opt1, from operatorStack and pop the top two operands, opnd1

and opnd2, from operandStack. Concatenate (join together) opt1, opnd2, and opnd1 and push the

result string onto operandStack. Note that opnd2 is in front of opnd1 in the result string because

opnd2 was encountered in the infix string—and pushed onto operandStack—before opnd1.

4. If the operator is a right parenthesis, treat it as having lower priority than +, −, ∗, and /. Then Case

3 will apply until a left parenthesis is the top operator on operatorStack. Pop that left parenthesis.

The above process continues until we reach the end of the infix expression. We then repeat the

following actions from case 3 (above) until operatorStack is empty:

Pop opt1 from operatorStack.

Pop opnd1 and opnd2 from operandStack.

Concatenate opt1, opnd2 and opnd1 together and push the result onto operandStack.

When operatorStack is finally empty, the top (and only) operand on operandStack will be the prefix

string corresponding to the original infix expression.

For example, if we start with

a + b ∗ c

then the history of the two stacks would be as follows:

8.1 Stacks 345

a a

1. ---------------------------- ---------------------------- ----------------------------

infix operandStack operatorStack

+ a +

2. ---------------------------- ---------------------------- ----------------------------

infix operandStack operatorStack

b

b a +

3. ---------------------------- ---------------------------- ----------------------------

infix operandStack operatorStack

b *

* a +

4. ---------------------------- ---------------------------- ----------------------------

infix operandStack operatorStack

c

b *

c a +

5. ---------------------------- ---------------------------- ----------------------------

infix operandStack operatorStack

*bc

a +

6. ---------------------------- ---------------------------- ----------------------------

infix operandStack operatorStack

+a*bc

7. ---------------------------- ---------------------------- ----------------------------

infix operandStack operatorStack

The prefix string corresponding to the original string is

+ a ∗ b c

For a more complex example, suppose the infix string is

a + (c - h) / (b ∗ d)

Then the elements on the two stacks during the processing of the first right parenthesis would be as follows:

h -

c (

) a +

1. ---------------------------- ---------------------------- ----------------------------

infix operandStack operatorStack

346 CHAPTER 8 Stacks and Queues

-ch (

a +

2. ---------------------------- ----------------------------

operandStack operatorStack

-ch

a +

3. ---------------------------- ----------------------------

operandStack operatorStack

During the processing of the second right parenthesis in the infix string, we would have

d *

b (

-ch /

) a +

1. ---------------------------- ---------------------------- ----------------------------

infix operandStack operatorStack

*bd (

-ch /

a +

2. ---------------------------- ----------------------------

operandStack operatorStack

The end of the infix expression has been reached, so operatorStack is repeatedly popped.

*bd

-ch /

a +

3. ---------------------------- ----------------------------

operandStack operatorStack

/-ch*bd

a +

4. ---------------------------- ----------------------------

operandStack operatorStack

+a/-ch*bd

5. ---------------------------- ----------------------------

operandStack operatorStack

The prefix string is

+ a / - c h ∗ b d

8.2 Queues 347

8.2 Queues

A queue is a finite sequence of elements in which:

1. insertion is allowed only at the back of the sequence;

2. removal is allowed only at the front of the sequence.

The term enqueue (or add) is used for inserting an element at the back of a queue, dequeue (or remove)

for removing the first element from a queue, and front (or element) for the first element in a queue.

A queue imposes a chronological order on its elements: the first element enqueued, at the back, will

eventually be the first element to be dequeued, from the front. The second element enqueued will be the

second element to be dequeued, and so on. This defining property of queues is sometimes referred to as

“First Come, First Served,” “First In, First Out,” or simply FIFO.

Figure 8.15 shows a queue through several stages of insertions and deletions.

The examples of queues are widespread:

cars in line at a drive-up window

fans waiting to buy tickets to a ball game

customers in a check-out line at a supermarket

airplanes waiting to take off from an airport.

a. A queue with four elements.

b. The queue of Figure 8.15.a after Kim is enqueued.

c. The queue from Figure 8.15.b after Brian is dequeued.

Brian Jane Karen Bob

front
element

back
element

Brian Jane Karen Bob

front
element

back
element

Kim

front
element

back
element

Jane Karen Bob Kim

FIGURE 8.15 A queue through several stages of insertions and deletions

348 CHAPTER 8 Stacks and Queues

We could continue giving queue examples almost indefinitely. Later in this chapter we will develop an

application of queues in the field of computer simulation.

Section 8.2.1 presents the Queue interface—part of the Java Collections Framework.

8.2.1 The Queue Interface

The Queue interface, with type parameter E, extends the Collection interface by specifying remove()

and element() methods:

public interface Queue<E> extends Collection<E>

{

/**

* Retrieves and removes the head of this queue.

*

* @return the head of this queue.

* @throws NoSuchElementException if this queue is empty.

*/

E remove();

/**

* Retrieves, but does not remove, the head of this queue.

*

* @return the head of this queue.

* @throws NoSuchElementException if this queue is empty.

*/

E element();

} // interface Queue

Also, the Queue interface inherits the following add method from the Collection interface:

/**

* Ensures that this collection contains the specified element.

*

* @param element: element whose presence in this collection is to be ensured.

* @return true if this collection changed as a result of the call; otherwise, false.

*

* @throws ClassCastException class of the specified element prevents it

* from being added to this collection.

* @throws NullPointerException if the specified element is null and this

* collection does not support null elements.

*

*/

boolean add (E element);

So the Queue interface includes the essential methods of the queue data type3.

3The Queue interface also has a poll() method that is equivalent to the remove() method except that poll() returns null if the queue

is empty, a peek() method that is equivalent to the element() method except that peek() returns null if the queue is empty, and an

offer (E element) method that is equivalent to the add (E element) method except that offer (E element) is better suited if the

queue imposes insertion restrictions and a full queue is commonplace.

8.2 Queues 349

8.2.2 Implementations of the Queue Interface

The LinkedList class, from Chapter 7, implements the Queue interface, with the front of the queue at

index 0. Here is the code to create the queue in Figure 8.15:

Queue<String> queue = new LinkedList<String>();

// Figure 8.15.a.

queue.add ("Brian");

queue.add ("Jane");

queue.add ("Karen");

queue.add ("Bob");

// Figure 8.15.b.

queue.add ("Kim");

// Figure 8.15.c.

queue.remove();

For the three key methods—add (E element), remove(), and element()—worstTime(n) is constant.

That is because in a LinkedList object, insertion at the back and removal or access of the front

element take only constant time. And we have the same flaw as we had for the Stack class earlier in

this chapter: There are LinkedList methods—such as remove (int index) and add (int index,

E element)—that violate the definition of a queue. Whenever a LinkedList object implements the

Queue interface, we declare the object with the Queue interface as in the previous example. This is a

heads-up to users that insertions should occur only at the back and deletions only at the front.

You can overcome this defective implementation of the Queue interface by extending the

LinkedList class to a PureQueue class that throws UnsupportedOperationException for any

of the offending methods. Or you can take an austere approach and create a PureQueue class by

aggregation: The only field will be a LinkedList (why not ArrayList ?) object, list, and the only

methods will be a default constructor, a copy constructor, isEmpty(), size(), add (E element),

remove(), and element(). For example, the definition of the remove() method is

/**

* Retrieves and removes the head of this queue.

* The worstTime(n) is constant and averageTime(n) is constant.

*

* @return the head of this queue.

* @throws NoSuchElementException if this queue is empty.

*/

public E remove()

{

return list.removeFirst();

} // method remove()

The definition of each of the other six methods is also a one-liner. Observe that if list were an ArrayList

object, worstTime(n) and averageTime(n) for this method would be linear in n .

Now that we have seen several possible implementations of the Queue interface, we turn our attention

to applications.

350 CHAPTER 8 Stacks and Queues

8.2.3 Computer Simulation

A system is a collection of interacting parts. We are often interested in studying the behavior of a system,

for example, an economic system, a political system, an ecological system or even a computer system.

Because systems are usually complicated, we may utilize a model to make our task manageable. A model ,

that is, a simplification of a system, is designed so that we may study the behavior of the system.

A physical model is similar to the system it represents, except in scale or intensity. For example, we

might create a physical model of tidal movements in the Chesapeake Bay or of a proposed shopping center.

War games, spring training, and scrimmages are also examples of physical models. Unfortunately, some

systems cannot be modeled physically with currently available technology—there is, as yet, no physical

substance that could be expected to behave like the weather. Often, as with pilot training, a physical model

may be too expensive, too dangerous, or simply inconvenient.

Sometimes we may be able to represent the system with a mathematical model: a set of assumptions,

variables, constants, and equations. Often, a mathematical model is easier to develop than a physical model.

For example, such equations as distance = rate ∗ time and the formula for the Pythagorean Theorem can

be solved analytically in a short amount of time. But sometimes, this is not the case. For example, most

differential equations cannot be solved analytically, and an economic model with thousands of equations

cannot be solved by hand with any hope of correctness.

In such cases, the mathematical model is usually represented by a computer program. Computer

models are essential in complex systems such as weather forecasting, space flight, and urban planning.

The use of computer models is called computer simulation. There are several advantages to working with

a computer model rather than the original system:

1. Safety. Flight simulators can assail pilot trainees with a welter of dangerous situations such as

hurricanes and hijackings, but no one gets hurt.4

2. Economy. Simulation games in business-policy courses enable students to run a hypothetical company

in competition with other students. If the company goes “belly up,” the only recrimination is a lower

grade for the students.

3. Speed. The computer usually makes predictions soon enough for you to act on them. This feature is

essential in almost every simulation, from the stock market to national defense to weather forecasting.

4. Flexibility. If the results you get do not conform to the system you are studying, you can change

your model. This is an example of feedback : a process in which the factors that produce a result

are themselves affected by that result. After the computer model is developed and run, the output

is interpreted to see what it says about the original system. If the results are invalid—that is, if

the results do not correspond to the known behavior of the original system—the computer model is

changed. See Figure 8.16.

The above benefits are so compelling that computer simulation has become a standard tool in the study

of complex systems. This is not to say that computer simulation is a panacea for all systems problems.

The simplification required to model a system necessarily introduces a disparity between the model and

the system. For example, suppose you had developed a computer simulation of the earth’s ecosystem

4According to legend, a trainee once panicked because one of his simulated engines failed during a simulated blizzard. He “bailed out” of

his simulated cockpit and broke his ankle when he hit the unsimulated floor.

8.2 Queues 351

develop
System Computer Model

validate run

Interpretation Output
interpret

FIGURE 8.16 Feedback in computer simulation

30 years ago. You probably would have disregarded the effects of aerosol sprays and refrigerants that

released chlorofluorocarbons. Many scientists now suspect that chlorofluorocarbons may have a significant

impact on the ozone layer and thus on all land organisms.

Another disadvantage of computer simulation is that its results are often interpreted as predictions,

and prediction is always a risky business. For this reason, a disclaimer such as the following usually

precedes the results of a computer simulation: “If the relationships among the variables are as described

and if the initial conditions are as described, then the consequences will probably be as follows . . . ”

8.2.4 Queue Application: A Simulated Car Wash

Queues are employed in many simulations. For example, we now illustrate the use of a queue in simulating

traffic flow at Speedo’s Car Wash.

Problem Given the arrival times at the car wash, calculate the average waiting time per car.

Analysis We assume that there is one station in the car wash, that is, there is one ‘‘server.’’ Each car takes

exactly ten minutes to get washed. At any time there will be at most five cars waiting—in a queue—to be

washed. If an arrival occurs when there is a car being washed and there are five cars in the queue, that arrival

is turned away as an ‘‘overflow’’ and not counted. Error messages should be printed for an arrival time that

is not an integer, less than zero, greater than the sentinel, or less than the previous arrival time.

The average waiting time is determined by adding up the waiting times for each car and dividing by the

number of cars. Here are the details regarding arrivals and departures:

1. If an arrival and departure occur during the same minute, the departure is processed first.

2. If a car arrives when the queue is empty and no cars are being washed, the car starts getting washed

immediately; it is not put on the queue.

3. A car leaves the queue, and stops waiting, once the car starts through the ten-minute wash cycle.

The following is a sample list of arrival times:

5 5 7 12 12 13 14 18 19 25 999 (a sentinel)

To calculate the waiting time for each car that is washed, we subtract its arrival time from the time when

it entered the car wash. The first arrival, at time 5, entered the wash station right away, so its waiting time

352 CHAPTER 8 Stacks and Queues

was 0. For the second arrival, also at time 5, it was enqueued at time 5, and then dequeued and entered

the wash station when the first car left the wash station—at time 15. So the waiting time for the second

arrival was 10 minutes. Here is the complete simulation:

Arrival Time Time Dequeued Waiting Time

5 0

5 15 10

7 25 18

12 35 23

12 45 33

13 55 42

14 – Overflow

18 65 47

19 – Overflow

25 75 50

The sum of the waiting times is 223. The number of cars is 8 (the two overflows at 14 and 19 minutes

are not counted), so the average waiting time is 27.875 minutes.

Formally, we supply system tests to specify the expected behavior (that is, in terms of input and

output) of the program. The system tests are created before the program is written and provide an indication

of the program’s correctness. But as we noted in Section 2.4, testing can establish the incorrectness—but

not the correctness—of a program. JUnit testing of any class can commence after the class has been

designed, that is, after the method specifications have been developed.

System Test 1 (the input is in boldface):

Please enter the next arrival time. The sentinel is 999: 5

Please enter the next arrival time. The sentinel is 999: 5

Please enter the next arrival time. The sentinel is 999: 7

Please enter the next arrival time. The sentinel is 999: 12

Please enter the next arrival time. The sentinel is 999: 12

Please enter the next arrival time. The sentinel is 999: 13

Please enter the next arrival time. The sentinel is 999: 14

Please enter the next arrival time. The sentinel is 999: 18

Please enter the next arrival time. The sentinel is 999: 19

Please enter the next arrival time. The sentinel is 999: 25

Please enter the next arrival time. The sentinel is 999: 999

8.2 Queues 353

Here are the results of the simulation:

Time Event Waiting Time

5 Arrival

5 Arrival

7 Arrival

12 Arrival

12 Arrival

13 Arrival

14 Arrival (Overflow)

15 Departure 0

18 Arrival

19 Arrival (Overflow)

25 Departure 10

25 Arrival

35 Departure 18

45 Departure 23

55 Departure 33

65 Departure 42

75 Departure 47

85 Departure 50

The average waiting time, in minutes, was 27.875

System Test 2 (input is in boldface):

Please enter the next arrival time. The sentinel is 999: -3

java.lang.IllegalArgumentException The input must consist of a non-negative integer

less than the sentinel.

Please enter the next arrival time. The sentinel is 999: 5

Please enter the next arrival time. The sentinel is 999: m

java.util.InputMismatchException:

Please enter the next arrival time. The sentinel is 999: 3

java.lang.IllegalArgumentException The next arrival time must not be less than the

current time.

Please enter the next arrival time. The sentinel is 999: 1000

java.lang.IllegalArgumentException The input must consist of a non-negative integer

less than the sentinel.

Please enter the next arrival time. The sentinel is 999: 10

Please enter the next arrival time. The sentinel is 999: 999

354 CHAPTER 8 Stacks and Queues

Here are the results of the simulation:

Time Event Waiting Time

5 Arrival

10 Arrival

15 Departure 0

25 Departure 5

The average waiting time, in minutes, was 2.5

8.2.4.1 Program Design and Testing

As usual, we will separate the processing concerns from the input/output concerns, so we will have two

major classes: CarWash and CarWashUser. The simulation will be event driven , that is, the pivotal

decision in processing is whether the next event will be an arrival or a departure. After each of the

next-arrival times has been processed, we need to wash any remaining cars and return the results of the

simulation.

For now, four methods can be identified. Here are their specifications

/**

* Initializes this CarWash object.

*

*/

public CarWash()

/**

* Handles all events from the current time up through the specified time for the next

* arrival.

*

* @param nextArrivalTime – the time when the next arrival will occur.

*

* @throws IllegalArgumentException – if nextArrivalTime is less than the

* current time.

*

* @return - a string that represents the history of the car wash

* through the processing of the car at nextArrivalTime.

*

*/

public LinkedList<String> process (int nextArrivalTime)

/**

* Washes all cars that are still unwashed after the final arrival.

*

* @return - a string that represents the history of the car wash

* after all arrivals have been processed (washed or turned away).

*/

public LinkedList<String> finishUp()

8.2 Queues 355

/**

* Returns the history of this CarWash object’s arrivals and departures, and the

* average waiting time.

*

* @return the history of the simulation, including the average waiting time.

*

*/

public LinkedList<String> getResults()

The process and finishUp methods return the history of the car wash (times, events, and waiting times),

not because that is needed for the definitions of the process and finishUp methods, but for the sake

of testing those methods. Recall the maxim from Chapter 2: In general, methods should be designed to

facilitate testing.

In the CarWashTest class, carWash is a field, and CarWashTest extends CarWash to enable

protected methods in CarWash to be accessed in CarWashTest. Here, for example, are tests for arrivals

and overflow:

@Test

public void twoArrivalsTest()

{

carWash.processArrival (5);

results = carWash.processArrival (7);

assertTrue (results.indexOf ("5\tArrival") != -1);

assertTrue (results.indexOf ("7\tArrival") > results.indexOf ("5\tArrival"));

} // method twoArrivalsTest

@Test

public void overflowTest()

{

carWash.processArrival (5);

carWash.processArrival (7);

carWash.processArrival (8);

carWash.processArrival (12);

carWash.processArrival (12);

assertTrue (carWash.processArrival (13).toString().

indexOf (CarWash.OVERFLOW) == -1); // no overflow for arrival at 13

assertTrue (carWash.processArrival (14).toString().

indexOf (CarWash.OVERFLOW) > 0); // overflow for arrival at 14

} // method overflowTest

The complete project, including all test classes, is available from the book’s website.

8.2.4.2 Fields in the CarWash Class

The next step in the development of the CarWash class is to choose its fields. We’ll start with a list of

variables needed to solve the problem and then select the fields from this list.

As noted at the beginning of the design stage in Section 8.2.4.1, the essential feature of processing

is the determination of whether the next event is an arrival or a departure? We can make this decision

based on the values of nextArrivalTime (which is read in) and nextDepartureTime. The variable

nextArrivalTime holds the time when the next arrival will occur, and nextDepartureTime contains

the time when the washing of the car now being washed will be finished. For example, suppose at some

356 CHAPTER 8 Stacks and Queues

point in the simulation, nextArrivalTime contains 28 and nextDepartureTime contains 24. Then the

next event in the simulation will be a departure at time 24. If the two times are the same, the next event

will be an arrival (see note 1 of Analysis). What if there is no car being washed? Then the next event will

be an arrival. To make sure the next event is an arrival no matter what nextArrivalTime holds, we will

set nextDepartureTime to a large number—say 10000—when there is no car being washed.

The cars waiting to be washed should be saved in chronological order, so one of the variables

needed will be the queue carQueue. Each element in carQueue is a Car object, so we temporarily

suspend development of the CarWash class in order to determine the methods the Car class should have.

When a car leaves the queue to enter the wash station, we can calculate that car’s waiting time

by subtracting the car’s arrival time from the current time. So the Car class will provide, at least, a

getArrivalTime() method that returns the arrival time of the car that was just dequeued. Beyond that,

all the Car class needs is a constructor to initialize a Car object from nextArrivalTime when a Car

object is enqueued. The method specifications for the Car class are:

/**

* Initializes this Car object from the specified time of the next arrival.

*

*/

public Car (int nextArrivalTime)

/**

* Determines the arrival time of this Car object.

*

* @return the arrival time of this Car object.

*

*/

public int getArrivalTime()

We now resume the determination of variables in CarWash. As indicated in the previous paragraph,

we should have waitingTime and currentTime variables. To calculate the average waiting time, we

need numberOfCarsWashed and sumOfWaitingTimes. Finally, we need a variable, results, to hold

each line of output of the simulation. We could simply make results a String variable, but then the

concatenation operations would become increasingly expensive. Instead, each line will be appended to a

linked list:

LinkedList<String> results;

At this point, we have amassed eight variables. Which of these should be fields? A simple heuristic (rule

of thumb) is that most of a class’s public, non-constructor methods should access most of the class’s

fields (see Riel, [1996] for more details). Clearly, the process method will need all of the variables. The

finishUp method will handle the remaining departures, so that method must have access to carQueue,

results, sumOfWaitingTimes, waitingTime, currentTime, and nextDepartureTime; these will

be fields. The only other field is numberOfCars, needed by the getResults method. There is no need

to make nextArrivalTime a field (it is needed only in the process method). Here are the constant

identifiers and fields in the CarWash class:

public final String OVERFLOW = " (Overflow)\n";

protected final String HEADING =

"\n\nTime\tEvent\t\tWaiting Time\n";

8.2 Queues 357

protected static final int INFINITY = 10000; // indicates no car being washed

protected static final int MAX_SIZE = 5; // maximum cars allowed in carQueue

protected static final int WASH_TIME = 10; // minutes to wash one car

protected Queue<Car> carQueue;

protected LinkedList<String> results; // the sequence of events in the simulation

protected int currentTime,

nextDepartureTime, // when car being washed will finish

numberOfCars,

waitingTime,

sumOfWaitingTimes;

Figure 8.17 has the UML diagrams for the CarWash, Car, and LinkedList classes. For the sake of

brevity, the LinkedList fields and methods are not shown, and the Queue interface’s methods are not

shown because they are implemented by the LinkedList class.

+ CarWash()

+ process (nextArrivalTime: int): LinkedList<String>

+ finishUp(): LinkedList<String>

+ getResults(): LinkedList<String>

processArrival (nextArrivalTime: int): LinkedList<String>

processDeparture(): LinkedList<String>

CarWash

carQueue: Queue<Car>

results: LinkedList<String>

currentTime: int

nextDepartureTime: int

numberOfCars: int

waitingTime: int

sumOfWaitingTimes: int

Car

* 1

arrivalTime: int

+ Car()

+ Car (nextArrivalTime: int)

+ getArrivalTime(): int

LinkedList
E

FIGURE 8.17 The class diagrams for CarWash and associated classes

358 CHAPTER 8 Stacks and Queues

8.2.4.3 Method Definitions of the CarWash Class

We now start on the method definitions of the CarWash class. The constructor is straightforward:

public CarWash()

{

carQueue = new LinkedList<Car>();

results = new LinkedList<String>();

results.add (HEADING);

currentTime = 0;

numberOfCars = 0;

waitingTime = 0;

sumOfWaitingTimes = 0;

nextDepartureTime = INFINITY; // no car being washed

} // constructor

The process method takes the nextArrivalTime read in from the calling method. Then the decision

is made, by comparing nextArrivalTime to nextDepartureTime, whether the next event is an arrival

or departure. According to the specifications of the problem, we keep processing departures until the

next event is an arrival, that is, until nextArrivalTime < nextDepartureTime. Then the arrival at

nextArrivalTime is processed. By creating processArrival and processDeparture methods, we

avoid getting bogged down in details, at least for now.

public LinkedList<String> process (int nextArrivalTime)

{

final String BAD_TIME =

"The time of the next arrival cannot be less than the current time.";

if (nextArrivalTime < currentTime)

throw new IllegalArgumentException (BAD_TIME);

while (nextArrivalTime >= nextDepartureTime)

processDeparture();

return processArrival (nextArrivalTime);

} // process

To process the arrival given by nextArrivalTime, we first update currentTime and check for an

overflow. If this arrival is not an overflow, numberOfCars is incremented and the car either starts getting

washed (if the wash station is empty) or is enqueued on carQueue. Here is the code:

/**

* Moves the just arrived car into the car wash (if there is room on the car queue),

* or turns the car away (if there is no room on the car queue).

*

* @param nextArrivalTime – the arrival time of the just-arrived car.

*

*/

protected LinkedList<String> processArrival (int nextArrivalTime)

{

final String ARRIVAL = "\tArrival";

currentTime = nextArrivalTime;

8.2 Queues 359

results.add (Integer.toString (currentTime) + ARRIVAL);

if (carQueue.size() == MAX_SIZE)

results.add (OVERFLOW);

else

{

numberOfCars++;

if (nextDepartureTime == INFINITY) // if no car is being washed

nextDepartureTime = currentTime + WASH_TIME;

else

carQueue.add (new Car (nextArrivalTime));

results.add ("\n");

} // not an overflow

return results;

} // method processArrival

This method reveals how the Car class gets involved: there is a constructor with nextArrivalTime as

its argument. Here is the complete definition of the Car class:

public class Car

{

protected int arrivalTime;

/**

* Initializes this Car object.

*

*/

public Car() { } // for the sake of subclasses of Car

/**

* Initializes this Car object from the specified time of the next arrival.

*

*/

public Car (int nextArrivalTime)

{

arrivalTime = nextArrivalTime;

} // constructor with int parameter

/**

* Determines the arrival time of this Car object.

*

* @return the arrival time of this Car object.

*

*/

public int getArrivalTime()

{

return arrivalTime;

} // method getArrivalTime

} // class Car

360 CHAPTER 8 Stacks and Queues

For this project, we could easily have avoided the Car class, but a subsequent extension of the project

might relate to more information about a car: the number of axles, whether it is a convertible, and so on.

To process a departure, we first update currentTime and results. Note that the waiting time for

the departing car was calculated when that car entered the wash station—during the previous call to the

processDeparture method. We check to see if there are any cars on carQueue. If so, we dequeue

the front car, calculate its waiting time, add that to sumOfWaitingTimes, and begin washing that car.

Otherwise, we set waitingTime to 0 and nextDepartureTime to a large number to indicate that no

car is now being washed. Here is the definition:

/**

* Updates the simulation to reflect the fact that a car has finished getting washed.

*

*/

protected LinkedList<String> processDeparture()

{

final String DEPARTURE = "\tDeparture\t\t";

int arrivalTime;

currentTime = nextDepartureTime;

results.add (Integer.toString (currentTime) + DEPARTURE +

Integer.toString (waitingTime) + "\n");

if (!carQueue.isEmpty())

{

Car car = carQueue.remove();

arrivalTime = car.getArrivalTime();

waitingTime = currentTime - arrivalTime;

sumOfWaitingTimes += waitingTime;

nextDepartureTime = currentTime + WASH_TIME;

} // carQueue was not empty

else

{

waitingTime = 0;

nextDepartureTime = INFINITY; // no car is being washed

} // carQueue was empty

return results;

} // method processDeparture

The finishUp and getResults methods are straightforward:

public LinkedList<String> finishUp()

{

while (nextDepartureTime < INFINITY) // while there are unwashed cars

processDeparture();

return results;

} // finishUp

public LinkedList<String> getResults()

{

final String NO_CARS_MESSAGE = "There were no cars in the car wash.\n";

8.2 Queues 361

final String AVERAGE_WAITING_TIME_MESSAGE =

"\n\nThe average waiting time, in minutes, was ";

if (numberOfCars == 0)

results.add (NO_CARS_MESSAGE);

else

results.add (AVERAGE_WAITING_TIME_MESSAGE + Double.toString (

(double) sumOfWaitingTimes / numberOfCars));

return results;

} // method getResults

8.2.4.4 The CarWashUser Class

The CarWashUser class has a run method and a printResults method (in addition to the usual main

method). Here are the method specifications for the run method and the printResults method :

/**

* Reads in all of the arrival times, runs the simulation, and calculates the average

* waiting time.

*

*/

public void run()

/**

* Prints the results of the simulation.

*

*/

public void printResults()

There is no CarWashUserTest class because the CarWashUser class has no testable methods. Figure 8.18

has the UML class diagrams for this project.

The run method repeatedly—until the sentinel is reached—reads in a value for nextArrivalTime.

Unless an exception is thrown (for example, if the value is not an int), carWash.process (nextArr

ivalTime) is called. When the sentinel is read in, the loop is exited and carWash.finishUp() and

printResults (carWash) are called. Here is the code:

public void run()

{

final int SENTINEL = 999;

final String INPUT_PROMPT = "\nPlease enter the next arrival time (or " +

SENTINEL + " to quit): ";

final String OUT_OF_RANGE = "The input must consist of a non-" +

"negative integer less than the sentinel.";

CarWash carWash = new CarWash();

Scanner sc = new Scanner (System.in);

362 CHAPTER 8 Stacks and Queues

+ main (args: String[])

+ run()

+ printResults()

1

CarWashUser

CarWash

carQueue: Queue<Car>

results: LinkedList<String>

currentTime: int

nextDepartureTime: int

numberOfCars: int

waitingTime: int

sumOfWaitingTimes: int

+ CarWash()

+ process (nextArrivalTime: int): LinkedList<String>

+ finishUp(): LinkedList<String>

+ getResults(): LinkedList<String>

processArrival (nextArrivalTime: int): LinkedList<String>

processDeparture(): LinkedList<String>

Car

arrivalTime: int

+ Car()

+ Car (nextArrivalTime: int)

+ getArrivalTime(): int

LinkedList

*

FIGURE 8.18 UML class diagrams for the CarWash project

int nextArrivalTime;

while (true)

{

System.out.print (INPUT_PROMPT);

try

{

nextArrivalTime = sc.nextInt();

if (nextArrivalTime == SENTINEL)

8.2 Queues 363

break;

if (nextArrivalTime < 0 || nextArrivalTime > SENTINEL)

throw new NumberFormatException (OUT_OF_RANGE);

carWash.process (nextArrivalTime);

} // try

catch (Exception e)

{

System.out.println(e);

sc.nextLine();

} // catch

} // while

carWash.finishUp();

printResults (carWash);

} // method run

The definition of the printResults method needs no explanation:

public void printResults()

{

final String RESULTS_HEADING =

"\nHere are the results of the simulation:\n";

LinkedList<String> results = carWash.getResults();

System.out.println (RESULTS_HEADING);

for (String s : results)

System.out.print (s);

} // method printResults

For the run method, worstTime(n) is linear in n , where n is the number of lines of input. There are loops

in the definitions of the CarWash methods process and finishUp, but those loops are independent of

n; in fact, the number of iterations of either loop is at most 5, the maximum size of the car queue.

8.2.4.5 Randomizing the Arrival Times

It is not necessary that the arrival times be read in. They can be generated by your simulation pro-

gram, provided the input includes the mean arrival time, that is, the average time between arrivals for

the population. In order to generate the list of arrival times from the mean arrival time, we need to

know the distribution of arrival times. We now define a function that calculates the distribution, known

as the Poisson distribution , of times between arrivals. The mathematical justification for the following

discussion is beyond the scope of this book—the interested reader may consult a text on mathematical

statistics.

Let x be any time between arrivals. Then F (x), the probability that the time until the next arrival

will be at least x minutes from now, is given by

F (x) = exp(–x / meanArrivalTime)

For example, F (0) = exp(0) = 1; that is, it is certain that the next arrival will occur at least 0 minutes from

now. Similarly, F (meanArrivalTime) = exp(−1) ∼ 0.4.F (10000 ∗ meanArrivalTime) is approximately 0.

The graph of the function F is shown in Figure 8.19.

364 CHAPTER 8 Stacks and Queues

1·0 •

•

•

•

0·4 •

F(x)

•

•

x

meanArrivalTime

FIGURE 8.19 Graph of the Poisson distribution of interarrival times

To generate the arrival times randomly, we introduce an integer variable called timeTillNext,

which will contain the number of minutes from the current time until the next arrival. We determine

the value for timeTillNext as follows. According to the distribution function F given previously, the

probability that the next arrival will take at least timeTillNext minutes is given by

exp(–timeTillNext / meanArrivalTime)

This expression represents a probability, specifically, a floating point number that is greater than 0.0 and

less than or equal to 1.0. To randomize this probability, we associate the expression with the value of a

random variable, randomDouble, in the same range. So we set

randomDouble = random.nextDouble();

Then randomDouble contains a double value that is greater than or equal to 0.0 and less than 1.0. So

1—randomDouble will contain a value that is greater than 0.0 and less than or equal to 1.0. This is what

we want, so we equate 1—randomDouble with exp(–timeTillNext/meanArrivalTime):

1 –randomDouble = exp (–timeTillNext / meanArrivalTime)

To solve this equation for timeTillNext, we take logs of both sides:

log (1 –randomDouble) = –timeTillNext / meanArrivalTime

Now each side is multiplied by—meanArrivalTime, to yield

timeTillNext = –meanArrivalTime ∗ log (1 –randomDouble)

In Java code, we get:

timeTillNext = (int)Math.round (-meanArrivalTime ∗ Math.log (1 - randomDouble));

We round the result so that timeTillNext will be an integer.

To illustrate how the values would be calculated, suppose that the mean arrival time is 3 minutes

and the list of values of 1 – randomDouble starts with 0.715842, 0.28016, and 0.409589. Then the first

three, randomized values of timeTillNext will be

1, that is, (int)Math.round (-3 ∗ log (0.715842)),

4, that is, (int)Math.round (-3 ∗ log (0.28016)), and

3, that is, (int)Math.round (-3 ∗ log (0.409589)).

Summary 365

The first car will arrive one minute after the car wash opens and the second car will arrive four minutes

later, at minute 5. The third car will arrive three minutes later, at minute 8.

You are now prepared to do Lab 16: Randomizing the Arrival Times

S U M M A R Y

A stack is a finite sequence of elements in which inser-

tions and deletions can take place only at one end of

the sequence, called the top of the stack. Because the

most recently inserted element is the next element to be

removed, a stack is a last-in-first-out (LIFO) structure.

Compilers implement recursion by generating code for

pushing and popping activation records onto a run-time

stack whose top record holds the state of the method cur-

rently being executed. Another stack application occurs

in the translation of infix expressions into machine code.

With the help of an operator stack, an infix expression

can be converted into a postfix expression, which is an

intermediate form between infix and machine language.

For this conversion, worstTime(n) is linear in n , the size

of the infix expression.

A queue is a finite sequence of elements in which

insertions can take place only at the back, and removals

can take place only at the front. Because the first ele-

ment inserted will be the first element to be removed, a

queue is a first-in-first-out (FIFO) structure. The inher-

ent fairness of this first-come-first-served restriction has

made queues important components of many systems.

Specifically, queues play a key role in the development of

computer models to study the behavior of those systems.

366 CHAPTER 8 Stacks and Queues

CROSSWORD PUZZLE

ACROSS DOWN

 3. A two-dimensional array that directs the
 conversion from infix notation to postfix
 notation.

 7. The immediate superclass the Stack class.

10. The information saved whenever a method
 is called.

11. A notation in which each operator
 immediately follows its operands.

1. The first widely used programming language.

2. The smallest meaningful unit in a program.

4. The area of main memory that is allocated for
 a run-time stack.

5. The worstTime(n) for the add (E element),
 remove() and element() methods in the
 LinkedList implementation of the Queue
 interface.

6. A process in which the factors that produce a
 result are themselves affected by that result.

8. A notation in which each operator immediately
 precedes its operands.

9. A simplification of a system.

1

2

3 4

5 6

7

8 9

10

11

www.CrosswordWeaver.com

www.CrosswordWeaver.com

Concept Exercises 367

CONCEPT EXERCISES

8.1 What advantage was obtained by implementing the List interface before declaring the Stack class?

8.2 Suppose we define:

Queue<Integer> queue = new LinkedList<Integer>();

Show what the LinkedList object (referenced by) queue will look like after each of the following messages

is sent:

a. queue.add (2000);

b. queue. add (1215);

c. queue. add (1035);

d. queue. add (2117);

e. queue.remove();

f. queue. add (1999);

g. queue.remove();

8.3 Re-do Exercise 8.2, parts a through g, for a stack instead of a queue. Start with

Stack<Integer> stack = new Stack<Integer>();

stack.push (2000);

8.4 Suppose that elements "a", "b", "c", "d", "e" are pushed, in that order, onto an initially empty stack,

which is then popped four times, and as each element is popped, it is enqueued into an initially empty queue.

If one element is then dequeued from the queue, what is the next element to be dequeued?

8.5 Use a stack of activation records to trace the execution of the recursive fact method after an initial call of

fact (4). Here is the method definition:

/**

/**

* Calculates n!.

*

* @param n the integer whose factorial is calculated.

*

* @return n!.

*

*/

protected static long fact (int n)

{

if (n <= 1)

return 1;

return n ∗ fact (n - 1);

} // method fact

368 CHAPTER 8 Stacks and Queues

8.6 Translate the following expressions into postfix notation:

1. x + y ∗ z

2. (x + y) ∗ z

3. x − y − z ∗ (a + b)

4. (a + b) ∗ c − (d + e ∗ f/((g/h + i − j) ∗ k))/ r

Test your answers by running the InfixToPostfix project in Lab 15.

8.7 Translate each of the expressions in Programming Exercise 8.6 into prefix notation.

8.8 An expression in postfix notation can be evaluated at run time by means of a stack. For simplicity, assume that

the postfix expression consists of integer values and binary operators only. For example, we might have the

following postfix expression:

8 5 4 + ∗ 7 −

The evaluation proceeds as follows: When a value is encountered, it is pushed onto the stack. When an operator

is encountered, the first—that is, top—and second elements on the stack are retrieved and popped, the operator

is applied (the second element is the left operand, the first element is the right operand) and the result is pushed

onto the stack. When the postfix expression has been processed, the value of that expression is the top (and

only) element on the stack.

For example, for the preceding expression, the contents of the stack would be as follows:

4

5 5

8 8 8

----- ----- ----- -----

9 7

8 72 72 65

----- ----- ----- -----

Convert the following expression into postfix notation and then use a stack to evaluate the expression:

5 + 2 ∗ (30 − 10/5)

PROGRAMMING EXERCISES

8.1 Declare and test the PureStack class (see Section 8.1.2) with a LinkedList field.

Hint: Each of the definitions is a one-liner.

8.2 Declare and test the PureStack class (see Section 8.1.2) with an ArrayList field.

Hint: For the sake of efficiency, the top of the stack should be at index size() - 1.

8.3 Develop an iterative, stack-based version of the ways method in Programming Exercise 5.7. Test your method

with unit testing.

Programming Exercises 369

Programming Project 8.1

Making the Speedo’s Car Wash Simulation More Realistic

Problem Expand the Car Wash Simulation Project with random arrival and service times. Use unit testing of new

methods after you have specified those methods.

Analysis The arrival times—with a Poisson distribution—should be generated randomly from the mean arrival time.

Speedo has added a new feature: The service time is not necessarily 10 minutes, but depends on what the customer

wants done, such as wash only, wash and wax, wash and vacuum, and so on. The service time for a car should

be calculated just before the car enters the wash station—that’s when the customer knows how much time will be

taken until the customer leaves the car wash. The service times, also with a Poisson distribution, should be generated

randomly from the mean service time with the same random-number generator used for arrival times.

The input consists of three positive integers: the mean arrival time, the mean service time, and the maximum

arrival time. Repeatedly re-prompt until each value is a positive integer.

Calculate the average waiting time and the average queue length, both to one fractional digit5. The average

waiting time is the sum of the waiting times divided by the number of customers.

The average queue length is the sum of the queue lengths for each minute of the simulation divided by the

number of minutes until the last customer departs. To calculate the sum of the queue lengths, we add, for each

minute of the simulation, the total number of customers on the queue during that minute. We can calculate this

sum another way: we add, for each customer, the total number of minutes that customer was on the queue. But

this is the sum of the waiting times! So we can calculate the average queue length as the sum of the waiting times

divided by the number of minutes of the simulation until the last customer departs. And we already calculated the

sum of the waiting times for the average waiting time.

Also calculate the number of overflows. Use a seed of 100 for the random-number generator, so the output

you get should have the same values as the output from the following tests.

System Test 1: (the input is in boldface)
Please enter the mean arrival time: 3

Please enter the mean service time: 5

Please enter the maximum arrival time: 25

Time Event Waiting Time

4 Arrival

5 Departure 0

7 Arrival

10 Arrival

13 Arrival

14 Arrival

15 Departure 0

16 Arrival

Time Event Waiting Time

18 Arrival

20 Arrival

21 Departure 5

32 Departure 8

34 Departure 18

37 Departure 18

41 Departure 19

46 Departure 21

5 Given a double d, you can print d rounded to one fractional digit as follows: System.out.println (Math.round (d

* 10)/10.0);

(continued on next page)

370 CHAPTER 8 Stacks and Queues

(continued from previous page)

The average waiting time was 11.1 minutes per car.

The average queue length was 1.9 cars per minute.

The number of overflows was 0.

System Test 2: (input in boldface)

Please enter the mean arrival time: 1

Please enter the mean service time: 1

Please enter the maximum arrival time: 23

Here are the results of the simulation:

Time Event Waiting Time

1 Arrival

1 Departure 0

2 Arrival

3 Arrival

4 Departure 0

4 Departure 1

4 Arrival

5 Departure 0

5 Arrival

6 Departure 0

6 Arrival

8 Arrival

8 Arrival

9 Arrival

10 Arrival

11 Departure 0

11 Arrival

11 Arrival

11 Arrival (Overflow)

12 Arrival (Overflow)

12 Arrival (Overflow)

13 Departure 3

Time Event Waiting Time

13 Arrival

14 Departure 5

14 Departure 5

14 Departure 4

14 Arrival

15 Departure 3

15 Departure 4

15 Arrival

16 Departure 2

16 Departure 2

18 Arrival

19 Departure 1

20 Departure 1

22 Arrival

22 Departure 0

22 Arrival

23 Arrival

23 Arrival

24 Departure 0

24 Departure 1

24 Departure 1

The average waiting time was 1.7 minutes per car. The average queue length was 1.4 cars per minute. The

number of overflows was 3.

Programming Exercises 371

Programming Project 8.2

Design, Test, and Implement a Program to Evaluate a Condition

Analysis The input will consist of a condition (that is, a Boolean expression) followed by the values—one per line—of

the variables as they are first encountered in the condition. For example:

b ∗ a > a + c

6

2

7

The variable b gets the value 6, a gets 2, and c gets 7. The operator * has precedence over >, and + has

precedence over >, so the value of the above expression is true (12 is greater than 9).

Each variable will be given as an identifier, consisting of lower-case letters only. All variables will be

integer-valued. There will be no constant literals. The legal operators and precedence levels—high to low—are:

*, /, %

+, - (that is, integer addition and subtraction)

>, >=, <=, <

==, !=

&&

|| <

Parenthesized subexpressions are legal. You need not do any input editing, that is, you may assume that the input

is a legal expression.

System Test 1 (Input in boldface):

Please enter a condition, or $ to quit: b ∗ a > a + c

Please enter a value: 6

Please enter a value: 2

Please enter a value: 7

The value of the condition is true.

Please enter a condition, or $ to quit: b ∗ a < a + c

Please enter a value: 6

Please enter a value: 2

Please enter a value: 7

The value of the condition is false.

Please enter a condition, or $ to quit: m + j ∗ next == current ∗ (next - previous)

(continued on next page)

372 CHAPTER 8 Stacks and Queues

(continued from previous page)

Please enter a value: 6

Please enter a value: 2

Please enter a value: 7

Please enter a value: 5

Please enter a value: 3

The value of the condition is true.

Please enter a condition, or $ to quit: m + j ∗ next ! = current ∗ (next - previous)

Please enter a value: 6

Please enter a value: 2

Please enter a value: 7

Please enter a value: 5

Please enter a value: 3

The value of the condition is false.

Please enter a condition, or $ to quit: a ∗ (b + c / (d - b) ∗ e) > = a + b + c + d + e

Please enter a value: 6

Please enter a value: 2

Please enter a value: 7

Please enter a value: 5

Please enter a value: 3

The value of the condition is true.

Please enter a condition, or $ to quit: a ∗ (b + c / (d - b) ∗ e) < = a + b + c + d + e

Please enter a value: 6

Please enter a value: 2

Please enter a value: 7

Please enter a value: 5

Please enter a value: 3

Programming Exercises 373

The value of the condition is false.

Please enter a condition, or $ to quit: $

System Test 2 (Input in boldface):

Please enter a condition, or $ to quit: b < c && c < a

Please enter a value: 10

Please enter a value: 20

Please enter a value: 30

The value of the condition is true.

Please enter a condition, or $ to quit: b < c && a < c

Please enter a value: 10

Please enter a value: 20

Please enter a value: 30

The value of the condition is false.

Please enter a condition, or $ to quit: b < c || a < c

Please enter a value: 10

Please enter a value: 20

Please enter a value: 30

The value of the condition is true.

Please enter a condition, or $ to quit: c < b || c > a

Please enter a value: 10

Please enter a value: 20

Please enter a value: 30

The value of the condition is true.

Please enter a condition, or $ to quit: b ! = a || b < = c && a > = c

(continued on next page)

374 CHAPTER 8 Stacks and Queues

(continued from previous page)

Please enter a value: 10

Please enter a value: 20

Please enter a value: 30

The value of the condition is true.

Please enter a condition, or $ to quit: (b ! = a || b < = c) && a > = c

Please enter a value: 10

Please enter a value: 20

Please enter a value: 30

The value of the condition is false.

Please enter a condition, or $ to quit: a / b ∗ b + a % b == a

Please enter a value: 17

Please enter a value: 5

The value of the condition is true.

Please enter a condition, or $ to quit: $

Hint See Lab 15 on converting infix to postfix, and Concept Exercise 8.8. After constructing the postfix queue,

create values, an ArrayList object with Integer elements. The values object corresponds to symbolTable,

the ArrayList of identifiers. Use a stack, runTimeStack, for pushing and popping Integer and Boolean

elements. Because runTimeStack contains both Integer and Boolean elements, it should not have a type

argument.

Programming Project 8.3

Maze-Searching, Revisited

Re-do and re-test the maze-search project in Chapter 5 by replacing tryToReachGoal with an iterative method.

Hint: use a stack to simulate the recursive calls to tryToReachGoal.

The original version of the project is in the Chapter 5 subdirectory on the book’s website.

Programming Exercises 375

Programming Project 8.4

Fixing the Stack Class

Design, test, and implement a subclass of the Stack class, PureStack, that satisfies the definition of a stack.

Specifically, PureStack will throw UnsupportedOperationException for any method call that attempts to

remove an element that is not the top element on the stack or attempts to insert an element except onto the top

of the stack. Furthermore, a forward iteration (using the next() method, either explicitly or implicitly) through

a PureStack object will start at the top of the stack and work down to the bottom of the stack. And a reverse

iteration will start at the bottom of the stack.

This page intentionally left blank

Binary Trees CHAPTER 9

In this chapter we ‘‘branch’’ out from the linear structures of earlier chapters to introduce what is

essentially a non-linear construct: the binary tree. This brief chapter focuses on the definition and

properties of binary trees, and that will provide the necessary background for the next four chapters.

Chapters 10 through 13 will consider various specializations of binary trees: binary search trees, AVL

trees, decision trees, red-black trees, heaps, and Huffman trees. There is no question that the binary tree

is one of the most important concepts in computer science. Finally, to round out the picture, Chapter 15

presents the topic of trees in general.

CHAPTER OBJECTIVES

1. Understand binary-tree concepts and important properties, such as the Binary Tree Theorem

and the External Path Length Theorem.

2. Be able to perform various traversals of a binary tree.

9.1 Definition of Binary Tree

The following definition sets the tone for the whole chapter:

A binary tree t is either empty or consists of an element, called the root element, and two distinct

binary trees, called the left subtree and right subtree of t.

We denote those subtrees as leftTree(t) and rightTree(t), respectively. Functional notation, such as

leftTree(t), is utilized instead of object notation, such as t.leftTree(), because there is no binary-tree

data structure. Why not? Different types of binary trees have widely differing methods—even different

parameters lists—for such operations as inserting and removing. Note that the definition of a binary tree

is recursive, and many of the definitions associated with binary trees are naturally recursive.

In depicting a binary tree, the root element is shown at the top, by convention. To suggest the

association between the root element and the left and right subtrees, we draw a southwesterly line from

the root element to the left subtree and a southeasterly line from the root element to the right subtree.

Figure 9.1 shows several binary trees.

The binary tree in Figure 9.1a is different from the binary tree in Figure 9.1b because B is in the

left subtree of Figure 9.1a but B is not in the left subtree of Figure 9.1b. As we will see in Chapter 15,

those two binary trees are equivalent when viewed as general trees.

A subtree of a binary tree is itself a binary tree, and so Figure 9.1a has seven binary trees: the whole

binary tree, the binary tree whose root element is B, the binary tree whose root element is C, and four

377

378 CHAPTER 9 Binary Trees

(e)

(a)

A

B C

(b)

BC

A

(c)

−

−

* +

A

B C

D E

(d)

14

55

18 16

52

63

75 20

61 58

58

37 75

25

30

61

15

32

36

28

68

FIGURE 9.1 Several binary trees

empty binary trees. Try to calculate the total number of subtrees for the tree in Figures 9.1 c, d, and e,

and hypothesize the formula to calculate the number of subtrees as a function of the number of elements.

The next section develops several properties of binary trees, and most of the properties are relevant

to the material in later chapters.

9.2 Properties of Binary Trees

In addition to “tree” and “root,” botanical terms are used for several binary-tree concepts. The line from a

root element to a subtree is called a branch . An element whose associated left and right subtrees are both

empty is called a leaf . A leaf has no branches going down from it. In the binary tree shown in Figure 9.1e,

there are four leaves: 15, 28, 36, and 68. We can determine the number of leaves in a binary tree recursively.

Let t be a binary tree. The number of leaves in t, written leaves(t), can be defined as follows:

if t is empty

leaves(t) = 0

else if t consists of a root element only

9.2 Properties of Binary Trees 379

leaves(t) = 1

else

leaves(t) = leaves(leftTree(t)) + leaves(rightTree(t))

This is a mathematical definition, not a Java method. The last line in the above definition states that the

number of leaves in t is equal to the number of leaves in t’s left subtree plus the number of leaves in t’s

right subtree. Just for practice, try to use this definition to calculate the number of leaves in Figure 9.1a.

Of course, you can simply look at the whole tree and count the number of leaves, but the above definition

of leaves(t) is atomic rather than holistic.

Each element in a binary tree is uniquely determined by its location in the tree. For example, let t

be the binary tree shown in Figure 9.1c. There are two elements in t with value ‘–’. We can distinguish

between them by referring to one of them as “the element whose value is ‘–’ and whose location is at

the root of t” and the other one as “the element whose value is ‘–’ and whose location is at the root of

the right subtree of the left subtree of t.” We loosely refer to “an element” in a binary tree when, strictly

speaking, we should say “the element at such and such a location.”

Some binary-tree concepts use familial terminology. Let t be the binary tree shown in Figure 9.2.

We say that x is the parent of y and that y is the left child of x . Similarly, we say that x is the parent

of z and that z is the right child of x .

In a binary tree, each element has zero, one, or two children. For example, in Figure 9.1d, 14 has

two children, 18 and 16; 55 has 58 as its only child; 61 is childless, that is, it is a leaf. For any element w

in a tree, we write parent(w) for the parent of w , left(w) for the left child of w and right(w) for the right

child of w .

In a binary tree, the root element does not have a parent, and every other element has exactly one

parent. Continuing with the terminology of a family tree, we could define sibling, grandparent, grandchild,

first cousin, ancestor and descendant. For example, an element A is an ancestor of an element B if B is

in the subtree whose root element is A. To put it recursively, A is an ancestor of B if A is the parent of

B or if A is an ancestor of the parent of B . Try to define “descendant” recursively.

If A is an ancestor of B , the path from A to B is the sequence of elements, starting with A and

ending with B , in which each element in the sequence (except the last) is the parent of the next element.

For example, in Figure 9.1e, the sequence 37, 25, 30, 32 is the path from 37 to 32.

Informally, the height of a binary tree is the number of branches between the root and the farthest

leaf, that is, the leaf with the most ancestors. For example, Figure 9.3 has a binary tree of height 3.

The height of the tree in Figure 9.3 (next page) is 3 because the path from E to S has three branches.

Suppose for some binary tree, the left subtree has a height of 12 and the right subtree has a height of 20.

What is the height of the whole tree? The answer is 21.

In general, the height of a tree is one more than the maximum of the heights of the left and right

subtrees. This leads us to a recursive definition of the height of a binary tree. But first, we need to know

what the base case is, namely, the height of an empty tree. We want the height of a single-element tree

to be 0: there are no branches from the root element to itself. But that means that 0 is one more than the

maximum heights of the left and right subtrees, which are both empty. So we need to define the height of

an empty subtree to be, strangely enough, −1.

x

y z

FIGURE 9.2 A binary tree with one parent and two children

380 CHAPTER 9 Binary Trees

E

T A

NO

S

I

FIGURE 9.3 A binary tree of height 3

Let t be a binary tree. We define height(t), the height of t , recursively as follows:

if t is empty,

height(t) = −1

else

height(t) = 1+ max (height(leftTree(t)), height(rightTree(t)))

It follows from this definition that a binary tree with a single element has height 0 because each of its

empty subtrees has a height of −1. Also, the height of the binary tree in Figure 9.1a is 1. And, if you

want to try some recursive gymnastics, you can verify that the height of the binary tree in Figure 9.1e

is 5.

Height is a property of an entire binary tree. For each element in a binary tree, we can define a

similar concept: the level of the element. Speaking non-recursively, if x is an element in a binary tree,

we define level(x), the level of element x , to be the number of branches between the root element and

element x . Figure 9.4 shows a binary tree, with levels.

In Figure 9.4, level(N) is 2. Notice that the level of the root element is 0, and the height of a tree

is equal to the highest level in the tree. Here is a recursive definition of the level of an element. For any

element x in a binary tree, we define level(x), the level of element x , as follows:

if x is the root element,

level(x) = 0

level
E 0

T A 1

NO 2

3S

I

FIGURE 9.4 A binary tree, with the levels of elements shown

9.2 Properties of Binary Trees 381

else

level(x) = 1+ level(parent(x))

An element’s level is also referred to as that element’s depth . Curiously, the height of a non-empty binary

tree is the depth of the farthest leaf.

A two-tree is a binary tree that either is empty or in which each non-leaf has 2 branches going down

from it. For example, Figure 9.5a has a two-tree and the tree in Figure 9.5b is not a two-tree.

Recursively speaking, a binary tree t is a two-tree if:

t has at most one element

or

leftTree(t) and rightTree(t) are non-empty two-trees.

A binary tree t is full if t is a two-tree with all of its leaves on the same level. For example, the tree in

Figure 9.6a is full and the tree in Figure 9.6b is not full.

Recursively speaking, a binary tree t is full if:

t is empty

or

t ’s left and right subtrees have the same height and both are full.

Of course, every full binary tree is a two-tree but the converse is not necessarily true. For example, the

tree in Figure 9.6b is a two-tree but is not full. For full binary trees, there is a relationship between the

(b)

(a)

r c d

q

f e t g

v

c g

z t

FIGURE 9.5 (a) a two tree; (b) a binary tree that is not a two tree

(b)

50

20 90

80 99

(a)

5

50

20 90

80 9928

FIGURE 9.6 (a) a full binary tree; (b) a binary tree that is not full

382 CHAPTER 9 Binary Trees

A1

A2 A3

A6 A7A4 A5

FIGURE 9.7 A full binary tree of height 2; such a tree must have exactly 7 elements

height and number of elements in the tree. For example, the full binary tree in Figure 9.7 has a height of

2, so the tree must have exactly 7 elements:

How many elements must there be in a full binary tree of height 3? Of height 4? For a full binary

tree t , can you conjecture the formula for the number of elements in t as a function of height(t)? The

answer can be found in Section 9.3.

A binary tree t is complete if t is full through the next-to-lowest level and all of the leaves at the

lowest level are as far to the left as possible. By “lowest level,” we mean the level farthest from the root.

Any full binary tree is complete, but the converse is not necessarily true. For example, Figure 9.8a

has a complete binary tree that is not full. The tree in Figure 9.8b is not complete because it is not full at

the next-to-lowest level: C has only one child. The tree in Figure 9.8c is not complete because leaves I

and J are not as far to the left as they could be.

(c)

A

B C

D E F G

H I J

(b)

A

B C

D E F

G I JH

(a)

A

B C

D E F G

H JI

FIGURE 9.8 Three binary trees, of which only (a) is complete

In a complete binary tree, we can associate a “position” with each element. The root element is

assigned a position of 0. For any nonnegative integer i , if the element at position i has children, the

position of its left child is 2i + 1 and the position of its right child is 2i + 2. For example, if a complete

binary tree has ten elements, the positions of those elements are as indicated in Figure 9.9.

If we use a left shift (that is, operator <<) of one bit, we can achieve the same effect as multiplying

by 2, but much faster. Then the children of the element at position i are at positions

(i << 1) + 1 and (i << 1) + 2

In Figure 9.9, the parent of the element at position 8 is in position 3, and the parent of the element in

position 5 is in position 2. In general, if i is a positive integer, the position of the parent of the element

in position i is in position (i − 1) >> 1; we use a right shift of one bit instead of division by 2.

The position of an element is important because we can implement a complete binary tree with a

contiguous collection such as an array or an ArrayList. Specifically, we will store the element that is at

position i in the tree at index i in the array. For example, Figure 9.10 shows an array with the elements

from Figure 9.8a.

9.3 The Binary Tree Theorem 383

0

1 2

3 4 5 6

7 8 9

FIGURE 9.9 The association of consecutive integers to elements in a complete binary tree

HGFEDCBA I J

0 1 2 3 4 5 6 7 8 9

FIGURE 9.10 An array that holds the elements from the complete binary tree in Figure 9.8a

If a complete binary tree is implemented with an ArrayList object or array object, the random-

access property of arrays allows us to access the children of a parent (or parent of a child) in constant

time. That is exactly what we will do in Chapter 13.

We have shown how we can recursively calculate leaves(t), the number of leaves in a binary tree

t , and height(t), the height of a binary tree t . We can also recursively calculate the number of elements,

n(t), in t :

if t is empty

n(t) = 0

else

n(t) = 1 + n(leftTree(t)) + n(rightTree(t))

9.3 The Binary Tree Theorem

For any non-empty binary tree t , leaves(t) ≤ n(t), and leaves(t) = n(t) if and only if t consists of one

element only. The phrase “if and only if” indicates that each of the individual statements follows from the

other. Namely, for a non-empty binary tree t , if t consists of a single element only, then leaves(t) = n(t);

and if leaves(t) = n(t), then t consists of a single element only.

The following theorem characterizes the relationships among leaves(t), height(t) and n(t).

Binary Tree Theorem For any non-empty binary tree t,

1. leaves(t) ≤
n(t) + 1

2.0

2.
n(t) + 1

2.0
≤ 2height(t)

3. Equality holds in part 1 if and only if t is a two-tree.

4. Equality holds in part 2 if and only if t is full.

384 CHAPTER 9 Binary Trees

200

x 120

y

FIGURE 9.11 A binary tree t with (n(t) + 1)/2 leaves that is not a two tree

Note: Because 2.0 is the denominator of the division in part 1, the quotient is a floating point value.

For example, 7/2.0 = 3.5. We cannot use integer division because of part 3: let t be the binary tree in

Figure 9.11.

For the tree in Figure 9.11, leaves(t) = 2 = (n(t) + 1)/2 if we use integer division. But t is not a

two-tree. Note that (n(t) + 1)/2.0 = 2.5.

Parts 3 and 4 each entail two sub-parts. For example, for part 3, we must show that if t is a non-empty

two-tree, then

leaves(t) =
n(t) + 1

2.0
And if

leaves(t) =
n(t) + 1

2.0
then t must be a non-empty two-tree.

All six parts of this theorem can be proved by induction on the height of t . As it turns out, most

theorems about binary trees can be proved by induction on the height of the tree. The reason for this is

that if t is a binary tree, then both leftTree(t) and rightTree(t) have height less than height(t), and so the

Strong Form of the Principle of Mathematical Induction (see Section A2.5 of Appendix 2) often applies.

For example, Example A2.5 of Appendix 2 has a proof of part 1. The proofs of the remaining parts are

left as Exercises 9.13 and 9.14, with a hint for each exercise.

Suppose t is a full binary tree (possibly empty), then from part 4 of the Binary Tree Theorem, and

the fact that any empty tree has height of −1, we have the equation

n(t) + 1

2.0
= 2height(t)

If we solve this equation for height(t), we get

height(t) = log2((n(t) + 1)/2.0)

= log2(n(t) + 1) − 1

So we can say that the height of a full tree is logarithmic in n , where n is the number of elements in the

tree; we often use n instead of n(t) when it is clear which tree we are referring to. Even if t is merely

complete, its height is still logarithmic in n . See Concept Exercise 9.7. On the other hand, t could be a

chain. A chain is a binary tree in which each non-leaf has exactly one child. For example, Figure 9.12

has an example of a binary tree that is a chain.

If t is a chain, then height(t) = n(t) − 1, so for chains the height is linear in n . Much of our work

with trees in subsequent chapters will be concerned with maintaining logarithmic-in-n height and avoiding

linear-in-n height. Basically, for inserting into or removing from certain kinds of binary trees whose height

is logarithmic in n , worstTime(n) is logarithmic in n . That is why, in many applications, binary trees are

preferable to lists. Recall that with both ArrayList objects and LinkedList objects, for inserting or

removing at a specific index, worstTime(n) is linear in n .

9.4 External Path Length 385

50

10

20

30

25

FIGURE 9.12 A binary tree that is a chain: each non-leaf has exactly one child

9.4 External Path Length

You may wonder why we would be interested in adding up all the root-to-leaf path lengths, but the

following definition does have some practical value. Let t be a non-empty binary tree. E(t), the external

path length of t , is the sum of the depths of all the leaves in t . For example, in Figure 9.13, the sum of

the depths of the leaves is 2 + 4 + 4 + 4 + 5 + 5 + 1 = 25.

The following lower bound on external path lengths yields an important result in the study of sorting

algorithms (see Chapter 11).

External Path Length Theorem Let t be a binary tree with k > 0 leaves. Then

E(t) ≥ (k/2) floor (log2 k)

Proof It follows from the Binary Tree Theorem that if a nonempty binary tree is full and has height h, then

the tree has 2h leaves. And we can obtain any binary tree by ‘‘pruning’’ a full binary tree of the same height;

a

b c

d e

f g

h i j k

l m

FIGURE 9.13 A binary tree whose external path length is 25

386 CHAPTER 9 Binary Trees

in so doing we reduce the number of leaves in the tree. So any non-empty binary tree of height h has no

more than 2h leaves. To put that in a slightly different way, if k is any positive integer, any nonempty binary

tree of height floor(log2k) has no more than k leaves. (We have to use the floor function because the height

must be an integer, but log2k might not be an integer.)

Now suppose t is a nonempty binary tree whose height is floor(log2k) for some positive integer k. By

the previous paragraph, t has no more than k leaves. How many of those leaves will be at level floor(log2k),

the level farthest from the root? To answer that question, we ask how many leaves must be at a level less

than floor(log2k). That is, how many leaves must there be in the subtree t′ of t formed by removing all leaves

at level floor(log2k)? The height of t′ is floor(log2 k) − 1. Note that

floor(log2 k) − 1 = floor(log2 k − 1)

= floor(log2 k − log2 2)

= floor(log2 (k/2))

By the previous paragraph, the total number of leaves in t′ is no more than k/2. But every leaf in t that is at a

level less than floor(log2k) is also a leaf in t′. And so there must be, at least, k/2 leaves at level floor(log2k).

Each of those k/2 leaves contributes floor(log2k) to the external path length, so we must have

E(t) ≥ (k/2) floor (log2 k)

Note: This result is all we will need in Chapter 11, but at a cost of a somewhat more complicated proof,

we could show that E(t) ≥ k log2 k for any non-empty two-tree with k leaves. (See Cormen, [2002] for

details.)

9.5 Traversals of a Binary Tree

A traversal of a binary tree t is an algorithm that processes each element in t exactly once. In this section,

we restrict our attention to algorithms only; there are no methods here. We make no attempt to declare

a BinaryTree class or interface: it would not be flexible enough to support the variety of insertion and

removal methods already in the Java Collections Framework. But the traversals we discuss in this section

are related to code: specifically, to iterators. One of the iterators will turn up in Section 10.1.2.6, and two

other iterators will appear in Chapter 15.

We identify four different kinds of traversal.

Traversal 1. inOrder Traversal: Left-Root-Right The basic idea of this recursive algorithm is that we

first perform an inOrder traversal of the left subtree, then we process the root element, and finally, we

perform an inOrder traversal of the right subtree. Here is the algorithm—assume that t is a binary tree:

inOrder (t)

{

if (t is not empty)

{

inOrder (leftTree (t));

process the root element of t ;

inOrder (rightTree (t));

} // if

} // inOrder traversal

Let n represent the number of elements in the tree. Corresponding to each element there are 2 subtrees,

so there will be 2n recursive calls to inOrder(t). We conclude that worstTime(n) is linear in n . Ditto for

averageTime(n).

9.5 Traversals of a Binary Tree 387

31

47 50

42 25

FIGURE 9.14 A binary tree

We can use this recursive description to list the elements in an inOrder traversal of the binary tree

in Figure 9.14.

The tree t in Figure 9.14 is not empty, so we start by performing an inOrder traversal of leftTree(t),

namely,

47

This one-element tree becomes the current version of t . Since its left subtree is empty, we process the root

element of this t , namely 47. That completes the traversal of this version of t since rightTree(t) is empty.

So now t again refers to the original tree. We next process t’s root element, namely,

31

After that, we perform an inOrder traversal of rightTree(t), namely,

50

42 25

This becomes the current version of t . We start by performing an inOrder traversal of leftTree(t), namely,

42

Now this tree with one element becomes the current version of t . Since its left subtree is empty, we process

t’s root element, 42. The right subtree of this t is empty. So we have completed the inOrder traversal of

the tree with the single element 42, and now, once again, t refers to the binary tree with 3 elements:

50

42 25

We next process the root element of this version of t , namely,

50

Finally, we perform an inOrder traversal of rightTree(t), namely,

25

Since the left subtree of this single-element tree t is empty, we process the root element of t , namely 25.

We are now done since t’s right subtree is also empty.

388 CHAPTER 9 Binary Trees

31

47 50

42 25

FIGURE 9.15 An inOrder traversal of a binary tree

The complete listing is

47 31 42 50 25

Figure 9.15 shows the original tree, with arrows to indicate the order in which elements are processed:

The inOrder traversal gets its name from the fact that, for a special kind of binary tree—a binary

search tree—an inOrder traversal will process the elements in order. For example, Figure 9.16 has a binary

search tree:

An inOrder traversal processes the elements of the tree in Figure 9.16 as follows:

25, 31, 42, 47, 50

In a binary search tree, all of the elements in the left subtree are less than the root element, which is less

than all of the elements in the right subtree. What recursive property do you think will be part of the

definition of a binary search tree so that an inOrder traversal processes the elements in order? Hint: the

binary tree in Figure 9.17 is not a binary search tree:

We will devote Chapters 10 and 12 to the study of binary search trees.

31

25 47

42 50

FIGURE 9.16 A binary search tree

31

25 47

50 42

FIGURE 9.17 A binary tree that is not a binary search tree

9.5 Traversals of a Binary Tree 389

Traversal 2. postOrder Traversal: Left-Right-Root The idea behind this recursive algorithm is that we

perform postOrder traversals of the left and right subtrees before processing the root element. The algorithm,

with t a binary tree, is:

postOrder (t)

{

if (t is not empty)

{

postOrder (leftTree (t));

postOrder (rightTree (t));

process the root element of t ;

} // if

} // postOrder traversal

Just as with an inOrder traversal, the worstTime(n) for a postOrder traversal is linear in n because there

are 2n recursive calls to postOrder(t).

Suppose we conduct a postOrder traversal of the binary tree in Figure 9.18.

A postOrder traversal of the binary tree in Figure 9.18 will process the elements in the path shown

in Figure 9.19.

In a linear form, the postOrder traversal shown in Figure 9.19 is

A B C + ∗

*

A +

B C

FIGURE 9.18 A binary tree

*

A +

B C

FIGURE 9.19 The path followed by a postOrder traversal of the binary tree in Figure 9.18

390 CHAPTER 9 Binary Trees

We can view the above binary tree as an expression tree: each non-leaf is a binary operator whose operands

are the associated left and right subtrees. With this interpretation, a postOrder traversal produces postfix

notation.

Traversal 3. preOrder Traversal: Root-Left-Right Here we process the root element and then perform

preOrder traversals of the left and right subtrees. The algorithm, with t a binary tree, is:

preOrder (t)

{

if (t is not empty)

{

process the root element of t ;

preOrder (leftTree (t));

preOrder (rightTree (t));

} // if

} // preOrder traversal

As with the inOrder and postOrder algorithms, worstTime(n) is linear in n .

For example, a preOrder traversal of the binary tree in Figure 9.20 will process the elements in the

order indicated in Figure 9.21.

If we linearize the path in Figure 9.21, we get

∗ A + B C

For an expression tree, a preOrder traversal produces prefix notation.

A search of a binary tree that employs a preOrder traversal is called a depth-first-search because the

search goes to the left as deeply as possible before searching to the right. The search stops when (if) the

*

A +

B C

FIGURE 9.20 An expression tree

*

A +

B C

FIGURE 9.21 The path followed by a preOrder traversal of the elements in the expression tree of Figure 9.20

9.5 Traversals of a Binary Tree 391

A

B C

D E F

G H

I J

K

FIGURE 9.22 A depth-first search for H

element sought is found, so the traversal may not be completed. For an example of a depth-first search,

Figure 9.22 shows a binary tree and the path followed by a depth-first search for H.

The backtracking strategy from Chapter 5 includes a depth-first search, but at each stage there may

be more than two choices. For example, in the maze-search, the choices are to move north, east, south,

or west. Because moving north is the first option, that option will be repeatedly applied until either the

goal is reached or moving north is not possible. Then a move east will be taken, if possible, and then as

many moves north as possible or necessary. And so on. In Chapter 15, we will re-visit backtracking for a

generalization of binary trees.

Traversal 4. breadthFirst Traversal: Level-By-Level To perform a breadth-first traversal of a non-empty

binary tree t , first process the root element, then the children of the root, from left to right, then the

grandchildren of the root, from left to right, and so on.

For example, suppose we perform a breadth-first traversal of the binary tree in Figure 9.23.

The order in which elements would be processed in a breadthFirst traversal of the tree in Figure 9.23

is

A B C D E F G H I J K

One way to accomplish this traversal is to generate, level-by-level, a list of (references to) non-empty

subtrees. We need to retrieve these subtrees in the same order they were generated so the elements can

be processed level-by-level. What kind of collection allows retrievals in the same order as insertions? A

queue! Here is the algorithm, with t a binary tree:

breadthFirst (t)

{

// queue is a queue of (references to) binary trees

// tree is a (reference to a) binary tree

392 CHAPTER 9 Binary Trees

A

B C

D E F

G H

I J

K

FIGURE 9.23 A binary tree

if (t is not empty)

{

queue.enqueue (t);

while (queue is not empty)

{

tree = queue.dequeue();

process tree’s root;

if (leftTree (tree) is not empty)

queue.enqueue (leftTree (tree));

if (rightTree (tree) is not empty)

queue.enqueue (rightTree (tree));

} // while

} // if t not empty

} // breadthFirst traversal

During each loop iteration, one element is processed, so worstTime(n) is linear in n .

We used a queue for a breadth-first traversal because we wanted the subtrees retrieved in the same

order they were saved (First-In, First-Out). With inOrder, postOrder, and preOrder traversals, the subtrees

are retrieved in the reverse of the order they were saved in (Last-In, First-Out). For each of those three

traversals, we utilized recursion, which, as we saw in Chapter 8, can be replaced with an iterative, stack-

based algorithm.

We will encounter this type of traversal again in Chapter 15 when we study breadth-first traversals of

structures less restrictive than binary trees. Incidentally, if we are willing to be more restrictive, specifically,

if we require a complete binary tree, then the tree can be implemented with an array, and a breadth-first

traversal is simply an iteration through the array. The root element is at index 0, the root’s left child at

index 1, the root’s right child at index 2, the root’s leftmost grandchild at index 3, and so on.

Summary 393

S U M M A R Y

A binary tree t is either empty or consists of an ele-

ment, called the root element , and two distinct binary

trees, called the left subtree and right subtree of t . This

is a recursive definition, and there are recursive definitions

for many of the related terms: height, number of leaves,

number of elements, two-tree, full tree, and so on. The

inter-relationships among some of these terms is given

by the

Binary Tree Theorem: For any non-empty

binary tree t,

leaves(t) ≤
n(t) + 1

2.0
≤ 2height(t)

Equality holds for the first relation if and only if

t is a two-tree.

Equality holds for the second relation if and

only if t is a full tree.

For a binary tree t , the external path length of t ,

written E(t), is the sum of the distances from the root

to the leaves of t . A lower bound for comparison-based

sorting algorithms can be obtained from the

External Path Length Theorem: Let t be a

binary tree with k > 0 leaves. Then

E(t) ≥ (k/2) floor (log2 k)

There are four commonly-used traversals of a

binary tree: inOrder (recursively: left subtree, root ele-

ment, right subtree), postOrder (recursively: left subtree,

right subtree, root element), preorder (recursively: root

element, left subtree, right subtree) and breadth-first (that

is, starting at the root, level-by-level, and left-to-right at

each level).

394 CHAPTER 9 Binary Trees

CROSSWORD PUZZLE

www.CrosswordWeaver.com

ACROSS DOWN

4. In a binary tree, an element with no children.

7. The ______ path length of a binary tree is the sum of
 the depths of all the leaves in the tree.

8. A binary tree t is a ______ if t has at most one element
 or leftTree(t) and rightTree(t) are non-empty
 two-trees.

9. The only traversal in this chapter described
 non-recursively.

10. A binary tree is ________ if t is full through the
 next-to-lowest level and all of the leaves at the lowest
 level ara as far to the left as possible.

1. A synonym of “level,” the function that calculates the
 length of the path from the root to a given element.

2. Another name for “preOrder” traversal.

3. A __________ is a binary tree in which each non-leaf
 has exactly one child.

5. A binary tree t is __________ if t is a two-tree with all
 of its leaves on the same level.

6. An algorithm that processes each element in a binary
 tree exactly once.

1

2 3

4 5 6

7

8

9

10

www.CrosswordWeaver.com

Concept Exercises 395

CONCEPT EXERCISES

9.1 Answer the questions below about the following binary tree:

A

B

C D

E F G

H

a. What is the root element?

b. How many elements are in the tree?

c. How many leaves are in the tree?

d. What is the height of the tree?

e. What is the height of the left subtree?

f. What is the height of the right subtree?

g. What is the level of F?

h. What is the depth of C?

i. How many children does C have?

j. What is the parent of F?

k. What are the descendants of B?

l. What are the ancestors of F?

m. What would the output be if the elements were written out during an inOrder traversal?

396 CHAPTER 9 Binary Trees

n. What would the output be if the elements were written out during a postOrder traversal?

o. What would the output be if the elements were written out during a preOrder traversal?

p. What would the output be if the elements were written out during a breadth-first traversal?

9.2 a. Construct a binary tree of height 3 that has 8 elements.

b. Can you construct a binary tree of height 2 that has 8 elements?

c. For n going from 1 to 20, determine the minimum height possible for a binary tree with n elements.

d. Based on your calculations in part c, try to develop a formula for the minimum height possible for a binary

tree with n elements, where n can be any positive integer.

e. Use the Principle of Mathematical Induction (Strong Form) to prove the correctness of your formula in

part d.

9.3 a. What is the maximum number of leaves possible in a binary tree with 10 elements? Construct such a tree.

b. What is the minimum number of leaves possible in a binary tree with 10 elements? Construct such

a tree.

9.4 a. Construct a two-tree that is not complete.

b. Construct a complete tree that is not a two-tree.

c. Construct a complete two-tree that is not full.

d. How many leaves are there in a two-tree with 17 elements?

e. How many leaves are there in a two-tree with 731 elements?

f. A non-empty two-tree must always have an odd number of elements. Why?

Hint: Use the Binary Tree Theorem and the fact that the number of leaves must be an integer.

g. How many elements are there in a full binary tree of height 4?

h. How many elements are there in a full binary tree of height 12?

i. Use induction (original form) on the height of the tree to show that any full binary tree is a two tree.

j. Use the results from part i and the Binary Tree Theorem to determine the number of leaves in a full binary

tree with 63 elements.

k. Construct a complete two-tree that is not full, but in which the heights of the left and right subtrees are

equal.

9.5 For the following binary tree, show the order in which elements would be visited for an inOrder, postOrder,

preOrder, and breadthFirst traversal.

Concept Exercises 397

60

38 97

14 48 68

25 62 85

9.6 Show that a binary tree with n elements has 2n + 1 subtrees (including the entire tree). How many of these

subtrees are empty?

9.7 Show that if t is a complete binary tree, then

height(t) = floor(log2(n(t)))

Hint: Let t be a complete binary tree of height k ≥ 0, and let t1 be a full binary tree of height k − 1. Then

n(t1) + 1 ≤ n(t). Use Part 4 of the Binary Tree Theorem to show that floor(log2(n(t1) + 1)) = k , and use

Part 1 of the Binary Tree Theorem to show that floor(log2(n(t))) < k + 1.

9.8 The Binary Tree Theorem is stated for non-empty binary trees. Show that parts 1, 2, and 4 hold even for an

empty binary tree.

9.9 Give an example of a non-empty binary tree that is not a two-tree but

leaves(t) = (n(t) + 1) / 2

Hint: The denominator is 2, not 2.0, so integer division is performed.

9.10 Let t be a non-empty tree. Show that if

leaves(t) =
n(t) + 1

2.0

then either both subtrees of t are empty or both subtrees of t are non-empty.

Note: Do not use Part 3 of the Binary Tree Theorem. This exercise can be used in the proof of Part 3.

9.11 Show that in any complete binary tree t , at least half of the elements are leaves.

Hint: if t is empty, there are no elements, so the claim is vacuously true. If the leaf at the highest index is a

right child, then t is a two-tree, and the claim follows from part 3 of the Binary Tree Theorem. Otherwise, t

was formed by adding a left child to the complete two-tree with n(t) − 1 elements.

9.12 Compare the inOrder traversal algorithm in Section 9.5 with the move method from the Towers of Hanoi

application in Section 5.4 of Chapter 5. They have the same structure, but worstTime(n) is linear in n for the

inOrder algorithm and exponential in n for the move method. Explain.

398 CHAPTER 9 Binary Trees

9.13 Let t be a nonempty binary tree. Use the Strong Form of the Principle of Mathematical Induction to prove

each of the following parts of the Binary Tree Theorem:

a.
n(t) + 1

2.0
≤ 2height(t)

b. If t is a two-tree, then leaves(t) =
n(t) + 1

2.0

c. If t is a full tree, then
n(t) + 1

2.0
= 2height(t)

Hint: The outline of the proof is the same as in Example A2.5 of Appendix 2.

9.14 Let t be a nonempty binary tree. Use the Strong Form of the Principle of Mathematical Induction to prove

each of the following parts of the Binary Tree Theorem:

a. If leaves(t) =
n(t) + 1

2.0
then t is a two-tree.

b. If
n(t) + 1

2.0
= 2height(t) then t is a full tree.

Hint: The proof for both parts has the same outline. For example, here is the outline for part a:

For h = 0, 1, 2, . . . , let Sh be the statement

If t is a binary tree of height h and leaves(t) =
n(t) + 1

2.0
then t is a two-tree.

In the inductive case, let h be any nonnegative integer and assume that S0, S1, . . ., Sh are all true. To show

that Sh+1 is true, let t be a binary tree of height h + 1 such that

leaves(t) =
n(t) + 1

2.0

First, show that

leaves(leftTree(t)) + leaves(rightTree(t)) =
n(leftTree(t)) + 1

2.0
+

n(rightTree(t)) + 1

2.0

For any non-negative integers a, b, c, and d, if

a + b = c + d and a ≤ c and b ≥ d, then a = c and b = d.

Then, using Exercise 8.10, show that leftTree(t) and rightTree(t) are two-trees. Then, using Exercise 8.8, show

that both leftTree(t) and rightTree(t) are nonempty. Conclude, from the definition of a two-tree, that t must

be a two-tree.

9.15 For any positive integer n, we can construct a binary tree of n elements as follows:

at level 0, there will be 1 element (the root);

at level 1, there will be 2 elements;

at level 2, there will be 3 elements;

Concept Exercises 399

at level 3, there will be 4 elements;

at level 4, there will be 5 elements;

. . .

At the level farthest from the root, there will be just enough elements so the entire tree will have n elements.

For example, if n = 12, we can construct the following tree:

1

2 3

4 5 6

7 8 9 10

11 12

Provide a � estimate of the height as a function of n.

Hint: Since � is just an estimate, we can ignore the elements at the lowest level. We seek an integer h such

that

1 + 2 + 3 + 4 + . . . + (h + 1) = n

See Example A2.1 in Appendix 2.

Note: This exercise is contrived but, in fact, the � estimate of the average height of a binary tree is the same

as the answer to this exercise (see Flajolet, [1981]).

This page intentionally left blank

Binary Search Trees CHAPTER 10

In Chapter 9, you studied an important conceptual tool: the binary tree. This chapter presents

the binary search tree data type and a corresponding data structure, the BinarySearchTree class.

BinarySearchTree objects are valuable collections because they require only logarithmic time, on

average, for inserting, removing, and searching (but linear time in the worst case). This performance

is far better than the linear average-case time for insertions, removals and searches in an array,

ArrayList or LinkedList object. For example, if n = 1, 000, 000, 000, log2 n < 30.

The BinarySearchTree class is not part of the Java Collections Framework. The reason for this

omission is that the framework already includes the TreeSet class, which boasts logarithmic time for

inserting, removing, and searching even in the worst case. The BinarySearchTree class requires linear-

in-n time, in the worst case, for those three operations. So the BinarySearchTree class should be viewed

as a “toy” class that is simple enough for you to play with and will help you to better understand the

TreeSet class. The implementation of the TreeSet class is based on a kind of “balanced” binary search

tree, namely, the red-black tree.

To further prepare you for the study of red-black trees and the TreeSet class, this chapter also

explains what it means to say that a binary search tree is balanced. To add some substance to that discussion,

we introduce the AVL tree data type, which is somewhat simpler to understand than the red-black tree

data type.

CHAPTER OBJECTIVES

1. Compare the time efficiency of the BinarySearchTree class’s insertion, removal and

search methods to that of the corresponding methods in the ArrayList and LinkedList
classes.

2. Discuss the similarities and differences of the BinarySearchTree class’s contains method

and the binarySearch methods in the Arrays and Collections classes.

3. Explain why the BinarySearchTree class’s removemethod and the TreeIterator class’s

next method are somewhat difficult to define.

4. Be able to perform each of the four possible rotations.

5. Understand why the height of an AVL tree is always logarithmic in n.

401

402 CHAPTER 10 Binary Search Trees

10.1 Binary Search Trees

We start with a recursive definition of a binary search tree:

A binary search tree t is a binary tree such that either t is empty or

1. each element in leftTree(t) is less than the root element of t;

2. each element in rightTree(t) is greater than the root element of t;

3. both leftTree(t) and rightTree(t) are binary search trees.

Figure 10.1 shows a binary search tree.

An inOrder traversal of a binary search tree accesses the items in increasing order. For example,

with the binary search tree in Figure 10.1, an inOrder traversal accesses the following sequence:

15 25 28 30 32 36 37 50 55 59 61 68 75

As we have defined a binary search tree, duplicate elements are not permitted. Some definitions have “less

than or equal to” and “greater than or equal to” in the above definition. For the sake of consistency with

some classes in the Java Collections Framework that are based on binary search trees, we opt for strictly

less than and strictly greater than.

Section 10.1.1 describes the BinarySearchTree class. As we noted at the beginning of this chapter,

this is a “toy” class that provides a gentle introduction to related classes in the Java Collections Framework.

Much of the code for the BinarySearchTree class is either identical to or a simplification of code in the

TreeMap class of the Java Collections Framework. Overall, the BinarySearchTree class’s performance

is not good enough for applications—because its worst-case height is linear in n—but you will be asked

to add new methods and to modify existing methods.

50

37 75

25 61

15 30 55 68

28 32 59

36

FIGURE 10.1 A binary search tree

10.1 Binary Search Trees 403

10.1.1 The BinarySearchTree Implementation of the Set Interface

We will study the binary-search-tree data type through the method specifications of the Binary

SearchTree class. The BinarySearchTree class is not part of the Java Collections Framework, but

it implements the Collection interface. In fact, the BinarySearchTree class implements a slight

extension of the Collection interface: the Set interface. The Set interface does not provide any new

methods. The only difference between the Collection and Set interfaces is that duplicate elements are

not allowed in a Set, and this affects the specifications of the default constructor and the add method in

the BinarySearchTree class. We will see these differences shortly.

Another feature that distinguishes the BinarySearchTree class from previous Collection classes

we have seen is that the elements in a BinarySearchTree must be maintained in order. For simplicity,

we assume that the elements are instances of a class that implements the Comparable interface, which

was introduced in Section 5.5. Thus, null elements are not allowed in a BinarySearchTree object.

Here is that interface:

public interface Comparable

{

/**

* Returns an int less than, equal to or greater than 0, depending on

* whether the calling object is less than, equal to or greater than a

* specified object.

*

* @param obj – the specified object that the calling object is compared to.

*

* @return an int value less than, equal to, or greater than 0, depending on

* whether the calling object is less than, equal to, or greater than

* obj, respectively.

*

* @throws ClassCastException – if the calling object and obj are not in the

* same class.

*

*/

public int compareTo (T obj)

} // interface Comparable

From now on, when we refer to the “natural” order of elements, we assume that the element’s class

implements the Comparable interface; then the natural order is the order imposed by the compareTo

method in the element’s class. For example, the Integer class implements the Comparable interface,

and the “natural” order of Integer objects is based on the numeric comparison of the underlying int

values. To illustrate this ordering, suppose we have the following:

Integer myInt = 25;

System.out.println (myInt.compareTo (107));

The output will be less than 0 because 25 is less than 107. Specifically, the output will be −1 because

when the compareTo method is used for numeric comparisons, the result is either −1, 0, or 1, depending

on whether the calling object is less than, equal to, or greater than the argument.

404 CHAPTER 10 Binary Search Trees

For a more involved example, the following Student class has name and gpa fields. The compareTo

method will use the alphabetical ordering of names; for equal names, the ordering will be by decreasing

grade point averages. For example,

new Student ("Lodato", 3.8).compareTo (new Student ("Zsoldos", 3.5))

returns −1 because “Lodato” is, alphabetically, less than “Zsoldos”. But

new Student ("Dufresne", 3.4).compareTo (new Student ("Dufresne", 3.6))

returns 1 because 3.4 is less than 3.6, and the return value reflects decreasing order. Similarly,

new Student ("Dufresne", 3.8).compareTo (new Student ("Dufresne", 3.6))

returns −1, because 3.8 is greater than 3.6.

Here is the Student class:

public class Student implements Comparable<Student>

{

public final double DELTA = 0.0000001;

protected String name;

protected double gpa;

public Student() { }

/**

* Initializes this Student object from a specified name and gpa.

*

* @param name – the specified name.

* @param gpa – the specified gpa.

*

*/

public Student (String name, double gpa)

{

this.name = name;

this.gpa = gpa;

} // constructor

/**

* Compares this Student object with a specified Student object.

* The comparison is alphabetical; for two objects with the same name,

* the comparison is by grade point averages.

*

* @param otherStudent – the specified Student object that this Student

* object is being compared to.

*

* @return -1, if this Student object’s name is alphabetically less than

* otherStudent’s name, or if the names are equal and this

* Student object’s grade point average is at least DELTA

* greater than otherStudent’s grade point average;

10.1 Binary Search Trees 405

* 0, if this Student object’s name the same as

* otherStudent’s name and the grade point

* averages are within DELTA;

* 1, if this Student object’s name is alphabetically greater

* than otherStudent’s name, or if the names are equal and

* this Student object’s grade point average is at least DELTA

* less than otherStudent’s grade point average;

*

*/

public int compareTo (Student otherStudent)

{

final double DELTA = 0.0000001;

if (name.compareTo (otherStudent.name) < 0)

return -1;

if (name.compareTo (otherStudent.name) > 0)

return 1;

if (gpa - otherStudent.gpa > DELTA)

return -1;

if (otherStudent.gpa - gpa > DELTA)

return 1;

return 0;

} // method compareTo

/**

* Determines if this Student object’s name and grade point average are

* the same as some specified object’s.

*

* @param obj – the specified object that this Student object is being

* compared to.

*

* @return true – if obj is a Student object and this Student object has the

* same name and almost (that is, within DELTA) the same point average as obj.

*

*/

public boolean equals (Object obj)

{

if (! (obj instanceof Student))

return false;

return this.compareTo ((Student)obj) == 0;

} // method equals

/**

* Returns a String representation of this Student object.

*

* @return a String representation of this Student object: name, blank,

406 CHAPTER 10 Binary Search Trees

* grade point average.

*

*/

public String toString()

{

return name + " " + gpa;

} // method toString

} // class Student

Rather than starting from scratch, we will let the BinarySearchTree class extend some class already

in the Framework. Then we need implement only those methods whose definitions are specific to the

BinarySearchTree class. The AbstractSet class is a good place to start. That class has garden-variety

implementations for many of the Set methods: isEmpty, toArray, clear, and the bulk operations

(addAll, containsAll, removeAll and retainAll). So the class heading is

public class BinarySearchTree<E> extends AbstractSet<E>

Figure 10.2 shows the relationships among the classes and interfaces we have discussed so far.

<<interface>>

Collection

<<interface>>

Set

AbstractSet

+ size():int(abstract)

+ toString(): String

…

BinarySearchTree

//fields introduced in Section 10.1.2.1

+ BinarySearchTree()

+ size():int

+ add (element: E):boolean

…

E

E

E

E

FIGURE 10.2 A UML diagram that includes part of the BinarySearchTree class

10.1 Binary Search Trees 407

Here are the method specifications for the methods we will explicitly implement:

/**

* Initializes this BinarySearchTree object to be empty, to contain only elements

* of type E, to be ordered by the Comparable interface, and to contain no

* duplicate elements.

*

*/

public BinarySearchTree()

/**

* Initializes this BinarySearchTree object to contain a shallow copy of

* a specified BinarySearchTree object.

* The worstTime(n) is O(n), where n is the number of elements in the

* specified BinarySearchTree object.

*

* @param otherTree - the specified BinarySearchTree object that this

* BinarySearchTree object will be assigned a shallow copy of.

*

*/

public BinarySearchTree (BinarySearchTree<? extends E> otherTree)

/**

* Returns the size of this BinarySearchTree object.

*

* @return the size of this BinarySearchTree object.

*

*/

public int size()

/**

* Returns an iterator positioned at the smallest element in this

* BinarySearchTree object.

*

* @return an iterator positioned at the smallest element (according to

* the element class’s implementation of the Comparable

* interface) in this BinarySearchTree object.

*

*/

public Iterator<E> iterator()

/**

* Determines if there is an element in this BinarySearchTree object that

* equals a specified element.

* The worstTime(n) is O(n) and averageTime(n) is O(log n).

*

* @param obj – the element sought in this BinarySearchTree object.

*

408 CHAPTER 10 Binary Search Trees

* @return true – if there is an element in this BinarySearchTree object that

* equals obj; otherwise, return false.

*

* @throws ClassCastException – if obj is not null but cannot be compared to the

* elements already in this BinarySearchTree object.

* @throws NullPointerException – if obj is null.

*

*/

public boolean contains (Object obj)

/**

* Ensures that this BinarySearchTree object contains a specified element.

* The worstTime(n) is O(n) and averageTime(n) is O(log n).

*

* @param element – the element whose presence is ensured in this

* BinarySearchTree object.

*

* @return true – if this BinarySearchTree object changed as a result of this

* method call (that is, if element was actually inserted); otherwise,

* return false.

*

* @throws ClassCastException – if element is not null but cannot be compared

* to the elements of this BinarySearchTree object.

* @throws NullPointerException – if element is null.

*

*/

public boolean add (E element)

/**

* Ensures that this BinarySearchTree object does not contain a specified

* element.

* The worstTime(n) is O(n) and averageTime(n) is O(log n).

*

* @param obj – the object whose absence is ensured in this

* BinarySearchTree object.

*

* @return true – if this BinarySearchTree object changed as a result of this

* method call (that is, if obj was actually removed); otherwise,

* return false.

*

* @throws ClassCastException – if obj is not null but cannot be compared to the

* elements of this BinarySearchTree object.

* @throws NullPointerException – if obj is null.

*

*/

public boolean remove (Object obj)

10.1 Binary Search Trees 409

These method specifications, together with the method specifications of methods not overridden from the

AbstractSet class, constitute the abstract data type Binary Search Tree: all that is needed for using

the BinarySearchTree class. For example, here is a small class that creates and manipulates three

BinarySearchTree objects: two of String elements and one of Student elements (for the Student

class declared earlier in this section):

public class BinarySearchTreeExample

{

public static void main (String[] args)

{

new BinarySearchTreeExample().run();

} // method main

public void run()

{

BinarySearchTree<String> tree1 = new BinarySearchTree<String>();

tree1.add ("yes");

tree1.add ("no");

tree1.add ("maybe");

tree1.add ("always");

tree1.add ("no"); // not added: duplicate element

if (tree1.remove ("often"))

System.out.println ("How did that happen?");

else

System.out.println (tree1.remove ("maybe"));

System.out.println (tree1);

BinarySearchTree<String> tree2 =

new BinarySearchTree<String> (tree1);

System.out.println (tree2);

BinarySearchTree<Student> tree3 =

new BinarySearchTree<Student>();

tree3.add (new Student ("Jones", 3.17));

tree3.add (new Student ("Smith", 3.82));

tree3.add (new Student ("Jones", 3.4));

if (tree3.contains (new Student ("Jones", 10.0 – 6.6)))

System.out.println ("The number of elements in tree3 is " +

tree3.size());

System.out.println (tree3);

} // method run

} // class BinarySearchTreeExample

The output is

true

[always, no, yes]

410 CHAPTER 10 Binary Search Trees

[always, no, yes]

The number of elements in tree3 is 3

[Jones 3.4, Jones 3.17, Smith 3.82]

Here is part of the BinarySearchTreeTest class:

protected BinarySearchTree<String> tree;

@Before

public void RunBeforeEachTest()

{

tree = new BinarySearchTree<String>();

} // method RunBeforeEachTest

@Test

public void testAdd()

{

tree.add ("b");

tree.add ("a");

tree.add ("c");

tree.add ("e");

tree.add ("c");

tree.add ("d");

assertEquals ("[a, b, c, d, e]", tree.toString());

} // method testAdd

@Test

public void testContains()

{

tree.add ("a");

tree.add ("b");

tree.add ("c");

assertEquals (true, tree.contains ("a"));

assertEquals (true, tree.contains ("b"));

assertEquals (true, tree.contains ("c"));

assertEquals (false, tree.contains ("x"));

assertEquals (false, tree.contains (""));

} // method testContains

@Test (expected = NullPointerException.class)

public void testContainsNull()

{

tree.add ("a");

tree.add ("b");

tree.add ("c");

tree.contains (null);

} // method testContainsNull

@Test

public void testRemove()

{

10.1 Binary Search Trees 411

tree.add ("b");

tree.add ("a");

tree.add ("c");

assertEquals (true, tree.remove ("b"));

assertEquals (2, tree.size());

assertEquals (false, tree.remove ("b"));

assertEquals (2, tree.size());

} // method testRemove

The complete test class, available from the book’s website, includes an override of the Abstract

Set class’s equals (Object obj) method to return false when comparing two BinarySearchTree

objects that have the same elements but different structures.

10.1.2 Implementation of the BinarySearchTree Class

In this section, we will develop an implementation of the BinarySearchTree class. To confirm that

Binary Search Tree is an abstract data type that has several possible implementations, you will have the

opportunity in Project 10.1 to develop an array-based implementation.

The only methods we need to implement are the seven methods specified in Section 10.1.1. But

to implement the iterator() method, we will need to develop a class that implements the Iterator

interface, with hasNext(), next() and remove() methods. So we will create a TreeIterator class

embedded within the BinarySearchTree class.

The definitions of the default constructor, size(), iterator(), and hasNext() are one-liners.

Also, the definition of the copy constructor is fairly straightforward, and the TreeIterator class’s

remove method is almost identical to the BinarySearchTree class’s remove method. But the remaining

four methods—contains, add, and remove in BinarySearchTree, and next in TreeIterator—get

to the heart of how the implementation of the BinarySearchTree class differs from that of, say, the

LinkedList class.

10.1.2.1 Fields and Nested Classes in the BinarySearchTree Class

What fields and embedded classes should we have in the BinarySearchTree class? We have already

noted the need for a TreeIterator class. From the fact that a binary search tree is a binary tree—with a

root item and two subtrees—and from our earlier investigation of the LinkedList class, we can see the

value of having an embedded Entry class. The only fields in the BinarySearchTree class are:

protected Entry<E> root;

protected int size;

The Entry class, as you may have expected, has an element field, of type (reference to) E, and left

and right fields, of type (reference to) Entry<E>. To facilitate going back up the tree during an iteration,

the Entry class will also have a parent field, of type (reference to) Entry<E>. Figure 10.3 shows the

representation of a BinarySearchTree object with elements of type (reference to) String. To simplify

the figure, we pretend that the elements are of type String instead of reference to String.

Here is the nested Entry class:

protected static class Entry<E>

{

protected E element;

protected Entry<E> left = null,

412 CHAPTER 10 Binary Search Trees

root element left right parent

Eric null

size

4

Allen nullnull Soumya null

Jack null null

FIGURE 10.3 A BinarySearchTree object with four elements

right = null,

parent;

/**

* Initializes this Entry object.

*

* This default constructor is defined for the sake of subclasses of

* the BinarySearchTree class.

*/

public Entry() { }

/**

* Initializes this Entry object from element and parent.

*

*/

public Entry (E element, Entry<E> parent)

{

this.element = element;

this.parent = parent;

} // constructor

} // class Entry

Recall, from Section 7.3.5, that the Entry class nested in the Java Collection Framework’s LinkedList

class was given the static modifier. The BinarySearchTree’s nested Entry class is made static for

the same reason: to avoid the wasted time and space needed to maintain a reference back to the enclosing

object.

Now that we have declared the fields and one of the nested classes, we are ready to tackle the

BinarySearchTree method definitions.

10.1.2.2 Implementation of Simple Methods in the BinarySearchTree Class

We can immediately develop a few method definitions:

public BinarySearchTree()

{

10.1 Binary Search Trees 413

root = null;

size = 0;

} // default constructor

We could have omitted the assignments to the root and size fields because each field is given a default

initial value (null for a reference, 0 for an int, false for a boolean, and so on) just prior to the

invocation of the constructor. But explicit assignments facilitate understanding; default initializations do

not.

public int size()

{

return size;

} // method size()

public Iterator<E> iterator()

{

return new TreeIterator();

} // method iterator

It is easy enough to define a copy constructor that iterates through otherTree and adds each element

from otherTree to the calling object. But then the iteration over otherTree will be inOrder, so the new

tree will be a chain, and worstTime(n) will be quadratic in n . To obtain linear-in-n time, we construct the

new tree one entry at a time, starting at the root. Because each entry has an element, a parent, a left child,

and a right child, we create the new entry from otherTree’s entry and the new entry’s parent. The new

entry’s left (or right) child is then copied recursively from otherTree’s left (or right) child and from the

new entry—the parent of that child.

We start with a wrapper method that calls the recursive method:

public BinarySearchTree (BinarySearchTree<? extends E> otherTree)

{

root = copy (otherTree.root, null);

size = otherTree.size;

} // copy constructor

protected Entry<E> copy (Entry<<? extends E> p, Entry<E> parent)

{

if (p != null)

{

Entry<E> q = new Entry<E> (p.element, parent);

q.left = copy (p.left, q);

q.right = copy (p.right, q);

return q;

} // if

return null;

} // method copy

414 CHAPTER 10 Binary Search Trees

10.1.2.3 Definition of the contains Method

The elements in a binary search tree are stored in the “natural” order, that is, the order imposed by

the compareTo method in the element class. The definition of the contains (Object obj) method

takes advantage of that fact that by moving down the tree in the direction of where obj is or belongs.

Specifically, an Entry object temp is initialized to root and then obj is compared to temp.element

in a loop. If they are equal, true is returned. If obj is less than temp.element, temp is replaced with

temp.left. Otherwise, temp is replaced with temp.right. The loop continues until temp is null. Here

is the complete definition:

public boolean contains (Object obj)

{

Entry<E> temp = root;

int comp;

if (obj == null)

throw new NullPointerException();

while (temp != null)

{

comp = ((Comparable)obj).compareTo (temp.element);

if (comp == 0)

return true;

else if (comp < 0)

temp = temp.left;

else

temp = temp.right;

} // while

return false;

} // method contains

The cast of obj to a Comparable object is necessary for the compiler because the Object class does not

have a compareTo method.

How long does this method take? For this method, indeed, for all of the remaining methods in this

section, the essential feature for estimating worstTime(n) or averageTime(n) is the height of the tree.

Specifically, for the contains method, suppose the search is successful; a similar analysis can be used for

an unsuccessful search. In the worst case, we will have a chain, and will be seeking the leaf. For example,

suppose we are seeking 25 in the binary search tree in Figure 10.4.

In such a case, the number of loop iterations is equal to the height of the tree. In general, if n is the

number of elements in the tree, and the tree is a chain, the height of the tree is n − 1, so worstTime(n) is

linear in n for the contains method.

We now determine averageTime(n) for a successful search. Again, the crucial factor is the height of

the tree. For binary search trees constructed through random insertions and removals, the average height

H is logarithmic in n—(see Cormen, [2002]). The contains method starts searching at level 0, and each

loop iteration descends to the next lower level in the tree. Since averageTime(n) requires no more than H

iterations, we immediately conclude that averageTime(n) is O(log n). That is, averageTime(n) is less than

or equal to some function of log n .

10.1 Binary Search Trees 415

50

10

20

30

25

FIGURE 10.4 A binary search tree

To establish that averageTime(n) is logarithmic in n , we must also show that averageTime(n) is

greater than or equal to some function of log n . The average—over all binary search trees—number of

iterations is greater than or equal to the average number of iterations for a complete binary search tree with

n elements. In a complete binary tree t , at least half of the elements are leaves (see Concept Exercise 9.11),

and the level of each leaf is at least height(t) − 1. So the average number of iterations by the contains

method must be at least (height(t) − 1)/2, which, by Concept Exercise 9.7, is (floor(log2(n(t)) − 1)/2.

That is, the average number of iterations for the contains method is greater than or equal to a function

of log n . So averageTime(n) is greater than or equal to some function of log n .

We conclude from the two previous paragraphs that averageTime(n) is logarithmic in n . Incidentally,

that is why we defined the contains method above instead of inheriting the one in the AbstractColl

ection class (the superclass of AbstractSet). For that version, an iterator loops through the elements

in the tree, starting with the smallest, so its averageTime(n) is linear in n .

The binary search tree gets its name from the situation that arises when the contains method is

invoked on a full tree. For then the contains method accesses the same elements, in the same order, as

a binary search of an array with the same elements. For example, the root element in a full binary search

tree corresponds to the middle element in the array.

You may have been surprised (and even disappointed) that the definition of the contains method

was not recursive. Up to this point in our study of binary trees, most of the concepts—including binary

search tree itself—were defined recursively. But when it comes to method definitions, looping is the rule

rather than the exception. Why is that? The glib answer is that left and right are of type Entry, not

of type BinarySearchTree, so we cannot call

left.contains(obj) // illegal

But we can make contains a wrapper method for a protected, recursive containsElement method:

public boolean contains (Object obj)

{

return containsElement (root, obj);

} // method contains

416 CHAPTER 10 Binary Search Trees

protected boolean containsElement (Entry<E> p, Object obj)

{

if (p == null)

return false;

int comp = ((Comparable)obj).compareTo (p.element);

if (comp == 0)

return true;

if (comp < 0)

return containsElement (p.left, obj);

return containsElement (p.right, obj);

} // method containsElement

This recursive version would be nominally less efficient—in both time and space—than the iterative

version. And it is this slight difference that sinks the recursive version. For the iterative version is virtually

identical to one in the TreeMap class, part of the Java Collections Framework, where efficiency is prized

above elegance. Besides, some of the luster of recursion is diminished by the necessity of having a wrapper

method.

10.1.2.4 Definition of the add Method

The definition of the add (E element) method is only a little more complicated than the definition

of contains (Object obj). Basically, the add method starts at the root and branches down the tree

searching for the element; if the search fails, the element is inserted as a leaf.

Specifically, if the tree is empty, we construct a new Entry object and initialize that object with

the given element and a null parent, then increment the size field and return true. Otherwise, as we

did in the definition of the contains method, we initialize an Entry object, temp, to root and compare

element to temp.element in a loop. If element equals temp.element, we have an attempt to add a

duplicate, so we return false. If element is less than temp.element, replace temp with temp.left

unless temp.left is null, in which case we insert element in an Entry object whose parent is temp.

The steps are similar when element is greater than temp.element.

For example, suppose we are trying to insert 45 into the binary search tree in Figure 10.5:

31

25 47

42 50

FIGURE 10.5 A binary search tree into which 45 will be inserted

The insertion is made in a loop that starts by comparing 45 to 31, the root element. Since 45 > 31, we

advance to 47, the right child of 31. See Figure 10.6.

Because 45 < 47, we advance to 42, the left child of 47, as indicated in Figure 10.7.

At this point, 45 > 42, so we would advance to the right child of 42 if 42 had a right child. It does

not, so 45 is inserted as the right child of 42. See Figure 10.8.

10.1 Binary Search Trees 417

31 45 > 31; take right branch

25 47

42 50

FIGURE 10.6 The effect of comparing 45 to 31 in the binary search tree of Figure 10.5

31 45 > 31; take right branch

25 47

42

45 < 47; take left branch

50

FIGURE 10.7 The effect of comparing 45 to 47 in the binary search tree of Figure 10.6

31 45 > 31; take right branch

25 47 45 < 47; take left branch

42 45 > 42; 45 becomes right

 child of 42

45

50

FIGURE 10.8 The effect of inserting 45 into the binary search tree in Figure 10.7

In general, the search fails if the element to be inserted belongs in an empty subtree of temp. Then the

element is inserted as the only element in that subtree. That is, the inserted element always becomes a leaf

in the tree. This has the advantage that the tree is not re-organized after an insertion.

Here is the complete definition (the loop continues indefinitely until, during some iteration, true or

false is returned):

public boolean add (E element)

{

if (root == null)

{

if (element == null)

throw new NullPointerException();

root = new Entry<E> (element, null);

size++;

return true;

} // empty tree

else

{

Entry<E> temp = root;

418 CHAPTER 10 Binary Search Trees

int comp;

while (true)

{

comp = ((Comparable)element).compareTo (temp.element);

if (comp == 0)

return false;

if (comp < 0)

if (temp.left != null)

temp = temp.left;

else

{

temp.left = new Entry<E> (element, temp);

size++;

return true;

} // temp.left == null

else if (temp.right != null)

temp = temp.right;

else

{

temp.right = new Entry<E> (element, temp);

size++;

return true;

} // temp.right == null

} // while

} // root not null

} // method add

The timing estimates for the add method are identical to those for the contains method, and depend on

the height of the tree. To insert at the end of a binary search tree that forms a chain, the number of iterations

is one more than the height of the tree. The height of a chain is linear in n , so worstTime(n) is linear in

n . And, with the same argument we used for the contains method, we conclude that averageTime(n) is

logarithmic in n .

In Programming Exercise 10.4, you get the opportunity to define the add method recursively.

10.1.2.5 The Definition of the remove Method

The only other BinarySearchTree method to be defined is

public boolean remove (Object obj)

The definition of the remove method in the BinarySearchTree class is more complicated than the

definition of the add method from Section 10.1.2.4. The reason for the extra complexity is that the

remove method requires a re-structuring of the tree—unless the element to be removed is a leaf. With

the add method, the inserted element always becomes a leaf, and no re-structuring is needed.

The basic strategy is this: we first get (a reference to) the Entry object that holds the element to be

removed, and then we delete that Entry object. Here is the definition:

public boolean remove (Object obj)

{

Entry<E> e = getEntry (obj);

10.1 Binary Search Trees 419

if (e == null)

return false;

deleteEntry (e);

return true;

} // method remove

Of course, we need to postpone the analysis of the remove method until we have developed both the

getEntry and deleteEntry methods. The protected method getEntry searches the tree—in the

same way as the contains method defined in Section 10.1.2.3—for an Entry object whose element is

obj. For example, Figure 10.9 shows what happens if the getEntry method is called to get a reference

to the Entry whose element is 50.

e

80

20 110

15 50 90

105

FIGURE 10.9 The effect of calling the getEntry method to get a reference to the Entry whose element is 50.

A copy of the reference e is returned

Here is the definition of the getEntry method:

/**

* Finds the Entry object that houses a specified element, if there is such an Entry.

* The worstTime(n) is O(n), and averageTime(n) is O(log n).

*

* @param obj – the element whose Entry is sought.

*

* @return the Entry object that houses obj – if there is such an Entry;

* otherwise, return null.

*

* @throws ClassCastException – if obj is not comparable to the elements

* already in this BinarySearchTree object.

* @throws NullPointerException – if obj is null.

*

*/

protected Entry<E> getEntry (Object obj)

{

int comp;

if (obj == null)

throw new NullPointerException();

420 CHAPTER 10 Binary Search Trees

Entry<E> e = root;

while (e != null)

{

comp = ((Comparable)obj).compareTo (e.element);

if (comp == 0)

return e;

else if (comp < 0)

e = e.left;

else

e = e.right;

} // while

return null;

} // method getEntry

The analysis of the getEntry method is the same as for the contains method in Section 10.1.2.3:

worstTime(n) is linear in n and averageTime(n) is logarithmic in n .

The structure of the while loop in the getEntry method is identical to that in the contains

method. In fact, we can re-define the contains method to call getEntry. Here is the new definition,

now a one-liner:

public boolean contains (Object obj)

{

return (getEntry (obj) != null);

} // method contains

For the deleteEntry method, let’s start with a few simple examples of how a binary search tree is

affected by a deletion; then we’ll get into the details of defining the deleteEntry method. As noted,

removal of a leaf requires no re-structuring. For example, suppose we remove 50 from the binary search

tree in Figure 10.10:

80

20 110

15 50 90

8 17 105

FIGURE 10.10 A binary search tree from which 50 is to be removed

To delete 50 from the tree in Figure 10.10, all we need to do is change to null the right field of 50’s parent

Entry—the Entry object whose element is 20. We end up with the binary search tree in Figure 10.11.

In general, if p is (a reference to) the Entry object that contains the leaf element to be deleted, we

first decide what to do if p is the root. In that case, we set

root = null;

10.1 Binary Search Trees 421

80

20 110

15 90

8 17 105

FIGURE 10.11 The binary search tree from Figure 10.10 after the removal of 50

Otherwise, the determination of which child of p.parent gets the value null depends on whether p is

a left child or a right child:

if (p == p.parent.left)

p.parent.left = null;

else

p.parent.right = null;

Notice how we check to see if p is a (reference to) a left child: if p equals p’s parent’s left child.

It is almost as easy to remove an element that has only one child. For example, suppose we want

to remove 20 from the binary search tree in Figure 10.11. We cannot leave a hole in a binary search tree,

so we must replace 20 with some element. Which one? The best choice is 15, the child of the element to

be removed. So we need to link 15 to 20’s parent. When we do, we get the binary search tree shown in

Figure 10.12.

80

11015

908 17

105

FIGURE 10.12 The binary search tree from Figure 10.11 after 20 was removed by replacing 20’s entry with

15’s entry

In general, let replacement be the Entry that replaces p, which has exactly one child. Then

replacement should get the value of either p.left or p.right, whichever is not empty—they cannot

both be empty because p has one child. We can combine this case, where p has one child, with the previous

case, where p has no children:

422 CHAPTER 10 Binary Search Trees

Entry<E> replacement;

if (p.left != null)

replacement = p.left;

else

replacement = p.right;

// If p has at least one child, link replacement to p.parent.

if (replacement != null)

{

replacement.parent = p.parent;

if (p.parent == null)

root = replacement;

else if (p == p.parent.left)

p.parent.left = replacement;

else

p.parent.right = replacement;

} // p has at least one child

else if (p.parent == null) // p is the root and has no children

root = null;

else // p has a parent and has no children

{

if (p == p.parent.left)

p.parent.left = null;

else

p.parent.right = null;

} // p has a parent but no children

Finally, we come to the interesting case: when the element to be removed has two children. For example,

suppose we want to remove 80 from the binary search tree in Figure 10.12.

As in the previous case, 80 must be replaced with some other element in the tree. But which one?

To preserve the ordering, a removed element should be replaced with either its immediate predecessor (in

this case, 17) or its immediate successor (in this case, 90). We will, in fact, need a successor method for an

inOrder iterator. So assume we already have a successor method that returns an Entry object’s immediate

successor. In general, the immediate successor, s, of a given Entry object p is the leftmost Entry object

in the subtree p.right. Important: the left child of this leftmost Entry object will be null. (Why?)

The removal of 80 from the tree in Figure 10.12 is accomplished as follows: first, we copy the

successor’s element to p.element, as shown in Figure 10.13.

Next, we assign to p the value of (the reference) s. See Figure 10.14.

Then we delete p’s Entry object from the tree. As noted earlier, the left child of p must now be

null, so the removal follows the replacement strategy of removing an element with one no children or

one child. In this case, p has a right child (105), so 105 replaces p’s element, as shown in Figure 10.15.

Because the 2-children case reduces to the 0-or-1-child case developed earlier, the code for removal

of any Entry object starts by handling the 2-children case, followed by the code for the 0-or-1-child case.

As we will see in Section 10.2.3, it is beneficial for subclasses of BinarySearchTree if the

deleteEntry method returns the Entry object that is actually deleted. For example, if the deleteEntry

method is called to delete an entry that has two children, the successor of that entry is actually removed

from the tree and returned.

10.1 Binary Search Trees 423

p

s

90

11015

908 17

105

FIGURE 10.13 The first step in the removal of 80 from the binary search tree in Figure 10.12: 90, the

immediate successor of 80, replaces 80

p

s

90

11015

90

105

FIGURE 10.14 The second step in the removal of 80 in the binary search tree of Figure 10.12: p points to the

successor entry

p 105

90

11015

FIGURE 10.15 The final step in the removal of 80 from the binary search tree in Figure 10.12: p’s element (90)

is replaced with that element’s right child (105)

Here is the complete definition:

/**

* Deletes the element in a specified Entry object from this BinarySearchTree.

*

* @param p – the Entry object whose element is to be deleted from this

* BinarySearchTree object.

424 CHAPTER 10 Binary Search Trees

*

* @return the Entry object that was actually deleted from this BinarySearchTree

* object.

*

*/

protected Entry<E> deleteEntry (Entry<E> p)

{

size–;

// If p has two children, replace p’s element with p’s successor’s

// element, then make p reference that successor.

if (p.left != null && p.right != null)

{

Entry<E> s = successor (p);

p.element = s.element;

p = s;

} // p had two children

// At this point, p has either no children or one child.

Entry<E> replacement;

if (p.left != null)

replacement = p.left;

else

replacement = p.right;

// If p has at least one child, link replacement to p.parent.

if (replacement != null)

{

replacement.parent = p.parent;

if (p.parent == null)

root = replacement;

else if (p == p.parent.left)

p.parent.left = replacement;

else

p.parent.right = replacement;

} // p has at least one child

else if (p.parent == null)

root = null;

else

{

if (p == p.parent.left)

p.parent.left = null;

else

p.parent.right = null;

} // p has a parent but no children

return p;

} // method deleteEntry

10.1 Binary Search Trees 425

We still have the successor method to develop. Here is the method specification:

/**

* Finds the successor of a specified Entry object in this BinarySearchTree.

* The worstTime(n) is O(n) and averageTime(n) is constant.

*

* @param e – the Entry object whose successor is to be found.

*

* @return the successor of e, if e has a successor; otherwise, return null.

*

*/

protected Entry<E> successor (Entry<E> e)

This method has protected visibility to reflect the fact that Entry—the return type and parameter

type—has protected visibility.

How can we find the successor of an Entry object? For inspiration, look at the binary search tree

in Figure 10.16.

In the tree in Figure 10.16, the successor of 50 is 55. To get to this successor from 50, we move

right (to 75) and then move left as far as possible. Will this always work? Only for those entries that

have a non-null right child. What if an Entry object—for example, the one whose element is 36—has a

null right child? If the right child of an Entry object e is null, we get to e’s successor by going back

up the tree to the left as far as possible; the successor of e is the parent of that leftmost ancestor of e.

For example, the successor of 36 is 37. Similarly, the successor of 68 is 75. Also, the successor of 28 is

30; since 28 is a left child, we go up the tree to the left zero times—remaining at 28—and then return

that Entry object’s parent, whose element is 30. Finally, the successor of 75 is null because its leftmost

ancestor, 50,has no parent.

Here is the method definition:

protected Entry<E> successor (Entry<E> e)

{

if (e == null)

return null;

50

37 75

25 61

15 30 55 68

28 32 59

36

FIGURE 10.16 A binary search tree

426 CHAPTER 10 Binary Search Trees

else if (e.right != null)

{

// successor is leftmost Entry in right subtree of e

Entry<E> p = e.right;

while (p.left != null)

p = p.left;

return p;

} // e has a right child

else

{

// go up the tree to the left as far as possible, then go up

// to the right.

Entry<E> p = e.parent;

Entry<E> ch = e;

while (p != null && ch == p.right)

{

ch = p;

p = p.parent;

} // while

return p;

} // e has no right child

} // method successor

To estimate worstTime(n) for the successor method, suppose the following elements are inserted into

an initially empty binary search tree: n , 1, 2, 3, . . . , n − 1. The shape of the resulting tree is as shown in

Figure 10.17.

n

1

2

3

n−1

FIGURE 10.17 A binary search tree in which finding the successor of n − 1 requires n − 3 iterations

For the binary search tree in Figure 10.17, obtaining the successor of n − 1 requires n − 3 iterations,

so worstTime(n) is linear in n . For averageTime(n), note that an element in the tree will be reached at most

3 times: once to get to its left child, once as the successor of that left child, and once in going back up the

tree to get the successsor of its rightmost descendant. So the total number of loop iterations to access each

element is at most 3n , and the average number of loop iterations is 3n/n = 3. That is, averageTime(n) is

constant.

We can briefly summarize the steps needed to delete an entry:

a. If the entry has no children, simply set to null the corresponding subtree-link from the entry’s parent

(if the entry is the root, set the root to null).

10.1 Binary Search Trees 427

b. If the entry has one child, replace the parent-entry link and the entry-child link with a parent-child

link.

c. If the entry has two children, copy the element in the entry’s immediate successor into the entry to

be deleted, and then delete that immediate successor (by part a or part b).

Finally, we can estimate the time for the remove method. The remove method has no loops or recursive

calls, so the time for that method is determined by the time for the getEntry and deleteEntry methods

called by the remove method. As noted above, for the getEntry method, worstTime(n) is linear in n

and averageTime(n) is logarithmic in n . The deleteEntry method has no loops or recursive calls, but

calls the successor method, whose worstTime(n) is linear in n and whose averageTime(n) is constant.

We conclude that for the remove method, worstTime(n) is linear in n and averageTime(n) is logarithmic

in n .

To complete the development of the BinarySearchTree class, we develop the embedded TreeIt

erator class in Section 10.1.2.6.

10.1.2.6 The TreeIterator Class

All we have left to implement is the TreeIterator class, nested in the BinarySearchTree class. The

method specifications for hasNext(), next(), and remove() were given in the Iterator interface

back in Chapter 4. The only fields are a reference to the element returned by the most recent call to the

next() method, and a reference to the element to be returned by the next call to the next() method.

The declaration of the TreeIterator class starts out with

protected class TreeIterator implements Iterator<E>

{

protected Entry<E> lastReturned = null,

next;

Before we get to defining the three methods mentioned above, we should define a default constructor.

Where do we want to start? That depends on how we want to iterate. For a preOrder or breadthFirst

iteration, we would start at the root Entry object. For an inOrder or postOrder iteration, we would start

at the leftmost Entry object. We will want to iterate over the elements in a BinarySearchTree in

ascending order, so we want to initialize the next field to the leftmost (that is, smallest) Entry object

in the BinarySearchTree. To obtain that first Entry object, we start at the root and go left as far as

possible:

/**

* Positions this TreeIterator to the smallest element, according to the Comparable

* interface, in the BinarySearchTree object.

* The worstTime(n) is O(n) and averageTime(n) is O(log n).

*

*/

protected TreeIterator()

{

next = root;

if (next != null)

while (next.left != null)

next = next.left;

} // default constructor

428 CHAPTER 10 Binary Search Trees

To estimate the time for this default constructor, the situation is the same as for the contains and add

methods in the BinarySearchTree class: worstTime(n) is linear in n (when the tree consists of a chain

of left children), and averageTime(n) is logarithmic in n .

The hasNext() method simply checks to see if the next field has the value null:

/**

* Determines if there are still some elements, in the BinarySearchTree object this

* TreeIterator object is iterating over, that have not been accessed by this

* TreeIterator object.

*

* @return true – if there are still some elements that have not been accessed by

* this TreeIterator object; otherwise, return false.

*

*/

public boolean hasNext()

{

return next != null;

} // method hasNext

The definition of the next() method is quite simple because we have already defined the successor

method:

/**

* Returns the element in the Entry this TreeIterator object was positioned at

* before this call, and advances this TreeIterator object.

* The worstTime(n) is O(n) and averageTime(n) is constant.

*

* @return the element this TreeIterator object was positioned at before this call.

*

* @throws NoSuchElementException – if this TreeIterator object was not

* positioned at an Entry before this call.

*

*/

public E next()

{

if (next == null)

throw new NoSuchElementException();

lastReturned = next;

next = successor (next);

return lastReturned.element;

} // method next

Finally, the TreeIterator class’s remove method deletes the Entry that was last returned. Basically, we

call deleteEntry (lastReturned). A slight complication arises if lastReturned has two children.

For example, suppose lastReturned references the Entry object whose element is (the Integer whose

value is) 40 in the BinarySearchTree object of Figure 10.18.

For the BinarySearchTree object of Figure 10.18, if we simply call

deleteEntry (lastReturned);

10.1 Binary Search Trees 429

lastReturned 40

20 75

next 50 80

FIGURE 10.18 A binary search tree from which 40 is to be removed

then next will reference an Entry object that is no longer in the tree. To avoid this problem, we set

next = lastReturned;

before calling

deleteEntry (lastReturned);

Then the tree from Figure 10.18 would be changed to the tree in Figure 10.19.

lastReturned
next 50

20 75

80

FIGURE 10.19 A binary search tree in which the element referenced by lastReturned is to be removed.

Before deleteEntry (lastReturned) is called, next is assigned the value of lastReturned

After deleteEntry (lastReturned) is called for the tree in Figure 10.19, we get the tree in

Figure 10.20.

next 50

20 75

80

FIGURE 10.20 The tree from Figure 10.19 after deleteEntry (lastReturned) is called

For the tree in Figure 10.20, next is positioned where it should be positioned. We then set last

Returned to null to preclude a subsequent call to remove() before a call to next().

Here is the method definition:

/**

* Removes the element returned by the most recent call to this TreeIterator

* object’s next() method.

* The worstTime(n) is O(n) and averageTime(n) is constant.

430 CHAPTER 10 Binary Search Trees

*

* @throws IllegalStateException – if this TreeIterator’s next() method was not

* called before this call, or if this TreeIterator’s remove() method was

* called between the call to the next() method and this call.

*

*/

public void remove()

{

if (lastReturned == null)

throw new IllegalStateException();

if (lastReturned.left != null && lastReturned.right != null)

next = lastReturned;

deleteEntry(lastReturned);

lastReturned = null;

} // method remove

Lab 17 provides run-time support for the claim made earlier that the average height of a Binary

SearchTree is logarithmic in n .

You are now prepared to do Lab 17:

A Run-Time Estimate of the Average Height of a BinarySearchTree Object

10.2 Balanced Binary Search Trees

Keep in mind that the height of a BinarySearchTree is the determining factor in estimating the time to

insert, remove or search. In the average case, the height of a BinarySearchTree object is logarithmic in

n (the number of elements), so inserting, removing, and searching take only logarithmic-in-n time. This

implies that BinarySearchTree objects represent an improvement, on average, over ArrayList objects

and LinkedList obects, for which inserting, removing, or searching take linear time.1 But in the worst

case, a BinarySearchTree object’s height can be linear in n , which leads to linear-in-n worstTime(n)

for inserting, removing, or searching.

We do not include any applications of the BinarySearchTree class because any application would

be superseded by re-defining the tree instance from one of the classes in Chapter 12: TreeMap or TreeSet.

For either of those classes, the height of the tree is always logarithmic in n , so insertions, removals, and

searches take logarithmic time, even in the worst case. As we noted at the beginning of this chapter, the

TreeMap and TreeSet classes are based on a somewhat complicated concept: the red-black tree. This

section and the following two sections will help prepare you to understand red-black trees.

A binary search tree is balanced if its height is logarithmic in n , the number of elements in the

tree. Three widely known data structures in this category of balanced binary search trees are AVL trees,

red-black trees and splay trees. AVL trees are introduced in Section 10.3. Red-black trees are investigated

in Chapter 12. For information on splay trees, the interested reader may consult Bailey [2003].

1The corresponding methods in the ArrayList and LinkedList classes are add (int index, E element), remove (Object obj) and

contains (Object obj). Note that ArrayList objects and LinkedList objects are not necessarily in order.

10.2 Balanced Binary Search Trees 431

For all of these balanced binary search trees, the basic mechanism that keeps a tree balanced is the

rotation. A rotation is an adjustment to the tree around an element such that the adjustment maintains

the required ordering of elements. The ultimate goal of rotating is to restore some balance property that

has temporarily been violated due to an insertion or removal. For example, one such balance property is

that the heights of the left and right subtrees of any element should differ by at most 1. Let’s start with a

simple classification of rotations: left and right.

In a left rotation , some adjustments are made to the element’s parent, left subtree and right subtree.

The main effect of these adjustments is that the element becomes the left child of what had been the

element’s right child. For a simple example, Figure 10.21 shows a left rotation around the element 50.

Note that before and after the rotation, the tree is a binary search tree.

90

50 100

50

90

100

FIGURE 10.21 A left rotation around 50

Figure 10.22 has another example of a left rotation, around the element 80, that reduces the height

of the tree from 3 to 2.

The noteworthy feature of Figure 10.22 is that 85, which was in the right subtree of the before-

rotation tree, ends up in the left subtree of the after-rotation tree. This phenomenon is common to all left

rotations around an element x whose right child is y . The left subtree of y becomes the right subtree of

x . This adjustment is necessary to preserve the ordering of the binary search tree: Any element that was

in y’s left subtree is greater than x and less than y . So any such element should be in the right subtree of

x (and in the left subtree of y). Technically, the same phenomenon also occurred in Figure 10.21, but the

left subtree of 50’s right child was empty.

80

60 90

85 120

100

90

80 120

60 85 100

FIGURE 10.22 A left rotation around 80

Figure 10.23 shows the rotation of Figure 10.22 in a broader context: the element rotated around is

not the root of the tree. Before and after the rotation, the tree is a binary search tree.

432 CHAPTER 10 Binary Search Trees

50

30 80

20 60 90

85 120

100

40

50

30 90

20 80 120

60 85 100

40

FIGURE 10.23 The left rotation around 80 from Figure 10.22, but here 80 is not the root element

Figure 10.23 illustrates another aspect of all rotations: all the elements that are not in the rotated

element’s subtree are unaffected by the rotation. That is, in both trees, we still have:

50

30

20 40

If we implement a rotation in the BinarySearchTree class, no elements are actually moved; only the

references are manipulated. Suppose that p (for “parent”) is a reference to an Entry object and r (for

“right child”) is a reference to p’s right child. Basically, a left rotation around p can be accomplished in

just two steps:

p.right = r.left; // for example, look at 85 in Figure 10.22

r.left = p;

Unfortunately, we also have to adjust the parent fields, and that adds quite a bit of code. Here is the complete

definition of a leftRotate method in the BinarySearchTree class (a similar definition appears in the

TreeMap class in Chapter 12):

/**

* Performs a left rotation in this BinarySearchTre object around a specified

* Entry object.

*

* @param p – the Entry object around which the left rotation is performed

*

* @throws NullPointerException – if p is null or p.right is null.

*

* @see Cormen, 2002.

protected void rotateLeft (Entry<E> p)

{

10.2 Balanced Binary Search Trees 433

Entry<E> r = p.right;

p.right = r.left;

if (r.left != null)

r.left.parent = p;

r.parent = p.parent;

if (p.parent == null)

root = r;

else if (p.parent.left == p)

p.parent.left = r;

else

p.parent.right = r;

r.left = p;

p.parent = r;

} // method rotateLeft

This indicates how much of a bother parents can be! But on the bright side, no elements get moved, and

the time is constant.

What about a right rotation? Figure 10.24 shows a simple example: a right rotation around 50.

35

10 50

50

35

10

FIGURE 10.24 A right rotation around 50

Does this look familiar? Figure 10.24 is just Figure 10.21 with the direction of the arrow reversed.

In general, if you perform a left rotation around an element and then perform a right rotation around the

new parent of that element, you will end up with the tree you started with.

Figure 10.25 shows a right rotation around an element, 80, in which the right child of 80’s left child

becomes the left child of 80. This is analogous to the left rotation in Figure 10.22.

80 60

60 100 30 80

30 55 100

55

70 70

FIGURE 10.25 A right rotation around 80

434 CHAPTER 10 Binary Search Trees

Here are details on implementing right rotations in the BinarySearchTree class. Let p be a

reference to an Entry object and let l (for “left child”) be a reference to the left child of p. Basically, a

right rotation around p can be accomplished in just two steps:

p.left = l.right; // for example, look at 70 in the rotation of Figure 10.8

l.right = p;

Of course, once we include the parent adjustments, we get a considerably longer—but still constant

time—method. In fact, if you interchange “left” with “right” in the definition of the leftRotate method,

you get the definition of rightRotate.

In all of the rotations shown so far, the height of the tree was reduced by 1. That is not surprising;

in fact, reducing height is the motivation for rotating. But it is not necessary that every rotation reduce the

height of the tree. For example, Figure 10.26 shows a left rotation—around 50—that does not affect the

height of the tree.

30

90

50 100

70

80

90

70 100

50 80

30

FIGURE 10.26 A left rotation around 50. The height of the tree is still 3 after the rotation

It is true that the left rotation in Figure 10.26 did not reduce the height of the tree. But a few minutes

of checking should convince you that no single rotation can reduce the height of the tree on the left side

of Figure 10.26. Now look at the tree on the right side of Figure 10.26. Can you figure out a rotation that

will reduce the height of that tree? Not a right rotation around 70; that would just get us back where we

started. How about a right rotation around 90? Bingo! Figure 10.27 shows the effect.

30

70

50 90

80 100

90

70 100

50 80

30

FIGURE 10.27 A right rotation around 90. The height of the tree has been reduced from 3 to 2

10.2 Balanced Binary Search Trees 435

The rotations in Figures 10.26 and 10.27 should be viewed as a package: a left rotation around 90’s

left child, followed by a right rotation around 90. This is referred to as a double rotation . In general, if p

is a reference to an Entry object, then a double rotation around p can be accomplished as follows:

leftRotate (p.left);

rightRotate (p);

Figure 10.28 shows another kind of double rotation: a right rotation around the right child of 50, followed

by a left rotation around 50.

50

10

70

80

75

90

70

50 80

10 75 90

50

10 70

80

75 90

FIGURE 10.28 Another kind of double rotation: a right rotation around 50’s right child, followed by a left

rotation around 50

Before we move on to Section 10.2.1 with a specific kind of balanced binary search tree, let’s list

the major features of rotations:

1. There are four kinds of rotation:

a. Left rotation;

b. Right rotation;

c. A left rotation around the left child of an element, followed by a right rotation around the element

itself;

d. A right rotation around the right child of an element, followed by a left rotation around the element

itself.

2. Elements not in the subtree of the element rotated about are unaffected by the rotation.

3. A rotation takes constant time.

4. Before and after a rotation, the tree is still a binary search tree.

5. The code for a left rotation is symmetric to the code for a right rotation: simply swap the words

“left” and “right”.

Section 10.2.1 introduces the AVL tree, a kind of binary search tree that employs rotations to maintain

balance.

10.2.1 AVL Trees

An AVL tree is a binary search tree that either is empty or in which:

1. the heights of the root’s left and right subtrees differ by at most 1, and

2. the root’s left and right subtrees are AVL trees.

436 CHAPTER 10 Binary Search Trees

AVL trees are named after the two Russian mathematicians, Adelson-Velski and Landis, who invented

them in 1962. Figure 10.29 shows three AVL trees, and Figure 10.30 shows three binary search trees that

are not AVL trees.

25 50 50

40 60 20 80

30 10 7070 100

91 103

FIGURE 10.29 Three AVL trees

50

40 60

30 70

20 80

50

20 80

10 10070

10391

101

25

10

20

FIGURE 10.30 Three binary search trees that are not AVL trees

The first tree in Figure 10.30 is not an AVL tree because its left subtree has height 1 and its right

subtree has height −1. The second tree is not an AVL tree because its left subtree is not an AVL tree;

neither is its right subtree. The third tree is not an AVL tree because its left subtree has height 1 and its

right subtree has height 3.

In Section 10.2.2, we show that an AVL tree is a balanced binary search tree, that is, that the height

of an AVL tree is always logarithmic in n . This compares favorably to a binary search tree, whose height

is linear in n in the worst case (namely, a chain). The difference between linear and logarithmic can be

huge. For example, suppose n = 1, 000, 000, 000, 000. Then log2 n is less than 40. The practical import of

this difference is that insertions, removals and searches for the AVLTree class take far less time, in the

worst case, than for the BinarySearchTree class.

10.2.2 The Height of an AVL Tree

We can prove that an AVL tree’s height is logarithmic in n , and the proof relates AVL trees back to, of

all things, Fibonacci numbers.

10.2 Balanced Binary Search Trees 437

Claim If t is a non-empty AVL tree, height(t) is logarithmic in n, where n is the number of elements in t.

Proof We will show that, even if an AVL tree t has the maximum height possible for its n elements, its

height will still be logarithmic in n. How can we determine the maximum height possible for an AVL tree with

n elements? As Kruse (see Kruse [1987]) suggests, rephrasing the question helps us get the answer. Given

a height h, what is the minimum number of elements in any AVL tree of that height?

For h = 0, 1, 2, . . . , let minh be the minimum number of elements in an AVL tree of height h. Clearly,

min0 = 1 and min1 = 2. The values of min2 and min3 can be seen from the AVL trees in Figure 10.31.

In general, if h1 > h2, then minh1 is greater than the number of elements needed to construct an AVL

tree of height h2. That is, if h1 > h2, then minh1 > minh2. In other words, minh is an increasing function of h.

Suppose that t is an AVL tree with h height and minh elements, for some value of h > 1. What can we

say about the heights of the left and right subtrees of t? By the definition of height, one of those subtrees

must have height h − 1. And by the definition of an AVL tree, the other subtree must have height of h − 1 or

h − 2. In fact, because t has the minimum number of elements for its height, one of its subtrees must have

height h − 1 and minh−1 elements, and the other subtree must have height h − 2 and minh−2 elements.

A tree always has one more element than the number of elements in its left and right subtrees. So we

have the following equation, called a recurrence relation:

minh = minh−1 + minh−2 +1, for any integer h > 1

Now that we can calculate minh for any positive integer h, we can see how the function minh is related to

the maximum height of an AVL tree. For example, because min6 = 33 and min7 = 54, the maximum height

of an AVL tree with 50 elements is six.

The above recurrence relation looks a lot like the formula for generating Fibonacci numbers (see Lab 7).

The term Fibonacci tree refers to an AVL tree with the minimum number of elements for its height. From the

above recurrence relation and the values of min0 and min1, we can show, by induction on h, that

minh = fib(h + 3) − 1, for any nonnegative integer h.

We can further show, by induction on h (see Concept Exercise 10.8),

fib(h + 3) − 1 ≥ (3/2)h, for any nonnegative integer h.

Combining these results,

minh ≥ (3/2)h, for any nonnegative integer h.

Taking logs in base 2 (but any base will do), we get

log2(minh) ≥ h ∗ log2(3/2), for any nonnegative integer h.

50

39 80

60

90

50 100

39 12980

60

FIGURE 10.31 AVL trees of heights 2 and 3 in which the number of elements is minimal

438 CHAPTER 10 Binary Search Trees

Rewriting this in a form suitable for a Big-O claim, with 1/ log2(3/2) < 1.75:

h ≤ 1.75 ∗ log2(minh), for any nonnegative integer h.

If t is an AVL tree with h height and n elements, we must have minh ≤ n, so for any such AVL tree,

h ≤ 1.75 ∗ log2(n).

This implies that the height of any AVL tree is O(log n). Is O(log n) a tight upper bound; that is, is the height of

any AVL tree logarithmic in n? Yes, and here’s why. For any binary tree of height h with n elements,

h ≥ log2(n + 1) − 1

by part 2 of the Binary Tree Theorem. We conclude that any AVL tree with n elements has height that is

logarithmic in n, even in the worst case.

To give you a better idea of how AVL trees relate to binary search trees, we sketch the design and

implementation of the AVLTree class in Section 10.2.3. To complete the implementation, you will need to

tackle Programming Projects 10.3 and 10.4. Those projects deal with some of the details of the add and

remove methods, respectively.

10.2.3 The AVLTree Class

The AVLTree class will be developed as a subclass of the BinarySearchTree class. There will not be

any additional fields in the AVLTree class, but each entry object has an additional field:

char balanceFactor = '=';

The purpose of this additional field in the Entry class is to make it easier to maintain the balance of an

AVLTree object. If an Entry object has a balanceFactor value of ‘=’, the Entry object’s left subtree

has the same height as the Entry object’s right subtree. If the balanceFactor value is ‘L’, the left

subtree’s height is one greater than the right subtree’s height. And a balanceFactor value of ‘R’ means

that the right subtree’s height is one greater than the left subtree’s height. Figure 10.32 shows an AVL

tree with each element’s balance factor shown below the element.

50

R

20 80

L R

70 100

= =

92 103
= =

10

=

FIGURE 10.32 An AVL tree with the balance factor under each element

10.2 Balanced Binary Search Trees 439

Here is the new entry class, nested in the AVLTree class:

protected static class AVLEntry<E> extends BinarySearchTree.Entry<E>

{

protected char balanceFactor = '=';

/**

* Initializes this AVLEntry object from a specified element and a

* specified parent AVLEntry.

*

* @param element – the specified element to be housed in this

* AVLEntry object.

* @param parent – the specified parent of this AVLEntry object.

*

*/

protected AVLEntry (E element, AVLEntry<E> parent)

{

this.element = element;

this.parent = parent;

} // constructor

} // class AVLEntry

The only methods that the AVLTree class overrides from the BinarySearchTree class are those that

involve the AVLEntry class’s balanceFactor field. Specifically, the AVLTree class will override the

add and deleteEntry methods from the BinarySearchTree class. The re-balancing strategy is from

Sahni (see Sahni [2000]).

One intriguing feature of the AVLTree class is that the contains method is not overridden from the

BinarySearchTree class, but worstTime(n) is different: logarithmic in n , versus linear in n for the Bina

rySearchTree class. This speed reflects the fact that the height of an AVL tree is always logarithmic in n .

The definition of the add method in the AVLTree class resembles the definition of the add method

in the BinarySearchTree class. But as we work our way down the tree from the root to the insertion

point, we keep track of the inserted AVLEntry object’s closest ancestor whose balanceFactor is ‘L’

or ‘R’. We refer to this Entry object as imbalanceAncestor. For example, if we insert 60 into the

AVLTree object in Figure 10.33, imbalanceAncestor is the Entry object whose element is 80:

50

R

20 80

L R

70 100

= =

92 103
= =

10

=

FIGURE 10.33 An AVLTree object

440 CHAPTER 10 Binary Search Trees

After the element has been inserted, BinarySearchTree-style, into the AVLTree object, we call

a fix-up method to handle rotations and balanceFactor adjustments. Here is the definition of the add

method:

public boolean add (E element)

{

if (root == null)

{

if (element == null)

throw new NullPointerException();

root = new AVLEntry<E> (element, null);

size++;

return true;

} // empty tree

else

{

AVLEntry<E> temp = (AVLEntry<E>)root,

imbalanceAncestor = null; // nearest ancestor of

// element with

// balanceFactor not ‘=’

int comp;

while (true)

{

comp = ((Comparable)element).compareTo (temp.element);

if (comp == 0)

return false;

if (comp < 0)

{

if (temp.balanceFactor != ‘=’)

imbalanceAncestor = temp;

if (temp.left != null)

temp = (AVLEntry<E>)temp.left;

else

{

temp.left = new AVLEntry<E> (element, temp);

fixAfterInsertion ((AVLEntry<E>)temp.left,

imbalanceAncestor);

size++;

return true;

} // temp.left == null

} // comp < 0

else

{

if (temp.balanceFactor != ‘=’)

imbalanceAncestor = temp;

if (temp.right != null)

temp = (AVLEntry<E>)temp.right;

else

10.2 Balanced Binary Search Trees 441

{

temp.right = new AVLEntry<E>(element, temp);

fixAfterInsertion ((AVLEntry<E>)temp.right,

imbalanceAncestor);

size++;

return true;

} // temp.right == null

} // comp > 0

} // while

} // root not null

} // method add

This code differs from that of the BinarySearchTree class’s add method in three respects:

1. The new entry is an instance of AVLEntry<E>.

2. The imbalanceAncestor variable is maintained.

3. The fixAfterInsertion method is called to re-balance the tree, if necessary.

The definition of the fixAfterInsertion method is left as Programming Project 10.3. The bottom line

is that, for the add method, worstTime(n) is O(log n). In fact, because the while loop in the add method

can require as many iterations as the height of the AVL tree, worstTime(n) is logarithmic in n .

The definition of the deleteEntry method (called by the inherited remove method) starts by

performing a BinarySearchTree -style deletion, and then invokes a fixAfterDeletion method. For-

tunately, for the sake of code re-use, we can explicitly call the BinarySearchTree class’s deleteEntry

method, so the complete definition of the AVLTree class’s deleteEntry method is simply:

protected Entry<E> deleteEntry (Entry<E> p)

{

AVLEntry<E> deleted = (AVLEntry<E>)super.deleteEntry (p);

fixAfterDeletion (deleted.element, (AVLEntry<E>)deleted.parent);

return deleted;

} // method deleteEntry

Of course, we are not done yet; we are not even close: The definition of the fixAfterDeletion method

is left as Programming Project 10.4. For the remove method, worstTime(n) is O(log n). In fact, because

we start with a BinarySearchTree -style deletion, worstTime(n) is logarithmic in n .

The book’s website includes an applet that will help you to visualize insertions in and removals from

an AVLTree object.

10.2.4 Runtime Estimates

We close out this chapter with a brief look at some run-time issues. For the AVLTree class’s add method,

worstTime(n) is logarithmic in n , whereas for the BinarySearchTree class’s add method, worstTime(n)

is linear in n . And so, as you would expect, the worst case run-time behavior of the AVLTree class’s add

method is much faster than that of the BinarySearchTree class’s add method. Programming Exercise

10.5 confirms this expectation.

What about averageTime(n)? The averageTime(n) is logarithmic in n for the add method in those

two classes. Which do you think will be faster in run-time experiments? Because quite a bit of effort goes

442 CHAPTER 10 Binary Search Trees

into maintaining the balance of an AVLTree object, the average height of a BinarySearchTree object

is about 50% larger than the average height of an AVLTree object: 2.1 log2 n versus 1.44 log2 n . But

the extra maintenance makes AVLTree insertions slightly slower, in spite of the height advantage, than

BinarySearchTree insertions.

In Chapter 12, we present another kind of balanced binary search tree: the red-black tree. Insertions

in red-black trees are slightly faster (but less intuitive), on average, than for AVL trees, and that is why

the red-black tree was selected as the underlying structure for the Java Collection Framework’s TreeMap

and TreeSet classes. Both of these classes are extremely useful; you will get some idea of this from the

applications and Programming Projects in Chapter 12.

S U M M A R Y

A binary search tree t is a binary tree such that either t

is empty or

1. each element in leftTree(t) is less than the root ele-

ment of t ;

2. each element in rightTree(t) is greater than the root

element of t ;

3. both leftTree(t) and rightTree(t) are binary search

trees.

The BinarySearchTree class maintains a sorted col-

lection of Comparable elements. The time estimates for

searching, inserting, and deleting depend on the height of

the tree. In the worst case—if the tree is a chain—the

height is linear in n , the number of elements in the tree.

The average height of a binary search tree is logarithmic

in n . So for the contains, add, and remove meth-

ods, worstTime(n) is linear in n and averageTime(n) is

logarithmic in n .

A binary search tree is balanced if its height is

logarithmic in n , the number of elements in the tree.

The balancing is maintained with rotations. A rotation

is an adjustment to the tree around an element such

that the adjustment maintains the required ordering of

elements. This chapter introduced one kind of balanced

binary search tree: the AVL tree. An AVL tree is a binary

search tree that either is empty or in which:

1. the heights of the root’s left and right subtrees differ

by at most 1, and

2. the root’s left and right subtrees are AVL trees.

The AVLTree class is a subclass of the Binary

SearchTree class. The only overridden methods are

those related to maintaining balance: add and delete

Entry.

Crossword Puzzle 443

CROSSWORD PUZZLE

1 2 3

4

5

6 7 8

9

10

www.CrosswordWeaver.com

ACROSS DOWN

2. The given definitions of the contains,
 add and remove methods in the
 BinarySearchTree class are _____.

3. An adjustment to a binary search
 tree around an element that
 maintains the required ordering of
 elements.

5. The fourth field in the nested Entry
 class of the BinarySearchTree class.
 The other three fields are element,
 left and right.

7. A balanced binary search tree in
 which, if the tree is not empty, the
 heights of the left and right subtrees
 differ by at most one

8. The only field, other than size, in the
 BinarySearchTree class

9. The worstTime(n) for the copy
 method in the BinarySearchTree
 class is __________ in n.

 1. An AVL tree with the minimum
 number of elements for its height

 4. The feature of a BinarySearchTree
 object most important in estimating
 worstTime(n) and averageTime(n)
 for the contains, add and remove
 methods

 6. The only field in the AVLEntry class
 that is not inherited from the nested
 Entry class of the
 BinarySearchTree class

10. A binary search tree is ________ if
 its height is logarithmic in n, the
 number of elements in the tree.

www.CrosswordWeaver.com

444 CHAPTER 10 Binary Search Trees

CONCEPT EXERCISES

10.1 a. Show the effect of making the following insertions into an initially empty binary search tree:

30, 40, 20, 90, 10, 50, 70, 60, 80

b. Find a different ordering of the above elements whose insertions would generate the same binary search

tree as in part a.

10.2 Describe in English how to remove each of the following from a binary search tree:

a. an element with no children

b. an element with one child

c. an element with two children

10.3 a. For any positive integer n , describe how to arrange the integers 1, 2, . . . , n so that when they are inserted

into a BinarySearchTree object, the height of the tree will be linear in n .

b. For any positive integer n , describe how to arrange the integers 1, 2, . . . , n so that when they are inserted

into a BinarySearchTree object, the height of the tree will be logarithmic in n .

c. For any positive integer n , describe how to arrange the integers 1, 2, . . . , n so that when they are inserted

into an AVLTree object, the height of the tree will be logarithmic in n .

d. For any positive integer n , is it possible to arrange the integers 1, 2, . . . , n so that when they are inserted

into an AVLTree object, the height of the tree will be linear in n? Explain.

10.4 In each of the following binary search trees, perform a left rotation around 50.

a. .
50

60

70

b. .

30

20 50

40 80

70 100

Concept Exercises 445

c. .

7560

30

20 50

40 80

70 10045

10.5 In each of the following binary search trees, perform a right rotation around 50.

a. .
50

40

30

b. .

60

50 70

40 55

30 45

c. .

7555

30

20 50

40 80

60 10048

446 CHAPTER 10 Binary Search Trees

10.6 In the following binary search tree, perform a double rotation (a left rotation around 20 and then a right

rotation around 50) to reduce the height to 2.

50

20 90

10 40

30

10.7 In the following binary search tree, perform a “double rotation” to reduce the height to 2:

50

20 80

70 100

60

10.8 Show that for any nonnegative integer h ,

fib(h + 3) − 1 ≥ (3/2)h

Hint: Use the Strong Form of the Principle of Mathematical Induction and note that, for h > 1,

(3/2)h−1
+ (3/2)h−2

= (3/2)h−2
∗ (3/2 + 1) >(3/2)h−2

∗ 9/4.

10.9 Suppose we define maxh to be the maximum number of elements in an AVL tree of height h .

a. Calculate max3.

b. Determine the formula for maxh for any h ≥ 0.

Hint: Use the Binary Tree Theorem from Chapter 9.

c. What is the maximum height of an AVL tree with 100 elements?

10.10 Show that the height of an AVL tree with 32 elements must be exactly 5.

Hint: calculate max4 (see Concept Exercise 10.9) and min6.

10.11 For the contains method in the BinarySearchTree class, worstTime(n) is linear in n . The AVLTree

class does not override that method, but for the contains method in the AVLTree class, worstTime(n) is

logarithmic in n . Explain.

Concept Exercises 447

10.12 The following program generates a BinarySearchTree object of n elements. Draw the tree when

n = 13. For any n ≥ 0, provide a � (that is, Big Theta) estimate of height(n), that is, the height of the

BinarySearchTree object as a function of n .

import java.util.*;

public class weirdBST

{

public static void main (String[] args)

{

new weirdBST().run();

} // method main

public void run()

{

BinarySearchTree<Double> tree = new BinarySearchTree<Double>();

LinkedList<Double> list =new LinkedList<Double>();

System.out.println ("Enter n > 0");

int n = new Scanner (System.in).nextInt();

tree.add (1.0);

list.add (1.0);

int k = 2;

while (tree.size() < n)

addLevel (tree, n, k++, list);

System.out.println (tree.height());

} // method run

public void addLevel (BinarySearchTree<Double> tree, int n, int k,

LinkedList<Double> list)

{

final double SMALL = 0.00000000001;

LinkedList<Double> newList = new LinkedList<Double>();

Iterator<Double> itr = list.iterator();

double d = itr.next();

tree.add (d - 1.0);

newList.add (d - 1.0);

for (int i = 0; i < k && tree.size() < n; i++)

{

tree.add (d + SMALL);

newList.add (d + SMALL);

if (itr.hasNext())

d = itr.next();

} // for

448 CHAPTER 10 Binary Search Trees

list.clear();

list.addAll (newList);

} // method addLevel

} // class weirdBST

PROGRAMMING EXERCISES

10.1 In the BinarySearchTree class, test and develop a leaves method. Here is the method specification:

/**

* Returns the number of leaves in this BinarySearchTree object.

* The worstTime(n) is O(n).

*

* @return – the number of leaves in this BinarySearchTree object.

*

*/

public int leaves()

Test your method by adding tests to the BinarySearchTreeTest class available from the book’s website.

Hint: A recursive version, invoked by a wrapper method, can mimic the definition of leaves(t) from Section

9.1. Or, you can also develop an iterative version by creating a new iterator class in which the next method

increments a count for each Entry object whose left and right fields are null.

10.2 Modify the BinarySearchTree class so that the iterators are fail-fast (see Appendix 1 for details on

fail-fast iterators). Test your class by adding tests to the BinarySearchTreeTest class available from

the book’s website.

10.3 Modify the BinarySearchTree class so that BinarySearchTree objects are serializable (see

Appendix 1 for details on serializability). Test your class by adding tests to the BinarySearchTreeTest

class available from the book’s website.

10.4 Create a recursive version of the add method.

Hint: Make the add method a wrapper for a recursive method. Test your version with the relevant tests in

the BinarySearchTreeTest class available from the book’s website.

10.5 In the BinarySearchTree class, modify the getEntry method so that it is a wrapper for a recursive

method. Test your version with the relevant tests in the BinarySearchTreeTest class available from

the book’s website.

10.6 (This exercise assumes you have completed Programming Projects 10.3 and 10.4.) Create a test suite for the

AVLTree class.

Hint: Make very minor modifications to the BinarySearchTreeTest class available from the book’s

website. Use your test suite to increase your confidence in the correctness of the methods you defined in

Programming Projects 10.3 and 10.4.

10.7 (This exercise assumes you have completed Programming Projects 10.3 and 10.4.) In the AVLTree class,

test and define the following method:

/**

* The height of this AVLTree object has been returned.

* The worstTime(n) is O(log n).

Programming Exercises 449

*

* @return the height of this AVLTree object.

*

*/

public int height()

Hint: Use the balanceFactor field in the AVLEntry class to guide you down the tree. Test your method

by adding tests to the BinarySearchTreeTest class available from the book’s website.

Programming Project 10.1

An Alternate Implementation of the Binary-Search-Tree Data Type

This project illustrates that the binary-search-tree data type has more than one implementation. You can also use

the technique described below to save a binary search tree (in fact, any binary tree) to disk so that it can be

subsequently retrieved with its original structure.

Develop an array-based implementation of the binary-search-tree data type. Your class, Binary

SearchTreeArray<E>, will have the same method specifications as the BinarySearchTree<E> class but will

use indexes to simulate the parent, left, and right links. For example, the fields in your embedded Entry<E>

class might have:

E element;

int parent,

left,

right;

Similarly, the BinarySearchTreeArray<E> class might have the following three fields:

Entry<E> [] tree;

int root,

size;

The root Entry object is stored in tree [0], and a null reference is indicated by the index −1. For example,

suppose we create a binary search tree by entering the String objects “dog”, “turtle”, “cat”, “ferret”. The tree

would be as follows:

dog

cat turtle

ferret

(continued on next page)

450 CHAPTER 10 Binary Search Trees

(continued from previous page)

The array representation, with the elements stored in the order in which they are entered, is

0 −1

0

0

1 −1

−1

3

2 1

−1

−1

−1

1

2

3

dog

turtle

cat

ferret

. . .

Element parent left right

The method definitions are very similar to those in the BinarySearchTree class, except that an expression such

as

root.left

is replaced with

tree [root].left

For example, here is a possible definition of the getEntry method:

protected Entry<E> getEntry (Object obj)

{

int temp = root,

comp;

while (temp != -1)

{

comp = ((Comparable)obj).compareTo (tree [temp].element);

if (comp == 0)

return tree [temp];

else if (comp < 0)

temp = tree [temp].left;

else

temp = tree [temp].right;

} // while

return null;

} // method getEntry

You will also need to modify the TreeIterator class.

Programming Exercises 451

Programming Project 10.2

Printing a BinarySearchTree Object

In the BinarySearchTree class, implement the following method:

/**

* Returns a String representation of this BinarySearchTree object.

* The worstTime(n) is linear in n.

*

* @return a String representation – that incorporates the structure–of this

* BinarySearchTree object.

*

*/

public String toTreeString()

Note 1: The String returned should incorporate the structure of the tree. For example, suppose we have the

following:

BinarySearchTree<Integer> tree = new BinarySearchTree<Integer>();

tree.add (55);

tree.add (12);

tree.add (30);

tree.add (97);

System.out.println (tree.toTreeString());

The output would be:

55

9712

30

In what sense is the above approach better than developing a printTree method in the BinarySearchTree

class?

Programming Project 10.3

The fixAfterInsertion Method

Test and define the fixAfterInsertion method in the AVLTree<E> class. Here is the method specification:

/**

* Restores the AVLTree properties, if necessary, by rotations and balance-

* factor adjustments between a specified inserted entry and the specified nearest

* ancestor of inserted that has a balanceFactor of ‘L’ or ‘R’.

(continued on next page)

452 CHAPTER 10 Binary Search Trees

(continued from previous page)

* The worstTime(n) is O(log n).

*

* @param inserted – the specified inserted AVLEntry object.

* @param imbalanceAncestor – the specified AVLEntry object that is the

* nearest ancestor of inserted.

*

*/

protected void fixAfterInsertion (AVLEntry<E> inserted,

AVLEntry<E> imbalanceAncestor)

Hint: If imbalanceAncestor is null, then each ancestor of the inserted AVLEntry object has a balanceFactor

value of ‘=’. For example, Figure 10.34 shows the before-and-after for this case.

There are three remaining cases when the balanceFactor value of imbalanceAncestor is ‘L’. The three

cases when that value is ‘R’ can be obtained by symmetry.

Case 1: imbalanceAncestor.balanceFactor is ‘L’ and the insertion is made in the right subtree of imbal

anceAncestor. Then no rotation is needed. Figure 10.35 shows the before-and-after for this case.

Case 2: imbalanceAncestor.balanceFactor is ‘L’ and the insertion is made in the left subtree of the left

subtree of imbalanceAncestor. The restructuring can be accomplished with a right rotation around

imbalanceAncestor. Figure 10.36 shows the before-and-after in this case.

Case 3: imbalanceAncestor.balanceFactor is ‘L’ and the inserted entry is in the right subtree of the left

subtree of imbalanceAncestor. The restructuring can be accomplished with a left rotation around the

left child of imbalanceAncestor followed by a right rotation around imbalanceAncestor. There are

three subcases to determine the adjustment of balance factors:

3a: imbalanceAncestor’s post-rotation parent is the inserted entry. Figure 10.37 shows the before-

and-after in this case.

50 50

= R

25 70 25 70

= == L

15 30 3090 15 90

= == L== = =

= =

60 60

55 55

FIGURE 10.34 On the left-hand side, an AVLTree object just before the call to fixAfterInsertion; the

element inserted was 55, and all of its ancestors have a balance factor of ‘=’. On the right-hand side, the

AVLTree object with adjusted balance factors

Programming Exercises 453

50

L

25 70

=R

15 30 90

= =L =

=

60

28

50

=

25 70

LR

15 30 90

= LL =

=

60

28

=

55

=

55

FIGURE 10.35 On the left-hand side, an AVL tree into which 55 has just been inserted. The balance factors

of the other entries are pre-insertion . On the right-hand side, the same AVL tree after the balance factors

have been adjusted. The only balance factors adjusted are those in the path between 55 (exclusive) and 50

(inclusive)

50 20

L =

20 70 10 50

= R= =

10 30 1590 5 70

= == === L =

15 35

== == =

13
=

= = = =

60 30

35255 13 60 9025

FIGURE 10.36 On the left side, what was an AVL tree has become imbalanced by the insertion of 13. The

balance factors of the other entries are pre-insertion . In this case, imbalanceAncestor is the AVLEntry

object whose element is 50. On the right side, the restructured AVL tree with adjusted balanced factors

50 40

L =

30 30 50

= = =

40
=

FIGURE 10.37 On the left side, what was an AVL tree has become imbalanced by the insertion of 40. The

balance factors of the other entries are pre-insertion . In this sub-case, imbalanceAncestor is the AVLEntry

object whose element is 50. On the right side, the restructured AVL tree with adjusted balanced factors

(continued on next page)

454 CHAPTER 10 Binary Search Trees

(continued from previous page)

3b: The inserted element is less than imbalanceAncestor’s post-rotation parent. Figure 10.38 shows

the before-and-after in this subcase.

3c: The inserted element is greater than imbalanceAncestor’s post-rotation parent. Figure 10.39

shows the before-and-after in this subcase.

50 40

L =

20 90 20 50

= == R

10 40 30100 10 90

= == == = R =

15 15

== == ==

35
=

= = = =

70 45

45305 35 70 1005

FIGURE 10.38 On the left side, what was an AVL tree has become imbalanced by the insertion of 35. The

balance factors of the other entries are pre-insertion . In this case, imbalanceAncestor is the AVLEntry object

whose element is 50. On the right side, the restructured AVL tree with adjusted balanced factors

50 40

L =

20 90 20 50

= L= =

10 40 30100 10 90

= == L= = = =

15 15

== == ==

42
=

= = =

70 45

45305 42 70 1005

FIGURE 10.39 On the left side, what was an AVL tree has become imbalanced by the insertion of 42. The

balance factors of the other entries are pre-insertion . In this case, imbalanceAncestor is the AVLEntry

object whose element is 50. On the right side, the restructured AVL tree with adjusted balanced factors

Programming Exercises 455

Programming Project 10.4

The fixAfterDeletion Method

Test and define the fixAfterDeletion method in the AVLTree<E> class. Here is the method specification:

/**

* Restores the AVL properties, if necessary, by rotations and balance-factor

* adjustments between the element actually deleted and a specified ancestor

* of the AVLEntry object actually deleted.

* The worstTime(n) is O(log n).

*

* @param element – the element actually deleted from this AVLTree object.

* @param ancestor – the specified ancestor (initially, the parent) of the

* element actually deleted.

*

*/

protected void fixAfterDeletion (E element, AVLEntry<E> ancestor)

Hint: Loop until the tree is an AVL tree with appropriate balance factors. Within the loop, suppose the element

removed was in the right subtree of ancestor (a symmetric analysis handles the left-subtree case). Then there

are three subcases, depending on whether ancestor.balanceFactor is ‘=’, ‘R’, or ‘L’. In all three subcases,

ancestor.balanceFactor must be changed. For the ‘=’ subcase, the loop then terminates. For the ‘R’ subcase,

ancestor is replaced with ancestor.parent and the loop continues. For the ‘L’ subcase, there are three sub-

subcases, depending on whether ancestor.left.balanceFactor is ‘=’, ‘R’, or ‘L’. And the ‘R’ sub-subcase

has three sub-sub-subcases.

This page intentionally left blank

Sorting CHAPTER 11

One of the most common computer operations is sorting , that is, putting a collection of elements in

order. From simple, one-time sorts for small collections to highly efficient sorts for frequently used

mailing lists and dictionaries, the ability to choose among various sort methods is an important skill in

every programmer’s repertoire.

CHAPTER OBJECTIVES

1. Compare the Comparable interface to the Comparator interface, and know when to use

each one.

2. Be able to decide which sort algorithm is appropriate for a given application.

3. Understand the limitations of each sort algorithm.

4. Explain the criteria for a divide-and-conquer algorithm.

11.1 Introduction

Our focus will be on comparison-based sorts; that is, the sorting entails comparing elements to other

elements. Comparisons are not necessary if we know, in advance, the final position of each element. For

example, if we start with an unsorted list of 100 distinct integers in the range 0 . . . 99, we know without

any comparisons that the integer 0 must end up in position 0, and so on. The best- known sort algorithm

that is not comparison-based is Radix Sort: see Section 11.5.

All of the sort algorithms presented in this chapter are generic algorithms, that is, static methods:

they have no calling object and operate on the parameter that specifies the collection to be sorted. Two of

the sort methods, Merge Sort and Quick Sort, are included in the Java Collections Framework, and can be

found in the Collections or Arrays classes in the package java.util.

The parameter list may include an array of primitive values (ints or doubles, for example), an

array of objects, or a List object—that is, an instance of a class that implements the List interface. In

illustrating a sort algorithm, we gloss over the distinction between an array of ints, an array of Integer

objects and a List object whose elements are of type Integer. In Section 11.3, we’ll see how to

sort objects by a different ordering than that provided by the compareTo method in the Comparable

interface.

In estimating the efficiency of a sorting method, our primary concerns will be averageTime(n) and

worstTime(n). In some applications, such as national defense and life-support systems, the worst-case

performance of a sort method can be critical. For example, we will see a sort algorithm that is quite fast,

both on average and in the worst case. And we will also look at a sort algorithm that is extremely fast, on

average, but whose worst-case performance is achingly slow.

457

458 CHAPTER 11 Sorting

The space requirements will also be noted, because some sort algorithms make a copy of the collection

that is to be sorted, while other sort algorithms have only negligible space requirements.

Another criterion we’ll use for measuring a sort method is stability. A stable sort method preserves

the relative order of equal elements. For example, suppose we have an array of students in which each

student consists of a last name and the total quality points for that student, and we want to sort by total

quality points. If the sort method is stable and before sorting, (“Balan”, 28) appears at an earlier index

than (“Wang”, 28), then after sorting (“Balan” 28) will still appear at an earlier index than (“Wang” 28).

Stability can simplify project development. For example, assume that the above array is already in order

by name, and the application calls for sorting by quality points; for students with the same quality points

the ordering should be alphabetical. A stable sort will accomplish this without any additional work to

make sure students with the same quality points are ordered alphabetically.

Table 11.1 at the end of the chapter provides a summary of the sorting methods we will investigate.

Each sort method will be illustrated on the following collection of 20 int values:

59 46 32 80 46 55 50 43 44 81 12 95 17 80 75 33 40 61 16 87

Here is the method specification and one of the test cases for the ?Sort method, where ?Sort can

represent any of the sort methods from Section 11.2:

/**

* Sorts a specified array of int values into ascending order.

* The worstTime(n) is O(n * n).

*

* @param x - the array to be sorted.

*

* @throws NullPointerException - if x is null.

*

*/

public static void ?Sort (int[] x)

public void testSample()

{

int [] expected = {12, 16, 17, 32, 33, 40, 43, 44, 46, 46,

50, 55, 59, 61, 75, 80, 80, 81, 87, 95};

int [] actual = {59, 46, 32, 80, 46, 55, 50, 43, 44, 81,

12, 95, 17, 80, 75, 33, 40, 61, 16, 87};

Sorts.?Sort (actual);

assertArrayEquals (expected, actual);

} // method testSample

The remaining test cases can be found on the book’s website.

11.2 Simple Sorts

We’ll start with a few sort algorithms that are fairly easy to develop, but provide slow execution time

when n is large. In each case, we will sort an array of int values into ascending order, and duplicates

will be allowed. These algorithms could easily be modified to sort an array of doubles, for example,

into ascending order or into descending order. We could also sort objects in some class that implements

the Comparable interface. The ordering, provided by the compareTo method, would be “natural”: for

example, String objects would be ordered lexicographically. In Section 11.3, we’ll see how to achieve a

different ordering of objects than the one provided by the compareTo method.

11.2 Simple Sorts 459

11.2.1 Insertion Sort

Insertion Sort repeatedly sifts out-of-place elements down into their proper indexes in an array. Given an

array x of int values, x [1] is inserted where it belongs relative to x [0], so x [0], and x [1] will

be swapped if x [0] > x [1]. At this point, we have x [0] <= x [1]. Then x [2] will be inserted

where it belongs relative to x [0] and x [1]; there will be 0, 1 or 2 swaps. At that point, we have x

[0] <= x [1] <= x [2]. Then x [3] will be inserted where it belongs relative to x [0] . . . x [2].

And so on.

Example Suppose the array x initially has the following values:

59 46 32 80 46 55 50 43 44 81 12 95 17 80 75 33 40 61 16 87

We first place x [1], 46, where it belongs relative to x [0], 59. One swap is needed, and this gives us:

46 59 32 80 46 55 50 43 44 81 12 95 17 80 75 33 40 61 16 87

The underlined values are in their correct order. We then place x [2], 32, where it belongs relative to the

sorted subarray x [0] ... x [1], and two swaps are required. We now have

32 46 59 80 46 55 50 43 44 81 12 95 17 80 75 33 40 61 16 87

Next, we place x [3], 80, where it belongs relative to the sorted subarray x [0] ... x [2]; this step

does not require any swaps, and the array is now

32 46 59 80 46 55 50 43 44 81 12 95 17 80 75 33 40 61 16 87

We then place x [4], 46, where it belongs relative to the sorted subarray x [0] ... x [3]. Two swaps

are required, and we get

32 46 46 59 80 55 50 43 44 81 12 95 17 80 75 33 40 61 16 87

This process continues until, finally, we place x [19], 87, where it belongs relative to the sorted subarray

x [0] ... x [18]. The array is now sorted:

12 16 17 32 33 40 43 44 46 46 50 55 59 61 75 80 80 81 87 95

At each stage in the above process, we have an int variable i in the range 1 through 19, and we place

x [i] into its proper position relative to the sorted subarray x [0], x [1], . . . , x [i-1]. During each

iteration, there is another loop in which an int variable k starts at index i and works downward until either

k = 0 or x [k – 1] <= x[k]. During each inner-loop iteration, x [k] and x [k –1] are swapped.

Here is the method definition:

/**

* Sorts a specified array of int values into ascending order.

* The worstTime(n) is O(n * n).

*

* @param x - the array to be sorted.

*

* @throws NullPointerException - if x is null.

*

*/

public static void insertionSort (int[] x)

460 CHAPTER 11 Sorting

{

for (int i = 1; i < x.length; i++)

for (int k = i; k > 0 && x [k -1] > x [k]; k--)

swap (x, k, k -1);

} // method insertionSort

The definition of the swap method is:

/**

* Swaps two specified elements in a specified array.

*

* @param x - the array in which the two elements are to be swapped.

* @param a - the index of one of the elements to be swapped.

* @param b - the index of the other element to be swapped.

*

*/

public static void swap (int [] x, int a, int b)

{

int t = x[a];

x[a] = x[b];

x[b] = t;

} // method swap

For example, if scores is an array of int values, we could sort the array with the following call:

insertionSort (scores);

Analysis Let n be the number of elements to be sorted. The outer for loop will be executed exactly n–1

times. For each value of i, the number of iterations of the inner loop is equal to the number of swaps required

to sift x [i] into its proper position in x [0], x [1], . . . , x [i-1]. In the worst case, the collection starts

out in decreasing order, so i swaps are required to sift x [i] into its proper position. That is, the number

of iterations of the inner for loop will be

1 + 2 + 3 + · · · + n − 2 + n − 1 =

n−1
∑

i=1

i = n(n − 1)/2

The total number of outer-loop and inner-loop iterations is n−1 + n(n−1)/2, so worstTime (n) is quadratic

in n . In practice, what really slows down insertionSort in the worst case is that the number of swaps

is quadratic in n . But these can be replaced with single assignments (see Concept Exercise 11.9).

To simplify the average-time analysis, assume that there are no duplicates in the array to be sorted.

The number of inner-loop iterations is equal to the number of swaps. When x [1] is sifted into its proper

place, half of the time there will be a swap and half of the time there will be no swap.1 Then the expected

number of inner-loop iterations is (0 + 1)/2.0, which is 1/2.0. When x [2] is sifted into its proper place,

the expected number of inner-loop iterations is (0 + 1 + 2)/3.0, which is 2/2.0. In general, when sifting

x [i] to its proper position, the expected number of loop iterations is

(0 + 1 + 2 + · · · + i)/(i + 1.0) = i/2.0

The total number of inner-loop iterations, on average, is

1/2.0 + 2/2.0 + 3/2.0 + · · · + (n − 1)/2.0 =

n−1
∑

i=1

i/2.0 = n(n−1)/4.0

1As always in averaging, we assume that each event is equally likely.

11.2 Simple Sorts 461

We conclude that averageTime (n) is quadratic in n . In the Java Collections Framework, Insertion Sort

is used for sorting subarrays of fewer than 7 elements. Instead of a method call, there is inline code

(off contains the first index of the subarray to be sorted, and len contains the number of elements to

be sorted):

// Insertion sort on smallest arrays

if (len < 7)

{

for (int i=off; i<len+off; i++)

for (int k=i; k>off && x[k-1]>x[k]; k--)

swap(x, j, j-1);

return;

}

For small subarrays, other sort methods—usually faster than Insertion Sort—are actually slower because

their powerful machinery is designed for large-sized arrays. The choice of 7 for the cutoff is based on

empirical studies described in Bentley [1993]. The best choice for a cutoff will depend on machine-

dependent characteristics.

An interesting aspect of Insertion Sort is its best-case behavior. If the original array happens to be

in ascending order—of course the sort method does not “know” this—then the inner loop will not be

executed at all, and the total number of iterations is linear in n . In general, if the array is already in order

or nearly so, Insertion Sort is very quick. So it is sometimes used at the tail end of a sort method that

takes an arbitrary array of elements and produces an “almost” sorted array. For example, this is exactly

what happens with the sort method in C++’s Standard Template Library.

The space requirements for Insertion Sort are modest: a couple of loop-control variables, a temporary

for swapping, and an activation record for the call to swap (which we lump together as a single variable).

So worstSpace (n) is constant; such a sort is called an in-place sort.

Because the inner loop of Insertion Sort swaps x [k-1] and x [k] only if x [k-1] > x [k],

equal elements will not be swapped. That is, Insertion Sort is stable.

11.2.2 Selection Sort

Perhaps the simplest of all sort algorithms is Selection Sort: Given an array x of int values, swap the

smallest element with the element at index 0, swap the second smallest element with the element at index 1,

and so on.

Example Suppose the array x initially has the usual values, with an arrow pointing to the element at the

current index, and the smallest value from that index on in boldface:

59 46 32 80 46 55 50 43 44 81 12 95 17 80 75 33 40 61 16 87

The smallest value in the array, 12, is swapped with the value 59 at index 0, and we now have (with the

sorted subarray underlined)

12 46 32 80 46 55 50 43 44 81 59 95 17 80 75 33 40 61 16 87

462 CHAPTER 11 Sorting

Now 16, the smallest of the values from index 1 on, is swapped with the value 46 at index 1:

12 16 32 80 46 55 50 43 44 81 59 95 17 80 75 33 40 61 46 87

Then 17, the smallest of the values from index 2 on, is swapped with the value 32 at index 2:

12 16 17 80 46 55 50 43 44 81 59 95 32 80 75 33 40 61 46 87

Finally, during the 19th loop iteration, 87 will be swapped with the value 95 at index 18, and the whole array

will be sorted:

12 16 17 32 33 40 43 44 46 46 50 55 59 61 75 80 80 81 87 95

In other words, for each value of i between 0 and x.length - 1, the smallest value in the subarray from

x [i] to x [x.length –1] is swapped with x [i]. Here is the method definition:

/**

* Sorts a specified array of int values into ascending order.

* The worstTime(n) is O(n * n).

*

* @param x - the array to be sorted.

*

* @throws NullPointerException - if x is null.

*

*/

public static void selectionSort (int [] x)

{

// Make x [0 . . . i] sorted and <= x [i + 1] . . .x [x.length –1]:

for (int i = 0; i < x.length –1; i++)

{

int pos = i;

for (int k = i + 1; k < x.length; k++)

if (x [k] < x [pos])

pos = k;

swap (x, i, pos);

} // for i

} // method selectionSort

Analysis First, note that the number of loop iterations is independent of the initial arrangement of elements,

so worstTime(n) and averageTime(n) will be identical. There are n–1 iterations of the outer loop; when the

smallest values are at indexes x[0], x[1], . . . x[n–2], the largest value will automatically be at index x[n–1].

During the first iteration, with i= 0, there are n–1 iterations of the inner loop. During the second iteration of the

outer loop, with i = 1, there are n–2 iterations of the inner loop. The total number of inner-loop iterations is

(n–1) + (n–2) + . . . + 1 =

n−1
∑

i=1

i = n(n–1)/2

We conclude that worstTime(n) is quadratic in n . For future reference, note that only n–1 swaps are made.

11.2 Simple Sorts 463

The worstSpace(n) is constant: only a few variables are needed. But Selection Sort is not stable; see

Concept Exercise 11.14.

As we noted in Section 11.2.1, Insertion Sort requires only linear-in-n time if the array is already

sorted, or nearly so. That is a clear advantage over Selection Sort, which always takes quadratic-in-n time.

In the average case or worst case, Insertion Sort takes quadratic-in-n time, and so a run-time experiment

is needed to distinguish between Insertion Sort and Selection Sort. You will get the opportunity to do this

in Lab 18.

11.2.3 Bubble Sort

Warning: Do not use this method. Information on Bubble Sort is provided to illustrate a very inefficient

algorithm with an appealing name. In this section, you will learn why Bubble Sort should be avoided, so

you can illuminate any unfortunate person who has written, used, or even mentioned Bubble Sort.

Given an array x of int values, compare each element to the next element in the array, swapping

where necessary. At this point, the largest value will be at index x.length –1. Then start back at the

beginning, and compare and swap elements. To avoid needless comparisons, go only as far as the last

interchange from the previous iteration. Continue until no more swaps can be made: the array will then

be sorted.

Example Suppose the array x initially has the following values:

59 46 32 80 46 55 50 43 44 81 12 95 17 80 75 33 40 61 16 87

Because 59 is greater than 46, those two elements are swapped, and we have

46 59 32 80 46 55 50 43 44 81 12 95 17 80 75 33 40 61 16 87

Then 59 and 32 are swapped, 59 and 80 are not swapped, 80 and 46 (at index 4) are swapped, and so on.

After the first iteration, x contains

46 32 59 46 55 50 43 44 80 12 81 17 80 75 33 40 61 16 87 95

The last swap during the first iteration was of the elements 95 and 87 at indexes 18 and 19, so in the second

iteration, the final comparison will be between the elements at indexes 17 and 18. After the second iteration,

the array contains

32 46 46 55 50 43 44 59 12 80 17 80 75 33 40 61 16 81 87 95

The last swap during the second iteration was of the elements 81 and 16 at indexes 16 and 17, so in the

third iteration, the final comparison will be between the elements at indexes 15 and 16.

Finally, after 18 iterations, and many swaps, we end up with

12 16 17 32 33 40 43 44 46 46 50 55 59 61 75 80 80 81 87 95

Here is the method definition:

/**

* Sorts a specified array of int values into ascending order.

* The worstTime(n) is O(n * n).

*

* @param x - the array to be sorted.

*

464 CHAPTER 11 Sorting

* @throws NullPointerException - if x is null.

*

*/

public static void bubbleSort (int[] x)

{

int finalSwapPos = x.length - 1,

swapPos;

while (finalSwapPos > 0)

{

swapPos = 0;

for (int i = 0; i < finalSwapPos; i++)

if (x [i] > x [i + 1])

{

swap (x, i, i + 1);

swapPos = i;

} // if

finalSwapPos = swapPos;

} // while

} // method bubbleSort

Analysis If the array starts out in reverse order, then there will be n–1 swaps during the first outer-loop

iteration, n–2 swaps during the second outer-loop iteration, and so on. The total number of swaps, and

inner-loop iterations, is

(n–1) + (n–2) + . . . + 1 =

n−1
∑

i=1

i = n(n–1)/2

We conclude that worstTime(n) is quadratic in n.

What about averageTime(n)? The average number of inner-loop iterations, as you probably would have

guessed (!), is

(n2–n)/2–(n + 1) ln(n + 1)/2

+ (n + 1)/2 ∗ (ln 2 + lim
k→∞

(

k
∑

i=1

(1/i)– ln k

)

+ (2/3)
√

(2π(n + 1)) + 31/36 + some terms in O(n−1/2).

What is clear from the first term in this formula is that averageTime(n) is quadratic in n .

It is not a big deal, but Bubble Sort is very efficient if the array happens to be in order. Then, only n

inner-loop iterations (and no swaps) take place. What if the entire array is in order, except that the smallest

element happens to be at index x.length –1 ? Then n(n–1)/2 inner-loop iterations still occur!

Swaps take place when, for some index i, the element at index i is greater than the element at index

i + 1. This implies that Bubble Sort is stable. And with just a few variables needed (the space for the

array was allocated in the calling method), worstSpace(n) is constant.

What drags Bubble Sort down, with respect to run-time performance, is the large number of swaps that

occur, even in the average case. You will get first-hand experience with Bubble Sort’s run-time sluggishness

if you complete Lab 18. As Knuth [1973] says, “In short, the bubble sort seems to have nothing going for

it, except a catchy name and the fact that it leads to some interesting theoretical problems.”

11.3 The Comparator Interface 465

11.3 The Comparator Interface

Insertion Sort, Selection Sort and Bubble Sort produce an array of int values in ascending order. We

could easily modify those methods to sort into descending order. Similarly straightforward changes would

allow us to sort arrays of values from other primitive types, such as long or double. What about sorting

objects? For objects in a class that implements the Comparable interface, we can sort by the “natural”

ordering, as described in Section 10.1.1. For example, here is the heading for a Selection Sort that sorts

an array of objects:

/**

* Sorts a specified array of objects into ascending order.

* The worstTime(n) is O(n * n).

*

* @param x - the array to be sorted.

*

* @throws NullPointerException - if x is null.

*

*/

public static void selectionSort (Object [] x)

For the definition of this version, we replace the line

if (x [k] < x [pos])

in the original version with

if (((Comparable)x [k]).compareTo (x [pos]) < 0)

and change heading of the swap method and the type of temp in that method. See Programming

Exercise 11.3.

As we saw in Section 10.1.1, the String class implements the Comparable interface with a com

pareTo method that reflects a lexicographic ordering. If names is an array of String objects, we can

sort names into lexicographical order with the call

selectionSort (names);

This raises an interesting question: What if we did not want the “natural” ordering? For example, what if

we wanted String objects ordered by the length of the string?

For applications in which the “natural” ordering—through the Comparable interface—is inappro-

priate, elements can be compared with the Comparator interface. The Comparator interface, with type

parameter T (for “type”) has a method to compare two elements of type T:

/**

* Compares two specified elements.

*

* @param element1 - one of the specified elements.

* @param element2 - the other specified element.

*

* @return a negative integer, 0, or a positive integer, depending on

* whether element1 is less than, equal to, or greater than

* element2.

466 CHAPTER 11 Sorting

*

*/

int compare (T element1, T element2);

We can implement the Comparator interface to override the natural ordering. For example, we can

implement the Comparator interface with a ByLength class that uses the “natural” ordering for String

objects of the same length, and otherwise returns the difference in lengths. Then the 3-character string

“yes” is considered greater than the 3-character string “and,” but less than the 5-character string “maybe.”

Here is the declaration of ByLength:

public class ByLength implements Comparator<String>

{

/**

* Compares two specified String objects lexicographically if they have the

* same length, and otherwise returns the difference in their lengths.

*

* @param s1 - one of the specified String objects.

* @param s2 - the other specified String object.

*

* @return s1.compareTo (s2) if s1 and s2 have the same length;

* otherwise, return s1.length() - s2.length().

*

*/

public int compare (String s1, String s2)

{

int len1 = s1.length(),

len2 = s2.length();

if (len1 == len2)

return s1.compareTo (s2);

return len1 - len2;

} // method compare

} // class ByLength

One advantage to using a Comparator object is that no changes need be made to the element class: the

compare method’s parameters are the two elements to be ordered. Leaving the element class unchanged

is especially valuable when, as with the String class, users are prohibited from modifying the class.

Here is a definition of Selection Sort, which sorts an array of objects according to a comparator that

compares any two objects:

/**

* Sorts a specified array into the order specified by a specified Comparator

* object.

* The worstTime(n) is O(n * n).

*

* @param x - the array to be sorted.

* @param comp - the Comparator object used for ordering.

*

* @throws NullPointerException - if x and/or comp is null.

*

*/

11.3 The Comparator Interface 467

public static void selectionSort (T [] x, Comparator comp)

{

// Make x [0 . . . i] sorted and <= x [i + 1] . . .x [x.length –1]:

for (int i = 0; i < x.length –1; i++)

{

int pos = i;

for (int k = i + 1; k < x.length; k++)

if (comp.compare (x [k], x [pos]) < 0)

pos = k;

swap (x, i, pos);

} // for i

} // method selectionSort

The corresponding swap method is:

public static void swap (Object[] x, int a, int b)

{

Object temp = x [a];

x [a] = x [b];

x [b] = temp;

} // swap

To complete the picture, here is a small program method that applies this version of selectionSort

(note that the enhanced for statement also works for arrays):

import java.util.*; // for the Comparator interface

public class SelectionSortExample

{

public static void main(String[] args)

{

new SelectionSortExample().run();

} // method main

public void run()

{

String[] words = {"Jayden", "Jack", "Rowan", "Brooke"};

selectionSort (words, new ByLength());

for (String s : words)

System.out.print (s + " ");

} // method run

} // class SelectionSortExample

The output will be

Jack Rowan Brooke Jayden

The material in this section will be helpful in Section 11.4.1, where we will encounter one of the sort

methods in the Java Collections Framework. For this method, called Merge Sort, the element type cannot

be primitive; it must be (reference to) Object, or subclass of Object. The method comes in four flavors:

468 CHAPTER 11 Sorting

the collection to be sorted can be either an array object or a List object, and the ordering may be

according to the Comparable interface or the Comparator interface. And Chapter 13 has a sort method

with similar flexibility.

In Section 11.4, we consider two important questions: For comparison-based sorts, is there a lower

bound for worstTime(n)? Is there a lower bound for averageTime(n)?

11.4 How Fast Can we Sort?

If we apply Insertion Sort, Selection Sort or (perish the thought) Bubble Sort, worstTime(n) and

averageTime(n) are quadratic in n . Before we look at some faster sorts, let’s see how much of an

improvement is possible. The tool we will use for this analysis is the decision tree. Given n elements to

be sorted, a decision tree is a binary tree in which each non-leaf represents a comparison between two

elements and each leaf represents a sorted sequence of the n elements. For example, Figure 11.1 shows a

decision tree for applying Insertion Sort in which the elements to be sorted are stored in the variables a1,

a2, and a3:

A decision tree must have one leaf for each permutation of the elements to be sorted2. The total

number of permutations of n elements is n!, so if we are sorting n elements, the corresponding decision

tree must have n! leaves. According to the Binary Tree Theorem, the number of leaves in any non-empty

binary tree t is <= 2height(t). Thus, for a decision tree t that sorts n elements,

n! <= 2height(t)

Taking logs, we get

height(t) >= log2(n!)

In other words, for any comparison-based sort, there must be a leaf whose depth is at least log2(n!). In

the context of decision trees, that means that there must be an arrangement of elements whose sorting

requires at least log2(n!) comparisons. That is, worstTime(n) >= log2(n!). According to Concept Exercise

11.7, log2(n!) >= n/2 log2(n/2), which makes n/2 log2(n/2) a lower bound of worstTime(n) for any

comparison-based sort. According to the material on lower bounds from Chapter 3, n/2 log2(n/2) is

�(n log n). So we can say, crudely, that n log n is a lower bound for worstTime(n). Formally, we have

a1 < a2?

yes no

a2 < a3? a1 < a3?

yes no yes no

a1 a2 a3 a1 < a3? a2 a1 a3 a2 < a3?

yes no yes no

a1 a3 a2 a3 a1 a2 a2 a3 a1 a3 a2 a1

FIGURE 11.1 A decision tree for sorting 3 elements by Insertion Sort

2For the sake of simplicity, we assume the collection to be sorted does not contain any duplicates.

11.4 How Fast Can we Sort? 469

Sorting Fact 1:

For comparison-based sorts, worstTime(n) is �(n log n).

What does Sorting Fact 1 say about upper bounds? We can say, for example, that for any comparison-based

sort, worstTime(n) is not O(n). But can we say that for any comparison-based sort, worstTime(n) is O(n

log n)? No, because for each of the sorts in Section 11.2, worstTime(n) is O(n2). We cannot even be sure,

at this point, that there are any comparison-based sorts whose worstTime(n) is O(n log n). Fortunately,

this is not some lofty, unattainable goal. For the comparison-based sort algorithms in Sections 11.4.1 and

13.4, worstTime(n) is O(n log n). When we combine that upper bound with the lower bound from Sorting

Fact 1, we will have several sort methods whose worstTime(n) is linear-logarithmic in n .

What about averageTime(n)? For any comparison-based sort, n log n is a lower bound of

averageTime(n) as well. To obtain this result, suppose t is a decision tree for sorting n elements. Then

t has n! leaves. The average, over all n! permutations, number of comparisons to sort the n elements is

the total number of comparisons divided by n!. In a decision tree, the total number of comparisons is the

sum of the lengths of all paths from the root to the leaves. This sum is the external path length of the

decision tree. By the External Path Length Theorem in Chapter 9, E(t) >= (n!/2) floor (log2(n!)). So we

get, for any positive integer n:

averageTime(n)>= average number of comparisons

= E(t)/n!

>= (n!/2)floor(log2(n!))/n!

= (1/2)floor(log2(n!))

>= (1/4)log2(n!)

>= (n/8)log2(n/2) [by Concept Exercise 11.7]

We conclude that n log n is a lower bound of averageTime(n). That is,

Sorting Fact 2:

For comparison-based sorts, averageTime(n) is � (n log n).

We noted that there are several sort methods whose worstTime(n) is linear-logarithmic in n . We can use

that fact to show that their averageTime(n) must also be linear-logarithmic in n . Why? Suppose we have

a sort algorithm for which worstTime(n) is linear-logarithmic in n . That is, crudely, n log n is both an

upper bound and a lower bound of worstTime(n). But averageTime(n) <= worstTime(n), so if n log n is

an upper bound of worstTime(n), n log n must also be an upper bound of averageTime(n). According to

Sorting Fact 2, n log n is a lower bound on averageTime(n). Since n log n is both an upper bound and a

lower bound of averageTime(n), we conclude that averageTime(n) must be linear-logarithmic in n . That is,

Sorting Fact 3:

For comparison-based sorts, if worstTime(n) is linear-logarithmic in n, then averageTime(n) must be

linear-logarithmic in n.

470 CHAPTER 11 Sorting

In Sections 11.4.1 and 11.4.3, we will study two sort algorithms, Merge Sort and Quick Sort, whose

averageTime(n) is linear-logarithmic in n . For Merge Sort, worstTime(n) is also linear-logarithmic in n ,

while for Quick Sort, worstTime(n) is quadratic in n . Strangely enough, Quick Sort is generally considered

the most efficient all-around sort. Quick Sort’s worst-case performance is bad, but for average-case, run-

time speed, Quick Sort is the best of the lot.

11.4.1 Merge Sort

The Merge Sort algorithm, in the Arrays class of the package java.util, sorts a collection of objects.

We start with two simplifying assumptions, which we will then dispose of. First, we assume the objects to

be sorted are in an array. Second, we assume the ordering is to be accomplished through the Comparable

interface.

The basic idea is to keep splitting the n-element array in two until, at some step, each of the subarrays

has size less than 7 (the choice of 7 is based on run-time experiments, see Bentley [1993]). Insertion Sort

is then applied to each of two, small-sized subarrays, and the two, sorted subarrays are merged together

into a sorted, double-sized subarray. Eventually, that subarray is merged with another sorted, double-sized

subarray to produce a sorted, quadruple-sized subarray. This process continues until, finally, two sorted

subarrays of size n/2 are merged back into the original array, now sorted, of size n .

Here is the method specification for Merge Sort:

/**

* Sorts a specified array of objects according to the compareTo method

* in the specified class of elements.

* The worstTime(n) is O(n log n).

*

* @param a - the array of objects to be sorted.

*

*/

public static void sort (Object[] a)

This method has the identifier sort because it is the only method in the Arrays class of the package

java.util for sorting an array of objects according to the Comparable interface. Later in this chapter

we will encounter a different sort method—also with the identifier sort—for sorting an array of values

from a primitive type. The distinction is easy to make from the context, namely, whether the argument is

an array of objects or an array from a primitive type such as int or double.

Example To start with a small example of Merge Sort, here are the int values in an array of Integer
objects:

59 46 32 80 46 55 87 43 44 81

We use an auxiliary array, aux. We first clone the parameter a into aux. (Cloning is acceptable here because

an array object cannot invoke a copy constructor.) We now have two arrays with (separate references to)

identical elements. The recursive method mergeSort is then called to sort the elements in aux back into

a. Here is the definition of the sort method:

public static void sort (Object[] a)

{

Object aux[] = (Object [])a.clone();

mergeSort (aux, a, 0, a.length);

} // method sort

11.4 How Fast Can we Sort? 471

The method specification for mergeSort is

/**

* Sorts, by the Comparable interface, a specified range of a specified array

* into the same range of another specified array.

* The worstTime(k) is O(k log k), where k is the size of the subarray.

*

* @param src – the specified array whose elements are to be sorted into another

* specified array.

* @param dest – the specified array whose subarray is to be sorted.

* @param low – the smallest index in the range to be sorted.

* @param high – 1 + the largest index in the range to be sorted.

*

*/

private static void mergeSort (Object src[], Object dest[], int low, int high)

The reason we have two arrays is to make it easier to merge two sorted subarrays into a larger subarray.

The reason for the int parameters low and high is that their values will change when the recursive calls

are made. Note that high’s value is one greater than the largest index of the subarray being mergeSorted.3

When the initial call to mergeSort is made with the example data, Insertion Sort is not performed

because high – low >= 7. (The number 7 was chosen based on run-time experiments.) Instead, two

recursive calls are made:

mergeSort (a, aux, 0, 5);

mergeSort (a, aux, 5, 10);

When the first of these calls is executed, high –low = 5 − 0 < 7, so Insertion Sort is performed on the

first five elements of aux:

a [0 . . . 4] = {59, 46, 32, 80, 46}

aux [0 . . . 4] = {32, 46, 46, 59, 80}

In general, the two arrays will be identical until an Insertion Sort is performed. When the second recursive

call is made, high –low = 10–5, so Insertion Sort is performed on the second five elements of aux:

a [5 . . . 9] = {55, 87, 43, 44, 81}

aux [5 . . . 9] = {43, 44, 55, 81, 87}

Upon the completion of these two calls to mergeSort, the ten elements of aux, in two sorted subarrays

of size 5, are merged back into a, and we are done. The merging is accomplished with the aid of two

indexes, p and q. In this example, p starts out as 0 (the low index of the left subarray of aux) and q starts

out as 5 (the low index of the right subarray of aux). In the following figure, arrows point from p and q

to the elements at aux [p] and aux [q]:

aux 32 46 46 59 80 43 44 55 81 87

p q

3Technically, there is a fifth parameter. But since we assume that the entire array is being sorted, we can ignore that parameter.

472 CHAPTER 11 Sorting

The smaller of aux [p] and aux [q] is copied to a [p] and then the index, either p or q, of that smaller

element is incremented:

aux 32

a 32

46 46 59 80 43 44 55 81 87

p q

The process is repeated: the smaller of aux [p] and aux [q] is copied to the next location in the array

a, and then the index, either p or q, of that smaller element is incremented:

aux 32 46

a 32 43

46 59 80 43 44 55 81 87

p q

The next three iterations will copy 44, 46, and 46 into a. The process continues until all of the elements

from both subarrays have been copied into a. Since each iteration copies one element to a, merging two

subarrays of the same size requires exactly twice as many iterations as the size of either subarray. In

general, to merge n/k subarrays, each of size k , requires exactly n iterations.

Figure 11.2 summarizes the sorting the above array of ten elements.

aux 59 46 32 80 46 55 87 43 44 81

mergeSort(aux, a, 0,10)

a 59 46 32 80 46 55 87 43 44 81

mergeSort

(a, aux,0, 5)

mergeSort

(a, aux, 5, 10)

Insertion Sort Insertion Sort

aux 32 46 46 59 80 43 44 55 81 87

merge

a 32 43 44 46 46 55 59 81 8780

FIGURE 11.2 The effect of a call to mergeSort on an array of 10 elements

Figure 11.3 incorporates the above example in merge sorting an array of 20 elements. Two pairs of

recursive calls are required to merge sort 20 elements.

The successive calls to mergeSort resemble a ping-pong match:

aux −−−−−−→ a −−−−−−→ aux −−−−−−→ a −−−−−−→ aux −−−−−−→ a

11.4 How Fast Can we Sort? 473

aux 59 46 80 46 55 50 43 44 81 12 95 17 80 75 33 40 61 16 87

mergeSort (aux, a, 0, 20)

a 59 46 32 80 46 55 50 43 44 81 12 95 17 80 75 33 40 61 87

mergeSort

(a, aux, 0, 10)

mergeSort

(a, aux 10, 20)

aux 59 46 32 80 46 5055 43 44 81 12 95 17 80 75 33 40 61 16 87

mergeSort

(aux, a, 0, 5)

mergeSort

(aux, a,5,10)

mergeSort

(aux, a, 10, 15)

 mergeSort

(aux, a, 15, 20)

Insertion Sort Insertion Sort Insertion Sort Insertion Sort

a 32 46 46 59 80 43 44 50 55 81 12 17 75 80 95 16 33 40 61 87

merge merge

aux 32 43 44 46 46 50 55 59 80 81 12 16 17 33 40 61 75 80 81 95

merge

a 12 16 17 32 33 40 43 44 46 46 50 55 59 61 75 80 80 80 81 87 95

32

16

FIGURE 11.3 The effect of a call to mergeSort on an array of 20 elements

The original call, from within the sort method, is always of the form

mergeSort (aux, a, . . .);

So after all of the recursive calls have been executed, the sorted result ends up in a. After the Insertion

Sorting has been completed for the two successive subarrays in the recursive call to mergeSort, a merge

of those sorted subarrays is performed, and that completes a recursive call to mergeSort.

Here is the complete mergeSort method, including an optimization (starting with //If left

subarray . . .) that you can safely ignore.

/**

* Sorts, by the Comparable interface, a specified range of a specified array

* into the same range of another specified array.

* The worstTime(k) is O(k log k), where k is the size of the subarray.

*

* @param src - the specified array whose range is to be sorted into another

* specified array.

474 CHAPTER 11 Sorting

* @param dest - the specified array whose subarray is to be sorted.

* @param low: the smallest index in the range to be sorted.

* @param high: 1 + the largest index in the range to be sorted.

*

*/

private static void mergeSort (Object src[], Object dest[], int low, int high)

{

int length = high - low;

// Use Insertion Sort for small subarrays.

if (length < INSERTIONSORT_THRESHOLD /* = 7*/)

{

for (int i = low; i < high; i++)

for (int j = i; j >low && ((Comparable)dest[j - 1])

.compareTo(dest[j]) > 0; j--)

swap (dest, j, j-1);

return

} // if length < 7

// Sort left and right halves of src into dest.

int mid = (low + high) >> 1; // >> 1 has same effect as / 2, but is faster

mergeSort (dest, src, low, mid);

mergeSort (dest, src, mid, high);

// If left subarray less than right subarray, copy src to dest.

if (((Comparable)src [mid-1]).compareTo (src [mid]) <= 0)

{

System.arraycopy (src, low, dest, low, length);

return;

}

// Merge sorted subarrays in src into dest.

for (int i = low, p = low, q = mid; i < high; i++)

if (q>=high || (p<mid && ((Comparable)src[p]).compareTo (src[q])<= 0))

dest [i] = src [p++];

else

dest[i] = src[q++];

} // method mergeSort

Analysis We want to get an upper bound on worstTime(n), where n is the number of elements to be sorted.

There are four phases: cloning, calls to mergeSort, Insertion Sorting, and merging.

The cloning requires n iterations.

Let L (for “levels”) be the number of pairs of recursive calls to mergeSort. The initial splitting

into subarrays requires approximately L statements (that is, L pairs of recursive calls). L is equal to the

number of times that n is divided by 2. By the Splitting Rule from Chapter 3, the number of times that

n can be divided by 2 until n equals 1 is log2 n . But when the size of a subarray is less than 7, we stop

dividing by 2. So L is approximately log2(n/ 6).

For the Insertion Sort phase, we have fewer than n subarrays, each of size less than 7. The maximum

number of iterations executed when Insertion Sort is applied to each one of these subarrays is less than

11.4 How Fast Can we Sort? 475

36 because Insertion Sort’s worst time is quadratic in the number of elements. So the total number of

iterations for this phase is less than 36n .

Finally, the merging back into double-sized subarrays takes, approximately, L times the number of

iterations per level, that is, log2(n/6) times the number of iterations executed at any level. At any level,

exactly n elements are copied from a to aux (or from aux to a). So the total number of iterations is,

approximately, n log2(n/6).

The total number of iterations is less than

n + log2(n/6) + 36n + log2(n/6) ∗ n

From this we conclude that worstTime(n) is less than

n + log2(n/6) + 36n + nlog2(n/6).

That is, worstTime(n) is O(n log n). By Sorting Fact 1 in Section 13.3, for any comparison-based sort,

worstTime(n) is �(n log n). Since n log n is both an upper bound and a lower bound of worstTime(n),

worstTime(n) must be linear-logarithmic in n (that is, �(n log n): Big Theta of n log n) That implies, by

Sorting Fact 3, that averageTime(n) is also linear-logarithmic in n .

Not only is mergeSort as good as you can get in terms of estimates of worstTime(n) and

averageTime(n), but the actual number of comparisons made is close to the theoretical minimum (see

Kruse [1987], pages 251–254).

What is worstSpace(n)? The temporary array aux, of size n , is created before mergeSort is called.

During the execution of mergeSort, activation records are created at each level. At the first level, two

activation records are created; at the second level, four activation records are created; and so on. The total

number of activation records created is

2 + 4 + 8 + 16 + . . . + 2L =

L
∑

i=1

2i = 2L+1 − 2

(The result on the sum of powers of 2 is from Exercise A2.6 in Appendix 2). Since L ∼ log2(n/7), and

2log2
n

= n

we conclude that the total number of activation records created is linear in n . When we add up the linear-

in-n space for aux and the linear-in-n space for activation records, we conclude that worstSpace(n) is

linear in n .

Both the Insertion Sorting phase and the merging phase preserve the relative order of elements. That

is, mergeSort is a stable sort.

11.4.1.1 Other Merge Sort Methods

The Arrays class also has a version of Merge Sort that takes a Comparator parameter:

public static void sort (T [], Comparator<? super T> c)

The essential difference between this version and the Comparable version is that an expression such as

(Comparable)dest[j-1]).compareTo(dest[j])>0

is replaced with

c.compare(dest[j-1], dest[j])>0

476 CHAPTER 11 Sorting

For example, suppose words is an array of String objects. To perform Merge Sort on words by the

lengths of the strings (but lexicographically for equal-length strings), we utilize the ByLength class from

Section 11.3:

Arrays.sort (words, new ByLength());

The Collections class, also in the package java.util, has two versions—depending on whether or

not a comparator is supplied—of a Merge Sort method. Each version has a List parameter and starts

by copying the list to an array. Then the appropriate version of sort from the Arrays class is called.

Finally, during an iteration of the list, each element is assigned the value of the corresponding element in

the array. Here, for example, is the Comparator version:

/**

* Sorts a specified List object of elements from class E according to a

* specified Comparator object.

* The worstTime(n) is O(n log n).

*

* @param list - the List object to be sorted.

* @param c - the Comparator object that determines the ordering of elements.

*

*/

public static void sort (List list, Comparator<? super T> c)

{

Object a[] = list.toArray();

Arrays.sort(a, c);

ListIterator i = list.listIterator();

for (int j=0; j<a.length; j++)

{

i.next();

i.set(a[j]);

} // for

} // method sort

Both versions of Merge Sort in the Collections class work for any class that implements the List

interface, such as ArrayList and LinkedList. The run-time will be somewhat slower than for the

Arrays -class versions because of the copying from the list to the array before sorting and the copying

from the array to the list after sorting.

One limitation to the current versions of Merge Sort is that they do not allow an array of primitives

to be merge sorted. The effect of this restriction can be overcome by merge sorting the corresponding

array of objects. For example, to Merge Sort an array of int values, create an array of Integer objects,

convert each int value to the corresponding Integer object, apply Merge Sort to the array of Integer

objects, then convert the Integer array back to an array of int values. But this roundabout approach

will increase the run time for merge sorting.

11.4.2 The Divide-and-Conquer Design Pattern

The mergeSort method is an example of the Divide-and-Conquer design pattern. Every divide-and-

conquer algorithm has the following characteristics:

• the method consists of at least two recursive calls to the method itself;

11.4 How Fast Can we Sort? 477

• the recursive calls are independent and can be executed in parallel;

• the original task is accomplished by combining the effects of the recursive calls.

In the case of mergeSort, the sorting of the left and right subarrays can be done separately, and then the

left and right subarrays are merged, so the requirements of a divide-and-conquer algorithm are met.

How does a divide-and-conquer algorithm differ from an arbitrary recursive algorithm that includes

two recursive calls? The difference is that, for an arbitrary recursive algorithm, the recursive calls need

not be independent. For example, in the Towers of Hanoi problem, n–1 disks had to be moved from the

source to the temporary pole before the same n–1 disks could be moved from the temporary pole to the

destination. Note that the original Fibonacci method from Lab 7 was a divide-and-conquer algorithm, but

the fact that the two method calls were independent was an indication of the method’s gross inefficiency.

Section 11.4.3 has another example of the divide-and-conquer design pattern.

11.4.3 Quick Sort

One of the most efficient and, therefore, widely used sorting algorithms is Quick Sort, developed by

C.A.R. Hoare [1962]. The generic algorithm sort is a Quick Sort algorithm based on “Engineering a

Sort Function” (see Bentley [1993]). In the Arrays class, Quick Sort refers to any method named sort

whose parameter is an array of primitive values, and Merge Sort refers to any method named sort whose

parameter is an array of objects.

There are seven versions4 of Quick Sort in the Arrays class: one for each primitive type (int, byte,

short, long, char, double, and float) except boolean. The seven versions are identical, except for

the specific type information; there is no code re-use. We will illustrate Quick Sort on the int version and,

for simplicity, assume that the entire array is to be sorted. The actual code, somewhat harder to follow,

allows a specified subarray to be sorted. Here is the (simplified) method specification and definition:

/**

* Sorts a specified array of int values into ascending order.

* The worstTime(n) is O(n * n), and averageTime(n) is O(n log n).

*

* @param a - the array to be sorted.

*

*/

public static void sort (int[] a)

{

sort1(a, 0, a.length);

} // method sort

The private sort1 method has the following method specification:

/**

* Sorts into ascending order the subarray of a specified array, given

* an initial index and subarray length.

* The worstTime(n) is O(n * n) and averageTime(n) is O(n log n),

4Actually, there are fourteen versions, because for each primitive type, there is a version that allows Quick Sort to be applied to an entire

array, and another version for a specified subarray.

478 CHAPTER 11 Sorting

* where n is the length of the subarray to be sorted.

*

* @param x - the array whose subarray is to be sorted.

* @param off - the start index in x of the subarray to be sorted.

* @param len - the length of the subarray to be sorted.

*

*/

private static void sort1(int x[], int off, int len)

The basic idea behind the sort1 method is this: we first partition the array x into a left subarray and a

right subarray so that each element in the left subarray is less than or equal to each element in the right

subarray. The sizes of the subarrays need not be the same. We then Quick Sort the left and right subarrays,

and we are done. Since this last statement is easily accomplished with two recursive calls to sort1, we

will concentrate on the partitioning phase.

Let’s start with the essentials; in Section 11.4.3.1, we’ll look at some of the finer points. The first

task in partitioning is to choose an element, called the pivot , that each element in x will be compared to.

Elements less than the pivot will end up in the left subarray, and elements greater than the pivot will end

up in the right subarray. Elements equal to the pivot may end up in either subarray.

What makes Quick Sort fast? With other sorts, it may take many comparisons to put an element

in the general area where is belongs. But with Quick Sort, a partition can move many elements close to

where they will finally end up. This assumes that the value of the pivot is close to the median5 of the

elements to be partitioned. We could, of course, sort the elements to be partitioned and then select the

median as the pivot. But that begs the question of how we are going to sort the elements in the first place.

How about choosing x [off]—the element at the start index of the subarray to be sorted—as the

pivot? If the elements happen to be in order (a common occurrence), that would be a bad choice. Why?

Because the left subarray would be empty after partitioning, so the partitioning would reduce the size of

the array to be sorted by only one. Another option is to choose x [off + len/2] as the pivot, that is, the

element in the middle position. If the range happens to be in order, that is the perfect choice; otherwise,

it is as good a blind choice as any other.

With a little extra work, we can substantially increase the likelihood that the pivot will split the

range into two subarrays of approximately equal size. The pivot is chosen as the median of the elements

at indexes off, off + len/2, and off + len -1. The median of those three elements is taken as a

simply calculated estimate of the median of the whole range.

Before looking at any more details, let’s go through an example.

Example We start with the usual sample of twenty values given earlier:

59 46 32 80 46 55 50 43 44 81 12 95 17 80 75 33 40 61 16 87

In this case, we choose the median of the three int values at indexes 0, 10, and 19. The median of 59, 12,

and 87 is 59, so that is the original pivot.

5The median of a collection of values is the value that would be in the middle position if the collection were sorted. For example, the median

of

100 32 77 85 95

is 85. If the collection contains an even number of values, the median is the average of the two values that would be in the two middle

positions if the collection were sorted. For example, the median of

100 32 77 85 95 80

is 82.5.

11.4 How Fast Can we Sort? 479

We now want to move to the left subarray all the elements that are less than 59 and move to the right

subarray all the elements that are greater than 59. Elements with a value of 59 may end up in either

subarray, and the two subarrays need not have the same size.

To accomplish this partitioning, we create two counters: b, which starts at off and moves upward,

and c, which starts at off + len - 1 and moves downward. There is an outer loop that contains two

inner loops. The first of these inner loops increments b until x [b] >= pivot. Then the second inner

loop decrements c until x [c] <= pivot. If b is still less than or equal to c when this second inner

loop terminates, x [b] and x [c] are swapped, b is incremented, c is decremented, and the outer loop

is executed again. Otherwise, the outer loop terminates.

The reason we loop until x [b] >= pivot instead of x [b] > pivot is that there might not be

any element whose value is greater than the pivot. In Section 11.4.3.1, we’ll see a slightly different loop

condition to avoid stopping at, and therefore swapping, the pivot.

For the usual sample of values, pivot has the value 59, b starts at 0 and c starts at 19. In Figure 11.4,

arrows point from an index to the corresponding element in the array:

pivot

59

59 46 32 80 46 55 50 43 44 81 12 95 17 80 75 33 40 61 16 87

b c

FIGURE 11.4 The start of partitioning

The first inner loop terminates immediately because x [b] = 59 and 59 is the pivot. The second

inner loop terminates when c is decremented to index 18 because at that point, x [c] = 16 < 59. When

59 and 16 are swapped and b and c are bumped, we get the situation shown in Figure 11.5.

pivot

59

16 46 32 80 46 55 50 43 44 81 12 95 17 80 75 33 40 61 59 87

b c

FIGURE 11.5 The state of partitioning after the first iteration of the outer loop

Now b is incremented twice more, and at that point we have x [b] = 80 > 59. Then c is decremented

once more, to where x [c] = 40 < 59. After swapping x [b] with x [c] and bumping b and c, we

have the state shown in Figure 11.6.

During the next iteration of the outer loop, b is incremented five more times, c is not decremented,

81 and 33 are swapped, then the two counters are bumped, and we have the state shown in Figure 11.7.

480 CHAPTER 11 Sorting

pivot

59

16 46 32 40 46 55 50 43 44 81 12 95 17 80 75 33 80 61 59 87

b c

FIGURE 11.6 The state of partitioning after the second iteration of the outer loop

pivot

59

16 46 32 40 46 55 50 43 44 33 12 95 17 80 75 81 80 61 59 87

b c

FIGURE 11.7 The state of partitioning after the third iteration of the outer loop

During the next iteration of the outer loop, b is incremented once (x [b] = 95), and c is decremented

twice (x [c] = 17). Then 95 and 17 are swapped, and b and c are bumped. See Figure 11.8.

All of the elements in the subarray at indexes 0 through c are less than or equal to the pivot, and

all the elements in the subarray at indexes b through 19 are greater than or equal to the pivot.

We finish up by making two recursive calls to sort1:

sort1 (x, off, c + 1 - off); // for this example, sort1 (x, 0, 12);

sort1 (x, b, off + len –b); // for this example, sort1 (x, 12, 8);

In this example, the call to sort1 (x, off, c + 1 - off) will choose a new pivot, partition the

subarray of 12 elements starting at index 0, and make two calls to sort1. After those two calls (and their

recursive calls) are completed, the call to sort1 (x, b, off + len –b) will choose a new pivot, and

so on. If we view each pair of recursive calls as the left and right child of the parent call, the execution

of the calls in the corresponding binary tree follows a preOrder traversal: the original call, then the left

child of that call, then the left child of that call, and so on. This leftward chain stops when the subarray

to be sorted has fewer than two elements.

pivot

59

16 46 32 40 46 55 50 43 44 33 12 17 95 80 75 81 80 61 59 87

b c

FIGURE 11.8 The state of partitioning after the outer loop is exited

11.4 How Fast Can we Sort? 481

After partitioning, the left subarray consists of the elements from indexes off through c, and the

right subarray consists of the elements from indexes b through off + len –1. The pivot need not end up

in either subarray. For example, suppose at some point in sorting, the subarray to be partitioned contains

15 45 81

The pivot, at index 1, is 45, and both b and c move to that index in searching for an element greater than

or equal to the pivot and less than or equal to the pivot, respectively. Then (wastefully) x [b] is swapped

with x [c], b is incremented to 2, and c is decremented to 0. The outer loop terminates, and no further

recursive calls are made because the left subarray consists of 15 alone, and the right subarray consists of

81 alone. The pivot is, and remains, where it belongs.

Similarly, one of the subarrays may be empty after a partitioning. For example, if subarray to be

partitioned is

15 45

The pivot is 45, both b and c move to that index, 45 is swapped with itself, b is incremented to 2 and c

is decremented to 0. The left subarray consists of 15 alone, the pivot is in neither subarray, and the right

subarray is empty.

Here is the method definition for the above-described version of sort1 (the version in the Arrays

class has a few optimizations, discussed in Section 11.4.3.1):

/**

* Sorts into ascending order the subarray of a specified array, given

* an initial index and subarray length.

* The worstTime(k) is O(n * n) and averageTime(n) is O(n log n),

* where n is the length of the subarray to be sorted.

*

* @param x - the array whose subarray is to be sorted.

* @param off - the start index in x of the subarray to be sorted.

* @param len - the length of the subarray to be sorted.

*

*/

private static void sort1(int x[], int off, int len)

{

// Choose a pivot element, v

int m = off + (len >> 1),

l = off,

n = off + len - 1;

m = med3 (x, l, m, n); // median of 3

int v = x [m]; // v is the pivot

int b = off,

c = off + len - 1;

while(true)

{

while (b <= c && x [b] < v)

b++;

while (c >= b && x [c] > v)

c--;

482 CHAPTER 11 Sorting

if (b > c)

break;

swap (x, b++, c--);

} // while true

if (c + 1 –off > 1)

sort1 (x, off, c + 1 –off);

if (off + len –b > 1)

sort1 (x, b, off + len -b);

} // method sort1

/**

* Finds the median of three specified elements in a given array..

*

* @param x - the given array.

* @param a - the index of the first element.

* @param b - the index of the second element.

* @param c - the index of the third element

*

* @return the median of x [a], x [b], and x [c].

*

*/

private static int med3(int x[], int a, int b, int c) {

return (x[a] < x[b] ?

(x[b] < x[c] ? b : x[a] < x[c] ? c : a) :

(x[b] > x[c] ? b : x[a] > x[c] ? c : a));

} // method med3

/**

* Swaps two specified elements in a specified array.

*

* @param x – the array in which the two elements are to be swapped.

* @param a – the index of one of the elements to be swapped.

* @param b – the index of the other element to be swapped.

*

*/

private static void swap(int x[], int a, int b) {

int t = x[a];

x[a] = x[b];

x[b] = t;

} // method swap

Analysis We can view the effect of sort1 as creating an imaginary binary search tree, whose root element

is the pivot and whose left and right subtrees are the left and right subarrays. For example, suppose we call

Quick Sort for the following array of 15 integers

68 63 59 77 98 87 84 51 17 12 8 25 42 35 31

11.4 How Fast Can we Sort? 483

51

25 77

12 35 63 87

8 17 31 59 9842 8468

FIGURE 11.9 The imaginary binary search tree created by repeated partitions, into equal sized subarrays, of the

array [68 63 59 77 98 87 84 51 17 12 8 25 42 35 31]

The first pivot chosen is 51; after the first partitioning, the pivot of the left subarray is 25 and the pivot

of the right subarray is 77. Figure 11.9 shows the full binary-search-tree induced during the sorting of

the given array. In general, we get a full binary search tree when each partition splits its subarray into

two subarrays that have the same size. We would also get such a tree if, for example, the elements were

originally in order or in reverse order, because then the pivot would always be the element at index off

+ len/2, and that element would always be the actual median of the whole sequence.

Contrast the above tree with the tree shown in Figure 11.10. The tree in Figure 11.10 represents the

partitioning generated, for example, by the following sequence of 38 elements (the pivot is the median of

1, 37, and 36):

1, 2, 3, . . ., 17, 18, 0, 37, 19, 20, 21, . . , 35, 36

The worst case will occur when, during each partition, the pivot is either the next-to-smallest or next-to-

largest element. That is what happens for the sequence that generated the tree in Figure 11.10.

For any array to be sorted, the induced binary search tree can help to determine how many compar-

isons are made in sorting the tree. At level 0, each element is compared to the original pivot, for a total of

approximately n loop iterations (there will be an extra iteration just before the counters cross). At level 1,

there are two subarrays, and each element in each subarray is compared to its pivot, for a total of about n

iterations. In general, there will be about n iterations at each level, and so the total number of iterations

will be, approximately, n times the number of levels in the tree.

We can now estimate the average time for the method sort1. The average is taken over all n!

initial arrangements of elements in the array. At each level in the binary search tree that represents the

partitioning, about n iterations are required. The number of levels is the average height of that binary

search tree. Since the average height of a binary search tree is logarithmic in n , we conclude that the

total number of iterations is linear-logarithmic in n . That is, averageTime(n) is linear-logarithmic in n. By

Sorting Fact 2 in Section 11.3.1, the averageTime(n) for Quick Sort is optimal.

In the worst case, the first partition requires about n iterations and produces a subarray of size n − 2

(and another subarray of size 1). When this subarray of size n − 2 is partitioned, about n − 2 iterations

are required, and a subarray of size n − 4 is produced. This process continues until the last subarray, of

size 2 is partitioned. The total number of iterations is approximately n + (n − 2) + (n − 4) + · · · + 4 + 2,

which is, approximately, n2/4. We conclude that worstTime(n) is quadratic in n .

484 CHAPTER 11 Sorting

36

1 37

0 34

3 35

2 32
.
.

.

FIGURE 11.10 Worst-case partitioning: each partition reduces by only 2 the size of the subarray to be Quick

Sorted. The corresponding binary search tree has a leaf at every non-root level. The subtrees below 32 are not

shown

Quick Sort’s space needs are due to the recursive calls, so the space estimates depend on the longest

chain of recursive calls, because that determines the maximum number of activation records in the run-

time stack. In turn, the longest chain of recursive calls corresponds to the height of the induced binary

search tree. In the average case, that height is logarithmic in n , and we conclude that averageSpace(n) is

logarithmic in n . In the worst case, that height is linear in n , so worstSpace(n) is linear in n .

Quick Sort is not a stable sort. For example, in the example given at the beginning of this section,

there are two copies of 80. The one at index 3 is swapped into index 16, and the one at index 13 remains

where it starts.

Quick Sort is another example of the Divide-and-Conquer design pattern. Each of the recursive calls

to sort1 can be done in parallel, and the combined effect of those calls is a sorted array.

11.4.3.1 Optimizations to the Quick Sort Algorithm

The Arrays class’s sort1 method has several modifications to the definition given in Section 11.4.3. The

modifications deal with handling small subarrays, handling large subarrays, and excluding the pivot (and

elements equal to the pivot) from either subarray.

The partitioning and Quick Sorting continues only for subarrays whose size is at least 7. For subarrays

of size less than 7, Insertion Sort is applied. This avoids using the partitioning and recursive-call machinery

for a task that can be handled efficiently by Insertion Sort. The choice of 7 for the pivot is based on empirical

tests described in Bentley [1993]. For arrays of size 7, the pivot is chosen as the element at the middle

index, that is, pivot = x [off + (len >> 1)]. (Recall that len >> 1 is a fast way to calculate

len/2.) For arrays of size 8 through 40, the pivot is chosen—as we did in Section 11.4.3—as the median

of the three elements at the first, middle, and last indexes of the subarray to be partitioned.

For subarrays of size greater than 40, an extra step is made to increase the likelihood that the pivot

will partition the array into subarrays of about the same size. The region to be sorted is divided into three

parts, the median-of-three technique is applied to each part, and then the median of those three medians

becomes the pivot. For example, if off = 0 and len = 81, Figure 11.11 shows how the pivot would

11.4 How Fast Can we Sort? 485

139 … 287 … 275 … 407 … 258 … 191 … 260 … 126 … 305

x[0] x[10] x[20] x[30] x[40] x[50] x[60] x[70] x[80]

275 258 260

260

FIGURE 11.11 The calculation of the pivot as the median of three medians. The median of (139, 287, 275) is

275; the median of (407, 258, 191) is 258; the median of (260, 126, 305) is 260. The median of (275, 258, 260)

is 260, and that is chosen as the pivot

be calculated for a sample arrangement of the array x. These extra comparisons have a price, but they

increase the likelihood of an even split during partitioning.

There are two additional refinements, both related to the pivot. Instead of incrementing b until an

element greater than or equal to the pivot is found, the search is given by

while (b <= c && x[b] <= v)

A similar modification is made in the second inner loop. This appears to be an optimization because the

pivot won’t be swapped, but the inner-loop conditions also test b <= c. That extra test may impede the

speed of the loop more than avoiding needless swaps would enhance speed.

That refinement enables another pivot-related refinement. For the sort1 method defined above, the

pivot may end up in one of the subarrays and be included in subsequent comparisons. These comparisons

can be avoided if, after partitioning, the pivot is always stored where it belongs. Then the left subarray

will consist of elements strictly less than the pivot, and the right subarray will consist of elements strictly

greater than the pivot. Then the pivot—indeed, all elements equal to the pivot—will be ignored in the rest

of the Quick Sorting.

To show you how this can be accomplished, after the execution of the outer loop the relation of

segments of the subarray to the pivot v will be as shown in Figure 11.12.

At this point, equal-to-pivot elements are swapped back into the middle of the subarray. The left and

right subarrays in the recursive calls do not include the equal-to-pivot elements.

As the partitioning of a subarray proceeds, the equal-to-pivot elements are moved to the beginning

and end of the subarray with the help of a couple of additional variables:

int a = off,

d = off + len – 1;

= v < v > v = v

off off+len-1bc

FIGURE 11.12 The relationship of the pivot v to the elements in the subarray to be partitioned. The leftmost

segment and rightmost segment consist of copies of the pivot

486 CHAPTER 11 Sorting

The index a will be one more than highest index of an equal-to-pivot element in the left subarray, and d

will be one less than the lowest index of an equal-to-pivot element in the right subarray. In the first inner

loop, if x [b] = v, we call

swap (x, a++, b);

Similarly, in the second inner loop, if x [c] = v, we call

swap (x, c, d–);

Figure 11.13 indicates where indexes a and d would occur in Figure 11.12.

= v < v > v = v

off a c b d off+len-1

FIGURE 11.13 A refinement of Figure 11.12 to include indexes a and d

For an example that has several copies of the pivot, suppose we started with the following array of

20 ints:

59 46 59 80 46 55 87 43 44 81 95 12 17 80 75 33 40 59 16 50

During partitioning, copies of 59 are moved to the leftmost and rightmost part of the array. After b and c

have crossed, we have the arrangement shown in Figure 11.14.

59 59 46 4650 55 16 43 44 40 33 12 17 80 75 95 81 80 87 59

a dc b

FIGURE 11.14 The status of the indexes a, b, c, and d after partitioning

Now all the duplicates of 59 are swapped into the middle, as shown in Figure 11.15.

59 59 46 4650 55 16 43 44 40 33 12 17 80 75 95 81 80 87 59

FIGURE 11.15 The swapping of equal-to-pivot elements to the middle of the array

We now have the array shown in Figure 11.16:

12 17 46 50 46 55 16 43 44 40 33 59 59 59 75 95 81 87 8080

FIGURE 11.16 The array from Figure 11.15 after the swapping

11.4 How Fast Can we Sort? 487

The next pair of recursive calls is:

sort1 (x, 0, 11);

sort1 (x, 14, 6);

The duplicates of 59, at indexes 11, 12, and 13, are in their final resting place.

Here, from the Arrays class, is the complete definition (the swap and med3 method definitions were

given in Section 11.4.3):

/**

* Sorts into ascending order the subarray of a specified array, given

* an initial index and subarray length.

* The worstTime(n) is O(n * n) and averageTime(n) is O(n log n),

* where n is the length of the subarray to be sorted.

*

* @param x - the array whose subarray is to be sorted.

* @param off - the start index in x of the subarray to be sorted.

* @param len - the length of the subarray to be sorted.

*

*/

private static void sort1(int x[], int off, int len)

{

// Insertion sort on smallest arrays

if (len < 7) {

for (int i=off; i<len+off; i++)

for (int j=i; j>off && x[j-1]>x[j]; j--)

swap(x, j, j-1);

return;

}

// Choose a partition element, v

int m = off + (len >> 1); // Small arrays, middle element

if (len > 7) {

int l = off;

int n = off + len - 1;

if (len > 40) { // Big arrays, pseudomedian of 9

int s = len/8;

l = med3(x, l, l+s, l+2*s);

m = med3(x, m-s, m, m+s);

n = med3(x, n-2*s, n-s, n);

}

m = med3(x, l, m, n); // Mid-size, med of 3

}

int v = x[m]; // v is the pivot

// Establish Invariant: = v; < v; > v; = v

int a = off, b = a, c = off + len - 1, d = c;

while(true) {

while (b <= c && x[b] <= v) {

if (x[b] == v)

488 CHAPTER 11 Sorting

swap(x, a++, b);

b++;

}

while (c >= b && x[c] >= v) {

if (x[c] == v)

swap(x, c, d--);

c--;

}

if (b > c)

break;

swap(x, b++, c--);

}

// Swap partition elements back to middle

int s, n = off + len;

s = Math.min(a-off, b-a); vecswap(x, off, b-s, s);

s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);

// Recursively sort non-partition-elements

if ((s = b-a) > 1)

sort1(x, off, s);

if ((s = d-c) > 1)

sort1(x, n-s, s);

}

/**

* Swaps the elements in two specified subarrays of a given array.

* The worstTime(n) is O(n), where n is the number of pairs to be swapped.

*

* @param x – the array whose subarrays are to be swapped.

* @param a – the start index of the first subarray to be swapped.

* @param b – the start index of the second subarray to be swapped.

* @param n – the number of elements to be swapped from each subarray.

*

*/

private static void vecswap(int x[], int a, int b, int n) {

for (int i=0; i<n; i++, a++, b++)

swap(x, a, b);

} // method vecswap

With these optimizations, the results of the analysis in Section 11.4.3 still hold. For example, we now

show that if Quick Sort is applied to a large array, worstTime(n) will still be quadratic in n . For n> 40,

the worst case occurs when the 9 elements involved in the calculation of the median of medians are the

five smallest and four largest elements. Then the fifth-smallest element is the best pivot possible, and the

partitioning will reduce the size of the subarray by 5. In partitioning the subarray of size n − 5, we may

have the four smallest and five largest tested for median of medians, and the size will again be reduced

by only 5. Since the number of iterations at each level is, approximately, the size of the subarray to be

11.5 Radix Sort 489

partitioned, the total number of iterations is, approximately,

n + (n − 5) + (n − 10) + (n − 15) + · · · + 45

which is, approximately, n2/10. That is, worstTime(n) is quadratic in n .

For a discussion of how, for any positive integer n , to create an array of int values for which Quick

Sort takes quadratic time, see McIlroy [1999].

One debatable issue with the above Quick Sort algorithm is its approach to duplicates of the chosen

pivot. The overall algorithm is significantly slowed by the test for equality in the inner loops of sort1.

Whether this approach enhances or diminishes efficiency depends on the number of multiple pivot copies

in the array.

We finish up this chapter with a sort method that is not comparison-based, and therefore essentially

different from the other sort methods we have seen.

11.5 Radix Sort

Radix Sort is unlike the other sorts presented in this chapter. The sorting is based on the internal represen-

tation of the elements to be sorted, not on comparisons between elements. For this reason, the restriction

that worstTime(n) can be no better than linear-logarithmic in n no longer applies.

Radix Sort was widely used on electromechanical punched-card sorters that appear in old FBI movies.

The interested reader may consult Shaffer [1998].

For the sake of simplicity, suppose we want to sort an array of non-negative integers of at most two

decimal digits. The representation is in base 10, also referred to as radix 10—this is how Radix Sort gets

its name. In addition to the array to be sorted, we also have an array, lists, of 10 linked lists, with one

linked list for each of the ten possible digit values.

During the first outer-loop iteration, each element in the array is appended to the linked list corre-

sponding to the units digit (the least-significant digit) of that element. Then, starting at the beginning of

each list, the elements in lists [0], lists [1], and so on are stored back in the original array. This

overwrites the original array. In the second outer-loop iteration, each element in the array is appended to

the linked list corresponding to the element’s tens digit. Then, starting at the beginning of each list, the

elements in lists [0], lists [1], and so on are stored back in the original array.

Here is the method specification:

/**

* Sorts a specified array into ascending order.

* The worstTime(n) is O(n log N), where n is the length of the array, and N

* is the largest number (in absolute value) of the numbers in the array.

*

* @param a – the array to be sorted.

*

* @throws NullPointerException - if a is null.

*

*/

public static void radixSort (int[] a)

Example Suppose we start with the following array of 12 int values:

85 3 19 43 20 55 42 91 21 85 73 29

490 CHAPTER 11 Sorting

lists

0 null

1

20

91

42

85

21

19

null

null

2

3

4

5

6

7

8

9

3 43 73 null

55 85 null

29 null

FIGURE 11.17 An array of linked lists after each element in the original array is appended to the linked list that

corresponds to the element’s units digit

After each of these is appended to the linked list corresponding to its units (that is, rightmost) digit, the

array of linked lists will be as shown in Figure 11.17.

Then, starting at the beginning of each list, elements in lists [0], lists [1], and so on are

stored back in a. See Figure 11.18.

20 91 21 42 433 73 85 55 85 19 29

FIGURE 11.18 The contents of the array a, with the elements ordered by their units digits

The elements in the array a have now been ordered by their units digits.

In the next outer-loop iteration, each element in a is appended to the list corresponding to the

element’s tens digit, as shown in Figure 11.19.

Finally (because the integers had at most two digits), starting at the beginning of each list, the

integers in lists [0], lists [1], and so on are stored back in a:

3 19 20 21 29 42 43 55 73 85 85 91

The elements in a have been ordered by their tens digits, and for numbers with the same tens digits, they

have been ordered by their units digits. In other words, the array a is sorted.

What happens in general? Suppose we have two integers x and y , with x < y . Here’s how Radix

Sort ensures that x ends up at a smaller index in the array. If x has fewer digits than y , then in the final

iteration of the outer loop, x will be placed in lists [0] and y will be placed in a higher-indexed list

because y’s leftmost digit is not zero. Then when the lists are stored back in the array, x will be at a

smaller index than y .

If x and y have the same number of digits, start at the leftmost digit in each number and, moving

to the right, find the first digit in x that is smaller than the corresponding digit in y . (For example, if

x = 28734426 and y = 28736843, the thousands digit in x is less than the thousands digit in y .) Then at

the start of that iteration of the outer loop, x will be placed in a lower indexed list than y . Then when the

11.5 Radix Sort 491

lists

0 null

1

3

19

20

42

55

43

21 29

73

85

91

85

null

2 null

3

null4

null5

6

7 null

8 null

9 null

FIGURE 11.19 The array of linked lists after each element in the array a has been appended to the linked list

corresponding to its tens digit

lists are stored back in the array, x will be at a smaller index than y . And from that point on, the relative

positions of x and y in the array will not change because they agree in all remaining digits.

There is a slight difficulty in converting the outline in the previous paragraphs into a Java method

definition. The following statement is illegal:

LinkedList<Integer>[] lists = new LinkedList<Integer> [10];

The reason is that arrays use covariant subtyping (for example, the array Double[] is a subtype of

Object[]), but parameterized types use invariant subtyping (for example, LinkedList<Double> is

not a subtype of LinkedList<Object>). We cannot create an array whose elements are parameterized

collections. But it is okay to create an array whose elements are raw (that is, unparameterized) collections.

So we will create the array with the raw type LinkedList, and then construct the individual linked lists

with a parameterized type.

Here is the method definition:

/**

* Sorts a specified array into ascending order.

* The worstTime(n) is O(n log N), where n is the length of the array, and N is the largest

* number (in absolute value) of the numbers in the array.

*

* @param a - the array to be sorted.

*

*/

public static void radixSort (int [] a)

{

final int RADIX = 10;

int biggest = a [0],

i;

492 CHAPTER 11 Sorting

for (i = 1; i < a.length; i++)

if (a [i] > biggest)

biggest = a [i];

int maxDigits = (int)Math.floor (Math.log (biggest) / Math.log (10)) + 1;

long quotient = 1; // the type is long because the largest number may have

// 10 digits; the successive quotients are 1, 10, 100, 1000,

// and so on. 10 to the 10th is too large for an int value.

LinkedList[] lists = new LinkedList [RADIX];

for (int m = 0; m < RADIX; m++)

lists [m] = new LinkedList<Integer>();

// Loop once for each digit in the largest number:

for (int k = 0; k < maxDigits; k++)

{

// Store each int in a as an Integer in lists at the index of a [i]’s kth-smallest digit:

for (i = 0; i < a.length; i++)

((LinkedList<Integer>)lists [(int)(a [i] / quotient) % RADIX]).add (a [i]);

i = 0;

// Store each Integer in list [0], list [1], . . ., as an int in a:

for (int j = 0; j < RADIX; j++)

{

for (Integer anInt : (LinkedList<Integer>)lists [j])

a [i++] = anInt; // unboxing

lists [j].clear();

} // for j

quotient *= RADIX;

} // for k

} // method radixSort

Analysis Suppose N is the largest integer in the array. The number of outer-loop iterations must be at least

ceil (log10 N), so worstTime(n, N) is O(n log N). If the array also includes negative integers, N is chosen as the

largest number in absolute value. Each array element is also stored in a linked list, and so worstSpace(n) is

linear in n.

The elements are stored first-in, first-out in each list, and that makes Radix Sort stable.

Note: The elements in this example of Radix Sort are of type int, but with a slight change, the element

type could also be String, for example. There would be one list for each possible character in the String

class. Because each Unicode character occupies 16-bits, the number of distinct characters is 216 = 65, 536

characters. That would require 65,536 linked lists! Instead, the allowable character set would probably be

reduced to ASCII, an 8-bit code, so there would be only 28 = 256 characters, and therefore 256 lists.

Lab 18 includes Radix Sort in a run-time experiment on sort methods.

You are now prepared to do Lab 18: Run-times for Sort Methods.

Summary 493

S U M M A R Y

Table 11.1 provides a thumbnail sketch of the sort algo-

rithms presented in this chapter.

Table 11.1 Important features of sort algorithms from Chapter 11. Run-time rank is based on the time to sort
n randomly-generated integers. The restrictions on element type are for the versions of Merge Sort and Quick
Sort in the Java Collections Framework (JCF). For Radix Sort, N refers to the largest number in the collection

Element Type

Sort Algorithm Restriction Stable? worstTime(n) averageTime(n); run-time rank worstSpace(n)

Insertion Sort yes quadratic quadratic; 4 Constant

Selection Sort no quadratic quadratic; 5 Constant

Bubble Sort yes quadratic quadratic; 6 Constant

Merge Sort reference (in JCF) yes linear- logarithmic linear- logarithmic; 2 Linear

Quick Sort primitive (in JCF) no quadratic linear-logarithmic; 1 Linear

Radix Sort yes n log N n log N ; 3 Linear

494 CHAPTER 11 Sorting

CROSSWORD PUZZLE

1 2 3

4

5

6 7

8

9

www.CrosswordWeaver.com

1. The worstTime(n) for the three simple
 sorts is ______ in n.

6. The class in the Java Collections
 Framework that has exactly two
 versions of the Merge Sort algorithm

8. The number of different versions of
 the Quick Sort algorithm in the Arrays
 class

9. Given n elements to be sorted, a
 ______ is a binary tree in which each
 non-leaf represents a comparison
 between two elements and each leaf
 represents a sorted sequence of the n
 elements.

1. The sorting algorithm whose average
 run-time performance is fastest

2. An interface whose implementation
 allows “unnatural” comparisons of
 elements

3. The only one of the three simple sorts
 that is not stable

4. In Quck Sort partitioning, the element
 that every element in a subarray is
 compared to

5. For comparison-based sorts,
 averageTime(n) is BigOmega
 (__________).

7. A __________ sort method preserves
 the relative order of equal elements.

ACROSS DOWN

www.CrosswordWeaver.com

Concept Exercises 495

CONCEPT EXERCISES

11.1 Trace the execution of each of the six sort methods—Insertion Sort, Selection Sort, Bubble Sort, Merge Sort,

Quick Sort, and Radix Sort—with the following array of values:

10 90 45 82 71 96 82 50 33 43 67

11.2 a. For each sort method, rearrange the list of values in Concept Exercise 11.1 so that the minimum number

of element-comparisons would be required to sort the array.

b. For each sort method, rearrange the list of values in Concept Exercise 11.1 so that the maximum number

of element-comparisons would be required to sort the sequence.

11.3 Suppose you want a sort method whose worstTime(n) is linear-logarithmic in n , but requires only linear-in-n

time for an already sorted collection. None of the sorts in this chapter have those properties. Create a sort

method that does have those properties.

Hint: Add a front end to Merge Sort to see if the collection is already sorted.

11.4 For the optimized Quick Sort in Section 11.4.3.1, find an arrangement of the integers 0 . . . 49 for which the

first partition will produce a subarray of size 4 and a subarray of size 44. Recall that because the number of

values is greater than 40, the pivot is the “super-median,” that is, the median of the three median-of-threes.

11.5 a. Suppose we have a sort algorithm whose averageTime(n) is linear-logarithmic in n . For example, either

Merge Sort or Quick Sort would qualify as such an algorithm. Let runTime(n) represent the time, in

seconds, for the implementation of the algorithm to sort n random integers. Then we can write:

runTime(n) ≈ k(c) ∗ n ∗ logcn seconds,

where c is a an integer variable and k is a function whose value depends on c. Show that runTime(cn) ≈

runTime(n) ∗(c + c/ logcn).

b. Use the technique in Concept Exercise 11.5.a to estimate runTime(200000) if runTime(100000) = 10.0

seconds.

11.6 Show that seven comparisons are sufficient to sort any collection of five elements.

Hint: Compare the first and second elements. Compare the third and fourth elements. Compare the two

larger elements from the earlier comparisons. With three comparisons, we have an ordered chain of three

elements, with the fourth element less than (or equal to) one of the elements in the chain. Now compare the

fifth element to the middle element in the chain. Complete the sorting in three more comparisons. Note that

ceil(log25!) = 7, so some collections of five elements cannot be sorted with 6 comparisons.

11.7 Show that log2 n! >= n/2 log2 (n/2) for any positive integer n .

Hint: For any positive integer n ,

n! =

n
∏

i=1

i > =

n/2
∏

i=1

(n/2) = (n/2)n/2

11.8 Show how Quick Sort’s partitioning can be used to develop a method, median, that finds the median of an

array of int values. For the method median, averageTime(n) must be linear in n .

Hint: Suppose we want to find the median of x [0 . . . 10000]. Of course, if we Quick Sort the array, the

median would be in x [5000], but then averageTime(n) would be linear-logarithmic in n . To get an idea of

how to proceed, let’s say that the first partition yields a left subarray x [0 . . . 3039] and a right subarray x

[3055 . . . 10000], with copies of the pivot in x [3040 . . . 3054]. Since every int value in the left subarray is

496 CHAPTER 11 Sorting

less than every int value in the right subarray, which subarray must contain the median? The other subarray

can be ignored from then on, so the array is not completely sorted.

11.9 Consider the following, consecutive improvements to Insertion Sort:

a. Replace the call to the method swap with in-line code:

public static void insertionSort (int[] x)

{

int temp;

for (int i = 1; i < x.length; i++)

for (int k= i; k > 0 && x [k -1] > x [k]; j--)

{

temp = x [k];

x [k] = x [k -1];

x [k -1] = temp;

} // inner for

} // method insertionSort

b. Notice that in the inner loop in part a, temp is repeatedly assigned the original value of x [i]. For

example, suppose the array x has

32 46 59 80 35

and j starts at 4. Then 35 hops its way down the array, from index 4 to index 1. The only relevant

assignment from temp is that last one. Instead, we can move the assignments to and from temp out of

the inner loop:

int temp,

k;

for (int i = 1; i < x.length; i++)

{

temp = x [i];

for (k = i; k > 0 && x [k -1] > temp; k--)

x [k] = x [k -1];

x [k] = temp;

} // outer for

Will these changes affect the estimates for worstTime(n) and averageTime(n)?

11.10 If x is an array, Arrays.sort (x) can be called. Will x be Merge Sorted or Quick Sorted? How is the

determination made?

11.11 Show how Merge Sort can be used to sort an array of primitives with the help of the wrapper classes.

11.12 The Java Collection Framework’s version of Quick Sort can be applied only to an array of a primitive type,

such as int or double. Exactly what would have to be changed to create a Quick Sort method that could

be applied to an array of objects?

11.13 If Merge Sort is applied to a collection with 25 elements, what are the values of the index arguments for the

first two recursive calls?

11.14 Give an example to show that Selection Sort is not a stable sort.

Hint: you need only three elements.

Programming Exercises 497

PROGRAMMING EXERCISES

11.1 For Concept Exercise 11.9, conduct a timing experiment to estimate the run-time effect of the changes made.

11.2 In the Java Collections Framework version of Quick Sort, special care is taken during partitioning to make

sure that the pivot, and elements equal to the pivot, are not in either of the subarrays created. Estimate—in

percentage terms—how much faster Quick Sort would run, on average, if this special care were not taken.

Conduct a timing experiment to test your hypothesis.

11.3 In the med3 method, replace the two applications of the conditional operator with if statements.

11.4 For the original version of Quick Sort in Section 11.4.3, replace the inner-loop conditions from

while (x [b] < v) and while (x [c] > v)

to

while (b <= c && x [b] <= v) and while (c >= b && x [c] >= v)

Create a small program method to apply this version of Quick Sort to the following array of int values:

46 59

Explain the results.

11.5 Develop a version of Radix Sort to sort an array of String objects. You may assume that each String

object contains only ASCII characters, and that the maximum size of any String object is 30. Use JUnit to

test your radixSort method.

Hint: Instead of the quotient variable, use the charAt method in the String class.

11.6 Modify the radixSort method in Section 11.5 to use an ArrayList instead of an array.

Hint: Start with

ArrayList<LinkedList<Integer>> lists = new ArrayList<LinkedList<Integer>>(RADIX);

Then append 10 empty linked lists to lists.

Programming Project 11.1

Sorting a File into Ascending Order

Analysis The input line will contain the path to the file to be sorted. Each element in the file will consist of a

name—last name followed by a blank followed by first name followed by a blank followed by middle name—and

social security number. The file is to be sorted by name; equal names should be ordered by social security number.

For example, after sorting, part of the file might be as follows:

Jones Jennifer Mary 222222222

Jones Jennifer Mary 644644644

For convenience, you may assume that each name will have a middle name.

Suppose the file persons.dat consists of the following:

Kiriyeva Marina Alice 333333333

Johnson Kevin Michael 555555555

Misino John Michael 444444444

(continued on next page)

498 CHAPTER 11 Sorting

(continued from previous page)

Panchenko Eric Sam 888888888

Taoubina Xenia Barbara 111111111

Johnson Kevin Michael 222222222

Deusenbery Amanda May 777777777

Dunn Michael Holmes 999999999

Reiley Timothy Patrick 666666666

System Test 1:

Please enter the path for the file to be sorted.

persons.dat

The file persons.dat has been sorted.

The file persons.dat will now consist of

Deusenbery Amanda May 777777777

Dunn Michael Holmes 999999999

Johnson Kevin Michael 222222222

Johnson Kevin Michael 555555555

Kiriyeva Marina Alice 333333333

Misino John Michael 444444444

Panchenko Eric Sam 888888888

Reiley Timothy Patrick 666666666

Taoubina Xenia Barbara 111111111

For a larger system test, randomly generated, use the same name for each person. The social security numbers

will be randomly generated ints in the range 0 . . . 999999999. For example, part of the file might have

a a a 238749736

a a a 701338476

a a a 408955917

Use unit testing to increase your confidence in the correctness of your methods.

Hint: This would be a fairly simple problem if we could be certain that the entire file would fit in main memory.

Unfortunately, this is not the case. Suppose we want to sort a large file of objects from the class Person. For

specificity, we assume that an object in the Person class occupies 50 bytes and that the maximum storage for an

array is 500,000 bytes. So the maximum size of an array of Person objects is 10,000.

We start by reading in the file of persons, in blocks of k persons each. Each block is Merge Sorted and

stored, in an alternating fashion, on one of two temporary files: leftTop and leftBottom. Figure 11.20 illustrates

the effect of this first stage in file sorting.

We then go through an alternating process which continues until all of the elements are sorted and in a single

file. The temporary files used are leftTop, leftBottom, and rightBottom; personsFile itself plays the role of rightTop.

At each stage, we merge a top and bottom pair of files, with the resulting double-sized blocks stored alternately

on the other top and bottom pair. The code for merging sorted blocks in two files into sorted, double-sized blocks

in another file is essentially what was done—using subarrays instead of file blocks—at the end of Merge Sort.

Here is that code

// Merge sorted subarrays in src into dest.

for (int i = low, p = low, q = mid; i < high; i++) {

Programming Exercises 499

if (q>=high || (p<mid && ((Comparable)src[p]).compareTo (src[q])<= 0))

dest [i] = src [p++];

else

dest[i] = src[q++];

}

Figure 11.21 illustrates the first merge pass.

If rightBottom is still empty after a left-to-right merge, then the sort is complete and personsFile holds the

sorted file. Otherwise a right-to-left merge is performed, after which we check to see if leftBottom is still empty.

If so, leftTop is copied onto personsFile and the sort is complete.

How much time will this take? Suppose that we have n elements in n/k blocks, each of size k . In the Merge

Sort phase, creating each of the n/k sorted blocks takes, roughly, k log2 k time, on average. Each Merge phase

takes about n iterations, and there are about log2(n/k) Merge phases. The total time is the sum of the times for

all phases: roughly,

(n/k) ∗ k log2k + n∗ log2(n/k) = n log2k + n log2(n/k)

= n log2k + n log2n−n log2 k

= n log2n

Because the averageTime(n) is optimal, namely linear-logarithmic in n , a sorting method such as this is often used

for a system sort utility.

leftTop personsFile

… 5 3 1 1 2 3 4 5 . . .

Merge Sort

leftBottom

… 6 4 2

FIGURE 11.20 The first stage in file sorting: each of the unsorted blocks in personsFile is Merge Sorted and

stored in leftTop or leftBottom

leftTop personsFile

… 5 3 1 1 & 2

3 & 4 7 & 8

5 & 6 . . .

. . .

merge

leftBottom

… 6 4 2

rightBottom

FIGURE 11.21 The first merge pass in file sorting. The files leftTop and leftBottom contain sorted blocks,

and personsFile and rightBottom contain double-sized sorted blocks

This page intentionally left blank

Tree Maps and Tree Sets CHAPTER 12

We begin this chapter by introducing another kind of balanced binary tree: the red-black tree. Red-black

trees provide the underpinning for two extremely valuable classes: the TreeMap class and the TreeSet

class, both of which are in the Java Collections Framework. Each element in a TreeMap object has two

parts: a key part—by which the element is compared to other elements—and a value part consisting of

the rest of the element. No two elements in a TreeMap object can have the same key. A TreeSet object

is a TreeMap object in which all the elements have the same value part. There are applications of both

the TreeMap class (a simple thesaurus) and the TreeSet class (a spell-checker). TreeMap objects and

TreeSet objects are close to ideal: For inserting, removing and searching, worstTime(n) is logarithmic

in n .

CHAPTER OBJECTIVES

1. Be able to define what a red-black tree is, and be able to distinguish between a red-black tree

and an AVL tree.

2. Understand the Map interface and the overall idea of how the TreeMap implementation of the

Map interface is based on red-black trees.

3. Compare TreeMap and TreeSet objects.

12.1 Red-Black Trees

Basically, a red-black tree is a binary search tree in which we adopt a coloring convention for each element

in the tree. Specifically, with each element we associate a color of either red or black, according to rules

we will give shortly. One of the rules involves paths. Recall, from Chapter 9, that if element A is an

ancestor of element B, the path from A to B is the sequence of elements, starting with A and ending with

B, in which each element in the sequence (except the last) is the parent of the next element. Specifically,

we will be interested in paths from the root to elements with no children or with one child .1 For example,

in the following tree, there are five paths from the root to an element (boxed) with no children or one

child.

1Equivalently, we could define the rule in terms of paths from the root element to an empty subtree, because an element with one child also

has an empty subtree, and a leaf has two empty subtrees. When this approach is taken, the binary search tree is expanded to include a special

kind of element, a stub leaf, for each such empty subtree.

501

502 CHAPTER 12 Tree Maps and Tree Sets

30

5 45

2 9 40 50

41

Note that one of the paths is to the element 40, which has one child. So the paths described are not

necessarily to a leaf.

A red-black tree is a binary search tree that is empty or in which the root element is colored black ,

every other element is colored red or black and the following properties are satisfied:

Red Rule: If an element is colored red, none of its children can be colored red.

Path Rule: The number of black elements must be the same in all paths from the root element to elements

with no children or with one child.

For example, Figure 12.1 shows a red-black tree in which the elements are values of Integer

objects and colored red or black

Observe that this is a binary search tree with a black root. Since no red element has any red children,

the Red Rule is satisfied. Also, there are two black elements in each of the five paths (one path ends at

40) from the root to an element with no children or one child, so the Path Rule is satisfied. In other words,

the tree is a red-black tree.

The tree in Figure 12.2 is not a red-black tree even though the Red Rule is satisfied and every path

from the root to a leaf has the same number of black elements. The Path Rule is violated because, for

example, the path from 70 to 40 (an element with one child) has three black elements, but the path from

70 to 110 has four black elements. That tree is badly unbalanced: most of its elements have only one child.

The Red and Path rules preclude most single children in red-black trees. In fact, if a red element has any

children, it must have two children and they must be black. And if a black element has only one child,

that child must be a red leaf.

The red-black tree in Figure 12.1 is fairly evenly balanced, but not every red-black tree has that

characteristic. For example, Figure 12.3 shows one that droops to the left.

30

5 45

2 9 40 50

41

FIGURE 12.1 A red-black tree with eight elements

12.1 Red-Black Trees 503

70

60 80

50 90

10 100

40 130

20 120

30 110

FIGURE 12.2 A binary search tree that is not a red-black tree

50

30 90

20 40

10

FIGURE 12.3 A red-black tree that is not “evenly” balanced

You can easily verify that this is a black-rooted binary search tree and that the Red Rule is satisfied.

For the Path Rule, there are exactly two black elements in any path from the root to an element with no

children or with one child. That is, the tree is a red-black tree. But there are limits to how unbalanced

a red-black tree can be. For example, we could not hang another element under element 10 without re-

balancing the tree. For if we tried to add a red element, the Red Rule would no longer be satisfied. And

if we tried to add a black element, the Path Rule would fail.

If a red-black tree is complete, with all black elements except for red leaves at the lowest level, the

height of that tree will be minimal, approximately log2 n . To get the maximum height for a given n , we

would have as many red elements as possible on one path, and all other elements black. For example,

Figure 12.3 contains one such tree, and Figure 12.4 contains another. The path with all of the red elements

will be about twice as long as the path(s) with no red elements. These trees lead us to hypothesize that

the maximum height of a red-black tree is less than 2 log2 n .

12.1.1 The Height of a Red Black Tree

Red-black trees are fairly bushy in the sense that almost all non-leaves have two children. In fact, as noted

earlier, if a parent has only one child, that parent must be black and the child must be a red leaf. This

504 CHAPTER 12 Tree Maps and Tree Sets

50

30 90

20 40
80 131

60 85 100 150

140 160

135

FIGURE 12.4 A red-black tree of 14 elements with maximum height, 5

bushiness leads us to believe that a red-black tree is balanced, that is, has height that is logarithmic in n ,

even in the worst case. Compare that with the worst-case height that is linear in n for a binary search tree.

As shown in Example A2.6 of Appendix 2,

The height of a red-black tree is always logarithmic in n, the size of the tree.

How do red-black trees compare to AVL trees? The height of an AVL tree is also logarithmic in n . The

definition of a red-black tree is slightly more “relaxed” than the definition of an AVL tree. So any AVL tree

can be colored to become a red-black tree, but the converse is not true (see Concept Exercises 12.6 and

12.7). That is, red-black trees can have larger heights than AVL trees with the same number of elements. It

can be shown (see Weiss [2002]) that the average height of an AVL tree with n elements is, approximately,

1.44 log2 n , versus 2 log2 n for a red-black tree. For example, if n is one million, the average height of an

AVL tree with n elements is about 29, and the average height of a red-black tree with n elements is about 40.

In Section 12.2, we introduce the Map interface, and in Section 12.3, a class that implements the Map

interface. That class, the TreeMap class, is based on a red-black tree, and is part of the Java Collections

Framework. The developers of the framework found that using a red-black tree for the underlying structure

of the TreeMap class provided slightly faster insertions and removals than using an AVL tree.

12.2 The Map Interface

A map is a collection2 in which each element has two parts: a unique key part and a value part. The idea

behind this definition is that there is a “mapping” from each key to the corresponding value. For example,

we could have a map of social security numbers and names. The keys will be social security numbers

and the values will be names. The social security numbers are unique: no two elements in the collection

are allowed to have the same social security number. But two elements may have the same name. For

2Recall, from Chapter 4, that a collection is an object that is composed of elements. A collection is not necessarily a Collection object,

that is, a collection need not implement the Collection interface. For example, an array is a collection but not a Collection object.

12.2 The Map Interface 505

example, we could have the following map, in which all of the social security numbers are unique, but

two elements have the same name:

123-45-6789 Builder, Jay

222-22-2222 Johnson, Alan

555-55-5555 Nguyen, Viet

666-66-6666 Chandramouli, Soumya

888-88-8888 Kalsi, Navdeep

999-99-9999 Johnson, Alan

A dictionary is another example of a map. The key is the word being defined and the value consists of the

definition, punctuation, and etymology. The term dictionary is sometimes used as a synonym for “map”.

In this sense, a dictionary is simply a collection of key-value pairs in which there are no duplicate keys.

The Java Collections Framework has a Map interface that provides method headings for the abstract-

data-type map. The Map interface does not extend the Collection interface because many Map methods

are oriented towards the key-value relationship. In fact, the type parameters are K (for the key class) and V

(for the value class). But the Map interface has some standard methods such as size, equals, and clear.

Here are specifications for several of the other methods in the Map interface—no time estimates are given

because different implementations have substantially different estimates:

1. The put method

/**

* Associates the specified value with the specified key in this map.

* If the map previously contained a mapping for the key, the old

* value is replaced.

*

* @param key key with which the specified value is to be associated

* @param value value to be associated with the specified key

*

* @return the previous value associated with key, or

* null if there was no mapping for key.

* (A null return can also indicate that the map

* previously associated null with key.)

* @throws ClassCastException if the specified key cannot be compared

* with the keys currently in the map

* @throws NullPointerException if the specified key is null

* and this map uses natural ordering, or its comparator

* does not permit null keys

*/

V put (K key, V value);

Note 1: The phrase “this map ” refers to an object in a class that implements the Map interface.

Note 2: The put method is somewhat more versatile than an add method because the put method

handles replacement—of the values associated with a given key—as well as insertion of a new

key-value pair.

2. The containsKey method

/**

* Determines if this Map object contains a mapping for a specified key.

506 CHAPTER 12 Tree Maps and Tree Sets

*

* @param key - the specified key.

*

* @return true – if there is at least one mapping for the specified key in

* this Map object; otherwise, return false.

*

* @throws ClassCastException – if key cannot be compared with the keys

* currently in the map.

*

* @throws NullPointerException – if key is null and this Map object uses

* the natural order, or the comparator does not allow null keys.

*

*/

boolean containsKey (Object key);

3. The containsValue method

/**

* Determines if there is at least one mapping with a specified value in this

* Map object.

*

* @param value – the specified value for which a mapping is sought.

*

* @return true – if there is at least one mapping with the specified value

* in this Map object; otherwise, return false.

*

*/

boolean containsValue (Object value);

4. The get method

/**

* Returns the value to which a specified key is mapped in this Map

* object.

*

* @param key – the specified key.

*

* @return the value to which the specified key is mapped, if the specified

* key is mapped to a value; otherwise, return null.

*

* @throws ClassCastException – if key cannot be compared with the keys

* currently in the map.

*

* @throws NullPointerException – if key is null and this Map object uses

* the natural order, or the comparator does not allow null keys.

*/

V get (Object key);

Note: The value null might also be returned if the given key maps to null . To distinguish

between this situation and the no-matching-key situation, the containsKey method can be used.

For example, if persons is an object in a class that implements the Map interface and key is an

object in the key class, we can do the following:

12.2 The Map Interface 507

if (persons.get (key) == null)

if (persons.containsKey (key))

System.out.println (key + " maps to null");

else

System.out.println (key + " does not match any key in this map.");

5. The remove method

/**

* Removes the mapping with a specified key from this Map object, if there

* was such a mapping.

*

* @param key – the specified key whose mapping, if present, is to be

* removed from this Map object.

*

* @return the value to which the specified key is mapped, if there is such

* a mapping; otherwise, return null (note that null could also be the

* previous value associated with the specified key).

*

* @throws ClassCastException – if key cannot be compared with the keys

* currently in the map.

*

* @throws NullPointerException – if key is null and this Map object uses

* the natural order, or the comparator does not allow null keys.

*/

V remove (Object key);

6. The entrySet method

/**

* Returns a Set view of the key-map pairs in this Map object.

*

* @return a Set view of the key-map pairs in this Map object.

*

*/

Set entrySet();

Note: Recall, from Chapter 10, that a set is a collection of elements in which duplicates are not

allowed. We can view a Map object as just a set of key-value pairs. The advantage to this view is

that we can then iterate over the Map object, and the elements returned will be the key-value pairs

of the Map object. Why is this important? The Map interface does not have an iterator() method,

so you cannot iterate over a Map object except through a view. And the Map interface has a public,

nested Entry interface that has getKey() and getValue() methods.

For example, suppose that persons is an instance of a class that implements the Map interface, and

that the element class has a social security number as the (Integer) key and a name as the (String)

value. Then we can print out the name of each person whose social security number begins with 555 as

follows:

for (Map.Entry<Integer, String> entry : persons.entrySet())

if (entry.getKey() / 1000000 == 555)

System.out.println (entry.getValue());

508 CHAPTER 12 Tree Maps and Tree Sets

There are also keySet() and values() methods that allow iterating over a Map viewed as a set of keys

and as a collection of values, respectively. The term “collection of values” is appropriate instead of “set

of values” because there may be duplicate values.

Section 12.3 has an implementation of the Map interface, namely, the TreeMap class. Chapter 14

has another implementation, the HashMap class. The TreeMap class, since it is based on a red-black tree,

boasts logarithmic time, even in the worst case, for insertions, removals, and searches. The HashMap

class’s claim to fame is that, on average, it takes only constant time for insertions, removals and searches.

But its worst-case performance is poor: linear in n .

The TreeMap class actually implements a slight extension of the Map interface, namely, the Sort

edMap interface. The SortedMap interface mandates that for any instance of any implementing class, the

elements will be in “ascending” order of keys (for example, when iterating over an entry-set view). The

ordering is either the natural ordering—if the key class implements the Comparable interface—or an

ordering supplied by a comparator. Here are several new methods:

/**

* Returns the comparator for this sorted map, or null, if the map uses the

* keys’ natural ordering. The comparator returned, if not null, must implement

* the Comparator interface for elements in any superclass of the key class.

*

* @return the comparator for this sorted map, or null, if this sorted

* map uses the keys’ natural ordering.

*

*/

Comparator<? super K> comparator();

/**

* Returns the first (that is, smallest) key currently in this sorted map.

*

* @return the first (that is, smallest) key currently in this sorted map.

*

* @throws NoSuchElementException, if this sorted map is empty.

*

*/

K firstKey();

/**

* Returns the last (that is, largest) key currently in this sorted map.

*

* @return the last (that is, largest) key currently in this sorted map.

*

* @throws NoSuchElementException, if this sorted map is empty.

*

*/

K lastKey();

12.3 The TreeMap Implementation of the SortedMap Interface 509

12.3 The TreeMap Implementation of the SortedMap
Interface

The Java Collection Framework’s TreeMap class implements the SortedMap interface. For the put,

containsKey, get, and remove methods, worstTime(n) is logarithmic in n . Why? In a TreeMap object,

the key-value pairs are stored in a red-black tree ordered by the keys. Can you figure out why, for the

containsValue method, worstTime(n) is linear in n instead of logarithmic in n?

We will look at the fields and method definitions in Section 12.3.2. But our main emphasis is on the

use of data structures, so let’s start with a simple example. The following class creates a TreeMap object

of students. Each student has a name and a grade point average; the ordering is alphabetical by student

names. The method prints each student, each student whose grade point average is greater than 3.9, and

the results of several removals and searches.

import java.util.*;

public class TreeMapExample

{

public static void main (String[] args)

{

new TreeMapExample().run();

} // method main

public void run()

{

TreeMap<String,Double> students = new TreeMap<String,Double>();

students.put ("Bogan, James", 3.85);

students.put ("Zawada, Matt", 3.95);

students.put ("Balan, Tavi", 4.00);

students.put ("Nikolic, Lazar", 3.85);

System.out.println (students);

for (Map.Entry<String, Double> entry : students.entrySet())

if (entry.getValue() > 3.9)

System.out.println (entry.getKey() + " " + entry.getValue());

System.out.println (students.remove ("Brown, Robert"));

System.out.println (students.remove ("Zawada, Matt"));

System.out.println (students.containsKey ("Tavi Balan"));

System.out.println (students.containsKey ("Balan, Tavi"));

System.out.println (students.containsValue (3.85));

} // method run

} // class TreeMapExample

The output will be

{Balan, Tavi=4.0, Bogan, James=3.85, Nikolic, Lazar=3.85, Zawada, Matt=3.95}

Balan, Tavi 4.0

510 CHAPTER 12 Tree Maps and Tree Sets

Zawada, Matt 3.95

null

3.95

false

true

true

The reason that the students object is alphabetically ordered by student names is that the key class

is String. As we saw in Section 10.1.1, the String class implements the Comparable interface

with a compareTo method that reflects an alphabetical ordering. For applications in which the “natu-

ral” ordering—through the Comparable interface—is inappropriate, elements can be compared with the

Comparator interface, discussed in Section 11.3. In the TreeMap class, there is a special constructor:

/**

* Initializes this TreeMap object to be empty, with keys to be compared

* according to a specified Comparator object.

*

* @param c – the Comparator object by which the keys in this TreeMap

* object are to be compared.

*

*/

public TreeMap (Comparator<? super K> c)

We can implement the Comparator interface to override the natural ordering. For example, suppose we

want to create a TreeMap of Integer keys (and Double values) in decreasing order. We cannot rely on

the Integer class because that class implements the Comparable interface with a compareTo method

that reflects increasing order. Instead, we create a class that implements the Comparator interface by

reversing the meaning of the compareTo method in the Integer class:

public class Decreasing implements Comparator<Integer>

{

/**

* Compares two specified Integer objects.

*

* @param i1 – one of the Integer objects to be compared.

* @param i2 – the other Integer object.

*

* @return the value of i2’s int – the value of i1’s int.

*

*/

public int compare (Integer i1, Integer i2)

{

return i2.compareTo (i1);

} // method compare

} // class Decreasing

Notice that the Decreasing class need not specify a type parameter since that class is implementing the

Comparator interface parameterized with Integer.

12.3 The TreeMap Implementation of the SortedMap Interface 511

A TreeMap object can then be constructed as follows:

TreeMap<Integer, Double> inventory =

new TreeMap<Integer, Double>(new Decreasing());

For another example, here is the ByLength class from Section 11.3:

public class ByLength implements Comparator<String>

{

/**

* Compares two specified String objects lexicographically if they have the

* same length, and otherwise returns the difference in their lengths.

*

* @param s1 – one of the specified String objects.

* @param s2 – the other specified String object.

*

* @return s1.compareTo (s2) if s1 and s2 have the same length;

* otherwise, return s1.length() – s2.length().

*

*/

public int compare (String s1, String s2)

{

int len1 = s1.length(),

len2 = s2.length();

if (len1 == len2)

return s1.compareTo (s2);

return len1 – len2;

} // method compare

} // class ByLength

The following class utilizes the ByLength class with a TreeMap object in which the keys are

words—stored in order of increasing word lengths—and the values are the number of letters in the words.

import java.util.*;

public class TreeMapByLength

{

public static void main (String[] args)

{

new TreeMapByLength().run();

} // method main

public void run()

{

TreeMap<String, Integer> wordLengths =

new TreeMap<String, Integer>(new ByLength());

wordLengths.put ("serendipity", 11);

wordLengths.put ("always", 6);

wordLengths.put ("serenity", 8);

wordLengths.put ("utopia", 6);

512 CHAPTER 12 Tree Maps and Tree Sets

System.out.println (wordLengths);

} // method run

} // class TreeMapByLength

The output will be

{always=6, utopia=6, serenity=8, serendipity=11}

Now that we have seen a user’s view of the TreeMap class, Sections 12.3.1 and 12.3.2 will spend a little

time looking “under the hood” at the fields, the embedded Entry class and the method definitions. Then

Section 12.4 will present an application of the TreeMap class: creating a thesaurus.

12.3.1 The TreeMap Class’s Fields and Embedded Entry Class

In the design of a class, the critical decision is the choice of fields. For the TreeMap class, two of the

fields are the same as in the BinarySearchTree class of Chapter 10 (except that the framework designers

prefer private visibility to protected visibility):

private transient Entry root = null;

private transient int size = 0;

To flag illegal modifications (see Appendix 1) to the structure of the tree during an iteration:

private transient int modCount = 0;

The only other field in the TreeMap class is used for comparing elements:

private Comparator comparator = null;

This field gives a user of the TreeMap class a choice. If the user wants the “natural” ordering, such as

alphabetical order for String keys or increasing order for Integer keys, the user creates a TreeMap

instance with the default constructor. Then the keys’ class must implement the Comparable interface, so

comparisons are based on the compareTo method in the key class. Alternatively, as we saw in Section

12.3, a user can override the “natural” ordering by supplying a Comparator object in the constructor call:

TreeMap<String, Integer> wordLengths =

new TreeMap<String, Integer>(new ByLength());

The designers of the Java Collections Framework’s TreeMap class chose a red-black tree as the underlying

structure because it had a slight speed advantage over an AVL tree for insertions, removals, and searches.

We will now start to get into the red-black aspects of the TreeMap class. There are two constant identifiers

that supply the colors:

private static final boolean RED = false;

private static final boolean BLACK = true;

These constant identifiers apply, not to the tree as a whole, but to the Entry objects in the tree. The

Entry class, embedded in the TreeMap class, is similar to the Entry class that is embedded in the

BinarySearchTree class, except that the TreeMap class’s Entry class has key and value fields (instead

of just an element field), and a color field:

12.3 The TreeMap Implementation of the SortedMap Interface 513

static class Entry<K, V> implements Map.Entry<K, V>

{

K key;

V value;

Entry<K, V> left = null;

Entry<K, V> right = null;

Entry<K, V> parent;

boolean color = BLACK; // ensures that root’s color will start out BLACK

Every Entry object’s color field is initialized to BLACK. But during an insertion, the inserted Entry

object is colored RED; this simplifies the maintenance of the Path Rule. The Entry class also has a

default-visibility constructor to initialize the key, value, and parent fields. And there are a few public

methods, such as getKey() and getValue(), which are useful in iterating over the entries in a TreeMap

object after a call to the entrySet(), keySet(), or values(), methods.

To finish up our overview of the TreeMap implementation of the Map interface, we consider a few

method definitions in Section 12.3.2.

12.3.2 Method Definitions in the TreeMap Class

We will focus on the definitions of the put and remove methods. As you might expect, the definitions

of those methods are quite similar to the definitions of the add and remove methods in the AVLTree

class. But one obvious difference is that, for the sake of simplicity, we restricted AVLTree elements to

the “natural” ordering with an implementation of the Comparable interface. Users of the TreeMap class

can guarantee the elements in a TreeMap instance will be ordered “naturally” by invoking the default

constructor. Or, as we saw in Section 12.3.1, a user can override the natural ordering by invoking the

constructor that takes a Comparator argument.

The definition of the put (K key, V value) method starts by initializing an Entry:

Entry<K, V> t = root;

Then, just as we did in the add method of the AVLTree class, we work our way down the tree until we

find where key is or belongs. Except that the put method:

• splits off the Comparator case from the Comparable case;

• returns t.setValue (value) if key and t.key are the same, and then value replaces t.value

and the old value is returned;

• after an insertion, calls a special method, fixAfterInsertion, to re-color and rotate the tree if the

Red Rule is no longer satisfied (the Path Rule will still be satisfied because the newly inserted entry

is colored RED at the start of fixAfterInsertion).

Here is the complete definition:

public V put (K key, V value)

{

Entry<K, V> t = root;

if (t == null)

{

root = new Entry<K,V>(key, value, null);

size = 1;

514 CHAPTER 12 Tree Maps and Tree Sets

modCount++;

return null;

}

int cmp;

Entry<K,V> parent;

// split comparator and comparable paths

Comparator<? super K> cpr = comparator;

if (cpr != null)

{

do

{

parent = t;

cmp = cpr.compare(key, t.key);

if (cmp < 0)

t = t.left;

else if (cmp > 0)

t = t.right;

else

return t.setValue(value);

} while (t != null);

} // the keys are ordered by the comparator

else

{

if (key == null)

throw new NullPointerException();

Comparable<? super K> k = (Comparable<? super K>) key;

do

{

parent = t;

cmp = k.compareTo(t.key);

if (cmp < 0)

t = t.left;

else if (cmp > 0)

t = t.right;

else

return t.setValue(value);

} while (t != null);

} // the keys are ordered "naturally"

Entry<K,V> e = new Entry<K,V>(key, value, parent);

if (cmp < 0)

parent.left = e;

else

parent.right = e;

fixAfterInsertion(e);

size++;

modCount++;

return null;

} // method put

12.3 The TreeMap Implementation of the SortedMap Interface 515

Notice that the fixAfterInsertion method is not called when an insertion is made at the root. So root

remains BLACK in that case.

The definition of the fixAfterInsertion method is not intuitively obvious. In fact, even if you

study the code, it makes no sense. Red-black trees were originally developed in Bayer [1972]. The algo-

rithms for inserting and removing in these trees, called “2-3-4 trees,” were lengthy but the overall strategy

was easy to understand. Shorter but harder to follow methods were supplied when the red-black coloring

was imposed on these structures in Guibas [1978].

Lab 19 investigates the fixAfterInsertion method in some detail.

You are now ready for Lab 19: The fixAfterInsertion Method

In Section 12.1.1, we stated that the height of any red-black tree is logarithmic in n , the number

of elements in the tree. So for the part of the put method that finds where the element is to be inserted,

worstTime(n) is logarithmic in n . Then a call to fixAfterInsertion is made, for which worstTime(n)

is also logarithmic in n . We conclude that, for the entire put method, worstTime(n) is logarithmic in n .

The remove method, only slightly changed from that of the BinarySearchTree class, gets the

Entry object corresponding to the given key and then deletes that Entry object from the tree:

public V remove (K key)

{

Entry<K, V> p = getEntry (key);

if (p == null)

return p;

V oldValue = p.value;

deleteEntry (p);

return oldValue;

} // method remove

The getEntry method is almost identical to the BinarySearchTree class’s getEntry method

except—as we saw with the put method—that there is a split of the Comparator and Comparable

cases.

The deleteEntry method mimics the BinarySearchTree class’s (and AVLTree class’s) delete

Entry method, except now we must ensure that the Path Rule is still satisfied after the deletion. To see

how we might have a problem, suppose we want to delete the entry with key 50 from the TreeMap object

in Figure 12.5. The value parts are omitted because they are irrelevant to this discussion, and we pretend

that the keys are of type int ; they are actually of type reference-to-Integer.

p 50

30 100

20 40 70 110

FIGURE 12.5 A TreeMap (with value parts not shown) from which 50 is to be deleted

516 CHAPTER 12 Tree Maps and Tree Sets

70

30 100

20 40 p 70 110

FIGURE 12.6 An intermediate stage in the deletion of 50 from the TreeMap object of Figure 12.5

Just as we did with the BinarySearchTree class’s deleteEntry method, the successor’s key (namely,

70) replaces 50 and then p references that successor. See Figure 12.6 above.

If we were performing a BinarySearchTree -style deletion, we would simply unlink p’s Entry

object and be done. But if we unlink that Entry object from the TreeMap object of Figure 12.5, the Path

Rule would be violated. Why? There would be only one black element in the path from the root to 100

(an element with one child), and two black elements in the path from the root to the leaf 110. To perform

any necessary re-coloring and re-structuring, there is a fixAfterDeletion method.

Here is the definition of the deleteEntry method, which is very similar to the definition of the

deleteEntry method in both the BinarySearchTree and AVLTree classes:

private void deleteEntry (Entry<K, V> p)

{

modCount++;

size–;

// If strictly internal, replace p’s element with its successor’s element

// and then make p reference that successor.

if (p.left != null && p.right != null)

{

Entry<K, V> s = successor (p);

p.key = s.key;

p.value = s.value;

p = s;

} // p has two children

// Start fixup at replacement node, if it exists.

Entry<K, V> replacement = (p.left != null? p.left : p.right);

if (replacement != null)

{

// Link replacement to parent

replacement.parent = p.parent;

if (p.parent == null)

root = replacement;

else if (p == p.parent.left)

p.parent.left = replacement;

else

p.parent.right = replacement;

12.4 Application of the TreeMap Class: a Simple Thesaurus 517

// Fix replacement

if (p.color == BLACK)

fixAfterDeletion(replacement);

}

else if (p.parent == null)

{ // return if we are the only node.

root = null;

}

else

{ // No children. Use self as phantom replacement and unlink.

if (p.color == BLACK)

fixAfterDeletion(p);

if (p.parent != null)

{

if (p == p.parent.left)

p.parent.left = null;

else if (p == p.parent.right)

p.parent.right = null;

} // non-null parent

} // p has no children

} // method deleteEntry

The fixAfterDeletion method, the subject of Lab 20, has even more cases than the fixAfterInser

tion method.

You are now ready for Lab 20: The fixAfterDeletion Method

The ch12 directory on the book’s website includes an applet that will help you to visualize insertions in

and removals from a red-black tree:

In Section 12.4, we develop an application of the TreeMap class to print out the synonyms of given

words.

12.4 Application of the TreeMap Class: a Simple Thesaurus

A thesaurus is a dictionary of synonyms. For example, here is a small thesaurus, with each word followed

by its synonyms:

close near confined

confined close cramped

correct true

cramped confined

near close

one singular unique

singular one unique

true correct

unique singular one

518 CHAPTER 12 Tree Maps and Tree Sets

The problem we want to solve is this: given a thesaurus file and a file of words whose synonyms are

requested, print the synonym of each word entered to a file

Analysis If there is no file for either path input, or if the output file path is illegal, an error message should

be printed, followed by a re-prompt. The thesaurus file will be in alphabetical order. For each word entered

from the requests file, the synonyms of that word should be output to the synonyms file, provided the word’s

synonyms are in the thesaurus file. Otherwise, a synonyms-not-found message should be printed. In the

following system test, assume that the thesaurus shown earlier in this section is in the file ‘‘thesaurus.in1’’,

and ‘‘requests.in1’’ consists of

one

two

close

System Test (input is boldfaced):

Please enter the path for the thesaurus file: thesaraus.in1

java.io.FileNotFoundException: thesaraus.in1 (The system cannot find the file

specified)

Please enter the path for the thesaurus file: thesaurus.in1

Please enter the path for the requests file: requests.in1

Please enter the path for the synonyms file: synonyms.ou1

The contents of synonyms.ou1 are now:

The synonyms of one are [singular, unique]

two does not appear in the thesaurus.

The synonyms of close are [near, confined]

We will create two classes to solve this problem: a Thesaurus class to store the synonym information, and

a ThesaurusUser class to handle the input/output.

12.4.1 Design, Testing, and Implementation of the Thesaurus Class

The Thesaurus class will have four responsibilities: to initialize a thesaurus object, to add a line of

synonyms to a thesaurus, to return the synonyms of a given word, and—for the sake of testing—to return

a string representation of the thesaurus. The synonyms will be returned in a LinkedList object. In the

specifications, n refers to the number of lines in the thesaurus file.

Here are the method specifications:

/**

* Initializes this Thesaurus object.

*

*/

public Thesaurus()

12.4 Application of the TreeMap Class: a Simple Thesaurus 519

/**

* Adds a specified line of synonyms to this Thesaurus object.

* The worstTime(n) is O(log n).

*

* @param line – the specified line of synonyms to be added to this

* Thesaurus object.

* @throws NullPointerException – if line is null.

*

*/

public void add (String line)

/**

* Finds the LinkedList of synonyms of a specified word in this Thesaurus.

* The worstTime(n) is O(log n).

*

* @param word – the specified word, whose synonyms are to be

* returned.

*

* @return the LinkedList of synonyms of word.

*

* @throws NullPointerException – if word is null.

*

*/

public LinkedList<String> getSynonyms (String word)

/**

* Returns a String representation of this Thesaurus object.

* The worstTime(n) is O(n).

*

* @return a String representation of this Thesaurus object in the

* form {word1=[syn11, syn12,...], word2=[syn21, syn22,...],...}.

*

*/

public String toString()

Here are two tests in the ThesaurusTest class, which has thesaurus (an instance of the Thesaurus

class) as a field:

@Test (expected = NullPointerException.class)

public void testAddLineNull()

{

thesaurus.add (null);

} // method testAddLineNull

@Test

public void testAdd1()

{

thesaurus.add ("therefore since because ergo");

520 CHAPTER 12 Tree Maps and Tree Sets

assertEquals ("{therefore=[since, because, ergo]}", thesaurus.toString());

} // method testAdd1

The complete test suite is available from the book’s website.

The only field in the Thesaurus class is a TreeMap object in which the key is a word and the value

is the linked list of synonyms of the word:

protected TreeMap<String, LinkedList<String>> thesaurusMap;

The implementation of the Thesaurus class is fairly straightforward; most of the work is done in the put

and get methods of the TreeMap class. The Thesaurus class’s add method tokenizes the line, saves the

first token as the key, and saves the remaining tokens in a LinkedList object as the value.

Here are the method definitions and time estimates:

public Thesaurus()

{

thesaurusMap = new TreeMap<String, LinkedList<String>>();

} // default constructor

public void add (String line)

{

LinkedList<String> synonymList = new LinkedList<String>();

Scanner sc = new Scanner (line);

if (sc.hasNext())

{

String word = sc.next();

while (sc.hasNext())

synonymList.add (sc.next());

thesaurusMap.put (word, synonymList);

} // if

} // method add

For the put method in the TreeMap class, worstTime(n) is logarithmic in n , and so that is also the time

estimate for the add method. Note that the while loop takes constant time because it is independent of

n , the number of lines in the thesaurus.

Here is the one-line getSynonyms method:

public LinkedList<String> getSynonyms (String word)

{

return thesaurusMap.get (word);

} // method getSynonyms

For the getSynonyms method, worstTime(n) is logarithmic in n because that is the time estimate for the

TreeMap class’s get method.

The definition of the toString() method is just as simple:

public String toString()

{

return thesaurusMap.toString();

} // method toString

12.4 Application of the TreeMap Class: a Simple Thesaurus 521

For this method, worstTime(n) is linear in n—the iteration over the entries accesses a key and value in

constant time.

12.4.2 Design and Testing of the ThesaurusUser Class

The ThesaurusUser class’s run method creates a thesaurus from a file whose file-path is scanned in

from the keyboard, and then creates, from paths scanned in, a scanner for a requests file and a print writer

for synonyms file. Then the findSynonyms method produces the synonyms file from the thesaurus and

the requests file. Here are the corresponding method specifications:

/**

* Constructs a thesaurus from a file whose path is read in from the keyboard

* and creates, from paths scanned in, a scanner for a requests file and a print

* writer for the synonyms file.

* The worstTime(n) is O(n log n).

*

*/

public void run()

/**

* Outputs the synonyms of the words in the file scanned to a specified file.

* The worstTime(n, m) is O(m log n), where n is the number of lines in

* the thesaurus, and m is the number of words in the file scanned.

*

* @param thesaurus - the thesaurus of words and synonyms.

* @param requestFileScanner - the Scanner over the file that holds the

* words whose synonyms are requested.

* @param synonymPrintWriter - the PrintWriter for the file that will hold

* the synonyms of the words in the request file.

*

*/

public void findSynonyms (Thesaurus thesaurus, Scanner requestFileScanner,

PrintWriter synonymPrintWriter)

The run method is not testable because it deals mainly with end-user input and output. The findSynonyms

method is testable, and here is one of those tests (user, of type ThesaurusUser and line, of type

String, are fields in ThesaurusUserTest):

@Test

public void testProcessFilesNormal() throws IOException

{

Scanner thesaurusFileScanner = new Scanner (new File ("thesaurus.in1")),

requestFileScanner = new Scanner (new File ("requests.in1"));

PrintWriter synonymPrintWriter = new PrintWriter (new BufferedWriter

(new FileWriter ("synonyms.ou1")));

Thesaurus thesaurus = new Thesaurus();

while (thesaurusFileScanner.hasNext())

thesaurus.add (thesaurusFileScanner.nextLine());

522 CHAPTER 12 Tree Maps and Tree Sets

user.findSynonyms (thesaurus, requestFileScanner, synonymFileWriter);

synonymFileWriter.close();

Scanner sc = new Scanner (new File ("synonyms.ou1"));

line = sc.nextLine();

assertEquals ("Here are the synonyms of confined: [close, cramped]", line);

line = sc.nextLine();

assertEquals ("Here are the synonyms of near: [close]", line);

line = sc.nextLine();

assertEquals ("x does not appear in the thesaurus.", line);

line = sc.nextLine();

assertEquals ("Here are the synonyms of singular: [one, unique]", line);

} // method testProcessFilesNormal

The book’s website includes the complete ThesaurusUserTest class.

Figure 12.7 has the UML class diagrams for this project. The line just below the diagram for

ThesaurusUser signifies that the ThesaurusUser class has an association—specifically, a method

parameter—with the Thesaurus class.

ThesaurusUser

+ main (String[] args)

+ run()

+ findSynonyms (thesaurus:Thesaurus,

 requestFileScanner: Scanner,

 synonymPrintWriter: PrintWriter)

Thesaurus

thesaurusMap: TreeMap<String, LinkedList<String>>

+ Thesaurus()

+ add (line: String)

+ getSynonyms (word: String): LinkedList<String>

+ toString(): String

FIGURE 12.7 Class diagrams for the Thesaurus project

12.4 Application of the TreeMap Class: a Simple Thesaurus 523

12.4.3 Implementation of the ThesaurusUser Class

As always, the main method simply invokes the run method on a newly constructed ThesaurusUser

object:

public static void main (String[] args)

{

new ThesaurusUser().run();

} // method main

The ThesaurusUser’s run method scans a file path (and keeps scanning until a legal file path is scanned

in), adds each line in the file to the thesaurus, and then finds the synonyms of each word in a file whose

path is scanned in:

public void run()

{

final String THESAURUS_FILE_PROMPT =

"\nPlease enter the path for the thesaurus file: ";

final String REQUEST_FILE_PROMPT =

"\nPlease enter the path for the file with the words " +

"whose synonyms are requested: ";

final String SYNONYM_FILE_PROMPT =

"\nPlease enter the path for the file that will " +

"hold the synonyms of each word in the request file: ";

final String NO_INPUT_FILE_FOUND_MESSAGE =

"Error: there is no file with that path.\n\n";

Thesaurus thesaurus = new Thesaurus();

Scanner keyboardScanner = new Scanner (System.in),

thesaurusFileScanner,

requestFileScanner;

PrintWriter synonymPrintWriter;

String thesaurusFilePath,

requestFilePath,

synonymFilePath;

boolean pathsOK = false;

while (!pathsOK)

{

try

{

System.out.print (THESAURUS_FILE_PROMPT);

thesaurusFilePath = keyboardScanner.nextLine();

524 CHAPTER 12 Tree Maps and Tree Sets

thesaurusFileScanner = new Scanner (new File (thesaurusFilePath));

while (thesaurusFileScanner.hasNext())

thesaurus.add (thesaurusFileScanner.nextLine());

System.out.print (REQUEST_FILE_PROMPT);

requestFilePath = keyboardScanner.nextLine();

requestFileScanner = new Scanner (new File (requestFilePath));

System.out.print (SYNONYM_FILE_PROMPT);

synonymFilePath = keyboardScanner.nextLine();

synonymPrintWriter = new PrintWriter (new BufferedWriter

(new FileWriter (synonymFilePath)));

pathsOK = true;

findSynonyms (thesaurus, requestFileScanner, synonymPrintWriter);

synonymFileWriter.close();

} // try

catch (IOException e)

{

System.out.println (e);

} // catch

} // while !pathsOK

} // method run

Intuitively, since it takes logarithmic-in-n time for each insertion into the thesaurus, it should take linear-

logarithmic-in-n time for n insertions. But the first insertion is into an empty tree, the second insertion

is into a tree with one element, and so on. Specifically, for i = 1, 2, . . . , n , it takes approximately log2 i

loop iterations to insert the i th element into a red-black tree. To insert n elements, the total number of

iterations is, approximately,

n
∑

i=2

log2 i = log2 n! //sum of logs = log of product

≈ n log2 n //by the logarithmic form of Stirling’s

//approximation of factorials (see Zwilliger [2000])

In other words, our intuition is correct, and worstTime(n) is linear-logarithmic in n for filling in the

thesaurus. To estimate the worst time for the entire run method, we first need to develop and then

estimate the worst time for the findSynonyms method, because findSynonyms is called by the run

method.

The findSynonyms method consists of a read-loop that continues as long as there are words left in

the requests file. For each word scanned, the synonyms of that word are fetched from the thesaurus and

output to the synonyms file; an error message is output if the word is not in the thesaurus. Here is the

method definition:

public void findSynonyms (Thesaurus thesaurus, Scanner requestFileScanner,

PrintWriter synonymPrintWriter)

{

final String WORD_NOT_FOUND_MESSAGE =

" does not appear in the thesaurus.";

12.5 The TreeSet Class 525

final String SYNONYM_MESSAGE = "Here are the synonyms of ";

String word;

LinkedList<String> synonymList;

while (requestFileScanner.hasNext())

{

word = requestFileScanner.next();

synonymList = thesaurus.getSynonyms (word);

if (synonymList == null)

synonymPrintWriter.println (word + WORD_NOT_FOUND_MESSAGE);

else

synonymPrintWriter.println (SYNONYM_MESSAGE + word +

": " + synonymList);

} // while

} // method findSynonyms

To estimate how long the findSynonyms method takes, we must take into account the number of words

entered from the requests file as well as the size of thesaurusMap. Assume there are m words entered

from the requests file. (We cannot use n here because that represents the size of thesaurusMap.) Then

the while loop in findSynonyms is executed O(m) times. During each iteration of the while loop,

there is a call to the get method in the TreeMap class, and that call takes O(log n) time. So worstTime(n,

m) is O(m log n); in fact, to utilize the notation from Chapter 3, worstTime(n , m) is �(m log n) because

m log n provides a lower bound as well as an upper bound on worstTime(n , m). The worstTime function

has two arguments because the total number of statements executed depends on both n and m .

We can now estimate the worst time for the run method. For the loop to fill in the thesaurus,

worstTime(n) is linear-logarithmic in n , and for the call to findSynonyms, worstTime(n , m) is �(m log n).

We assume that the number of requests will be less than the size of thesaurusMap. Then for the run

method, worstTime(n , m) is �(n log n), that is, linear logarithmic in n .

The next topic in this chapter is the TreeSet class, which is implemented as a TreeMap in which

each Entry object has the same dummy value-part.

12.5 The TreeSet Class

We need to go through a little bit of background before we can discuss the TreeSet class. Recall, from

Chapter 10, that the Set interface extends the Collection interface by stipulating that duplicate elements

are not allowed. The SortedSet interface extends the Set interface in two ways:

1. by stipulating that its iterator must traverse the Set in order of ascending elements;

2. by including a few new methods relating to the ordering, such as first(), which returns the smallest

element in the instance, and last(), which returns the largest element in the instance.

The TreeSet class implements the SortedSet interface, and extends the AbstractSet class, which has

a bare-bones implementation of the Set interface.

The bottom line is that a TreeSet is a Collection in which the elements are ordered from smallest

to largest, and there are no duplicates. Most importantly, for the TreeSet class’s contains, add, and

remove methods, worstTime(n) is logarithmic in n . So if these criteria suit your application, use a TreeSet

526 CHAPTER 12 Tree Maps and Tree Sets

instead of an ArrayList, LinkedList, BinarySearchTree, or array. For those four collections, if the

elements are to be maintained in order from smallest to largest, worstTime(n) is linear in n for insertions

and removals.

How does the TreeSet class compare with the AVLTree class? The TreeSet class is superior

because it is part of the Java Collections Framework. As a result, the class is available to you on any Java

compiler. Also, the methods have been thoroughly tested. Finally, you are not restricted to the “natural”

ordering of elements: You can override that ordering with a comparator.

We already saw most of the TreeSet methods when we studied the BinarySearchTree and

AVLTree classes in Chapter 10.

The following class illustrates both the default constructor and the constructor with a comparator

parameter, as well as a few other methods:

import java.util.*;

public class TreeSetExample

{

public static void main (String[] args)

{

new TreeSetExample().run();

} // method main

public void run()

{

final String START = "Here is the TreeSet:\n";

final String ADD =

"\nAfter adding \"tranquil\", here is the TreeSet:\n";

final String REMOVE =

"\nAfter removing \"serene\", here is the TreeSet:\n";

final String REVERSE =

"\n\nHere are the scores in decreasing order:\n";

final String SUM = "The sum of the scores is ";

TreeSet<String> mySet = new TreeSet<String>();

TreeSet<Integer> scores = new TreeSet<Integer>

(new Decreasing ());

mySet.add ("happy");

mySet.add ("always");

mySet.add ("yes");

mySet.add ("serene");

System.out.println (START + mySet);

if (mySet.add ("happy"))

System.out.println ("ooops");

else

12.5 The TreeSet Class 527

System.out.println ("\n\"happy\" was not added " +

"because it was already there");

mySet.add ("tranquil");

System.out.println (ADD + mySet);

System.out.println ("size = " + mySet.size());

if (mySet.contains ("no"))

System.out.println ("How did \"no\" get in there?");

else

System.out.println ("\n\"no\" is not in the TreeSet");

if (mySet.remove ("serene"))

System.out.println (REMOVE + mySet);

for (int i = 0; i < 5; i++)

scores.add (i);

System.out.println (REVERSE + scores);

int sum = 0;

for (Integer i : scores)

sum += i;

System.out.println (SUM + sum);

} // method run

} // class TreeSetExample

Here is the output:

Here is the TreeSet:

[always, happy, serene, yes]

"happy" was not added because it was already there

After adding "tranquil", here is the TreeSet:

[always, happy, serene, tranquil, yes]

size = 5

"no" is not in the TreeSet

After removing "serene", here is the TreeSet:

[always, happy, tranquil, yes]

Here are the scores in decreasing order:

[4, 3, 2, 1, 0]

The sum of the scores is 10

After we take a brief look at the implementation of the TreeSet class, we will return to a user’s view by

developing an application on spell checking.

528 CHAPTER 12 Tree Maps and Tree Sets

12.5.1 Implementation of the TreeSet Class

The TreeSet class is based on the TreeMap class, which implements a red-black tree. Basically, a

TreeSet object is a TreeMap object in which each element has the same dummy value. Recall that it is

legal for different TreeMap elements to have the same values; it would be illegal for different TreeMap

elements to have the same keys. Here is the start of the declaration of the TreeSet class:

public class TreeSet<E>

extends AbstractSet<E>

implements NavigableSet<E>, Cloneable, java.io.Serializable

{

private transient NavigableMap<E, Object> m; // The backing Map

// Dummy value to associate with an Object in the backing Map

private static final Object PRESENT = new Object();

“Navigable” means that the set (or map) can be iterated over from back to front as well as from front to

back.

To explicitly construct a TreeSet object from a given SortedSet object, usually a TreeSet object,

there is a constructor with default visibility (that is, accessible only from within the package java.util):

/**

* Initializes this TreeSet object from a specified NavigableMap object.

*

* @param m – the NavigableMap that this TreeSet object is initialized from.

*

*/

TreeSet<E> (NavigableMap<E, Object> m)

{

this.m = m;

} // constructor with map parameter

Given the TreeSet fields and this constructor, we can straightforwardly implement the rest of the TreeSet

methods. In fact, most of the definitions are one-liners. For example, here are the definitions of the default

constructor, the constructor with a comparator parameter, and the contains, add, and remove methods:

/**

* Initializes this TreeSet object to be empty, with the elements to be

* ordered by the Comparable interface.

*

*/

public TreeSet()

{

this (new TreeMap<E, Object>());

} // default constructor

/**

* Initializes this TreeSet object to be empty, with elements to be ordered

* by a specified Comparator object.

*

12.5 The TreeSet Class 529

* @param c – the specified Comparator object by which the elements in

* this TreeSet object are to be ordered.

*

*/

public TreeSet (Comparator<? super E> c)

{

this (new TreeMap<E, Object>(c));

}

/**

* Determines if this TreeSet object contains a specified element.

* The worstTime(n) is O(log n).

*

* @param obj – the specified element sought in this TreeSet object.

*

* @return true – if obj is equal to at least one of the elements in this

* TreeSet object; otherwise, return false.

*

* @throws ClassCastException – if obj cannot be compared to the

* elements in this TreeSet object.

*

*/

public boolean contains (Object obj)

{

return m.containsKey (obj);

} // method contains

/**

* Inserts a specified element where it belongs in this TreeSet object,

* unless the element is already in this TreeSet object.

* The worstTime(n) is O(log n).

*

* @param element – the element to be inserted, unless already there, into

* this TreeSet object.

*

* @return true – if this element was inserted; return false – if this element

* was already in this TreeSet object.

*

*/

public boolean add (E element)

{

return m.put (element, PRESENT) == null;

} // method add

/**

* Removes a specified element from this TreeSet object, unless the

* element was not in this TreeSet object just before this call.

530 CHAPTER 12 Tree Maps and Tree Sets

* The worstTime(n) is O (log n).

*

* @param element – the element to be removed, unless it is not there,

* from this TreeSet object.

*

* @return true – if element was removed from this TreeSet object;

* otherwise, return false.

*

public boolean remove (Object element)

{

return m.remove (element) == PRESENT;

} // method remove

Section 12.5.2 has an application of the TreeSet class: developing a spell checker.

12.5.2 Application: A Simple Spell Checker

One of the most helpful features of modern word processors is spell checking: scanning a document for

possible misspellings. We say “possible” misspellings because the document may contain words that are

legal but not found in a dictionary. For example, “iterator” and “postorder” were cited as not found by the

word processor (Microsoft Word) used in typing this chapter.

The overall problem is this: Given a dictionary and a document, in files whose names are provided

by the end user, print out all words in the document that are not found in the dictionary.

Analysis We make some simplifying assumptions:

1. The dictionary consists of lower-case words only, one per line (with no definitions).

2. Each word in the document consists of letters only—some or all may be in upper-case.

3. The words in the document are separated from each other by at least one non-alphabetic character

(such as a punctuation symbol, a blank, or an end-of-line marker).

4. The dictionary file is in alphabetical order. The document file, not necessarily in alphabetical order, will

fit in memory (along with the dictionary file) if duplicates are excluded.

Here are the contents of a small dictionary file called “dictionary.dat”, a small document file called

“document.dat” and the words in the latter that are not in the former.

// the dictionary file:

a

algorithms

asterisk

coat

equal

he

pied

pile

plus

programs

separate

she

12.5 The TreeSet Class 531

structures

wore

// the document file:

Alogrithms plus Data Structures equal Programs.

She woar a pide coat.

// the possibly misspelled words:

alogrithms, data, pide, woar

To isolate the spell-checking details from the input/output aspects, we create two classes: SpellChecker

and SpellCheckerUser.

12.5.2.1 Design, Testing, and Implementation of the SpellChecker Class

The SpellChecker class will have four responsibilities:

• to initialize a SpellChecker object

• to add a word to the set of dictionary words;

• to add the words in a line to the set of document words;

• to return a LinkedList of words from the document that are not in the dictionary.

The use of the term “set” in the second and third responsibilities implies that there will be no duplicates in

either collection; there may have been duplicates in the dictionary or document files. Here are the method

specifications for the methods in the SpellChecker class:

/**

* Initializes this SpellChecker object.

*

*/

public SpellChecker()

/**

* Inserts a specified word into the dictionary of words.

* The worstTime(n) is O(log n), where n is the number of words in the

* dictionary of words.

*

* @param word - the word to be inserted into the dictionary of words.

*

* @return a String representation of the dictionary.

*

* @throws NullPointerException - if word is null.

*

*/

public String addToDictionary (String word)

/**

* Inserts all of the words in a specified line into the document of words.

* The worstTime(m) is O(log m), where m is the number of (unique) words

532 CHAPTER 12 Tree Maps and Tree Sets

* in the document of words.

*

* @param line - the line whose words are added to the document of words.

*

* @return a String representation of the document

*

* @throws NullPointerException - if line is null.

*

*/

public String addToDocument (String line)

/**

* Determines all words that are in the document but not in the dictionary.

* The worstTime(m, n) is O(m log n), where m is the number of words

* in the document, and n is the number of words in the dictionary.

*

* @return a LinkedList consisting of all the words in the document that

* are not in the dictionary.

*

*/

public LinkedList<String> compare()

Here are two of the tests in SpellCheckerTest, which has spellChecker (always initialized to an

empty SpellChecker instance) as a field:

@Test

public void testAddToDocument1()

{

String actual = spellChecker.addToDocument ("A man, a plan, a canal. Panama!");

assertEquals ("[a, canal, man, panama, plan]", actual);

} // method testAddToDocument1

@Test

public void testSeveralMisspellings1()

{

spellChecker.addToDictionarySet ("separate");

spellChecker.addToDictionarySet ("algorithms");

spellChecker.addToDictionarySet ("equals");

spellChecker.addToDictionarySet ("asterisk");

spellChecker.addToDictionarySet ("wore");

spellChecker.addToDictionarySet ("coat");

spellChecker.addToDictionarySet ("she");

spellChecker.addToDictionarySet ("equals");

spellChecker.addToDictionarySet ("plus");

spellChecker.addToDictionarySet ("he");

spellChecker.addToDictionarySet ("pied");

spellChecker.addToDictionarySet ("a");

spellChecker.addToDictionarySet ("pile");

spellChecker.addToDictionarySet ("programs");

spellChecker.addToDictionarySet ("structures");

12.5 The TreeSet Class 533

spellChecker.addToDocumentSet ("Alogrithms plus Data Structures equal Programs.");

String expected = "[alogrithms, data, equal]",

actual = spellChecker.compare().toString();

assertEquals (expected, actual);

} // method testSeveralMisspellings1

The SpellChecker class has only two fields:

protected TreeSet<String> dictionarySet,

documentSet;

The dictionarySet field holds the words in the dictionary file. The documentSet field holds each

unique word in the document file—there is no purpose in storing multiple copies of any word.

The definitions of the default constructor and addToDictionarySet methods hold no surprises:

public SpellChecker()

{

dictionarySet = new TreeSet<String>();

documentSet = new TreeSet<String>();

} // default constructor

public String addToDictionary (String word)

{

dictionarySet.add (word);

return dictionarySet.toString();

} // method addToDictionary

The definition of addToDocumentSet (String line) is slightly more complicated. The line is tok-

enized, with delimiters that include punctuation symbols. Each word, as a token, is converted to lower-case

and inserted into documentSet unless the word is already in documentSet. Here is the definition (see

Section 0.2.5 of Chapter 0 for a discussion of the useDelimiter method):

public String addToDocument (String line)

{

final String DELIMITERS = "[∧a-zA-Z]+";

Scanner sc = new Scanner (line).useDelimiter (DELIMITERS);

String word;

while (sc.hasNext())

{

word = sc.next().toLowerCase();

documentSet.add (word);

} // while line has more tokens

return documentSet.toString();

} // method addToDocument

Let m represent the number of words in documentSet. Each call to the TreeSet class’s add method takes

logarithmic-in-m time. The number of words on a line is independent of m , so for the addToDocument

method, worstTime(m) is logarithmic in m .

534 CHAPTER 12 Tree Maps and Tree Sets

The compare method iterates through documentSet; each word that is not in dictionarySet is

appended to a LinkedList object of (possibly) misspelled words. Here is the definition:

public LinkedList<String> compare()

{

LinkedList<String> misspelled = new LinkedList<String>();

for (String word : documentSet)

if (!dictionarySet.contains (word))

misspelled.add (word);

return misspelled;

} // method compare

For iterating through documentSet, worstTime(m) is linear in m , and for each call to the TreeSet class’s

contains method, worstTime(n) is logarithmic in n . So for the compare method in the SpellChecker

class, worstTime(n , m) is O(m log n). In fact, worstTime(n , m) is �(m log n).

In Chapter 14, we will encounter another class that implements the Set interface: the HashSet

class. In this class, the average time for insertions, removals and searches is constant! So we can re-

do the above problem with HashSet object for dictionarySet and documentSet. No other changes

need be made! For that version of the spell-check project, averageTime(n) would be constant for the

addToDictionary method, and averageTime(m) would be constant for the addToDocument method.

For the compare method, averageTime(m , n) would be linear in m . But don’t sell your stock in TreeSets-

R-Us. For the HashSet version of the SpellChecker class, the worstTime(m , n) for compare, for

example, would be �(mn).

12.5.2.2 Design of the SpellCheckerUser Class

The SpellCheckerUser class has the usual main method that invokes a run method, which handles

end-user input and output, creates the dictionary and document, and compares the two.

Figure 12.8 shows the class diagrams for this project.

12.5.2.3 Implementation of the SpellCheckerUser Class

The run method scans a file path from the keyboard and constructs a file scanner for that file. Then,

depending on whether fileType is “dictionary” or “document,” each line from the file is read and added

to the dictionary set or the document set, respectively. Finally, the possibly misspelled words are printed.

Here is the method definition:

public void run()

{

final int FILE_TYPES = 2;

final String DICTIONARY = "dictionary";

final String DOCUMENT = "document";

final String ALL_CORRECT =

"\n\nAll the words are spelled correctly.";

final String MISSPELLED =

"\n\nThe following words are misspelled:";

12.5 The TreeSet Class 535

SpellCheckerUser

+ main (args: String[])

+ run()

SpellChecker

dictionarySet: TreeSet<String>

documentSet: TreeSet<String>

+ SpellChecker()

+ addToDictionary (word: String)

+ addToDocument (line: String)

+ compare(): LinkedList<String>

FIGURE 12.8 Class diagrams for the Spell Checker project

SpellChecker spellChecker = new SpellChecker();

Scanner keyboardScanner = new Scanner (System.in),

fileScanner;

String fileType = DICTIONARY,

filePath;

for (int i = 0; i < FILE_TYPES; i++)

{

final String FILE_PROMPT =

"\nPlease enter the path for the " + fileType + " file: ";

boolean pathOK = false;

while (!pathOK)

{

try

{

System.out.print (FILE_PROMPT);

filePath = keyboardScanner.nextLine();

fileScanner = new Scanner (new File (filePath));

pathOK = true;

if (fileType.equals (DICTIONARY))

536 CHAPTER 12 Tree Maps and Tree Sets

while (fileScanner.hasNext())

spellChecker.addToDictionary (fileScanner.nextLine());

else if (fileType.equals (DOCUMENT))

while (fileScanner.hasNext())

spellChecker.addToDocument (fileScanner.nextLine());

} // try

catch (IOException e)

{

System.out.println (e);

} // catch

} // while

fileType = DOCUMENT;

} // for

LinkedList<String> misspelled = spellChecker.compare();

if (misspelled == null)

System.out.println (ALL_CORRECT);

else

System.out.println (MISSPELLED + misspelled);

} // method run

To create the dictionary, worstTime(n) is linear-logarithmic in n because each of the n words in the

dictionary file is stored in a TreeSet object, and for each insertion in a TreeSet object, worstTime(n) is

logarithmic in n . By the same reasoning, to create the document, worstTime(m) is linear-logarithmic in m

(the size of the document file). Also, worstTime (m , n) is �(m log n) for the call to the SpellChecker

class’s compare method.

We conclude that, for the run method, worstTime (m , n) is linear-logarithmic in max (m , n).

The book’s website includes the SpellCheckerTest class. There is no SpellCheckerUserTest

class because SpellCheckerUser’s main and run methods are untestable.

S U M M A R Y

A red-black tree is a binary search tree that is empty or

in which the root element is colored black, every other

element is colored either red or black, and for which the

following two rules hold:

1. Red Rule: if an element is colored red, none of its

children can be colored red.

2. Path Rule: the number of black elements is the

same in all paths from the root to elements with

one child or with no children.

The height of a red-black tree is always logarithmic in n ,

the number of elements in the tree.

The Java Collections Framework implements red-

black trees in the TreeMap class. In a TreeMap object

each element has a key part—by which the element is

identified—and a value part, which contains the rest of

the element. The elements are stored in a red-black tree

in key-ascending order, according to their “natural” order

(implementing the Comparable interface) or by the

order specified by a user-supplied Comparator object

(there is a constructor in which the Comparator object

is supplied). For the containsKey, get, put, and

remove methods, worstTime(n) is logarithmic in n .

A TreeSet object is a Collection object in

which duplicate elements are not allowed and in which

the elements are stored in order (according to the Compa

rable ordering or a user-supplied Comparator). The

TreeSet class is implemented in the Java Collections

Framework as a TreeMap in which each element has

the same dummy value-part. For the contains, add,

and remove methods, worstTime(n) is logarithmic in n .

Crossword Puzzle 537

CROSSWORD PUZZLE

ACROSS DOWN

 7. The two components of each element
 in a map collection

 8. In the TreeMap class, the value
 returned by the put method when an
 element with a new key is inserted

 9. What a TreeSet object never has

10. In a red-black tree, what the only child
 of a black element must be

1. The TreeMap field used to compare
 elements (by their keys)

2. In the simple thesaurus project, the
 class that handles input and output

3. For the containskey, get, put and
 remove methods in the TreeMap
 class, worstTime(n) is _____ in n.

4. The type of the constant identifiers
 RED and BLACK

5. The kind of search in the contains
 Value method of the TreeMap class

6. The Path Rule states that the number
 of black elements must be the same
 in all paths from the root element to
 elements with _____ or with one child.

1

2 3

4 5 6

7

8

9

10

www.CrosswordWeaver.com

www.CrosswordWeaver.com

538 CHAPTER 12 Tree Maps and Tree Sets

CONCEPT EXERCISES

12.1 Construct a red-black tree of height 2 with six elements. Construct a red-black tree of height 3 with six

elements.

12.2 Construct two different red-black trees with the same three elements.

12.3 What is the maximum number of black elements in a red-black tree of height 4? What is the minimum

number of black elements in a red-black tree of height 4?

12.4 It is impossible to construct a red-black tree of size 20 with no red elements. Explain.

12.5 Suppose v is an element with one child in a red-black tree. Explain why v must be black and v ’s child must

be a red leaf.

12.6 Construct a red-black tree that (when the colors are ignored) is not an AVL tree.

12.7 Guibas and Sedgewick [1978] provide a simple algorithm for coloring any AVL tree into a red-black tree:

For each element in the AVL tree, if the height of the subtree rooted at that element is an even integer and

the height of its parent’s subtree is odd, color the element red; otherwise, color the element black.

For example, here is an AVL tree from Chapter 10:

50

20 80

10 70 100

91 103

In this tree, 20’s subtree has a height of 1, 80’s subtree has a height of 2, 10’s subtree has a height of 0

and 70’s subtree has a height of 0. Note that since the root of the entire tree has no parent, this algorithm

guarantees that the root will be colored black. Here is that AVL tree, colorized to a red-black tree:

50

20 80

10 70 100

91 103

Create an AVL tree of height 4 with min4 elements (that is, the minimum number of elements for an AVL

tree of height 4), and then colorize that tree to a red-black tree.

Programming Exercises 539

12.8 Suppose, in the definition of red-black tree, we replace the Path Rule with the following:

Pathetic Rule: The number of black elements must be the same in all paths from the root element

to a leaf.

a. With this new definition, describe how to construct a red-black tree of 101 elements whose height is 50.

b. Give an example of a binary search tree that cannot be colored to make it a red-black tree (even with this

new definition).

12.9 Show the effect of making the following insertions into an initially empty TreeSet object:

30, 40, 20, 90, 10, 50, 70, 60, 80

12.10 Delete 20 and 40 from the TreeSet object in Exercise 12.8. Show the complete tree after each deletion.

12.11 Pick any integer h ≥ 1, and create a TreeSet object as follows:

let k = 2h+1 + 2h − 2.

Insert 1, 2, 3, . . . , k . Remove k , k − 1, k − 2, . . . , 2h . Try this with h = 1, 2 and 3. What is unusual about

the red-black trees that you end up with? Alexandru Balan developed this formula.

12.12 From a user’s point of view, what is the difference between the TreeMap class and the TreeSet class?

12.13 From a developer’s point of view, what is the relationship between the TreeMap class and the TreeSet

class?

PROGRAMMING EXERCISES

12.1 Suppose we are given the name and division number for each employee in a company. There are no duplicate

names. We would like to store this information alphabetically, by name. For example, part of the input might

be the following:

Misino, John 8

Nguyen, Viet 14

Panchenko, Eric 6

Dunn, Michael 6

Deusenbery, Amanda 14

Taoubina, Xenia 6

We want these elements stored in the following order:

Deusenbery, Amanda 14

Dunn, Michael 6

Misino, John 8

Nguyen, Viet 14

Panchenko, Eric 6

Taoubina, Xenia 6

How should this be done? TreeMap? TreeSet? Comparable? Comparator? Develop a small unit-test

to test your hypotheses.

540 CHAPTER 12 Tree Maps and Tree Sets

12.2 Re-do Programming Exercise 12.1, but now the ordering should be by increasing division numbers, and

within each division number, by alphabetical order of names. For example, part of the input might be the

following:

Misino, John 8

Nguyen, Viet 14

Panchenko, Eric 6

Dunn, Michael 6

Deusenbery, Amanda 14

Taoubina, Xenia 6

We want these elements stored in the following order:

Dunn, Michael 6

Panchenko, Eric 6

Taoubina, Xenia 6

Misino, John 8

Deusenbery, Amanda 14

Nguyen, Viet 14

How should this be done? TreeMap? TreeSet? Comparable? Comparator? Develop a small unit-test

to test your hypotheses.

12.3 Declare two TreeSet objects, set1 and set2, whose elements come from the same Student class.

Each student has a name and grade point average. In set1, the students are in alphabetical order. In set2,

the students are in decreasing order of GPAs. Insert a few students into each set and then print out the set.

Include everything needed for this to work, including the two declarations of TreeSet objects, the insertion

messages, the declaration of the Student class, and any other necessary class(es).

Programming Project 12.1

Spell Check, Revisited

Modify the spell-check project and unit-test your modified methods. If document word x is not in the dictionary

but word y is in the dictionary and x differs from y either by an adjacent transposition or by a single letter,

then y should be proposed as an alternative for x. For example, suppose the document word is “asteriks” and the

dictionary contains “asterisk.” By transposing the adjacent letters “s” and “k” in “asteriks,” we get “asterisk.” So

“asterisk” should be proposed as an alternative. Similarly, if the document word is “seperate” or “seprate” and the

dictionary word is “separate,” then “separate” should be offered as an alternative in either case.

Here are the dictionary words for both system tests:

a

algorithms

asterisk

Programming Exercises 541

coat

equal

he

pied

pile

plus

programs

separate

structures

wore

Here is document file doc1.dat:

She woar a pide coat.

And here is document file doc2.dat

Alogrithms plus Data Structures equal Pograms

System Test 1 (with input in boldface):

Please enter the name of the dictionary file.

dictionary.dat

Please enter the name of the document file.

doc1.dat

Possible Misspellings Possible Alternatives

pide pied, pile

she he

woar

System Test 2:

Please enter the name of the dictionary file.

dictionary.dat

In the Input line, please enter the name of the document file.

doc2.dat

Possible Misspellings Possible Alternatives

alogrithms algorithms

data

pograms programs

542 CHAPTER 12 Tree Maps and Tree Sets

Programming Project 12.2

Word Frequencies

Design, test, and implement a program to solve the following problem: Given a text, determine the frequency of

each word, that is, the number of times each word occurs in the text. Include Big-� time estimates of all method

definitions.

Analysis

1. The first line of input will contain the path to the text file. The second line of input will contain the path to the

output file.

2. Each word in the text consists of letters only (some or all may be in upper-case), except that a word may also

have an apostrophe.

3. Words in the text are separated from each other by at least one non-alphabetic character, such as a punctuation

symbol, a blank, or an end-of-line marker.

4. The output should consist of the words, lower-cased and in alphabetical order; each word is followed by its

frequency.

5. For the entire program, worstTime(n) is O(n log n), where n is the number of distinct words in the text.

Assume that doc1.in contains the following file:

This program counts the

number of words in a text.

The text may have many words

in it, including big words.

Also, assume that doc2.in contains the following file:

Fuzzy Wuzzy was a bear.

Fuzzy Wuzzy had no hair.

Fuzzy Wuzzy wasn’t fuzzy.

Was he?

System Test 1:

Please enter the path to the text file.

doc1.in

Please enter the path to the output file.

doc1.out

(Here are the contents of doc1.out after the completion of the program.)

Here are the words and their frequencies:

a: 1

big: 1

counts: 1

Programming Exercises 543

have: 1

in: 2

including: 1

it: 1

many: 1

may: 1

number: 1

of: 1

program: 1

text: 2

the: 2

this: 1

words: 3

System Test 2:

Please enter the path to the text file.

doc2.in

Please enter the path to the output file.

doc2.out

(Here are the contents of doc2.out after the completion of the program.)

Here are the words and their frequencies:

a: 1

bear: 1

fuzzy: 4

had: 1

hair: 1

he: 1

no: 1

was: 2

wasn’t: 1

wuzzy: 3

Programming Project 12.3

Building a Concordance

Design, test, and implement a program to solve the following problem: Given a text, develop a concordance for

the words in the text. A concordance consists of each word in the text and, for each word, each line number that

the word occurs in. Include Big-� time estimates of all methods.

(continued on next page)

544 CHAPTER 12 Tree Maps and Tree Sets

(continued from previous page)

Analysis

1. The first line of input will contain the path to the text file. The second line of input will contain the path to the

output file.

2. Each word in the text consists of letters only (some or all may be in upper-case), except that a word may also

have an apostrophe.

3. The words in the text are separated from each other by at least one non-alphabetic character, such as a

punctuation symbol, a blank, or an end-of-line marker.

4. The output should consist of the words, lower-cased and in alphabetical order; each word is followed by each

line number that the word occurs in. The line numbers should be separated by commas.

5. The line numbers in the text start at 1.

6. For the entire program, worstTime(n) is O(n log n), where n is the number of distinct words in the text.

Assume that doc1.in contains the following file:

This program counts the

number of words in a text.

The text may have many words

in it, including big words.

Also, assume that doc2.in contains the following file:

Fuzzy Wuzzy was a bear.

Fuzzy Wuzzy had no hair.

Fuzzy Wuzzy wasn’t fuzzy.

Was he?

System Test 1:

Please enter the path to the text file.

doc1.in

Please enter the path to the output file.

doc1.out

(Here are the contents of doc1.out after the completion of the program.)

Here is the concordance:

a: 2

big: 4

counts: 1

have: 3

in: 2, 4

including: 4

it: 4

many: 3

may: 3

number: 2

Programming Exercises 545

of: 2

program: 1

text: 2, 3

the: 1, 3

this: 1

words: 2, 3, 4

System Test 2:

Please enter the path to the text file.

doc2.in

Please enter the path to the output file.

doc2.out

(Here are the contents of doc2.out after the completion of the program.)

Here is the concordance:

a: 1

bear: 1

fuzzy: 1, 2, 3

had: 2

hair: 2

he: 4

no: 2

was: 1, 4

wasn’t: 3

wuzzy: 1, 2, 3

Programming Project 12.4

Approval Voting

Design, test, and implement a program to handle approval voting. In approval voting , each voter specifies which

candidates are acceptable. The winning candidate is the one who is voted to be acceptable on the most ballots. For

example, suppose there are four candidates: Larry, Curly, Moe, and Gerry. The seven voters’ ballots are as follows:

Voter Ballot

1 Moe, Curly

2 Curly, Larry

3 Larry

4 Gerry, Larry, Moe

5 Larry, Moe, Gerry, Curly

6 Gerry, Moe

7 Curly, Moe

(continued on next page)

546 CHAPTER 12 Tree Maps and Tree Sets

(continued from previous page)

The number of ballots on which each candidate was listed is as follows:

Candidate Number of Ballots

Curly 4

Gerry 3

Larry 4

Moe 5

In this example, the winner is Moe. If there is a tie for most approvals, all of those tied candidates are considered

winners—there may then be a run-off election to determine the final winner.

For a given file of ballots, the output—in the console window—should have:

1. the candidate(s) with the most votes, in alphabetical order of candidates’ names;

2. the vote totals for all candidates, in alphabetical order of candidates’ names;

3. the vote totals for all candidates, in decreasing order of votes; for candidates with equal vote total, the ordering

should be alphabetical.

Let C represent the number of candidates, and V represent the number of voters. For the entire program,

worstTime(C, V) is O(V log C). You may assume that C is (much) smaller than V.

Assume that p5.in1 contains the following:

Moe, Curly

Curly, Larry

Larry

Gerry, Larry, Moe

Larry, Moe, Gerry, Curly

Gerry, Moe

Curly, Moe

Assume that p5.in2 contains the following:

Karen

Tara, Courtney

Courtney, Tara

System Test 1 (Input in boldface):

Please enter the input file path: p5.in1

The winner is Moe, with 5 votes.

Programming Exercises 547

Here are the totals for all candidates, in alphabetical order:

Candidate Number of Ballots

Curly 4

Gerry 3

Larry 4

Moe 5

Here are the vote totals for all candidates, in decreasing order of vote totals:

Candidate Number of Ballots

Moe 5

Curly 4

Larry 4

Gerry 3

System Test 2 (Input in boldface):

Please enter the input file path: p5.in2

The winners are Courtney and Tara, with 2 votes.

Here are the totals for all candidates, in alphabetical order:

Candidate Number of Ballots

Courtney 2

Karen 1

Tara 2

Here are the vote totals for all candidates, in decreasing order of vote totals:

Candidate Number of Ballots

Courtney 2

Tara 2

Karen 1

Keep re-prompting until a legal file path is entered.

The input file may have millions of ballots, so do not re-read the input.

548 CHAPTER 12 Tree Maps and Tree Sets

Programming Project 12.5

An Integrated Web Browser and Search Engine, Part 4

In this part of the project, you will add functionality to the Search button. Assume the file search.in1 consists of

file names (for web pages), one per line. Each time the end-user clicks on the Search button, the output window is

cleared and then a prompt is printed in the Output window to request that a search string be entered in the Input

window followed by a pressing of the Enter key.

For each file name in search.in1, the web page corresponding to that file is then searched for the individual

words in the search string. Then the link is printed in the Output window, along with the relevance count: the

sum of the word frequencies of each word in the search string. For example, suppose the search string is “neural

network”, the file name is “browser.in6”, and that web page has

A network is a network, neural or not. If every neural network were

combined, that would be a large neural network for networking.

The output corresponding to that web page would be

browser.in6 7

because “neural” appears 3 times on the web page, and “network” appears 4 times (“networking” does not count).

The end user may now click on browser.in6 to display that page.

Start with your definition of the two specified methods in your Filter class from Part 2 of this project. Use

those methods to get each word in the web page—excluding an expanded file of common words, and so on—and

determine the frequency of each such word on that web page. Then, for each word in the search string, add up

the frequencies.

The only class you will modify is your listener class. Here is the expanded file of common words, which

will be stored in the file common.in1:

a

all

an

and

be

but

did

down

for

if

in

Programming Exercises 549

is

not

or

that

the

through

to

were

where

would

For each of the n words in the web page, the worstTime(n) for incrementing that word’s frequency must

be logarithmic in n . Also, for each word in the search string, calculating its frequency in the web page must also

take logarithmic-in-n time, even in the worst case.

For testing, assume search.in1 contains just a few files, for example,

browser.in6

browser.in7

browser.in8

Here are the contents of those files:

browser.in6:

A network is a network, neural or not. If every neural network were

combined,

that would be a

large neural network for networking.

browser.in7:

In Xanadu did Kubla Khan

A stately pleasure-dome decree:

Where Alph, the sacred river, ran

Through cavernsbrowser2 measureless to man

Down to a sunless sea.

browser.in8:

In Xanadu did Kubla Khan

A stately network pleasure-dome decree:

Where Alph, the sacred river, ran

Through caverns browser2measureless to man

Down to a sunless neural.

(continued on next page)

550 CHAPTER 12 Tree Maps and Tree Sets

(continued from previous page)

System Test 1(user input in boldface):

Please enter a search string in the input line and then press the Enter key.

neural network

Here are the files and relevance frequencies

browser.in6 7

browser.in7 0

browser.in8 2

Please enter a search string in the input line and then press the Enter key.

neural

Here are the files and relevance frequencies

browser.in6 3

browser.in7 0

browser.in8 1

If the end-user now clicks on the Back button, the input prompt should appear in the output window. If the end-user

clicks on the Back button again, the search page for “neural network” should re-appear.

System Test 2:

Please enter a search string in the input line and then press the Enter key.

network

Here are the files and relevance frequencies:

browser.in6 4

browser.in7 0

browser.in8 1

NOTE: The Search button should be green as soon as the GUI window is opened, and only one search string can

be entered for each press of the Search button.

Priority Queues CHAPTER 13

In this chapter, we examine the priority queue data type. A priority queue is a collection in which only the

element with highest priority can be removed, according to some method for comparing elements. This

restriction allows an implementation—the Java Collections Framework’s PriorityQueue class—with

an addmethod whose average time is constant. The PriorityQueue class can be enhanced by including

heapSort, a fast sort method for which worstSpace(n) is constant. The chapter concludes by using a

priority queue to generate a Huffman Tree—a necessary component of a popular data-compression

technique called Huffman compression.

CHAPTER OBJECTIVES

1. Understand the defining property of a priority queue, and how the Java Collections Framework’s

PriorityQueue class violates that property.

2. Be able to perform the heap operations of siftUp and siftDown.

3. Compare Heap Sort to Merge Sort with respect to time and space requirements.

4. Examine the Huffman data-compression algorithm.

5. Determine the characteristic of a greedy algorithm.

13.1 Introduction

A variation of the queue, the priority queue is a commonplace structure. The basic idea is that we have

elements waiting in line for service, as with a queue. But removals are not strictly on a first-in-first-out

basis. For example, patients in an emergency room are treated according to the severity of their injuries,

not according to when they arrived. Similarly, in air-traffic control, when there is a queue of planes waiting

to land, the controller can move a plane to the front of the queue if the plane is low on fuel or has a sick

passenger.

A shared printer in a network is another example of a resource suited for a priority queue. Normally,

jobs are printed based on arrival time, but while one job is printing, several others may enter the service

queue. Highest priority could be given to the job with the fewest pages to print. This would optimize

the average time for job completion. The same idea of prioritized service can be applied to any shared

resource: a central processing unit, a family car, the courses offered next semester, and so on.

Here is the definition:

A priority queue is collection in which removal is of the highest-priority element in the collection,

according to some method for comparing elements.

551

552 CHAPTER 13 Priority Queues

For example, if the elements are of type (reference to) Integer and comparisons use the “natural” ordering,

then the highest-priority element is the one whose corresponding int has the smallest value in the priority

queue. But if elements are of type Integer and the comparisons use the reverse of the natural ordering,

then the highest-priority element is the one whose corresponding int has the largest value in the priority

queue. By default, the smallest-valued element has highest priority.

This definition says nothing about insertions. In the PriorityQueue class, the method add (E

element) takes only constant time on average, but linear-in-n time in the worst case. What underlying

structure do these times suggest?

You might wonder what happens if two or more elements are tied for highest priority. In the interest

of fairness, the tie should be broken in favor of the element that has been in the priority queue for

the longest time. This appeal to fairness is not part of the definition, and is not incorporated into the

PriorityQueue class. Lab 21 provides a solution to this problem.

Most of this chapter is devoted to an important application of priority queues: Huffman encoding.

Also, Chapter 15 has two widely used priority-queue applications: Prim’s minimum-spanning-tree algorithm

and Dijkstra’s shortest-path algorithm. For a lively discussion of the versatility of priority queues, see Dale

[1990].

13.2 The PriorityQueue Class

The PriorityQueue class, which complements the Queue interface, is in the package java.util. That

fact has the significant benefit that the PriorityQueue class is available to you whenever you program

in Java. But the PriorityQueue class also has a flaw: It allows methods—such as remove (Object

obj)—that violate the definition of a priority queue. If you want a PurePriorityQueue class, you

have the same two choices as were available for the PureStack and PureQueue classes in Chapter 8.

You can extend the PriorityQueue class to a PurePriorityQueue class that throws Unsupported

OperationException for the removal of any element except the highest-priority element. Or you can

create a minimalist PurePriorityQueue class that allows only a few methods: a couple of constructors,

isEmpty(), size(), add (E element), remove(), and element().

The PriorityQueue class has some unusual features. For example, null values are not permitted.

Why? Because some removal methods, such as poll(), and some access methods (such as peek())

return null if the priority queue is empty. If null values were allowed, there would be ambiguity if

poll() returned null: That value could signify an empty queue, or could simply be the value of the

highest priority element.

The creator of a PriorityQueue object can order the elements “naturally” (with the element class’s

Comparable interface) or else provide a Comparator class for comparisons.

Here are the specifications for two constructors and three other essential methods:

/**

* Initializes a PriorityQueue object with the default initial capacity (11) that orders its

* elements according to their natural ordering (using Comparable).

*/

public PriorityQueue()

/**

* Initializes a PriorityQueue object with the specified initial capacity

* that orders its elements according to the specified comparator.

*

* @param initialCapacity the initial capacity for this priority queue.

13.3 Implementation Details of the PriorityQueue Class 553

* @param comparator the comparator used to order this priority queue.

* If null then the order depends on the elements’ natural ordering.

* @throws IllegalArgumentException if initialCapacity is less than 1

*/

public PriorityQueue(int initialCapacity, Comparator<? super E> comparator)

/**

* Inserts a specified element into this PriorityQueue object.

* The worstTime(n) is O(n) and averageTime(n) is constant.

*

* @param element –the element to be inserted into this PriorityQueue object.

* @return true

* @throws NullPointerException –if element is null.

* @throws ClassCastException if the specified element cannot be compared

* with elements currently in the priority queue according

* to the priority queue’s ordering.

*

*/

public boolean add (E element)

/**

* Retrieves and removes the highest priority element of this PriorityQueue object.

* The worstTime(n) is O(log n).

*

* @return the highest priority element of this PriorityQueue object.

* @throws NoSuchElementException if this queue is empty.

*/

public E remove()

/**

* Retrieves, but does not remove, the highest priority element of this PriorityQueue

* object.

* The worstTime(n) is constant.

*

* @return the highest priority element of this PriorityQueue object.

* @throws NoSuchElementException if this queue is empty.

*/

public E element()

13.3 Implementation Details of the PriorityQueue Class

In any instance of the PriorityQueue class, the elements are stored in a heap. A heap t is a complete

binary tree such that either t is empty or

1. the root element is the smallest element in t , according to some method for comparing elements;

2. the left and right subtrees of t are heaps.

(The heap we have defined is called a “minHeap”. In a “maxHeap”, the root element is the largest element.)

Recall from Chapter 9 that a complete binary tree is full except, possibly, at the level farthest from

the root, and at that farthest level, the leaves are as far to the left as possible. Figure 13.1 shows a heap

554 CHAPTER 13 Priority Queues

26

32 30

48 50 80 31

107 80 55

FIGURE 13.1 A heap with ten (reference to) Integer elements; the int values of the Integer elements are

shown

of ten Integer elements with the “natural” ordering. Notice that a heap is not a binary search tree. For

example, duplicates are allowed in a heap, unlike the prohibition against duplicates for binary search trees.

The ordering in a heap is top-down, but not left-to-right: the root element of each subtree is less

than or equal to each of its children, but some left siblings may be less than their right siblings and some

may be greater than or equal to. In Figure 13.1, for example, 48 is less than its right sibling, 50, but 107

is greater than its right sibling, 80. Can you find an element that is smaller than its parent’s sibling?

A heap is a complete binary tree. We saw in Chapter 9 that a complete binary tree can be implemented

with an array. Figure 13.2 shows the array version of Figure 13.1, with each index under its element. An

iteration over a PriorityQueue object uses the index-ordering of the array, so the iteration would be 26,

32, 30, 48, 50, 80, 31, 107, 80, 55.

Recall from Chapter 9 that the random-access feature of arrays is convenient for processing a

complete binary tree: Given the index of an element, that element’s children can be accessed in constant

time. For example, with the array as shown in Figure 13.2, the children of the element at index i are at

indexes (i << 1) + 1 and (i << 1) + 2. And the parent of the element at index j is at index (j -

1) >> 1.

. . .

0 1 2 3 4 5 6 7 8 9

26 32 30 48 50 80 30 107 80 55

FIGURE 13.2 The array representation of the heap from Figure 13.1

As we will see shortly, the ability to quickly swap the values of a parent and its smaller-valued child

makes a heap an efficient storage structure for the PriorityQueue class.

Here is program that creates and maintains two PriorityQueue objects in which the elements are

of type Student, declared below. Each line of input—except for the sentinel—consists of a name and the

corresponding grade point average (GPA). The highest-priority student is the one whose GPA is lowest.

In the Student class, the Comparable interface is implemented by specifying increasing order of grade

point averages. To order another heap by alphabetical order of student names, a ByName comparator class

is defined.

import java.util.*;

public class PriorityQueueExample

{

13.3 Implementation Details of the PriorityQueue Class 555

public static void main (String[] args)

{

new PriorityQueueExample().run();

} // method main

public void run()

{

final int DEFAULT_INITIAL_CAPACITY = 11;

final String PROMPT1 = "Please enter student’s name and GPA, or " ;

final String PROMPT2 = " to quit: ";

final String SENTINEL = "***";

final String RESULTS1 = "\nHere are the student names and GPAs, " +

"in increasing order of GPAs:";

final String RESULTS2 = "\nHere are the student names and GPAs, " +

"in alphabetical order of names:";

PriorityQueue<Student> pq1 = new PriorityQueue<Student>(),

pq2 = new PriorityQueue<Student>

(DEFAULT_INITIAL_CAPACITY, new ByName());

Scanner sc = new Scanner (System.in);

String line;

while (true)

{

System.out.print (PROMPT1 + SENTINEL + PROMPT2);

line = sc.nextLine();

if (line.equals (SENTINEL))

break;

pq1.add (new Student (line));

pq2.add (new Student (line));

} // while

System.out.println (RESULTS1);

while (!pq1.isEmpty())

System.out.println (pq1.remove());

System.out.println (RESULTS2);

while (!pq2.isEmpty())

System.out.println (pq2.remove());

} // method run

} // class PriorityQueueExample

// in another file

import java.util.*;

public class Student implements Comparable<Student>

556 CHAPTER 13 Priority Queues

{

protected String name;

protected double gpa;

/**

* Initializes this Student object from a specified String object.

*

* @param s - the String object used to initialize this Student object.

*

*/

public Student (String s)

{

Scanner sc = new Scanner (s);

name = sc.next();

gpa = sc.nextDouble();

} // constructor

/**

* Compares this Student object to a specified Student object by

* grade point average.

*

* @param otherStudent - the specified Student object.

*

* @return a negative integer, 0, or a positive integer, depending

* on whether this Student object’s grade point average is less than,

* equal to, or greater than otherStudent’s grade point average.

*

*/

public int compareTo (Student otherStudent)

{

if (gpa < otherStudent.gpa)

return -1;

if (gpa > otherStudent.gpa)

return 1;

return 0;

} // method compareTo

/**

* Returns a String representation of this Student object.

*

* @return a String representation of this Student object: name " " gpa

*

*/

public String toString()

{

return name + " " + gpa;

} // method toString

13.3 Implementation Details of the PriorityQueue Class 557

} // class Student

// in another file:

import java.util.*;

public class ByName implements Comparator<Student>

{

public int compare (Student stu1, Student stu2)

{

String name1 = new Scanner (stu1.toString()).next(),

name2 = new Scanner (stu2.toString()).next();

return name1.compareTo (name2);

} // method compare

} // class ByName

The Student class implements the Comparable interface with a compareTo method that returns −1, 0,

or 1, depending on whether the calling Student object’s grade point average is less than, equal to, or

greater than another student’s grade point average. So, as you would expect, the Student with the lowest

grade point average is the highest-priority element. Suppose the input for the PriorityQueueExample

program is as follows:

Soumya 3.4

Navdeep 3.5

Viet 3.5

Here is the output of the students as they are removed from pq1:

Soumya 3.4

Viet 3.5

Navdeep 3.5

Notice that Viet is printed before Navdeep even though they have the same grade point average, and

Navdeep was input earlier than Viet. As mentioned earlier, the PriorityQueue class—like life—is

unfair. In Section 13.3.1, we look at more details of the PriorityQueue class, which will help to explain

how this unfairness comes about. Lab 21 will show you how to remedy the problem.

For pq2 in the PriorityQueueExample program above, the output of students would be

Navdeep 3.5

Soumya 3.4

Viet 3.5

13.3.1 Fields and Method Definitions in the PriorityQueue Class

The critical field in the PriorityQueue class will hold the elements:

private transient Object[] queue;

And—similar to the TreeMap class—we also have size, comparator, and modCount fields:

/**

* The number of elements in the priority queue.

558 CHAPTER 13 Priority Queues

*/

private int size = 0;

/**

* The comparator, or null if priority queue uses elements’

* natural ordering.

*/

private final Comparator<? super E> comparator;

/**

* The number of times this priority queue has been

* structurally modified. See AbstractList class and Appendix 1 for gory details.

*/

private transient int modCount = 0;

The following constructor definition creates a priority queue with a specified initial capacity and an ordering

supplied by a specified comparator:

/**

* Initializes a PriorityQueue object with the specified initial capacity

* that orders its elements according to the specified comparator.

*

* @param initialCapacity the initial capacity for this priority queue.

* @param comparator the comparator used to order this priority queue.

* If null then the order depends on the elements’ natural ordering.

* @throws IllegalArgumentException if initialCapacity is less than 1

*/

public PriorityQueue (int initialCapacity, Comparator<? super E> comparator)

{

if (initialCapacity < 1)

throw new IllegalArgumentException();

queue = new Object[initialCapacity];

this.comparator = comparator;

} // constructor

The definition of the default constructor follows easily:

/**

* Initializes a PriorityQueue object with the default initial capacity (11)

* that orders its elements according to their natural ordering (using Comparable).

*/

public PriorityQueue()

{

this (DEFAULT_INITIAL_CAPACITY, null);

} // default constructor

Now let’s define the add (E element), element(), and remove() methods. The add (E element)

method expands that array if it is full, and calls an auxiliary method, siftUp, to insert the element and

restore the heap property. Here are the specifications and definition:

/**

* Inserts the specified element into this priority queue.

13.3 Implementation Details of the PriorityQueue Class 559

* The worstTime(n) is O(n) and averageTime(n) is constant.

*

* @return {@code true} (as specified by {@link Collection#add})

* @throws ClassCastException if the specified element cannot be

* compared with elements currently in this priority queue

* according to the priority queue’s ordering

* @throws NullPointerException if the specified element is null

*/

public boolean add(E e) {

if (e == null)

throw new NullPointerException();

modCount++;

int i = size;

if (i >= queue.length)

grow(i + 1);

size = i + 1;

if (i == 0)

queue[0] = e;

else

siftUp(i, e);

return true;

}

For example, Figure 13.3 shows what the heap in Figure 13.1 will look like just before siftUp (10,

new Integer (28)) is called.

26

32 30

48 50 80 31

107 80 55 ?

FIGURE 13.3 The heap from Figure 13.1 just before 28 is inserted. The size is 10.

13.3.1.1 The siftUp Method

The siftUp method determines where an element is to be inserted, and performs the insertion while

preserving the heap property. Here is the method specification and definition for siftUp:

/**

* Inserts item x at position k, maintaining heap invariant by

* promoting x up the tree until it is greater than or equal to

* its parent, or is the root.

560 CHAPTER 13 Priority Queues

* The worstTime(n) is O(log n) and averageTime(n) is constant.

*

* To simplify and speed up coercions and comparisons, the

* Comparable and Comparator versions are separated into different

* methods that are otherwise identical. (Similarly for siftDown.)

*

* @param k the position to fill

* @param x the item to insert

*/

private void siftUp(int k, E x) {

if (comparator != null)

siftUpUsingComparator(k, x);

else

siftUpComparable(k, x);

}

And here is the specification and definition for siftUpComparable (the definition for siftUpUsing-

Comparator differs only in the use of the compare method instead of compareTo):

/**

* Inserts item x at position k, maintaining heap invariant by

* promoting x up the tree until it is greater than or equal to

* (according to the elements’ implementation of the Comparable

* interface) its parent, or is the root.

* The worstTime(n) is O(log n) and averageTime(n) is constant.

*

* @param k the position to fill

* @param x the item to insert

*/

private void siftUpComparable(int k, E x) {

Comparable<? super E> key = (Comparable<? super E>) x;

while (k > 0) {

int parent = (k - 1) >>> 1;

Object e = queue[parent];

if (key.compareTo((E) e) >= 0)

break;

queue[k] = e;

k = parent;

}

queue[k] = key;

}

The siftUpComparable (int k, E x) method restores the heap property by repeatedly replacing

queue [k] with its parent and dividing k by 2 (with a right shift of 1 to accomplish dividing by 2

faster) until x is greater than or equal to the new parent. Then the while loop is exited and x is stored

at queue[k]. Figure 13.4 shows the result of a call to siftUpComparable (10, new Integer (28))

on the complete binary tree in Figure 13.3:

When called by the add (E element) method, the siftUp method starts at queue [size - 1]

as the child and replaces that child with its parent until the parent is greater than or equal to the element to

13.3 Implementation Details of the PriorityQueue Class 561

26

28 30

48 32 85 31

107 80 55 50

FIGURE 13.4 The heap formed by invoking siftUp (10, new Integer(28)) on the complete binary tree in

Figure 13.3

be inserted. Then the element is inserted at that parent index. For example, let’s begin with the complete

binary tree in Figure 13.3, repeated here, with 28 to be inserted:

26

32 30

48 50 80 31

107 80 55 ?

The child index is 10. Because 28 is less than 50, we replace queue[10] with 50, and set the child index

to 4(= (10 − 1) >>> 1). See Figure 13.5.

26

32 30

48 50 85 31

107 80 55 50

FIGURE 13.5 The heap of Figure 13.3 after replacing queue[10] with queue[4]

562 CHAPTER 13 Priority Queues

We now set the parent index to 1(= (4 − 1) >>> 1), and compare 28 with the parent’s value, namely

32. Because 28 is less than 32, we replace queue[4] with queue[1], and set the parent index to

0(= (1 − 1) >>> 1). Because 28 is <= queue[0], 28 is inserted at queue[1] and that gives us the heap

shown in Figure 13.6.

26

28 30

48 32 85 31

107 80 55 50

FIGURE 13.6 The heap formed when 28 is added to the heap in Figure 13.1

The key to the efficiency of the siftUp method is that a parent’s index is readily computable from

either of its children’s indexes: if k contains a child’s index, then its parent’s index must be

(k –1) / 2

or, to be slightly more efficient

(k –1) >>> 1 // >> performs a right shift of 1 bit on the binary representation of k - 1

And because queue is an array object, the element at that parent index can be accessed or modified in

constant time.

In the worst case for the siftUp method, the element inserted will have a smaller value than any of

its ancestors, so the number of loop iterations will be, approximately, the height of the heap. As we saw

in Chapter 9, the height of a complete binary tree is logarithmic in n . So worstTime(n) is logarithmic in

n , which satisfies the worst-time estimate from the specification of siftUp.

In the average case, about half of the elements in the heap will have a smaller value than the element

inserted, and about half will have a larger value. But heaps are very bushy: at least half of the elements are

leaves. And because of the heap properties, most of the larger-valued elements will be at or near the leaf

level. In fact, the average number of loop iterations is less than 3 (see Schaffer [1993]), which satisfies the

specification that averageTime(n) be constant. Programming Exercise 13.3 outlines a run-time experiment

to support this claim.

Now we can analyze the add (E element) method. The worst case occurs when the array queue

is full. Then a new, larger array is constructed and the old array is copied over. So worstTime(n) is linear

in n . But this doubling occurs infrequently—once in every n insertions—so averageTime(n) is constant,

just as for siftUp.

13.3.1.2 The element() and remove() Methods

The element() method simply returns the element at index 0, and so its worstTime(n) is constant.

/**

* Returns the smallest-valued element in this PriorityQueue object.

*

13.3 Implementation Details of the PriorityQueue Class 563

* @return the smallest-valued element in this PriorityQueue object.

*

* @throws NoSuchElementException –if this PriorityQueue object is empty.

*

*/

public E element()

{

if (size == 0)

throw new NoSuchElementException();

return (E) queue [0];

} // method element()

The remove() method’s main task is to delete the root element. But simply doing this would leave a hole

where the root used to be. So, just as we did when we removed a BinarySearchTree object’s element

that had two children, we replace the removed element with some other element in the tree. Which one?

The obvious answer is the smaller of its children. And ultimately, that must happen in order to preserve

the heap properties. But if we start by replacing the root element with its smaller child, we could open up

another hole, as is shown in the following picture:

10 20

Warning:not a heap!

30 3020

50 60 50 60

When 10 is replaced with 20, its smaller child, the resulting tree is not a heap because it is not a complete

binary tree.

A few minutes reflection should convince you that, to preserve the completeness of the binary tree,

there is only one possible replacement for the root element: the last element in the heap—at index size

–1. Of course, we will then have a lot of adjustments to make; after all, we have taken one of the largest

elements and put it at the top of the heap. These adjustments are handled in a siftDown method that

starts at the new root and moves down to the leaf level. So the remove() method decrements size by

1, saves the element at index 0 in result, saves the element (no longer in the heap) at index size in x,

calls siftDown(0, x) to place x where it now belongs, and returns result.

Here is the method definition:

/**

* Removes the smallest-valued element from this PriorityQueue object.

* The worstTime(n) is O(log n).

*

* @return the element removed.

*

* @throws NoSuchElementException – if this PriorityQueue object is empty.

*

*/

public E remove ()

{

if (size == 0)

throw new NoSuchElementException();

int s = --size;

564 CHAPTER 13 Priority Queues

modCount++;

E result = (E) queue[0];

E x = (E) queue[s];

queue[s] = null; // to prevent memory leak

if (s != 0)

siftDown(0, x);

return result;

} // method remove

The definition of the siftDown (int k, E x) method is developed in Section 13.3.1.3.

13.3.1.3 The siftDown Method

To see how to define siftDown, let’s start with the heap from Figure 13.1, repeated below:

26

33 30

48 50 80 31

107 80 55

If we now call remove(), then 26 is saved in result and 55 is saved in x, just before the call to

siftDown. See Figure 13.7.

26

32 30

48 50 80 31

107 80

result x

26 55

FIGURE 13.7 A heap from which 26 is to be removed

Notice that since we started with a heap, the heap property guarantees that the root’s left and right

subtrees are still heaps. So siftDown’s task is to maintain the heap property while putting x where it

belongs.

In contrast to siftUp, the siftDown method works its way down the tree, starting at the index

supplied as the argument, in this case, 0. Each parent is replaced with its smaller-valued child until,

13.3 Implementation Details of the PriorityQueue Class 565

eventually, either x’s value is less than or equal to the smaller-valued child (and then is stored at the

parent index) or the smaller-valued child is a leaf (and then x is stored at that child index). For example,

in the tree of Figure 13.7, 30 is smaller than 32, so 30 becomes the root element, and we have the tree

shown in Figure 13.8.

We still need one more iteration because 55 is greater than the smaller of the children (namely, 80

and 31 at indexes 5 and 6. So the element at index 6 (namely, 31) replaces the element at index 2 (namely,

30). That smaller-valued child was a leaf, so 55 is inserted at that leaf index and we end up with the heap

shown in Figure 13.9.

If k contains the parent index, then k << 1 is the index of the left child and (k << 1) + 1 is the

index of the right child (if the parent has a right child). And because queue is an array object, the elements

at those indexes can be accessed or modified in constant time.

Here is the definition of siftDown:

private void siftDown(int k, E x)

{

if (comparator != null)

siftDownUsingComparator(k, x);

30

32 30

48 50 80 31

107 80

result x

26 55

FIGURE 13.8 The heap from Figure 13.7 after the smaller-valued of the root’s children is replaces the root. The

element 55 has not yet been removed

30

32 31

48 50 80 55

107 80

FIGURE 13.9 The heap formed from the heap in Figure 13.8 by replacing the element at index 2 with 31 and

then inserting 55 at index 6

566 CHAPTER 13 Priority Queues

else

siftDownComparable(k, x);

}

And here is siftDownComparable (which differs from siftDownUsingComparator in that the ele-

ments’ class implements the Comparable interface):

/**

* Maintains the heap properties in this PriorityQueue object while, starting at a

* specified index, inserts a specified element where it belongs.

* The worstTime(n) is O(log n).

*

* @param k –the specified position where the restoration of the heap

* will begin.

* @param x –the specified element to be inserted.

*

*/

private void siftDownComparable(int k, E x) {

Comparable<? super E> key = (Comparable<? super E>)x;

int half = size >>> 1; // loop while a non-leaf

while (k < half) {

int child = (k << 1) + 1; // assume left child is least

Object c = queue[child];

int right = child + 1;

if (right < size &&

((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)

c = queue[child = right];

if (key.compareTo((E) c) <= 0)

break;

queue[k] = c;

k = child;

}

queue[k] = key;

}

In the worst case for siftDownComparable, the loop will continue until a leaf replaces its parent.

Since the height of a heap is logarithmic in n , worstTime(n) is logarithmic in n . Because a heap is a

complete binary tree, the average number of loop iterations will be nearly log2 n , so averageTime(n) is

also logarithmic in n .

In Lab 21, you will create a descendant, FairPQ, of the PriorityQueue class. As its name suggests,

the FairPQ class resolves ties for highest-priority element in favor of seniority. For elements with equal

priority, the highest-priority is chosen as the element that has been on the heap for the longest time.

You are now ready for Lab 21: Incorporating Fairness in Priority Queues

Section 13.4 shows how to modify the PriorityQueue class to obtain the heapSort method. Actually,

the PriorityQueue class was created many years after the invention of the heapSort method, which

was originally based on the idea of using an array to store a heap.

13.4 The heapSort Method 567

13.4 The heapSort Method

The heapSort method was invented by J.W.J. Williams (see Williams [1964]). Here is the method

specification:

/**

* Sorts a specified array into the order given by the comparator in the

* constructor (natural, that is, Comparable order if default constructor;

* unnatural, that is, Comparator order if constructor specifies non-null

* comparator).

* The worstTime(n) is O(n log n) and worstSpace(n) is constant.

*

* @param a –the array object to be sorted.

*

* @throws NullPointerException - if a is null.

*

*/

public void heapSort (Object[] a)

Assume, for now, that this method is in the PriorityQueue class. Then the following is a test of that

method:

public void testSample()

{

Integer [] expected ={12, 16, 17, 32, 33, 40, 43, 44, 46, 46,

50, 55, 59, 61, 75, 80, 80, 81, 87, 95};

Integer [] actual = {59, 46, 32, 80, 46, 55, 50, 43, 44, 81,

12, 95, 17, 80, 75, 33, 40, 61, 16, 87};

new PriorityQueue().heapSort (actual);

assertArrayEquals (expected, actual);

} // method testSample

Here is the basic idea of the heapSort method: We first initialize the queue and size fields:

queue = a;

int length = queue.length;

size = length;

We then heapify the array queue, that is, convert the array into a heap. After queue has become a heap,

we sort queue into reverse order. Important: After each iteration of this loop, the heap will consist of the

elements of queue from index 0 through index size—1, not through index queue.length–1. After the

first sift down, the smallest element (the one with highest priority) will be at index queue.length - 1,

and the array from indexes 0 through queue.length - 2 will constitute a heap. After the second sift

down, the second smallest element will be at index queue.length - 2, and the array from indexes 0

through queue.length - 3 will constitute a heap. After all of the swaps and fix downs, the elements in

the array queue will be in reverse order, so by reversing the order of the elements, the array will be in order.

For an example, let’s start with an array of (references to Integer objects with the following) int

values:

59 46 32 80 46 55 87 43 44 81 95 12 17 80 75 33 40 61 16 50

The value 59 is stored at index 0, the value 46 at index 1, and so on. Figure 13.10 (next page) shows the

field queue viewed as a complete binary tree.

568 CHAPTER 13 Priority Queues

59

46 32

80 46 55 87

43 44 81 95 1712 7580

33 40 61 16 50

FIGURE 13.10 The array of 20 ints viewed as a complete binary tree

Of course, queue is not yet a heap. But we can accomplish that subgoal by looping as i goes

from size - 1 down to 0. At the start of each iteration, the complete binary tree rooted at index i

is a heap except, possibly, at index i itself. The call to siftDown (i, queue [i]) method in the

PriorityQueue class converts the complete binary tree rooted at index i into a heap. So, basically, all

we need to do is to repeatedly call siftDown (i, queue [i]) to create the heap from the bottom up.

We can reduce the number of loop iterations by half by taking advantage of the fact that a leaf is

automatically a heap, and no call to siftDown is needed. So the loop will start at the last non-leaf index.

For the complete binary tree rooted at that index, its left and right subtrees will be heaps, and we can

call siftDown with that index as argument. In the above example, the last non-leaf index is 9, that is,

20/2 − 1. Since queue [19] is less than queue [9]—that is, since 50 is less than 81—the effect of the

first iteration is that those two elements are swapped, giving the complete binary tree in Figure 13.11.

59

46 32

80 46 55 87

43 44 50 95 1712 7580

33 40 61 16 81

FIGURE 13.11 The complete binary tree of Figure 13.10 after swapping 50 with 81

During the remaining 9 loop iterations (at indexes 8 through 0), we wind our way back up the tree.

For the ith iteration, siftDown (i, queue [i]) is applied to the complete binary tree rooted at index

i, with the left and right subtrees being heaps. The effects of the calls to siftDown (i, queue [i])

are as follows:

13.4 The heapSort Method 569

(i = 8) 44 16

61 16 61 44

(i = 7) 43 33

33 40 43 40

(i = 6) 87 75

80 75 80 87

(i = 5) 55 12

12 17 55 17

81 81

(i = 4) 46 46

50 95 50 95

43 40 61 44 43 40 61 80

(i = 3) 80 16

33 16 33 44

55 17 80 87 55 32 80 87

(i = 2) 32 12

12 75 17 75

570 CHAPTER 13 Priority Queues

(i = 1)

33 44 50 95

61 818043 40

46

16 46

40 44 50 95

61 818043 46

16

33 46

After the execution of siftDown (i, queue [i]) at index 0 in the final iteration, we get the heap

shown in Figure 13.12.

12

16 17

33 46 32 75

40 44 50 95 5955 8780

43 46 61 80 81

FIGURE 13.12 The effect of making a heap from the complete binary tree in Figure 13.10

We now sort the array into reverse order. To accomplish this, we have another loop, this one with

i going from index 0 to index queue.length - 1. During each loop iteration, we save the element

at queue [–size] in x, store queue [0] in queue [size] and then call siftDown (0, x). For

example, if i = 0 and size = 20, the element at queue [19] is saved in x, the smallest element (at

index 0) is stored at queue [19], and siftDown (0, x) is called. The complete binary tree from

index 0 through index 18 is a complete binary tree except at index 0, so the call to siftDown (0, x)

will restore heapity to this subarray, without affecting the smallest element (now at index 19). The result

of 20 of these loop iterations is to put the 20 elements in descending order in the array. Figure 13.13

shows this array in the form of a complete binary tree.

When we treat the complete binary tree in Figure 13.13 as an array, and reverse the elements in this

array, the elements are in ascending order:

12 16 17 32 33 40 43 44 46 46 50 55 59 61 75 80 80 81 87 95

Here is the heapSort method:

public void heapSort (Object[] a)

{

queue = a;

13.4 The heapSort Method 571

95

87 81

80 80 75 61

59 55 50 46 4446 4043

33 32 17 16 12

FIGURE 13.13 The complete binary tree resulting from the heap of Figure 13.12 after the 20 swaps and sift downs

int length = queue.length;

size = length;

// Convert queue into a heap:

for (int i = (size >> 1) - 1; i >= 0; i--)

siftDown (i, (E)queue [i]);

// Sort queue into reverse order:

E x;

for (int i = 0; i < length; i++)

{

x = (E)queue [--size];

queue [size] = queue [0];

siftDown (0, x);

} // sort queue into reverse order

// Reverse queue:

for (int i = 0; i < length / 2; i++)

{

x = (E)queue [i];

queue [i] = queue [length - i - 1];

queue [length - i - 1] = x;

} // reverse queue

} // method heapSort

We earlier assumed that the heapSort method was part of the PriorityQueue class. Currently, at least,

that is not the case. So how can we test and perform run-time experiments on that method? Surely, we

cannot modify the PriorityQueue class in java.util. And we cannot make heapSort a method in an

extension of the PriorityQueue class because the queue and size fields in that class have private

visibility. What we do is copy the PriorityQueue class into a local directory, replace

package java.util;

with

import java.util.*;

572 CHAPTER 13 Priority Queues

And add the heapSort method to this copy of the PriorityQueue class. The method can then be tested

and experimented with.

13.4.1 Analysis of heapSort

As with mergeSort in Chapter 11, we first estimate worstTime(n) for heapSort. The worst case occurs

when the elements in the array argument are in reverse order. We’ll look at the three explicit loops in

heapSort separately:

1. To convert queue to a heap, there is a loop with n/2 − 1 iterations and with i as the loop-control

variable, and in each iteration, siftDown (i, queue [i]) is called. In the worst case, siftDown

(i, queue [i]) requires log2(n) iterations, so the total number of iterations in converting a to a

heap is O(n log n). In fact, it can be shown (see Concept Exercise 13.12) that this total number of

iterations is linear in n .

2. For each of the n calls to siftDown with 0 as the first argument, worstTime(n) is O(log n). So the

total number of iterations for this loop is O(n log n) in the worst case.

3. The reversing loop is executed n/2 times.

The total number of iterations in the worst case is O(n) + O(n log n) + O(n). That is, worstTime(n) is

O(n log n) and so, by Sorting Fact 1 from Section 11.4, worstTime(n) is linear-logarithmic in n . Therefore,

by Sorting Fact 3, averageTime(n) is also linear-logarithmic in n .

The space requirements are meager: a few variables. There is no need to make a copy of the elements

to be sorted. Such a sort is called an in-place sort.

That heapSort is not stable can be seen if we start with the following array object of quality-of-life

scores and cities ordered by increasing quality-of-life scores:

20 Portland

46 Easton

46 Bethlehem

Converting this array object to a heap requires no work at all because the heap property is already satisfied:

20 Portland

46 Easton 46 Bethlehem

In the second loop of heapSort, Portland and Bethlehem are swapped and siftDown is called with 0 as

the first argument:

46 Bethlehem

46 Easton 20 Portland (no longer in the heap)

13.5 Application: Huffman Codes 573

Notice that, in the call to siftDown, (46 Bethlehem) is not swapped with (46 Easton) because its child

(46 Easton) is not less than (46 Bethlehem). After two more iterations of the second loop and a reversal

of the elements of the array, we have

(20 Portland) (46 Bethlehem) (46 Easton)

The positions of (46 Bethlehem) and (46 Easton) have flipped from the original array object, so the

heapSort method is not stable.

13.5 Application: Huffman Codes

Suppose we have a large file of information. It would be advantageous if we could save space by compress-

ing the file without losing any of the information. Even more valuable, the time to transmit the information

might be significantly reduced if we could send the compressed version instead of the original.

Let’s consider how we might encode a message file so that the encoded file has smaller size—that

is, fewer bits—than the message file. For the sake of simplicity and specificity, assume the message file

M contains 100,000 characters, and each character is either ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, or ‘g’. Since there

are seven characters, we can encode each character uniquely with ceil (log2 7) bits,1 which is 3 bits. For

example, we could use 000 for ‘a’, 001 for ‘b’, 010 for ‘c’, and so on. A word such as “cad” would be

encoded as 010000011. Then the encoded file E need take up only 300,000 bits, plus an extra few bits for

the encoding itself: ‘a’ = 000, and so on.

We can save space by reducing the number of bits for some characters. For example, we could use

the following encoding:

a = 0

b = 1

c = 00

d = 01

e = 10

f = 11

g = 000

This would reduce the size of the encoded file E by about one-third (unless the character ‘g’ occurred very

frequently). But this encoding leads to ambiguities. For example, the bit sequence 001 could be interpreted

as “ad” or as “cb” or as “aab”, depending on whether we grouped the first two bits together or the last

two bits together, or treated each bit individually.

The reason the above encoding scheme is ambiguous is that some of the encodings are prefixes of

other encodings. For example, 0 is a prefix of 00, so it is impossible to determine whether 00 should be

interpreted as “aa” or “c”. We can avoid ambiguities by requiring that the encoding be prefix-free, that is,

no encoding of a character can be a prefix of any other character’s encoding.

1Recall that ceil(x) returns the smallest integer greater than or equal to x.

574 CHAPTER 13 Priority Queues

One way to guarantee prefix-free bit encodings is to create a binary tree in which a left branch is

interpreted as a 0 and a right branch is interpreted as a 1. If each encoded character is a leaf in the tree,

then the encoding for that character could not be the prefix of any other character’s encoding. In other

words, the path to each character provides a prefix-free encoding. For example, Figure 13.14 has a binary

tree that illustrates a prefix-free encoding of the characters ‘a’ through ‘g’.

To get the encoding for a character, start with an empty encoding at the root of the binary tree, and

continue until the leaf to be encoded is reached. Within the loop, append 0 to the encoding when turning left

and append 1 to the encoding when turning right. For example, ‘b’ is encoded as 01 and ‘f’ is encoded as

1110. Because each encoded character is a leaf, the encoding is prefix-free and therefore unambiguous. But

it is not certain that this will save space or transmission time. It all depends on the frequency of each charac-

ter. Since three of the encodings take up two bits and four encodings take up four bits, this encoding scheme

may actually take up more space than the simple, three-bits-per-character encoding introduced earlier.

This suggests that if we start by determining the frequency of each character and then make up the

encoding tree based on those frequencies, we may be able to save a considerable amount of space. The

idea of using character frequencies to determine the encoding is the basis for Huffman encoding (Huffman

[1952]). Huffman encoding is a prefix-free encoding strategy that is guaranteed to be optimal—among

prefix-free encodings. Huffman encoding is the basis for the Unix compress utility, and also part of the

JPEG (Joint Photographic Experts Group) encoding process.

We begin by calculating the frequency of each character in a given message M. Note that the time

for these calculations is linear in the length of M. For example, suppose that the characters in M are the

letters ‘a’ . . . ‘g’ as shown previously, and their frequencies are as given in Figure 13.15.

The size of M is 100,000 characters. If we ignored frequencies and encoded each character into a

unique 3-bit sequence, we would need 300,000 bits to encode the message M. We’ll soon see how far this

is from an optimal encoding.

a b c
0

0 1 0 1

1

0

0 1 0 1

1

d e f g

FIGURE 13.14 A binary tree that determines a prefix-free encoding of ‘a’ . . . ‘g’

a: 5,000

b: 2,000

c: 10,000

d: 8,000

e: 22,000

f: 49,000

g: 4,000

FIGURE 13.15 Sample character-frequencies for a message of 100,000 characters from ‘a’ . . . ‘g’

13.5 Application: Huffman Codes 575

Once we have calculated the frequency of each character, we will insert each character-frequency

pair into a priority queue ordered by increasing frequencies. That is, the front character-frequency pair

in the priority queue will have the least frequently occurring character. These characters will end up

being farthest from the root in the prefix-free tree, so their encoding will have the most bits. Conversely,

characters that occur most frequently will have the fewest bits in their encodings.

Initially we insert the following pairs into the priority queue:

(a:5000) (b:2000) (c:10000) (d:8000) (e:22000) (f:49000) (g:4000)

In observance of the Principle of Data Abstraction, we will not rely on any implementation details of the

PriorityQueue class. So all we know about this priority queue is that an access or removal would be of

the pair (b:2000). We do not assume any order for the remaining elements, but for the sake of simplicity,

we will henceforth show them in increasing order of frequencies—as they would be returned by repeated

calls to remove().2 Note that there is no need to sort the priority queue.

13.5.1 Huffman Trees

The binary tree constructed from the priority queue of character-frequency pairs is called a Huffman tree.

We create the Huffman tree from the bottom up because the front of the priority queue has the least-

frequently-occurring character. We start by calling the remove() method twice to get the two characters

with lowest frequencies. The first character removed, ‘b’, becomes the left leaf in the binary tree, and ‘g’

becomes the right leaf. The sum of their frequencies becomes the root of the tree and is added to the

priority queue. We now have the following Huffman tree

(6000)

0 1

b g

The priority queue contains

(a:5000) (:6000) (d:8000) (c:10000) (e:22000) (f:49000)

Technically, the priority queue and the Huffman tree consist of character-frequency pairs. But the character

can be ignored when two frequencies are summed, and the frequencies can be ignored in showing the

leaves of the Huffman tree. And anyway, the algorithm works with references to the pairs rather than the

pairs themselves. This allows references to represent the typical binary-tree constructs—left, right, root,

parent—that are needed for navigating through the Huffman tree.

When the pairs (a:5000) and (:6000) are removed from the priority queue, they become the left and

right branches of the extended tree whose root is the sum of their frequencies. That sum is added to the

priority queue. We now have the Huffman tree:

(11000)

0

0

a (6000)

1

1

b g

2In fact, if we did store the elements in a heap represented as an array, the contents of that array would be in the following order:

(b:2000),(a:5000),(g:4000),(d:8000),(e:22000),(f:49000),(c:10000).

576 CHAPTER 13 Priority Queues

The priority queue contains

(d:8000) (c:10000) (:11000) (e:22000) (f:49000)

When ‘d’ and ‘c’ are removed, they cannot yet be connected to the main tree, because neither of their

frequencies is at the root of that tree. So they become the left and right branches of another tree, whose

root—their sum—is added to the priority queue. We temporarily have two Huffman trees:

(11000)

0

0

a (6000)

1

1

b g

and

(18000)

0

d c

1

The priority queue now contains

(:11000) (:18000) (e:22000) (f:49000)

When the pair (:11000) is removed, it becomes the left branch of the binary tree whose right branch is

the next pair removed, (:18000). The sum becomes the root of this binary tree, and that sum is added the

priority queue, so we have the following Huffman tree:

(29000)

0 1

0 1

0 1

0 1

(11000) (18000)

a (6000) d c

b g

The priority queue contains

(e:22000) (:29000) (f:49000)

When the next two pairs are removed, ‘e’ becomes the left branch and (:29000) the right branch of the

Huffman tree whose root, (:51000), is added to the priority queue. Finally the last two pairs, (f:49000)

and (:51000) are removed and become the left and right branches of the final Huffman tree. The sum of

those two frequencies is the frequency of the root, (:100000), which is added as the sole element into the

priority queue. The final Huffman tree is shown in Figure 13.16.

13.5 Application: Huffman Codes 577

(100000)

0 1

0 1

f (51000)

e (29000)

0 1

0 1

0 1

0 1

(11000) (18000)

a (6000) d c

b g

FIGURE 13.16 The Huffman tree for the character-frequencies in Figure 13.15

To get the Huffman encoding for ‘d’, for example, we start at the leaf ‘d’ and work our way back up

the tree to the root. As we do, each bit encountered is pre-pended—placed at the front of—the bit string

that represents the Huffman encoding. So the encoding in stages, is

0

10

110

1110

That is, the encoding for ‘d’ is 1110. Here are the encodings for all of the characters:

a: 1100

b: 11010

c: 1111

d: 1110

e: 10

f: 0

g: 11011

It is now an easy matter to translate the message M into an encoded message E. For example, if the

message M starts out with

fad. . .

Then the encoded message E starts out with the encoding for ‘f’ (namely, 0) followed by the encoding for

‘a’ (namely, 1100) followed by the encoding for ‘d’ (namely, 1110). So E has

011001110. . .

What happens on the receiving end? How easy is it to decode E to get the original message M? Start at

the root of the tree and the beginning of E, take a left branch in the tree for a 0 in E, and take a right

branch for a 1. Continue until a leaf is reached. That is the first character in M. Start back at the top of

the tree and continue reading E. For example, if M starts with “cede”, then E starts with 111110111010.

Starting at the root of the tree, the four ones at the beginning of E lead us to the leaf ‘c’. Then we go

back to the root, and continue reading E with the fifth 1. We take right branch for that 1 and then a left

578 CHAPTER 13 Priority Queues

branch for the 0, and we are at ‘e’. The next few bits produce ‘d’ and ‘e’. In other words, we now have

“cede”, and that, as expected, is the start of M.

The size of the message E is equal to the sum, over all characters, of the number of bits in the

encoding of the character times the frequency of that character in M. So to get the size of E in this

example, we take the product of the four bits in the encoding of ‘a’ and the 5000 occurrences of ‘a’, add

to that the product of the five bits in the encoding of ‘b’ and the 2000 occurrences of ‘b’, and so on. We get:

(4 ∗ 5000) + (5 ∗ 2000) + (4 ∗ 10000) + (4 ∗ 8000) +

(2 ∗ 22000) + (1 ∗ 49000) + (5 ∗ 4000)

= 215, 000

This is about 30% less than the 300,000 bits required with the fixed-length, 3-bits-per-character encoding

discussed earlier. So the savings in space required and transmission time is significant. But it should be

noted that a fixed-length encoding can usually be decoded more quickly than a Huffman encoding; for

example, the encoded bits can be interpreted as an array index—the entry at that index is the character

encoded.

13.5.2 Greedy Algorithm Design Pattern

Huffman’s algorithm for encoding a message is an example of the Greedy Algorithm design pattern. In a

greedy algorithm , locally optimal choices are made, in the hope that these will lead to a globally optimal

solution. In the case of Huffman’s algorithm, during each loop iteration the two smallest-valued elements

are removed from the priority queue and made the left and right branches of a binary tree. Choosing

the smallest-valued elements is locally optimal, that is, greedy. And the end result—globally optimal—is

a minimal prefix-free encoding. So greed succeeds. We will encounter two more examples of greedy

algorithms in Chapter 15; they also involve priority queues.

13.5.3 The Huffman Encoding Project

To add substance to the prior discussion, let’s develop a project that handles the encoding of a message.

The decoding phase is covered in Programming Project 13.1. The input will consist of a file path for

the original message, and a file path denoting where the character codes and encoded message should be

saved. For example, suppose that the file huffman.in1 contains the following message:

more money needed

System Test 1 (input in boldface):

Please enter the path for the input file: huffman.in1

Please enter the path for the output file: huffman.ou1

After the execution of the program, the file huffman.ou1 will consist of two parts. The first part will have

each character in the original message and that character’s code. The second part, separated from the first

by “**”, will have the encoded message. Here is the complete file:

// the first line in the file is blank (see next paragraph)

0110 // the encoding for \n is 0110

1011 // the encoding for the blank character is 1011

d 100

e 11

m 001

n 000

o 010

13.5 Application: Huffman Codes 579

r 0111

y 1010

**

001010011111101100101000011101010110001111100111000110

In the encoding, the first character is the new-line marker, '\n'. When the output file is viewed, the first

line is blank because a new-line feed is carried out. The second line starts with a space, followed by the

code for the new-line. This may seem a bit strange because the first line in the encoding is

\n 0110

But when this line is printed, the new-line feed is carried out instead of '\n' being printed. So the space

between '\n' and 0110 starts the second line. Subsequent lines start with the character encoded, a space,

and the code for that character.

For System Test 2, assume that the file huffman.in2 contains the following message:

In Xanadu did Kubla Khan

A stately pleasure-dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

System Test 2 (input in boldface):

Please enter the path for the input file: huffman.in2

Please enter the path for the output file: huffman.ou2

Here is the complete file huffman.ou2 after execution of the program:

10001

101

, 001000

- 0100000

. 0100001

: 0010100

A 001011

D 0100110

I 0100101

K 001110

T 0011011

W 0010101

X 0011000

a 000

b 0011001

c 110010

d 11110

e 011

g 0011010

h 11111

i 001111

l 11101

m 110011

n 0101

o 11000

p 001001

580 CHAPTER 13 Priority Queues

r 1001

s 1101

t 10000

u 11100

v 010001

w 0100111

y 0100100

**

01001010101101001100000001010001111011100101111100011111111010100111

01110000110011110100010100111011111000010110001001011101110110000000

10000011111010100100101001001111010110001101111001001011010000011110

11000110011011101111100111100101001011011001010010001001010111111011

10010111010010111110100100111111001000101100001111101110111010001100

10100101111110101100100111101000101110010010001011001000010110001001

10111111110011100011100001101011111101110010000010001011100101011101

10111001101100011011110010010111110101111011101101100001100010111001

10000101100010100110110000100111010110110000110001010001011101111000

10111101011110111011011101011000010000110001

As always, we embrace modularity by separating the input-output details, in a HuffmanUser class, from

the Huffman-encoding details, in a Huffman class. We start with the lower-level class, Huffman, in Section

13.5.3.1.

13.5.3.1 Design and Testing of the Huffman Class

The Huffman class has several responsibilities. First, it must initialize a Huffman object. Also, it must

determine the frequency of each character. This must be done line-by-line so that the Huffman class can

avoid entanglement in input-output issues. The other responsibilities are to create the priority queue and

Huffman tree, to calculate the Huffman codes, and to return both the character codes and, line-by-line,

the encoded message. From the discussion in Section 13.5.1, we want the Huffman class to be able to

access the entries, that is, elements, in a priority queue or Huffman tree. For this we will create an Entry

class. The Entry class has two fields related to the encoding, three fields related to binary-tree traversal,

a compareTo method based on frequencies, and getFreq and getCode methods for the sake of testing:

public class Entry implements Comparable<Entry>

{

int freq;

String code;

Entry left,

right,

parent;

public int compareTo (Entry entry)

{

return freq – entry.freq;

} // compareTo

public int getFreq()

{

return freq;

} // method getFreq

13.5 Application: Huffman Codes 581

public String getCode()

{

return code;

} // method getCode

} // class Entry

We can now present the method specifications for the Huffman class. For the second through fifth of the

following method specifications, the return values are only for the sake of testing.

/**

* Initializes this Huffman object.

*

*/

public Huffman()

/**

* Updates the frequencies of the characters in a scanned-in line.

*

* @param line – the line scanned in.

*

* @return - a cumulative array of type Entry in which the frequencies have been

* updated for each character in the line.

*

*/

public Entry[] updateFrequencies (String line)

/**

* Creates the priority queue from the frequencies.

*

* @return - the priority queue of frequencies (in increasing order).

*

*/

public PriorityQueue<Entry> createPQ()

/**

* Creates the Huffman tree from the priority queue.

*

* @return - an Entry representing the root of the Huffman tree.

*

*/

public Entry createHuffmanTree()

/**

* Calculates and returns the Huffman codes.

*

* @return - an array of type Entry, with the Huffman code

* for each character.

*

*/

public Entry[] calculateHuffmanCodes()

/**

* Returns, as a String object, the characters and their Huffman codes.

582 CHAPTER 13 Priority Queues

*

* @return the characters and their Huffman codes.

*

*/

public String getCodes()

/**

* Returns a String representation of the encoding of a specified line.

*

* @param line – the line whose encoding is returned.

*

* @return a String representation of the encoding of line.

*

*/

public String getEncodedLine (String line)

By convention, since no time estimates are given, you may assume that for each method, worstTime(n) is

constant, where n is the size of the original message.

The Huffman methods must be tested in sequence. For example, testing the getCodes method

assumes that the updateFrequencies, createPQ, createHuffmanTree, and calculateHuffman

Codes are correct. Here is a test of the getCodes method, with huffman a field in the HuffmanTest

class:

@Test

public void testGetCodes()

{

huffman.updateFrequencies ("aaaabbbbbbbbbbbbbbbbccdddddddd");

huffman.createPQ();

huffman.createHuffmanTree();

huffman.calculateHuffmanCodes();

assertEquals ("\n 0000\na 001\nb 1\nc 0001\nd 01\n", huffman.getCodes());

} // method testGetCodes

All of the files, including test files, are available from the book’s website.

At this point, we can determine the fields that will be needed. Clearly, from the discussion in section

13.5.1, we will need a priority queue. Given a character in the input, it will be stored in a leaf in the

Huffman tree, and we want to be able to access that leaf-entry quickly. To allow random-access, we can

choose an ArrayList field or an array field. Here the nod goes to an array field because of the speed

of directly utilizing the index operator, [], versus indirect access with the ArrayList’s get and set

methods. Note that if the original message file is very large, most of the processing time will be consumed

in updating the frequencies of the characters and, later, in calculating the codes corresponding to the

characters in the message file. Both of these tasks entail accessing or modifying entries.

That gives us two fields:

protected Entry [] leafEntries;

protected PriorityQueue<Entry> pq;

For the sake of simplicity, we restrict ourselves to the 256 characters in the extended ASCII character set,

so we have one array slot for each ASCII character:

public final static int SIZE = 256;

13.5 Application: Huffman Codes 583

For example, if the input character is ‘B’, the information for that character is stored at index (int)’B’,

which is 66. If the encoding for ‘B’ is 0100 and the frequency of ‘B’ in the input message is 2880, then

the entry at leafEntries [66] would be

(to parent)

2880 0100 B null null

The left and right references are null because leaves have no children. The reason that we use references

rather than indexes for parent, left, and right is that some of the entries represent sums, not leaf-

characters, so those entries are not in leafEntries. Every leaf is an entry, but not every entry is a leaf.

13.5.3.2 Definition of Methods in the Huffman Class

The definition of the default constructor is straightforward:

public Huffman()

{

Entry entry;

leafEntries = new Entry [SIZE];

for (int i = 0; i < SIZE; i++)

{

leafEntries [i] = new Entry();

entry = leafEntries [i];

entry.freq = 0;

entry.left = null;

entry.right = null;

entry.parent = null l;

} // initializing leafEntries

pq = new PriorityQueue<Entry>();

} // default constructor

The updateFrequencies method adds 1 to the frequency for each character in the parameter line. The

new-line character is included in this updating to ensure that the line structure of the original message will

be preserved in the encoding. Here is the method definition:

public Entry[] updateFrequencies (String line)

{

Entry entry;

for (int j = 0; j < line.length(); j++)

{

entry = leafEntries [(int)(line.charAt (j))];

entry.freq++;

} // for

// Account for the end-of-line marker:

entry = leafEntries [(int)’\n’];
entry.freq++;

584 CHAPTER 13 Priority Queues

return leafEntries;

} // method updateFrequencies

As noted earlier, worstTime(n) for this method is constant because n refers to the size of the entire message

file, and this method works on a single line.

The priority queue is created from the entries with non-zero frequencies:

public PriorityQueue<Entry> createPQ()

{

Entry entry;

for (int i = 0; i < SIZE; i++)

{

entry = leafEntries [i];

if (entry.freq > 0)

pq.add (entry);

} // for

return pq;

} // createPQ

The Huffman tree is created “on the fly.” Until the priority queue consists of a single entry, a pair of

entries is removed from the priority queue and becomes the left and right children of an entry that contains

the sum of the pair’s frequencies; the sum entry is added to the priority queue. The root of the Huffman

tree is returned (for the sake of testing). Here is the definition:

public Entry createHuffmanTree()

{

Entry left,

right,

sum;

while (pq.size() > 1)

{

left = pq.remove();

left.code = "0";

right = pq.remove();

right.code = "1";

sum = new Entry();

sum.parent = null;

sum.freq = left.freq + right.freq;

sum.left = left;

sum.right = right;

left.parent = sum;

right.parent = sum;

pq.add (sum);

} // while

return pq.element(); // the root of the Huffman tree

} // method createHuffmanTree

The Huffman codes are determined for each leaf entry whose frequency is nonzero. We create the code

for that entry as follows: starting with an empty string variable code, we pre-pend the entry’s code field

13.5 Application: Huffman Codes 585

(either “0” or “1”) to code, and then replace the entry with the entry’s parent. The loop stops when the

entry is the root. The final value of code is then inserted as the code field for that entry in leafEntries.

For example, suppose part of the Huffman tree is as follows:

0

1

0

0

B

Then the code for ‘B’ would be “0100”, and this value would be stored in the code field of the Entry at

index 66 of leafEntries—recall that (int)'B' = 66 in the ASCII (and Unicode) collating sequence.

Here is the method definition:

public Entry[] calculateHuffmanCodes()

{

String code;

Entry entry;

for (int i = 0; i < SIZE; i++)

{

code = "";

entry = leafEntries [i];

if (entry.freq > 0)

{

while (entry.parent != null)

{

code = entry.code + code; // current bit prepended to

entry = entry.parent; // code as we go up the tree

} // while

leafEntries [i].code = code;

} // if

} // for

return leafEntries;

} // calculateHuffmanCodes

In the getCodes method, a String object is constructed from each character and its code, and that

String object is then returned:

public String getCodes()

{

Entry entry;

String codes = new String();

for (int i = 0; i < SIZE; i++)

{

entry = leafEntries [i];

if (entry.freq > 0)

586 CHAPTER 13 Priority Queues

codes += (char)i + " " + entry.code + "\n";
} // for

return codes;

} // method getCodes

Finally, in the getEncodedLine method, a String object is constructed from the code for each character

in line, appended by the new-line character, and that String object is returned:

public String getEncodedLine (String line)

{

Entry entry;

String encodedLine = new String();

for (int j = 0; j < line.length(); j++)

{

entry = leafEntries [(int)(line.charAt (j))];

encodedLine += entry.code;

} // for

entry = leafEntries [(int)’\n’];
encodedLine += entry.code;

return encodedLine;

} // method getEncodedLine

13.5.3.3 The HuffmanUser Class

The HuffmanUser class has a main method to invoke a run method, a run method to open the input

and output files from paths read in from the keyboard, a method to create the Huffman encoding, and

a method to save the encoded message to the output file. Here are the method specifications for the

createEncoding and saveEncodedMessage methods:

/**

* Creates the Huffman encoding by scanning over a file to be encoded.

* The worstTime(n) is O(n).

*

* @param fileScanner –a scanner over the file to be encoded.

* @param huffman –an instance of the Huffman class.

*

* @return - a String consisting of each character and its encoding

*

*/

public String createEncoding (Scanner fileScanner, Huffman huffman)

/**

* Saves the Huffman codes and the encoded message to a file.

* The worstTime(n) is O(n).

*

* @param printWriter - the PrintWriter object that holds the Huffman codes

* and the encoded message.

* @param inFilePath - the String object that holds the path for the file

* that contains the original message.

13.5 Application: Huffman Codes 587

* @param huffman – an instance of the Huffman class.

*

*/

public void saveEncodedMessage (PrintWriter printWriter, String inFilePath,

Huffman huffman)

The book’s website has unit tests for the createEncoding and saveEncodedMessage methods,

and Figure 13.17 has the UML diagram for the HuffmanUser class.

HuffmanUser

+ main (args: String[])

+ run()

+ createEncoding

 (fileScanner: Scanner): String

+ saveEncodedMessage (

 printWriter: PrintWriter,

 inFilePath: String,

 fileScanner: Scanner)

Entry

freq:int

code: String

left: Entry

right: Entry

#parent: Entry

compareTo

(entry: Entry)

:int

Huffman

leafEntries: Entry[]

pq: PriorityQueue<Entry>

+ Huffman()

+ updateFrequencies (line: String)

 : Entry[]

+ createPQ(): PriorityQueue<Entry>

+ createHuffmanTree(): Entry

+ calculateHuffmanCodes(): Entry[]

+ getCodes(): String

+ getEncodedLine (line: String): String

FIGURE 13.17 UML diagram for the HuffmanUser class

13.5.3.4 Method Definitions for the HuffmanUser Class

Here are the definitions of the main method, the default constructor, and the run method:

public static void main (String[] args)

{

new Huffman().run();

588 CHAPTER 13 Priority Queues

} // method main

public void run()

{

final String IN_FILE_PROMPT =

"\nPlease enter the path for the input file: ";

final String OUT_FILE_PROMPT =

"\nPlease enter the path for the output file: ";

Huffman huffman = new Huffman();

PrintWriter printWriter = null;

Scanner keyboardScanner = new Scanner (System.in),

fileScanner = null;

String inFilePath = null,

outFilePath,

line;

boolean pathsOK = false;

while (!pathsOK)

{

try

{

System.out.print (IN_FILE_PROMPT);

inFilePath = keyboardScanner.nextLine();

fileScanner = new Scanner(new File (inFilePath));

System.out.print (OUT_FILE_PROMPT);

outFilePath = keyboardScanner.nextLine();

printWriter = new PrintWriter (new FileWriter (outFilePath));

pathsOK = true;

} // try

catch (IOException e)

{

System.out.println (e);

} // catch

} // while !pathOK

createEncoding (fileScanner, huffman);

saveEncodedMessage (printWriter, inFilePath, huffman);

} // method run

In that run method, the null assignments are needed to avoid a compile-time (“ . . . may not have been

initialized”) error for the arguments to the saveEncodedMessage method. That method is called outside

of the try block in which inFilePath and printWriter are initialized.

13.5 Application: Huffman Codes 589

In order to create the encoding, we will scan the input file and update the frequencies line-by-line.

We then create the priority queue and Huffman tree, and calculate the Huffman codes. Most of those tasks

are handled in the Huffman class, so we can straightforwardly define the createEncoding method:

public String createEncoding (Scanner fileScanner, Huffman huffman)

{

String line;

while (fileScanner.hasNextLine())

{

line = fileScanner.nextLine();

huffman.updateFrequencies (line);

} // while

fileScanner.close(); // re-opened in saveEncodedMessage

huffman.createPQ();

huffman.createHuffmanTree();

huffman.calculateHuffmanCodes();

return getCodes();

} // method createEncoding

For the saveEncodedMessage method, we first write the codes to the output file, and then, for each line

in the input file, write the encoded line to the output file. Again, the hard work has already been done in

the Huffman class. Here is the definition of saveEncodedMessage:

public void saveEncodedMessage (PrintWriter printWriter, String inFilePath,

Huffman huffman)

{

String line;

try

{

printWriter.print (huffman.getCodes());

printWriter.println ("**"); // to separate codes from encoded message

Scanner fileScanner = new Scanner (new File (inFilePath));

while (fileScanner.hasNextLine())

{

line = fileScanner.nextLine();

printWriter.println (huffman.getEncodedLine (line));

} // while

printWriter.close();

} // try

catch (IOException e)

{

System.out.println (e);

} // catch IOException

} // method saveEncodedMessage

590 CHAPTER 13 Priority Queues

Later, another user may want to decode the message. This can be done in two steps:

1. The encoding is read in and the Huffman tree is re-created. For this step, only the essential structure

of the Huffman tree is needed, so the Huffman class is not used and the Entry class will have only

three fields:

Entry left,

right;

char id; // the character that is a leaf of the tree

The root entry is created, and then each encoding is iterated through, which will create new entries

and, ultimately, a leaf entry.

2. The encoded message is read in, decoded through the Huffman tree, and the output is the decoded

message, which should be identical to the original message. Decoding the encoded message is the

subject of Programming Project 13.1.

S U M M A R Y

This chapter introduced the priority queue: a collection

in which removal allowed only of the highest-priority ele-

ment in the sequence, according to some method for com-

paring elements. A priority queue may be implemented in

a variety of ways. The most widely used implementation

is with a heap. A heap t is a complete binary tree such

that either t is empty or

1. the root element of t is smallest element in t, accord-

ing to some method for comparing elements;

2. the left and right subtrees of t are heaps.

Because array-based representations of complete binary

trees allow rapid calculation of a parent’s index from a

child’s index and vice versa, the heap can be represented

as an array. This utilizes an array’s ability to randomly

access the element at a given index.

The PriorityQueue class’s methods can be

adapted to achieve the heapSort method, whose

worstTime(n) is linear logarithmic in n and whose

worstSpace(n) is constant.

An application of priority queues is in the area

of data compression. Given a message, it is possible to

encode each character, unambiguously, into a minimum

number of bits. One way to achieve such a minimum

encoding is with a Huffman tree. A Huffman tree is a

two-tree in which each leaf represents a distinct character

in the original message, each left branch is labeled with

a 0, and each right branch is labeled with a 1. The Huff-

man code for each character is constructed by tracing the

path from that leaf character back to root, and pre-pending

each branch label in the path.

Crossword Puzzle 591

CROSSWORD PUZZLE

ACROSS DOWN

1. The main advantage of Heap Sort
 over Merge Sort

4. Why an array is used to implement
 a heap

5. Every Huffman Tree is a
 ____________.

6. A PriorityQueue object is not allowed
 to have any ____ elements.

8. The prefix-free binary tree
 constructed from the priority queue
 of character-frequency pairs

9. Why (k − 1) >>> 1 is used instead
 of (k − 1)/2

1. The averageTime(n) for the add
 (E element) in the
 PriorityQueue class

2. Every heap must be a _____
 binary tree.

3. In a __________ algorithm, locally
 optimal choices lead to a globally
 optimal solution.

7. The field in the PriorityQueue
 class that holds the elements

1 2

3

4

5 6

7

8

9

www.CrosswordWeaver.com

www.CrosswordWeaver.com

592 CHAPTER 13 Priority Queues

CONCEPT EXERCISES

13.1 Declare a PriorityQueue object—and the associated Comparator -implementing class—in which the

highest-priority element is the String object of greatest length in the priority queue; for elements of

equal length, use lexicographical order. For example, if the elements are “yes”, “maybe”, and “no”, the

highest-priority element would be “maybe”.

13.2 In practical terms, what is the difference between the Comparable interface and the Comparator inter-

face? Give an example in which the Comparator interface must be used.

13.3 Show the resulting heap after each of the following alterations is made, consecutively, to the following heap:

26

28 30

48 32 80 31

107 80 55 50

a. add (29);

b. add (30);

c. remove ();

d. remove ();

13.4 For the following character frequencies, create the heap of character-frequency pairs (highest priority =
lowest frequency):

a: 5,000

b: 2,000

c: 10,000

d: 8,000

e: 22,000

f: 49,000

g: 4,000

13.5 Use the following Huffman code to translate “faced” into a bit sequence:

a: 1100

b: 1101

c: 1111

d: 1110

e: 10

f: 0

Concept Exercises 593

13.6 Use the following Huffman tree to translate the bit sequence 11101011111100111010 back into letters ‘a’

. . . ‘g’:

(100000)

0 1

0 1

f (51000)

e (29000)

0 1

0 1

0 1

0 1

(11000) (18000)

a (6000) d c

b g

13.7 If each of the letters ‘a’ through ‘f’ appears at least once in the original message, explain why the following

cannot be a Huffman code:

a: 1100

b: 11010

c: 1111

d: 1110

e: 10

f: 0

13.8 Must a Huffman tree be a two-tree? Explain.

13.9 Provide a message with the alphabet ‘a’ . . . ‘e’ in which two of the letters have a Huffman code of 4 bits.

Explain why it is impossible to create a message with the alphabet ‘a’ . . . ‘e’ in which two of the letters

have a Huffman code of 5 bits. Create a message with the alphabet ‘a’ . . . ‘h’ in which all of the letters have

a Huffman code of 3 bits.

13.10 In Figure 13.16, the sum of the frequencies of all the non-leaves is 215,000. This is also the size of the

encoded message E. Explain why in any Huffman tree, the sum of the frequencies of all non-leaves is equal

to the size of the encoded message.

13.11 Give an example of a PriorityQueue object of ten unique elements in which, during the call to

remove(), the call to siftDown would entail only one swap of parent and child.

13.12 This exercise deals with Heap Sort, specifically, the number of iterations required to create a heap from an

array in reverse order. Suppose the elements to be sorted are in an array of Integer s with the following

int values:

15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

a. Calculate the total number of loop iterations in the while loop of siftDownComparable or sift

DownComparator to convert the array queue into a heap.

b. Suppose n = 31 instead of 15, and the elements are still in reverse order. Calculate the total number of

loop iterations in the the while loop of siftDownComparable or siftDownComparator.

594 CHAPTER 13 Priority Queues

c. Let n be one less than a power of 2—the complete binary tree will be full—and suppose the n elements

are in reverse order. If we let h = floor(log2 n), we can develop a formula for calculating the number of

while -loop iterations in the n/2 calls to siftDown. (For clarity, we will start calculating at the root

level, even though the calls to siftDown start at level h − 1.) At the root level, there is one element,

and the call to siftDown entails h loop iterations. At the next level down, there are two elements, and

each of the corresponding calls to siftDown entails h − 1 loop iterations. At the next lowest level down,

there are 4 elements, and each call to siftDown entails h − 2 iterations. And so on. Finally, at level

h − 1, the next-to-leaf level, there are 2h−1 elements, and each call to siftDown (i) entails one loop

iteration. The total number of while -loop iterations is:

1 ∗ h + 2 ∗ (h − 1) + 4 ∗ (h − 2) + 8 ∗ (h − 3) + . . . + 2h−1 ∗ 1 =

h−1
∑

i=0

2i (h − i)

Show that this sum is equal to n − floor(log2 n) − 1; there are also n/2 calls to siftDown. That is, for

creating a heap from a full binary tree, worstTime(n) is linear in n .

Hint: By Exercise A2.6 in Appendix 2,

h−1
∑

i=0

2i = 2h − 1

By Exercise A2.3 in Appendix 2,
h−1
∑

i=0

i2i = (h − 2)2h + 2

By the Binary Tree Theorem, if t is a (non-empty) full binary tree of n elements and height h ,

(n + 1)/2 = 2h

d. Let t be a complete binary tree with n elements. Show that to make a heap from t , worstTime(n) is linear

in n .

Hint: Let h be the height of t . For the number of while -loop iterations in siftDownComparable

or siftDownComparator, compare the number of iterations, in the worst case, to make a heap from

t with

i. the number of iterations, in the worst case, to make a heap from the full binary tree t1 of height h − 1,

and

ii. the number of iterations, in the worst case, to make a heap from the full binary tree t2 of height h .

PROGRAMMING EXERCISES

13.1 In Section 13.3.1, the PriorityQueueExample class creates a heap, pq1, of Student objects; the

Student class implements the Comparable interface. Re-write the project so that the Comparator

interface is implemented instead for pq1. Re-run the project to confirm your revisions.

13.2 Conduct a run-time experiment to support the claim that, on average, Heap Sort takes more time and uses

less space than Merge Sort.

13.3 Conduct a run-time experiment to support the claim that averageTime(n) is constant for the add method in the

PriorityQueue class. Hint: Copy the PriorityQueue class into one of your directories; replace the

line package java.util; with import java.util.*;. Add a siftUpCount field, initialize it to

0, and increment it by 1 during the while loop in siftUpComparable (and in siftUpComparator).

Define a public getSiftUpCount method that returns the value of siftUpCount. Create another class

whose run method scans in a value for n, initializes a PriorityQueue<Integer> object with an initial

capacity of n, fills in that PriorityQueue object with n randomly generated integer values, and prints out

the value of siftUpCount divided (not integer division) by n. That quotient should be slightly less than 2.3.

Programming Exercises 595

Programming Project 13.1

Decoding a Huffman-Encoded Message

Suppose a message has been encoded by a Huffman encoding. Design, test, and implement a project to decode

the encoded message and thus retrieve the original message.

Analysis For the entire project, worstTime(n) must be O(n), where n is the size of the original message. As shown in

the output file in the Huffman project of this chapter, the input file will consist of two parts:

each character and its encoding;

the encoded message.

A sample input file, huffman.ou1, is shown in the following. The first line contains the carriage-return character,

followed by a space, followed by its encoding. The carriage-return character, when viewed, forces a line-feed.

So the first line below is blank, and the second starts with a space, followed by the code for the carriage-return

character.

0010

0111

a 000

b 1

c 0011

d 010

e 0110

**

1000010011100110110010011001110011000101110100001001001001100000100111

010000010011100110000100010111111111111111111111111111110010

System Test 1: (Input in boldface)

Please enter the name of the input file: huffman.ou1

Please enter the name of the output file: decode.ou1

The file decode.ou1 will contain:

bad cede cab dab

dead dad cad

bbbbbbbbbbbbbbbbbbbbbbbbbbbbb

Suppose the file huffman.ou2 contains the following (the message is from Coleridge’s “Rubiyat of Omar Khayam”):

10001

101

, 001000

- 0100000

. 0100001

(continued on next page)

596 CHAPTER 13 Priority Queues

(continued from previous page)

: 0010100

A 001011

D 0100110

I 0100101

K 001110

T 0011011

W 0010101

X 0011000

a 000

b 0011001

c 110010

d 11110

e 011

g 0011010

h 11111

i 001111

l 11101

m 110011

n 0101

o 11000

p 001001

r 1001

s 1101

t 10000

u 11100

v 010001

w 0100111

y 0100100

**

01001010101101001100000001010001111011100101111100011111

11101010011101110000110011110100010100111011111000010110

00100101110111011000000010000011111010100100101001001111

01011000110111100100101101000001111011000110011011101111

10011110010100101101100101001000100101011111101110010111

01001011111010010011111100100010110000111110111011101000

11001010010111111010110010011110100010111001001000101100

10000101100010011011111111001110001110000110101111110111

00100000100010111001010111011011100110110001101111001001

01111101011110111011011000011000101110011000010110001010

01101100001001110101101100001100010100010111011110001011

1101011110111011011101011000010000110001

System Test 2:

Please enter the name of the input file: huffman.ou2

Please enter the name of the output file: decode.ou2

Programming Exercises 597

The file decode.ou2 will contain

In Xanadu did Kubla Khan

A stately pleasure-dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

Note: For the sake of overall efficiency, re-creating the Huffman tree will be better than sequentially searching

the codes for a match of each sequence of bits in the encoded message.

Programming Project 13.2

An Integrated Web Browser and Search Engine, Part 5

In Part 4, you printed the search-results as they were obtained. In this part of the project, you will save the

results, and then print them in decreasing order of frequencies. For example, if you ran System Test 1 from Part

4 (Programming Project 12.5), the output would now be

Here are the files and relevance frequencies, in decreasing order:

browser.in6 7

browser.in8 2

browser.in7 0

In saving the results, the data structure must satisfy the following:

to insert a result into the data structure, worstTime(n) must be O(n), and averageTime(n) must be constant;

to remove a result from the data structure, worstTime(n) and averageTime(n) must be O(log n);

System Test 1: (Assume search.in1 contains browser.in6, 7, 8 from Programming

Project 12.5)

Please enter a search string in the input line and then press the Enter key.

neural network

Here are the files and relevance frequencies, in decreasing order:

browser.in6 7

browser.in8 2

browser.in7 0

System Test 2: (Assume search.in1 contains browser.in10, 11, 12, 13 –shown below)

Please enter a search string in the input line and then press the Enter key.

(continued on next page)

598 CHAPTER 13 Priority Queues

(continued from previous page)

neural network

neural network

Here are the files and relevance frequencies, in decreasing order:

browser.in10 8

browser.in13 8

browser.in11 6

browser.in12 6

Here are the contents of the files from System Test 2:

browser.in10:

In Xanadu did Kubla Khan

A stately browser3 pleasure-dome decree:

Where Alph, the sacred river, browser4 ran

Through caverns measureless to man

Down to a browser5 sunless sea.

neural network neural network neural network neural network

And so it goes.

browser.in11:

In Xanadu did browser1 Kubla Khan

A stately pleasure-dome decree:

Where Alph, the neural network sacred river, ran

Through caverns neural network measureless to man

Down to a network sunless sea.

network

browser.in12:

Neural surgeons have a network. But the decree is a decree is

a network and a network is a network, neural or not.

browser.in13:

In Xanadu did Kubla Khan

A stately browser3 pleasure-dome decree:

Where Alph, the sacred river, browser4 ran

Through caverns measureless to man

Down to a browser5 sunless sea.

neural network neural network neural network neural network

Note 1: In your code, do not use complete path names, such as “h:\Project3\home.in1”. Instead, use “home.in1”.

Hashing CHAPTER 14

We start this chapter by reviewing some search algorithms from earlier chapters as a prelude to the

introduction of a new search technique: hashing. The basic idea with hashing is that we perform some

simple operation on an element’s key to obtain an index in an array. The element is stored at that index.

With an appropriate implementation, hashing allows searches (as well as insertions and removals)

to be performed in constant average time. Our primary focus will be on understanding and using

the HashMap class in the Java Collections Framework, but we will also consider other approaches to

hashing. The application will use hashing to insert identifiers into a symbol table.

CHAPTER OBJECTIVES

1. Understand how hashing works, when it should be used, and when it should not be used.

2. Explain the significance of the Uniform Hashing Assumption.

3. Compare the various collision handlers: chaining, offset-of-1, quotient-offset.

14.1 A Framework to Analyze Searching

Before we begin looking at hashing, we need a systematic way to analyze search methods in general.

Because the search may be successful or unsuccessful, the analysis of search methods should include both

possibilities. For each search method we estimate averageTimeS (n), the average time—over all n elements

in the collection—of a successful search. As always for average time, we make the simplifying assumption

that each element in the collection is equally likely to be sought.

We will also be interested in worstTimeS (n), the largest number of statements needed to successfully

search for an element. That is, for a given value of n , we look at all permutations of the n elements and all

possible choices of the element to be successfully sought. For each permutation and element, we determine

the number of iterations (or recursive calls) to find that element. Then worstTimeS (n) corresponds to the

largest number of iterations attained.

We also estimate averageTimeU (n), the average time of an unsuccessful search, and worstTimeU (n).

For an unsuccessful search, we assume that on average, every possible failure is equally likely. For example,

in an unsuccessful search of a sequence of n elements, there are n + 1 possibilities for where the given

element can occur:

before the first element in the sequence;

between the first and second elements;

between the second and third elements;

599

600 CHAPTER 14 Hashing

...

between the (n - 1)st and nth elements;

after the nth element.

The next section reviews the search methods employed so far.

14.2 Review of Searching

Up to this point, we have seen three different kinds of searches: sequential search, binary search, and

red-black-tree search. Let’s look at each one in turn.

14.2.1 Sequential Search

A sequential search—also called a “linear search”—of a collection starts at the beginning of the collection

and iterates until either the element sought is found or the end of the collection is reached. For example,

the contains method in the AbstractCollection<E> class uses a sequential search:

/**

* Determines if this AbstractCollection object contains a specified element.

* The worstTime(n) is O(n).

*

* @param obj –the element searched for in this AbstractCollection object.

*

* @return true –if this AbstractionCollection object contains obj; otherwise,

* return false.

*/

public boolean contains(Object obj)

{

Iterator<E> e = iterator(); // E is the type parameter for this class

if (obj == null)

{

while (e.hasNext())

if (e.next()==null)

return true;

} // if obj == null

else

{

while (e.hasNext())

if (obj.equals(e.next()))

return true;

} // obj!= null

return false;

} // method contains

The contains method in the ArrayList class and the containsValue method in the TreeMap class

use sequential searches similar to the above.

For a successful sequential search of a collection, we assume that each of the n elements in

the collection is equally likely to be sought. So the average number of loop iterations is (1 + 2 + . . .

+ n)/n , which is (n + 1)/2, and the largest possible number of loop iterations is n . We conclude that both

averageTimeS (n) and worstTimeS (n) are linear in n .

14.2 Review of Searching 601

For an unsuccessful sequential search, even if the collection happens to be ordered, we must access

all n elements before concluding that the given element is not in the collection, so averageTimeU (n) and

worstTimeU (n) are both linear in n . As we will see in Sections 14.2.2 and 14.2.3, ordered collections can

improve on these times by employing non-sequential searches.

14.2.2 Binary Search

Sometimes we know beforehand that the collection is sorted. For sorted collections, we can perform a

binary search, so called because the size of the segment searched is repeatedly divided by two. Here,

as investigated in Lab 8, is the binarySearch method from the Arrays class of the Java Collections

Framework:

/**

* Searches a specified array for a specified element.

* The array must be sorted in ascending order according to the natural ordering

* of its elements (that is, by the compareTo method); otherwise, the results are

* undefined.

* The worstTime(n) is O(log n).

*

* @param a –the array to be searched.

* @param key –the element to be searched for in the array.

*

* @return the index of an element equal to key - if the array contains at least one

* such element; otherwise, –insertion point –1, where insertion point is

* the index where key would be inserted. Note that the return value is

* greater than or equal to zero only if the key is found in the array.

*

*/

public static int binarySearch (Object[] a, Object key)

{

int low = 0;

int high = a.length-1;

while (low <= high)

{

int mid =(low + high) >> 1;

Comparable midVal = (Comparable)a [mid];

int cmp = midVal.compareTo(key);

if (cmp < 0)

low = mid + 1;

else if (cmp > 0)

high = mid - 1;

else

return mid; // key found

} // while

return –(low + 1); // key not found

} // method binarySearch

A binary search is much faster than a sequential search. For either a successful or unsuccessful search, the

number of elements to be searched is n = high + 1 - low. The while loop will continue to divide n

602 CHAPTER 14 Hashing

by 2 until either key is found or high + 1 = low, that is, until n = 0. The number of loop iterations

will be the number of times n can be divided by 2 until n = 0. By the Splitting Rule in Chapter 3, that

number is, approximately, log2 n (also, see Example A2.2 of Appendix 2). So we get averageTimeS (n) ≈
worstTimeS (n) ≈ averageTimeU (n) ≈ worstTimeU (n), which is logarithmic in n .

There is also a Comparator -based version of this method; the heading is

public static <T> int binarySearch (T[] a, T key, Comparator<? super T> c)

For example, if words is an array of String objects ordered by the length of the string, we can utilize

the ByLength class from Section 11.3 and call

System.out.println (Arrays.binarySearch (words, "misspell", new ByLength()));

14.2.3 Red-Black-Tree Search

Red-black trees were introduced in Chapter 12. One of that class’s public methods, containsKey, has

a one-line definition: All it does is call the private getEntry method. The getEntry method, which

returns the Entry corresponding to a given key, has a definition that is similar to the definition of the

binarySearch method. Here is the definition of getEntry:

final Entry<K,V> getEntry(Object key) {

// Offload comparator-based version for sake of performance

if (comparator != null)

return getEntryUsingComparator(key);

if (key == null)

throw new NullPointerException();

Comparable<? super K> k = (Comparable<? super K>) key;

Entry<K,V> p = root;

while (p != null) {

int cmp = k.compareTo(p.key);

if (cmp < 0)

p = p.left;

else if (cmp > 0)

p = p.right;

else

return p;

}

return null;

}

The height of a red-black tree t is logarithmic in n , the number of elements (see Example 2.6 in Appendix

2). For an unsuccessful search, the getEntry method iterates from the root to an empty subtree. In the

worst case, the empty subtree will be a distance of height(t) branches from the root, and the number of

iterations will be logarithmic in n . That is, worstTimeU (n) is logarithmic in n .

The number of iterations in the average case depends on bh(root): the number of black elements in

the path from the root to an element with no children or with one child. The path length from the root

to such an element is certainly less than or equal to the height of the tree. As shown in Example 2.6 of

Appendix 2, bh(root) ≥ height(t)/2. So the number of iterations for an unsuccessful search is between

height(t)/2 and height(t). That is, averageTimeU (n) is also logarithmic in n .

14.3 The HashMap Implementation of the Map Interface 603

For a successful search, the worst case occurs when the element sought is a leaf, and this requires

only one less iteration than an unsuccessful search. That is, worstTimeS (n) is logarithmic in n . It is

somewhat more difficult to show that averageTimeS (n) is logarithmic in n . But the strategy and result are

the same as in Concept Exercise 5.7, which showed that for the recursive version of the binarySearch

method, averageTimeS (n) is logarithmic in n .

Section 14.3 introduces a class that allows us to break through the log n barrier for insertions,

removals and searches.

14.3 The HashMap Implementation of the Map Interface

The HashMap class implements the Map interface, so you saw most of the method headings when we

studied the TreeMap class in Chapter 12. The main changes have to do with the timing estimates in some

of the method specifications. Basically, for the put, remove, and containsKey methods, the average

number of loop iterations is constant. There are also size(), isEmpty(), clear(), toString(), entry

Set(), keySet(), and valueSet() methods, whose specifications are the same as for their TreeMap

counterparts.

The class heading, with “K” for key and “V” for value, is

public class HashMap<K,V>

extends AbstractMap<K,V>

implements Map<K,V>, Cloneable, Serializable

Here is an example of the creation of a simple HashMap object. The entire map, both keys and values, is

printed. Then the keys alone are printed by iterating through the map viewed as a Set object with keys as

elements. Finally, the values alone are printed by iterating through the map as if it were a Collection

of values.

import java.util.*;

public class HashExample

{

public static void main (String[] args)

{

new HashExample().run();

} // method main

public void run()

{

HashMap<String, Integer> ageMap = new HashMap<String, Integer>();

ageMap.put ("dog", 15);

ageMap.put ("cat", 20);

ageMap.put ("human", 75);

ageMap.put ("turtle", 100);

System.out.println (ageMap);

for (String s : ageMap.keySet())

System.out.println (s);

604 CHAPTER 14 Hashing

for (Integer i : ageMap.values())

System.out.println (i);

} // method run

} // class HashExample

The output will be as follows:

{cat=20, dog=15, turtle=100, human=75}

cat

dog

turtle

human

20

15

100

75

Notice that the output is not in order of increasing keys, nor in order of increasing values. (When we get to

the details of the HashMap class, we’ll see how the order of elements is determined.) This unsortedness is

one of the few drawbacks to the HashMap class. The HashMap class is outstanding for insertions, removals,

and searches, on average, but if you also need a sorted collection, you should probably use a TreeMap

instead.

In trying to decide on fields for the HashMap class, you might at first be tempted to bring back

a contiguous or linked design from a previous chapter. But if the elements are unordered, we will need

sequential searches, and these take linear time. Even if the elements are ordered and we utilize that ordering,

the best we can get is logarithmic time for searching.

The rest of this chapter is devoted to showing how, through the miracle of hashing, we can achieve

searches—and insertions and removals—in constant time, on average. After we have defined what hashing

is and how it works, we will spend a little time on the Java Collection Framework’s implementation of

the HashMap class. Then we will consider an application—hashing identifiers into a symbol table—before

we consider alternate implementations.

14.3.1 Hashing

We have already ruled out a straightforward contiguous design, but just to ease into hashing, let’s look at

a contiguous design with the following two fields:

transient Entry[] table; // an array of entries;

transient int size; // number of mappings in the HashMap object

Recall, from Chapter 6, that the transient modifier indicates that the field will not be saved during

serialization. Appendix 1 includes a discussion of serialization.

We first present a simple example and then move on to something more realistic. Suppose that the

array is constructed to hold 1024 mappings, that is, 1024 key&value pairs. The key is (a reference to) an

Integer object that contains a three-digit int for a person’s ID. The value will be a String holding a

person’s name, but the values are irrelevant to this discussion, so they will be ignored. We start by calling

a constructor that initializes the table length to 1024:

HashMap<Integer, String> persons = new HashMap<Integer, String>(1024);

14.3 The HashMap Implementation of the Map Interface 605

At this point, we have the state shown in Figure 14.1.

table size

0 null 0

1 null

2 null

.

.

.

1023 null

FIGURE 14.1 The design representation of an empty HashMap object (simplified design)

At what index should we store the element with key 251? An obvious choice is index 251. The

advantages are several:

a. The element can be directly inserted into the array without accessing any other elements.

b. Subsequent searches for the element require accessing only location 251.

c. The element can be removed directly, without first accessing other elements.

We now add three elements to this HashMap object:

persons.put (251, "Smolenski");

persons.put (118, "Schwartz");

persons.put (335, "Beh-Forrest");

Figure 14.2 shows the contents of the HashMap object. We show the int values, rather than the Integer

references, for the keys of inserted elements, and the names are omitted.

So far, this is no big deal. Now, for a slightly different application, suppose that table.length

is still 1024, but each element has a social-security-number as the key. We need to transform the key

into an index in the array, and we want this transformation to be accomplished quickly, that is, with

few loop iterations. To allow fast access, we perform a bit-wise “and” of the social security number and

table.length - 1. For example, the element with a key value of 214-30-3261—the hyphens are for

readability only—has a binary representation of

00001100110001100000001000011101

The binary representation of 1023 is

00000000000000000000001111111111

The result of applying the bit-wise and operator, & , to a pair of bits is 1 if both bits are 1, and otherwise

0. We get

00001100110001100000001000011101

& 00000000000000000000001111111111

00000000000000000000001000011101

The decimal value of the result is 541, and so the element whose key is 214-30-3261 is stored at index

541. Similarly, the element with a key value of 033-51-8000 would be stored at location 432.

606 CHAPTER 14 Hashing

table size

0 null 3

1 null

2 null

null

118 118

251 251

335

1023

335

FIGURE 14.2 The HashMap object of Figure 14.1 after three elements have been inserted. For each non-null

element, all that is shown is the int corresponding to the Integer key. The value parts are omitted.

Figure 14.3 shows the resulting HashMap object after the following two insertions:

persons.put (214303261, "Albert");

persons.put (033518000, "Schranz");

You might already have noticed a potential pitfall with this scheme: two distinct keys might produce the

same index. For example, 214-30-3261 and 323-56-8157 both produce the index 541. Such a phenomenon

is called a collision , and the colliding keys are called synonyms . We will deal with collisions shortly. For

now we simply acknowledge that the possibility of collisions always exists when the size of the key space,

that is, the number of legal key values, is larger than the table capacity.

Hashing is the process of transforming a key into an index in a table. One component of this trans-

formation is the key class’s hashCode() method. The purpose of this method is to perform some easily

computable operation on the key object. The key class, which may be Integer, String, FullTimeEm

ployee, or whatever, usually defines its own hashCode() method. Alternatively, the key class can inherit

a hashCode() method from one of its ancestors; ultimately, the Object class defines a hashCode()

method.1 Here is the definition of the String class’s hashCode() method:

/**

* Returns a hash code for this String object.

*

1But the hashCode() method in the Object class will most likely return the reference itself, that is, the machine address, as an int . Then

the hashCode() method applied to two equivalent objects would return different int values!

14.3 The HashMap Implementation of the Map Interface 607

table size

0 null 2

1 null

2 null

null

432 033518000

541 214303261

1023

FIGURE 14.3 A HashMap object with two elements. The key is a social security number. The value is a name,

but that is irrelevant, so it is not shown

* @return a hash code value for this String object.

*/

public int hashCode()

{

int h = 0;

int off = offset; // index of first character in array value

char val[] = value; // value is the array of char that holds the String

int len = count; // count holds the number of characters in the String

for (int i = 0; i < len; i++)

h = 31*h + val[off++];

return h;

} // method hashCode

The multiplication of partial sums by 31 increases the likelihood that the int value returned will be greater

than table.length, so the resulting indexes can span the entire table. For example, suppose we have

System.out.println ("graduate".hashCode());

The output will be

90004811

608 CHAPTER 14 Hashing

In the HashMap class, the hashCode() method for a key is supplemented by a static hash method whose

only parameter is the int returned by the hashCode() method. The hash function scrambles that int

value. In fact, the basic idea of hashing is to “make hash” out of the key. The additional scrambling is

accomplished with a few right shifts and bit-wise “exclusive-or” operators (return 1 if the two bits are

different, otherwise 0).

Here is the hash method:

static int hash(int h)

{

h ∧= (h >>> 20) ∧ (h >>> 12);

return h ∧ (h >>> 7) ∧ (h >>> 4);

} // method hash

For example,

"graduate".hashCode()

returns

90004811

and hash (90004811) returns

84042326

This value is bit-wise “anded” with table.length - 1 to obtain an index in the range from 0 to

table.length - 1. For example, if table.length = 1024,

84042326 & 1023

returns

598

And that is the index “graduate” hashes to. The overall strategy is

hash (key.hashCode()) & table.length - 1

key −−→ index

One of the requirements of the HashMap class is that table.length must be a power of 2. (This

requirement is specific to the Java Collections Framework, and does not apply generally.) For example, if

table.length = 1024 = 210, then the index returned by

hash (key.hashCode()) & table.length - 1

consists of the rightmost 10 bits of hash (key). Because a poor-quality hashCode() method may not

adequately distinguish the rightmost bits in the keys, the additional scrambling from the bit-wise operators

in the hash method is usually enough to prevent a large number of collisions from occurring.

You may have noticed that, because the table size is a power of 2, the result of

hash (key.hashCode()) & table.length - 1

is the same as the result of

hash (key.hashCode()) % table.length

14.3 The HashMap Implementation of the Map Interface 609

The advantage of the former expression is that its calculation is quite a bit faster than for the latter expres-

sion. Modular arithmetic is computationally expensive, but is commonly utilized in hashing (outside of the

Java Collections Framework) because its effectiveness does not require that the table size be a power of 2.

How would you go about developing your own hashCode() method? To see how this might be done,

let’s develop a simple hashCode() method for the FullTimeEmployee class from Chapter 1. The method

should involve the two fields—name and grossPay—because these distinguish one FullTimeEmployee

object from another. We have already seen the String class’s hashCode() method. All of the wrapper

classes, including Double, have their own hashCode() method, so we are led to the following method:

public int hashCode()

{

return name.hashCode() + new Double (grossPay).hashCode();

} // method hashCode in class FullTimeEmployee

For example, if a FullTimeEmployee object has the name “Dominguez” and a gross pay of 4000.00,

the value returned by the hashCode() method will be −319687574. When this hashCode() method is

followed by the additional bit manipulation of the HashMap class’s hash method, the result will probably

appear to be quite random.

The final ingredient in hashing is the collision handler, which determines what happens when two

keys hash to the same index. As you might expect, if a large number of keys hash to the same index, the

performance of a hashing algorithm can be seriously degraded. Collision handling will be investigated in

Section 14.3.3. But first, Section 14.3.2 reveals the major assumption of hashing: basically, that there will

not be a lot of keys hashing to the same index.

14.3.2 The Uniform Hashing Assumption

For each value of key in an application, a table index is calculated as

int hash = hash (key.hashCode()),

index = hash & table.length - 1; // table.length will be a power of 2

Hashing is most efficient when the values of index are spread throughout the table. This notion is referred

to as the Uniform Hashing Assumption . Probabilistically speaking, the Uniform Hashing Assumption

states that the set of all possible keys is uniformly distributed over the set of all table indexes. That is,

each key is equally likely to hash to any one of the table indexes.

No class’s hashCode method will satisfy the Uniform Hashing Assumption for all applications,

although the supplemental scrambling in the hash function makes it extremely likely (but not guaranteed)

that the assumption will hold.

Even if the Uniform Hashing Assumption holds, we must still deal with the possibility of collisions.

That is, two distinct keys may hash to the same index. In the HashMap class, collisions are handled

by a simple but quite effective technique called “chaining”. Section 14.3.3 investigates chaining, and an

alternate approach to collisions is introduced in Section 14.5.

14.3.3 Chaining

To resolve collisions, we store at each table location the singly-linked list of all elements whose keys

have hashed to that index in table. This design is called chained hashing because the elements in each

list form a chain. We still have the table and size fields from Section 14.3.1:

/**

* An array; at each index, store the singly-linked list of entries whose keys hash

610 CHAPTER 14 Hashing

* to that index.

*

*/

transient Entry[] table;

/**

* The number of mappings in this HashMap object.

*/

transient int size;

Each element is stored in an Entry object, and the embedded Entry class starts as follows:

static class Entry<K,V> implements Map.Entry<K,V>

{

final K key;

V value;

final int hash; // to avoid re-calculation

Entry<K,V> next; // reference to next Entry in linked list

The final modifier mandates that the key and hash fields can be assigned to only once. A singly-linked

list, instead of the LinkedList class, is used to save space: There is no header, and no previous field.

The Entry class also has a four-parameter constructor to initialize each of the fields.

To see how chained hashing works, consider the problem just stated of storing persons with social

security numbers as keys. Since each key is (a reference to) an Integer object, the hashCode() method

simply returns the corresponding int, but the hash method sufficiently garbles the key that the int

returned seems random. Initially, each location contains an empty list, and insertions are made at the front of

the linked list. Figure 14.4 shows what we would have after inserting elements with the following Integer

keys (each is shown as an int, followed by the index the key hashed to) into a table of length 1024:

key index

62488979 743

831947084 440

1917270349 911

1842336783 208

1320358464 440

1102282446 319

1173431176 440

33532452 911

The keys in Figure 14.4 were “rigged” so that there would be some collisions. If the keys were chosen

randomly, it is unlikely there would have been any collisions, so there would have been eight linked lists,

each with a single entry. Of course, if the number of entries is large enough, there will be collisions and

multi-entry lists. And that raises an interesting question: Should the table be subject to re-sizing? Suppose

the initial table length is 1024. If n represents the number of entries and n can continue to increase, the

average size of each linked list will be n/1024, which is linear in n . But then, for searching, inserting, and

removing, worstTime(n) will be linear in n—a far cry from the constant time that was promised earlier.

14.3 The HashMap Implementation of the Map Interface 611

319 1102282446 null

743 62488979 null

208 1842336783 null

table Size

0 8null

911 33532452 1917270349 null

1173431176440 1320358464

831947084 null

FIGURE 14.4 A HashMap object into which eight elements have been inserted. For each Entry object, only the

key and next fields are shown. At all indexes not shown there is a null Entry.

Given that re-sizing must be done under certain circumstances, what are those circumstances? We

will re-size whenever the size of the map reaches a pre-set threshold. In the HashMap class, the default

threshold is 75% of table.length. So when size is >= (int)(table.length * 0.75), the table

will be re-sized. That means that the average size of each linked list will be less than one, and that is how

constant average time can be achieved for inserting, deleting, and searching.

There are two additional fields relating to this discussion: loadFactor (how large can the ratio

of size to table length get before resizing will occur) and threshold (how large can size get before

resizing will occur). Specifically, we have

/**

* the maximum2 ratio of size / table.length before re-sizing will occur

*

*/

final float loadFactor

/**

* (int)(table.length * loadFactor); when size++ >= threshold, re-size table

*

*/

int threshold;

2This definition is non-standard. In hashing terminology, load factor is simply the ratio of the number of elements in the collection to its

capacity. In the Framework’s HashMap and HashSet classes, load factor is the upper bound of that ratio.

612 CHAPTER 14 Hashing

There are three constant identifiers related to table and loadFactor:

/**

* The default initial capacity - MUST be a power of two.

*/

static final int DEFAULT_INITIAL_CAPACITY = 16;

/**

* The maximum capacity, 2 to the 30th power, used if a higher value

* is implicitly specified by either of the constructors with arguments.

*

*/

static final int MAXIMUM_CAPACITY = 1 << 30; // = 230

/**

* The load factor used when none specified in constructor.

*/

static final float DEFAULT_LOAD_FACTOR = 0.75f;

The value for loadFactor presents an interesting time-space tradeoff. With a low value (say, less than

1.0), searches and removals are fast, and insertions are fast until an insertion triggers a re-sizing. That

insertion will require linear-in-n time and space. On the other hand, with a high value for loadFactor,

searches, removals, and insertions will be slower than with a low loadFactor, but there will be fewer

re-sizings. Similary, if table.length is large, there will be fewer re-sizings, but more space consumed.

Ultimately, the application will dictate the need for speed (how small a load factor) and the memory

available (how large a table).

Now that we have decided on the fields in the HashMap and Entry classes, we can don our devel-

oper’s hat to tackle the implementation of a couple of HashMap methods: a constructor and containsKey.

14.3.4 Implementation of the HashMap Class

All of the constructors deal with the load factor and the size of the table. The fundamental constructor—the

one called by the others—is the following:

/**

* Constructs an empty HashMap with the specified initial

* capacity and load factor.

*

* @param initialCapacity The initial capacity.

* @param loadFactor The load factor.

* @throws IllegalArgumentException if the initial capacity is negative

* or the load factor is nonpositive.

*/

public HashMap(int initialCapacity, float loadFactor)

{

if (initialCapacity < 0)

throw new IllegalArgumentException("Illegal initial capacity: " +

initialCapacity);

if (initialCapacity > MAXIMUM_CAPACITY)

initialCapacity = MAXIMUM_CAPACITY;

14.3 The HashMap Implementation of the Map Interface 613

if (loadFactor <= 0 || Float.isNaN(loadFactor)) // Not a Number

throw new IllegalArgumentException("Illegal load factor: " +

loadFactor);

// Find a power of 2 >= initialCapacity

int capacity = 1;

while (capacity < initialCapacity)

capacity <<= 1; // same as capacity = capacity << 1;

this.loadFactor = loadFactor;

threshold = (int)(capacity * loadFactor);

table = new Entry[capacity];

init(); // allows readObject to handle subclasses of HashMap (Appendix 1, A1.2)

}

This constructor is utilized, for example, in the definition of the default constructor:

/**

* Constructs an empty <tt>HashMap</tt> with the default initial capacity

* (16) and the default load factor (0.75).

*/

public HashMap()

{

this.loadFactor = DEFAULT_LOAD_FACTOR;

threshold = (int)(DEFAULT_INITIAL_CAPACITY *

DEFAULT_LOAD_FACTOR);

table = new Entry[DEFAULT_INITIAL_CAPACITY];

init();

}

We finish up this section by looking at the definition of the containsKey method. The other signature

methods for a HashMap object—put, get, and remove—share the same basic strategy as containsKey:

hash the key to an index in table, and then search the linked list at table [index] for a matching

key. The containsKey method simply calls the getEntry method:

/**

* Determines if this HashMap object contains a mapping for the

* specified key.

* The worstTime(n) is O(n). If the Uniform Hashing Assumption holds,

* averageTime(n) is constant.

*

* @param key The key whose presence in this HashMap object is to be tested.

*

* @return true - if this map contains a mapping for the specified key.

*

*/

public boolean containsKey(Object key)

{

return getEntry(key) != null;

}

614 CHAPTER 14 Hashing

Here is the definition of the getEntry method (the indexFor method simply returns hash &

table.length - 1):

/**

* Returns the entry associated with the specified key in the

* HashMap. Returns null if the HashMap contains no mapping

* for the key.

*/

final Entry<K,V> getEntry(Object key)

{

int hash = (key == null) ? 0 : hash(key.hashCode());

for (Entry<K,V> e = table[indexFor(hash, table.length)];

e != null;

e = e.next)

{

Object k;

if (e.hash == hash &&

((k = e.key) == key || (key != null && key.equals(k))))

return e;

}

return null;

}

Notice that both the hash and key fields are compared. Concept Exercise 14.4 indicates why both fields

are checked.

Before we leave this section on the implementation of the HashMap class, there is an important detail

about insertions that deserves mention. When a re-sizing takes place, that is, when

size++ >= threshold

the table is doubled in size. But the old entries cannot simply be copied to the new table: They must be

re-hashed. Why? Because the index where an entry is stored is calculated as

hash & table.length –1

When table.length changes, the index of the entry changes, so a re-hashing is required. For example,

hash ("myList") & 1023 // 1023 = 210 –1

returns 231, but

hash ("myList") & 2047 // 2047 = 211 –1

returns 1255.

After the keys have been re-hashed, subsequent calls to the containsKey method, for example, will

search the linked list at the appropriate index.

In Section 14.3.5, we show that the containsKey method takes only constant time, on average.

14.3.5 Analysis of the containsKey Method

For the sake of brevity, we let n = size and m = table.length. We assume that the Uniform Hashing

Assumption holds, that is, we expect the n elements to be fairly evenly distributed over the m lists. Then

14.3 The HashMap Implementation of the Map Interface 615

a successful search will examine a list that has about n/m elements3, on average. A successful, sequential

search of such a list requires, approximately, n/2m loop iterations, so the average time appears to depend

on both n and m . We get

averageTimeS (n , m) ≈ n/2m iterations <= loadFactor / 2 < loadFactor

The value of loadFactor is set in the HashMap object’s constructor, and is fixed for the lifetime of

the HashMap object. That is, averageTimeS (n , m) is less than a constant. Therefore averageTimeS (n , m)

must be constant (in the “plain English” sense of � notation). In other words, the averageTime is inde-

pendent of m (and even independent of n). So we conclude that averageTimeS (n) is constant. Similarly,

averageTimeU (n) is constant. We will avoid the subscript and simply write averageTime(n) whenever the

� estimates are the same for both successful and unsuccessful searches. See Section 14.5 for a situation

where the � estimates are different.

So far we have blithely ignored any discussion of worstTime. This is the Achilles’ heel of hashing,

just as worstTime was the vulnerable aspect of Quick Sort. The Uniform Hashing Assumption is more

often a hope than a fact. If the hashCode method is inappropriate for the keys in the application, the

additional scrambling in the hash function may not be enough to prevent an inordinate number of keys

to hash to just a few locations, leading to linear-in-n searches. Even if the Uniform Hashing Assumption

holds, we could have a worst-case scenario: the given key hashes to index, and the number of keys

at table [index] is linear in n . So worstTime (n , m), for both successful and unsuccessful searches,

is linear in n . The independence from m allows us to write that worstTime(n) is linear in n for both

successful and unsuccessful searches for the containsKey method.

Similarly, for the get and remove methods, worstTime(n) is linear in n . What about

worstTime(n , m) for the put method? In the worst case, the size of the underlying table will be at the

threshold, so we will need to double the size of the table, and then iterate through all m of the linked lists

(many will be empty) to re-hash the n elements into the new table. So it appears that worstTime(n , m)

is �(n + m). But at the threshold, n/m = loadFactor (a constant), so m = n/loadFactor. Then

worstTime(n , m) = worstTime(n) = �(n + n/loadFactor), since m is a function of n . We conclude

that worstTime(n) is �(n), or in plain English, worstTime(n) is linear in n .

The bottom line is this: unless you are confident that the Uniform Hashing Assumption is reasonable

for the key space in the application or you are not worried about linear-in-n worst time, use a TreeMap

object, with its guarantee of logarithmic-in-n worst time for searching, inserting, and deleting.

The final topic in our introduction to the HashMap class is the HashIterator class.

14.3.6 The HashIterator Class

This section will clear up a mystery from when we first introduced the HashMap class: in what order

are iterations performed? The answer is fairly straightforward. Starting at index table.length-1 and

working down to index 0, the linked list at each index is traversed in sequential order. Starting at the

back makes the continuation condition slightly more efficient: index > 0 (a constant) instead of index

< table.length (a variable). In each singly-linked list, the sequential order is last-in-first-out . For

example, Figure 14.5 (next page) is a repeat of the HashMap object from Figure 14.4.

3In common hashing terminology, the load factor is simply the ratio of n to m . In the Java Collections Framework, load factor is the maximum

ratio of n to m before resizing takes place.

616 CHAPTER 14 Hashing

319 1102282446 null

743 62488979 null

208 1842336783 null

table Size

0 8null

911 33532452 1917270349 null

1173431176440 1320358464

831947084 null

FIGURE 14.5

Here is the order in which the keys would appear in an iteration:

33532452

1917270349

62488979

1173431176

1320358464

831947084

1102282446

1842336783

Just as with the TreeMap class, the iteration can be by keys, by values, or by entries. For example:

for (K key : myMap.keySet())

for (V value : myMap.values())

for (Map.Entry<K, V> entry : myMap.entrySet())

Or, if the iteration might entail removals:

Iterator<K> itr1 = myMap.keySet().iterator();

Iterator<V> itr2 = myMap.values().iterator();

Iterator<Map.Entry<K, V>> itr3 = myMap.entrySet().iterator();

An iteration through a HashMap object must peruse the singly linked list at each index in the table. Even if

most of those linked lists are empty, each one must be checked. The total number of loop iterations is size

+ table.length, and this indicates a drawback to having a very large table. If the Uniform Hashing

14.3 The HashMap Implementation of the Map Interface 617

Assumption holds, then the time estimates for the next() method are the same as for the containsKey

method in the HashMap class. In the terminology of Section 14.3.5, for example,

averageTimeS (n , m) ≈ (n + m)/n = 1 + m/n = 1 + 1/loadFactor

Since loadFactor is fixed, we conclude that averageTime(n , m) = averageTime(n) is constant for the

next() method.

In the worst case, a call to the next() method will start at the end of the linked list at table

[table.length - 1], with empty linked lists at indexes table.length - 2, table.length - 3,

. . ., 2, 1, and a non-empty linked list at table [0]. We conclude that worstTime(n , m) is linear in m .

If you would like to have control about the order in which elements in a hash map are iterated over,

Programming Exercise 14.6 will show you the way.

In Section 14.3.7, we look at the premiere application of the HashMap class: the hashing of identifiers

into a symbol table by a compiler.

14.3.7 Creating a Symbol Table by Hashing

Most compilers use hashing to create a symbol table: an array that contains information about word-

symbols in a program. A word-symbol can be either a reserved word or an identifier. An identifier is

a name for a declared entity—such as a variable, method or class. An identifier consists of a letter,

underscore or dollar sign, followed by any number of letters, digits, underscores or dollar signs. Here are

some legitimate identifiers:

n

tax_2010

$stack_pointer

_left

The following are not legal identifiers

2010_tax // an identifier must not start with a digit

time? // an identifier must not contain a ?

while // an identifier must not be a reserved word

Maintaining a symbol table is a good environment for hashing: Almost all of the activity consists of

retrieving a symbol-table entry, given a key. And a reasonable upper bound on the number of identifiers

is the size of the program, so we can initialize the size of the symbol table to avoid re-sizing.

To avoid getting bogged down in the myriad details of symbol-table creation and maintenance, we

will solve the following restricted problem: Given a file of reserved words and a program in a source file,

print to a file a symbol table of word symbols, with each word symbol designated as a reserved word or

identifier. One interesting feature of this project is that the input is itself a program.

The main issue is how to separate identifiers from reserved words. The list of legal reserved words4

is fixed, so we will read in a file that contains the reserved words before we read in the source file. For

example, suppose the file “reserved.dat” contains the list, one per line, of reserved words in Java. And the

file “Sample.java” contains the following program:

import java.io.*;

public class Sample

4Technically, true, false, and null are not reserved words. They are literals, that is, constant values for a type, just as “exhale” and 574

are literals. But we include them in with the reserved words because they cannot be used as identifiers.

618 CHAPTER 14 Hashing

{

public static void main (String[] args)

{

int i = 75;

Integer top,

bottom;

/* all */ int z1 = 1;

/* int z2 = 2;

int z3 = 3;

int z4 = 4;

*/

int z5 = 5;

/* int z6 = 6;*/

String ans = "All string literals, such as this, are ignored.";

char x = ’x’;

for (int j = 0; j < i; j++)

System.out.println (i + " " + j);

} // method main

} // class Sample

System Test 1 (the input is boldfaced):

Please enter the path for the file that holds the reserved words: reserved.dat

Please enter the path for the file that holds the source code: Sample.java

Please enter the path for the file that will hold the symbol table: hasher.out

At the end of the execution of the program the file hasher.out will have:

Here is the symbol table:

ans=identifier

top=identifier

boolean=reserved word

interface=reserved word

rest=reserved word

for=reserved word

continue=reserved word

long=reserved word

abstract=reserved word

double=reserved word

instanceof=reserved word

println=identifier

throws=reserved word

super=reserved word

throw=reserved word

short=reserved word

do=reserved word

byte=reserved word

import=reserved word

if=reserved word

future=reserved word

package=reserved word

switch=reserved word

14.3 The HashMap Implementation of the Map Interface 619

catch=reserved word

return=reserved word

x=identifier

outer=reserved word

String=identifier

System=identifier

z5=identifier

transient=reserved word

out=identifier

j=identifier

synchronized=reserved word

else=reserved word

args=identifier

while=reserved word

Double=identifier

goto=reserved word

_yes=identifier

var=reserved word

extends=reserved word

operator=reserved word

Integer=identifier

case=reserved word

final=reserved word

Sample=identifier

native=reserved word

null=reserved word

$name=identifier

float=reserved word

class=reserved word

implements=reserved word

private=reserved word

false=reserved word

main=identifier

char=reserved word

volatile=reserved word

const=reserved word

cast=reserved word

bottom=identifier

protected=reserved word

this=reserved word

static=reserved word

generic=reserved word

i=identifier

z1=identifier

void=reserved word

int=reserved word

byvalue=reserved word

break=reserved word

new=reserved word

default=reserved word

620 CHAPTER 14 Hashing

inner=reserved word

true=reserved word

public=reserved word

finally=reserved word

try=reserved word

We will filter out comments, string literals, and import statements. Then each line (what remains of it) will

be tokenized. The delimiters will include punctuation, parentheses, and so on. For the sake of simplicity,

both reserved words and identifiers will be saved in a symbol table, implemented as a HashMap object.

Each key will be a word, either a reserved word or an identifier, and each value will be an indication of

the word’s type, either “reserved word” or “identifier”.

We will create a Hasher class to solve this problem. The responsibilities of the Hasher class are

as follows:

1. Scan the reserved words and hash each one (with “reserved word” as the value part) to the symbol

table.

2. Scan the lines from the source file. For each identifier in each line, post the identifier (with “identifier”

as the value part) to the symbol table, unless that identifier already appears as a key in the symbol

table.

3. For each mapping in the symbol table, print the mapping to the output file.

14.3.7.1 Design and Testing of the Hasher Class

The responsibilities enunciated in Section 14.3.7 easily lead to method specifications. The run() method

calls the following three methods (the symbolTable parameter is included for the sake of testing):

/**

* Reads in the reserved words and posts them to the symbol table.

*

* @param reservedFileScanner - a Scanner object for the file that

* contains the reserved words.

* @param symbolTable - the HashMap that holds the symbol table.

*/

public void readReservedWords (Scanner reservedFileScanner,

HashMap<String, String> symbolTable)

/**

* Reads the source file and posts identifiers to the symbol table.

* The averageTime(n, m) is O(n), and worstTime(n, m) is O(n * n), where

* n is the number of identifiers and m is the size of the symbol table.

*

* @param sourceFileScanner –a scanner over the source file.

* contains the reserved words.

* @param symbolTable - the HashMap that holds the symbol table.

*/

public void readSourceCode (Scanner sourceFileScanner,

* HashMap<String, String> symbolTable)

/**

* Outputs the symbol table to a file.

14.3 The HashMap Implementation of the Map Interface 621

* The worstTime(n, m) is O(n + m), where n is the number of word symbols

* and m is the size of the symbol table.

*

* @param symbolTablePrintWriter - a PrintWriter object for the file that

* contains the symbol table.

* @param symbolTable - the HashMap that holds the symbol table.

*/

public void printSymbolTable (PrintWriter symbolTablePrintWriter,

HashMap<String, String> symbolTable)

Here is a test of ignoring string literals in the readSourceCode method:

@Test

public void testIgnoreStringLiterals() throws FileNotFoundException

{

Scanner fileScanner = new Scanner (new File ("source.in1"));

String s = hasher.readSourceCode (fileScanner);

assertEquals (-1, s.indexOf ("This is a String literal."));

assertEquals (-1, s.indexOf ("Heading"));

assertEquals (-1, s.indexOf ("Salaries by Department: "));

} // method testIgnoreStringLiterals

The file source.in1 consists of the following:

String front = "Heading";

String nonsense = "This is a String literal.";

String report = "Salaries by Department: ";

The Hasher class has two constant identifiers and one field:

protected final String IDENTIFIER = "identifier";

protected final String RESERVED_WORD = "reserved word";

protected HashMap<String, String> symbolTable;

Figure 14.6 has the class diagram for the Hasher class:

Hasher

symbolTable: HashMap<String, String>

+ main (args: String[])

+ run()

+ readReservedWords (reservedFileScanner: Scanner, symbolTable: HashMap<String, String>)

+ readSourceCode (sourceFileScanner: Scanner, symbolTable: HashMap<String, String>)

+ printSymbolTable (symbolTablePrintWriter: PrintWriter, symbolTable: HashMap<String, String>)

FIGURE 14.6

622 CHAPTER 14 Hashing

14.3.7.2 Implementation of the Hasher Class

The main method’s definition is as expected. The definition of the run method is also straightforward,

except for the initialization of the symbol table. To avoid the need for re-sizing, the symbol table is created

with an initial capacity of the size of the source file. This number is returned by the length() method

of a File object, so we first create (a reference to) such an object from the input path.

public void run()

{

final String RESERVED_FILE_PROMPT =

"\nPlease enter the path for the file that holds the reserved words: "

final String SOURCE_FILE_PROMPT =

"\nPlease enter the path for the file that holds the source code: ";

final String SYMBOL_TABLE_FILE_PROMPT =

"\nPlease enter the path for the output file that will hold the symbol table: ";

Scanner keyboardScanner,

reservedFileScanner = null,

sourceFileScanner = null;

PrintWriter symbolTablePrintWriter = null;

boolean pathsOK = false;

while (!pathsOK)

{

try

{

keyboardScanner = new Scanner (System.in);

System.out.print (RESERVED_FILE_PROMPT);

String reservedFilePath = keyboardScanner.nextLine();

reservedFileScanner = new Scanner (new File (reservedFilePath));

System.out.print (SOURCE_FILE_PROMPT);

String sourceFilePath = keyboardScanner.nextLine();

File sourceFile = new File (sourceFilePath);

sourceFileScanner = new Scanner (sourceFile);

symbolTable = new HashMap<String, String> ((int)sourceFile.length());

System.out.print (SYMBOL_TABLE_FILE_PROMPT);

String symbolTablePrintPath = keyboardScanner.nextLine();

symbolTablePrintWriter = new PrintWriter (

new FileWriter (symbolTablePrintPath));

pathsOK = true;

} // try

catch (Exception e)

{

System.out.println (e);

14.3 The HashMap Implementation of the Map Interface 623

} // catch

} // while !pathsOK

readReservedWords (reservedFileScanner, symbolTable);

readSourceCode (sourceFileScanner, symbolTable);

printSymbolTable (symbolTablePrintWriter, symbolTable);

} // method run

The reservedFileScanner, sourceFileScanner, and symbolTablePrintWriter variables are ini-

tialized to null to avoid a compile-time error when they are used outside of the try block in which they

are actually initialized.

The readReservedWords method loops through the file of reserved words and posts each one as

a key in the symbol table; the value is the String “reserved word”.

public void readReservedWords (Scanner reservedFileScanner,

HashMap<String, String> symbolTable)

{

String reservedWord;

while (true)

{

if (!reservedFileScanner.hasNextLine())

break;

reservedWord = reservedFileScanner.nextLine();

symbolTable.put (reservedWord, RESERVED_WORD);

} // while not end of file

} // method readReservedWords

It is easy enough to determine if a token is the first occurrence of an identifier: It must start with a letter,

and not already be in symbolTable (recall that the reserved words were posted to symbolTable earlier).

The hard part of the method is filtering out comments, such as in the following:

/* all */ int z1 = 1;

/* int z2 = 2;

int z3 = 3;

int z4 = 4; */ int z5 = 5; /* int z6 = 6;*/

Here is the method definition:

public String readSourceCode (Scanner sourceFileScanner,

HashMap<String, String> symbolTable)

{

final String DELIMITERS = "[∧a-zA-Z0-9$_]+";

String line,

word;

int start,

finish;

boolean skip = false ;

while (true)

{

if (!sourceFileScanner.hasNextLine())

624 CHAPTER 14 Hashing

break;

line = sourceFileScanner.nextLine();

line = line.trim();

// Ignore lines beginning with "import".

if (line.indexOf("import ") == 0)

continue; // start another iteration of this loop

// Ignore string literals.

while ((start = line.indexOf ("\"")) >= 0)

{

finish = line.indexOf("\"", 1 + start);

while (line.charAt (finish - 1) == ‘\’)

finish = line.indexOf ("\"’’, finish + 1);

line = line.substring(0, start) + line.substring(finish + 1);

} // while line still has a string literal

// Ignore // comments

if ((start = line.indexOf("//")) >= 0)

line = line.substring(0, start);

// Ignore any line between /* and */.

if ((line.indexOf ("*/") == -1) && skip)

continue;

// Remove substring up to */ if matching /* on earlier line.

if ((start = line.indexOf("*/")) >= 0 && skip)

{

skip = false;

line = line.substring (start + 2);

} // first part of line a comment

// Handle lines that have /*.

while ((start = line.indexOf ("/*")) >= 0)

if ((finish = line.indexOf("*/", start + 2)) >= 0)

line = line.substring(0, start) + line.substring(finish + 2);

else

{

line = line.substring(0, start);

skip = true;

} // matching */ not on this line

// Tokenize line to find identifiers.

Scanner lineScanner = new Scanner (line).useDelimiter (DELIMITERS);

while (lineScanner.hasNext())

{

word = lineScanner.next();

if (!Character.isDigit (word.charAt (0)) &&

!symbolTable.containsKey (word) == null)

symbolTable.put (word, IDENTIFIER);

} // while not at end of line

} // while not end of file

14.4 The HashSet Class 625

return symbolTable.toString();

} // method readSourceCode

Let n be the number of identifiers in the source file, and let m be the size of the source file. Because

m is fixed, only n is relevant for estimating. Based on the analysis of containsKey method in Section

14.3.5, we extrapolate that each call to the HashMap methods get and put will take constant time on

average, and linear-in-n time in the worst case. We conclude that for processing all n identifiers in the

readSourceCode method, averageTime(n) is linear in n and worstTime(n) is quadratic in n .

Finally, the printSymbolTable method iterates through the entries in symbolTable and prints

each one to the output file:

public void printSymbolTable (PrintWriter symbolTablePrintWriter,

HashMap<String, String> symbolTable)

{

final String HEADING = "Here is the symbol table:\n";

symbolTablePrintWriter.println (HEADING);

for (Map.Entry<String, String> entry : symbolTable.entrySet())

symbolTablePrintWriter.println (entry);

} // method printSymbolTable

An iteration through a HashMap object requires n + m iterations in all cases, so worstTime(n , m) and

averageTime(n , m) are both �(n + m). We can say, crudely, that n + m is both a lower bound and an

upper bound of worstTime(n , m) and averageTime(n , m) for the printSymbolTable method.

One interesting feature of the above program is that Hasher.java itself can be the input file. The

output file will then contain the symbol table of all word symbols in the Hasher class.

The word symbols in the output file are not in order. To remedy this, instead of printing out each

entry, we could insert the entry into a TreeMap object, and then print out the TreeMap object, which

would be in order. This sorting would take linear-logarithmic in n time; on average, that would be longer

than the rest of the application.

To finish up the Java Collections Framework treatment of hashing, the next section takes a brief look

at the HashSet class.

14.4 The HashSet Class

With hashing, all of the work involves the key-to-index relationship. It doesn’t matter if the value associated

with a key has meaning in the application or if each key is associated with the same dummy value. In the

former case, we have a HashMap object and in the latter case, we have a HashSet object. The method

definitions in the HashSet class are almost identical to those of the TreeSet class from Chapter 12. The

major difference—besides efficiency—is that several of the constructor headings for the HashSet class

involve the initial capacity and load factor.

Here is a program fragment that creates and maintains a HashSet instance in which the elements

are of type String, the initial capacity is 100 and the load factor is 0.8F (that is, 0.8 as a float):

HashSet<String> names = new HashSet<String>(100, 0.8F);

names.add ("Kihei");

names.add ("Kula");

626 CHAPTER 14 Hashing

names.add ("Kaanapali");

System.out.println (names.contains ("Kapalua")); // Output: false

System.out.println (names.remove ("Kula") + " " + names.size()); // Output: true 2

Lab 22 covers the crucial aspect of HashMap objects and HashSet objects: their speed.

You are now prepared to do Lab 22: Timing the Hash Classes

As indicated, the Java Collections Framework’s implementation of hashing uses chaining to handle colli-

sions. Section 14.5 explores another important collision handler, one that avoids linked lists.

14.5 Open-Address Hashing (optional)

To handle collisions with chaining, the basic idea is this: when a key hashes to a given index in table,

that key’s entry is inserted at the front of the linked list at table [index]. Each entry contains, not only

hash, key, and value fields, but a next field that points to another entry in the linked list. The total

number of Entry references is equal to size + table.length. For some applications, this number may

be too large.

Open addressing provides another approach to collision handling. With open addressing , each table

location contains a single entry; there are no linked lists, and the total number of Entry references is equal

to table.length. To insert an entry, if the entry’s key hashes to an index whose entry contains a different

key, the rest of the table is searched systematically until an empty—that is, “open”—location is found.

The simplest open-addressing strategy is to use an offset of 1. That is, to insert an entry whose key

hashes to index j, if table [j] is empty, the entry is inserted there. Otherwise, the entry at index j +

1 is investigated, then at index j + 2, and so on until an open slot is found. Figure 14.7 shows the table

created when elements with the following Integer keys are inserted:

key index

587771904 754

081903292 919

033520048 212

735668100 919

214303261 212

214303495 212

301336785 80

298719753 529

In this example, table.length is 1024, but in general, we will not require that the table length be a power

of two. In fact, we will see in Section 14.5.2 that we may want the table length to be a prime number.

There are a couple of minor details with open addressing:

a. to ensure that an open location will be found if one is available, the table must wrap around: if the

location at index table.length - 1 is not open, the next index tried is 0.

b. the number of entries cannot exceed the table length, so the load factor cannot exceed 1.0. It will

simplify the implementation and efficiency of the containsKey, put, and remove methods if the

table always has at least one open (that is, empty) location. So we require that the load factor be

strictly less than 1.0. Recall that with chaining, the load factor can exceed 1.0.

14.5 Open-Address Hashing (optional) 627

0 null

80 301-33-6785

212 033-52-0048

213 214-30-3261

214 214-30-3495

529 298-71-9753

754 587-71-1904

919 081-90-3292

920 735-66-8100

1023 null

FIGURE 14.7 A table to which 8 elements have been inserted. Open addressing, with an offset of 1, handles

collisions

Let’s see what is involved in the design and implementation of a HashMap class with open addressing

and an offset of 1. We’ll have many of the same fields as in the chained-hashing design: table, size,

loadFactor, and threshold. The embedded Entry class will have hash, key, and value fields, but

no next field. We will focus on the containsKey, put, and remove methods: They will have to be

re-defined because now there are no linked lists.

14.5.1 The remove Method

We need to consider the remove method before the containsKey and put method because the details of

removing elements have a subtle impact on searches and insertions. To see what this is all about, suppose

628 CHAPTER 14 Hashing

we want to remove the entry with key 033-52-0048 from the table in Figure 14.7. If we simply make that

entry null, we will get the table in Figure 14.8.

Do you see the pitfall with this removal strategy? The path taken by synonyms of 033-52-0048 has

been blocked. A search for the entry with key 214-30-3495 would be unsuccessful, even though there is

such an entry in the table.

Instead of nulling out a removed entry, we will add another field to the Entry class:

boolean markedForRemoval;

This field is initialized to false when an entry is inserted into the table. The remove method sets this

field to true . The markedForRemoval field, when true , indicates that its entry is no longer part of

0 null

null

80 301-33-6785

212

213 214-30-3261

214 214-30-3495

529 298-71-9753

754 587-71-1904

919 081-90-3292

920 735-66-8100

1023 null

FIGURE 14.8 The effect of removing the entry with key 033-52-0048 from the table in Figure 14.7 by nulling

out the entry at index 212

14.5 Open-Address Hashing (optional) 629

the hash map, but allows the offset-of-1 collision handler to continue along its path. Figure 14.9 shows a

table after 8 insertions, and Figure 14.10 shows the subsequent effect of the message

remove (new Integer (033-52-0048))

A search for the entry with the key 214303495 would now be successful. In the definition of the remove

method, a loop is executed until a null or matching entry is found. Note that an entry’s key is examined

only if that entry is not marked for removal.

The containsKey method loops until an empty or matching entry is found. As with the remove

method, an entry’s key is checked only if that entry is not marked for removal. The definition of the

0 null

false

false

false

false

false

false

false

false

033-52-0048

80 301-33-6785

212

213 214-30-3261

214 214-30-3495

529 298-71-9753

754 587-71-1904

919 081-90-3292

920 735-66-8100

1023 null

FIGURE 14.9 A table to which 8 elements have been inserted. Open addressing, with an offset of 1, handles

collisions. In each entry, only the key and markedForRemoval fields are shown.

630 CHAPTER 14 Hashing

0 null

false

true

false

false

false

false

false

false

033-52-0048

80 301-33-6785

212

213 214-30-3261

214 214-30-3495

529 298-71-9753

754 587-71-1904

919 081-90-3292

920 735-66-8100

1023 null

FIGURE 14.10 The table from Figure 14.9 after the message remove (new Integer (033520048)) has been

sent

containsKey method is only slightly revised from the chained-hashing version. For example, here we

use modular arithmetic instead of the & operator because the table length need not be a power of 2.

/**

* Determines if this HashMap object contains a mapping for the

* specified key.

* The worstTime(n) is O(n). If the Uniform Hashing Assumption holds,

* averageTime(n) is constant.

*

* @param key The key whose presence in this HashMap object is to be tested.

14.5 Open-Address Hashing (optional) 631

*

* @return true - if this map contains a mapping for the specified key.

*

*/

public boolean containsKey (Object key)

{

Object k = maskNull (key); // use NULL_KEY if key is null

int hash = hash (k);

int i = indexFor (hash, table.length);

Entry e = table [i];

while (e != null)

{

if (!e.markedForRemoval && e.hash == hash && eq (k, e.key))

return true;

e = table [(++i) % table.length]; // table.length may not be a power of 2

} // while

return false;

} // method containsKey

With the help of the markedForRemoval field, we solved the problem of removing an element without

breaking the offset-of-1 path. The put method hashes a key to an index and stores the key and value at

that index if that location is unoccupied: either a null key or marked for removal.

14.5.2 Primary Clustering

There is still a disturbing feature of the offset-of-1 collision handler: all the keys that hash to a given

index will probe the same path: index, index + 1, index + 2, and so on. What’s worse, all keys that

hash to any index in that path will follow the same path from that index on. For example, Figure 14.11

shows part of the table from Figure 14.9:

In Figure 14.11, the path traced by keys that hash to 212 is 212, 213, 214, 215, And the path

traced by keys that hash to 213 is 213, 214, 215, A cluster is a sequence of non-empty locations

(assume the elements at those locations are not marked for removal). With the offset-of-1 collision handler,

clusters are formed by synonyms, including synonyms from different collisions. In Figure 14.11, the

locations at indexes 212, 213, and 214 form a cluster. As each entry is added to a cluster, the cluster not

only gets bigger, but also grows faster, because any keys that hash to that new index will follow the same

path as keys already stored in the cluster. Primary clustering is the phenomenon that occurs when the

collision handler allows the growth of clusters to accelerate.

211 null

212 214-30-3261 false

213 819-02-9261 false

214 033-30-8262 false

215 null

FIGURE 14.11 The path traced by keys that hash to 212 overlaps the paths traced by keys that hash to 213 or

214

632 CHAPTER 14 Hashing

Clearly, the offset-of-1 collision handler is susceptible to primary clustering. The problem with

primary clustering is that we get ever-longer paths that are sequentially traversed during searches, insertions,

and removals. Long sequential traversals are the bane of hashing, so we should try to solve this problem.

What if we choose an offset of, say, 32 instead of 1? We would still have primary clustering: keys

that hashed to index would overlap the path traced by keys that hashed to index + 32, index + 64, and

so on. In fact, this could create an even bigger problem than primary clustering. For example, suppose

the table size is 128 and a key hashes to index 45. Then the only locations that would be allowed in that

cluster have the following indexes:

45, 77, 109, 13

Once those locations fill up, there would be no way to insert any entry whose key hashed to any one of

those indexes. The reason we have this additional problem is that the offset and table size have a common

factor. We can avoid this problem by making the table size a prime number, instead of a power of 2. But

then we would still have primary clustering.

14.5.3 Double Hashing

We can avoid primary clustering if, instead of using the same offset for all keys, we make the offset

dependent on the key. Basically, the offset will be hash/table.length. There is a problem here: hash

may be negative. To remedy this, we perform a bit-wise “and” with hash and the largest positive int

value, written as 0x7FFFFFFF in hexadecimal (base 16) notation. The result is guaranteed to be non-

negative. The assignment for offset is

int offset = (hash & 0x7FFFFFFF) / table.length;

And then, whether searching, inserting, or removing, replace

e = table [(++i) % table.length]; // offset of 1

with

e = table [(i + offset) % table.length];

To see how this works in a simple setting (ignoring the hash method), let’s insert the following keys into

a table of size 19:

33

72

71

55

112

109

These keys were created, not randomly, but to illustrate that keys from different collisions, even from the

same collision, do not follow the same path. Here are the relevant moduli and quotients:

key key % 19 key/19

33 14 1

72 15 3

71 14 3

112 17 5

55 17 2

109 14 5

14.5 Open-Address Hashing (optional) 633

The first key, 33, is stored at index 14, and the second key, 72, is stored at index 15. The third key,

71, hashes to 14, but that location is occupied, so the index 14 is incremented by the offset 3 to yield index

17; 71 is stored at that location. The fourth key, 112, hashes to 17 (occupied); the index 17 is incremented

by the offset 5. Since 22 is beyond the range of the table, we try index 22% 19, that is, 3, an unoccupied

location. The key 112 is stored at index 3. The fifth key, 55, hashes to 17 (occupied) and then to (17 + 2)

% 19, that is, 0, an empty location. The sixth key, 109, hashes to 14 (occupied) and then to (14 + 5) %

19, that is 0 (occupied), and then to (0 + 5) % 19, that is, 5, an unoccupied location.

Figure 14.12 shows the effect of the insertions:

0 55

1

2

3 112

4

5 109

6

7

8

9

10

11

12

13

14 33

15 72

16

17 71

18

FIGURE 14.12 The effect of inserting six entries into a table; the collision handler uses the hash value divided

by the table size as the offset

This collision handler is known as double hashing , or the quotient-offset collision handler. There

is one last problem we need to address before we get to the analysis: what happens if the offset is a

multiple of the table size? For example, suppose we try to add the entry whose key is 736 to the table in

Figure 14.12. We have

736 % 19 = 14

736/19 = 38

Because location 14 is occupied, the next location tried is (14 + 38) % 19, which is 14 again. To avoid

this impasse, we use 1 as the offset whenever key/table.length is a multiple of table.length. This is an

infrequent occurrence: it happens, on average, once in every m keys, where m = table.length. Concept

634 CHAPTER 14 Hashing

Exercise 14.5 shows that if this collision handler is used and the table size is a prime number, the sequence

of offsets from any key covers the whole table.

Because the table size must be a prime number, the call to the resize method—within the put

method—must be changed from the offset-of-1 version:

resize (2 * table.length);

With the quotient-offset collision handler, we have

resize (nextPrime (2 * table.length));

The static method nextPrime returns the smallest prime larger than the argument.

If you undertake Programming Project 14.1, you will get to fill in the details of double hashing.

If we make the Uniform Hashing Assumption, the average time for insertions, removals and searches is

constant (see Collins [2003, pp 554–556]). Figure 14.13 summarizes the time estimates for successful and

unsuccessful searches (that is, invocations of the containsKey method). For purposes of comparison, the

information in Section 14.3.5 on chained hashing is included.

Figure 14.14 provides some specifics: the expected number of loop iterations for various ratios of n

to m . For purposes of comparison, the information in Section 14.6 on chained hashing is included.

Chaining:

averageTimeS (n , m) ≈ n/2m iterations

averageTimeU (n , m) ≈ n/m iterations

Double Hashing:

averageTimeS (n , m) ≈ (m/n) ln(1/(1 − n/m)) iterations

averageTimeU (n , m) ≈ 1/(1 − n/m) iterations

FIGURE 14.13 Estimates of average times for successful and unsuccessful calls to the containsKey method,

under both chaining and double hashing. In the figure, n = number of elements inserted; m = table.length

n/m 0.25 0.50 0.75 0.90 0.99

Chained Hashing:

successful 0.13 0.25 0.38 0.45 0.50

unsuccessful 0.25 0.50 0.75 0.90 0.99

Double Hashing:

successful 1.14 1.39 1.85 2.56 4.65

unsuccessful 1.33 2.00 4.00 10.00 100.00

FIGURE 14.14 Estimated average number of loop iterations for successful and unsuccessful calls to the

containsKey method, under both chained hashing and double hashing. In the figure, n = number of elements

inserted; m = table.length

Summary 635

A cursory look at Figure 14.14 suggests that chained hashing is much faster than double hashing.

But the figures given are mere estimates of the number of loop iterations. Run-time testing may, or may

not, give a different picture. Run-time comparisons are included in Programming Project 14.1.

The main reason we looked at open-address hashing is that it is widely used; for example, some

programming languages do not support linked lists. Also, open-address hashing can save space relative to

chained hashing, which requires n + m references versus only m references for open-address hashing.

Even if the Uniform Hashing Assumption applies, we could still, in the worst case, get every key to

hash to the same index and yield the same offset. So for the containsKey method under double hashing,

worstTimeS (n , m) and worstTimeU (n , m) are linear in n .

For open addressing, we eliminated the threat of primary clustering with double hashing. Another

way to avoid primary clustering is through quadratic probing : the sequence of offsets is 12, 22, 32,

For details, the interested reader may consult Weiss [2002].

S U M M A R Y

In this chapter, we studied the Java Collections Frame-

work’s HashMap class, for which key-searches, inser-

tions, and removals can be very fast, on average. This

exceptional performance is due to hashing , the process

of transforming a key into an index in a table. A hashing

algorithm must include a collision handler for the pos-

sibility that two keys might hash to the same index. A

widely used collision handler is chaining. With chaining ,

the HashMap object is represented as an array of singly

linked lists. Each list contains the elements whose keys

hashed to that index in the array.

Let n represent the number of elements currently in

the table, and let m represent the capacity of the table. The

load factor is the maximum ratio of n to m before rehash-

ing will take place. The load factor is an upper-bound

estimate of the average size of each list, assuming that

the hash method scatters the keys uniformly throughout

the table. With that assumption—the Uniform Hashing

Assumption—the average time for successful and unsuc-

cessful searches depends only on the ratio of n to m. The

same is true for insertions and removals. If we double the

table size whenever the ratio of n to m equals or exceeds

the load factor, then the size of each list, on average, will

be less than or equal to the load factor. This shows that

with chained hashing, the average time to insert, remove,

or search is constant.

A HashSet object is simply a HashMap in which

each key has the same dummy value. Almost all of the

HashSet methods are one-liners that invoke the corre-

sponding HashMap method.

An alternative to chaining is open addressing.

When open addressing is used to handle collisions, each

location in the table consists of entries only; there are no

linked lists. If a key hashes to an index at which another

key already resides, the table is searched systematically

until an open address, that is, empty location is found.

With an offset of 1, the sequence searched if the key

hashes to index, is

index, index + 1, index + 2, . . .,

table.length - 1, 0, 1, . . ., index - 1.

The offset-of-1 collision handler is susceptible to pri-

mary clustering : the phenomenon of having accelerating

growth in the size of collision paths. Primary clustering

is avoided with double hashing : the offset is the (posi-

tivized) hash value divided by table.length. If the

Uniform Hashing Assumption holds and the table size is

prime, the average time for both successful and unsuc-

cessful searches with double hashing is constant.

636 CHAPTER 14 Hashing

CROSSWORD PUZZLE

ACROSS DOWN

 1. An alternative to chained hashing is
 _____ hashing.

5. For any iteration through a HashMap
 object worstTime(n, m) for the next()
 method is _______.

7. (int)(table.length * loadFactor)

9. The technique for resolving collisions by
 storing at each table location the linked list
 of all elements whose keys hashed to that
 index in the table

2. The capacity of a HashMap object must be
 a _________.

3. The ______ Hashing Assumption states that
 the set of all possible keys is uniformly
 distributed over the set of all table indexes.

4. The interface implemented by the TreeMap
 class but not by the HashMap class

6. The process of transforming a key into a
 table index

8. The type of the value returned by the
 hashCode() method

1 2

3

4

5

6

7

8

9

www.CrosswordWeaver.com

www.CrosswordWeaver.com

Concept Exercises 637

CONCEPT EXERCISES

14.1 Why does the HashMap class use singly-linked lists instead of the LinkedList class?

14.2 Suppose you have a HashMap object, and you want to insert an element unless it is already there. How could

you accomplish this?

Hint: The put method will insert the element even if it is already there (in which case, the new value will

replace the old value).

14.3 For each of the following methods, estimate averageTime(n) and worstTime(n):

a. making a successful call—that is, the element was found—to the contains method in the LinkedList

class;

b. making a successful call to the contains method in the ArrayList class;

c. making a successful call to the generic algorithm binarySearch in the Arrays class; assume the

elements in the array are in order.

d. making a successful call to the contains method in the BinarySearchTree class;

e. making a successful call to the contains method in the TreeSet class;

f. making a successful call to the contains method in the HashSet class—you should make the Uniform

Hashing Assumption.

14.4 This exercise helps to explain why both the hash and key fields are compared in the containsKey and

put (and remove) methods of the HashMap class.

a. Suppose the keys in the HashMap are from a class, Key, that overrides the Object class’s equals

method but does not override the Object class’s hashCode method. (This is in violation of the contract

for the Object class’s hashCode method, namely, equal objects should have the same hash code). The

Object class’s hashCode method converts the Object reference to an int value. So it would be

possible for a key to be constructed with a given reference, and an identical key constructed with a different

reference. For example, we could have:

Key key1 = new Key ("Webucation"),

key2 = new Key ("Webucation");

HashMap<Key, String> myMap = new HashMap<Key, String>();

myMap.put (key1, ""); // the value part is the empty String

If the hash fields were not compared in the containsKey and put methods, what would be returned

by each of the following messages:

myMap.containsKey (key2)

myMap.put (key2, "")

638 CHAPTER 14 Hashing

b. In some classes, the hashCode method may return the same int value for two distinct keys. For example,

in the String class, we can have two distinct String objects—even with the same characters—that

have the same hash code:

String key1 = "! @"; // exclamation point, blank, at sign

String key2 = " @!"; // blank, at sign, exclamation point

HashMap<String, String> myMap = new HashMap<String, String>();

myMap.put (key1, ""); // the value part is the empty String

System.out.println (key1.hashCode() + " " + key2.hashCode());

The output will be

32769 32769

If the key fields were not compared in the containsKey and put methods, what would be returned by

each of the following messages:

myMap.containsKey (key2)

myMap.put (key2, "")

14.5 Assume that p is a prime number. Use modular algebra to show that for any positive integers index and offset

(with offset not a multiple of p), the following set has exactly p elements:

{(index + k ∗ offset)% p; k = 0, 1, 2, . . . , p − 1}

14.6 Compare the space requirements for chained hashing and open-address hashing with quotient offsets. Assume

that a reference occupies four bytes and a boolean value occupies one byte. Under what circumstances

(size, loadFactor, table.length) will chained hashing require more space? Under what circumstances

will double hashing require more space?

14.7 We noted in Chapter 12 that the term dictionary , viewed as an arbitrary collection of key-value pairs, is a

synonym for map. If you were going to create a real dictionary, would you prefer to store the elements in a

TreeMap object or in a HashMap object? Explain.

14.8 In open-addressing, with the quotient-offset collision handler, insert the following keys to a table of size 13

(ignore the hash method):

20

33

49

22

26

202

140

508

9

Programming Exercises 639

Here are the relevant remainders and quotients:

key key % 13 key/13

20 7 1

33 7 2

49 10 3

22 9 1

26 0 2

202 7 15

140 10 10

508 1 39

9 9 0

PROGRAMMING EXERCISES

14.1 Construct a HashMap object of the 25,000 students at Excel University. Each student’s key will be that

student’s unique 6-digit ID. Each student’s value will be that student’s grade point average. Which constructor

should you use and why?

14.2 Construct a HashMap object of the 25,000 students at Excel University. Each student’s key will be that

student’s unique 6-digit ID. Each student’s value will be that student’s grade point average and class rank.

Insert a few elements into the HashMap object. Note that the value does not consist of a single component.

14.3 Construct a HashSet object with Integer elements and an initial capacity of 2000. What is the load factor?

What is the table length (Hint: It is greater than 2000)? Insert a few random Integer elements into the

HashSet object.

14.4 As a programmer who uses the HashSet class, test and define test a toSortedString method:

/**

* Returns a String representation of a specified HashSet object, with the natural

* ordering,

* The worstTime(n) is O(n log n).

*

* @param hashSet –the HashSet object whose String representation, sorted, is

* to be returned.

*

* @return a String representation of hashSet, with the natural ordering.

*

*/

public static <E> String toSortedString (HashSet<E> hashSet)

Note: As a user, you cannot access any of the fields in a HashSet class.

14.5 Given the following program fragment, add the code to print out all of the keys, and then add the code to

print out all of the values:

HashMap<String, Integer> ageMap = new HashMap<String, Integer>();

640 CHAPTER 14 Hashing

ageMap.put ("dog", 15);

ageMap.put ("cat", 20);

ageMap.put ("turtle", 100);

ageMap.put ("human", 75);

14.6 The LinkedHashMap class superimposes a LinkedList object on a HashMap object, that is, there is a

doubly-linked list of all of the elements in the HashMap object. For example, suppose we have

LinkedHashMap<String, Integer> ageMap =

new LinkedHashMap<String, Integer>();

ageMap.put ("dog", 15);

ageMap.put ("cat", 20);

ageMap.put ("turtle", 100);

ageMap.put ("human", 75);

System.out.println (ageMap);

The output will reflect the order in which elements were inserted, namely,

{dog=15, cat=20, turtle=100, human=75}

Revise the above code segment so that only the pets are printed, and in alphabetical order.

Programming Project 14.1

The Double Hashing Implementation of the HashMap Class

Test and develop the implementation of the HashMap class that uses double hashing—see Sections 14.5 and

following. Define only a small number of methods: a default constructor, a constructor with an initial-capacity

parameter, containsKey, put, and remove. The toString method is inherited from AbstractMap.

For system tests, run the Hasher program with input files Sample.java and Hasher.java itself. Use your

HashMap class for Lab 22 and compare the times you get to the times you got in that lab.

Programming Project 14.2

An Integrated Web Browser and Search Engine, Part 6

At this point, your search engine created a TreeMap object in which each element was a web page: the key was a

word, and the value was the number of occurrences of the word. This approach worked well for a small number

of web pages, but would not scale up to the billions (even trillions) of web pages. In fact, the approach would be

infeasible even if we used a HashMap object instead of a TreeMap object.

To enable searches to be completed quickly, a search engine must have a web crawler that operates all

the time. The web crawler more or less randomly searches web pages and saves (“caches”) the results of the

Programming Exercises 641

searches. For example, for each possible search word, each file in which the search word occurs and the frequency

of occurrences are saved. When an end-user clicks on the Search button and then enters a search string, the cached

results allow for quick searches.

Initially, you will be given a file, “search.ser”, that contains a search-string HashMap in serialized form (see

Appendix 1 for details on serializing and de-serializing). Each key—initially—is a search word, and each value is

a file-count HashMap in which the key is a file name and the value is the frequency of the search word in the file.

You will need to de-serialize the search-string HashMap. When the end-user enters a search string, there are

two possibilities. If the search string already appears as a key in the search-string HashMap, the file names and

counts in the file-count HashMap are put into a priority queue and Part 5 of the project takes over. If the search

string does not appear as a key in the search-string HashMap, the individual words in the search string are used to

search the search-string HashMap, and the combined result becomes a new entry in the search-string HashMap.

For example, suppose the universe of web pages consists of the files browser.in10, in11, in12, and in13

from Part 5 (Programming Project 13.2). The search-string HashMap starts out with keys that include “neural”,

“decree”, and “network”. If the end-user clicks on the Search button and then enters “network”, the output will be

Here are the results of the old search for network:

browser.in13 4

browser.in12 4

browser.in11 4

browser.in10 4

But if the end-user searches for “neural network”, that string is not in the search-string HashMap. So the results

from the individual words “neural” and “network” are combined, and the output will be

Here are the results of the new search for neural network:

browser.in13 8

browser.in10 8

browser.in12 6

browser.in11 6

The search string “neural network” and the results will now be added to the search-string HashMap. If, later in the

same run, the end-user searches for “neural network”, the output will be

Here are the results of the old search for neural network:

browser.in13 8

browser.in10 8

browser.in12 6

browser.in11 6

System Test 1:

(Assume the end-user searches for “neural network”.)

(continued on next page)

642 CHAPTER 14 Hashing

(continued from previous page)

Here are the results of the new search for neural network:

browser.in13 8

browser.in10 8

browser.in12 6

browser.in11 6

(Assume the end-user searches for “network”.)

Here are the results of the old search for network:

browser.in13 4

browser.in12 4

browser.in11 4

browser.in10 4

(Assume the end-user searches for “neural network”.)

Here are the results of the old search for neural network:

browser.in13 8

browser.in10 8

browser.in12 6

browser.in11 6

System Test 2:

(Assume the end-user searches for “network decree”.)

Here are the results of the new search for network decree:

browser.in12 6

browser.in13 5

browser.in11 5

browser.in10 5

NOTE 1: By the end of each execution of the project, the file “search.ser” should contain the updated search-string

HashMap in serialized form. For example, by the end of System Test 1, “neural network” will be one of the search

strings serialized in “search.ser”. You may update “search.ser” after each search.

NOTE 2: The original file search.ser is available from the ch14 directory of the book’s website.

NOTE 3: If the search string does not occur in any of the files, the output should be “The search string does not

occur in any of the files.”

Graphs, Trees, and Networks CHAPTER 15

There are many situations in which we want to study the relationship between objects. For example,

in Facebook, the objects are individuals and the relationship is based on friendship. In a curriculum,

the objects are courses and the relationship is based on prerequisites. In airline travel, the objects are

cities; two cities are related if there is a flight between them. It is visually appealing to describe such

situations graphically, with points (called vertices) representing the objects and lines (called edges)

representing the relationships. In this chapter, we will introduce several collections based on vertices

and edges. Finally, we will design, test, and implement one of those collections in a class, Network,

from which the other structures can be defined as subclasses. That class uses several classes—TreeMap,

PriorityQueue, and LinkedList—that are in the Java Collections Framework. But neither the

Network class nor the subclasses are currently part of the Java Collections Framework.

CHAPTER OBJECTIVES

1. Define the terms graph and tree for both directed/undirected and weighted/unweighted

collections.

2. Compare breadth-first iterators and depth-first iterators.

3. Understand Prim’s greedy algorithm for finding a minimum-cost spanning tree and Dijkstra’s

greedy algorithm for finding the minimum-cost path between vertices.

4. Be able to find critical paths in a project network.

5. Be able to utilize, expand, and extend the Network class.

15.1 Undirected Graphs

An undirected graph consists of a collection of distinct elements called vertices, connected to other

elements by distinct vertex-pairs called edges. Here is an example of an undirected graph:

Vertices: A, B, C, D, E

Edges: (A,B), (A,C), (B,D), (C,D), (C,E)

The vertex pair in an edge is enclosed in parentheses to indicate the pair of vertices is unordered. For

example, to say there is an edge from A to B is the same as saying there is an edge from B to A. That’s

why “undirected” is part of the term defined. Figure 15.1 depicts this undirected graph, with each edge

represented as a line connecting its vertex pair.

From the illustration in Figure 15.1 we could obtain the original formulation of the undirected graph

as a collection of vertices and edges. And furthermore, Figure 15.1 gives us a better grasp of the undirected

643

644 CHAPTER 15 Graphs, Trees, and Networks

B

A

C

D

E

FIGURE 15.1 A visual representation of an undirected graph

graph than the original formulation. From now on we will use illustrations such as Figure 15.1 instead of

the formulations.

Figure 15.2a contains several additional undirected graphs. Notice that the number of edges can be

fewer than the number of vertices (Figures 15.2a and b), equal to the number of vertices (Figure 15.1) or

greater than the number of vertices (Figure 15.2c).

producer

screenwriter director actors

leads supporting

FIGURE 15.2a An undirected graph with six vertices and five edges

SalisburyWashingtonLouisville

Raleigh

Charlotte

Atlanta

Tallahassee

Miami

FIGURE 15.2b An undirected graph with eight vertices and seven edges

15.1 Undirected Graphs 645

B E

A FC G H

D

FIGURE 15.2c An undirected graph with eight vertices and eleven edges

An undirected graph is complete if it has as many edges as possible. What is the number of edges in

a complete undirected graph? Let n represent the number of vertices. Figure 15.3 shows that when n = 6,

the maximum number of edges is 15.

A B

C D

E F

FIGURE 15.3 An undirected graph with 6 vertices and the maximum number (15) of edges for any undirected

graph with 6 vertices

Can you determine a formula that holds for any positive integer n? In general, start with any one of

the n vertices, and construct an edge to each of the remaining n − 1 vertices. Then from any one of those

n − 1 vertices, construct an edge to each of the remaining n − 2 vertices (the edge to the first vertex was

constructed in the previous step). Then from any one of those n − 2 vertices, construct an edge to each

of the remaining n − 3 vertices. This process continues until, at step n − 1, a final edge is constructed.

The total number of edges constructed is:

(n − 1) + (n − 2) + (n − 3) + . . . + 2 + 1 =

n−1
∑

i=1

i = n(n − 1)/2

This last equality can either be proved directly by induction on n or can be derived from the proof—in

Example A2.1 of Appendix 2—that the sum of the first n positive integers is equal to n (n + 1)/2.

Two vertices are adjacent if they form an edge. For example, in Figure 15.2b, Charlotte and Atlanta

are adjacent, but Atlanta and Raleigh are not adjacent. Adjacent vertices are called neighbors .

A path is a sequence of vertices in which each successive pair is an edge. For example, in

Figure 15.2c,

A, B, E, H

646 CHAPTER 15 Graphs, Trees, and Networks

is a path from A to H because (A, B), (B, E), and (E, H) are edges. Another path from A to H is

A, C, F, D, G, H

For a path of k vertices, the length of the path is k − 1. In other words, the path length is the number of

edges in the path. For example, in Figure 15.2c the following path from C to A has a length of 3:

C, F, D, A

There is, in fact, a path with fewer edges from C to A, namely,

C, A

In general, there may be several paths with fewest edges between two vertices. For example, in Figure 15.2c,

A, B, E

and

A, C, E

are both paths with fewest edges from A to E.

A cycle is a path in which the first and last vertices are the same and there are no repeated edges.

For example, in Figure 15.1,

A, B, D, C, A

is a cycle. In Figure 15.2c,

B, E, H, G, D, A, B

is a cycle, as is

E, C, A, B, E

The undirected graph in Figures 15.2a and b are acyclic, that is, they do not contain any cycles. In

Figure 15.2a,

producer, director, producer

is not a cycle since the edge (producer, director) is repeated—recall that an edge in an undirected graph

is an unordered pair.

An undirected graph is connected if, for any given vertex, there is a path from that vertex to any

other vertex in the graph. Informally, an undirected graph is connected if it is “all one piece.” For example,

all of the graphs in the previous figures are connected. The following undirected graph, with six vertices

and five edges, is not connected:

0

2

1

3

5

4

15.2 Directed Graphs 647

15.2 Directed Graphs

Up to now we have not concerned ourselves with the direction of edges. If we could go from vertex V

to vertex W, we could also go from vertex W to vertex V. In many situations this assumption may be

unrealistic. For example suppose the edges represent streets and the vertices represent intersections. If the

street connecting vertex V to vertex W is one-way going from V to W, there would be no edge connecting

W to V.

A directed graph—sometimes called a digraph—is a collection of vertices and edges in which the

edges are ordered pairs of vertices. For example, here is a directed graph, with edges in angle brackets

to indicate an ordered pair:

Vertices: A, T, V, W, Z

Edges: 〈A, T〉, 〈A, V〉, 〈T, A〉, 〈V, A〉, 〈V, W〉, 〈W, Z〉, 〈Z, W〉, 〈Z, T〉

Pictorially, these edges are represented by arrows, with the arrow’s direction going from the first vertex in

the ordered pair to the second vertex. For example, Figure 15.4 contains the directed graph just defined.

A path in a directed graph must follow the direction of the arrows. Formally a path in a directed

graph is a sequence of k > 1 vertices V0, V1, . . . , Vk−1 such that 〈V0, V1〉, 〈V1, V2〉, . . . , 〈Vk−2, Vk−1〉 are

edges in the directed graph. For example, in Figure 15.4,

A, V, W, Z

is a path from A to Z because 〈A, V 〉, 〈V , W 〉, and 〈W , Z 〉 are edges in the directed graph. But

A, T, Z, W

is not a path because there is no edge from T to Z, (In other words, Z is not a neighbor of T, although T

is a neighbor of Z.) A few minutes checking should convince you that for any two vertices in Figure 15.4,

there is a path from the first vertex to the second.

A digraph D is connected if, for any pair of distinct vertices x and y, there is a path from x to y.

Figure 15.4 is a connected digraph, but the digraph in Figure 15.5 is not connected (try to figure out why):

From these examples, you can see that we actually could have defined the term “undirected graph”

from “directed graph”: an undirected graph is a directed graph in which, for any two vertices V and W,

TA

Z

V W

FIGURE 15.4 A directed graph

TA

Z

V W

FIGURE 15.5 A digraph that is not connected

648 CHAPTER 15 Graphs, Trees, and Networks

if there is an edge from V to W, there is also an edge from W to V. This observation will come in handy

when we get to developing Java classes.

In the next two sections, we will look at specializations of graphs: trees and networks.

15.3 Trees

An undirected tree is a connected, acyclic, undirected graph with one element designated as the root

element . Note that any element in the graph can be designated as the root element. For example, here is

the undirected tree from Figure 15.2a; producer is designated as the root element.

producer

screenwriter director actors

leads supporting

On most occasions, we are interested in directed trees, that is, trees that have arrows from a parent to

its children. A tree, sometimes called a directed tree, is a directed graph that either is empty or has an

element, called the root element such that:

a. there are no edges coming into the root element;

b. every non-root element has exactly one edge coming into it;

c. there is a path from the root to every other element.

For example, Figure 15.6 shows that we can easily re-draw the undirected tree as a directed tree:

Many of the binary-tree terms from Chapter 9—such as “child”, “leaf”, “branch”—can be extended

to apply to arbitrary trees. For example, the tree in Figure 15.6 has four leaves and height 2. But “full”

does not apply to trees in general because there is no limit to the number of children a parent can have. In

fact, we cannot simply define a binary tree to be a tree in which each element has at most two children.

Why not? Figure 15.7 has two distinct binary trees that are equivalent as trees.

producer

screenwriter director actors

leads supporting

FIGURE 15.6 A (directed) tree

15.4 Networks 649

A A

B B

FIGURE 15.7 Two distinct binary trees, one with an empty right subtree and one with an empty left subtree

We can define a binary tree to be a (directed) tree in which each vertex has at most two children,

labeled the “left” child and the “right” child of that vertex.

Trees allow us to study hierarchical relationships such as parent-child and supervisor-supervisee.

With arbitrary trees, we are not subject to the at-most-two-children restriction of binary trees.

15.4 Networks

Sometimes we associate a non-negative number with each edge in a graph (which can be directed or

undirected). The non-negative numbers are called weights , and the resulting structure is called a weighted

graph or network . For example, Figure 15.8 has an undirected network in which each weight represents

the distance between cities for the graph of Figure 15.2b.

Of what value is a weighted digraph, that is, why might the direction of a weighted edge be signif-

icant? Even if one can travel in either direction on an edge, the weight for going in one direction may

be different from the weight going in the other direction. For example, suppose the weights represent the

SalisburyWashingtonLouisville

462

165

421

244

625

277

81

Raleigh

Charlotte

Atlanta

Tallahassee

Miami

FIGURE 15.8 An undirected network in which vertices represent cities, and each edge’s weight represents the

distance between the two cities in the edge

650 CHAPTER 15 Graphs, Trees, and Networks

E

15.0
10.0

A B
4.0 3.0

2.0 1.0

C D G
5.0

0.0 2.0 4.0

F H
4.0

FIGURE 15.9 A weighted digraph with 8 vertices and 11 edges

time for a plane flight between two cities. Due to the prevailing westerly winds, the time to fly from New

York to Los Angeles is usually longer than the time to fly from Los Angeles to New York.

Figure 15.9 shows a weighted digraph in which the weight of the edge from vertex D to vertex F is

different from the weight of the edge going in the other direction.

With each path between two vertices in a network, we can calculate the total weight of the path.

For example, in Figure 15.9, the path A, C, D, E has a total weight of 10.0. Can you find a shorter path

from A to E, that is, a path with smaller total weight1? The shortest path from A to E is A, B, D, E with

total weight 8.0. Later in this chapter we will develop an algorithm to find a shortest path (there may be

several of them) between two vertices in a network.

The weighted digraph in Figure 15.9 is not connected because, for example, there is no path from

B to C. Recall that a path in a digraph must follow the direction of the arrows.

Now that we have seen how to define a graph or tree (directed or undirected, weighted or unweighted),

we can outline some well-known algorithms. The implementation of those algorithms, and their analysis,

will be handled in Section 15.6.3.

15.5 Graph Algorithms

A prerequisite to other graph algorithms is being able to iterate through a graph, so we start by looking

at iterators in general. We focus on two kinds of iterators: breadth-first and depth-first. These terms may

ring a bell; in Chapter 9, we studied breadth-first and depth-first (also known as pre-order) traversals of a

binary tree.

15.5.1 Iterators

There are several kinds of iterators associated with directed or undirected graphs, and these iterators can

also be applied to trees and networks (directed or undirected). First, we can simply iterate over all of the

vertices in the graph. The iteration need not be in any particular order. For example, here is an iteration

over the vertices in the weighted digraph of Figure 15.9:

A, B, D, F, G, C, E, H

1This is different from the meaning of “shorter” in the graph sense, namely, having fewer edges in the path.

15.5 Graph Algorithms 651

In addition to iterating over all of the vertices in a graph, we are sometimes interested in iterating over

all vertices reachable from a given vertex. For example, in the weighted digraph of Figure 15.9, we might

want to iterate over all vertices reachable from A, that is, over all vertices that are in some path that starts

at A. Here is one such iteration:

A, B, C, D, E, F, H

The vertex G is not reachable from A, so G will not be in any iteration from A.

15.5.1.1 Breadth-First Iterators

A breadth-first iterator , similar to a breadth-first traversal in Chapter 9, visits vertices in order, beginning

with some vertex identified as the “start vertex.” What is the order? Roughly, it can be described as “neigh-

bors first.” As soon as a vertex has been visited, each neighbor of that vertex is marked as “reachable,”

and vertices are visited in the order in which they are marked as reachable. The first vertex marked as

reachable and visited is the start vertex, then the neighbors of the start vertex are marked as reachable, so

they are visited, then the neighbors of those neighbors, and so on.

No vertex is visited more than once, and any vertex that is not on some path from the start

vertex will not be visited at all. For example, assume that the vertices in the following graph—from

Figure 15.2b—were entered in alphabetical order:

SalisburyWashingtonLouisville

Raleigh

Charlotte

Atlanta

Tallahassee

Miami

We will perform a breadth-first iteration starting at Atlanta and visit neighbors in alphabetical order. So

we start with

r , v

Atlanta

The r and v above Atlanta indicate that Atlanta has been marked as reachable and visited. The neighbors

of Atlanta are now marked as reachable:

r , v r r r

Atlanta, Charlotte, Miami, Tallahassee

652 CHAPTER 15 Graphs, Trees, and Networks

Each of those neighbors of Atlanta is then visited in turn, and when a city is visited, each of its neighbors is

marked as reachable—unless that neighbor was marked as reachable previously. When we visit Charlotte,

we have

r , v r , v r r r r r

Atlanta, Charlotte, Miami, Tallahassee, Louisville, Raleigh, Washington

Notice that the first neighbor of Charlotte, Atlanta, is ignored because we have already marked as reachable

(and visited) Atlanta. Then Miami is visited (its only neighbor has already been marked as reachable),

Tallahassee (its only neighbor has already been marked as reachable), Louisville (its only neighbor has

already been marked as reachable), Raleigh (its only neighbor has already been marked as reachable), and

Washington, whose neighbor Salisbury is now marked as reachable. We now have

r , v r , v r , v r , v r , v r , v r , v r

Atlanta, Charlotte, Miami, Tallahassee, Louisville, Raleigh, Washington Salisbury

When we visit Salisbury we are done because Salisbury has no not-yet-reached neighbors marked as not

reachable. In other words, we have iterated through all cities reachable from Atlanta, starting at Atlanta:

Atlanta, Charlotte, Miami, Tallahassee, Louisville, Raleigh, Washington, Salisbury

The order of visiting cities would be different if we started a breadth-first iteration at Louisville:

Louisville, Charlotte, Atlanta, Raleigh, Washington, Miami, Tallahassee, Salisbury

Let’s do some preliminary work on the design of the BreadthFirstIterator class. When a vertex has

been marked as reachable, that vertex will, eventually, be visited. To make sure that vertex is not re-visited,

we will keep track of which vertices have already been marked as reachable. To do this, we will store the

marked-as-reachable vertices in some kind of collection. Specifically, we want to visit the neighbors of

the current vertex in the order in which those neighbors were initially stored in the collection. Because we

want the vertices removed from the collection in the order in which they were added to the collection, a

queue is the appropriate collection. And we will also want to keep track of the current vertex.

We can now develop high-level algorithms for the BreadthFirstIterator methods—the details

will have to be postponed until we create a class—such as Network, in which BreadthFirstIterator

will be embedded. The constructor enqueues the start vertex and marks all other vertices as not reachable:

public BreadthFirstIterator (Vertex start)

{

for every vertex in the graph:

mark that vertex as not reachable.

mark start as reachable.

queue.enqueue (start);

} // algorithm for constructor

The hasNext() method returns !queue.isEmpty(). The next() method removes the front vertex from

the queue, makes that vertex the current vertex, and enqueues each neighbor of the current vertex that has

not yet been marked as reachable:

public Vertex next()

{

current = queue.dequeue();

15.5 Graph Algorithms 653

for each vertex that is a neighbor of current:

if that vertex has not yet been marked as reachable

{

mark that vertex as reachable;

enqueue that vertex;

} // if

return current;

} // algorithm for method next

The analysis of this algorithm is postponed until Section 15.6.3, when we will have all of the details

associated with the BreadthFirstIterator class.

The remove() method deletes from the graph the current vertex, that is, the vertex most recently

returned by a call to the next() method. All edges going into or out of that current vertex are also deleted

from the graph.

For an example of how the queue and the next() method work together in a breadth-first iteration,

suppose we create a weighted digraph by entering the sequence of edges and weights in Figure 15.10.

A B 4.0

A C 2.0

A E 15.0

B D 1.0

B E 10.0

C D 5.0

D E 3.0

D F 0.0

F D 0.0

F H 4.0

G H 4.0

FIGURE 15.10 A sequence of edges and weights to generate the weighted digraph in Figure 15.9

The weighted digraph created is the same one shown in Figure 15.9:

E

15.0
10.0

A B
4.0 3.0

2.0 1.0

C D G
5.0

0.0 2.0 4.0

F H
4.0

To conduct a breadth-first iteration starting at A, for example, we first enqueue A in the constructor. The

first call to next() dequeues A, enqueues B, C and E, and returns A. The second call to next() dequeues

B, enqueues D, and returns B. Figure 15.11 shows the entire queue generated by a breadth-first iteration

starting at A.

654 CHAPTER 15 Graphs, Trees, and Networks

queue vertex returned by next()

A A

B, C, E B

C, E, D C

E, D E

D D

F F

H H

FIGURE 15.11 A breadth-first iteration of the vertices starting at A. The vertices are enqueued—and therefore

dequeued—in the same order in which they were entered in Figure 15.10

Notice that vertex G is missing from Figure 15.11. The reason is that G is not reachable from A,

that is, there is no path from A to G. If we performed a breadth-first iteration from any other vertex, there

would be even fewer vertices visited than in Figure 15.11. For example, a breadth-first iteration starting

at vertex B would visit

B, D, E, F, H

in that order.

Breadth-first iterators are especially useful in iterating over a (directed) tree. The start vertex is the

root and, as we saw in Chapter 9, the vertices are visited level-by-level: the root, the root’s children, the

root’s grandchildren, and so on.

15.5.1.2 Depth-First Iterators

The other specialized iterator is a depth-first iterator . A depth-first iterator is a generalization of the pre-

order traversal of Chapter 9. To refresh your memory, here is the algorithm for a pre-order traversal of a

binary tree t :

preOrder (t)

{

if (t is not empty)

{

access the root element of t;

preOrder (leftTree (t));

preOrder (rightTree (t));

} // if

} // preOrder traversal

To further help you recall how a pre-order traversal works, Figure 15.12 shows a binary tree and a pre-order

traversal of its elements.

We can describe a pre-order traversal of a binary tree as follows: start with a leftward path from

the root. Once the end of a path is reached, the algorithm backtracks to an element that has an as-yet-

unreachable right child. Another leftward path is begun, starting with that right child.

A depth-first iteration of a graph proceeds similarly to a breadth-first iteration. We first mark as

not reachable each vertex, then mark as reachable, and visit, the start vertex. Then we mark as reachable

each neighbor of the start vertex. Next, we visit the most recently marked as reachable vertex of those

15.5 Graph Algorithms 655

A The order of visiting elements
in a pre-order traversal:

A, B, D, G, I, H, J, K, L, C, E, F
B C

D E F

G H

I J

K L

FIGURE 15.12 A binary tree and the order in which its elements would be visited during a pre-order traversal

neighbors, and mark as reachable each not-yet-marked-as-reachable neighbor of that vertex. Another path

is begun starting with that unvisited vertex. This continues as long as there are vertices reachable from the

start vertex that have not yet been found to be reachable.

For example, let’s perform a depth-first iteration of the following graph, starting at Atlanta—we

assume that the vertices were initially entered in alphabetical order:

SalisburyWashingtonLouisville

Raleigh

Charlotte

Atlanta

Tallahassee

Miami

656 CHAPTER 15 Graphs, Trees, and Networks

We first visit the start vertex:

r , v

Atlanta

Then we mark as reachable the neighbors of Atlanta:

r , v r r r

Atlanta, Charlotte, Miami, Tallahassee

We then visit the most recently marked as reachable vertex, namely Tennessee, not Charlotte. Tallahassee’s

only neighbor has already been marked as reachable, so we visit the next-most-recently marked-as-reachable

vertex: Miami. Miami’s only neighbor has already been marked as reachable, so we visit Charlotte, and

mark as reachable Louisville, Raleigh and Washington, in that order. We now have

r , v r , v r , v r , v r r r

Atlanta, Charlotte, Miami, Tallahassee, Louisville, Raleigh, Washington

Washington, the most recently marked-as-reachable vertex, is visited, and its only not yet marked-as-

reachable neighbor, Salisbury, is marked as reachable. We now have

r , v r , v r , v r , v r r r , v r

Atlanta, Charlotte, Miami, Tallahassee, Louisville, Raleigh, Washington Salisbury

Now Salisbury is the most recently marked-as-reachable vertex, so Salisbury is visited. Finally, Raleigh

and then Louisville are visited. The order in which vertices are visited is as follows:

Atlanta, Tallahassee, Miami, Charlotte, Washington, Salisbury, Raleigh, Louisville

For a depth-first iteration starting at Charlotte, the order in which vertices are visited is:

Charlotte, Washington, Salisbury, Raleigh, Louisville, Atlanta, Tallahassee, Miami

With a breadth-first iteration, we saved vertices in a queue so that the vertices were visited in the order

in which they were saved. With a depth-first iteration, the next vertex to be visited is the most recently

reached vertex. So the vertices will be stacked instead of queued. Other than that, the basic strategy of a

depth-first iterator is exactly the same as the basic strategy of a breadth-first iterator. Here is the high-level

algorithm for next():

public Vertex next()

{

current = stack.pop();

for each vertex that is a neighbor of current:

if that vertex has not yet been marked as reachable

{

mark that vertex as reachable;

push that vertex onto stack;

} // if

return current;

} // algorithm for method next

The analysis of this algorithm is the same as that of the next() method in the BreadthFirstIterator

class: see Section 15.6.3.

15.5 Graph Algorithms 657

Suppose, as we did above, we create a weighted digraph from the following input, in the order given:

A B 4.0

A C 2.0

A E 15.0

B D 1.0

B E 10.0

C D 5.0

D E 3.0

D F 0.0

F D 0.0

F H 4.0

G H 4.0

The weighted digraph created is the same one shown in Figure 15.9:

E

15.0
10.0

A B
4.0 3.0

2.0 1.0

C D G
5.0

0.0 2.0 4.0

F H
4.0

Figure 15.13 shows the sequence of stack states and the vertices returned by next() for a depth-first

iteration of the weighted digraph in Figure 15.9, as generated from the input in Figure 15.10.

We could have developed a backtrack version of the next() method. The vertices would be visited

in the same order, but recursion would be utilized instead of an explicit stack.

When should you use a breadth-first iterator and when should you use a depth-first iterator? If you

are looping through all vertices reachable from the start vertex, there’s not much reason to pick. The only

stack (top vertex is shown it leftmost) vertex returned by next()

A A

E, C, B E

C, B C

D, B D

F, B F

H, B H

B B

FIGURE 15.13 A depth-first iteration of the vertices reachable from A. We assume the vertices were entered as

in Figure 15.10

658 CHAPTER 15 Graphs, Trees, and Networks

difference is the order in which the vertices will be visited. But if you are at some start vertex and you

are searching for a specific vertex reachable from that start vertex, there can be a difference. If, somehow,

you know that there is a short path from the start vertex to the vertex sought, a breadth-first iterator is

preferable: the vertices on a path of length 1 from the start vertex are visited, then the vertices on a path

of length 2, and so on. On the other hand, if you know that the vertex sought may be very far from the

start vertex, a depth-first search will probably be quicker (see Figure 15.12).

15.5.2 Connectedness

In Section 15.1, we defined an undirected graph to be connected if, for any given vertex, there is a path

from that vertex to any other vertex in the graph. For example, the following is a connected, undirected

graph:

SalisburyWashingtonLouisville

Raleigh

Charlotte

Atlanta

Tallahassee

Miami

For a digraph, that is, a directed graph, connectedness means that for any two distinct vertices, there is

a path—that follows the directions of the arrows—between them. A breadth-first or depth-first iteration

over all vertices in a graph can be performed only if the graph is connected. In fact, we can use the ability

to iterate between any two vertices as a test for connectedness of a digraph.

Given a digraph, let itr be an iterator over the digraph. For each vertex v returned by itr.next(),

let bfitr be a breadth-first iterator starting at v. We check to make sure that the number of vertices

reachable from v (including v itself) is equal to the number of vertices in the digraph.

Here is a high-level algorithm to determine connectedness in a digraph:

public boolean isConnected()

{

for each Vertex v in this digraph

{

// Count the number of vertices reachable from v.

Construct a BreadthFirstIterator, bfItr, starting at v.

int count = 0;

while (bfItr.hasNext())

15.5 Graph Algorithms 659

{

bfItr.next();

count++;

} // while

if (count < number of vertices in this digraph)

return false;

} // for

return true;

} // algorithm for isConnected

For an undirected graph, the isConnected() algorithm is somewhat simpler: there is no need for an

outer loop to iterate through the entire graph. See Concept Exercise 15.4.

In the next two sections, we outline the development of two important network algorithms. Each

algorithm is sufficiently complex that it is named after the person (Prim, Dijkstra) who invented the

algorithm.

15.5.3 Generating a Minimum Spanning Tree

Suppose a cable company has to connect a number of houses in a community. Given the costs, in hundreds

of dollars, to lay cable between the houses, determine the minimum cost of connecting the houses to the

cable system. This can be cast as a connected network problem; each weight represents the cost to lay

cable between two neighbors. Figure 15.14 gives a sample layout. Some house-to-house distances are not

given because they represent infeasible connections (over a mountain, for example).

In a connected, undirected network, a spanning tree is a weighted tree that consists of all of the

vertices and some of the edges (and their weights) from the network. Because a tree must be connected,

a spanning tree connects all of the vertices of the original graph. For example, Figures 15.15 and 15.16

show two spanning trees for the network in Figure 15.14. For the sake of specificity, we designate vertex

A as the root of each tree, but any other vertex would serve equally well.

A minimum spanning tree is a spanning tree in which the sum of all the weights is no greater than

the sum of all the weights in any other spanning tree. The original problem about laying cable can be

re-stated in the form of constructing a minimum spanning tree for a connected network. To give you an

idea of how difficult it is to solve this problem, try to construct a minimum spanning tree for the network

in Figure 15.14. How difficult would it be to “scale up” your solution to a community with 1,000 houses?

An algorithm to construct a minimum spanning tree is due to R. C. Prim [1957]. Here is the basic

strategy. Start with an empty tree T and pick any vertex v in the network. Add v to T. For each vertex w such

3.0
B E

5.0 28.0

18.0 20.0
A C F

7.0 8.0 4.0

D G
2.0

FIGURE 15.14 A connected network in which the vertices represent houses and the weights represent the cost,

in hundreds of dollars, to connect the two houses

660 CHAPTER 15 Graphs, Trees, and Networks

B E

5.0 28.0

18.0 20.0
A C F

8.0 4.0

D G

FIGURE 15.15 A spanning tree for the network in Figure 15.14

3.0
B E

5.0 28.0

A C F

7.0 4.0

D G
2.0

FIGURE 15.16 Another spanning tree for the network in Figure 15.14

that (v, w) is an edge with weight wweight, save the ordered triple 〈v, w, wweight〉 in a collection—we’ll see

what kind of collection shortly. Then loop until T has as many vertices as the original network. During each

loop iteration, remove from the collection the triple 〈x, y, yweight〉 for which yweight is the smallest weight

of all triples in the collection; if y is not already in T, add y and the edge (x, y) to T and save in the collection

every triple 〈y, z, zweight〉 such that z is not already in T and (y, z) is an edge with weight zweight.

What kind of collection should we have? The collection should be ordered by weights; we need to

be able to add an element, that is, a triple, to the collection and to remove the triple with lowest weight. A

priority queue will perform these tasks quickly. Recall from Chapter 13 that for the PriorityQueue class,

averageTime(n) for the add (E element) method is constant, and averageTime(n) for the remove()

method is logarithmic in n .

To see how Prim’s algorithm works, let’s start with the network in Figure 15.14, repeated here:

3.0
B E

5.0 28.0

18.0 20.0
A C F

7.0 8.0 4.0

D G
2.0

Initially, the tree T and the priority queue pq are both empty. Add A to T, and add to pq each triple of

the form 〈A, w, wweight〉 where (A, w) is an edge with weight wweight. Figure 15.17 shows the contents

15.5 Graph Algorithms 661

<A, B, 5.0>
<A, D, 7.0>
<A, C, 18.0>

A

T pq

FIGURE 15.17 The contents of T and pq at the start of Prim’s algorithm as applied to the network in Figure 15.14

of T and pq at this point. For the sake of readability, the triples in pq are shown in increasing order of

weights; strictly speaking, all we know for sure is that the element() and remove() methods return the

triple with smallest weight.

When the lowest-weighted triple, 〈A, B, 5.0〉 is removed from pq, the vertex B and the edge (A, B) are

added to T, and the triple 〈B, E, 3.0〉 is added to pq. See Figure 15.18.

<B, E, 3.0>
<A, D, 7.0>
<A, C, 18.0>

B

5.0

A

T pq

FIGURE 15.18 The contents of T and pq during the application of Prim’s algorithm to the network in Figure 15.14

During the next iteration, the triple 〈B, E, 3.0〉 is removed from pq, the vertex E and edge (B, E) are

added to T, and the triple 〈E, C, 28.0〉 is added to pq. See Figure 15.19.

<A, D, 7.0>
<A, C, 18.0>
<E, C, 28.0>

B

5.0

A

T pq
3.0

E

FIGURE 15.19 The contents of T and pq during the application of Prim’s algorithm to the network in Figure 15.14

During the next iteration, the triple 〈A, D, 7.0〉 is removed from pq, the vertex D and the edge (A, D) are

added to T, and the triples 〈D, F, 8.0〉 and 〈D, G, 2.0〉 are added to pq. See Figure 15.20.

<D, G, 2.0>
<D, F, 8.0>
<A, C, 18.0>
<E, C, 28.0>

B

5.0

A

T pq
3.0

E

7.0

D

FIGURE 15.20 The contents of T and pq during the application of Prim’s algorithm to the network in Figure 15.14

662 CHAPTER 15 Graphs, Trees, and Networks

During the next iteration, the triple 〈D, G, 2.0〉 is removed from pq, the vertex G and the edge (D, G) are

added to T, and the triple 〈G, F, 4.0〉 is added to pq. See Figure 15.21.

<G, F, 4.0>
<D, F, 8.0>
<A, C, 18.0>
<E, C, 28.0>

B

5.0

A

T pq
3.0

E

7.0

D
2.0

G

FIGURE 15.21 The contents of T and pq during the application of Prim’s algorithm to the network in Figure 15.14

During the next iteration, the triple 〈G, F, 4.0〉 is removed from pq, the vertex F and the edge (G, F) are

added to T, and the triple 〈F, C, 20.0〉 is added to pq. See Figure 15.22.

<D, F, 8.0>
<A, C, 18.0>
<F, C, 20.0>
<E, C, 28.0>

B

5.0

A

T pq
3.0

E

7.0

D
2.0

F

4.0

G

FIGURE 15.22 The contents of T and pq during the application of Prim’s algorithm to the network in Figure 15.14

During the next iteration, the triple 〈D, F, 8.0〉 is removed from pq. But nothing is added to T or pq

because F is already in T!

During the next iteration, the triple 〈A, C, 18.0〉 is removed from pq, the vertex C and the edge (A,

C) are added to T, and nothing is added to pq. The reason nothing is added to pq is that, for all of C’s

edges, (C, A), (C, E) and (C, F), the second element in the pair is already in T. See Figure 15.23.

Even though pq is not empty, we are finished because every vertex in the original network is also

in T.

From the way T is constructed, we know that T is a spanning tree. We can show, by contradiction,

that T is a minimum spanning tree. In general, a proof by contradiction assumes some statement to be

false, and shows that some other statement—known to be true—must also be false. We then conclude that

the original statement must have been true.

15.5 Graph Algorithms 663

<F, C, 20.0>
<E, C, 28.0>

B

5.0

A

T pq
3.0

E

7.0

D
2.0

F

4.0

G

18.0
C

FIGURE 15.23 The contents of T and pq after the last iteration in the application of Prim’s algorithm to the

network in Figure 15.14

Assume that T is not a minimum spanning tree. Then during some iteration, a triple 〈x, y, yweight〉

is removed from pq and the edge (x, y) is added to T, but there is some vertex v, already in T, and w,

not in T, such that edge (v, w) has lower weight than edge (x, y). Pictorially:

T not in T

x y

v w

Note that since v is already in T, the triple starting with 〈v, w, ?〉 must have been added to pq earlier. But

the edge (v, w) could not have a lower weight than the edge (x, y) because the triple 〈x, y, y weight〉 was

removed from pq, not the triple starting with 〈v, w, ?〉. This contradicts the claim that (v, w) had lower

edge weight than (x, y). So T, with edge (x, y) added, must still be minimum.

Can Prim’s algorithm be applied to a connected, directed network? Consider the following network:

{<a, b, 8.0>, <b, c, 5.0>, <c, a, 10.0>}. Prim’s algorithm would give a different result depending on

which vertex was chosen as the root. We can—and will—apply Prim’s algorithm to a connected directed

network provided it is equivalent to its undirected counterpart. That is, for any pair of vertices u and v, if

v is a neighbor of u then u is a neighbor of v, and the weights of the two edges are the same.

Prim’s algorithm is another example of the greedy-algorithm design pattern (the Huffman encoding

algorithm in Chapter 13 is also a greedy algorithm). During each loop iteration, the locally optimal

choice is made: the edge with lowest weight is added to T. This sequence of locally optimal—that is,

greedy—choices leads to a globally optimal solution: T is a minimum spanning tree.

Another greedy algorithm appears in Section 15.5.4. Concept Exercise 15.7 and Lab 23 show that

greed does not always succeed.

15.5.4 Finding the Shortest Path through a Network

In Section 15.4.3, we developed a strategy for constructing a minimum spanning tree in a network. A

similar strategy applies to finding a shortest path in a network (directed or undirected) from some vertex

v1 to some other vertex v2. In this context, “shortest” means having the lowest total weight. Both algorithms

664 CHAPTER 15 Graphs, Trees, and Networks

are greedy, and both use a priority queue. The shortest-path algorithm, due to Edsgar Dijkstra [1959], is

essentially a breadth-first iteration that starts at v1 and stops as soon as v2’s pair is removed from the

priority queue pq. (Dijkstra’s algorithm actually finds a shortest path from v1 to every other vertex in the

network.) Each pair consists of a vertex w and the sum of the weights of all edges on the shortest path so

far from v1 to w.

The priority queue is ordered by lowest total weights. To keep track of total weights, we have a

map, weightSum, in which each key is a vertex w and each value is the sum of the weights of all the

edges on the shortest path so far from v1 to w. To enable us to re-construct the shortest path when we

are through, there is another map, predecessor, in which each key is a vertex w, and each value is the

vertex that is the immediate predecessor of w on the shortest path so far from v1 to w.

Basically, weightSum maps each given vertex to the minimum total weight, so far, of the path

from v1 to the given vertex. Initially, pq consists of vertex v1 and its weight, 0.0. On each iteration we

greedily choose the vertex-weight pair 〈x, total weight〉 in pq that has the minimum total weight among

all vertex-weight pairs in pq. If there is a neighbor y of x whose total weight can be reduced by the path

〈v1,. . ., x, y〉 , then y’s path and minimum weight are altered, and y (and its new total weight) is added

to pq. For example, we might have the partial network shown in Figure 15.24.

x

8 5

15
v1 y

FIGURE 15.24 The minimum-weight path from vertex v1 to vertex y had been 15, but the path from vertex v1

through vertex x to vertex y has a lower total weight

Then the total weight between v1 and y is reduced to 13, the pair 〈y, 13〉 is added to pq and y’s

predecessor becomes x. Eventually, this yields the shortest path from v1 to v2, if there is a path between

those vertices.

To start, weightSum associates with each vertex a very large total weight, and predecessor

associates with each vertex the value null. We then refine those initializations by mapping v1’s weightSum

to 0, mapping v1’s predecessor to v1 itself, and adding (v1, 0.0) to pq. This completes the initialization

phase.

Suppose we want to find the shortest path from A to E in the network from Figure 15.9, repeated

here:

E

15.0
10.0

A B
4.0 3.0

2.0 1.0

C D G
5.0

0.0 2.0 4.0

F H
4.0

15.5 Graph Algorithms 665

For simplicity, we ignore G because, in fact, G is not reachable from A. Initially, we have

weightSum predecessor pq

A, 0.0 A 〈A, 0.0〉

B, 10000.0 null

C, 10000.0 null

D, 10000.0 null

E, 10000.0 null

F, 10000.0 null

H, 10000.0 null

After initializing, we keep looping until E is removed from pq (that is, until the shortest path is found) or

pq is empty (that is, there is no path from A to E). During the first iteration of this loop, the minimum

(and only) pair, 〈A, 0.0〉, is removed from pq. Since that pair’s weight, 0.0, is less than or equal to A’s

weightSum value, we iterate, in an inner loop, over the neighbors of A. For each neighbor of A, if A’s

weightSum value plus that neighbor’s weight is less than the neighbor’s weightSum value, weightSum,

and predecessor are updated, and the neighbor and its total weight (so far) are added to pq. The effects

are shown in Figure 15.25.

weightSum predecessor pq

A, 0.0 A 〈C, 2.0〉

B, 4.0 A 〈B, 4.0〉

C, 2.0 A 〈E, 15.0〉

D, 10000.0 null

E, 15.0 A

F, 10000.0 null

H, 10000.0 null

FIGURE 15.25 Dijkstra’s shortest-path algorithm, after the first iteration of the outer loop

After the processing shown in Figure 15.25, the outer loop is executed for a second time: the pair

〈C, 2.0〉 is removed from pq and we iterate (the inner loop) over the neighbors of C. The only vertex

on an edge from C is D, and the weight of that edge is 5.0. This weight plus 2.0 (C’s weight sum) is

7.0, which is less than D’s weight sum, 10000.0). So in weightSum, D’s weight sum is upgraded to 7.0.

Figure 15.26 shows the effect on weightSum, predecessor, and pq.

Figure 15.26 indicates that at this point, the lowest-weight path from A to D has a total weight of

7.0. During the third iteration of the outer loop, 〈B, 4.0〉 is removed from pq and we iterate over the

neighbors of B, namely, D and E. The effects are shown in Figure 15.27.

At this point, the lowest-weight path to D has a total weight of 5.0 and the lowest-weight path to E

has a total weight of 14.0. During the fourth iteration of the outer loop, 〈D, 5.0〉 is removed from pq, and

we iterate over the neighbors of D, namely, F and E. Figure 15.28 shows the effects of this iteration.

During the fifth outer-loop iteration, 〈F, 5.0〉 is removed from pq, the neighbors of F, namely D and

H are examined, and the collections are updated. See Figure 15.29.

666 CHAPTER 15 Graphs, Trees, and Networks

weightSum predecessor pq

A, 0.0 A 〈B, 4.0〉

B, 4.0 A 〈D, 7.0〉

C, 2.0 A 〈E, 15.0〉

D, 7.0 C

E, 15.0 A

F, 10000.0 null

H, 10000.0 null

FIGURE 15.26 The state of the application of Dijkstra’s shortest-path algorithm after the second iteration of the

outer loop

weightSum predecessor pq

A, 0.0 A 〈D, 5.0〉

B, 4.0 A 〈D, 7.0〉

C, 2.0 A 〈E, 14.0〉

D, 5.0 B 〈E, 15.0〉

E, 14.0 B

F, 10000.0 null

H, 10000.0 null

FIGURE 15.27 The state of the application of Dijkstra’s shortest-path algorithm after the third iteration of the

outer loop

weightSum predecessor pq

A, 0.0 A 〈F, 5.0〉

B, 4.0 A 〈D, 7.0〉

C, 2.0 A 〈E, 8.0〉

D, 5.0 B 〈E, 14.0〉

E, 8.0 D 〈E, 15.0〉

F, 5.0 D

H, 10000.0 null

FIGURE 15.28 The state of the application of Dijkstra’s shortest-path algorithm after the fourth iteration of the

outer loop

During the sixth iteration of the outer loop, 〈D, 7.0〉 is removed from pq. The minimum total weight,

so far, from A to D is recorded in weightSum as 5.0. So there is no inner-loop iteration.

During the seventh iteration of the outer loop, 〈E, 8.0〉 is removed from pq. Because E is the vertex

we want to find the shortest path to, we are done. How can we be sure there are no shorter paths to E?

If there were another path to E with total weight t less than 8.0, then the pair 〈E, t〉 would have been

removed from pq before the pair 〈E, 8.0〉.

15.5 Graph Algorithms 667

weightSum predecessor pq

A, 0.0 A 〈D, 7.0〉

B, 4.0 A 〈E, 8.0〉

C, 2.0 A 〈H, 9.0〉

D, 5.0 B 〈E, 14.0〉

E, 8.0 D 〈E, 15.0〉

F, 5.0 D

H, 9.0 F

FIGURE 15.29 The state of the application of Dijkstra’s shortest-path algorithm after the fifth iteration of the

outer loop

We construct the shortest path, as a LinkedList of vertices, from predecessor: starting with an

empty LinkedList object, we prepend E; then prepend D, the predecessor of E; then prepend B, the

predecessor of D; finally, prepend A, the predecessor of B. The final contents of the LinkedList object

are, in order,

A, B, D, E

There are a few details that are missing in the above description of Dijkstra’s algorithm. For example,

how will the vertices, edges, and neighbors be stored? What are worstTime(n) and averageTime(n)? To

answer these questions, we will develop a class in Section 15.6.3, and fill in the missing details, not only

of Dijkstra’s algorithm, but of all our graph-related work.

15.5.5 Finding the Longest Path through a Network?

Interestingly, it is often important to be able to find a longest path through a network. A project network is

an acyclic, directed network with a single source (no arrows coming into it) and a single sink (no arrows

going out from it). The source and sink are usually labeled S (for start) and T (for terminus), respectively.

Figure 15.30 shows a project network.

We can interpret the edges in a project network as activities to be performed, the weights as the

time in days (or cost in dollars) required for the activities, and the vertices as events that indicate the

completion of all activities coming into the event. With that interpretation, the project length , that is,

18
A D

3 15 4 10

12 5 19
S B E T

6 5 3

33
C F

FIGURE 15.30 A project network

668 CHAPTER 15 Graphs, Trees, and Networks

the length of a longest path, represents the number of days required to complete the project. For example,

in Figure 15.30, there are two longest paths:

S, A, B, E, T

and

S, C, F, T

Each of those paths has a length of 42, so the project, as scheduled, will take 42 days. Dijkstra’s algorithm

can easily be modified to find a longest path in an acyclic network. The next section, on topological sorting,

can be used to determine if a network is acyclic.

In a project network, some activities can occur concurrently, and some activities can be delayed

without affecting the project length. A project manager may want to know which activities can be delayed

without delaying the entire project. First, we need to make some calculations.

For each event w, we can calculate ET(w), the earliest time that event w can be completed. For

event S, ET(S) is 0. For any other event w, ET(w) is the maximum of {ET(v) + weight (v, w)} for any

event v such that 〈v, w〉 forms an edge. For example, in Figure 15.30, ET(C) = 6, ET (B) = max {12, 18,

11} = 18, ET(E) = 23, ET (D) = max {21, 27} = 27, and so on.

For each event w, we can also calculate LT(w), the latest time by which w must be completed to

avoid delaying the entire project. For event T, LT(T) is the project length; for any other event w, LT(w)

is the minimum of {LT(x) − weight(w,x)} for any event x such that 〈w, x〉 forms an edge. For example,

in Figure 15.30, LT(T) = 42, LT(D) = 32, LT(E) = min {28, 23} = 23, LT(B) = 18, LT (C) = min {6,

13} = 6, and so on.

Finally, ST(y, z), the slack time of activity 〈y, z〉, is calculated as follows:

ST(y, z) = LT(z) – ET(y) – weight(y, z)

For example, in Figure 15.30,

ST(S, C) = LT(C) – ET(S) – weight(S, C) = 6 – 0 – 6 = 0

ST(A, B) = LT(B) – ET(A) – weight(A, B) = 18 – 3 – 15 = 0

ST(A, D) = LT(D) – ET(A) – weight(A, D) = 32 – 3 – 18 = 11

An activity with a slack time of zero is called a critical activity , and any path that consists only of critical

activities is called a critical path . The idea is that special attention should be given to any critical activity

because any delay in that activity will increase the project length.

Activities that are not on a critical path are less constrained: They may be delayed or take longer

than scheduled without affecting the length of the entire project. For example, in Figure 15.30, the activity

〈A, D〉 has a slack time of 11 days: That activity can be delayed or take longer than scheduled, as long as

the activity is completed by day 32. The significance of this is that resources allocated to activity 〈A, D〉

can be diverted to a critical task, and thereby speed up the completion of the entire project.

Programming Project 15.3 entails finding the slack time for each project in a project network. In

order to calculate the earliest times for each event, the events must be ordered so that for example, when

ET(w) is to be calculated for some vertex w, the value of ET(v) must already be available for each vertex

v such that 〈v, w〉 forms an edge. Section 15.5.5.1 describes that kind of ordering.

15.6 A Network Class 669

15.5.5.1 Topological Sorting

A network with a cycle cannot have a longest path because we could continuously loop through the cycle

to create a path whose total weight is arbitrarily large. We will soon see how to determine if a network is

acyclic.

The calculation of earliest times and latest times for the project network in Section 15.5.5 requires

that the events be in order. Specifically, to calculate ET(w) for some vertex w, we need to know ET(v),

for any vertex v such that 〈v, w〉 forms an edge. If the project network is small and the calculations are

being done by hand, this ordering can be made implicitly. But for a large project, or for a program to

perform the calculations, the ordering must be explicit. To calculate LT(w) for any vertex w, the reverse

of this ordering is needed.

The ordering is not, necessarily, the one provided by a breadth-first iterator, a depth-first iterator, or

an iterator over the entire network. The ordering is called a “topological ordering.” The vertices v1, v2, . . .

of a digraph are in topological order if vi precedes vj in the ordering whenever 〈vi, vj〉 forms an edge

in the digraph. The arranging of vertices into a topological ordering is called topological sorting . For

example, for the digraph in Figure 15.30, here is a topological order:

S, A, C, B, E, F, D, T

Notice that D had to come after both A and E because 〈A, D〉 and 〈E, D〉 are edges in the digraph. Another

topological order is

S, A, C, F, B, E, D, T

Any network that can be put into topological order must be acyclic. Concept Exercise 15.12 has more

information about topological order, and Programming Exercise 15.5 suggests how to perform a topological

sort.

15.6 A Network Class

In this chapter, we have introduced eight different data types: a graph and a tree, each of which can be

directed or undirected, and weighted or unweighted. We would like to develop classes for these collections

with a maximum amount of code sharing. The object-oriented solution is to utilize inheritance, but exactly

how should this be done? If we make the Digraph class a subclass of UndirectedGraph, then virtually

all of the code relating to edges will have to be overridden. That’s because in an undirected graph, each

edge A, B represents two links: from A to B and from B to A. Similarly, code written for graphs would

have to be re-written for networks.

A better approach is to define the (directed) Network class, and make the other classes subclasses

of that class. For example, we can view an undirected network as a directed network in which all edges

are two-way. So to add an edge A, B in an undirected network, the method definition is:

/**

* Ensures that a given edge with a given weight is in this UndirectedNetwork

* object.

*

* @param v1 – the first vertex of the edge.

* @param v2 – the second vertex of the edge (the neighbor of v1).

* @param weight – the weight of the edge (v1, v2).

*

670 CHAPTER 15 Graphs, Trees, and Networks

* @return true – if this UndirectedNetwork object changed as a result of this call.

*

*/

public boolean addEdge (Vertex v1, Vertex v2, double weight)

{

return super.addEdge (v1, v2, weight) && super.addEdge (v2, v1, weight);

} // method addEdge in UndirectedNetwork class, a subclass of Network

Furthermore, we can view a digraph as a network in which all weights have the value of 1.0. The Digraph

class will have the following method definition:

/**

* Ensures that a given edge with a given weight is in this UndirectedNetwork

* object.

*

* @param v1 – the first vertex of the edge.

* @param v2 – the second vertex of the edge (the neighbor of v1).

*

* @return true – if this UndirectedNetwork object changed as a result of this call.

*

*/

public boolean addEdge (Vertex v1, Vertex v2)

{

return super.addEdge (v1, v2, 1.0);

} // method addEdge in DiGraph class, a subclass of Network

Figure 15.31 shows the inheritance hierarchy. Technically, the hierarchy is not a tree because in the Unified

Modeling Language, the arrows go from the subclass to the superclass.

In the following section, we develop a (directed) Network class, that is, a weighted digraph

class. The development of the subclasses—DirectedWeightedTree, DirectedTree, Digraph,

UndirectedNetwork, UndirectedWeightedTree, UndirectedGraph, Tree and UndirectedTree

—are provided on the book’s website or are programming exercises.

The class heading, with Vertex as the type parameter, is

public class Network<Vertex> implements Iterable<Vertex>, java.io.Serializable

Network

Directed

Weighted

Tree

DiGraph UndirectedNetwork

Undirected

Weighted

Tree

UndirectedGraph

Directed Tree

UndirectedTree

FIGURE 15.31 The inheritance hierarchy for the collections in this chapter

15.6 A Network Class 671

The Iterable interface has only one method, iterator(), which returns an iterator that implements

hasNext(), next(), and remove(). By implementing the Iterable interface, we are able to utilize

the enhanced for statement for Network objects. We have not mentioned the Iterable interface up to

now because we have applied the enhanced for statement only to instances of classes that implement the

Collection interface. The start of that interface is

public interface Collection<E> extends Iterable<E>

An important issue in developing the (directed) Network class is to decide what public methods the class

should have: these constitute the abstract data-type network, that is, the user’s view of the Network class.

For the Network class, we have vertex-related methods, edge-related methods, and network-as-a-whole

methods. In the method specifications, V represents the number of vertices and E represents the number

of edges.

15.6.1 Method Specifications and Testing of the Network Class

Here are the vertex-related method specifications:

/**

* Determines if this Network object contains a specified Vertex object.

* The worstTime(V, E) is O(log V).

*

* @param vertex – the Vertex object whose presence is sought.

*

* @return true – if vertex is an element of this Network object.

*

* @throws NullPointerException - if vertex is null.

*

*/

public boolean containsVertex (Vertex vertex)

/**

* Ensures that a specified Vertex object is an element of this Network object.

* The worstTime(V, E) is O(log V).

*

* @param vertex – the Vertex object whose presence is ensured.

*

* @return true – if vertex was added to this Network object by this call; returns

* false if vertex was already an element of this Network object when

* this call was made.

*

* @throws NullPointerException - if vertex is null.

*

*/

public boolean addVertex (Vertex vertex)

/**

* Ensures that a specified Vertex object is not an element of this Network object.

672 CHAPTER 15 Graphs, Trees, and Networks

* The worstTime(V, E) is O(V log V).

*

* @param v – the Vertex object whose absence is ensured.

*

* @return true – if v was removed from this Network object by this call;

* returns false if v is not an element of this Network object

* when this call is made.

*

* @throws NullPointerException - if vertex is null.

*

*/

public boolean removeVertex (Vertex v)

.

Here are the edge-related method specifications:

/**

* Returns the number of edges in this Network object.

* The worstTime(V, E) is O(V).

*

* @return the number of edges in this Network object.

*

*/

public int getEdgeCount()

/**

* Determines the weight of an edge in this Network object.

* The worstTime(V, E) is O(log V).

*

* @param v1 – the beginning Vertex object of the edge whose weight is sought.

* @param v2 – the ending Vertex object of the edge whose weight is sought.

*

* @return the weight of edge <v1, v2>, if <v1, v2> forms an edge; return – 1.0 if

* <v1, v2> does not form an edge in this Network object.

*

* @throws NullPointerException – if v1 is null and/or v2 is null.

*

*/

public double getEdgeWeight (Vertex v1, Vertex v2)

/**

* Determines if this Network object contains an edge specified by two vertices.

* The worstTime(V, E) is O(log V).

*

* @param v1 – the beginning Vertex object of the edge sought.

15.6 A Network Class 673

* @param v2 – the ending Vertex object of the edge sought.

*

* @return true – if this Network object contains the edge <v1, v2>.

*

* @throws NullPointerException – if v1 is null and/or v2 is null.

*

*/

public boolean containsEdge (Vertex v1, Vertex v2)

/**

* Ensures that an edge is in this Network object.

* The worstTime(V, E) is O(log V).

*

* @param v1 – the beginning Vertex object of the edge whose presence

* is ensured.

* @param v2 – the ending Vertex object of the edge whose presence is

* ensured.

* @param weight – the weight of the edge whose presence is ensured.

*

* @return true – if the given edge (and weight) were added to this Network

* object by this call; return false, if the given edge (and weight)

* were already in this Network object when this call was made.

*

* @throws NullPointerException – if v1 is null and/or v2 is null.

*

*/

public boolean addEdge (Vertex v1, Vertex v2, double weight)

/**

* Ensures that an edge specified by two vertices is absent from this Network

* object.

* The worstTime (V, E) is O (V log V).

*

* @param v1 – the beginning Vertex object of the edge whose absence is

* ensured.

* @param v2 – the ending Vertex object of the edge whose absence is

* ensured.

*

* @return true – if the edge <v1, v2> was removed from this Network object

* by this call; return false if the edge <v1, v2> was not in this

* Network object when this call was made.

*

* @throws NullPointerException – if v1 is null and/or v2 is null.

*

*/

public boolean removeEdge (Vertex v1, Vertex v2)

674 CHAPTER 15 Graphs, Trees, and Networks

Finally, we have the method specifications for those methods that apply to the network as a whole, including

three flavors of iterators:

/**

* Initializes this Network object to be empty, with the ordering of

* vertices by an implementation of the Comparable interface.

*/

public Network()

/**

* Initializes this Network object to a shallow copy of a specified Network

* object.

*

* @param network – the Network object that this Network object is

* initialized to a shallow copy of.

*

* @throws NullPointerException – if network is null.

*

*/

public Network (Network<Vertex> network)

/**

* Determines if this Network object contains no vertices.

*

* @return true – if this Network object contains no vertices.

*

*/

public boolean isEmpty()

/**

* Determines the number of vertices in this Network object.

*

* @return the number of vertices in this Network object.

*

*/

public int size()

/**

* Determines if this Network object is equal to a given object.

*

* @param obj – the object this Network object is compared to.

*

* @return true – if this Network object is equal to obj.

*

15.6 A Network Class 675

*/

public boolean equals (Object obj)

/**

* Returns a LinkedList<Vertex> object of the neighbors of a specified Vertex object.

* The worstTime(V, E) is O(V).

*

* @param v – the Vertex object whose neighbors are returned.

*

* @return a LinkedList<Vertex> object of the vertices that are neighbors of v.

*

* @throws NullPointerException – if v is null.

*

*/

public LinkedList<Vertex> neighbors (Vertex v)

/**

* Returns an Iterator object over the vertices in this Network object.

*

* @return an Iterator object over the vertices in this Network object.

*

*/

public Iterator<Vertex> iterator()

/**

* Returns a breadth-first Iterator object over all vertices reachable from

* a specified Vertex object.

* The worstTime(V, E) is O(V log V).

*

* @param v – the start Vertex object for the Iterator object returned.

*

* @return a breadth-first Iterator object over all vertices reachable from v.

*

* @throws IllegalArgumentException – if v is not an element of this Network

* object.

*

* @throws NullPointerException – if vertex is null.

*

*/

public Iterator<Vertex> breadthFirstIterator (Vertex v)

/**

* Returns a depth-first Iterator object over all vertices reachable from

* a specified Vertex object.

* The worstTime(V, E) is O(V log V).

676 CHAPTER 15 Graphs, Trees, and Networks

*

* @param v – the start Vertex object for the Iterator object returned.

*

* @return a depth – first Iterator object over all vertices reachable from v.

*

* @throws IllegalArgumentException – if v is not an element of this Network

* object.

*

* @throws NullPointerException – if vertex is null.

*

*/

public Iterator<Vertex> depthFirstIterator (Vertex v)

/**

* Determines if this (directed) Network object is connected.

* The worstTime(V, E) is O(V * V * log V).

*

* @return true – if this (directed) Network object is connected.

*

*/

public boolean isConnected()

/**

* Returns a minimum spanning tree for this connected Network object

* in which for any vertices u and v, if v is a neighbor of u then u is

* a neighbor of v, and the weights of those two edges are the same.

* The worstTime(V, E) is O(E log V).

*

* @return a minimum spanning tree for this connected Network object.

*

*/

public UndirectedWeightedTree<Vertex> getMinimumSpanningTree()

/**

* Finds a shortest path between two specified vertices in this Network

* object, and the total weight of that path.

* The worstTime(V, E) is O(E log V).

*

* @param v1 – the beginning Vertex object.

* @param v2 – the ending Vertex object.

*

* @return a LinkedList object containing the vertices in a shortest path

* from Vertex v1 to Vertex v2. The last element in the Linked

* List object is the total weight of the path, or -1.0 if there is no path.

15.6 A Network Class 677

*

* @throws NullPointerException – if v1 is null and/or v2 is null.

*

*/

public LinkedList<Object> getShortestPath (Vertex v1, Vertex v2)

/**

* Returns a String representation of this Network object.

* The averageTime(V, E) is O(V * V).

*

* @return a String representation of this Network object, with

* each vertex v, each neighbor w of that vertex, and the

* weight of the corresponding edge. The format is

* {v1=[w11 weight11, w12 weight12,...],

* v2=[w21 weight21, w22 weight22,...],

* ...

* vn=[wn1 weightn1, wn2 weightn2,...]}

*

*/

public String toString()

Here is a test of the getShortestPath method (network is a field in the NetworkTest class):

@Test

public void testShortest3()

{

network.addEdge ("S", "A", 2);

network.addEdge ("S", "B", 6);

network.addEdge ("S", "C", 5);

network.addEdge ("A", "D", 8);

network.addEdge ("B", "C", 2);

network.addEdge ("B", "D", 3);

network.addEdge ("B", "E", 2);

network.addEdge ("D", "T", 5);

network.addEdge ("D", "E", 3);

network.addEdge ("E", "T", 1);

network.addEdge ("C", "F", 2);

network.addEdge ("F", "T", 10);

assertEquals ("[S, B, E, T, 9.0]", network.getShortestPath ("S", "T").toString());

} // method testShortest3

The book’s website has the NetworkTest class, along with the UndirectedNetwork and Undirect

edWeightedTree classes.

Before we turn to developer’s issues in Section 15.6.2, we illustrate some of the Network class’s

methods in a class whose run method essentially consists of one method call after another. Each edge in

the file network.in1 is two-way for the sake of the getMinimumSpanningTree method. (There is no

attempt at modularization.)

678 CHAPTER 15 Graphs, Trees, and Networks

import java.util.*;

import java.io.*;

public class NetworkExample

{

public static void main (String[] args)

{

new NetworkExample().run();

} // main

public void run()

{

final String SHORTEST_PATH_MESSAGE1 = "\n\nThe shortest path from ";

final String SHORTEST_PATH_MESSAGE2 = " and its total weight are ";

final String REMOVAL_MESSAGE =

"\niterating over network after removing B-E and D:";

Network<String> network = new Network<String>();

try

{

Scanner sc = new Scanner (new File ("network.in1"));

String start,

finish,

vertex1,

vertex2;

double weight;

// Get start and finish vertices.

start = sc.next();

finish = sc.next();

// Get edges and weights.

while (sc.hasNext())

{

vertex1 = sc.next();

vertex2 = sc.next();

weight = sc.nextDouble();

network.addEdge (vertex1, vertex2, weight);

} // while

LinkedList<Object> pathList = network.getShortestPath (start, finish);

System.out.println (SHORTEST_PATH_MESSAGE1 + start + " to " +

finish + SHORTEST_PATH_MESSAGE2 + pathList);

boolean networkIsConnected = network.isConnected();

System.out.println ("is connected: " + networkIsConnected);

15.6 A Network Class 679

if (networkIsConnected)

System.out.println ("spanning tree: " + network.getMinimumSpanningTree());

System.out.println ("neighbors of " + start + ": "

+ network.neighbors (start));

System.out.println ("is empty: " + network.isEmpty());

System.out.println ("vertex count: " + network.size());

System.out.println ("edge count: " + network.getEdgeCount());

System.out.println ("contains Q: " + network.containsVertex ("Q"));

System.out.println ("contains edge B-D: " + network.containsEdge ("B", "D"));

System.out.println ("contains edge F-C: " + network.containsEdge ("F", "C"));

System.out.println ("edge weight of A-B: "

+network.getEdgeWeight ("A", "B"));

System.out.println ("\nbreadth-first iterating from " + start + ": ");

Iterator<String> itr = network.breadthFirstIterator (start);

while (itr.hasNext())

System.out.print (itr.next() + " ");

System.out.println ("\ndepth-first iterating from " + start + ": ");

itr = network.depthFirstIterator (start);

while (itr.hasNext())

System.out.print (itr.next() + " ");

System.out.println ("\niterating over network:");

for (String s : network)

System.out.print (s + " ");

network.removeEdge ("B", "E");

network.removeVertex ("D");

System.out.println (REMOVAL_MESSAGE);

for (String s : network)

System.out.print (s + " ");

pathList = network.getShortestPath (start, finish);

System.out.println (SHORTEST_PATH_MESSAGE1 + start + " to " +

finish + SHORTEST_PATH_MESSAGE2 + pathList);

} // try

catch (FileNotFoundException e)

{

System.out.println (e);

} // catch

} // method run

} // class NetworkExample

Here is the file network.in1:

A F

A B 5

B A 5

680 CHAPTER 15 Graphs, Trees, and Networks

A C 18

C A 18

A D 7

D A 7

B E 3

E B 3

C E 28

E C 28

C F 20

F C 20

D F 8

F D 8

D G 2

G D 2

G F 4

F G 4

And here is the output when the program was run:

The shortest path from A to F and its total weight are [A, D, G, F, 13.0]

is connected: true

spanning tree: {A={B=5.0, C=18.0, D=7.0}, B={A=5.0, E=3.0}, C={A=18.0},

D={A=7.0, G=2.0}, E={B=3.0}, F={G=4.0}, G={D=2.0, F=4.0}}

neighbors of A: [B, C, D]

is empty: false

vertex count: 7

edge count: 18

contains Q: false

contains edge B-D: false

contains edge F-C: true

edge weight of A-B: 5.0

breadth-first iterating from A:

A B C D E F G

depth-first iterating from A:

A D G F C E B

iterating over network:

A B C D E F G

iterating over network after removing B-E and D:

A B C E F G

The shortest path from A to F and its total weight are [A, C, F, 38.0]

15.6.2 Fields in the Network Class

As usual, the fundamental decisions about implementing a class involve selecting its fields. In the (directed)

Network class, we will associate each vertex v with the collection of all vertices that are adjacent to v.

That is, a vertex w will be included in this collection if 〈v, w〉 forms an edge. And to simplify determining

15.6 A Network Class 681

the weight of that edge, we will associate each adjacent vertex w with the weight of the edge 〈v, w〉. In

other words, we will associate each vertex v in the Network object with a map that associates each vertex

w adjacent to v with the weight of the edge 〈v, w〉.

This suggests that we will need a map in which each value is itself a map. We have two Map

implementations in the Java Collections Framework: HashMap and TreeMap. For inserting, removing,

and searching in a HashMap, averageTime(n) is constant (if the Uniform Hashing Assumption holds), but

worstTime(n) is linear in n for those three operations (even if the Uniform Hashing Assumption holds). It

is the user’s responsibility to ensure that the Uniform Hashing Assumption holds. Furthermore, the time

(on average and in the worst case) to iterate through a HashMap object is linear in n + m , where m is the

capacity of the hash table.

For a TreeMap object, the operations of insertion, removal, and search take logarithmic in n time,

both on average and in the worst case. The elements can be ordered “naturally” by implementing the

Comparable interface, or unnaturally with an implementation of an instance of the Comparator interface.

For both maps we choose the TreeMap class, whose performance in inserting, removing, and

searching is superb even in the worst case, over the HashMap class, whose average-time performance

is spectacular, but whose worst-time performance is pitiful.

In summary, the only field in the Network class is

protected TreeMap<Vertex, TreeMap<Vertex, Double>> adjacencyMap;

For each key v in adjacencyMap, each value will be a TreeMap object in which each key is a neighbor

w of v and each value is the weight of the edge 〈v, w〉. For the sake of simplicity, we assume the vertices

will be ordered “naturally”. That is, the class corresponding to the type parameter Vertex must implement

the Comparable interface.

Figure 15.32 shows a simple network, and Figure 15.33 shows an internal representation (which

depends on the order in which vertices are inserted).

Mark

10.0 8.3

7.4
Karen Don Tara

14.2 20.0 15.0

Courtney

FIGURE 15.32 A network whose internal representation is shown in Figure 15.33

15.6.3 Method Definitions in the Network Class

Because the only field in the Network class is a TreeMap object, there are several one-line method

definitions. For example, here is the definition of the containsVertex method:

public boolean containsVertex (Vertex vertex)

{

682 CHAPTER 15 Graphs, Trees, and Networks

Karen (Don (7.4))

Courtney (14.2) Mark (10.0))

Don () Mark (Tara (8.3))

Courtney (Don (20.0)) Tara ()

Tara (15.0)

FIGURE 15.33 The internal representation of the network in Figure 15.32. The value associated with a key is

shown in parentheses. “Don (_)”, the left child of the root, indicates that “Don” has no neighbors

return adjacencyMap.containsKey (vertex);

} // method containsVertex

In the TreeMap class, the worstTime(n) for the containsKey method is logarithmic in n , and so the

worstTime(V , E) for the containsVertex method is logarithmic in V , where V represents the number

of vertices and E represents the number of edges. The averageTime(V , E) for this method—and for all

the other methods in the Network class—is the same as worstTime(V , E).

Adding a vertex to a Network object is straightforward:

public boolean addVertex (Vertex vertex)

{

if (adjacencyMap.containsKey (vertex))

return false;

adjacencyMap.put (vertex, new TreeMap<Vertex, Double>());

return true;

} // method addVertex

In the TreeMap class, the timing of the containsKey and put methods is logarithmic in the number of

elements in the map, and so worstTime(V , E) is logarithmic in V .

The definition of removeVertex requires some work. It is easy to remove a Vertex object v from

adjacencyMap, and thus remove its associated TreeMap object of edges going out from vertex. But

each edge going into v must also be removed. To accomplish this latter task, we will iterate over the

entries in adjacencyMap and remove from the associated neighbor map any edge whose vertex is v. Here

is the definition:

public boolean removeVertex (Vertex v)

{

if (!adjacencyMap.containsKey (v))

return false;

15.6 A Network Class 683

for (Map.Entry<Vertex, TreeMap<Vertex, Double>> entry: adjacencyMap.entrySet())

{

TreeMap<Vertex, Double> neighborMap = entry.getValue();

neighborMap.remove (v);

} // for each vertex in the network

adjacencyMap.remove (v);

return true;

} // removeVertex

How long does this take? Iterating over the entries in adjacencyMap takes linear-in-V time, and remov-

ing a vertex from the neighbor map takes logarithmic-in-V time, so for the removeVertex method,

worstTime(V , E) is linear-logarithmic in V .

Next, we’ll develop the definition of an edge-related method. To count the number of edges in a

Network object, we use the fact that the size of any vertex’s associated neighbor map represents the

number of edges going out from that vertex. So we iterate over all the entries in adjacencyMap, and

accumulate the sizes of the associated neighbor maps. Here is the definition:

public int getEdgeCount()

{

int count = 0;

for (Map.Entry<Vertex, TreeMap<Vertex, Double>> entry : adjacencyMap.entrySet())

count += entry.getValue().size();

return count;

} // method getEdgeCount

The getEdgeCount method iterates over all entries in adjacencyMap, so worstTime(V , E) is linear

in V .

Before we get to the methods that deal with the Network object as a whole, we need to say a few

words about the BreadthFirstIterator class (similar comments apply to the DepthFirstIterator

class).

The main issue with regard to the BreadthFirstIterator class is how to ensure a quick determi-

nation of whether a given vertex has been reached. To this end, we make reachable a TreeMap object,

with Vertex keys and Boolean values. The heading and fields of this embedded class are:

protected class BreadthFirstIterator implements Iterator<Vertex>

{

protected Queue<Vertex> queue;

protected TreeMap<Vertex, Boolean> reachable;

protected Vertex current;

From this point, the method definitions in the BreadthFirstIterator class closely follow the

algorithms in Section 15.5.1 For the next() method, we iterate over the current vertex’s neighbor map,

and check if each neighbor has been marked as reachable. For the next() method, worstTime(V , E) is

linear in V log V .

Last, but by no means least, is the getShortestPath method to find the shortest path from vertex

v1 to vertex v2. We start by filling in some of the details from the earlier outline. For the sake of speed,

684 CHAPTER 15 Graphs, Trees, and Networks

weightSum will be a TreeMap object that associates each Vertex object w with the sum of the weights of

all the edges on the shortest path so far from v1 to w. Similarly, predecessor will be a TreeMap object

that associates each vertex w with the vertex that is the immediate predecessor of w on the shortest path so

far from v1 to w. The only unusual field declaration is for the priority queue of vertex-weight pairs. The

PriorityQueue class has a single type parameter, so we create a VertexWeightPair class (nested in

the Network class) for the type argument. The VertexWeightPair class will have vertex and weight

fields, a two-parameter constructor to initialize those fields, and a compareTo method to order pairs by

their weights.

The heading and variables in the getShortestPath method are as follows:

/**

* Finds a shortest path between two specified vertices in this Network

* object.

* The worstTime(V, E) is O(E log E).

*

* @param v1 – the beginning Vertex object.

* @param v2 – the ending Vertex object.

*

* @return a LinkedList object containing the vertices in a shortest path

* from Vertex v1 to Vertex v2.

*

*/

public LinkedList<Object> getShortestPath (Vertex v1, Vertex v2)

{

final double MAX_PATH_WEIGHT = Double.MAX_VALUE;

TreeMap<Vertex,Double> weightSum = new TreeMap<Vertex,Double>();

TreeMap<Vertex,Vertex> predecessor = new TreeMap<Vertex,Vertex>();

PriorityQueue<VertexWeightPair> pq =

new PriorityQueue<VertexWeightPair>();

Vertex vertex,

to = null,

from;

VertexWeightPair vertexWeightPair;

double weight;

If either v1 or v2 is not in the Network, we return an empty LinkedList and we are done. Otherwise,

we perform the initializations referred to in Section 15.5.4. Here is this initialization code:

if (v1 == null || v2 == null)

throw new NullPointerException();

if (! (adjacencyMap.containsKey (v1) && adjacencyMap.containsKey (v2)))

return new LinkedList<Object>();

Iterator<Vertex> netItr = breadthFirstIterator(v1);

while (netItr.hasNext())

{

vertex = netItr.next();

weightSum.put (vertex, MAX_PATH_WEIGHT);

15.6 A Network Class 685

predecessor.put (vertex, null);

} // initializing weightSum and predecessor

weightSum.put (v1, 0.0);

predecessor.put (v1, v1);

pq.add (new VertexWeightPair (v1, 0.0));

Now we find the shortest path, if there is one, from v1 to v2. As noted in Section 15.5.4, we have an

outer loop that removes a vertex-weight pair <from, totalWeight> from pq and then an inner loop that

iterates over the neighbors of from. The purpose of this inner loop is to see if any of those neighbors to

can have its weightSum value reduced to from’s weightSum value plus the weight of the edge <from,

to>. Here are these nested loops:

boolean pathFound = false;

while (!pathFound && !pq.isEmpty())

{

vertexWeightPair = pq.remove();

from = vertexWeightPair.vertex;

if (from.equals (v2))

pathFound = true;

else if (vertexWeightPair.weight <= weightSum.get(from))

{

for (Map.Entry<Vertex, Double> entry : adjacencyMap.get (from).entrySet())

{

to = entry.getKey();

weight = entry.getValue();

if (weightSum.get (from) + weight < weightSum.get (to))

{

weightSum.put (to, weightSum.get (from) + weight);

predecessor.put (to, from);

pq.add (new VertexWeightPair (to,weightSum.get (to)));

} // if

} // while from’s neighbors have not been processed

} // else path not yet found

} // while not done and priority queue not empty

All that remains is to create the path. We start by inserting v2 into an empty LinkedList object, and

then, using the predecessor map, keep prepending predecessors until v1 is prepended. Finally, we add

v2’s total weight, as a Double object, to the end of this LinkedList object, and return the LinkedList

object. Note that this LinkedList object has Object as the type parameter because the list contains both

vertices and Double values. Here is the remaining code in the getShortestPath method:

LinkedList<Object> path = new LinkedList<Object>();

if (pathFound)

{

Vertex current = v2;

while (!(current.equals (v1)))

{

path.addFirst (current);

current = predecessor.get (current);

} // while not back to v1

path.addFirst (v1);

path.addLast (weightSum.get (v2));

686 CHAPTER 15 Graphs, Trees, and Networks

} // if path found

else

path.addLast (-1.0);

return path;

We now estimate worstTime(V , E) for the getShortestPath method. We’ll first establish upper bounds

for worstTime(V , E). For each edge 〈x, y〉, y will be added to pq provided weightSum.get (x) +

weight of 〈x, y〉 is less than weightSum.get (y)

Because the vertex at the end of each edge may be added to pq, the size of pq—and therefore

the number of outer-loop iterations—is O(E). During each outer loop iteration, one vertex-weight pair is

removed from pq, and this requires O(log E) iterations (in the remove() method). Also, for each removal

of a vertex y, there is an inner loop in which each edge 〈y, z〉 is examined to see if z should be added to

pq. The total number of edges examined during all of these inner-loop iterations is O(E).

From the previous paragraph, we see that the total number of iterations, even in the worst case, is

O(E log E + E). We conclude that worstTime(V , E) is O(E log E + E). Also,

O(E log E + E) = O(E log E) = O(E log V)

The last equality follows from the fact that log E <= log V 2 = 2 log V . We have worstTime(V , E) is

O(E log V). If the network is connected (even as an undirected graph), V − 1 <= E , and so log E > =

log(V − 1). Then all of the upper bounds on iterations from above are also lower bounds, and we conclude

that worstTime(V , E) is �(E log V).

Lab 23 introduces the best-known network problem, further explores the greedy-algorithm design

pattern, and touches on the topic of very hard problems.

You are now ready for Lab 23: The Traveling Salesperson Problem

The final topic in this chapter is backtracking. In Chapter 5, we saw how backtracking could be used to

solve a variety of applications. Now we expand the application domain to include networks and therefore,

graphs and trees.

15.7 Backtracking Through A Network

When backtracking was introduced in Chapter 5, we saw four applications in which the basic framework

did not change. Specifically, the same BackTrack class and Application interface were used for

1. searching a maze;

2. placing eight queens—none under attack by another queen—on a chess board (Programming Assign-

ment 5.2);

3. illustrating that a knight could traverse every square in a chess board without landing on any square

more than once (Programming Assignment 5.3);

4. solving a Sudoku puzzle (Programming Assignment 5.4);

5. solving a Numbrix puzzle (Programming Assignment 5.5).

A network (or graph or tree) is also suitable for backtracking. For example, suppose we have a network of

cities. Each edge weight represents the distance, in miles, between its two cities. Given a start city and a

15.7 Backtracking Through A Network 687

finish city, find a path in which each edge’s distance is less than the previous edge’s distance. Figure 15.34

has sample data; the start and finish cities are given first, followed by each edge:

Figure 15.35 depicts the network generated by the data in Figure 15.34.

One solution to this problem is the following path:

214 168 123
Boston NewYork Harrisburg Washington

A lower-total-weight solution is:

Boston Trenton Washington
279 178

Boston Washington

Albany Washington 371

Boston Albany 166

Boston Hartford 101

Boston NewYork 214

Boston Trenton 279

Harrisburg Philadelphia 106

Harrisburg Washington 123

NewYork Harrisburg 168

NewYork Washington 232

Trenton Washington 178

FIGURE 15.34 A network: The first line contains the start and finish cities; each other line contains two cities

and the distance from the first city to the second city

Boston

166 101 214 279

Albany Hartford NewYork Trenton

Washington

168

Harrisburg

371 106 123 232 178

Philadelphia

FIGURE 15.35 A network of cities; each edge weight represents the distance between the cities in the edge

688 CHAPTER 15 Graphs, Trees, and Networks

The lowest-total-weight path is illegal for this problem because the distances increase (from 214 to 232):

Boston NewYork Washington
214 232

When a dead-end is reached, we can backtrack through the network. The basic strategy with backtracking

is to utilize a depth-first search starting at the start position. At each position, we iterate through the

neighbors of that position. The order in which neighboring positions are visited is the order in which the

corresponding edges are initially inserted into the network. So we are guaranteed to find a solution path if

one exists, but not necessarily the lowest-total-weight solution path.

Here is the sequence of steps in the solution generated by backtracking:

Boston

Albany
(dead-end, distance increased; re-trace to Boston)

Boston

X

Albany Hartford
(dead-end; re-trace to Boston)

Boston

X X

Albany Hartford NewYork

Harrisburg

Philadelphia
(dead-end; re-trace to Harrisburg)

Boston

X X

Albany Hartford NewYork

Harrisburg

X

Philadelphia Washington
(Success!)

Summary 689

The framework introduced in Chapter 5 supplies the BackTrack class and Application interface.

What about the Position class? That class must be modified: row and column have no meaning in a

network. And the MazeUser and Maze classes must be revised as well. The details are left as Programming

Project 15.2.

S U M M A R Y

An undirected graph consists of a collection of distinct

elements called vertices , connected to other elements by

distinct vertex-pairs called edges . If the pairs are ordered,

we have a directed graph. A tree, sometimes called a

directed tree, is a directed graph that either is empty or

has an element, called the root element such that:

1. There are no edges coming into the root element;

2. Every non-root element has exactly one edge com-

ing into it;

3. There is a path from the root to every other element.

A network (or undirected network) is a directed graph

(or undirected graph) in which each edge has an associ-

ated non-negative number called the weight of the edge.

A network is also referred to as a “weighted digraph” (or

“weighted undirected graph”).

Some of the important graph/network algorithms

are:

1. Breadth-first iteration of all vertices reachable from

a given vertex;

2. Depth-first iteration of all vertices reachable from a

given vertex;

3. Determining if a given graph is connected, that is,

if for any two vertices, there is a path from the first

vertex to the second;

4. Finding a minimum spanning tree for a network;

5. Finding a shortest path between two vertices in a

network.

One possible design of the Network class associates,

in a TreeMap object, each vertex with its neighbors.

Specifically, we declare

TreeMap<Vertex, TreeMap<Vertex,

Double>> adjacencyMap;

Here, adjacencyMap is a TreeMap object in which

each key is a Vertex object v and each value is a

TreeMap object in which each key is a Vertex object

w and each value is a Double object weight, where

weight is the weight of edge 〈v, w〉. Some network

problems can be solved through backtracking. The itera-

tion around a given position corresponds to an iteration

through the linked list of vertex-weight pairs that comprise

the neighbors of a given vertex.

690 CHAPTER 15 Graphs, Trees, and Networks

CROSSWORD PUZZLE

ACROSS DOWN

1. Adjacent vertices in a graph

4. For the getShortestPath method
 in the Network class,worstTime(V, E)
 is BigTheta(__________).

7. The vertices v1, v2, … of a digraph
 are in _____order if vi precedes vj in
 the ordering whenever <vi, vj> forms
 an edge in the digraph.

8. An acyclic, directed network with a
 single source and a single sink

9. The type of the only field in the
 Network class

2. In a connected, undirected network, a
 ______ is a weighted tree that consists
 of all of the vertices and some of the
 edges (and their weights) from the
 network.

3. Another name for a weighted graph

5. A path in which the first and last vertices
 are the same and there are no repeated
 edges

6. A graph is _____ if, for any given vertex,
 there is a path from that vertex to any
 other vertex in the graph.

8. In a graph, a sequence of vertices in
 which each successive pair is an edge

1 2

3

4 5

6

7

8

9

www.CrosswordWeaver.com

www.CrosswordWeaver.com

Concept Exercises 691

CONCEPT EXERCISES

15.1 Draw a picture of the following undirected graph:

Vertices: A, B, C, D, E

Edges: {A, B}, {C, D}, {D, A}, {B, D}, {B, E}

15.2 a. Draw an undirected graph that has four vertices and as many edges as possible. How many edges does

the graph have?

b. Draw an undirected graph that has five vertices and as many edges as possible. How many edges does

the graph have?

c. What is the maximum number of edges for an undirected graph with V vertices, where V is any non-

negative integer?

d. Prove the claim you made in part (c).

Hint: Use induction on V.

e. What is the maximum number of edges for a directed graph with V vertices?

15.3 Suppose we have the following undirected graph:

B

A C E

D

Assume the vertices were inserted into the graph in alphabetical order.

a. Perform a breadth-first iteration of the undirected graph.

b. Perform a depth-first iteration of the undirected graph.

15.4 Develop a high-level algorithm, based on the isConnected() algorithm in Section 15.5.2, to determine

if an undirected graph is connected.

15.5 For the network given below, determine the shortest path from A to H by brute force, that is, list all paths

and see which one has the lowest total weight.

18
C F

3 15 4 10

12 5 19
A B D H

6 5 3

22
E G

692 CHAPTER 15 Graphs, Trees, and Networks

15.6 For the network given in Exercise 15.5, use Dijkstra’s algorithm (getShortestPath) to find the shortest

path from A to H.

15.7 Prim’s algorithm (getMinimumSpanningTree) and Dijkstra’s algorithm (getShortestPath) are

greedy : the locally optimal choice has the highest priority. In these cases, greed succeeds in the sense

that the locally optimal choice led to the globally optimal solution. Do all greedy algorithms succeed for all

inputs? In this exercise we explore coin-changing algorithms. In one situation, the greedy algorithm succeeds

for all inputs. In the other situation, the greedy algorithm succeeds for some inputs and fails for some inputs.

Suppose you want to provide change for any amount under a dollar using as few coins as possible. Since

“fewest” is best, the greedy (that is, locally optimal) choice at each step is the coin with largest value whose

addition will not surpass the original amount. Here is a method to solve this problem:

/**

* Prints the change for a given amount, with as few coins (quarters, dimes,

* nickels and pennies) as possible.

*

* @param amount – the amount to be given in change.

*

* @throws NumberFormatException – if amount is less than 0 or greater than

* 99.

*

*/

public static void printFewest (int amount)

{

if (amount < 0 || amount > 99)

throw new NumberFormatException();

int coin[] = {25, 10, 5, 1};

final String RESULT =

"With as few coins as possible, here is the change for ";

System.out.println (RESULT + amount + ":");

for (int i = 0; i< 4; i++)

while (coin [i] <= amount)

{

System.out.println (coin [i]);

amount –= coin [i];

} // while

} // printFewest

For example, suppose that amount has the value 62. Then the output will be

25

25

10

1

1

Five is the minimum number of coins needed to make 62 cents from quarters, nickels, dimes, and pennies.

a. Show that the above algorithm is optimal for any amount between 0 and 99 cents, inclusive. Hint: First,

consider an amount of 0. Then amounts of 5, 10, or 25; then amounts of 15 or 20. Then add 25 to any

Programming Exercises 693

of the amounts in the previous sentence. After all legal amounts divisible by 5 have been considered,

consider all legal amounts that are not divisible by 5.

b. Give an example to show that a greedy algorithm is not optimal for all inputs if nickels are not available.

That is, if we have

int coins[] = {25, 10, 1}

…

for (int i = 0; i < 3; i++)

…

then the algorithm will not be optimal for some inputs.

15.8 Ignore the direction of arrows in the figure for Exercise 15.5. Then that figure depicts an undirected network.

Use Prim’s algorithm to find a minimum spanning tree for that undirected network.

15.9 Ignore the direction of arrows and assume all weights are 1.0 in the figure for Exercise 15.5. Use Dijkstra’s

algorithm to find a shortest path (fewest edges) from A to H.

15.10 From the given implementation of the Network class, define the removeEdge method in the Undirect

edNetwork class.

15.11 Re-order the edges in Figure 15.35 so that the solution path generated by backtracking is different from the

lowest-total-weight solution path.

15.12 For the digraph in Figure 15.30, there were two topological orders given. Find three other topological orders.

If a digraph has a cycle, can its vertices be put into a topological order? Explain.

PROGRAMMING EXERCISES

15.1 Modify the specification of Dijkstra’s algorithm to find the shortest paths from a given vertex v to all other

vertices in a network. Unit-test and define your method.

15.2 Modify the specification of Dijkstra’s algorithm to find a longest path between two vertices. Unit-test and

define your method. The method assumes that the network is acyclic. Why?

15.3 In the program in Section 15.6.1, the getMinimumSpanningTree method is not called if the network is

not connected. In that program, comment out the line

if (networkIsConnected)

Run that program to create a network that is not connected but for which the getMinimumSpanningTree

method still succeeds.

Hint: Not all edges are used in obtaining a minimum spanning tree.

15.4 In the Network class, unit-test and define a method to produce a topological order. Here is the specification:

/**

* Sorts this acyclic Network object into topological order.

* The worstTime(V, E) is O(V log V).

*

* @return an ArrayList object of the vertices in topological order. Note: if the

* size of the ArrayList object is less than the size of this Network object,

* the Network object must contain a cycle, and the ArrayList will not

* contain all the network’s vertices in topological order.

694 CHAPTER 15 Graphs, Trees, and Networks

*

*/

public ArrayList<vertex> sort()

Hint: First, construct a TreeMap object, inCount, that maps each vertex w to the number of vertices

to which w is adjacent. For example, if the Network object has three edges of the form <?, w>, then

inCount will map w to 3 (technically, to new Integer (3)). After inCount has been constructed, push

onto a stack (or enqueue onto a queue) each vertex that inCount maps to 0. Then loop until the stack is

empty. During each loop iteration,

1. pop the stack;

2. append the popped vertex v to an ArrayList object, orderedVertices;

3. decrease the value, in inCount ’s mapping, of any vertex w such that <v, w> forms an edge;

4. if inCount now maps w to 0, push w onto the stack.

After the execution of the loop, the ArrayList object, containing the vertices in a topological order, is

returned.

Programming Project 15.1

The Traveling Salesperson Problem

(This project assumes you are familiar with the material in Labs 9 and 23). Design, test, and implement a program

to solve the Traveling Salesperson Problem. Your program will probably take exponential time. If, somehow, your

program takes only polynomial time, be sure to claim your rightful place among the greatest computer scientists

in the history of computing!

ANALYSIS: Each line of each input file will contain a pair of cities and the weight of the edge connecting the

first city to the second city.

Assume that the input file tsp.in1 contains the following edges and weights:

a b 6

b a 6

a c 3

c a 3

a d 5

d a 5

b c 4

c b 4

b d 7

d b 7

c d 9

d c 9

System Test 1 (input in boldface):

Please enter the path for the file name that will hold the input: tsp.in1

The minimal-weight cycle is dbcad.

Its total weight is 19.

Programming Exercises 695

Assume that the input file tsp.in2 contains the following edges and weights:

a b 12

b a 12

a c 4

c a 4

a d 10

d a 10

a e 3

e a 3

b c 99

c b 9

b d 7

d b 7

b e 5

e b 5

c d 9

d c 9

c e 19

e c 19

d e 4

e d 4

System Test 2 (input in boldface):

Please enter the path for the file name that will hold the input: tsp.in2

The minimal-weight cycle is dbeacd.

Its total weight is 28.

Programming Project 15.2

Backtracking through a Network

Given a network in which each vertex is a city and each weight represents the distance between two cities,

determine a path from a start city to a finish city in which each edge’s distance is less than the previous edge’s

distance.

Analysis: Each city will be given as a String of at most 14 characters, with no embedded blanks. The first line

of input will contain the start city and finish city. Each subsequent line—until the sentinel of “***”—will consist

of two cities and the distance in miles from the first of those two cities to the second.

There is no input editing to be done.

The initial output will be the network. If there is no solution, the final output will be:

There is no solution.

Otherwise the final output will be:

There is a solution:

followed by the edges (from-city, to-city, distance) corresponding to the solution.

(continued on next page)

696 CHAPTER 15 Graphs, Trees, and Networks

(continued from previous page)

System Test 1 (input in boldface):

Please enter the start and finish cities, separated by a blank. Each city name should have

no blanks and be at most 14 characters in length.

Boston Washington

Please enter two cities and their distance; the sentinel is ***

Boston NewYork 214

Please enter two cities and their distance; the sentinel is ***

Boston Trenton 279

Please enter two cities and their distance; the sentinel is ***

Harrisburg Washington 123

Please enter two cities and their distance; the sentinel is ***

NewYork Harrisburg 168

Please enter two cities and their distance; the sentinel is ***

NewYork Washington 232

Please enter two cities and their distance; the sentinel is ***

Trenton Washington 178

Please enter two cities and their distance; the sentinel is ***

The initial state is as follows:

{Trenton = [Washington 178.0], NewYork = [Harrisburg 168.0,

Washington 232.0], Washington = [], Harrisburg = [Washington 123.0],

Boston = [NewYork 214.0, Trenton 279.0]}

A solution has been found:

FROM CITY TO CITY DISTANCE

Boston NewYork 214.0

NewYork Harrisburg 168.0

Harrisburg Washington 123.0

System Test 2 (input in boldface):

Please enter the start and finish cities, separated by a blank. Each city name should have

no blanks and be at most 14 characters in length.

Boston Washington

Please enter two cities and their distance; the sentinel is ***

Boston Trenton 279

Please enter two cities and their distance; the sentinel is ***

Boston NewYork 214

Programming Exercises 697

Please enter two cities and their distance; the sentinel is ***

Harrisburg Washington 123

Please enter two cities and their distance; the sentinel is ***

NewYork Harrisburg 168

Please enter two cities and their distance; the sentinel is ***

NewYork Washington 232

Pease enter two cities and their distance; the sentinel is ***

Trenton Washington 178

Please enter two cities and a weight; the sentinel is ***

The initial state is as follows:

{Trenton = [Washington 178.0], NewYork = [Harrisburg 168.0,

Washington 232.0], Washington = [], Harrisburg = [Washington 123.0],

Boston = [Trenton 279.0, NewYork 214.0]}

A solution has been found:

FROM CITY TO CITY DISTANCE

Boston Trenton 279.0

Trenton Washington 178.0

Note: The solution to this System Test is different from the solution to System Test 1 because in this System Test,

the Boston-Trenton edge is entered before the Boston-NewYork edge.

Programming Project 15.3

Determining Critical Activities in a Project Network

Note: This project assumes the completion of Programming Exercise 15.5.

In the Network class, test and define a method to calculate the slack time for each activity in a project

network. Here is the method specification:

/**

* Determines the slack time for each activity in this Project Network object.

* The worstTime(V, E) is O(V log V).

*

* @return a TreeMap object that maps each activity, that is, each

* edge triple <v1, v2, weight>, to the slack time for that activity.

(continued on next page)

698 CHAPTER 15 Graphs, Trees, and Networks

(continued from previous page)

*

*/

public TreeMap<EdgeTriple, Double> getSlackTimes()

Hint: First, create a TreeMap object, inMap, that maps each vertex v to the TreeMap object of vertex-weight pairs

<w, weight> such that <w, v> forms an edge with weight weight. That is, inMap is similar to adjacencyMap

except that each vertex v is mapped to the vertices coming into v; in adjacencyMap, each vertex v is mapped to

the vertices going out from v.

Then loop through the ArrayList object (from Programming Exercise 15.4) in topological order. For each

vertex v, use inMap to calculate ET(v). (The functional notation, “ET(v)”, suggests a mapping, and earliestTime

can be another HashMap object!) Then loop through the ArrayList object in reverse order to calculate LT(v) for

each vertex v. Then calculate the slack time for each vertex.

Programming Project 15.4

An Integrated Web Browser and Search Engine, Part 7

This final part of the project involves increasing the relevance count of a given web page for each other web page

that has a link to the given web page. For example, suppose the search is for “neural network”, and the word

“network” appears 4 times in the web page “browser.in11” and “neural” appears 2 times in “browser.in11”. If the

web pages “browser.in12” and “browser.in13” have a link to “browser.in11”, that indicates that “browser.in11”

is more relevant than if it had no links to it. So we will increase the relevance count for “browser.in11”. For

simplicity, we increase the relevance count by 1 for each file that has a link to “browser.in11”. So the new

relevance count for “browser.in11” will be 8: 4 for “network”, 2 for “neural”, and 2 for having two web pages

that had links to “browser.in11”.

To accomplish this change to the search engine, we need to determine, for each given web page, the list of

other web pages that have a link to the given web page. So we will create a directed graph in which there is an

arrow from vertex A to vertex B if web page B has a link to web page A. Then the number of web pages that have

links to a web page A is just the number of neighbors of A.

To start with, develop a NetworkConnectivity class that scans each web page in search.in1 searching for

links, and adds edges to a graph (for simplicity, an instance of the Network class) as described in the previous

paragraph. After creating the graph, serialize it to “network.ser”. This should be done just once, because the

connectivity graph is independent of the search string. After “network.ser” has been created, you will need to de-

serialize it for your search engine. Unlike “search.ser”, you do not re-serialize “network.ser” because the network

does not change as the result of your searches.

The contents of the web pages used in the System Tests are as follows:

home.in1:

This is my home page

Through caverns browser11 numberless to man

Down to a neural network sunless sea.

browser.in10:

In Xanadu did Kubla Khan

A stately browser13 pleasure-dome decree:

Programming Exercises 699

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

neural network neural network neural network neural network

And so it goes.

browser.in11:

In Xanadu did browser12 Kubla Khan

A stately pleasure-dome decree:

Where Alph, the neural <a href =

browser.in10>browser10 network sacred river, ran

Through caverns neural network measureless to man

Down to a network sunless sea.

network

browser.in12:

Neural surgeons have a network. But the decree is a decree is

a network browser11 and a network is a

network, browser10 neural or not.

browser.in13:

In Xanadu did Kubla Khan

A stately browser11 pleasure-dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

neural network neural network neural network neural network

browser.in14:

In browser12 Xanadu <a href =

browser.in10>browser10

Did Kubla Khan

A stately pleasure-dome decree:

Where Alph, the neural network sacred river, ran

Through caverns neural network measureless to man

Down to a network sunless sea.

network

Note: The above files are different from the same-named files in Programming Project 13.2. The original version

of search.ser is available from the book’s web site.

Incorporating hyperlink connectivity into a search engine was one of the innovations of Google, and the

graduate students who created Google (Sergei Brin and Larry Page) are decabillionaires.

System Test 1:

(The end-user searches for “neural network”)

(continued on next page)

700 CHAPTER 15 Graphs, Trees, and Networks

(continued from previous page)

Here are the results of the new search for “neural network”

browser.in10 11

browser.in13 9

browser.in11 8

browser.in12 8

browser.in14 6

(The end-user searches for “network”)

Here are the results of the old search for “network”

browser.in10 7

browser.in12 6

browser.in11 6

browser.in13 5

browser.in14 4

(The end-user clicks on the Back button twice)

Here are the results of the new search for “neural network”

browser.in10 11

browser.in13 9

browser.in11 8

browser.in12 8

browser.in14 6

System Test 2:

(The end-user searches for “neural network”)

Here are the results of the old search for “neural network”

browser.in10 11

browser.in13 9

browser.in11 8

browser.in12 8

browser.in14 6

(The end-user searches for “network decree”)

Here are the results of the new search for “network decree”

browser.in10 8

browser.in12 8

browser.in11 7

browser.in13 6

browser.in14 5

In System Test 2, the search for “neural network” is referred to as an “old” search because search.ser was updated

when System Test 1 ended. The file search.ser contains search information, but not connectivity information.

Additional Features of the JAVA

Collections Framework

APPENDIX 1

A1.1 Introduction

The Java Collections Framework has several features beyond those encountered so far in this book. This

appendix focuses on two of those features: serialization and fail-fast iterators.

A1.2 Serialization

Suppose we have gone to the trouble of creating a large and complex HashMap object as part of a project.

After we have used that HashMap object in an execution of the project, we might want to save the

HashMap, on file, so that we can later resume the execution of the project without having to re-construct

the HashMap. Fortunately, this is easily done with just a couple of statements.

How? All of the collection classes in the Java Collections Framework implement the Serializable

interface that is in the package java.io. This interface has no methods, but merely provides information

to the Java virtual machine about sending instances of the class to/from a stream (a sequence of bytes).

Specifically, any class that implements the Serializable interface will be able to copy any object in the

class to an output stream—that is, to “serialize” the elements in the object. “Deserialization” reconstructs

the original object from an input stream.

For a simple example, suppose we have created an ArrayList object named fruits, whose ele-

ments are of type String. We can create an ObjectOutputStream and then write fruits to the

FileOutputStream object whose path is “fruits.ser” as follows:

try

{

ObjectOutputStream oos = new ObjectOutputStream (

new FileOutputStream ("fruits.ser"));

oos.writeObject (fruits);

} // try

catch (IOException e)

{

System.out.println (e);

} // catch

The ArrayList object fruits has been serialized , that is, is saved as a stream of bytes. The file qualifier,

“ser”, is an abbreviation of “serializable,” but you are free to use any qualifier you want, or no qualifier.

The definition of the writeObject method depends on the class of the object serialized. For example,

here is the definition in the ArrayList class:

/**

* Save the state of the <tt>ArrayList</tt> instance to a stream (that

* is, serialize it).

701

702 APPENDIX 1 Additional Features of the JAVA Collections Framework

* The worstTime(n) is O(n).

*

* @serialData The length of the array backing the <tt>ArrayList</tt>

* instance is emitted (int), followed by all of its elements

* (each an <tt>Object</tt>) in the proper order.

*/

private void writeObject (java.io.ObjectOutputStream s)

throws java.io.IOException

{

// Write out element count, and any hidden stuff

s.defaultWriteObject();

// Write out array length

s.writeInt (elementData.length);

// Write out all elements in the proper order.

for (int i=0; i<size; i++)

s.writeObject (elementData [i]);

}

The size of the ArrayList object is saved first, and then the length of the elementData array field, so

that an array of the exact same capacity can be created when the ArrayList object is reconstructed from

the file. Finally, the elements in the ArrayList object are saved to the file.

In another program, or in a later execution of the same program, we can de-serialize fruits. To

accomplish that task, we create an ObjectInputStream object to read the stream of bytes, from the

FileInputStream whose path is “fruits.ser”, into fruits:

try

{

ObjectInputStream ois = new ObjectInputStream (

new FileInputStream ("fruits.ser"));

fruits = (ArrayList<String>)ois.readObject ();

} // try

catch (Exception e)

{

System.out.println (e);

} // catch

In the readObject method, the first value read from the stream represents the size of the ArrayList

object, and the next value represents the length of the underlying array, and finally, the individual elements

are read, one at a time.

An object that is saved and then retrieved in another program (or later execution of the same program)

is called persistent . In this example, the ArrayList object fruits is persistent. And the same mechanism

shown above can be used to create persistent instances of any of the other collection classes in the Java

Collections Framework.

You can make your own classes serializable. Right after the class heading, add

implements java.io.Serializable;

A1.3 Fail-Fast Iterators 703

If all that have to be saved are fields, you needn’t define writeObject and readObject methods: the

default serialization/deserialization will handle fields. In the ArrayList example just listed, the defaults

were not enough; the length of the array elementData and the elements themselves had to be saved. That

is why the ArrayList class explicitly defines writeObject and readObject methods.

A1.3 Fail-Fast Iterators

Once an iterator has started iterating over a collection, that collection should not be structurally modified

except by that iterator. A structural modification is either an insertion or removal; accessors and mutators

do not structurally modify a collection. First, we’ll see how this prohibition against structural modification

can be helpful to users, and then we’ll look at how the prohibition is enforced in the Java Collections

Framework.

The following main method creates a small LinkedList object. During an iteration over that object,

the object modifies itself, and then the iteration continues.

public static void main (String[] args)

{

LinkedList<String> list = new LinkedList<String>();

list.add ("humble");

list.add ("meek");

list.add ("modest");

Iterator<String> itr = list.iterator();

System.out.println (itr.next()); // prints "humble"

list.remove ("modest");

System.out.println (itr.next()); // prints "meek"?

System.out.println (itr.next()); // ???

} // method main

The program constructs a LinkedList object, list, of three elements. An iterator, itr, starts iterating

over list. When itr calls its next() method, the element “humble” at index 0 is returned, and itr

advances to index 1. At this point, list removes the element at index 2. The second call to the next()

method should be flagged as illegal. Why? The element “meek” at index 1 could be returned, but itr

should not be allowed to advance to and print the element at index 2 because there is no longer an element

at index 2. So what is best for the programmer is to have the error detected when the second call to the

next() method is made, rather than having the error detected later in the program.

And that is exactly what happens. When this program was run, the value “humble” was output,

and there was an exception thrown: ConcurrentModificationException. This exception was thrown

when the second call to the next() method was made.

The idea is this: Once you start iterating through a collection in the Java Collections Framework,

you should not modify the collection except with messages to that iterator. Otherwise, the integrity of that

iterator may be compromised, so ConcurrentModificationException is thrown. Such iterators are

fail-fast : the exception is thrown as soon as the iterator may be invalid. The alternative, waiting until the

iterator is known to be invalid, may be far more difficult to detect.

704 APPENDIX 1 Additional Features of the JAVA Collections Framework

The mechanism for making iterators fail-fast involves two fields: one in the collection, and one in the

iterator. We have studied six Collection classes within the Java Collections Framework: ArrayList,

LinkedList, Stack, PriorityQueue, TreeSet, and HashSet. Each of these classes has a modCount

field1 that is initialized to 0. Each time the collection is structurally modified, modCount—for “modification

count”—is incremented by 1.

The iterator class embedded in the Collection class has an expectedModCount field, which is ini-

tialized to modCount in the iterator’s constructor. Whenever the iterator structurally modifies the collection

(for example, with a call to itr.remove()), both expectedModCount and modCount are incremented

by 1. Also, whenever the iterator object itself is modified (for example, with a call to itr.next() or

itr.remove()), there is a test:

if (modCount != expectedModCount)

throw new ConcurrentModificationException();

If modCount and expectedModCount are unequal, that means the collection has been structurally modi-

fied, but not by the iterator. Then for example, as in the program at the beginning of this section, a call to

the next() method might advance to an element that is no longer in the collection. Instead of returning

a possibly incorrect value, the next() method throws ConcurrentModificationException.

If, for some reason, you want to bypass this fail-fast protection, you can catch ConcurrentModi

ficationException and do nothing in the catch block.

1For the ArrayList and LinkedList classes, modCount is inherited from AbstractList. TreeMap and HashMap explicitly declare the

modCount field. TreeSet and HashSet utilize the modCount field in the backing map field (an instance of TreeMap and HashMap, respectively).

Mathematical Background APPENDIX 2

A2.1 Introduction

Mathematics is one of the outstanding accomplishments of the human mind. Its abstract models of real-life

phenomena have fostered advances in every field of science and engineering. Most of computer science

is based on mathematics, and this book is no exception. This appendix provides an introduction to those

mathematical concepts referred to in the chapters. Some exercises are given at the end of the appendix, so

that you can practice the skills while you are learning them.

A2.2 Functions and Sequences

An amazing aspect of mathematics, first revealed by Whitehead and Russell [1910], is that only two basic

concepts are required. Every other mathematical term can be built up from the primitives set and element .

For example, an ordered pair < a, b > can be defined as a set with two elements:

< a , b > = {a , {a , b}}

The element a is called the first component of the ordered pair, and b is called the second component .

Given two sets A and B , we can define a function f from A to B , written

f : A → B

as a set of ordered pairs < a , b >, where a is an element of A, b is an element of B , and each element in

A is the first component of exactly one ordered pair in f . Thus no two ordered pairs in a function have

the same first element. The sets A and B are called the domain and co-domain , respectively.

For example,

f = {< −2, 4 >, < −1, 1 >, < 0, 0 >, < 1, 1 >, < 2, 4 >}

defines the “square” function with domain { -2, -1, 0, 1, 2 } and co-domain { 0, 1, 2, 4 }. No two ordered

pairs in the function have the same first component, but it is legal for two ordered pairs to have the same

second component. For example, the pairs

<-1, 1> and <1, 1>

have the same second component, namely, 1.

If< a , b> is an element of f , we write f(a) = b. This gives us a more familiar description of the

above function: the function f is defined by

f (i) = i 2, for i in −2 . . . 2.

Another name for a function is a map. This is the term used in Chapters 12, 14, and 15 to describe a

collection of elements in which each element has a unique key part and a value part. There is, in effect,

a function from the keys to the values, and that is why the keys must be unique.

705

706 APPENDIX 2 Mathematical Background

A finite sequence t is a function such that for some positive integer k , called the length of the

sequence, the domain of t is the set { 0, 1, 2, . . . , k-1 }. For example, the following defines a finite

sequence of length 4:

t(0) = “Karen”

t(1) = “Don”

t(2) = “Mark”

t(3) = “Courtney”

Because the domain of each finite sequence starts at 0, the domain is often left implicit, and we write

t = “Karen”, “Don”, “Mark”, “Courtney”

A2.3 Sums and Products

Mathematics entails quite a bit of symbol manipulation. For this reason, brevity is an important consider-

ation. An example of abbreviated notation can be found in the way that sums are represented. Instead of

writing

x0 + x1 + x2 + · · · + xn−1

we can write
n−1
∑

i=0

xi

This expression is read as “the sum, as i goes from 0 to n−1, of x sub i .” We say that i is the count index .

A count index corresponds to a loop-control variable in a for statement. For example, the following code

will store in sum the sum of components 0 through n-1 in the array x:

double sum = 0.0;

for (i = 0; i < n; i++)

sum += x [i];

Of course, there is nothing special about the letter “i .” We can write, for example,

10
∑

j=1

(1/j)

as shorthand for

1 + 1/2 + 1/3 + · · · + 1/10

Similarly, if n >= m ,
n

∑

k=m

(k2−k)

is shorthand for

m2−m + (m+1)2−(m+1) + · · · + n2−n

A2.4 Logarithms 707

Another abbreviation, less frequently seen than summation notation, is product notation. For example,

4
∏

k=0

a[k]

is shorthand for

a [0] * a [1] * a [2] * a [3] * a [4]

A2.4 Logarithms

John Napier, a Scottish baron and part-time mathematician, first described logarithms in a paper he pub-

lished in 1614. From that time until the invention of computers, the principal value of logarithms was in

number-crunching: logarithms enabled multiplication (and division) of large numbers to be accomplished

through mere addition (and subtraction).

Nowadays, logarithms have only a few computational applications—for example, the Richter scale

for measuring earthquakes. But logarithms provide a useful tool for analyzing algorithms, as you saw (or

will see) in Chapter 3 through 15.

We define logarithms in terms of exponents, just as subtraction can be defined in terms of addition,

and division can be defined in terms of multiplication.

Given a real number b > 1, we refer to b as the base. The logarithm , base b, of any real number

x > 0, written

logb x

is defined to be that real number y such that

by = x

For example, log216 = 4 because 24 = 16. Similarly, log10100 = 2 because 102 = 100. What is log2 64?

What is log8 64? Estimate log10 64.

The following relations can be proved from the above definition and the corresponding properties of

exponents. For any real value b > 1 and for any positive real numbers x and y,

Properties of Logarithms

1. logb1 = 0

2. logb b = 1

3. logb (xy) = logb x + logb y

4. logb (x/y) = logb x—logb y

5. logb bx = x

6. blogb x = x

7. logb xy = y logb x

708 APPENDIX 2 Mathematical Background

From these equations, we can obtain the formula for converting logarithms from one base to another.

For any bases a and b> 1 and for any x> 0,

logb x = logb a log a x {by property 5}

= (loga x)(logb a){by property 7}

The base e (≈ 2.718) has special significance in calculus; for this reason logarithms with base e are called

natural logarithms and are written in the shorthand ln instead of loge .

To convert from a natural logarithm to a base 2 logarithm, we apply the base-conversion formula

just derived. For any x> 0,

ln x = (log2 x)(ln 2)

Dividing both sides of this equation by ln 2, we get

log2 x = ln x/ ln 2

We assume the function ln is predefined, so this equation can be used to approximate log2x . Similarly,

using base-10 logarithms,

log2 x = log10 x/ log10 2

The function ln and its inverse exp provide one way to perform exponentiation. For example, suppose we

want to calculate x y where x and y are of type double and x> 0. We first rewrite x y :

x y = eln(x)y
{by Property 6, above}

= ey ln x {by Property 7}

This last expression can be written in Java as

Math.exp (y * Math.ln (x))

or, equivalently, and without any derivation,

Math.pow (x, y)

A2.5 Mathematical Induction

Many of the claims in the analysis of algorithms can be stated as properties of integers. For example, for

any positive integer n ,
n

∑

i=1

i = n(n + 1)/2

In such situations, the claims can be proved by the Principle of Mathematical Induction.

Principle of Mathematical Induction

Let S1, S2, . . . be a sequence of statements. If both of the following cases hold:

1. S1 is true

2. For any positive integer n, whenever Sn is true, Sn+1 is true

then the statement Sn is true for any positive integer n.

A2.5 Mathematical Induction 709

To help you to understand why this principle makes sense, suppose that S1, S2, . . . is a sequence of

statements for which cases 1 and 2 are true. By case 1, S1 must be true. By case 2, since S1 is true, S2

must be true. Applying case 2 again, since S2 is true, S3 must be true. Continually applying case 2 from

this point, we conclude that S4 is true, and then that S5 is true, and so on. This indicates that the conclusion

in the principle is reasonable.

To prove a claim by mathematical induction, we first state the claim in terms of a sequence of

statements S1, S2, We then show that S1 is true—this is called the base case. Finally, we need to

prove case 2, the inductive case.

Here is an outline of the strategy for a proof of the inductive case: let n be any positive integer and

assume that Sn is true. To show that Sn+1 is true, relate Sn+1 back to Sn , which is assumed to be true.

The remainder of the proof often utilizes arithmetic or algebra.

Example A2.1 Sum of Initial Sequence of Positive Integers

We will use the Principle of Mathematical Induction to prove the following:

Claim For any positive integer n,

n
∑

i=1

i = n(n + 1)/2

Proof We start by stating the claim in terms of a sequence of statements. For n = 1, 2, . . ., let Sn be the

statement
n

∑

i=1

i = n(n + 1)/2

1. Base case.
1

∑

i=1

i = 1 = 1(2)/2

Therefore S1 is true.

2. Inductive case. Let n be any positive integer and assume that Sn is true. That is,

n
∑

i=1

i = n(n + 1)/2

We need to show that Sn+1 is true, namely,

n+1
∑

i=1

i = (n + 1)(n + 2)/2

We relate Sn+1 back to Sn by making the following observation: The sum of the first n+1 integers is the

sum of the first n integers plus n+1. That is,

n+1
∑

i=1

i =

n
∑

i=1

i + (n + 1)

= n(n + 1)/2 + (n + 1) //because Snis assumed true

= n(n + 1)/2 + 2(n + 1)/2

= (n(n + 1) + 2(n + 1))/2

= (n + 2)(n + 1)/2

710 APPENDIX 2 Mathematical Background

We conclude that Sn+1 is true (whenever Sn is true). So, by the Principle of Mathematical Induction, the

statement Sn is true for any positive integer n.

An important variant of the Principle of Mathematical Induction is the following:

Principle of Mathematical Induction—Strong Form

Let S1, S2, . . . be a sequence of statements. If both of the following cases hold:

1. S1 is true

2. For any positive integer n, whenever S1, S2, . . ., Sn are true, Sn+1 is true

then the statement Sn is true for any positive integer n.

The difference between this version and the previous version is in the inductive case. Here, when we want

to establish that Sn+1 is true, we can assume that S1, S2, . . ., Sn are true.

Before you go any further, try to convince (or at least, persuade) yourself that this version of the

principle is reasonable. At first glance, you might think that the strong form is more powerful than the

original version. But in fact, they are equivalent.

We now apply the strong form of the Principle of Mathematical Induction to obtain a simple but

important result.

Example A2.2 Number of Iterations of “Halving” Loop

Show that for any positive integer n, the number of iterations of the following loop statement is floor(log2n):

while (n > 1)

n = n / 2;

Proof For n = 1, 2, . . ., let t(n) be the number of loop iterations. For n = 1, 2, . . ., let Sn be the statement:

t(n) = floor(log2 n)

1. Base case. When n = 1, the loop is not executed at all, and so t(n) = 0 = floor (log2n). That is S1 is true.

2. Inductive case. Let n be any positive integer and assume that S1, S2, . . ., Sn are all true. We need to

show that Sn+1 is true. There are two cases to consider:

a. n+1 is even. Then the number of iterations after the first iteration is equal to t((n + 1)/2). Therefore,

we have

t(n+1) = 1 + t((n+1)/2)

= 1 + floor(log2((n+1)/2)) {by the induction hypothesis}

= 1 + floor(log2(n+1) − log2(2)) {because log of quotient equals difference of logs}

= 1 + floor(log2(n+1) − 1)

= 1 + floor(log2(n+1)) − 1

= floor(log2(n+1))

Thus Sn+1 is true.

A2.5 Mathematical Induction 711

b. n+1 is odd. Then the number of iterations after the first iteration is equal to t(n/2). Therefore, we

have

t(n + 1) = 1 + t(n/2)

= 1 + floor(log2(n/2)) {by the induction hypothesis}

= 1 + floor(log2 n − log2 2) {log of quotient equals difference of logs}

= 1 + floor(log2 n − 1)

= 1 + floor(log2 n) − 1

= floor(log2 n)

= floor(log2(n + 1) {since log2(n + 1) cannot be an integer}
Thus Sn+1 is true.

Therefore, by the strong form of the Principle of Mathematical Induction, Sn is true for any positive

integer n.

Before we leave this example, we note that an almost identical proof shows that in the worst case for

an unsuccessful binary search, the number of iterations is

floor(log2 n) + 1

In the original and “strong” forms of the Principle of Mathematical Induction, the base case consists of a

proof that S1 is true. In some situations we may need to start at some integer other than 1. For example,

suppose we want to show that

n! > 2n

for any n> = 4. (Notice that this statement is false for n = 1, 2, and 3.) Then the sequence of statements

is S4, S5, . . . For the base case we need to show that S4 is true.

In still other situations, there may be several base cases. For example, suppose we want to show

that

fib(n) < 2n

for any positive integer n . (The method fib, defined in Lab 7, calculates Fibonacci numbers.) The base

cases are:

fib(1) < 21

and

fib(2) < 22

These observations lead us to the following:

Principle of Mathematical Induction—General Form

Let K and L be any integers such that K <= L and let SK , SK+1, . . . be a sequence of statements. If

both of the following cases hold:

1. SK , SK+1,. . .,SL are true

2. For any integer n>= L, if SK , SK+1, . . ., Sn are true, then Sn+1 is true.

then the statement Sn is true for any integer n>= K.

712 APPENDIX 2 Mathematical Background

The general form extends the strong form by allowing the sequence of statements to start at any integer

(K) and to have any number of base cases (SK , SK+1,. . .,SL). If K = L = 1, the general form reduces to

the strong form.

The next two examples use the general form of the Principle of Mathematical Induction to prove

claims about Fibonacci numbers.

Example A2.3 Upper Bound on nth Fibonacci Number

Show that

fib(n) < 2n

for any positive integer n.

Proof For n = 1, 2, . . ., let Sn be the statement

fib(n) < 2n

In the terminology of the general form of the Principle of Mathematical Induction, K = 1 because the

sequence starts at 1; L = 2 because there are two base cases.

1. fib(1) = 1< 2 = 21, and so S1 is true.

fib(2) = 1< 4 = 22, and so S2 is true.

2. Let n be any integer ≥ 2 and assume that S1, S2, . . ., Sn are true. We need to show that Sn+1is true (that

is, we need to show that fib(n+1)<2n+1).

By the definition of Fibonacci numbers,

fib(n+1) = fib(n) + fib(n−1), forn ≥ 2.

Since S1, S2, . . ., Sn are true, we know that Sn−1 and Sn are true. Thus

fib(n−1) < 2n−1

and

fib(n) < 2n

We then get

fib(n+1) = fib(n) + fib(n−1)

< 2n + 2n−1

< 2n + 2n

= 2n+1

And so fib (n+1) is true.

We conclude, by the general form of the Principle of Mathematical Induction, that

fib(n) < 2n

for any positive integer n.

You could now proceed, in a similar fashion, to develop the following lower bound for Fibonacci numbers:

fib(n) >(6/5)n

for all integers n ≥ 3.

Hint: Use the general form of the Principle of Mathematical Induction, with K = 3 and L = 4.

A2.5 Mathematical Induction 713

Now that lower and upper bounds for Fibonacci numbers have been established, you might wonder

if we can improve on those bounds. We will do even better. In the next example we verify an exact, closed

formula for the nth Fibonacci number. A closed formula is one that is neither recursive nor iterative.

Example A2.4 Closed-Form Formula for nth Fibonacci Number

Show that for any positive integer n,

fib(n) =
1

√
5

⎡

⎣

[

1 +
√

5

2

]n

−
[

1 −
√

5

2

]n
⎤

⎦

Before you look at the proof below, calculate a few values to convince yourself that the formula actually does

provide the correct values.

Proof For n = 1,2, . . ., let Sn be the statement

fib(n) =
1

√
5

⎡

⎣

[

1 +
√

5

2

]n

−
[

1 −
√

5

2

]n
⎤

⎦

Let x = 1+
√

5

2
and let y = 1−

√
5

2
.

Note that

x2 =
(1 +

√
5)2

4
=

1 + 2
√

5 + 5

4
=

3 +
√

5

2
= x + 1

Similarly, y2 = y + 1.

We now proceed with the proof.

1.

fib(1) =
1

√
5

⎡

⎣

[

1 +
√

5

2

]1

−
[

1 −
√

5

2

]1
⎤

⎦ = 1, so S1 is true

To show that S2 is true, we proceed as follows:

1
√

5

⎡

⎣

[

1 +
√

5

2

]2

−
[

1 −
√

5

2

]2
⎤

⎦

=
1

√
5

(x2 − y2)

=
1

√
5

(x + 1 − (y + 1))

=
1

√
5

(x − y)

=
1

√
5

⎡

⎣

[

1 +
√

5

2

]1

−
[

1 −
√

5

2

]1
⎤

⎦

=1, which fib(2) equals, by definition, and so S2 is also true.

2. Let n be any positive integer greater than 1 and assume that S1, S2, . . ., Sn are true. We need to show

that Sn+1 is true; that is, we need to show that

fib(n + 1) =
1

√
5

⎡

⎣

[

1 +
√

5

2

]n+1

−
[

1 −
√

5

2

]n+1
⎤

⎦

714 APPENDIX 2 Mathematical Background

By the definition of Fibonacci numbers,

fib(n+1) = fib(n) + fib(n−1)

Since Sn and Sn−1 are true by the induction hypothesis, we have (using x and y)

fib(n) =
1

√
5

(xn − yn)

and

fib(n−1) =
1

√
5

(xn−1 − yn−1)

Substituting, we get

fib(n+1) =
1

√
5

(xn + xn−1 − yn − yn−1)

=
1

√
5

(xn−1(x+1) − yn−1(y+1))

=
1

√
5

(xn−1x2 − yn−1y2)

=
1

√
5

(xn+1 − yn+1)

Therefore Sn+1 is true.

We conclude, by the general form of the Principle of Mathematical Induction, that Sn is true for any positive

integer n.

The next example establishes part 1 of the Binary Tree Theorem in Chapter 9: the number of leaves is at

most the number of elements in the tree plus one, all divided by 2.0. The induction is on the height of the

tree and so the base case is for single-item tree, that is, a tree of height 0.

Example A2.5 Upper Bound on Number of Leaves in a Non-Empty Binary Tree

Let t be a non-empty binary tree, with leaves(t) leaves and n(t) elements. We claim that

leaves(t) ≤
n(t) + 1

2.0

Proof For k = 0, 1, 2, . . ., let Sk be the statement: For any nonempty binary tree t of height k,

leaves(t) ≤
n(t) + 1

2.0

1. If t has height 0, then leaves(t) = n(t) = 1, and so

1 = leaves(t) ≤
n(t) + 1

2.0
= 1

Therefore S0 is true.

A2.5 Mathematical Induction 715

2. Let k be any integer ≥ 0, and assume that S0, S1, . . ., Sk are true. We need to show that Sk+1 is true.

Let t be a non-empty binary tree of height k+1. Both leftTree(t) and rightTree(t) have height ≤ k, so both

satisfy the induction hypothesis. That is,

leaves(leftTree(t)) ≤
n(leftTree(t)) + 1

2.0

and

leaves(rightTree(t)) ≤
n(rightTree(t)) + 1

2.0

But each leaf in t is either in leftTree(t) or in rightTree(t). That is,

leaves(t) = leaves(leftTree(t)) + leaves(rightTree(t))

Then we have

leaves(t) ≤
n(leftTree(t)) + 1

2.0
+

n(rightTree(t)) + 1

2.0

=
n(leftTree(t)) + n(rightTree(t)) + 1 + 1

2.0

Except for the root element of t, each element in t is either in leftTree(t) or in rightTree(t), and so

n(t) = n(leftTree(t)) + n(rightTree(t)) + 1

Substituting this equation’s left-hand side for its right-hand side in the previous inequality, we get

leaves(t) ≤
n(t) + 1

2.0

That is, Sk+1 is true.

Therefore, by the general form of the Principle of Mathematical Induction, Sk is true for any nonnegative

integer k. This completes the proof of the claim.

The next example, relevant to Chapter 12, shows that the height of any red-black tree is logarithmic in n .

Example A2.6 The Height of a Red-Black Tree

As noted in Chapter 12, the TreeMap and TreeSet classes require only logarithmic time—even in the worst

case—to insert, remove, or search. The reason for this speed is that those classes are based on red-black

trees, whose height is always logarithmic in the number of elements in the tree. The proof that red-black

trees are balanced utilizes the General Form of the Principle of Mathematical Induction.

Theorem The height of any red-black tree is logarithmic in n, the number of elements in the tree.

In order to prove this theorem, we first need a couple of preliminary results.

Claim 1. Let y be the root of a subtree of a red-black tree. The number of black elements is the same in a

path from y to any one of its descendants with no children or one child.

Suppose x is the root of a red-black tree, and y is the root of a subtree. Let b0 be the number of black

elements from x (inclusive) to y (exclusive). For example, in Figure A2.1, if x is 50 and y is 131, b0 = 1, the

number of black elements in the path from 50 through 90; 131 is not counted in b0.

716 APPENDIX 2 Mathematical Background

50

30 90

20 40
80 131

60 85 100 150

140 160

135

FIGURE A2.1 A red-black tree of 14 elements with maximum height, 5

Let b1 be the number of black elements from y (inclusive) to any one of its descendants with no children

or one child (inclusive), and let b2 be the number of black elements from y (inclusive) to any other one of its

descendants with no children or one child (inclusive). Figure A2.2 depicts this situation.

For example, in Figure A2.1, suppose that y is 131 and the two descendants of y are 100 and 135.

Then b0 = 1 because 50 is black; b1 = 2 because 131 and 100 are black; b2 = 2 because 131 and 140 are

black.

In general, by the Path Rule for the whole tree, we must have b0 + b1 = b0 + b2. This implies that

b1 = b2. In other words, the number of black elements is the same in any path from y to any of its descendants

that have no children or one child. We have established Claim 1.

Now that Claim 1 has been verified, we can make the following definition. Let y be an element in a

red-black tree; we define the black-height of y, written bh(y), as follows:

bh(y) = the number of black elements in any path from y to any descendant of

y that has no children or one child.

x

\
.
. b0 black elements from x (inclusive) to y (exclusive)
.
\
y

/ \
. .

b1 . . b2

. .
/ /

z1 z2

FIGURE A2.2 Part of a red-black tree rooted at x; y is a descendant of x, and z1, and z2 are two arbitrarily

chosen descendants of y that have no children or one child. Then b0 represents the number of black descendants

in the path from x up to but not including y; b1 and b2 represent the number of black elements in the path from

y to z1 and z2, respectively

A2.5 Mathematical Induction 717

60

30 85

7 49 70 98

10 65 80 91 111

61 75 82 99 115

FIGURE A2.3 A red-black tree whose root has a black height of 3

By Claim 1, the number of black elements must be the same in any path from an element to any of its

descendants with no children or one child. So black-height is well defined. For an example of black height,

in Figure 12.3 from Chapter 12, the black-height of 50 is 2, the black height of 20, 30, 40, or 90 is 1, and the

black-height of 10 is 0. Figure A2.3 shows a red-black tree in which 60 has a black height of 3 and 85 has a

black height of 2

Claim 2. For any non-empty subtree t of a red-black tree,

n(t) ≤ 2bh(root(t)) − 1

(In the claim, n(t) is the number of elements in t, and root(t) is the root element of t.) The proof of this claim

is, as usual, by induction on the height of t.

Base case: Assume that height(t) = 0. Then n(t) = 1, and bh(root(t)) = 1 if the root is black and 0 if the root

is red. In either case, 1 ≥ bh(root(t)). We have

n(t) = 1 = 21 − 1 ≥ 2bh(root(t)) − 1

This proves Claim 2 for the base case.

Inductive case: Let k be any non-negative integer, and assume Claim 2 is true for any subtree whose height

is ≤ k. Let t be a subtree of height k + 1.

If the root of t has one child, then the root must be black and the child must be red, and so

bh(root(t)) = 1. Therefore,

n(t) ≥ 1 = 21 − 1 = 2bh(root(t)) − 1

This completes the proof of the inductive case if the root of t has only one child.

Otherwise, the root of t must have a left child, v1, and a right child, v2. If the root of t is red, bh(root(t))

= bh(v1) = bh(v2). If the root of t is black, bh(root(t)) = bh(v1) + 1 = bh(v2) + 1. In either case,

bh(v1) ≥ bh(root(t))—1

and

bh(v2) ≥ bh(root(t))—1

718 APPENDIX 2 Mathematical Background

The left and right subtrees of t have height ≤ k, and so the induction hypothesis applies and we have

n(leftTree(t)) ≥ 2bh(v1) − 1

and

n(rightTree(t)) ≥ 2bh(v2) − 1

The number of elements in t is one more than the number of elements in leftTree(t) plus the number of

elements in rightTree(t).

Putting all of the above together, we get:

n(t) = n(leftTree(t)) + n(rightTree(t)) + 1

≥ 2bh(v1) − 1 + 2bh(v2) − 1 + 1

≥ 2bh(root(t))−1 − 1 + 2bh(root(t))−1 − 1 + 1

= 2 ∗ 2bh(root(t))−1 − 1

= 2bh(root(t)) − 1

This complete the proof of the inductive case when the root of t has two children.

Therefore, by the Principle of Mathematical Induction, Claim 2 is true for all non-empty subtrees of

red-black trees.

Finally, we get to show the important result that the height of any non-empty red-black tree is logarithmic in

n, where n represents the number of elements in the tree.

Theorem For any non-empty red-black tree t with n elements, height(t) is logarithmic in n.

Proof Let t be a non-empty red-black tree. By the Red Rule, at most half of the elements in the path from

the root to the farthest leaf can be red, so at least half of those elements must be black. That is,

bh(root(t)) ≥ height(t)/2

From Claim 2,

n(t) ≥ 2bh(root(t)) − 1

≥ 2height(t)/2 − 1

From this we obtain

height(t) ≤ 2 log2(n(t) + 1)

This inequality implies that height(t) is O(log n). By the Binary Tree Theorem in Chapter 9,

height(t) ≥ log2((n(t) + 1)/2.0)

Combining these two inequalities, we conclude that height(t) is logarithmic in n.

This theorem states that red-black trees never get far out of balance. For an arbitrary binary search tree on

the other hand, the height can be linear in n—for example, if the tree is a chain.

Concept Exercises 719

A2.6 Induction and Recursion

Induction is similar to recursion. Each has a number of base cases. Also, each has a general case that

reduces to one or more simpler cases, which, eventually, reduce to the base case(s). But the direction is

different. With recursion, we start with the general case and, eventually, reduce it to the base case. With

induction, we start with the base case and use it to develop the general case.

CONCEPT EXERCISES

A2.1 Use mathematical induction to show that, in the Towers of Hanoi game from Chapter 5, moving n disks from

pole a to pole b requires a total of 2n − 1 moves for any positive integer n .

A2.2 Use mathematical induction to show that for any positive integer n ,

n
∑

i=1

Af (i) = A

n
∑

i=1

f (i)

where A is a constant and f is a function.

A2.3 Use mathematical induction to show that for any positive integer n ,

n
∑

i=1

(i ∗ 2i−1) = (n−1) ∗ 2n + 1

A2.4 Let n0 be the smallest positive integer such that

fib(n0) > n2
0

1. Find n0.

2. Use mathematical induction to show that, for all integers n ≥ n0,

fib(n)> n2

A2.5 Show that fib(n) is exponential in n , specifically, �(((1 +
√

5)/2)n).

Hint: See the formula in Example A1.4 above. Note that the absolute value of
[

1 −
√

5

2

]n

< 1

and so
[

1 −
√

5

2

]n

becomes insignificant for sufficiently large n .

A2.6 Show that
n

∑

i=0

2i = 2n+1 − 1

for any nonnegative integer n .

720 APPENDIX 2 Mathematical Background

A2.7 Find the flaw in the following proof.

Claim All dogs have the same hair color.

Proof For n = 1, 2, . . ., let Sn be the statement:

In any set of n dogs, all dogs in the set have the same hair color.

Base Case: If n = 1, there is only one dog in the set, so all dogs in that set have the same hair color. Thus, S1 is

true.

Inductive Case: Let n be any positive integer and assume that Sn is true; that is, in any set of n dogs, all the dogs

in the group have the same hair color. We need to show that Sn+1 is true. Suppose we have a set of n + 1 dogs:

d1, d2, d3, . . . , dn, dn+1

The set d1, d2, d3, . . ., dn has size n, so by the Induction hypothesis, all the dogs in that set have the same hair

color.

The set d2, d3, . . ., dn, dn+1 also has size n, so by the Induction hypothesis, all the dogs in that set have the same

hair color.

But the two sets have at least one dog, dn, in common. So whatever color that dog’s hair is must be the color of

all dogs in both sets, that is, of all n + 1 dogs. In other words, Sn+1 is true.

Therefore, by the Principle of Mathematical Induction, Sn is true for any non-negative integer n .

Choosing a Data Structure APPENDIX 3

A3.1 Introduction

This appendix serves as a brief summary of much of the material from Chapters 6–8 and 12–15. In par-

ticular, we will categorize the eight major collection classes (ArrayList, LinkedList, Stack, Queue1,

TreeMap, PriorityQueue, HashMap, Network) from those chapters in two different ways. The first

classification will be by the ordering of the elements in the collection: time-based, index-based, comparison-

based and hash-based. The second classification will be by the time to perform common operations on an

element in the collection: access, insertion, deletion and search. For each such operation, averageTime(n)

will be provided, that is, the average time (assuming each event is equally likely) to perform the operation

in a collection of n elements. Whenever the estimate of averageTime(n) differs from the corresponding

estimate for worstTime(n), both estimates will be given.

A3.2 Time-Based Ordering

For applications that utilize a time-based ordering, elements are removed from the collection in the same

order they were inserted (First In, First Out), or in the reverse of that order (Last In, First Out). In the first

case, an instance of the LinkedList class (Section 8.2.2) is appropriate, and an instance of the Stack

class (Section 8.1) is called for in the second case.

For a LinkedList object, accessing the front element takes constant time, as does inserting at the

back and deleting from the front. To search for a specific element in a LinkedList object, averageTime(n)

is linear in n (as is worstTime(n)).

For a Stack object—implemented with an array in which the bottom of the stack is at index

0—accessing the top element takes constant time, as does popping the top element. To push an element

onto the top of the stack, averageTime(n) is constant, but worstTime(n) is linear in n; the worst time

occurs when the underlying array is already full before the insertion. To search for a specific element in

a Stack object, averageTime(n) is linear in n (as is worstTime(n)).

A3.3 Index-Based Ordering

If the index of an element—0, 1, 2, and so on—is critical to the application, you have two choices: the

ArrayList class (Section 6.2) or the LinkedList class (Section 7.3.1).

In the Java Collections Framework, the ArrayList class has an underlying array, and so accessing

(or replacing) the element at a given index takes constant time in both the average and worst cases. Also,

inserting or deleting at a given index entails moving the elements at higher indexes up (to make room for

the insertion) or down (to close up the space of the deleted element). That is why insertion or deletion at

a given index in an ArrayList object takes linear-in-n time in both the average and worst cases. Finally,

1Implemented by LinkedList.

721

722 APPENDIX 3 Choosing a Data Structure

searching for an element in an ArrayList object takes linear-in-n time, but only logarithmic-in-n time if

the elements in the ArrayList object are in order according to a comparator.

Superficially, a LinkedList object is a pitiful choice: Both averageTime(n) and worstTime(n) are

linear-in-n for accessing (or replacing) the element at a given index, as well as for inserting an element

at—or deleting an element from—a given index. But LinkedList objects sparkle during an iteration:

It takes only constant time to access (or replace) the “current” element, or to insert an element in front

of the current element or to delete the current element. Finally, searching for an arbitrary element in a

LinkedList object takes linear-in-n time.

The bottom line, as noted in Section 7.3.3 of Chapter 7, is this:

If the application entails a lot of accessing and/or replacing elements at widely varying indexes, an

ArrayList object will be much faster than a LinkedList object. But if a large part of the application

consists of iterating through a list and making insertions and/or removals during the iterations, a

LinkedList object can be much faster than an ArrayList object.

A3.4 Comparison-Based Ordering

For many applications, the elements will be stored according to how they compare with each other. If the

elements’ class implements the Comparable interface, the comparisons are said to use the “natural” order.

For an “unnatural” order—such as Integer elements in decreasing order, or String elements ordered by

the length of the string—an implementation of the Comparator interface is appropriate. Section 11.3 of

Chapter 11 has the details. In the Java Collections Framework’s PriorityQueue class (Section 13.2), the

focus of the comparisons is to identify the lowest valued (that is, highest priority) element. The framework’s

TreeMap (and TreeSet) class in Section 12.3 (and 12.5) utilizes a red-black tree to order all the elements

in the collection.

A PriorityQueue object accesses the highest-priority element in constant time. Inserting an element

takes constant time, on average, but worstTime(n) is linear in n: If the add (E element) method is called

and the underlying array is full, that array must be resized. Removal of the highest-priority element takes

logarithmic-in-n time in both the average and worst cases. The search for an arbitrary element takes

linear-in-n time in both average and worst cases.

In the TreeMap class, each element is composed of a key—on which the ordering is based—and

a value (the rest of the element). For both the average and worst cases, each of the following operations

takes logarithmic-in-n time:

a. accessing a value, given a key;

b. putting a new element into the collection;

c. removing an element from the collection;

d. searching the collection for an element with a given key.

The Network (that is, weighted digraph) class (Section 15.6) is not part of the Java Collections Framework,

but is well suited for a variety of applications, from scheduling to circuit-board wiring to analyzing web

searches or social networks. In a network, the elements are called “vertices” or “nodes.” The essential

A3.6 Space Considerations 723

aspect in a network is the relationship, called an “edge” between two neighboring vertices. In the Network

class, the only field is a TreeMap object in which each key is a vertex, and each value is the TreeMap

object in which each key is a neighbor of the vertex, and each value is the weight of the edge connecting

the vertex to the neighbor.

As you might expect, most of the usual operations have times that are similar to those of the

TreeMap class. Specifically, with V representing the number of vertices and E the number of edges, the

worstTime(V , E) and averageTime(V , E) are logarithmic in V for each of the following operations:

a. accessing the neighbors of a given vertex;

b. adding a new vertex to the network;

c. searching the network for a given vertex.

In removing a vertex from a network, we must also remove all edges going to that vertex, and for this

operation worstTime(V , E) and averageTime(V , E) are linear-logarithmic in V .

A3.5 Hash-Based Ordering

In some applications—such as the maintenance of a symbol table by a compiler—it is important to be able

to access, insert, and search for elements in constant time on average, even if these operations might rarely

take linear-in-n time. The elements need not be stored in any recognizable order, such as chronological,

indexed, or comparator-based.

In the Java Collection Framework’s HashMap class (Section 14.3), each element consists of a

key/value pair. If the Uniform Hashing Assumption (Section 14.3.2) holds, the averageTime(n) is constant

for each of the following operations:

a. accessing a value, given a key;

b. putting a new element into the collection;

c. removing an element from the collection;

d. searching the collection for an element with a given key.

Unfortunately, even if the Uniform Hashing Assumption holds, worstTime(n) is sluggish: linear-in-n for

each of those four operations.

Table A3.1 encapsulates the preceding information.

A3.6 Space Considerations

The space requirements of your application may play a role in your choice of a data structure, and here

are a few points worth noting. If the data structure has an underlying array (namely Stack, ArrayList,

PriorityQueue, and HashMap), a too-large capacity may waste space. And a too-small capacity can entail

frequent resizing, each of which takes linear-in-n time. A further complication involves the HashMap class:

The time-efficiency of hashing is proportional to the unused space!

For the LinkedList classes, each entry includes previous and next fields as well as the element

field, so the entry consumes three times as much space as the element itself. For a TreeMap, each entry

includes left, right, parent, and color fields as well as the element field, so the entry consumes more than

four times as much space as the element itself (the color field can take up just one byte).

724 APPENDIX 3 Choosing a Data Structure

Table A3.1 Summary of Time Estimates in Appendix 3

Legend: con = constant;
lin = linear in n;
log = logarithmic in n (or in V for Network);
lin-log = linear-logarithmic in V;
worst times in boldface unless the same as average time

Access Insertion Deletion Search

ORDERING

Time-Based

FIFO (LinkedList) con con con lin
(front) (back) (front) (any)

LIFO (Stack) con con [lin] con lin
(top) (top) (top) (any)

Index-Based

ArrayList con lin lin lin*
(at given index) (any)

* log if elements in comparison-based order

LinkedList con con con lin
(at current index while iterating) (any)

Comparison Based

TreeMap log log log log

PriorityQueue con con [lin] log lin

(highest priority element)

Network log log lin-log log

Hash Based

HashMap con [lin] con [lin] con [lin] con [lin]

A3.7 The Best Data Structure?

As you can see from Table A3.1 and Section A3.6, there is no perfect data structure. Each data structure

will be ideal for some applications and horrible for others. If even the possibility of linear-in-n time for

the four common operations is unacceptable and space is not a factor, your best bet is the TreeMap class,

whose worst times are logarithmic in n . And recall from Chapter 3 that the difference between constant

time and logarithmic time is relatively small, but the difference between logarithmic time and linear time

is relatively huge.

REFERENCES

ACM/IEEE-CS Joint Curriculum Task Force, Computing

Curricula 1991 , Association for Computing Machin-

ery, New York, 1991.

Adel’son-Vel’skii, G.M., and E. M. Landis, “An Algo-

rithm for the Organization of Information,” Soviet

Mathematics , Vol. 3, 1962: 1259–1263.

Albir, S. S., UML in a Nutshell , O’Reilly & Associates,

Inc., Sebastopol, CA, 1998.

Andersson, A., T. Hagerup, S. Nilsson and R. Raman,

“Sorting in Linear Time?”, Proceedings of the 27th

Annual ACM Symposium on the Theory of Comput-

ing , 1995.

Arnold, K., and J. Gosling, The Java Programming Lan-

guage, Addison-Wesley Publishing Company, Read-

ing, MA, 1996.

Bailey, D. A., Data Structures in Java for the Princi-

pled Programmer , Second Edition, The McGraw-

Hill Companies, Inc., Burr Ridge, IL, 2003.

Bayer, R. “Symmetric Binary B-trees: Data Structure and

Maintenance Algorithms”, Acta Informatica, 1(4),

1972: 290–306.

Bentley, J. L. and M. D. McIlroy, “Engineering a

Sort Function,” Software—Practice and Experience ,

23(11), November 1993: 1249–1265.

Bloch, J., Effective Java Programming Language Guide,

Addison-Wesley, Boston, 2001.

Collins, W. J., Data Structures and the Standard Template

Library , McGraw-Hill, New York, NY, 2003.

Cormen, T., C. Leierson and R. Rivest, Introduction

to Algorithms , Second Edition, McGraw-Hill, New

York, NY, 2002.

Dale, N. “If You Were Lost on a Desert Island, What

One ADT Would You Like to Have with You?”,

Proceedings of the Twenty-First SIGCSE Technical

Symposium, 22(1), March 1991: 139–142.

Dijkstra, E. W., “A Note on Two Problems in Connex-

ion with Graphs”, Numerische Mathematik 1, 1959:

269–271.

Dijkstra, E. W., A Discipline of Programming , Prentice-

Hall, Inc., Englewood Cliffs, New Jersey, 1976.

Flajolet, P. and A. Odlyzko, “The Average Height of

Binary Trees and Other Simple Trees,” Raports

de Recherche, #56, Institut National de Recherche

en Informatique et en Informatique, February

1981.

Fowler, M., and K. Scott, UML Distilled , Second Edition,

Addison-Wesley, Reading, MA, 2000.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Soft-

ware, Addison-Wesley Publishing Company, Read-

ing, MA, 1995.

Goodrich, M., and R. Tamassia, Data Structures and Algo-

rithms in Java, Second Edition, John Wiley & Sons,

Inc., New York, 2001.

Gries, D., Science of Programming , Springer-Verlag, New

York, 1981.

Guibas, L., and R. Sedgewick, “A Diochromatic Frame-

work for Balanced Trees”, Proceedings of the 19th

Annual IEEE Symposium on Foundations of Com-

puter Science, 1978: 8–21.

Habibi, M., Java Regular Expressions: Taming the

java.util.regex Engine, Apress, Berkeley, CA, 2004.

Heileman, G. L., Data Structures, Algorithms and Object-

Oriented Programming , The McGraw-Hill Compa-

nies, Inc., New York, 1996.

Hoare, C. A. R., “Quicksort,” Computer Journal , 5(4),

April 1962: 10–15.

Huffman, D. A., “A Model for the Construction of Min-

imum Redundancy Codes,” Proceedings of the IRE ,

40, 1952: 1098–1101.

Knuth, D. E., The Art of Computer Programming , Vol-

ume 1: “Fundamental Algorithms,” Second Edi-

tion, Addison-Wesley Publishing Company, Read-

ing, MA, 1973.

Knuth, D. E., The Art of Computer Programming , Vol-

ume 2: “Seminumerical Algorithms,” Second Edi-

tion, Addison-Wesley Publishing Company, Read-

ing, MA, 1973.

Knuth, D. E., The Art of Computer Programming , Vol-

ume 3: “Sorting and Searching,” Addison-Wesley

Publishing Company, Reading, MA, 1973.

725

726 REFERENCES

Kruse, R. L., Data Structures and Program Design ,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey,

1987.

Lewis, J., and W. Loftus, Java Software Solutions: Foun-

dations of Program Design , Second Edition, Addison

Wesley Longman, Inc., Reading, MA, 2000.

McIlroy, M., “A Killer Adversary for Quicksort,”

Software—Practice and Experience 29(0), 1999:

1–4.

Meyer, B., Object-oriented Software Construction,

Prentice-Hall International, London, 1988.

Newhall, T., and L. Meeden, “A Comprehensive Project

for CS2: Combining Key Data Structures and Algo-

rithms into an Integrated Web Browser and Search

Engine,” Proceedings of the 33rd SIGCSE Technical

Symposium on Computer Science Education , March

2002: 386–290.

Noonan, R. E., “An Object-Oriented View of Back-

tracking,” Proceedings of the 31st SIGCSE Technical

Symposium on Computer Science Education , March

2000: 362–366.

Pfleeger, S. L., Software Engineering: Theory and Prac-

tice, Prentice-Hall, Inc., Upper Saddle River, New

Jersey, 1998.

Pohl, I., and C. McDowell, Java by Dissection, Addison

Wesley Longman, Inc., Reading, MA, 2000.

Prim, R. C., “Shortest Connection Networks and Some

Generalizations”, Bell System Technical Journal 36,

1957: 1389–1401.

Rawlins, G. J., Compared to What? An Introduction to

the Analysis of Algorithms , Computer Science Press,

New York, NY, 1992.

Riel, A. J., Object-Oriented Design Heuristics , Addison-

Wesley Publishing Company, Reading, MA, 1996.

Roberts, S., Thinking Recursively , John Wiley & Sons,

Inc., New York, 1986.

Sahni, S., Data Structures, Algorithms, and Applications

in Java , The McGraw-Hill Companies, Inc., Burr

Ridge, IL, 2000.

Schaffer, R., and R. Sedgewick, “The Analysis of Heap-

sort,” Journal of Algorithms 14, 1993: 76–100.

Shaffer, C., A Practical Introduction to Data Structures

and Algorithm Analysis , Prentice-Hall, Inc., Upper

Saddle River, New Jersey, 1998.

Simmons, G. J. (Editor), Contemporary Cryptology: The

Science of Information Integrity , IEEE Press, New

York, NY, 1992.

Wallace, S. P., Programming Web Graphics , O’Reilly &

Associates, Sebastopol, CA, 1999.

Weiss, M. A., Data Structures and Problem Solving Using

Java , Second Edition, Addison Wesley Longman,

Inc., Reading, MA, 2002.

Whitehead, A. N., and B. Russell, Principia Mathematica ,

Cambridge University Press, Cambridge, England,

1910 (Volume 1), 1912 (Volume 2), 1913 (Volume

3).

Williams, J. W., “Algorithm 232: Heapsort”, Communi-

cations of the ACM 7(6), 1964: 347–348.

Wirth, N., Algorithms + Data Structures = Programs ,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey,

1976.

Zwillinger, Daniel, CRC Standard Mathematical Tables

and Formulae, Thirty-First Edition, Chemical Rub-

ber Company, Cleveland, OH, 2002.

INDEX

A

Abstract class, 137–139

versus fully defined class and interface, 139–140

Abstract data type, 31

Abstract method, 29

abstract modifier, 138

Abstraction,

data, 27–28

Accessor method, 57

Activation record, 209, 334

Active method, 208

Acyclic graph, 646, 648, 667, 669, 693–694

Adjacent vertices, 644

Aggregation, 51

Algorithm, 105

connectedness, 658–659

divide-and-conquer, 476–477

longest path, 667–669

minimum spanning tree, 659–663

shortest path, 663–667

Algorithm analysis, 105–121

Alternate implementation(s)

of the BinarySearchTree class, 449–451

of the HashMap class, 626–635, 640

of the LinkedList class, 294–295, 323

A-maze-ing application, 195–208

Ancestor, 379, 439

Application Programming Interface (API), 6

Applications

backtracking through a maze, 195–208

backtracking through a network, 686–689, 695–697

converting from infix to postfix, 338–343

creating a symbol table, 617–625

high-precision arithmetic, 251–257

how compilers implement recursion, 334–337

Huffman encoding, 573–590

line editor, 300–315

simulated car wash, 351–365

spell checker, 530–536

thesaurus, 517–525

Approval voting (project), 545–547

Argument, 19

ArrayList class, 234–251

fields in, 248

heading of, 246–247

versus LinkedList class, 150, 282–285

ArrayList objects,

serializing, 247, 701–702

simple program using, 244–246

Arrays class

binarySearch, 112–113, 180

sort (Merge Sort), 470–476

(Quick Sort), 477–489

assertArrayEquals, 62, 458

assertEquals, 62

Association, 51

Attribute in Unified Modeling Language, 49

Automatic garbage collection, 93

averageSpace(n), 106

averageTime(n), 106

important assumption for, 106

AVL tree, 435–436

height of, 436–438

AVLTree class, 438–441

fixAfterDeletion method (project), 451–454

fixAfterInsertion method (project), 455

B

BackTrack class, 193–195

Backtracking, 191–195

a-maze-ing application, 195–198

Eight Queens (project), 221–222

Knight’s Tour (project), 222–224

Numbrix (project), 227–231

Sudoku (project), 225–226

through a network, 686–689, 695–697

Balance factor, 438–439

Balanced binary search tree, 430–435

AVL tree, 435–436

red-black tree, 501–504

rotations, 431–435

Base of a logarithm, 707

Base case, 709

Big-O notation, 106–116

Big-Omega notation, 116

Big-Theta notation, 117–119

727

728 INDEX

BigInteger class, 251

Binary search, 112–113, 180–185

Binary search tree, 402

AVL tree, 435–436

red-black tree, 501–504

rotations, 431–435

Binary tree, 377–392

branches and leaves, 378–379

chain, 384

complete, 381–383

decision tree, 468

definition, 377

external path length, 385

full, 381

Huffman tree, 576

properties, 378–386

traversals, 386–392

two-tree, 381

Binary Tree Theorem, 383

BinarySearchTree class, 403–427

add method, 416–418

alternative implementation, 449–450

contains method, 414, 420

embedded Entry class, 411–412

embedded TreeIterator class, 427–430

fields, 411

method specifications, 407–408

remove method, 418–426

testing, 410–411

TreeIterator embedded class, 427–430

BinarySearchTreeTest class, 410–411

Binding

dynamic, 49

late, 49

Bit-wise operators,

& (and), 605, 608

∧ (exclusive or), 608

<< (left shift), 382

>> (right shift, 112

>>> (unsigned right shift), 608

Black-height, 716–718

Bottom-up testing, 91

Boundary condition, 66

Boxing, 141

Branch, 378

Breadth-first iterator, 651–654, 683

break statement, 73

Bubble Sort, 463–464

Bytecode, 92

C

CalendarDate (project), 58

Car wash (application), 351–365

randomizing the arrival times, 362–365

CarWash class, 354–361

Car class, 356, 359

CarWashTest class, 355

CarWashUser class, 361–362

fields, 355–357

UML diagram, 357

catch block, 68–69, 73

with finally block, 81

with try block, 68–69

chain in a binary tree, 384

Chained hashing, 609–610

char type, 2–3

Checked exception, 77–78

Circularity in LinkedList class, 298

Circularity in SinglyLinkedList class (project), 322

Class, 3–7

abstract, 137–139

ArrayList, 234–251

Arrays, 112–113, 180, 470–475, 477–489

AVLTree, 438–441

BackTrack, 193–195

BigInteger, 251

CalendarDate, 58

Car, 356, 359

CarWash, 354–361

CarWashTest, 355

CarWashUser, 361–362

Collections, 256, 476

Company, 35–37

CompanyTest, 64–66

constant, 60–61

constructor, 4–5, 43, 92

contiguous, 133

DecimalToBinaryTest, 163

Editor, 304–312

EditorTest, 306–307

EditorUser, 312–315

embedded, 269

Entry, 268–269
in BinarySearchTree class, 412

in HashMap class, 610

in Huffman class, 580

in LinkedList class, 295

in SinglyLinkedList class, 268–269

in TreeMap class, 513

FactorialTest, 157–158

Field, 1
FullTimeEmployee, 32–34

FullTimeEmployeeTest, 62–63

Hasher, 620–625

HashIterator, 615–619

HashMap, 603–615

HashSet, 625–626
HourlyEmployee, 38–43

HourlyEmployeeTest, 66–67

INDEX 729

Huffman, 581–586

HuffmanTest, 582

HuffmanUser, 586–589

HuffmanUserTest, 587

Immutable, 20

implementing an interface, 32–34

inheritance, 37–43

instance variables, 59

LinkedList, 295–300

ListItr, 285–291

Mutable, 21–22

Network, 669–686

NetworkTest, 677

Nothing, 19

PriorityQueue, 552–566

Random, 122–126

SalariedEmployee, 46

SinglyLinkedList, 268–276

SinglyLinkedListIterator, 276–279

SpellChecker, 531–534

SpellCheckerTest, 533

SpellCheckerUser, 534–536

String, 4–9

Swap, 20–21

Thesaurus, 518–521

ThesaurusTest, 519–520

ThesaurusUser, 521–525

ThesaurusUserTest, 521–522

TreeIterator, 427–430

TreeMap, 509–517

TreeSet, 525–530

VeryLongInt, 252–257

VeryLongIntTest, 253

VeryLongIntUser, 257

VeryLongIntUserTest, 257

Class constant, 60–61

Class variable, 60

clone method, 237–238

Cloneable interface, 246–247

close() method in PrintWriter class, 82, 85

Clustering in open-address hashing

primary, 631–632

Co-domain (of a function), 705

Collection interface, 141–142

Collections class, 256, 476

Collision, 606

Collision handling

with chained hashing, 609–611

with open-address hashing, 626–634

Company class, 35–37

CompanyTest class, 64–66

Comparable interface, 179

Comparator interface, 465–468

Compiler: implementing recursion, 334–338

Complete binary tree, 381–383

Computer simulation, 350–351

Concordance (project), 543–545

Conditional operator (? :), 300

Connectedness, 646–647, 658–659

Constant (independent of n), 111, 117

Constant identifier, 60

Constructor, 4–5, 30, 43

copy, 236–237

default, 4, 43

inheritance and, 43

Contiguous-collection class, 136, 234–251, 329–332, 552–566

Contiguous elements, 17, 136

Conversion formulas, 135

Converting from infix notation,

to postfix notation, 338–343

to prefix notation, 343–346

tokens, 342–343

transition matrix, 341–342

Copy

shallow, 236–237

Copy constructor, 236–237

Correctness, 61

Cost of recursion, 209–210

Covariant subtyping, 237

Critical activity, 668

Critical path, 668

Current line (in line editor), 300

Cycle, 646, 669

D

Data abstraction, 27

principle of, 27–28

Data structure, 31

Dead end, in backtracking, 191

Decimal to binary (application), 162–167

Decision tree, 468–469

Decoding a Huffman-encoded message (project), 595–597

Default constructor, 4, 43

Default visibility, 93

versus visibility modifiers, 93–94, 100

Depth of an element, 381

Depth-first iterator, 654–658

Depth-first search, 390–391

Dequeue, 347

Deserialize, 702

Design pattern, 147

divide-and-conquer, 476–477, 484

greedy, 578, 663, 664, 686, 692–693

iterator, 147

Dictionary, 505

Dijkstra’s Algorithm, 663–667, 683–686

Directed graph (digraph), 647–648

Directed tree, 648–649

Directed weighted graph, 649

730 INDEX

Distribution

Poisson, 362–365

uniform, 122

Divide-and-conquer algorithms, 476–477, 484

Domain (of a function), 705

Double hashing, 632–635, 638, 640

Double rotation, 434–435

Doubly linked list, 267–268

Dummy entry, 295

Dynamic binding, 49

E

Earliest time for an event, 668

Edge, 643

Editor class, 304–312

EditorTest class, 306–307

EditorUser class, 312–315

EditorUserTest class, 313

Efficiency of methods (estimating), 105–119

Eight Queens (project), 221–222

Embedded class, 269

Employee interface, 31–32

Encapsulation, 48

Encoding, 573

prefix-free, 573–575

Enhanced for statement, 145–147

Enqueue, 347

Entry class

in BinarySearchTree class, 412

in HashMap class, 610

in Huffman class, 580

in LinkedList class, 295

in SinglyLinkedList class, 268–269

in TreeMap class, 513

reason for static modifier, 296

Entry interface, 610

Equality

of objects, 7–9

of references, 8–9

untestability of double values for, 66–67

equals method, 8, 94, 411

in Object class, 94–95

overriding, 95–96

Error

in JUnit, 76

Evaluation of a condition (project), 371–374

Event-driven simulation, 354

Exception, 6, 68

checked, 77–78

handling of, 68–74

propagating, 71–74

testing, 69–71, 74–77

thrown, 68–69

Execution frame, 159–161

Exponential-time method, 119

Expression tree, 389–390

Expression, 44–45

extends, 38

External path length, 385

External Path Length Theorem, 385–386

F
Factorial, 156–159

execution frames, 159–161

FactorialTest class, 157–158

Failure

in JUnit, 76

Fail-fast iterators, 703–704

Fairness in priority queue, 557, 566

Fast sorts

Heap Sort, 567–573
Merge Sort, 470–475

Quick Sort, 477–489

Feedback, 350

Fibonacci numbers, 167

Fibonacci tree, 437

Field(s), 1
in the ArrayList class, 248
in the BinarySearchTree class, 411

in the CarWash class, 355–357

in the Editor class, 307–308

in the Hasher class, 621

in the HashMap class, 610–611

in the LinkedList class, 295

in the Network class, 680–681

in the SinglyLinkedList class, 273

in the SpellCheck class, 533

in the Thesaurus class, 520

in the TreeMap class, 512

in the VeryLongInt class, 254

pre-initialization of, 92

File

input, 12–16
output, 81–91

sorting (project), 497–499

final modifier, 60

finally block, 81

Finite sequence, 706
First-in, first-out (FIFO)

in a queue, 347

fixAfterDeletion method

in AVLTree class (project), 455

in TreeMap class (lab), 517

fixAfterInsertion method

in AVLTree class (project), 451–454

in TreeMap class (lab), 515

Full binary tree, 381

FullTimeEmployee class, 32–34

Function, 705

INDEX 731

growth rate of, 117–119

and map, 705

G
Garbage, 92

automatic collection of, 92–93

Generating

a minimum spanning tree, 659–663

permutations

exercise, 215–216

lab experiment, 191

pseudorandom values, 122

Generic type, 140–141

Graph

acyclic, 646, 648, 667, 669, 693–694

algorithms, 651–669

cycle, 646, 669

directed, 647–648

edge, 643

neighbor, 644

path, 644

undirected, 643

vertex, 643

weighted, 649

Graph algorithms

breadth-first traversal, 651–654

connectedness, 658–659

depth-first traversal, 654–658

longest path, 667–669

minimum spanning tree, 659–663

shortest path, 663–667

Greedy algorithm, 578

Dijkstra’s algorithm, 663–667, 683–686

Huffman’s algorithm, 573–577

Prim’s algorithm, 659–663

Growth rates, 117–119

H
Has-a, 47

Hash classes

HashMap, 603–615

HashSet, 625–626

Hasher class, 620–625

Hashing, 606

chained, 606–612

double, 632–635, 638, 640

identifiers, 617–625

Uniform Hashing Assumption, 609

HashIterator class, 615–619

HashMap class, 603–615

chaining, 606–612

fields in, 610–611

implementation of, 612–614

views (entrySet(), keyset(), values()), 616

HashSet class, 625–626

Heading

of the ArrayList class, 246

of the BinarySearchTree class, 406

of the HashMap class, 603

of the LinkedList class, 295

of the Network class, 670

Heap, 553–554

Heap Sort, 567–573

Height

black height, 716–718

of an AVL tree, 436–438

of a binary search tree, 434–436

of a binary tree, 339, 447–448

of a red-black tree, 503–504

Hexadecimal notation (exercise), 25

High-precision arithmetic (application), 251–257

HourlyCompany class, 44

HourlyEmployee class, 38–42

HourlyEmployeeTest class, 66–67

How fast can we sort, 468–469

Huffman

Huffman class, 581–586

Huffman encoding, 574

Huffman tree, 574

HuffmanTest class, 582

HuffmanUser class, 586–589

HuffmanUserTest class, 587

I

Identifier, 617

Imbalance ancestor, 439

Immutable, 20

Immutable class, 20

import directive, 12

In-place sorting, 461, 572

Index-related method, 147

Indirect recursion, 208–209

Induction and recursion, 719

Infinite recursion, 177

Infix notation, 338

converting to postfix, 338–343

converting to prefix, 343–346

Information hiding, 48

Inheritance, 37–43

and constructors, 43

multiple inheritance (not allowed), 139

Insertion Sort, 459–461

Instance variables, 59

instanceof operator, 96

Integrated Web Browser and Search Engine (project),

ArrayList, 264–266

GUI, 102–104

HashMap, 640–642

LinkedList, 328

Network, 698–700

732 INDEX

PriorityQueue, 595–598

TreeMap, 548–550

Interface

Application Programming Interface, 6

Collection interface, 141–142

Comparable interface, 179

Comparator interface, 465–468

Employee interface, 31–32

Iterator interface, 143–144

List interface, 147

ListIterator interface, 285–287

Map interface, 504–508

Queue interface, 348

Set interface, 403

SortedMap interface, 508

SortedSet interface, 525

Interning of strings, 8

Intractable problem, 119

Invariant subtyping, 237

Is-a, 47

Iterative method, 161

Iterator, 143

bi-directional, 285

breadth-first, 651–654, 682

depth-first, 654–658

design pattern, 143

fail fast, 703–704

J

Java Collections Framework, 133

Java Virtual Machine, 92

java.util, 12

javadoc notation, 6–7

JUnit, 61–67, 69–70, 74–77

assertArrayEquals, 62, 458

assertEquals, 62

error, 76

exception testing, 74–75

fail(), 90

failure, 76

no testing of Big-O claims, 131

no testing double values for equality, 66

stub testing, 64, 76, 307

test first, 63–64

K
Key part in a map, 504

Knight’s Tour (project), 222–224

L

Last-in, first-out (LIFO),

in a stack, 329

Late binding, 49

Latest time (for an event), 668

Leaf, 378

Leap year, 71

LeapYear class, 72

LeapYearTest class, 74–76

Left child, 379

Left rotation

followed by right rotation, 434–435

Length

of a path in a graph, 645

of a path in a network, 650

Let’s Make a Deal (project), 131–132

Level of an element, 380–381

Line editor (application), 300–315

Linear in n, 117

Linear-logarithmic in n, 117

Link, 267

Linked list, 267

doubly linked list, 268

singly linked list, 268

LinkedList class, 295–300

alternate implementation (project), 323

iterators, 285–291

versus ArrayList class, 282–285, 291

List interface, 147

loadFactor, 611–612

Local variable, 9–12

explicit initialization, 10

Logarithmic in n, 117

Logarithms, 707–708

Longest path through a network, 667–668

Lower bound on sorting, 468–469

M

main method, 1, 35

Map, 504

Map interface, 504–508

embedded Entry interface, 610

Mathematical background

functions and sequences, 705–719

logarithms, 707–708

mathematical induction, 708–719

sums and products, 706–707

Mathematical induction. See Principle of Mathematical

Induction

and recursion, 719

Mathematical model, 350

Maze (application), 195–208

Mean arrival time, 362

Median, 478

finding in linear-in-n time (exercise), 495–496

of medians, 488

Member of a class, 35

Member-selection operator, 7

INDEX 733

Merge Sort

in Arrays class, 470–476

in Collections class, 476

Message

in Huffman encoding, 573

in object-oriented language, 7

Method, 1

abstract, 29

accessor, 57

active, 208

exponential-time, 119

final, 61

iterative, 161

local variables in, 9–12

mutator, 57

overloading, 5

overriding, 37–38

polynomial-time, 119

private, 39, 94

protected, 39, 94

public, 39, 94

recursive, 208–209

signature, 5

static, 61

testing of, 61–67, 69–70, 74–77

timing of, 121–122

virtual, 49

Method specification, 5–6

in javadoc notation, 6–7

Minimum spanning tree, 659–663

Model, 350

mathematical, 350

physical, 350

Modifier. See Visibility modifier,

abstract, 138

final, 60–61

private, 39, 94

protected, 39, 94

public, 39, 94

static, 60–61

transient, 248

Modularity, 3–4

Modulus operator (%), 2

Mutable class, 21–22

Mutator method, 57

N
Natural logarithm, 708

Neighbor, 644

Nested class, 269

Network, 649–689
backtracking through, 686–689, 695–697

finding longest path, 667–669

finding minimum spanning tree, 659–663

finding shortest path, 663–667

Network class, 669–686

NetworkTest class, 677

project network, 667

Traveling Salesperson Problem (project), 694–695

new operator, 4

node, 136

Notation

Big-O, 106–116
Big-Omega, 116

Big-Theta, 117–119

infix, 338

javadoc, 5–7

postfix, 339

prefix, 343

null keyword, 7

NullPointerException, 78

O
Object class, 46–47

overriding equals method of, 94–96

Object-oriented concepts, 27–49

Open-address hashing, 626–637
double hashing, 632–635, 638, 640

primary clustering, 631–632

Open-Closed Principle, 38

Operator

bitwise and (&), 605, 608

bitwise exclusive or (∧), 608

bitwise left shift (<<), 382

bitwise right shift (>>), 112

unsigned (>>>), 608

conditional (? :), 300

equality (==), 8

instanceof, 96

modulus (%), 2

new,4,

Output file, 81–91

Overloading of methods, 5

Overriding of methods, 37–38

P

Package, 93
Parameterized type, 140–141

Parent, 379

Path, 381, 644

cycle, 646, 669

length, 645

Path length

external, 385

Path Rule, 502

Performance requirements, 120
Permutation, generating

exercise, 215–216

lab experiment, 191

Persistent object, 702

734 INDEX

Physical model, 350

Poisson distribution, 362–365

Polymorphism, 48–49

Polynomial-time method, 119

Postcondition, 6, 28

Postfix notation, 338

converting from infix to, 338–343

Pre-initialization of fields, 92

Precondition, 28

Prefix notation, 343

converting from infix to, 343–346

Prefix-free encoding, 573–575

Prim’s Algorithm, 659–663

Primary clustering, 631–632

Primitive type, 2

Principle of Data Abstraction, 27–28

Principle of Mathematical Induction, 708

general form, 711

strong form, 710

Priority queue, 551

heap implementation of, 553–556

in Huffman encoding, 575

in minimum-spanning-tree algorithm, 660

in shortest-path algorithm, 664

PriorityQueue class, 552–566

private visibility, 39, 94

versus other visibility modifiers, 93–94, 100

Probing

quadratic, 635

Program modularity, 3–4

Project network, 667–669

critical activity, 668

critical path, 668

earliest time of an event, 668

latest time of an event, 668

project length, 667–668

sink, 667

slack time of an activity, 668

source, 667

topological order, 669

topological sorting, 669

Propagating exceptions, 71–74

protected visibility, 39, 94

fields, 39

methods, 42

testing protected methods, 306

versus other visibility modifiers, 39, 94

Pseudo-random number generator, 122

public visibility, 39, 94

versus other visibility modifiers, 39, 94

Public-key cryptography, 251

Punched-card sorters, 489

PurePriorityQueue class, 552

PureQueue class, 349

PureStack class, 333

Q

Quadratic in n, 117

Quadratic probing, 635

Queue, 347

computer simulation, 350–365

dequeue, 347

enqueue, 347

Queue interface, 348

implemented by LinkedList class, 348

implemented by PriorityQueue class, 552

Quick Sort, 477–484

optimizations, 484–489

Quotient-offset collision handler, 632–633

R
Radix Sort, 489–492

Random access, 134

Random class, 122–126

Random number, 122

Random-number generator, 122

Randomizing

arrival times in simulation, 362–365

variable seed in Random class, 123

Reachable vertices, 651

Recursion, 155–210

activation record, 209, 334

backtracking, 191–195

cost of, 209–210

decimal to binary (application), 162–167

definition, 209

divide and conquer, 476–477

execution frame, 159–161

factorial, 156–159

indirect, 208–209

induction and, 719

infinite, 177

maze searching (application), 195–208

stack frame, 304

stack-based implementation, 334–338

Towers of Hanoi (application), 167–179

versus iteration, 161

Recursive definition, 377

Red Rule, 502

Red-black tree, 502

height of, 504, 715–718

in TreeMap implementation, 504

Reference variables, 4

testing equality of (==), 8

Right child, 379

Right rotation, 433

followed by left rotation, 435

Robust program, 68

Root element, 377, 648

Rotation, 431

INDEX 735

double, 434–435

left, 431–433

properties of, 435

right, 433–434

Run-time analysis, 121–126

of sort methods (lab), 492

S

SalariedEmployee class (lab), 46

Scanner class, 12–17
delimiter, 12

InputMismatchException, 71

scanning over a string, 12

scanning over file input, 12

scanning over keyboard input, 12

token, 12

useDelimiter method, 16

whitespace, 12

Scope of an identifier, 11

Search engine. See Integrated Web Browser and Search Engine

Searching

an array, 179–181
binary search, 180–181, 601–602

framework to analyze, 599–600

in HashMap class, 614–615

red-black tree, 602–603

sequential, 179, 600–601

seed, 123

Selection Sort, 461–463

Sequence, 706

Sequential searching, 179, 600–601

Serialization, 701–703

Set interface, 403

Shallow copy, 236–237

Shortest path through a network, 663–667

Signature of a method, 5

Simple sorts, 458–464

Simulation, 350

event driven, 354

Singly linked list, 268

SinglyLinkedList class, 268–281

embedded SinglyLinkedListIterator class,

276–279

embedded Entry class, 268

expanding (projects), 319–322

field, 273

method definitions, 273–276

testing, 271–272

SinglyLinkedTest class, 271–272

Sink, 667

Slack time (for an activity), 668

SortedMap interface, 508

TreeMap implementation of, 509

Sorting

Bubble Sort, 463–464

fast sorts, 470–475, 477–489, 567–573

file sorting (project), 497–499

Heap Sort, 567–573

in-place sorting, 461, 572

Insertion Sort, 459–461

Merge Sort, 470–475

Quick Sort, 477–489

Radix Sort, 489–492

Selection Sort, 461–463

simple sorts, 458–464

stable sort, 458

summary, 493

topological sorting, 669

Source, 667

Spanning tree, 659

Specification of methods, 5

Speedo’s car wash (application), 351–354

making more realistic, 362–365

Spell Checker (application), 530–531

SpellChecker class, 531–534

SpellCheckerTest class, 532–533

SpellCheckerUser class, 534–536

Splitting Rule, 112

Stable sort, 458

Stack, 329

in converting from infix-to-postfix, 334–338

in implementing recursion, 338–341

Stack class, 329–333

Stack frame, 334

Static constant, 60

static modifier, 60

Static variable, 60

Storage structures for collection classes, 136

String class, 4–9

constructors, 4

testing equality of String objects, 7–8

Stub, 64

Subclass, 37–38

Subclass-Substitution Rule, 44

Sums and products, 706–707

super, 40

Superclass, 37

Symbol table, 617

Synonym, 606

System test, 91

T
Testing

bottom up, 91

unit testing. See JUnit

system tests, 91

Thesaurus (application), 517–518

Thesaurus class, 518–521

ThesaurusTest class, 519–520

ThesaurusUser class, 521–525

736 INDEX

ThesaurusUserTest class, 521–522

throw statement, 71

throws clause, 67–68

Timing, 121–122

Token, 342

Topological order, 669, 693–694

Topological sorting, 669

Towers of Hanoi (application), 167–178

iterative version (project), 219–220

Trade-off, 119–121

performance requirements, 120

time versus space, 120

transient modifier, 248

Transition matrix, 341–342

Traveling Salesperson Problem (lab), 684

Traversals of a binary tree, 383–392

breadthFirst, 391–392

inOrder, 386–388

postOrder, 387–390

preOrder (= depth-first), 390–391

Tree

balanced binary search tree, 430

binary search tree, 402

binary tree, 377

complete tree (binary), 382

decision tree (binary), 468

directed tree, 648

expression tree (binary), 389–390

Fibonacci tree (binary), 437

full tree (binary), 381

Huffman tree (binary), 575

red-black tree (binary), 502

root, 377, 648

spanning tree, 659

subtree, 377

two-tree (binary), 381

undirected tree, 648

TreeMap class, 509–517

approval voting (problem), 545–547

building a concordance (problem), 543–545

building a thesaurus (application), 518–525

Comparable and Comparator interfaces, 510–511

determining word frequencies (problem), 542–543

Entry class, 513

field in Network class, 680–681

fields in, 512

red-black tree, 504

SortedMap interface, 509

views (entrySet(), keyset(), values()), 507–508

TreeSet class, 525–530

spell checker (application), 530–536

try block, 68–69

with catch block, 68–69

with finally block, 81

Two-tree, 381

Type parameter, 141

U

UML, See Unified Modeling Language

Unboxing, 141

Undirected graph, 643–646

acyclic, 646

adjacent, 644

complete, 644

connected, 646

cycle, 646

edge, 643

neighbor, 644

path, 644

vertex, 643

Undirected, weighted tree, 676

Unified Modeling Language (UML), 49–52

Uniform distribution, 112

Uniform Hashing Assumption, 609

Upper bound, 107

V
Value part in a map, 504

Variable, 1, 2

reference variable, 4

Vertex, 643

comparing vertices, 680

reachable, 651

Very long integers (application), 251–257

VeryLongInt class, 251–257

field in, 254

VeryLongIntTest class, 253

VeryLongIntUser class, 257

VeryLongIntUserTest class, 257

Virtual method, 49

Visibility modifier, 39, 94

default visibility, 93

private, 39, 94

protected, 39, 94

public, 39, 94

W
Web browser. See Integrated Web Browser and

Search Engine

Weighted graph, 649

Word frequencies (problem), 542–543

worstSpace(n), 105

worstTime(n), 106

Wrapper class, 135

conversions from/to, 135

Wrapper method, 158, 164, 169, 181

	Cover
	Title Page
	Copyright
	BRIEF CONTENTS
	CONTENTS
	PREFACE
	CHAPTER 0 Introduction to Java
	Chapter Objectives
	0.1 Java Fundamentals
	0.1.1 Primitive Types
	0.1.2 The Char Type

	0.2 Classes
	0.2.1 The String Class
	0.2.2 Using javadoc Notation for Method Specifications
	0.2.3 Equality of References and Equality of Objects
	0.2.4 Local Variables
	0.2.5 The Scanner Class

	0.3 Arrays
	0.4 Arguments and Parameters
	0.5 Output Formatting
	Crossword Puzzle
	Programming Exercises

	CHAPTER 1 Object-Oriented Concepts
	Chapter Objectives
	1.1 Data Abstraction
	1.2 Abstract Methods and Interfaces
	1.2.1 Abstract Data Types and Data Structures
	1.2.2 An Interface and a Class that Implements the Interface
	1.2.3 Using the FullTimeEmployee Class

	1.3 Inheritance
	1.3.1 The protected Visibility Modifier
	1.3.2 Inheritance and Constructors
	1.3.3 The Subclass Substitution Rule
	1.3.4 Is-a versus Has-a

	1.4 Information Hiding
	1.5 Polymorphism
	1.6 The Unified Modeling Language
	Summary
	Crossword Puzzle
	Concept Exercises
	Programming Exercises
	Programming Project 1.1: A CalendarDate Class

	CHAPTER 2 Additional Features of Programming and Java
	Chapter Objectives
	2.1 Static Variables, Constants and Methods
	2.2 Method Testing
	2.2.1 More Details on Unit Testing

	2.3 Exception Handling
	2.3.1 Propagating Exceptions
	2.3.2 Unit Testing and Propagated Exceptions
	2.3.3 Checked Exceptions
	2.3.4 The finally Block

	2.4 File Output
	2.5 System Testing
	2.6 The Java Virtual Machine
	2.6.1 Pre-Initialization of Fields
	2.6.2 Garbage Collection

	2.7 Packages
	2.8 Overriding the Object Class’s equals Method
	Summary
	Crossword Puzzle
	Concept Exercises
	Programming Exercises
	Programming Project 2.1: An Integrated Web Browser and Search Engine, Part 1

	CHAPTER 3 Analysis of Algorithms
	Chapter Objectives
	3.1 Estimating the Efficiency of Methods
	3.1.1 Big-O Notation
	3.1.2 Getting Big-O Estimates Quickly
	3.1.3 Big-Omega, Big-Theta and Plain English
	3.1.4 Growth Rates
	3.1.5 Trade-Offs

	3.2 Run-Time Analysis
	3.2.1 Timing
	3.2.2 Overview of the Random Class

	Summary
	Crossword Puzzle
	Concept Exercises
	Programming Exercises
	Programming Project 3.1: Let’s Make a Deal!

	CHAPTER 4 The Java Collections Framework
	Chapter Objectives
	4.1 Collections
	4.1.1 Collection Classes
	4.1.2 Storage Structures for Collection Classes

	4.2 Some Details of the Java Collections Framework
	4.2.1 Abstract Classes
	4.2.2 Parameterized Types
	4.2.3 The Collection Interface
	4.2.4 The List Interface

	Summary
	Crossword Puzzle
	Concept Exercises
	Programming Exercises
	Programming Project 4.1: Wear a Developer’s Hat and a User’s Hat

	CHAPTER 5 Recursion
	Chapter Objectives
	5.1 Introduction
	5.2 Factorials
	5.2.1 Execution Frames

	5.3 Decimal to Binary
	5.4 Towers of Hanoi
	5.4.1 Analysis of the move Method

	5.5 Searching an Array
	5.6 Backtracking
	5.6.1 An A-maze-ing Application

	5.7 Indirect Recursion
	5.8 The Cost of Recursion
	Summary
	Crossword Puzzle
	Concept Exercises
	Programming Exercises
	Programming Project 5.1: Iterative Version of the Towers of Hanoi
	Programming Project 5.2: Eight Queens
	Programming Project 5.3: A Knight’s Tour
	Programming Project 5.4: Sudoku
	Programming Project 5.5: Numbrix

	CHAPTER 6 Array-Based Lists
	Chapter Objectives
	6.1 The List Interface
	6.2 The ArrayList Class
	6.2.1 Method Specifications for the ArrayList Class
	6.2.2 A Simple Program with an ArrayList Object
	6.2.3 The ArrayList Class’s Heading and Fields
	6.2.4 Definition of the One-Parameter add Method

	6.3 Application: High-Precision Arithmetic
	6.3.1 Method Specifications and Testing of the VeryLongInt Class
	6.3.2 Fields in the VeryLongInt Class
	6.3.3 Method Definitions of the VeryLongInt Class

	Summary
	Crossword Puzzle
	Concept Exercises
	Programming Exercises
	Programming Project 6.1: Expanding the VeryLongInt Class
	Programming Project 6.2: An Integrated Web Browser and Search Engine, Part 2

	CHAPTER 7 Linked Lists
	Chapter Objectives
	7.1 What is a Linked List?
	7.2 The SinglyLinkedList Class—A Singly-Linked, Toy Class!
	7.2.1 Fields and Method Definitions in the SinglyLinkedList Class
	7.2.2 Iterating through a SinglyLinkedList Object

	7.3 Doubly-Linked Lists
	7.3.1 A User’s View of the LinkedList Class
	7.3.2 The LinkedList Class versus the ArrayList Class
	7.3.3 LinkedList Iterators
	7.3.4 A Simple Program that uses a LinkedList Object
	7.3.5 Fields and Heading of the LinkedList Class
	7.3.6 Creating and Maintaining a LinkedList Object
	7.3.7 Definition of the Two-Parameter add Method

	7.4 Application: A Line Editor
	7.4.1 Design and Testing of the Editor Class
	7.4.2 Method Definitions for the Editor Class
	7.4.3 Analysis of the Editor Class Methods
	7.4.4 Design of the EditorUser Class
	7.4.5 Implementation of the EditorUser Class

	Summary
	Crossword Puzzle
	Concept Exercises
	Programming Exercises
	Programming Project 7.1: Expanding the SinglyLinkedList Class
	Programming Project 7.2: Implementing the remove () Method in SinglyLinkedListIterator
	Programming Project 7.3: Making a Circular Singly Linked List Class
	Programming Project 7.4: Alternative Implementation of the LinkedList Class
	Programming Project 7.5: Expanding the Line Editor
	Programming Project 7.6: An Integrated Web Browser and Search Engine, Part 3

	CHAPTER 8 Stacks and Queues
	Chapter Objectives
	8.1 Stacks
	8.1.1 The Stack Class
	8.1.2 A Fatal Flaw?
	8.1.3 Stack Application 1: How Compilers Implement Recursion
	8.1.4 Stack Application 2: Converting from Infix to Postfix
	8.1.5 Prefix Notation

	8.2 Queues
	8.2.1 The Queue Interface
	8.2.2 Implementations of the Queue Interface
	8.2.3 Computer Simulation
	8.2.4 Queue Application: A Simulated Car Wash

	Summary
	Crossword Puzzle
	Concept Exercises
	Programming Exercises
	Programming Project 8.1: Making the Speedo’s Car Wash Simulation More Realistic
	Programming Project 8.2: Design, Test, and Implement a Program to Evaluate a Condition
	Programming Project 8.3: Maze-Searching, Revisited
	Programming Project 8.4: Fixing the Stack Class

	CHAPTER 9 Binary Trees
	Chapter Objectives
	9.1 Definition of Binary Tree
	9.2 Properties of Binary Trees
	9.3 The Binary Tree Theorem
	9.4 External Path Length
	9.5 Traversals of a Binary Tree
	Summary
	Crossword Puzzle
	Concept Exercises

	CHAPTER 10 Binary Search Trees
	Chapter Objectives
	10.1 Binary Search Trees
	10.1.1 The BinarySearchTree Implementation of the Set Interface
	10.1.2 Implementation of the BinarySearchTree Class

	10.2 Balanced Binary Search Trees
	10.2.1 AVL Trees
	10.2.2 The Height of an AVL Tree
	10.2.3 The AVLTree Class
	10.2.4 Runtime Estimates

	Summary
	Crossword Puzzle
	Concept Exercises
	Programming Exercises
	Programming Project 10.1: An Alternate Implementation of the Binary-Search-Tree Data Type
	Programming Project 10.2: Printing a BinarySearchTree Object
	Programming Project 10.3: The fixAfterInsertion Method
	Programming Project 10.4: The fixAfterDeletion Method

	CHAPTER 11 Sorting
	Chapter Objectives
	11.1 Introduction
	11.2 Simple Sorts
	11.2.1 Insertion Sort
	11.2.2 Selection Sort
	11.2.3 Bubble Sort

	11.3 The Comparator Interface
	11.4 How Fast Can we Sort?
	11.4.1 Merge Sort
	11.4.2 The Divide-and-Conquer Design Pattern
	11.4.3 Quick Sort

	11.5 Radix Sort
	Summary
	Crossword Puzzle
	Concept Exercises
	Programming Exercises
	Programming Project 11.1: Sorting a File into Ascending Order

	CHAPTER 12 Tree Maps and Tree Sets
	Chapter Objectives
	12.1 Red-Black Trees
	12.1.1 The Height of a Red Black Tree

	12.2 The Map Interface
	12.3 The TreeMap Implementation of the SortedMap Interface
	12.3.1 The TreeMap Class’s Fields and Embedded Entry Class
	12.3.2 Method Definitions in the TreeMap Class

	12.4 Application of the TreeMap Class: a Simple Thesaurus
	12.4.1 Design, Testing, and Implementation of the Thesaurus Class
	12.4.2 Design and Testing of the ThesaurusUser Class
	12.4.3 Implementation of the ThesaurusUser Class

	12.5 The TreeSet Class
	12.5.1 Implementation of the TreeSet Class
	12.5.2 Application: A Simple Spell Checker

	Summary
	Crossword Puzzle
	Concept Exercises
	Programming Exercises
	Programming Project 12.1: Spell Check, Revisited
	Programming Project 12.2: Word Frequencies
	Programming Project 12.3: Building a Concordance
	Programming Project 12.4: Approval Voting
	Programming Project 12.5: An Integrated Web Browser and Search Engine, Part 4

	CHAPTER 13 Priority Queues
	Chapter Objectives
	13.1 Introduction
	13.2 The PriorityQueue Class
	13.3 Implementation Details of the PriorityQueue Class
	13.3.1 Fields and Method Definitions in the PriorityQueue Class

	13.4 The heapSort Method
	13.4.1 Analysis of heapSort

	13.5 Application: Huffman Codes
	13.5.1 Huffman Trees
	13.5.2 Greedy Algorithm Design Pattern
	13.5.3 The Huffman Encoding Project

	Summary
	Crossword Puzzle
	Concept Exercises
	Programming Exercises
	Programming Project 13.1: Decoding a Huffman-Encoded Message
	Programming Project 13.2: An Integrated Web Browser and Search Engine, Part 5

	CHAPTER 14 Hashing
	Chapter Objectives
	14.1 A Framework to Analyze Searching
	14.2 Review of Searching
	14.2.1 Sequential Search
	14.2.2 Binary Search
	14.2.3 Red-Black-Tree Search

	14.3 The HashMap Implementation of the Map Interface
	14.3.1 Hashing
	14.3.2 The Uniform Hashing Assumption
	14.3.3 Chaining
	14.3.4 Implementation of the HashMap Class
	14.3.5 Analysis of the containsKey Method
	14.3.6 The HashIterator Class
	14.3.7 Creating a Symbol Table by Hashing

	14.4 The HashSet Class
	14.5 Open-Address Hashing (optional)
	14.5.1 The remove Method
	14.5.2 Primary Clustering
	14.5.3 Double Hashing

	Summary
	Crossword Puzzle
	Concept Exercises
	Programming Exercises
	Programming Project 14.1: The Double Hashing Implementation of the HashMap Class
	Programming Project 14.2: An Integrated Web Browser and Search Engine, Part 6

	CHAPTER 15 Graphs, Trees, and Networks
	Chapter Objectives
	15.1 Undirected Graphs
	15.2 Directed Graphs
	15.3 Trees
	15.4 Networks
	15.5 Graph Algorithms
	15.5.1 Iterators
	15.5.2 Connectedness
	15.5.3 Generating a Minimum Spanning Tree
	15.5.4 Finding the Shortest Path through a Network
	15.5.5 Finding the Longest Path through a Network?

	15.6 A Network Class
	15.6.1 Method Specifications and Testing of the Network Class
	15.6.2 Fields in the Network Class
	15.6.3 Method Definitions in the Network Class

	15.7 Backtracking Through A Network
	Summary
	Crossword Puzzle
	Concept Exercises
	Programming Exercises
	Programming Project 15.1: The Traveling Salesperson Problem
	Programming Project 15.2: Backtracking through a Network
	Programming Project 15.3: Determining Critical Activities in a Project Network
	Programming Project 15.4: An Integrated Web Browser and Search Engine, Part 7

	APPENDIX 1 Additional Features of the JAVA Collections Framework
	A1.1 Introduction
	A1.2 Serialization
	A1.3 Fail-Fast Iterators

	APPENDIX 2 Mathematical Background
	A2.1 Introduction
	A2.2 Functions and Sequences
	A2.3 Sums and Products
	A2.4 Logarithms
	A2.5 Mathematical Induction
	A2.6 Induction and Recursion
	Concept Exercises

	APPENDIX 3 Choosing a Data Structure
	A3.1 Introduction
	A3.2 Time-Based Ordering
	A3.3 Index-Based Ordering
	A3.4 Comparison-Based Ordering
	A3.5 Hash-Based Ordering
	A3.6 Space Considerations
	A3.7 The Best Data Structure?

	References
	Index

