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PREFACE

This book is intended for an object-oriented course in data structures and algorithms. The implementation
language is Java, and it is assumed that students have taken a first course in programming, not necessarily
in Java. That course should have covered the fundamental statements and data types, as well as arrays.
Chapter 0 supplies the material on Java that is fundamental to the remaining chapters, so it serves as a
review for those with previous experience in Java, and brings Java novices up to speed.

WHAT’S NEW IN THE THIRD EDITION

This edition presents two major changes from the second edition. First, the Scanner class has replaced
the Buf feredReader and StringTokenizer classes. The Scanner class’s versatility supports pattern
matching as well as keyboard input and file input. Second, there is an increased emphasis on testing. In
particular, the unit-testing features of JUnit 4 are introduced in Chapter 2 and integrated in applications
throughout the remaining chapters.

THE JAVA COLLECTIONS FRAMEWORK

One of the distinctive features of this text is its emphasis on the Java Collections Framework, part of
the java.util package. Basically, the framework is a hierarchy with interfaces at each level except the
lowest, and collection classes that implement those interfaces at the lowest level. The collection classes
implement most of the data structures studied in a second computer-science course, such as a resizable array
class, a linked-list class, a stack class, a queue class, a balanced binary-search-tree class, a priority-queue
class, and a hash-map class.

There are several advantages to using the Java Collections Framework. First, students will be working
with code that has been extensively tested; they need not depend on modules created by the instructor or
textbook author. Second, the framework is available for later courses in the curriculum and beyond. Third,
although the primary emphasis is on using the Java Collections Framework, the framework classes are not
treated simply as “black boxes.” For each such class, the heading and fields are provided, and one method
definition is dissected. This exposition takes away some of the mystery that would otherwise surround the
class, and allows students to see the efficiency and succinctness of professionals’ code.

The version of the Java Collections Framework we will be working with includes type parameters.
Type parameters, sometimes called “generic types,” “generics,” or “templates,” were added to the Java
language starting with Java 5.0. With type parameters, there is no need to downcast the return value from
a collection, and many errors can be detected at compile-time that previously were discoverable only at
run-time.

To complement generics, three other features have been added: boxing, unboxing, and an enhanced
for statement. The elements in generic collections must be objects, often from a wrapper class such as
Integer. If a primitive value appears where a collection method requires a wrapper element as an argu-
ment, boxing automatically converts the primitive value to the corresponding wrapper element. Conversely,

xvii
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if a wrapper-class element appears where a primitive value is needed, unboxing automatically converts
that element to the corresponding primitive value. Finally, the enhanced for statement—often called a
“for-each” statement—has a sleek structure for iterating through a collection. The net effect of these new
features of Java is to improve productivity by relegating to the compiler many of the “boiler-plate” details
related to casting and iterating.

OTHER IMPLEMENTATIONS CONSIDERED

As important as the Java Collections Framework implementations are, they cannot be the exclusive focus
of such a fundamental course in data structures and algorithms. Approaches that differ from those in the
framework deserve consideration. For example, the HashMap class utilizes chaining, so there is a separate
section on open addressing, and a discussion of the trade-offs of one design over the other. Also, there is
coverage of data structures (such as a weighted digraph class) and algorithms (such as Heap Sort) that are
not yet included in the Java Collections Framework.

Sometimes, the complexity of the framework classes is mitigated by first introducing simpler
versions of those classes. For example, the SinglyLinkedList class—not in the Java Collections
Framework—helps to pave the way for the more powerful LinkedList class, which is in the framework.
And the BinarySearchTree class prepares students to understand the framework’s TreeMap class,
based on red-black trees.

This text satisfies another important goal of a data structures and algorithms course: Students have the
opportunity to develop their own data structures. There are programming projects in which data structures
are either created “from the ground up” or extended from examples in the chapters. And there are many
other projects to develop or extend applications that use the Java Collections Framework.

JUNIT AND TEST-FIRST DEVELOPMENT

Students realize that methods with no compile-time errors may still be a long way from correct, but they
often need help in learning how to systematically test their methods. As described in Chapter 2, JUnit is
an Open Source platform for the testing of units, that is, methods. For example, to test a findMedian
method, a FindMedianTest class is developed. The FindMedianTest class consists mainly of methods
that test findMedian. When all the test methods in FindMedianTest have been passed, the student’s
confidence in the correctness of findMedian is increased.

Instead of writing the tests after a method has been defined, we employ a “test-first” strategy. As
soon as a method’s specifications have been written, the tests for that method are coded. This ensures
that the tests are based on the specifications only, not on the definition of the method. These tests are run
on a “stub” version of the method to be tested, and all of the tests will fail. Then the method definition
is written, and the tests are run on that version of the method. Corrections to the method are made as
necessary until, eventually, all tests succeed. The test-first paradigm is introduced in Chapter 2 and utilized
in subsequent chapters.

PEDAGOGICAL FEATURES

This text offers several features that may improve the teaching environment for instructors and the learning
environment for students. Each chapter starts with a list of objectives, and most chapters conclude with
several major programming assignments. Each chapter also has a crossword puzzle, from Crossword
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Weaver—to help students learn the key words and phrases in an enjoyable setting—and a variety of
exercises. The answers to all of the exercises are available to the instructor.

Each data structure is carefully described, with the specifications for each method given in javadoc
notation. Also, there are examples of how to call the method, and the results of that call. To reinforce
the important aspects of the material and to hone students’ coding skills in preparation for programming
projects, there is a suite of 23 lab experiments. The organization of these labs is described later in this
preface.

SUPPORT MATERIAL

The website for all of the support material is www.wiley.com/college/collins/
That website has links to the following information for students:

* The suite of 23 labs. Lab O starts with a brief overview of the lab format.
* The source codes for all classes developed in the text.
* Applets for projects that have a strong visual component.
Additionally, instructors can obtain the following from the website:
» PowerPoint slides for each chapter (approximately 1500 slides).

e Answers to every exercise and lab experiment.

SYNOPSES OF THE CHAPTERS

Chapter 0 serves as an introduction to the Java language for those whose first course was in some other
language. For students who are already familiar with Java, the chapter consists mostly of review material,
but the treatment of the Scanner class is worth perusing.

Chapter 1 focuses on the fundamentals of object-oriented programming: encapsulation, inheritance
and polymorphism. For a concrete illustration of these topics, an interface is created and implemented, and
the implementation is extended. The relationship between abstract data types and interfaces is explored, as
is the corresponding connection between data structures and classes. The Universal Modeling Language
provides a design tool to depict the interrelationships among interfaces, classes and subclasses.

Chapter 2 introduces unit testing with the free package JUnit. This is a vital topic in programming,
so method testing—before the method is defined—is emphasized in virtually all subsequent applications,
programming assignments and lab experiments. The chapter also includes some additional features of the
Java language. For example, there are sections on exception handling, file output, and the Java Virtual
Machine. Also, there is a section on the Object class’s equals method, why that method should be
overridden, and how to accomplish the overriding.

Finally, Chapter 2 introduces a “theme” project: to develop an integrated web browser and search
engine. This project, based on a paper by Newhall and Meeden [2002], continues through six of the
remaining chapters, and clearly illustrates the practical value of understanding data structures. In the first
part of the project, students develop a graphical user interface—a version of this interface is available
to instructors who prefer to provide this part of the project to students. The remaining six parts involve
an ArrayList object, a LinkedList object, a TreeMap object, a PriorityQueue object, a HashMap
object, and a Digraph object.
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Chapter 3, Analysis of Algorithms, starts by defining functions to estimate a method’s execution-time
requirements, both in the average and worst cases. Big-O notation provides a convenient tool for estimating
these estimates. Because Big-O notation yields environment-independent estimates, these results are then
compared with actual run-times, which are determined with the help of the Random class and the nanoTime
method.

Chapter 4 outlines the Java Collections Framework. We start with some preliminary material
on collection classes in general, type parameters and the iterator design-pattern. The remainder of the
chapter presents part of the major interface hierarchy (Collection and List) and its implementations
(ArrayList and LinkedList).

Chapter 5, on recursion, represents a temporary shift in emphasis from data structures to algorithms.
There is a gradual progression from simple examples (factorial and decimal-to-binary) to more powerful
examples (binary search and backtracking). The mechanism for illustrating the execution of recursive
methods is the execution frame. Backtracking is introduced, not only as a design pattern, but as another
illustration of creating polymorphic references through interfaces. And the same BackTrack class is used
for maze-searching and solving eight queens, knight’s tour, Sudoku, and Numbrix.

In Chapter 6, we study the Java Collections Framework’s ArrayList class. An ArrayList object
is a smart array: automatically resizable, and with methods to handle insertions and deletions at any
index. The design starts with the method specifications for some of the most widely-used methods in the
ArrayList class. There follows a brief outline of the implementation of the class. The application of the
ArrayList class, high-precision arithmetic, is essential for public-key cryptography. This application is
extended in a lab and in a programming project. Several JUnit 4 tests are included in the chapter, and the
remaining tests are available from the book’s website.

Chapter 7 presents linked lists. A discussion of singly-linked lists leads to the development of a prim-
itive SinglyLinkedList class. This serves mainly to prepare students for the framework’s LinkedList
class. LinkedList objects are characterized by linear-time methods for inserting, removing or retrieving
at an arbitrary position. This property makes a compelling case for [list iterators: objects that traverse a
LinkedList object and have constant-time methods for inserting, removing or retrieving at the “current”
position. The framework’s design is doubly-linked and circular, but other approaches are also considered.
The application is a small line-editor, for which list iterators are well suited. Testing entails an interesting
feature: the testing of protected methods. The line-editor application is extended in a programming project.

Stacks and queues are the subjects of Chapter 8. The framework’s Stack class has the expected push,
pop, and peek methods. But the Stack class also allows elements to be inserted or removed anywhere
in a Stack object, and this permission violates the definition. Students can use the Stack class—with
care—or develop their own version that satisfies the definition of a stack. There are two applications of
stacks: the implementation of recursion by a compiler, and the conversion from infix to postfix. This latter
application is expanded in a lab, and forms the basis for a project on evaluating a condition.

The Java Collections Framework has a Queue interface, but that interface supports the removal of
any element from a queue! As with the Stack class, students can tolerate this flaw and use a class—such
as LinkedList —that implements the Queue interface. Or they can create their own implementation
that does not violate the definition of a queue. The specific application of queues, calculating the average
waiting time at a car wash, falls into the general category of computer simulation.

Chapter 9 focuses on binary trees in general, as a prelude to the material in Chapters 10 through
13. The essential features of binary trees are presented, including both botanical (root, branch, leaf) and
familial (parent, child, sibling) terms. Binary trees are important for understanding later material on AVL
trees, decision trees, red-black trees, heaps, and Huffman trees.
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In Chapter 10, we look at binary search trees, including a BinarySearchTree class, and explain the
value of balanced binary search trees. Rotations are introduced as the mechanism by which re-balancing
is accomplished, and AVL trees are offered as examples of balanced binary search trees. An AVLTree
class, as a subclass of BinarySearchTree, is outlined; the crucial methods, fixAfterInsertion and
fixAfterDeletion, are left as programming projects.

Sorting is the theme of Chapter 11. Estimates of the lower bounds for comparison-based sorts are
determined. A few simple sorts are defined, and then we move on to two sort methods provided by the
framework. Quick Sort sorts an array of a primitive type, and Merge Sort works for an array of objects
and for implementations of the List interface. A lab experiment compares all of these sort algorithms on
randomly-generated integers.

The central topic of Chapter 12 is how to use the TreeMap class. A map is a collection in which
each element has a unique key part and also a value part. In the TreeMap implementation of the Map
interface, the elements are stored in a red-black tree, ordered by the elements’ keys. There are labs to
guide students through the details of re-structuring after an insertion or removal. The application consists
of searching a thesaurus for synonyms, and JUnit 4 testing is again illustrated. The TreeSet class has a
TreeMap field in which each element has the same, dummy value-part. The application of the TreeSet
class is a simple spell-checker, which is also thoroughly tested.

Chapter 13 introduces the PriorityQueue class. This class is part of the Java Collections Frame-
work and, like the Stack class and Queue interface in Chapter 8, allows methods that violate the definition
of a priority queue. The class utilizes a heap to provide insertions in constant average time, and removal of
the smallest-valued element in logarithmic worst time. The application is in the area of data compression:
Given a text file, generate a minimal, prefix-free encoding. There is a project assignment to convert the
encoded message back to the original text file.

Chapter 14 investigates hashing. The Java Collections Framework has a HashMap class for elements
that consist of unique-key/value pairs. Basically, the average time for insertion, removal, and searching is
constant! This average speed is exploited in an application (and JUnit 4 tests) to create a simple symbol
table. The Java Collections Framework’s implementation of hashing, using chained hashing, is compared
to open-address hashing.

The most general data structures—graphs, trees, and networks—are presented in Chapter 15. There
are outlines of the essential algorithms: breadth-first traversal, depth-first traversal, finding a minimum
spanning tree, and finding the shortest or longest path between two vertices. The only class developed
is the (directed) Network class, with an adjacency-map implementation. Other classes, such as Undi
rectedGraph and UndirectedNetwork, can be straightforwardly defined as subclasses of Network.
The Traveling Salesperson Problem is investigated in a lab, and there is a programming project to solve
that problem—not necessarily in polynomial time! Another backtracking application is presented, with the
same BackTrack class that was introduced in Chapter 5.

The website includes all programs developed in each chapter, all JUnit 4 tests, and applets, where
appropriate, to animate the concepts presented.

APPENDIXES

Appendix 1 has two additional features of the Java Collections Framework. Each of the collection classes in
the framework is serializable, that is, an instance of the class can be conveniently stored to an output stream,
and the instance can later be re-constituted from an input stream (de-serialization). Framework iterators
are fail-fast: During an iteration through a collection, there should be no insertions into or removals from
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the collection except by the iterator. Otherwise, the integrity of that iterator may be compromised, so an
exception will be thrown as soon as the iterator’s unreliability has been established.

Appendix 2 contains the background that will allow students to comprehend the mathematical aspects
of the chapters. Summation notation and the rudimentary properties of logarithms are essential, and the
material on mathematical induction will lead to a deeper appreciation of recursion as well as the analysis
of binary trees.

Appendix 3, “Choosing a Data Structure,” can be viewed as a summary of the eight major data
structures in the book. These collection classes are categorized according to their ordering of elements (for
example, time-based for stacks and queues) and according to their performance of standard operations (for
example, the TreeMap class requires logarithmic-in-n time to search for a key). Table A3.1 summarizes
the summary.

ORGANIZATION OF THE LABS

There are 23 web labs associated with this text. For both students and instructors, the initial Uniform
Resource Locator (URL) is www.wiley.com/college/collins.

The labs do not contain essential material, but provide reinforcement of the text material. For example,
after the ArrayList and LinkedList classes have been investigated, there is a lab to perform some timing
experiments on those two classes.

The labs are self-contained, so the instructor has considerable flexibility in assigning the labs:

a. they can be assigned as closed labs;
b. they can be assigned as open labs;
c. they can be assigned as ungraded homework.

In addition to the obvious benefit of promoting active learning, these labs also encourage use of the
scientific method. Basically, each lab is set up as an experiment. Students observe some phenomenon,
such as creating a greedy cycle to solve the Traveling Salesperson Problem. They then formulate and
submit a hypothesis—with their own code—about the phenomenon. After testing and, perhaps, revising
their hypothesis, they submit the conclusions they drew from the experiment.
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Introduction to Java CHAPTER 0

This is a book about programming: specifically, about understanding and using data structures and
algorithms. The Java Collections Framework has a considerable number of data structures and
algorithms. Subsequent chapters will focus on what the framework is and how to use the framework
in your programs. For this information to make sense to you, you will need to be familiar with certain
aspects of Java that we present in this chapter. All of the material is needed, either for the framework
itself or to enable you to use the framework in your programming projects.

CHAPTER OBJECTIVES

1. Learn (or review) the fundamentals of Java, including classes, objects and messages.
2. Be able to use javadoc in writing method specifications.

3. Incorporate the Scanner class into your programming.
4

. Understand the significance of the fact that a copy of the argument is stored in the corre-
sponding parameter when a method is called.

5. Understand the details of arrays and output formatting.

0.1 Java Fundamentals

Every Java program is a collection of classes. Basically, a class consists of variables, called fields , together
with functions, called methods, that operate on those fields. A program is executed when a special method,
the main method, is called by the run-time system (also known as the Java Virtual Machine). The heading
of this method is fixed, as shown in the following program:

public class HelloWorld
{
public static void main (String [ ] args)
{
System.out.println ("Hello, world!");
} // method main
} // class HelloWorld

The main method in this program calls another method, println, to produce the following output to the
console window:

Hello, world!
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Console output, that is, output to the console window on your monitor, is handled by the methods
System.out.print, System.out.println, and System.out.printf (see Section 0.5).

0.1.1 Primitive Types

A primitive type is a collection of values, together with operations that can be performed on those values.
For example, the reserved word int denotes the primitive type whose values are integers in the range from
about —2 billion to 2 billion, and whose operations are addition, subtraction, and so on. A variable—also
called an instance—of type int is a location in computer memory that can hold one value of type int. The
term “variable” is used because the value stored can change during the execution of a program. Instead of
specifying the location’s address, we provide an identifier (that is, a name) and the Java compiler associates
the identifier with a location. For example, here is a declaration for an int variable whose identifier is
score:

int score;

By a standard abuse of language, we say that score is a variable instead of saying that score is an
identifier for a variable. An assignment statement allows us to store a value in a variable. For example,

score = 0;
stores the value O in the variable score. A subsequent assignment can change the value stored:
score = 88;

The left-hand side of an assignment statement must be a variable, but the right-hand side can be an arbitrary
expression: any legal combination of symbols that has a value. For example, we can write

score = (score + 3) / 10;

If score had the value 88 prior to the execution of this assignment statement, then after its execution, score
would have the value 9. Note that the division operator, /, returns the result of integer division because
the two operands, 91 and 10, are both integers.

Another operator in the int type is %, the modulus operator, which returns the integer remainder
after integer division. For example, 91 % 10 returns the remainder, 1, when 91 is divided by 10. Similarly,
87 % 2 returns 1, (—37) % 5 returns —2, and 10 % 91 returns 10.

Java supports eight primitive types, summarized in Table 0.1.

0.1.2 The char Type

The char type stores characters in the Unicode collating sequence, which includes all of the ASCII
characters such as *a’, *A’, *27, and * ’, the blank character. For example, suppose we write

char delimiter = ' ';

Then delimiter is a variable of type char and contains the value ' '. The Unicode collating sequence
also includes other—that is, non-Roman, alphabets—such as Greek, Cyrillic, Arabic, and Hebrew. The
Unicode collating sequence holds up to 65,536 (= 216) distinct characters, but only about half of them have
been assigned as of now. To include a character such as © in a program, you provide an escape sequence:
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Table 0.1 The Primitive Types

Primitive Type Range Size
int —2,147,483,648 to 2,147,483,647 4 bytes
long -203 t0 263 1 8 bytes
short —128 to 127 2 bytes
byte —64 to 63 1 byte
double —1.7976931348623157 * 10°* to 8 bytes

1.7976931348623157 * 10°%
(15 digits of precision)
float —3.4028235 * 10*® to 4 bytes
3.4028235 * 10
(6 digits of precision)
char 2 bytes
boolean false, true 1 byte

a sequence of symbols that starts with the backslash character, *\’ and designates a single character. For
example, the escape sequence for the smiley-face character, ©, is ‘\u263A, so we can write

char c = '\u263A"';

to declare a char variable ¢ and assign the smiley-face character to c.
More importantly, escape sequences are used for print control. For example, ‘\n’ represents the
new-line character and *\t’ represents the tab character. The execution of

System.out.println ("We can control\n\noutput with \tprint-control\t\t characters");
will produce output of

We can control

output with print-control characters

An escape sequence is also needed to print a double quote—otherwise, the double quote would signify
the end of the string to be output. For example, the execution of

System.out.println ("His motto was \"Don't sweat the nickels and dimes!\"");
will produce output of

His motto was "Don't sweat the nickels and dimes!"

0.2 Classes

In addition to primitive types such as int and char, Java provides programmers with the ability to create
powerful new types called “classes.” Given a problem, we develop classes—or utilize already existing
classes—that correspond to components of the problem itself. A class combines the passive components
(fields) and active components (methods) into a single entity. This grouping increases program modularity :
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the separation of a program into components that are coherent units. Specifically, a class is isolated from
the rest of the program, and that makes the whole program easier to understand and to modify.

In Section 0.2.1, we investigate the class concept in more detail by looking at a specific example:
the string class, the most widely used of Java’s pre-declared classes.

0.2.1 The String Class

To start with a simple example, we consider the String class. Actually, the String class is somewhat
intricate, with several fields and dozens of methods. But as we will focus on using the String class, we
will ignore the fields, and look at only a few of the methods. In Chapter 1, we will introduce a new class
and investigate its fields as well as its methods.

An object is an instance of a class; in other words, an object is a variable that contains fields and
can call methods. In the context of using the String class, an object can be thought of as a variable that
contains a string—a sequence of characters—and can call the String class’s methods. This gives rise to
two questions:

1. How are String objects declared?
2. How do string objects call string methods?

The answer to the first question is somewhat surprising: String objects, in fact, objects of any class,
cannot be declared in Java. Instead, we declare variables, called reference variables, that can contain the
address of an object. For example, we can declare

String sl;

Then s1 is not a String object, but a variable that can contain the address of a String object.1 In order
for s1 to actually contain such a reference, the space for a String object must be allocated, then the fields
in that newly created String object must be initialized, and finally, the address of that String object
must be assigned to s1. We combine these three steps into a single assignment statement. For example, if
we want s1 to be a reference to an empty String object, we write:

sl = new String();

The right-hand side of this assignment statement accomplishes several tasks. The new operator allocates
space in memory for a String object, calls a special method known as a “constructor” to initialize the
fields in the object, and returns the address of that newly created object; that address is assigned to s1. A
constructor is a method whose name is the same as the class’s name and whose purpose is to initialize
the object’s fields. In this example, the fields are initialized to the effect that the newly created String
object represents an empty string, that is, a string that contains no characters.

The constructor just mentioned has no parameters, and is called the default constructor. The String
class also has a constructor with a string-reference parameter. Here is the heading of that constructor:

public String (String original)

The parameter original is of type reference-to-String. When this constructor is called, the
argument—inside the parentheses—will be assigned to the parameter, and then the body of the
constructor (the statements inside the braces) will be executed. For an example of a call to this

'In the languages C and C++, a variable that can contain the address of another variable is called a pointer variable.
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constructor, the following statement combines the declaration of a reference variable and the assignment
to that variable of a reference to a newly constructed String object:

String s2 = new String ("transparent");

When this statement is executed, the space for a new String object is allocated, the fields in that
newly created String object are initialized to the effect that the new String object represents the string
"transparent", and the address of that new String object is assigned to the String reference s2.
Now that s1 and s2 contain live references, the objects referenced by s1 and s2 can invoke
any string method.?> For example, the 1ength method takes no parameters and returns the number of
characters in the calling object, that is, the object that invokes the 1ength method. We can write

System.out.println (sl.length());
The output will be 0. If, instead, we write
System.out.println (s2.length());

then the output will be 11 because the calling object contains the string "transparent".

The default constructor and the constructor with a String-reference parameter have the same name,
String, but have different parameter lists. Java allows method overloading : the ability of a class to have
methods with the same method identifier but different parameter lists. In order to clarify exactly what
method overloading entails, we define a method’s signature to consist of the method identifier together
with the number and types of parameters, in order. Method overloading is allowed for methods with
different signatures. For example, consider the following method headings:

public String findLast (int n, String s)

public String findLast (String s, int n)

In this example, the first method’s parameter list starts with an int parameter, but the second method’s
parameter list starts with a String parameter, so the two methods have different signatures. It is legal for
these two methods to be defined in the same class; that is, method overloading is permitted. Contrast this
example with the following:

public String findLast (int n, String s)

public int findLast (imt j, String t)

Here the two methods have the same signature—notice that the return type is irrelevant in determining
signature—so it would be illegal to define these two methods in the same class.

0.2.2 Using javadoc Notation for Method Specifications

The String class has a method that returns a copy of a specified substring—a contiguous part of—the
calling string object. To make it easier for you to understand this method, we will supply the method’s
specification. A method specification is the explicit information a user will need in order to write code
that invokes the method.

2Except String constructors, which are invoked by the new operator. For that reason, and the fact that constructors do not have a return
type, the developers of the Java language do not classify a constructor as a method (see Arnold, 1996). But for the sake of simplicity, we
lump constructors in with the methods of a class.
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The method specification will include javadoc notation. javadoc is a program that converts Java
source code and a specially formatted block of comments into Application Programming Interface (API)
code in Hypertext Markup Language (HTML) for easy viewing on a browser. Because javadoc is available
on any system that has Java, javadoc format has become the standard for writing method specifications.
Each comment block starts with “/**”_ each subsequent line starts with “*”, and the final line in a block
has “*/”. The complete specification consists of the javadoc comments and the method heading:

/xx

* Returns a copy of the substring, between two specified indexes, of this String

*  object.

*

* @param beginIndex - the starting position (inclusive) of the substring.
* @param endIndex - the final position (exclusive) of the substring.

* @return the substring of this String object from indexes beginIndex (inclusive)

* to endIndex (exclusive).

*

* @throws IndexOutOfBoundsException - if beginIndex is negative, or if

* beginIndex is greater than endIndex, or if endIndex is greater than
* length() .

*

*/

public String substring (int beginIndex, int endIndex)

The first sentence in a javadoc comment block is called the postcondition: the effect of a legal call to
the method. The comment block also indicates parameters (starting with @param), the value returned
(@return), and what exceptions can be thrown (@throws). An exception, such as IndexOutOfBounds
Exception, iS an object created by an unusual condition, typically, an attempt at invalid processing.
Section 2.2 covers the topic of exceptions, including how they are thrown and how they are caught. To
avoid confusing you, we will omit @throws comments for the remainder of this chapter.

To illustrate the effect of calls to this method, here are several calls in which the calling object is
either an empty string referenced by s1 or the string “transparent” referenced by s2:

sl.substring (0, O0) // returns reference to an empty string

sl.substring (0, 1) // error: 2nd argument > length of calling object

s2.substring (1, 4) // returns reference to copy of "ran", a 3-character string
s2.substring (5, 10) // returns reference to copy of "paren", a 5-character string
s2.substring (5, 11) // returns reference to copy of "parent", a 6-character string

There are several points worth mentioning about the comment block. In the postcondition and elsewhere,
“this String object” means the calling object. What is returned is a reference to a copy of the substring.
And the last character in the designated substring is at endIndex -1, not at endIndex.

The javadoc comment block just given is slightly simpler than the actual block for this substring
method in the String class. The actual javadoc comment block includes several html tags: <pre>,
<blockquote>, and <code>. And if you viewed the description of that method from a browser—that is,
after the javadoc program had been executed for the String class—you would see the comments in an
easier-to-read format. For example, instead of
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* @return the substring of this String object from indexes beginIndex (inclusive)
* to endIndex (exclusive).

you would see

Returns:
the substring of this String object from indexes beginlndex (inclusive)
to endIndex (exclusive).

The on-line Java documentation is generated with javadoc. And the documentation about a method in one
class may include a hyperlink to another class. For example, the heading for the next () method in the
Scanner class is given as

public String next ()

So if you are looking at the documentation of the next () method and you want to see some information
on the String class, all you need to do is click on the String link.

Throughout the remainder of this text, we will regularly use javadoc to provide information about a
method. You should try to use javadoc to describe your methods.

0.2.3 Equality of References and Equality of Objects

Reference variables represent an advance over the pointer mechanism of Java’s predecessors, C and C++-.
A pointer variable could be assigned any memory address, and this often led to hard-to-find errors. In
contrast, if a reference variable contains any address, it must be the address of an object created by the new
operator. To indicate that a reference variable does not contain an address, we can assign to that variable
a special value, indicated by the reserved word null:

String s3 = null;
At this point, s3 does not contain an address, so it would be illegal to write
s3.length()

In object-oriented parlance, when a method is invoked, a message is being sent to the calling object.
The term “message” is meant to suggest that a communication is being sent from one part of a program
to another part. For example, the following message returns the length of the string object referenced
by s2:

s2.length()

This message requests that the object referenced by s2 return its length, and the value 11 is returned.
The form of a message consists of a reference followed by a dot—-called the member-selection opera-
tor—followed by a method identifier followed by a parenthesized argument list.

Make sure you understand the difference between a null reference (such as s3), and a reference
(such as s1) to an empty string. That distinction is essential to an understanding of Java’s object-reference
model.

The distinction between objects and references is prominent in comparing the equals method and
the == operator. Here is the method specification for equals:

/**

* Compares this String object to a specified object:
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* The result is true if and only if the argument is not null and is a String object
* that represents the same sequence of characters as this String object.

* @param anObject - the object to compare this String against.

* @return true - if the two String objects are equal; false otherwise.

*/

public boolean equals (Object anObject)
The parameter’s type suggests that the calling object can be compared to an object of any type, not just
to a String object. Of course, f£alse will be returned if the type is anything but String. The Object
class is discussed in Chapter 1.

The == operator simply compares two references: true is returned if and only if the two references

contain the same address. So if str1l and str2 are referencing identical String objects that are at different
addresses,

strl.equals (str2)
will return true because the String objects are identical, but
strl == str2

will return £alse because the str1 and str2 contain different addresses.
Finally, you can create a String object without invoking the new operator. For example,

String str0 = "yes",
str3 = "yes";

Because the underlying strings are identical, only one String object is constructed, and both str0 and
str3 are references to that object. In such cases, we say that the String object has been interned.
Figure 0.1 has several examples, and contrasts the String method equals with the reference
operator ==.
The reason the output is different for the first and third calls to println in Figure 0.1 is that the
equals method compares strings and the == operator compares references. Recall that each time the new
operator is invoked, a new String object is created. So, as shown in Figure 0.2, s4 is a reference to

String s4 = new String ("restful"),
s5 = new String ("restful"),
s6 = new String ("peaceful"),

s7 = s4,
s8 = "restful",
s9 = "restful";

System.out.println (s4.equals (s5)); // the output is "true"
System.out.println (s4.equals (s6)); // the output is "false"
System.out.println (s4 == s5); // the output is "false"
System.out.println (s4 == g7); // the output is "true"
System.out.println (s4 == s8); // the output is "false"
System.out.println (s8 == g9); // the output is "true"

FIGURE 0.1 Illustration of the effect of the equals method and == operator
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» | restful
s4
» | restful
s5
> peaceful
s6
s7
_—
- -\--\--\--\--~‘
restful

/

FIGURE 0.2 An internal view of the references and objects in Figure 0.1

—

s9

a String object whose value is “restful”, and s5 is a reference to a different String object whose value
is also “restful”.

0.2.4 Local Variables

Variables declared within a method—including the method’s parameters—are called local variables. For
example, the following method has two local variables, n and j:

/xx

* Determines if a specified integer greater than 1 is prime.

*

* @param n - the integer whose primality is being tested.
*

* @return true - if n is prime.

*

*/

public static boolean isPrime (int n)
{
if (n == 2)
return true;
if (n % 2 == 0)
return false;
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for (int j = 3; jJ * j <=n; j =3 + 2)
if (n % j == 0)
return false;
return true;

} // method isPrime

Local variables must be explicitly initialized before they are used. For example, suppose we have

public void run/()

{
int k;

System.out.println (isPrime (k));
} // method run

Compilation will fail, with an error message indicating that “variable k might not have been initialized.”
The phrase “might not have been initialized” in the error message suggests that the compiler does not
perform a detailed analysis of the method’s code to determine if, in fact, the variable has been properly
initialized. For example, the same error message will be generated by the following method:

public void run/()

{
int k;

boolean flag = true;

if (flag)
k = 20;
if (!flag)
k = 21;
System.out.println (isPrime (k));
} // method run

Clearly, if we look at this method as a whole, the variable k does receive proper initialization. But if
each statement is considered on its own, no such guarantee can be made. The following slight variant is
acceptable because the if-else statement is treated as a unit:

public void run/()

{
int k;

boolean flag = true;

if (flag)
k = 20;
else
k = 21;
System.out.println (isPrime (k));
} // method run
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The scope of an identifier is the region of a program to which that identifier’s declaration applies. In
the isPrime method, the scope of the parameter n is the entire function definition, but the scope of the
variable j is only the for statement. A compile-time error results if an attempt is made to access an
identifier outside of its scope: for example, if we tried to print out the value of j outside of the for
statement in the isPrime method. This restriction of identifiers to specific code segments—and not, for
example, to an entire method—promotes modularity.

To see how it is possible to declare the same identifier more than once in a class, we need to define
what a “block” is. A block is an enclosed sequence of declarations and/or statements enclosed in curly
braces { }. For a field identifier, its enclosing block is the entire class enclosed by the curly braces. It is
permissible to re-declare the field identifier within a method in the class. But it is illegal to re-declare
a local identifier within its block. Special case: for a variable identifier declared in the header of a for
statement, its scope is the entire for statement. So it is possible to have two for statements in the same
method with identical variable identifiers declared in the headers of those £for statements (but that identifier
cannot also be declared outside of those for statements as a local variable of the method). The following
class illustrates the scopes of several identifiers.

public class Scope

{
boolean t = true;

int x = 99;
double sample = 8.1;

public void sample (double x)
{
double v = 5;

x = 5.3;
for (int t = 0; t < 3; t++)
{

int 1 = t + 4;

System.out.println (1 + t + x);
} // end of int t’s scope; end of i1’s scope

for (int t = 0; t < 7; t++)
X = t; // end of the scope of this version of int t
} // method sample; end of double x’'s scope; end of y’s scope

public void original ()
{

System.out.println (t + " " + x + " " + sample);
} // method original

} // class Scope; end of boolean t’s scope; end of int xXx’s scope; end of double sample’s scope

All three fields—t, x and sample—are re-declared within the method sample. But the scope of those
three fields includes the method original. And note that there is no ambiguity when sample is used
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both as a field identifier and as a method identifier, because a method identifier is always followed by
parentheses.

0.2.5 The Scanner Class

One of the recent improvements in Java is provided by the Scanner class in java.util. A Scanner
object operates on fext: a sequence of lines, separated by end-of-line markers. The text may be input from
the keyboard, input from a file, or a string. There are Scanner methods to return the rest of the current
line, to return the next primitive value, and to return the next string.

Let’s start with the three key constructors. Here is a declaration of a Scanner object that will read
input from the keyboard:

Scanner sc = new Scanner (System.in);
The following declares a Scanner object that will read from the file named “myFile.dat”:
Scanner scanner = new Scanner (new File ("myFile.dat"));
If, instead, we want to scan over the String object 1ine, we can declare the following:
Scanner lineScanner = new Scanner (line);
We can now use the Scanner object sc declared above to read in an int value representing a test score:
int score = sc.nextInt( );

In order to understand how the next Int method works, we need to introduce some terminology. A scanner
subdivides the text into fokens separated by delimiters. In the case of the nextInt method, the delimiters
are whitespace characters: blanks, end-of-line markers, newline characters, tabs, and so on. The tokens are
everything else. The scanning proceeds as follows: First, all whitespace is skipped over. Then the token is
read in. If the characters in the token represent an int value, that value is stored in the variable score.
In Section 2.2 of Chapter 2, there is a discussion of what happens if the token does not represent an int
value.

We can read in and add up scores until a sentinel of —1 is read. In the following program, we need
to utilize the class java.util.Scanner in the package java.util. Because we will often want several
classes from java.util, we specify that we want all of the classes from that package to be available.
How? By denoting java.util.* in the import directive, we notify the compiler that the entire package
java.util is to be made available.

In this program, and in all subsequent programs in this book, the main method consists of a single
line. A new instance of the class is created with a call to the class’s default constructor (automatically
supplied by the compiler), and this new instance invokes its run method. Here is the complete file:

import java.util.*; // for the Scanner class

public class Sum
{
public static void main (String[ ] args)
{
new Sum().run() ;
} // method main
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public void run()
{

final int SENTINEL = -1;

final String INPUT_PROMPT = "\nPlease enter a test score (or " +
SENTINEL + " to quit): ";

final String SUM_MESSAGE = "\n\nThe sum of the scores is ";

Scanner sc = new Scanner (System.in);

int score,

sum = 0;

while (true)
{
System.out.print (INPUT_PROMPT) ;
score = sc.nextInt();
if (score == SENTINEL)
break;
sum += score;
} // while
System.out.println (SUM_MESSAGE + sum) ;
} // method run

} // class Sum

A noteworthy feature of this program is the structure of the while statement. The loop continues until
the sentinel is read in. The execution of the break statement causes an abrupt exit of the loop; the next
statement to be executed is the println that outputs the sum. The loop has only one entrance and only
one exit, and that helps us to understand the action of the loop. Also, there is only one place where the
prompt is printed, and only one place where input is read.

In that program, why did we use a sentinel instead of allowing the end user to terminate the loop
by not entering more values? When sc.next () is called, the program will pause until a non-whitespace
value is entered (followed by a pressing of the Enter key). In other words, a sentinel is needed to terminate
keyboard input. For scanning a line or a file, there will rarely be a sentinel, so a call to the next () method
should be preceded by a call to the Scanner class’s hasNext () method, which returns true if there is
still another token to be scanned in, and false otherwise. This will ensure that the call to next () will not
cause an abnormal termination due to the lack of a next token.

In the class Sum, the end-user was prompted to enter a single int value per line. In general, a
line may have several int values, or even no int values. For example, we could have the following:

Scanner sc = new Scanner (System.in);
int scorel = sc.nextInt(),
score2 = sc.nextInt(),

scoreld = sc.nextInt();
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Here is a sample sequence of lines, with the second line blank:

85
95 87

The variables scorel, score2, and score3 will now have the values 85, 95, and 87, respectively.

For a slightly more complicated example, the following program reads from a file. Each line in the
file consists of a student’s name and grade point average. The output is the name of the student with the
highest grade point average. There is no sentinel. Instead, the scanning continues as long as the input file
has another token, that is, any sequence of characters excluding whitespace. As indicated previously, the
hasNext ( ) method returns true if and only if there are any tokens remaining in the file. The next ( )
method returns the next token as a string.

import java.util.*; // for the Scanner class
import java.io.*; // for the File class

public class HighestGPA

{
public static void main (String[ ] args) throws FileNotFoundException

{
new HighestGPA().run() ;
} // method main

public void run() throws FileNotFoundException

{
final double NEGATIVE_GPA = -1.0;

final String NO_VALID_INPUT =
"Error: the given file has no valid input.";

final String BEST_MESSAGE =
"\n\nThe student with the highest grade point average is ";

Scanner fileScanner = new Scanner (new File ("students.dat"));

String name,
bestStudent = null;

double gpa,
highestGPA = NEGATIVE_GPA;

while (fileScanner.hasNextLine())

{

Scanner lineScanner = new Scanner (fileScanner.nextLine());

name = lineScanner.next () ;
gpa = lineScanner.nextDouble() ;
if (gpa > highestGPA)
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highestGPA = gpa;
bestStudent = name;
Yy // if
} // while
if (highestGPA == NEGATIVE_GPA)
System.out.println (NO_VALID_INPUT) ;
else
System.out.println (BEST_MESSAGE + bestStudent) ;
} // method run

} // class HighestGPA

The significance of the clause throws FileNotFoundException is explained in Section 2.3.3 of
Chapter 2. As described in Section 0.4, the variable bestStudent is initialized to avoid a “might not
have been initialized” error message when bestStudent is printed. Note, for example, that if the file
“students.dat” is empty, the loop will not be executed, and so bestStudent will not be assigned a value
in the loop.

Here are sample contents of the file “students.dat”:

Larry 3.3
Curly 3.7
Moe 3.2

The corresponding output is:
The student with the highest grade point average is Curly

In the above program, the name of the input file was “hard-wired,” that is, actually specified in the code.
It is more realistic for the end-user to enter, from the keyboard, the input-file path. Then we need two
scanner objects: one to read in the input-file path, and another to read the input file itself. Because a
file path may contain blank spaces, we cannot invoke the next () method to read in the input-file path.
Instead, we call the nextLine () method, which advances the scanner past the current line, and returns
(the remainder of) the current line, excluding any end-of-line marker. Here is the code that replaces the
declaration and assignment to fileScanner in that program:

final String IN_FILE_PROMPT = "Please enter the path for the input file: ";
Scanner keyboardScanner = new Scanner (System.in);

System.out.print (IN_FILE_PROMPT) ;

String inFileName = keyboardScanner.nextLine( );

Scanner fileScanner = new Scanner (new File (inFileName)) ;

Here are sample input and output for the resulting program, with the input in boldface:

Please enter the path for the input file: students.dat

The student with the highest grade point average is Curly
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Keep in mind that the next () method skips over whitespace and returns the next token, but the
nextLine () method skips past the current line, and returns that current line, excluding any end-of-line
marker. Similarly, the hasNext () method returns true if and only if there is another token in
the text, while the hasNextLine () method returns true if and only if there is at least one more
character—including whitespace—in the text. So if the text has a line of blanks remaining, or even an
extra end-of-line marker, hasNext () will return false, but hasNextLine ( ) will return true.

The above example illustrates a pattern we will see over and over in the remaining chapters. A
keyboard scanner scans in the path of an input file, a file scanner scans in the lines in the file, and a line
scanner scans over a single line.

In the next example, a scanner retrieves each word in a line, and the word is converted to lower-case
and printed. The scanner is declared in a method whose only parameter is a line to be parsed into words:

public void run()
{

split ("Here today gone tomorrow") ;
} // method run

public void split (String line)
{

Scanner sc = new Scanner (line);

while (sc.hasNext())
System.out.println (sc.next () .toLowerCase());
} // method split

The output will be

here
today
gone
tomorrow

Unfortunately, if the input contains any non-alphabetic, non-whitespace characters, those characters will
be included in the tokens. For example, if the call is

split ("Here today, gone tomorrow.");

The output will be

here
today,
gone
tomorrow.

We can override the default delimiter of whitespace with the useDelimiter (String pattern)
method, which returns a (reference to a) Scanner object. For example, if we want the delimiter to be
any positive number of non-alphabetic characters, we can explicitly indicate that as follows:

Scanner sc = new Scanner (line).useDelimiter ("[“a-zA-Z]+");

In the argument to the useDelimiter method, the brackets specify a group of characters, the ‘*’ specifies
the complement of the characters that follow, and ‘4’ is shorthand for any positive number of occurrences
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of the preceding group. In other words, we are defining a delimiter as any sequence of one or more
occurrences of characters that are non-alphabetic. So if we have included the above useDelimiter call,
and we have

split ("Here today, gone tomorrow.");

then the output will be

here
today
gone
tomorrow

Finally, suppose we want to allow a word to have an apostrophe. Then we include the apostrophe in the
class whose complement defines the delimiters:

Scanner sc = new Scanner (line).useDelimiter ("["a-zA-Z']+");
If the call is

split ("You’re 21?? 1I'll need to see some ID!");

then the output will be

you’re
i'll
need
to

see
some
id

You are now prepared to do Lab 0: The Scanner Class

Cultural Note: The Scanner class enables a user to process a regular expression: a format for identifying
patterns in a text. The arguments to the useDelimiter methods shown previously are simple examples
of regular expressions. In general, regular expressions provide a powerful but somewhat complex means
of finding strings of interest in a text. For more information on handling regular expressions in Java, see
http://www.txt2re.com and (Habibi, 2004).

0.3 Arrays

An array is a collection of elements, of the same type, that are stored contiguously in memory. Contiguous
means “adjacent,” so the individual elements are stored next to each other.? For example, we can create
an array of five String objects as follows:

String [ ] names = new String [5];

3 Actually, all that matters is that, to a user of an array, the elements are stored as if they were contiguous.
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Here the new operator allocates space for an array of five String references (each initialized to null by
the Java Virtual Machine), and returns a reference to the beginning of the space allocated. This reference
is stored in names.

In order to specify one of the individual elements in an array, an index is used. An index is an
integer expression in square brackets; the value of the expression determines which individual element is
being denoted. The smallest allowable index is 0. For example,

names [0] = "Cromer";

will store a reference to “Cromer” at the zero™ entry in the array (referenced by) names.
The size of an array is fixed once the array has been created, but the size need not be determined at
compile-time. For example, we can do the following:

public void processInput (String s)
{

int n = new Scanner (s).nextInt();

String [ ] names = new String [n];

When the processInput method is executed at run time, names will be assigned a reference to an array
of n string references, all of which are initialized to null. An array is an object, even though there is
no corresponding class. We loosely refer to names as an “array,” even though “array reference” is the
accurate term.

The capacity of an array, that is, the maximum number of elements that can be stored in the array,
is stored in the array’s length field. For example, suppose we initialize an array when we create it:

double [ ] weights = {107.3, 112.1, 114.4, 119.0, 117.4};
We can print out the capacity of this array as follows:
System.out.println (weights.length) ;

The output will be

5

For an array x, the value of any array index must be between 0 and x.length-1, inclusive. If the value
of an index is outside that range, ArrayIndexOutOfBoundsException (See Section 2.3 of Chapter 2
for a discussion of exception handling) will be thrown, as in the following example:

final int MAX = 10;
double [ ] salaries = new double [MAX];
for (int i = 0; 1 <= MAX; 1i++)

salaries [1] = 0.00;

For the first ten iterations of the loop, with i going from 0 through 9, each element in the array is initialized
to 0.00. But when i gets the value 10, an ArrayIndexOutOfBoundsException is thrown because i’s
value is greater than the value of salaries.length-1, which is 9.
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0.4 Arguments and Parameters

In Java, the relationship between arguments (when a method is called) and parameters (in the called
method’s heading) is straightforward: a copy of the value of the argument is assigned to the parameter.
So the argument is not affected by the method call. For example, consider the following program:

public class Nothing
{
public static void main (String[ ] args)
{
new Nothing () .run() ;
} // method main

public void run()

{
int k = 30;

triple (k);

System.out.println (k) ;
} // method run

public void triple (int n)
{

n=n*3;
} // method triple

} // class Nothing

The output will be 30. When the method triple (int n) is called, a copy of the value of the argument
k is assigned to the parameter n. So at the beginning of the execution of the call, n has the value 30. At the
end of the execution of the call, n has the value 90, but the argument k still has the value 30. Incidentally,
the name of the parameter has no effect: the result would have been the same if the parameter had been
named k instead of n.

Next, we look at what happens if the argument is of type reference. As with primitive arguments,
a reference argument will not be affected by the method call. But a much more important issue is “What
about the object referenced by the argument?” If the object is an array, then the array can be affected by
the method call. For example, here is a simple program in which an array is modified during a method
call:

public class Swap
{
public static void main (String[ ] args)
{
new Swap () .run();
} // method main

public void run()

{
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double[ ] x 8.0, 12.2, 20.0};

swap (x, 1, 2);

System.out.println + "

} // method run

(x [1] "4+ x

[21);

public void swap
{

(double[ ] a, int i, int j)

double temp =
(31
temp;

a [i];

a [i] =
a [3]
} // method swap

a

} // class Swap

The output will be
12.2 8.0

In the array referenced by x, the elements at indexes 1 and 2 have been swapped.

For objects other than arrays, whether the object can be affected by the method call depends on the
class of which the object is an instance. For example, the String class is immutable, that is, there are
no methods in the String class that can modify an already constructed String object. So if a String
reference is passed as an argument in a method call, the String object will not be affected by the call.

The following program illustrates the immutability of String objects.

public class Immutable
{
public static void main (String[ ] args)
{
new Immutable().run();
} // method main

public void run()
{

String s =
flip (s);
System.out.println

} // method run

"yes";

(s);

public void flip
{

(String t)

t new String
} // method flip
} // class Immutable

("no") ;

3

The output will be

‘yes”. The £1lip method constructed a new String object, but did not affect the

original string object referenced by s. Figure 0.3 shows the relationship between the argument s and the
parameter t at the start of the execution of the call to the £1ip method. Figure 0.4 shows the relationship
between s and t at the end of the execution of the method call.
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yes

0

FIGURE 0.3 The relationship between the argument s and the parameter t at the start of the execution of the
f1ip method in the class Tmmutable

yes

i

no

FIGURE 0.4 The relationship between the argument s and the parameter t at the end of the execution of the
f1ip method in the class Immutable

Some built-in classes are mutable. For example, the following program illustrates the mutability of Scanner
objects.

import java.util.*; // for the Scanner class

public class Mutable

{
public static void main (String[ ] args)

{
new Mutable () .run() ;
} // method main

public void run()

{

Scanner sc = new Scanner ("yes no maybe") ;

System.out.println (sc.next());

advance (sc);

System.out.println (sc.next());
} // method run

public void advance (Scanner scanner)

{
scanner .next () ;
} // method advance

} // class Mutable
The output from this program will be

yes
maybe
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The string “no” was returned when scanner.next () was called in the advance method, and that call
advanced the current position of the Scanner object (referenced by both sc and scanner) beyond where
“no” is. Because of this alteration of the Scanner object, the second call to println in the run method
prints out “maybe”.

To summarize this section, an argument is never affected by a method call. But if the argument is a
reference, the corresponding object may (for example, an array object or a Scanner object) or may not
(for example, a String, Integer, or Double object) be affected by the call.

0.5 Output Formatting

What do you think the output will be from the following code fragment?
double grossPay = 800.40;
System.out.println (grossPay);

The output will not be

800.40

but rather
800.4

To get two fractional digits printed, we need to convert grossPay to a string with two fractional digits. This
is accomplished by first creating an instance of the DecimalFormat class (in the package java.text)
with a fixed format that includes two fractional digits, and then applying that object’s format method to
grossPay. The code is

DecimalFormat d = new DecimalFormat ("0.00");
double grossPay = 800.40;
System.out.println (d.format (grossPay));

The fixed format, “0.00”, is the argument to the DecimalFormat constructor. That format specifies that
the String object returned by the format method will have at least one digit to the left of the decimal
point and exactly two digits to the right of the decimal point. The fractional part will be rounded to two
decimal digits; for example, suppose we have

DecimalFormat d = new DecimalFormat ("0.00");
double grossPay = 800.416;
System.out.println (d.format (grossPay));
Then the output will be
800.42

To make the output look more like a dollar-and-cents amount, we can ensure that grossPay is immediately
preceded by a dollar sign, and a comma separates the hundreds digit from the thousands digit:

DecimalFormat d = new DecimalFormat (" S$#,###.00");
double grossPay = 2800.4;

System.out.println (d.format (grossPay));
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The output will be

$2,800.40

The DecimalFormat class is in the package java.text, so that package must be imported at the begin-
ning of the file in which the formatting is performed.

An alternative to the output formatting just described is provided by the printf method, which is
similar to the print£ function in the C language. For example, the following will print grossPay with at
least one digit to the left of the decimal point and exactly two digits (rounded) to the right of the decimal
point:

System.out.printf ("%1.2f", grossPay);

The first field is called the format, an expression in quotes that starts with a percent sign. The character
‘f”—called a “flag”—signifies that grossPay will be printed with fractional digits. The “1.2”—the “width”
and “precision”—signifies that there will be at least one digit (even if it is a zero) to the left of the decimal
point, and exactly two digits (rounded) to the right of the decimal point. For example, suppose we have

double grossPay = 1234.567;

System.out.printf ("%1.2f", grossPay) ;
Then the output will be
1234.57

If there are additional values to be printed, the format for each value starts with a percent sign inside the
format. For example,

double grossPay = 1234.567;

String name = "Jonathan Rowe";

o

System.out.printf ("%s %$1.2f", name, grossPay) ;
The ‘s’ flag indicates a string. The output will be
Jonathan Rowe 1234.57

We can ensure there will be a comma between the hundreds and thousands digits by including the comma
flag, ,”. For example, suppose we have

double grossPay = 1234.567;

String name = "Jonathan Rowe";

System.out.printf ("%s $%,1.2f", name, grossPay);
Then the output will be

Jonathan Rowe $1,234.57

More details on formatting in the printf method can be found in the Format class in the package
java.util.
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CROSSWORD PUZZLE

2
3
4
5 6
7
8
9
www.CrosswordWeaver.com
ACROSS

3. A variable that can contain the address of an object.

6. The region of a program to which an identifier's
declaration applies.

7. The separation of a program into components that
are coherent units.

8. A new, that is, non-primitive type.
9. In aclass, a method whose name is the same as the

class’s name and whose purpose is to initialize a calling
object’s fields.

DOWN
The ability of a class to have methods with
the same method identifier but different
parameter lists.

A method'’s identifier together with the
number and types of parameters in order.

Adjacent, as when individual elements are
stored next to each other.

An instance of a class.

A class that is useful for parsing keyboard
input, file input and strings.
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PROGRAMMING EXERCISES

0.1

0.2

0.3

04

The package java.lang includes the Integer class. In that class, what is the definition of MAX_VALUE ? The
number Ox7fffffff is in hexadecimal, that is, base 16, notation. To indicate hexadecimal notation, start with
“0x”, followed by the hexadecimal value. In hexadecimal, there are sixteen digits: 0, 1, 2, ..., 9, a, b, ¢, d,
e, and f. The digits O through 9 have the same value as in decimal, and the letters ‘a’ through ‘f* have the
following decimal values:

10
11
12
13
14
15

I CHEN =P e BN e )

The decimal representation of hexadecimal 7ffffff is

7x16" +15%x16° +15%16° + 15%16* + 15% 16> + 15 % 16> + 15 % 16" + 15
= 2147483647

Similarly, the decimal value of MIN_VALUE is —2147483648. Hypothesize the decimal value of each of the
following:

Integer.MAX_VALUE + 1

Math.abs (Integer.MIN_VALUE)
Test your hypotheses with a small program that calls the System.out.println method.
Suppose we have the following:
int a = 37,
b =5;
System.out.println (a - a / b * b - a % b);

Hypothesize what the output will be. Test your hypothesis by executing a small program that includes that code.
Can you find another pair of positive int values for a and b that will produce different output? Explain.

Hypothesize the output from the following:

System.out.println (1 / 0);
System.out.println (1.0 / 0);

Test your hypotheses by executing a small program that includes that code.

In the String class, read the specification for the indexOf method that takes a String parameter. Then
hypothesize the output from the following

System.out.println ("The snow is now on the ground.".indexOf ("now"));

Test your hypothesis by executing a small program that includes that code.
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0.5

0.6

0.7

0.8

0.9

In the String class, read the specification for the indexOf method that takes a String parameter and an
int parameter. Then hypothesize the output from the following

System.out.println ("The snow is now on the ground.".indexOf ("now", 8));
Test your hypothesis by executing a small program that includes that code.

Write and run a small program in which an input string is read in and the output is the original string with each
occurrence of the word “is” replaced by “was”. No replacement should be made for an embedded occurrence,
such as in “this” or “isthmus”.

Write and run a small program in which an input string is read in and the output is the original string with each
occurrence of the word “is” replaced by “is not”. No replacement should be made for an embedded occurrence,
such as in “this” or “isthmus”.

Write and run a small program in which the end user enters three lines of input. The first line contains a string,
the second line contains a substring to be replaced, and the third line contains the replacement substring. The
output is the string in the first line with each occurrence of the substring in the second line replaced with
the substring in the third line. No replacement should be made for an embedded occurrence, in the first line of
the substring in the second line.

Study the following method:

public void mystery (int n)

{
System.out.print ("For n = " + n);
while (n > 1)

if (n % 2 == 0)
n=mn/2;
else
n=3%n+1;
System.out.println (", the loop terminated.");

} // method mystery

Trace the execution of this method when n = 7. In the same class as the method mystery, develop a main
method and a run method to show that the while statement in the method mystery successfully terminates
for any positive integer nn less than 100. Cultural note: It can be shown that this method terminates for all int
values greater than 0, but it is an open question whether the method terminates for all integer values greater
than 0.
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CHAPTER OBJECTIVES

1. Compare a user’s view of a class with a developer’s view of that class.
2. Understand how inheritance promotes code re-use.

3. Understand how polymorphic references can be useful.

4. Be able to create class diagrams in the Unified Modeling Language.

1.1 Data Abstraction

A user of a class concentrates on the class’s method specifications, that is, what a class provides. A
developer of a class, on the other hand, focuses on the class’s fields and method definitions, that is, how
the class is defined. This separation—called data abstraction—of what from how is an essential feature
of object-oriented programming. For example, programmers who use the String class will not care about
the fields that represent a string or how the methods are defined. Such details would be of no help when
you are trying to develop a class that uses the String class, but were essential to the developers of the
String class.

In general, suppose you are a programmer who is developing class 2, and during development, you
decide that you will need the services of class B. If someone else has already completed the definition of
class B, you should simply use that class rather than re-inventing the wheel. But even if you must define
the class, B yourself, you can simply create the method specifications for class B and postpone any further
work on class B until after you have completed the development of class A. By working with class B’s
method specifications, you increase the independence of class A: its effectiveness will not be affected by
any changes to class B that do not affect the method specifications of class B.

When users focus on what a class provides to users rather than on the implementation details of
that class, they are applying the Principle of Data Abstraction: A user’s code should not access the
implementation details of the class used.

One important application of the Principle of Data Abstraction is that if class A simply uses class
B, then class A’s methods should not access class B’s fields. In fact, class B’s fields should be accessed
only in class B’s method definitions. This turns out to be a benefit to users of class B because they will
be unaffected if the developer of class B decides to replace the old fields with new ones. For example,
suppose the following definition is made outside of the String class:

String name;
Currently, one of the fields in the String class is an int field named count. But an expression such as
name.count

would be a violation of the Principle of Data Abstraction because whether or not the String class has a
count field is an implementation detail. The developer of the String class is free to make any changes
to the String class that do not affect the method specifications.

27



28 CHAPTER 1 Object-Oriented Concepts

Most programming languages, including Java, have features that enable a developer of a class to force
users to adhere to the Principle of Data Abstraction. These enforcement features are collectively known as
“information hiding.” We will discuss information hiding in Section 1.5 after we have introduced several
of the relevant features.

We noted earlier that the Principle of Data Abstraction is a benefit to users of a class because they
are freed from reliance on implementation details of that class. This assumes, of course, that the class’s
method specifications provide all of the information that a user of that class needs. The developer of a class
should create methods with sufficient functionality that users need not rely on any implementation details.
That functionality should be clearly spelled out in the method specifications. In particular, the user should
be told under what circumstances a method call will be legal, and what the effect of a legal call will be.

In a method specification, the first sentence in a javadoc comment block is called the postcondition:
the effect of a legal call to the method. The information relating to the legality of a method call is
known as the precondition of the method. The precondition may be stated explicitly within or after the
postcondition (for example, “The array must be sorted prior to making this call.”) or implicitly from the
exception information (for example, any call that throws an exception is illegal). The interplay between a
method’s precondition and postcondition determines a contract between the developer and the user. The
terms of the contract are as follows:

If the user of the method ensures that the precondition is true before the method is invoked, the developer
guarantees that the postcondition will be true at the end of the execution of the method.

We can summarize our discussion of classes so far by saying that from the developer’s perspective, a class
consists of fields and the definitions of methods that act on those fields. A user’s view is an abstraction
of this: A class consists of method specifications.

The Java Collections Framework is, basically, a hierarchy of thoroughly tested classes that are
useful in a variety of applications. The programs in this book will use the Java Collections Framework,
so those programs will not rely on the definitions of the framework’s methods. We will provide method
specifications and an overview of most of the classes. Occasionally, to give you experience in reading the
code of professional programmers, you will get to study the fields and some of the method definitions.

In Section 1.2, we see the value of classes that have undefined methods.

1.2 Abstract Methods and Interfaces

Up to now, we have used method specifications for the purpose of promoting data abstraction. That is, a user
should focus on the method specifications in a class and ignore the class’s fields and method definitions.
Some methods don’t even have a definition, and it turns out that this can be helpful to programmers. For
example, suppose we want to create classes for circles, rectangles and other figures. In each class, there
will be methods to draw the figure and to move the figure from one place on the screen to another place
on the screen. The Circle class, for example, will have a draw method and a move method based on the
center of the circle and its radius. Here are two method specifications and related constant identifiers that
will apply to all of the figure classes:

final static int MAX_X_COORD = 1024;

final static int MAX_Y COORD = 768;

) **

* Draws this Figure object centered at the given coordinates.
*



1.2 Abstract Methods and Interfaces 29

* @param x — the X coordinate of the center point of where this Figure object
* will be drawn.

* @param y - the Y coordinate of the center point of where this Figure object
* will be drawn.

*

*/

public void draw(int x, int vy)

/'k'k
* Moves this Figure object to a position whose center coordinates are specified.

* @param x — the X coordinate of the center point of where this Figure object
* will be moved to.

* @param y - the Y coordinate of the center point of where this Figure object
* will be moved to.

*

*/

public void move (int x, int vy)

Each different type of figure will have to provide its own definitions for the draw and move methods.
But by requiring that those definitions adhere to the above specifications, we introduce a consistency to
any application that uses the figure classes. A user of one of those classes knows the exact format for the
draw and move methods—and that will still be true for classes corresponding to new figure-types.

Java provides a way to enforce this consistency: the interface. Each method heading is followed by a
semicolon instead of a definition. Such a method is called an abstract method. An interface is a collection
of abstract methods and constants. There are no defined methods and no fields. For example, here is the
interface for figures:

public interface Figure

{
final static int MAX_X_COORD

1024;

final static int MAX_Y COORD = 768;

/*x*

* Draws this Figure object centered at the given coordinates.

*

* @param x - the X coordinate of the center point of where this Figure
* object will be drawn.

* @param y - the Y coordinate of the center point of where this Figure
* object will be drawn.

*

*/

void draw(int x, int vy);

/**
* Moves this Figure object to a position whose center coordinates are

* gpecified.
*
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* @param x - the X coordinate of the center point of where this Figure
* object will be moved to.

* @param y - the Y coordinate of the center point of where this Figure
* object will be moved to.

*

*/

void move (int x, int vy);

} // interface Figure

The interface Figure has two constants (MAX_X_COORD and MAX_Y_COORD) and two abstract methods,
(draw and move). In any interface, all of the method identifiers and constant identifiers are public, so the
declarations need not include the visibility modifier public.

When a class provides method definitions for an interface’s methods, the class is said to implement
the interface. The class may also define other methods. For example, here is part of a declaration of the
Circle class:

public class Circle implements Figure
{
// declaration of fields:
private int xCoord,
yCoord,

radius;
// constructors to initialize x, y and radius:

/** (javadoc comments as above)
*/

public draw (int x, int y)

{

xCoord = x;

yCoord = vy;
// draw circle with center at (xCoord, yCoord) and radius:
} // method draw

// definitions for move and any other methods:

} // class Circle

The reserved word implements signals that class Circle provides method definitions for the methods
whose specifications are in the interface Figure. Interfaces do not include constructors because construc-
tors are always class specific. The incompleteness of interfaces makes them uninstantiable, that is, we
cannot create an instance of a Figure object. For example, the following is illegal:

Figure myFig = nmew Figure(); // illegal

In the method specifications in the Figure interface, the phrase “this Figure object” means “this object
in a class that implements the Figure interface.”

Of what value is an interface? In general, an interface provides a common base whose method
specifications are available to any implementing class. Thus, an interface raises the comfort level of users
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because they know that the specifications of any method in the interface will be adhered to in any class
that implements the interface. In practice, once a user has seen an interface, the user knows a lot about any
implementing class. Unlike the interface, the implementing class will have constructors, and may define
other methods in addition to those specified in the interface.

1.2.1 Abstract Data Types and Data Structures

An abstract data type consists of a collection of values, together with a collection of operations on those
values. In object-oriented languages such as Java, abstract data types correspond to interfaces in the sense
that, for any class that implements the interface, a user of that class can:

a. create an instance of that class; (“instance” corresponds to *“ value”)
b. invoke the public methods of that class (“public method” corresponds to “operation”).

A data structure is the implementation of an abstract data type. In object-oriented languages, a developer
implements an interface with a class. In other words, we have the following associations:

general term object-oriented term
abstract data type Interface
data structure class

A user is interested in abstract data types—interfaces—and a class’s method specifications, while a devel-
oper focuses on data structures, namely, a class’s fields and method definitions. For example, one of the
Java Collections Framework’s interfaces is the List interface; one of the classes that implement that inter-
face is LinkedList. When we work with the List interface or the LinkedList method specifications,
we are taking a user’s view. But when we consider a specific choice of fields and method definitions in
LinkedList, we are taking a developer’s view.

In Chapter 0, we viewed the String class from the user’s perspective: what information about the
String class is needed by users of that class? A user of a class writes code that includes an instance
of that class. Someone who simply executes a program that includes an instance of a class is called an
end-user. A developer of a class actually creates fields and method definitions. In Section 1.2.2, we will
look at the developer’s perspective and compare the user’s and developer’s perspectives. Specifically,
we create an interface, and utilize it and its implementing classes as vehicles for introducing several
object-oriented concepts.

1.2.2 An Interface and a Class that Implements the Interface

This section is part of an extended example that continues through the rest of the chapter and illustrates
several important object-oriented concepts. Let’s create a simple interface called Employee for the employ-
ees in a company. The information for each employee consists of the employee’s name and gross weekly
pay. To lead into the method specifications, we first list the responsibilities of the interface, that is, the
services provided to users of any class that implements the Employee interface. The responsibilities of
the Employee interface are:

1. to return the employee’s name;
2. to return the employee’s gross pay;

3. to return a String representation of an employee.
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These responsibilities are refined into the following interface:

import java.text.DecimalFormat;

public interface Employee

{

final static DecimalFormat MONEY = new DecimalFormat (" $0.00");
// a class constant used in formatting a value in dollars and cents

/*x*

* Returns this Employee object’s name.

*

* @return this Employee object’s name.
*

*/
String getName () ;

/**
* Returns this Employee object’s gross pay.
*

* @return this Employee object’s gross pay.

*
*/
double getGrossPay () ;

* Returns a String representation of this Employee object with the name
* followed by a space followed by a dollar sign followed by the gross
* weekly pay, with two fractional digits (rounded).

* @return a String representation of this Employee object.

*
*/
String toString() ;

} // interface Employee

The identifier MONEY is a constant identifier—indicated by the reserved word £inal. The reason for
declaring a MONEY object is to facilitate the conversion of a double value such as gross pay into a string
in dollars-and-cents format suitable for printing. Instead of having a separate copy of the MONEY object
for each instance of each class that implements the Employee interface, there is just one MONEY object
shared by all instances of implementing classes. This sharing is indicated by the reserved word static.

The phrase “this Employee object” means “the calling object in a class that implements the
Employee interface.”

The Employee interface’s method specifications are all that a user of any implementing class will
need in order to invoke those methods. A developer of the class, on the other hand, must decide what fields
to have and then define the methods. A convenient categorization of employees is full-time and part-time.
Let’s develop a FullTimeEmployee implementation of the Employee interface.
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For example, a developer may well decide to have two fields: name (a String reference) and
grossPay (a double). The complete method definitions are developed from the fields and method spec-
ifications. For example, here is a complete declaration of the FullTimeEmployee class; the next few
sections of this chapter will investigate various aspects of the declaration.

import java.text.DecimalFormat;

public class FullTimeEmployee implements Employee
{

private String name;

private double grossPay;

/**

* Initializes this FullTimeEmployee object to have an empty string for the

* name and 0.00 for the gross pay.
*
*/
public FullTimeEmployee ()
{
final String EMPTY_STRING = "";

name = EMPTY_STRING;
grossPay = 0.00;
} // default constructor

/xx

Initializes this FullTimeEmployee object’s name and gross pay from a
a specified name and gross pay.

* @param name - the specified name.

* @param grossPay - the specified gross pay.

*
*/
public FullTimeEmployee (String name, double grossPay)
{
this.name = name;
this.grossPay = grossPay;
} // 2-parameter constructor

/**
* Returns the name of this FullTimeEmployee object.
*
* @return the name of this FullTimeEmployee object.
*
*/
public String getName ()
{
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return name;
} // method getName

/**

* Returns the gross pay of this FullTimeEmployee object.

*

* @return the gross pay of this FullTimeEmployee object.
*

*/
public double getGrossPay ()
{
return grossPay;
} // method getGrossPay

* Returns a String representation of this FullTimeEmployee object with the
* name followed by a space followed by a dollar sign followed by the gross
* weekly pay, with two fractional digits (rounded), followed by "FULL TIME".

* @return a String representation of this FullTimeEmployee object.
*

*/
public String toString/()

{
final String EMPLOYMENT_STATUS = "FULL TIME";

return name + MONEY.format (grossPay) + EMPLOYMENT_ STATUS;
// the format method returns a String representation of grossPay.
} // method toString

} // class FullTimeEmployee

In the two-parameter constructor, one of the parameters is name. The reserved word this is used to
distinguish between the scope of the field identifier name and the scope of the parameter name. In any
class, the reserved word this is a reference to the calling object, so this.name refers to the name field
of the calling object, and name by itself refers to the parameter name. Similarly, this.grossPay refers
to the calling object’s grossPay field, and grosspPay by itself refers to the parameter grossPay.

In the other methods, such as toString (), there is no grossPay parameter. Then the appearance
of the identifier grossPay in the body of the toString () method refers to the grosspPay field of the
object that called the toString () method.

The same rule applies if a method identifier appears without a calling object in the body of a method.
For example, here is the definition of the hasNextLine () method in the Scanner class:

public boolean hasNextLine ()
{

saveState () ;
String result = findWithinHorizon (
".*("+LINE_SEPARATOR_PATTERN+")|.+$", 0);
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revertState() ;
return (result != null);

}

There is no calling-object reference specified for the invocation of the saveState () method, and so
the object assumed to be invoking saveState () is the object that called hasNextLine (). Similarly,
the methods findwithinHorizon and revertState are being called by that same object. Here is the
general rule, where a member is either a field or a method:

If an object has called a method and a member appears without an object reference in the method
definition, the member is part of the calling object.

As you can see from the declaration of the FullTimeEmployee class, in each method definition there is
at least one field that appears without an object reference. In fact, in almost every method definition in
almost every class you will see in subsequent chapters, there will be at least one field that appears without
an object (reference). Then the field is part of the calling object.

1.2.3 Using the FullTimeEmployee Class

As an example of how to use the FullTimeEmployee class, we can find the best-paid of the full-time
employees in a company. The information for each employee will be on one line in a file, and the name
of the file will be scanned in from System.in.

For convenience, the following Company class includes a main method. For the sake of an object
orientation, that main method simply invokes the Company class’s run method on a newly constructed
Company instance; all of the main methods from here on will be one-liners. The run method calls a
findBestPaid method to return the best-paid full-time employee, or null if there were no employees
scanned in. Finally, the findBestPaid method invokes a getNextEmployee method to handle the details
of constructing a FullTimeEmployee instance from a name and a gross pay.

Here is the complete program file, with three Scanner objects, one to scan the name of the file of
employees, one to scan over that file, and one to scan a line in that file:

import java.util.*; // for the Scanner class
import java.io.*; // for the FileNotFoundException class - see Section 2.3

public class Company
{
public static void main (String[ ] args) throws FileNotFoundException
{
new Company () .run() ;
} // method main

/**
* Determines and prints out the best paid of the full-time employees

* gscanned in from a specified file.
*

*/
public void run() throws FileNotFoundException // see Section 2.3
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final String INPUT_PROMPT = "Please enter the path for the file of employees: ";
final String BEST PAID_MESSAGE =
"\n\nThe best-paid employee (and gross pay) is ";

final String NO_INPUT_MESSAGE =
"\n\nError: There were no employees scanned in.";

String fileName;

System.out.print (INPUT_PROMPT) ;
fileName = new Scanner (System.in).nextLine();
Scanner sc = new Scanner (new File (fileName)) ;

FullTimeEmployee bestPaid = findBestPaid (sc);

if (bestPaid == null)
System.out.println (NO_INPUT_MESSAGE) ;
else
System.out.println (BEST_PAID_MESSAGE + bestPaid.toString()) ;
} // method run

/**
* Returns the best paid of all the full-time employees scanned in.

*

* (@param sc - the Scanner object used to scan in the employees.
*
* @return the best paid of all the full-time employees scanned in,
* or null there were no employees scanned in.
*
*/
public FullTimeEmployee findBestPaid (Scanner sc)
{
FullTimeEmployee full,
bestPaid = new FullTimeEmployee() ;

while (sc.hasNext())

{
full = getNextEmployee (sc);
if (full.getGrossPay() > bestPaid.getGrossPay())
bestPaid = full;
} //while
if (bestPaid.getGrossPay () == 0.00)

return null;
return bestPaid;
} // method findBestPaid

/) **

* Returns the next full-time employee from the file scanned by a specified Scanner
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*  object.
* (@param sc - the Scanner object over the file.
* @return the next full-time employee scanned in from sc.

*/
private FullTimeEmployee getNextEmployee (Scanner sc)

{

Scanner lineScanner = new Scanner (sc.nextLine());
String name = lineScanner.next () ;
double grossPay = lineScanner.nextDouble() ;

return new FullTimeEmployee (name, grossPay);
} // method getNextEmployee

} // class Company

The above code is available from the Chapter 1 directory of the book’s website. If the file name scanned
in from System.in is “full.in1”, and the corresponding file contains

a 1000.00
b 3000.00
c 2000.00

then the output will be
The best-paid employee (and gross pay) is b $3000.00 FULL TIME

As noted earlier, we should use existing classes whenever possible. What if a class has most, but not all,
of what is needed for an application? We could simply scrap the existing class and develop our own, but
that would be time consuming and inefficient. Another option is to copy the needed parts of the existing
class and incorporate those parts into a new class that we develop. The danger with that option is that
those parts may be incorrect or inefficient. If the developer of the original class replaces the incorrect or
inefficient code, our class would still be erroneous or inefficient. A better alternative is to use inheritance,
explained in Section 1.3.

1.3 Inheritance

We should write program components that are reusable. For example, instead of defining a method that
calculates the average gross pay of 10 employees, we would achieve wider applicability by defining a
method that calculates the average gross pay of any number of employees. By writing reusable code, we
not only save time, but we also avoid the risk of incorrectly modifying the existing code.

One way that reusability can be applied to classes is through a special and powerful property of
classes: inheritance. Inheritance is the ability to define a new class that includes all of the fields and some
or all of the methods of an existing class. The previously existing class is called the superclass. The new
class, which may declare new fields and methods, is called the subclass. A subclass may also override
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existing methods by giving them method definitions that differ from those in the superclass.! The subclass
is said to extend the superclass.

For an example of how inheritance works, let’s start with the class FullTimeEmployee defined in
Section 1.2.2. Suppose that several applications use FullTimeEmployee. A new application involves find-
ing the best-paid, full-time hourly employee. For this application, the information on an hourly employee
consists of the employee’s name, hours worked (an int value) and pay rate (a double value). Assume
that each employee gets time-and-a-half for overtime (over 40 hours in a week). If the hourly employee
did not work any overtime, the gross pay is the hours worked times the pay rate. Otherwise, the gross pay
is 40 times the pay rate, plus the overtime hours times the pay rate times 1.5.

We could alter FullTimeEmployee by adding hoursWorked and payRate fields and modifying the
methods. But it is risky to modify, for the sake of a new application, a class that is being used successfully
in existing applications. The underlying concept is known as the Open-Closed Principle: Every class
should be both open (extendible through inheritance) and closed (stable for existing applications).

Instead of rewriting FullTimeEmployee, we will create HourlyEmployee, a subclass of
FullTimeEmployee. To indicate that a class is a subclass of another class, the subclass identifier is
immediately followed by the reserved word extends. For example, we can declare the HourlyEmployee
class to be a subclass of FullTimeEmployee as follows:

public class HourlyEmployee extends FullTimeEmployee
{

Each HourlyEmployee object will have the information from FullTimeEmployee—name and gross
pay—as well as hours worked and pay rate. These latter two will be fields in the HourlyEmployee
class. To lead us into a discussion of the relationship between the FullTimeEmployee fields and the
HourlyEmployee fields, here is a constructor to initialize an HourlyEmployee instance from a name,
hours worked, and pay rate (MAX_REGULAR_HOURS is a constant identifier with a current value of 40, and
OVERTIME_FACTOR is a constant identifier with a current value of 1.5).

/ * %

* Initializes this full-time HourlyEmployee object’s name, hours worked, pay rate, and

* gross pay from a a specified name, hours worked and pay rate. If the hours worked

* 1s at most MAX_REGULAR_HOURS, the gross pay is the hours worked times

* the pay rate. Otherwise, the gross pay is MAX_REGULAR_HOURS times the

* pay rate, plus the pay rate times OVERTIME_FACTOR for all overtime hours.

* @param name - the specified name.
* @param hoursWorked - the specified hours worked.
* @param payRate - the specified pay rate.
*
*/
public HourlyEmployee (String name, int hoursWorked, double payRate)
{
this.name = name;
this.hoursWorked = hoursWorked;
this.payRate = payRate;

'Don’t confuse method overriding with method overloading (discussed in Section 0.2.1 of Chapter 0): having two methods in the same class
with the same method identifier but different signatures.
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if (hoursWorked <= MAX_REGULAR_HOURS)

{
regularPay = hoursWorked * payRate;
overtimePay = 0.00;

Y // if

else

{
regularPay = MAX_REGULAR_HOURS * payRate;
overtimePay = (hoursWorked - MAX_REGULAR_HOURS) *

(payRate * OVERTIME_FACTOR) ;
} // else
grossPay = regularPay + overtimePay;
} // 3-parameter constructor

Notice that in the definition of this 3-parameter constructor for HourlyEmployee, the name and
grossPay fields from the FullTimeEmployee class are treated as if they had been declared as fields in
the HourlyEmployee class. The justification for this treatment is that an HourlyEmployee object is also
a FullTimeEmployee object, so every FullTimeEmployee field is also an HourlyEmployee field. But
the name and grossPay fields in the Ful1TimeEmployee class were given private visibility, which pre-
cludes their usage outside of the declaration of the Ful1TimeEmployee class. Can we change the visibility
of those fields to public? That would be a bad choice, because then any user’s code would be allowed
to access (and modify) those fields. What we need is a visibility modifier for a superclass field that allows
access by subclass methods but not by arbitrary user’s code. The solution is found in the next section.

1.3.1 The protected Visibility Modifier

We noted above that subclass methods—but not user’s code in general—should be able to access superclass
fields. This suggests that we need a visibility modifier that is less restrictive than private (to allow
subclass access) but more restrictive than public (to prohibit access by arbitrary user’s code). The
compromise between private and public visibility is protected visibility. We change the declaration
of the FullTimeEmployee fields as follows:

protected String name;
protected double grossPay;

These declarations enable any subclass of FullTimeEmployee to access the name and grossPay fields
as if they were declared within the subclass itself. This makes sense because an HourlyEmployee object
is a FullTimeEmployee object as well. So the HourlyEmployee class has two inherited fields (name
and grossPay) as well as those explicitly declared in HourlyEmployee (hoursWorked, payRate, and
for convenience, regularPay and overtimePay).

The subclass HourlyEmployee can access all of the fields, from FullTimeEmployee, that have
the protected modifier. Later on, if a subclass of HourlyEmployee is created, we would want that
subclass’s methods to be able to access the HourlyEmployee fields—as well as the FullTimeEmployee
fields. So the declarations of the HourlyEmployee fields should also have the protected modifier:

protected int hoursWorked;

protected double payRate,
regularPay,
overtimePay;
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The HourlyEmployee class will have a default constructor as well as the 3-parameter constructor defined
earlier in Section 1.3. The FullTimeEmployee methods getName and getGrossPay are inherited as is
by the HourlyEmployee class. The getHoursWorked, getPayRate, getRegularPay, and getOver
timePay methods are explicitly defined in the HourlyEmployee class.

The toString() method from the FullTimeEmployee class will be overridden in Hourly
Employee to include the word “HOURLY”. The override can be accomplished easily enough: we copy
the code from the toString () method in FullTimeEmployee, and append “HOURLY” to the String
returned:

return name + MONEY.format (grossPay) + "HOURLY";

But, as noted at the end of Section 1.2.3, copying code is dangerous. Instead, the definition of toString ()
in the HourlyEmployee class will call the toString () method in the FullTimeEmployee class. To
call a superclass method, use the reserved word super as the calling object:

return super.toString() + "HOURLY";
Here is the complete HourlyEmployee.java file:

import java.text.DecimalFormat;

public class HourlyEmployee extends FullTimeEmployee implements Employee
{
// for full-time hourly employees

public final static int MAX_REGULAR_HOURS = 40;
public final static double OVERTIME_FACTOR = 1.5;
protected int hoursWorked;

protected double payRate,
regularPay,

overtimePay;

/**

* TInitializes this full-time HourlyEmployee object to have an empty string for

* the name, 0 for hours worked, 0.00 for the pay rate, grossPay, regularPay
* and overtimePay.
*
*/
public HourlyEmployee ()
{
hoursWorked = 0;
payRate = 0.00;
regularPay = 0.00;
overtimePay = 0.00;

} // default constructor
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/) **

*

*

*

Initializes this full-time HourlyEmployee object’s name and gross pay from a
a specified name, hours worked and pay rate. If the hours worked is

at most MAX_REGULAR_HOURS, the gross pay is the hours worked times

the pay rate. Otherwise, the gross pay is MAX_REGULAR_HOURS time the

pay rate, plus the pay rate times OVERTIME_FACTOR for all overtime hours.

@param name - the specified name.
@param hoursWorked - the specified hours worked.

@param payRate - the specified pay rate.

/

public HourlyEmployee (String name, int hoursWorked, double payRate)

{

this.name = name;
this.hoursWorked = hoursWorked;
this.payRate = payRate;

if (hoursWorked <= MAX_REGULAR_HOURS)
{
regularPay = hoursWorked * payRate;
overtimePay = 0.00;
Yy // if
else
{
regularPay = MAX_REGULAR_HOURS * payRate;
overtimePay = (hoursWorked - MAX_REGULAR_HOURS) *
(payRate * OVERTIME_FACTOR) ;
} // else
grossPay = regularPay + overtimePay;
} // 3-parameter constructor

/**
* Returns the hours worked by this full-time HourlyEmployee object.
*
* @return the hours worked by this full-time HourlyEmployee object.
*

*

public int getHoursWorked()

{
return hoursWorked;
} // method getHoursWorked

/**

* Returns the pay rate of this full-time HourlyEmployee object.

*

* @return the pay rate this full-time HourlyEmployee object.

*

*/

4
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public double getPayRate()
{

return payRate;
} // method getPayRate

/xx

* Returns the regular pay of this full-time HourlyEmployee object.

*

* @return the regular pay this full-time HourlyEmployee object.

*
*/
public double getRegularPay ()
{
return regularPay;
} // method getRegularPay

/xx

* Returns the overtime pay of this full-time HourlyEmployee object.
*

* @return the overtime pay this full-time HourlyEmployee object.
*

*/
public double getOvertimePay ()
{
return overtimePay;
} // method getOvertimePay

/xx

* Returns a String representation of this full-time HourlyEmployee object with the
* name followed by a space followed by a dollar sign followed by the gross pay
* (with two fractional digits) followed by "FULL TIME HOURLY".

* @return a String representation of this full-time HourlyEmployee object.
*

*/
public String toString()

{
final String FULL_TIME_STATUS = "HOURLY";

return super.toString() + FULL_TIME_STATUS;
} // method toString

} // class HourlyEmployee

A final note on the visibility modifier protected: It can be applied to methods as well as to fields.
For example, the visibility modifier for the getNextEmployee method in the Company class should be
changed from private to protected for the sake of potential subclasses of Company. One such subclass
is introduced in Section 1.3.3.
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Section 1.3.2 continues our discussion of inheritance by examining the interplay between inheritance
and constructors.

1.3.2 Inheritance and Constructors

Constructors provide initialization for instances of a given class. For that reason, constructors are never
inherited. But whenever a subclass constructor is called, the execution of the subclass constructor starts
with an automatic call to the superclass’s default constructor. This ensures that at least the default ini-
tialization of fields from the superclass will occur. For example, the FullTimeEmployee class’s default
constructor is automatically invoked at the beginning of a call to any HourlyEmployee constructor.
That explains how the name and grossPay fields are initialized in the HourlyEmployee class’s default
constructor.

What if the superclass has a constructor but no default constructor? Then the first statement in
any subclass constructor must explicitly call the superclass constructor. A call to a superclass constructor
consists of the reserved word super followed by the argument list, in parentheses. For example, suppose
some class B’s only constructor has an int parameter. If C is a subclass of B and ¢ has a constructor with a
String parameter, that constructor must start out by invoking B’s constructor. For example, we might have

public C (String s)
{

super (s.length()); // explicitly calls B’s int-parameter constructor

} // String-parameter constructor

So if a superclass explicitly defines a default (that is, zero-parameter) constructor, there are no restrictions
on its subclasses. Similarly, if the superclass does not define any constructors, the compiler will
automatically provide a default constructor, and there are no restrictions on the subclasses. But if a
superclass defines at least one constructor and does not define a default constructor, the first statement in
any subclass’s constructor must explicitly invoke a superclass constructor.

1.8.3 The Subclass Substitution Rule

Just as the Company class used FullTimeEmployee, we can find the best-paid hourly employee with the
help of an HourlyCompany class, which uses the HourlyEmployee class. HourlyCompany, a subclass of
the Company class described in Section 1.2.3, differs only slightly from the Company class. Specifically,
the main method invokes the HourlyCompany class’s run method on a newly constructed Hourly
Company instance. Also, the getNextEmployee method is overridden to scan in the information for
an HourlyEmployee object; to enable this overriding, we must change the visibility modifier of the
Company class’s getNextEmployee method from private to protected. Interestingly, the run and
findBestPaid methods, which deal with full-time (not necessarily hourly) employees, are inherited, as
is, from the Company class.
Assume the input file consists of

a 40 20
b 45 20
c 40 23

Then the output will be
The best-paid hourly employee (and gross pay) is b $950.00 FULL TIME HOURLY
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Here is the HourlyCompany. java file:

import java.util.*;
import java.io.*;

public class HourlyCompany extends Company
{
public static void main (String[ ] args) throws FileNotFoundException
{
new HourlyCompany () .run();
} // method main

/xx

* Returns the next hourly employee from the specified Scanner object.
* @param sc - the Scanner object used to scan in the next employee.

* @return the next hourly employee scanned in from sc.

*

*/
protected HourlyEmployee getNextEmployee (Scanner sc)
{

Scanner lineScanner = mnew Scanner (sc.nextLine());
String name = lineScanner.next () ;

int hoursWorked = lineScanner.nextInt();

double payRate = lineScanner.nextDouble() ;

return new HourlyEmployee (name, hoursWorked, payRate);
} // method getNextEmployee

} // class HourlyCompany
Recall, from the inherited findBestPaid method, the following assignment:

full = getNextEmployee (sc);

The left-hand side of this assignment is (a reference to) a FullTimeEmployee object. But the value
returned by the call to getNextEmployee is a reference to an HourlyEmployee object. Such an arrange-
ment is legal because an HourlyEmployee is a FullTimeEmployee. This is an application of the Subclass
Substitution Rule:

Subclass Substitution Rule

Whenever a reference-to-superclass-object is called for in an evaluated expression, a reference-to-
subclass-object may be substituted.
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Specifically, the left-hand side of the above assignment is a reference to a FullTimeEmployee object,
so a reference to a FullTimeEmployee object is called for on the right-hand side of that assignment.
So it is legal for that right-hand side expression to be a reference to an HourlyEmployee object; it is
important to note that for an HourlyEmployee object, the toString () method includes “HOURLY”.
The returned reference is assigned to the FullTimeEmployee reference full, which is then used to
update the FullTimeEmployee reference bestPaid. When the value of bestPaid is returned to the
run method and the message bestPaid.toString () is sent, the output includes “HOURLY”. Why?
The reason is worth highlighting:

When a message is sent, the version of the method invoked depends on the run-time type of the object
referenced, not on the compile-time type of the reference.

Starting with the construction of the new HourlyEmployee object in the getNextEmployee method,

all of the subsequent references were to an HourlyEmployee object. So the version of the toString ()

method invoked by the message bestPaid.toString () was the one in the HourlyEmployee class.
Let’s take a closer look at the Subclass Substitution Rule. Consider the following:

FullTimeEmployee full = new FullTimeEmployee () ;
HourlyEmployee hourly = mnew HourlyEmployee() ;

full = hourly;

In this last assignment statement, a reference-to-FullTimeEmployee is called for in the evaluation of
the expression on the right-hand side, so a reference-to-HourlyEmployee may be substituted: an Hourly
Employee iS a FullTimeEmployee.

But the reverse assignment is illegal:

FullTimeEmployee full = new FullTimeEmployee () ;
HourlyEmployee hourly = new HourlyEmployee () ;

hourly = full; // illegal

On the right-hand side of this last assignment statement, the compiler expects a reference-to-
HourlyEmployee, so a reference-to-FullTimeEmployee is unacceptable: a FullTimeEmployee is not
necessarily an HourlyEmployee. Note that the left-hand side of an assignment statement must consist
of a variable, which is an expression. But that left-hand-side variable is not evaluated in the execution of
the assignment statement, so the Subclass Substitution Rule does not apply to the left-hand side.

Now suppose we had the following:

FullTimeEmployee full = new FullTimeEmployee () ;
HourlyEmployee hourly = new HourlyEmployee () ;

full = hourly;
hourly = full; // still illegal
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After the assignment of hourly to full, full contains a reference to an HourlyEmployee object. But
the assignment:

hourly = full;

still generates a compile-time error because the declared type of full is still reference-to-FullTime
Employee. We can avoid a compile-time error in this situation with a cast: the temporary conversion of
an expression’s type to another type. The syntax for a cast is:

(the new type)expression
Specifically, we will cast the type of full to HourlyEmployee:

FullTimeEmployee full = new FullTimeEmployee () ;
HourlyEmployee hourly = mnew HourlyEmployee () ;

full = hourly;
hourly = (HourlyEmployee) full;

To put it anthropomorphically, we are saying to the compiler, “Look, I know that the type of full is
reference-to-FullTimeEmployee. But I promise that at run-time, the object referenced will, in fact, be
an HourlyEmployee object.” The cast is enough to satisfy the compiler, because the right-hand side of
the last assignment statement now has type reference-to-HourlyEmployee. And there is no problem at
run-time either because—from the previous assignment of hourly to full—the value on the right-hand
side really is a reference-to-HourlyEmployee.

But the following, acceptable to the compiler, throws a ClassCastException at run-time:

FullTimeEmployee full = new FullTimeEmployee () ;
HourlyEmployee hourly = mnew HourlyEmployee () ;
hourly = (HourlyEmployee) full;

The run-time problem is that full is actually pointing to a FullTimeEmployee object, not to an
HourlyEmployee object.

The complete project, HourlyCompany, is in the chl directory of the book’s website. Lab 1’s
experiment illustrates another subclass of FullTimEmployee.

You are now prepared to do Lab 1: The SalariedEmployee Class

Before we can give a final illustration of the Subclass Substitution Rule, we need to introduce the
Object class. The Object class, declared in the file java.lang.Object.java, is the superclass of
all classes. Object is a bare-bones class, whose methods are normally overridden by its subclasses. For
example, here are the method specification and definition of the equals method in the Object class:

/* *

* Determines if the calling object is the same as a specified object.
* @param obj - the specified object to be compared to the calling object.

* @return true - if the two objects are the same.
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*
*/
public boolean equals (Object obj)
{
return (this == obj);
} // method equals

The definition of this method compares references, not objects, for equality. So true will be returned if and
only if the calling object reference contains the same address as the reference obj. For example, consider
the following program fragment:

Object objl = new Object (),
obj2 = new Object(),
obj3 = objl;

System.out.println (objl.equals (obj2) + "" + objl.equals (ob3j3));
The output will be
false true

For that reason, this method is usually overridden by the 0Object class’s subclasses. We saw an example
of this with the String class’s equals method in Section 0.2.3 of Chapter 0. In that equals method,
the parameter’s type is Object, and so, by the Subclass Substitution Rule, the argument’s type can be
String, a subclass of Object. For example, we can have

if (message.equals ("nevermore"))

1.8.4 Is-aversus Has-a

You will often encounter the following situation. You are developing a class B, and you realize that the
methods of some other class, 2, will be helpful. One possibility is for B to inherit all of a; that is, B will
be a subclass of A. Then all of A’s protected methods are available to B (all of A’s public methods are
available to B whether or not B inherits from 2). An alternative is to define, in class B, a field whose class
is A. Then the methods of A can be invoked by that field. It is important to grasp the distinction between
these two ways to access the class A.

Inheritance describes an is-a relationship. An object in the subclass HourlyEmployee is also an
object in the superclass FullTimeEmployee, SO we can say that an HourlyEmployee is-a FullTime
Employee.

On the other hand, the fields in a class constitute a has-a relationship to the class. For example,
the name field in the FullTimeEmployee class is of type (reference to) String, so we can say a
FullTimeEmployee has-a String.

Typically, if class B shares the overall functionality of class 2, then inheritance of A by B is preferable.
More often, there is only one aspect of B that will benefit from a ’s methods, and then the better alternative
will be to define an A object as a field in class B. That object can invoke the relevant methods from class A.
The choice may not be clear-cut, so experience is your best guide. We will encounter this problem several
times in subsequent chapters.

With an object-oriented approach, the emphasis is not so much on developing the program as a whole
but on developing modular program-parts, namely, classes. These classes not only make the program easier
to understand and to maintain, but they are reusable for other programs as well. A further advantage to this
approach is that decisions about a class can easily be modified. We first decide what classes will be needed.
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And because each class interacts with other classes through its method specifications, we can change the
class’s fields and method definitions as desired as long as the method specifications remain intact.

The next section of this chapter considers the extent to which a language can allow developers of a
class to force users of that class to obey the Principle of Data Abstraction.

1.4 Information Hiding

The Principle of Data Abstraction states that a user’s code should not access the implementation details
of the class used. By following that principle, the user’s code is protected from changes to those imple-
mentation details, such as a change in fields.

Protection is further enhanced if a user’s code is prohibited from accessing the implementation details
of the class used. Information hiding means making the implementation details of a class inaccessible to
code that uses that class. The burden of obeying the Principle of Data Abstraction falls on users, whereas
information hiding is a language feature that allows class developers to prevent users from violating the
Principle of Data Abstraction.

As you saw in Section 1.3.1, Java supports information hiding through the use of the protected
visibility modifier for fields. Through visibility modifiers such as private and protected, Java forces
users to access class members only to the extent permitted by the developers. The term encapsulation
refers to the grouping of fields and methods into a single entity—the class—whose implementation details
are hidden from users.

There are three essential features of object-oriented languages: the encapsulation of fields and meth-
ods into a single entity with information-hiding capabilities, the inheritance of a class’s fields and methods
by subclasses, and polymorphism, discussed in Section 1.5.

1.5 Polymorphism

One of the major aids to code re-use in object-oriented languages is polymorphism. Polymorphism —from
the Greek words for “many” and “shapes”—is the ability of a reference to refer to different objects in a
class hierarchy. For a simple example of this surprisingly useful concept, suppose that sc is a reference
to an already constructed Scanner object. We can write the following:

FullTimeEmployee employee; // employee is of type reference-to-FullTimeEmployee

if (sc.nextLine() .equals ("full time"))

employee = new FullTimeEmployee ("Doremus", 485.00);
else

employee = new HourlyEmployee ("Kokoska", 45, 20);
System.out.println (employee.toString()) ;

Because the declared type of employee is reference-to-FullTimeEmployee, it is legal to write
employee = new FullTimeEmployee ("Doremus", 485.00) ;

So, by the Subclass Substitution Rule, it is also legal to write
employee = new HourlyEmployee ("Kokoska", 45, 20);

Now consider the meaning of the message

employee.toString ()
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The version of the toString () method executed depends on the type of the object that employee is
referencing. If the scanned line consists of “full time”, then employee is assigned a reference to an instance
of class FullTimeEmployee, so the FullTimeEmployee class’s version of toString () is invoked. On
the other hand, if the scanned line consists of any other string, then employee is assigned a reference to an
instance of class HourlyEmployee, so the HourlyEmployee class’s version of toString () is invoked.

In this example, employee is a polymorphic reference: the object referred to can be an instance
of class FullTimeEmployee or an instance of class HourlyEmployee, and the meaning of the message
employee.toString () reflects the point made in Section 1.3.3: When a message is sent, the version of
the method invoked depends on the type of the object, not on the type of the reference. What is important
here is that polymorphism allows code re-use for methods related by inheritance. We need not explicitly
call the two versions of the toString () method.

The previous code raises a question: how can the Java compiler determine which version of
toString() is being invoked? Another way to phrase the same question is this: How can the
method identifier toString be bound to the correct definition—in FullTimeEmployee or in Hourly
Employee—at compile time, when the necessary information is not available until run time? The answer
is simple: The binding cannot be done at compile-time, but must be delayed until run time. A method
that is bound to its method identifier at run time is called a virfual method .

In Java, almost all methods are virtual. The only exceptions are for static methods (discussed in
Section 2.1) and for £inal methods (the £inal modifier signifies that the method cannot be overridden
in subclasses.) This delayed binding—also called dyramic binding or late binding —of method identifiers
to methods is one of the reasons that Java programs execute more slowly than programs in most other
languages.

Polymorphism is a key feature of the Java language, and makes the Java Collections Framework
possible. We will have more to say about this in Chapter 4, when we take a tour of the Java Collections
Framework.

Method specifications are method-level documentation tools. Section 1.6 deals with class-level doc-
umentation tools.

1.6 The Unified Modeling Language

For each project, we will illustrate the classes and relationships between classes with the Unified Modeling
Language (UML). UML is an industry-standardized language, mostly graphical, that incorporates current
software-engineering practices that deal with the modeling of systems. The key visual tool in UML is
the class diagram. For each class—except for widely used classes such as String and Random—the
class diagram consists of a rectangle that contains information about the class. The information includes
the name of the class, its attributes and operations. For the sake of simplicity, we will regard the UML
term attribute as a synonym for field. Similarly, the UML term operation will be treated as a synonym
for method. For example, Figure 1.1 shows the class diagram for the FullTimeEmployee class from
Section 1.2.2. For both attributes and operation parameters, the type follows the variable (instead of
preceding the variable, as in Java).

In a class diagram, a method’s parenthesized parameter-list is followed by the return type, provided
the method actually does return a value. Visibility information is abbreviated:

+, for public visibility
—, for private visibility

#, for protected visibility
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FullTimeEmployee

name: String
grossPay:int

H* FF

FullTimeEmployee ()

getName () : String
getGrossPay () :double
toString () : String

+oF o+ o+ o+

FullTimeEmployee (name: String, grossPay:double)

FIGURE 1.1 A UML class-diagram for the FullTimeEmployee class

Inheritance is illustrated by a solid arrow from the subclass to the superclass. For example, Figure 1.2

shows the relationship between the HourlyEmployee and FullTimeEmployee classes in Section 1.3.
A dashed arrow illustrates the relationship between a class and the interface that class implements.

For example, Figure 1.3 augments the class diagrams from Figure 1.2 by adding the diagram for the

Employee interface.

FullTimeEmployee

name: String
grossPay:int

H

FullTimeEmployee ()

getName () : String
getGrossPay () :double
toString () : String

+ o+ o+ o+ o+

FullTimeEmployee (name: String, grossPay:double)

HourlyEmployee

hourWorked:int
payRate:double
regularPay:double
overtimePay:double

H H H

HourlyEmployee ()

HourlyEmployee (name: String, hoursWorked:
getHoursWorked () : int

getPayRate () : double

getRegularPay () : double

getOvertimePay () : double

toString () : String

+ o+ o+ o+ o+ o+ o+

int, payRate:

double)

FIGURE 1.2 In UML, the notation for inheritance is a solid arrow from the subclass to the superclass
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<<interface>>
Employee
+ getName () : String
+ getGrossPay () :double
+ toString () : String

JAN

FullTimeEmployee

name: String
grossPay:int

H*+ HF

FullTimeEmployee ()

FullTimeEmployee (name: String, grossPay:double)
getName () : String

getGrossPay () :double

toString(): String

+ o+ o+ o+ o+

HourlyEmployee

hoursWorked:int
payRate:double
regularPay:double
overtimePay:double

HH o H

+ HourlyEmployee ()

+ HourlyEmployee (name: String, hoursWorked: int, payRate:double)
+ getHoursWorked () :int

+ getPayRate () :double

+ getRegularPay () :double

+ getOvertimePay () : double

+ toString(): String

FIGURE 1.3 A UML illustration of the relationship between an interface, an implementing class, and a subclass

A non-inheritance relationship between classes is called an association, and is represented by a solid
line between the class diagrams. For example, Figure 1.4 shows an association between the Company and
FullTimeEmployee classes in the find-best-paid-employee project in Section 1.2.3.

In Figure 1.4, the symbol ‘*’ at the bottom of the association line indicates a company can have an
arbitrary number of employees. The number 1 at the top of the association line indicates that an employee
works for just one company.

Sometimes, we want to explicitly note that the class association is a has-a relationship, that is, an
instance of one class is a field in the other class. In UML, a has-a relationship is termed an aggregation,
and is signified by a solid line between the classes, with a hollow diamond at the containing-class end.
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Company
+ Company ()
+ main (String[ ] args)
+ run()
+ findBestPaid (Scanner sc): FullTimeEmployee
+ getNextEmployee (Scanner sc): FullTimeEmployee
1
*
FullTimeEmployee
# name: String
# grossPay:int

+ FullTimeEmployee ()

+ FullTimeEmployee (name:
+ getName () : String

+ getGrossPay () :double

+ toString(): String

String, grossPay:double)

FIGURE 1.4 The UML representation of an association between two classes

FullTimeEmployee

String

FIGURE 1.5 Aggregation in UML: the FullTimeEmployee class has a String field

For example, Figure 1.5 shows that the FullTimeEmployee class has a String field. To avoid clutter,
the figure simply has the class name in each class diagram.

Graphical tools such as UML play an important role in outlining a project. We will be developing
projects, starting in Chapter 5, as applications of data structures and algorithms. Each such project will

include UML class diagrams.

SUMMARY

This chapter presents an overview of object-oriented pro-
gramming. Our focus, on the use of classes rather than
on their implementation details, is an example of data

abstraction. Data abstraction—the separation of method
specifications from field and method definitions—is a way
for users of a class to protect their code from being



affected by changes in the implementation details of the
class used.

The three essential features of an object-oriented
language are:

1. Encapsulation of fields and methods into a single
entity—the class—whose implementation details
are hidden from users.
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2. Inheritance of a class’s fields and methods by sub-
classes.

3. Polymorphism: the ability of a reference to refer to
different objects.

The Unified Modeling Language (UML) is an industry-
standard, graphical language that illustrates the modeling
of projects.
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CROSSWORD PUZZLE
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10.

The ability of a subclass to give new
definitions—applicable in the subclass—to
methods defined in the superclass.

The ability of a reference to refer to different
objects in a class hierarchy.

The separation of what a class provides to
users from how the fields and methods are
defined.

The grouping of fields and methods into a
single entity—the class—whose implementation
details are hidden from users.

A collection of abstract methods and constants;
the object-oriented term for “abstract data type.”

In the Unified Modeling Language, a non-inheritance
relationship between classes.

An example of an is—a relationship.
The principle that every class should be
extendible through inheritance and still
stable for existing applications.

The temporary conversion of an
expression’s type to another type.

The superclass of all classes.
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CONCEPT EXERCISES

1.1  Given that HourlyEmployee and SalariedEmployee are subclasses of FullTimeEmployee, suppose
we have:

FullTimeEmployee full = new FullTimeEmployee () ;
HourlyEmployee hourly = new HourlyEmployee ();
SalariedEmployee salaried = new SalariedEmployee () ;

full = salaried;

Which one of the following assignments would be legal both at compile-time and at run-time?

a. salaried = (SalariedEmployee) full;
b. salaried = full;
¢c. salaried = (FullTimeEmployee) full;

d. hourly = (HourlyEmployee) full;

Create a small project to validate your claim.

1.2 Assume that the classes below are all in the file Polymorphism.java. Determine the output when
the project is run. Would the output be different if the call to println were System.out.println
(a.toString())?

import java.util.*;

public class Polymorphism

{
public static void main (String args [ 1)

{
new Polymorphism().run() ;
} // method main

public void run()

{

Scanner sc = new Scanner (System.in));
A a;
int code = sc.nextInt();

if (code == 0)
a = new A();
else // non-zero int entered
a = new D();
System.out.println (a);
} // method run

} // class Polymorphism
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1.3

1.4

class A
{
public String toString ()
{
return "A";
} // method toString

} // class A
class D extends A
{
public String toString ()
{
return "D";

} // method toString

} // class D

O’'Brien, Theresa $74,400.00

System.out.println ("Eureka!");

PROGRAMMING EXERCISES

1.1

public class Age
{
protected int highestAge;

/**

* Initializes this Age object.
*

*/
public Age ()

/**

* Returns the highest age of the ages

In the Employee class, modify the toString method so that the gross pay is printed with a comma to the
left of the hundreds digit. For example, if the name is “O’Brien,Theresa” and the gross pay is 74400.00, the
toString method will return

What can you infer about the identifier out from the following message?

What is the complete declaration for the identifier out? Look in java.lang.System.java.

Here is a simple class—but with method specifications instead of method definitions—to find the highest age
from the ages scanned in:

scanned in from the keyboard.
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1.4

1.5
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* The sentinel is -1.
* @param sc - The Scanner used to scan in the ages.

* @return the highest age of the ages scanned in from sc.

*
*/
public int findHighestAge (Scanner sc)

} // class Age
a. Fill in the method definitions for the Age class.
b. Test your Age class by developing a project and running the project.

With the Age class in Programming Exercise 1.1.a. as a guide, develop a Salary class to scan in salaries
from the input until the sentinel (—1.00) is reached, and to print out the average of those salaries. The average
salary is the total of the salaries divided by the number of salaries.

This exercise presents an alternative to having protected fields. Modify the FullTimeEmployee class as
follows: Change the visibility of the name and grossPay fields from protected to private, and develop
public methods to get and set the values of those fields. A method that alters a field in an object is called a
mutator, and a method that returns a copy of a field is called an accessor.

Here are the method specifications corresponding to the name field:

/**

* Returns this FullTimeEmployee object’s name.

*

* @return a (reference to a) copy of this FullTimeEmployee object’s

* name.
*
*/
public String getName ()
/'k'k

* Sets this FullTimeEmployee object’s name to a specifed string.

*

* @param nameIn - the String object whose value is assigned to this
* FullTimeEmployee object’s name.

*

*/

public void setName (String namelIn)

Create a class to determine which hourly employee in a file received the most overtime pay. The name of the
file is to be scanned in from System.in.

In the toString () method of the FullTimeEmployee class, there is a call to the format method. The
heading of that method is

public final String format (double number)

What is the definition of that method?
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Programming Project 1.1

A CalendarDate Class

In this project, you will develop and test a CalendarDate class. Here are the responsibilities of the class, that is,
the services that the class will provide to users:

1. to initialize a CalendarDate object to represent the date January 1, 2012;

2. to initialize a CalendarDate object from integers for the month, day-of-month and year; if the date is invalid
(for example, if the month, day-of-month and year are 6, 31 and 2006, respectively), use 1, 1, 2012;

3. return, in String form, the next date after this CalendarDate object; for example, if this CalendarDate
object represents January 31, 2012, the return value would be “February 1, 2012”;

4. return, in String form, the date prior to this CalendarDate object; for example, if this CalendarDate object
represents January 1, 2013, the return value would be “December 31, 2012”;

5. return, in String form, the day of the week on which this CalendarDate object falls; for example, if this
CalendarDate object represents the date December 20, 2012, the return value would be “Thursday”;

Part a: Create method specifications for the above responsibilities.
Part b: Develop the CalendarDate class, that is, determine what fields to declare and then define the methods.

Part c: Create a project to test your CalendarDate class. Call each CalendarDate method at least twice.




Additional Features of CHAPTER 2
Programming and Java

In Chapter 1, the primary goal was to introduce object-oriented concepts, such as interfaces, inheritance
and polymorphism, in the context of the Java programming language. This chapter introduces more
topics on programming in general and Java in particular, and illustrates how they can aid your
programming efforts. For example, Java’s exception-handling mechanism provides programmers with
significant control over what happens when errors occur.

CHAPTER OBJECTIVES

Distinguish between static members and instance members.

Be able to develop JUnit tests for a class’s methods.

Be able to create try blocks and catch blocks to handle exceptions.
Compare file input/output with console input/output.

Understand the fundamentals of the Java Virtual Machine.

Be able to override the Object class’s equals method.

N o o oo bd =

Understand the interplay between packages and visibility modifiers.

2.1 Static Variables, Constants and Methods

Recall, from Section 1.2.2, that a class member is either a field or method in the class'. Let’s look at some
of the different kinds of members in Java. There are two kinds of fields. An instance variable is a field
associated with an object—that is, with an instance of a class. For example, in the FullTimeEmployee
class from Chapter 1, name and grossPay are instance variables. Each FullTimeEmployee object will
have its own pair of instance variables. Suppose we declare

FullTimeEmployee oldEmployee,
currentEmployee,
newEmployee;

Then the object referenced by oldEmployee will have its own copy of the instance variables name and
grossPay, and the objects referenced by currentEmployee and newEmployee will have their own
copies also.

'In Section 4.2.3.1, we will see that a class may also have another class as a member.
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In addition to instance variables, which are associated with a particular object in a class, we can
declare static variables, which are associated with the class itself. The space for a static variable—also
known as a class variable—is shared by all instances of the class. A field is designated as a static variable
by the reserved modifier static. For example, if a count field is to maintain information about all objects
of a class student, we could declare the field count to be a static variable in the Student class:

protected static int count = 0;

This static variable could be incremented, for example, whenever a Student constructor is invoked. Then
the variable count will contain the total number of Student instances created.

A class may also have constant identifiers, also called “symbolic constants” or “named constants”.
A constant identifier is an identifier that represents a constant, which is a variable that can be assigned
to only once. The declaration of a constant identifier includes the reserved word £inal—indicating only
one assignment is allowed—as well as the type and value of the constant. For example, we can write

protected final static int SPEED_LIMIT = 65.0;

Constant identifiers promote both readability (SPEED_LIMIT conveys more information than 65.0) and
maintainability (because SPEED_LIMIT is declared in only one place, it is easy to change its value
throughout the class). There should be just one copy of the constant identifier for the entire class, rather
than one copy for each instance of the class. So a constant identifier for a class should be declared as
static; constants within a method cannot be declared as static. At the developer’s discretion, constant
identifiers for a class may have public visibility. Here are declarations for two constant class identifiers:

public final static char COMMAND_START = ‘S$’;

public final static String INSERT_COMMAND = "SInsert";

To access a static member inside its class, the member identifier alone is sufficient. For example, the above
static field count could be accessed in a method in the Student class as follows:

count++;

In order to access a static member outside of its class, the class identifier itself is used as the qualifier.
For example, outside of the wrapper class Integer, we can write:

if (size == Integer.MAX_VALUE)
Here is the declaration for an often-used constant identifier in the System class:
public final static PrintStream out = nullPrintStream() ;

Because out is declared as static, its calls to the PrintStream class’s print1ln method include the
identifier System rather than an instance of the System class. For example,

System.out.println ("The Young Anarchists Club will hold a special election next week" +
"to approve the new constitution.");

The static modifier is used for any constant identifier that is defined outside of a class’s methods. The
static modifier is not available within a method. For example, in the definition of the default constructor
in the FullTimeEmployee class, we had:

final String EMPTY_STRING = "";

It would have been illegal to use the static modifier for this constant.
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In Chapter 1, the Employee interface declared a constant:

final static DecimalFormat MONEY = new DecimalFormat (" $0.00");
// a class constant used in formatting a value in dollars and cents

The constant identifier MONEY can be used in any class that implements the Employee interface. Recall
that any constant or method identifier in an interface automatically has public visibility.

Java also allows static methods. For example, the Math class in the package java.lang has a floor
method that takes a double argument and returns, as a double, the largest value that is less than or equal
to the argument and equal to an integer. We can write

System.out.println (Math.floor (3.7)); // output: 3.0

When floor is called, there is no calling object because the effect of the method depends only on the
double argument. To signify this situation, the class identifier is used in place of a calling object when
floor is called. A method that is called without a calling object is known as a static method, as seen
in the following heading

public static double floor (double a)

The execution of every Java application (excluding applets, servlets, and so on) starts with a static main
method. And static methods are not virtual; that is, static methods are bound to method identifiers
at compile time, rather than at run time. The reason is that static methods are associated with a class
itself rather than an object, so the issue of which object is invoking the method does not arise.

2.2 Method Testing

A method is correct if it satisfies its method specification. The most widely used technique for increasing
confidence in the correctness of a method is to test the method with a number of sample values for
the parameters. We then compare the actual results with the results expected according to the method’s
specification.

The purpose of testing is to discover errors, which are then removed. When—eventually—no errors
are discovered during testing, that does not imply that the method is correct, because there may be other
tests that would reveal errors. In general, it is rarely feasible to run all possible tests, and so we cannot
infer correctness based on testing alone. As E. W. Dijkstra has noted:

Testing can reveal the presence of errors but not the absence of errors.

The testing software we utilize is JUnit: the “J” stands for “Java,” and each method in a project is
referred to as a “unit.” JUnit is an Open Source (that is, free) unit-testing product—available from
www.junit.org—that allows the methods in a class to be tested systematically and without human
intervention—for example, without keyboard input or Graphical User Interface (GUI) mouse clicks.
The web page http://junit.sourceforge.net/README.html#Installation has information on installation. In
general, the success or failure of an individual test is determined by whether the expected result of the
test matches the actual result. The output from testing provides details for each failed test. For a simple
example, here is a test of the toString () method in the FullTimeEmployee class:

@Test
public void toStringTestl ()
{
FullTimeEmployee full = new FullTimeEmployee ("a", 150.00);


www.junit.org
http://junit.sourceforge.net/README.html#Installation
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String expected = "a $150.00 FULL TIME";

assertEquals (expected, full.toString());
} // method testToStringl

“@Test 7 is referred to as an annotation. The assertEquals method determines whether its arguments
are equal. In this case, if the two strings are equal, the test is passed. Otherwise, the test fails.

The assertEquals method is an overloaded method in the Assert class of the org.junit pack-
age. The heading for the version called above is

public static void assertEquals (java.lang.String expected, java.lang.String actual)
There are other versions of the method to compare primitive values. For example, we could have

int median = roster.findMedian() ;
assertEquals (82, median);

Also, there is a version to compare any two objects. Here is the method heading:
public static void assertEquals (java.lang.Object expected, java.lang.Object actual)

According to the Subclass Substitution Rule, the arguments can be instances of any class—because any
class is a subclass of Object. In fact, expected is a polymorphic reference when the AssertEquals
method is invoked: the code executed depends on the types of the objects involved. For example, with
String objects, this version has the same effect as the version in which both parameters have type String.
(But this version is slightly slower than the String-parameter version due to the run-time test to make
sure that actual is an instance of the String class.)

Finally, there are several assertArrayEquals methods for comparing two arrays of int values,
two arrays of double values, two arrays of Object references, and so on.

The details of running JUnit test classes will depend on your computing environment. Typically,
you will run the tests in an Integrated Development Environment (IDE) such as Eclipse or DrJava, and the
output of testing may combine text and graphics (for example, a green bar if all tests were successful, and
a red bar if one or more tests failed). For the sake of generality, the following test class is not tied to any
IDE, but simply prints the string returned by the getFailures () method in the runClasses class of
the package org.junit. If you are running tests in an IDE, the main method from the class below will
be ignored. Here is a complete class for testing the toString( ) method in the FullTimeEmployee
class—followed by a discussion of the details:

import org.junit.*;

import static org.junit.Assert.*;

import org.junit.runner.Result;

import static org.junit.runner.JUnitCore.runClasses;

public class FullTimeEmployeeTest
{
public static void main(String[ ] args)
{
Result result = runClasses (ToStringTest.class);
System.out.println ("Tests run = " + result.getRunCount () +
"\nTests failed = " + result.getFailures());
} // method main

protected FullTimeEmployee full;
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protected String expected;

@Test

public void toStringTestl ()

{
full = new FullTimeEmployee ("a", 150.00);
expected = "a $150.00 FULL TIME";
assertEquals (expected, full.toString());

} // method toStringTestl

@Test

public void toStringTest2 ()

{
full = new FullTimeEmployee ("b", 345.678);
expected = "b $345.678 FULL TIME"; // error!
assertEquals (expected, full.toString());

} // method toStringTest2

@Test
public void toStringTest3 ()
{
full = new FullTimeEmployee() ;
expected = " $0.00 FULL TIME";
assertEquals (expected, full.toString());
} // method toStringTest3

} // class FullTimeEmployeeTest
The line

import static org.junit.Assert.*;

allows static methods—such as assertEquals—in the Assert class to be accessed without specifying
the class name. The main method runs this cluster of tests, one after the other, in no particular order.
Because of the mistake in test 2, the output from the program is

Tests run = 3
Tests failed = [toStringTest2(FullTimeEmployeeTest): expected:<b $345.6[7]8 FULL TIME>
but was:<b $345.6[]18 FULL TIME>]

Note that the mistake—the extra “7” in the expected value—was in the test, not in the method being
tested, and was written just so you would know what is output when a test fails.
When should these tests be developed and run? Most unit-testing enthusiasts recommend that

A method’s tests should be developed before the method is defined.

The advantage to pre-definition testing is that the testing will be based on the method specification only,
and will not be influenced by the method definition. Furthermore, the tests should be run both before and
after the method is defined (and after any subsequent changes to the method definition). That will illustrate
the transition from a method that fails the tests to a method that passes the tests. But how can a method
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be compiled before it is defined? To satisfy the Java compiler, each method definition can be a stub: a
definition that has only enough code to avoid a compile-time error. For example, here is a stub for the
toString( ) method in the FullTimeEmployee class:

public String toString()
{

return null;
} // method toString

When FullTimeEmployeeTest was run with this stub for the toString ( ) method, all three tests failed.
(Of course, the mistake in test2 ensures that test will fail anyway.) Because this chapter introduces unit
testing intermingled with several important language features, the method testing in this chapter will be
presented after the method has been fully defined. In subsequent chapters we will adhere to the test-first
paradigm.

In Section 2.3.2 we will see how to create a stub that will fail any test even if the return type of the
method to be tested is boolean.

2.2.1 More Details on Unit Testing

In Section 2.2, we developed a test suite for the toString( ) method in the FullTimeEmployee class.
There was so little that could go wrong with the toString( ) method that we could barely justify the
testing. (In fact, in the applications in subsequent chapters, a class’s toString ( ) method will often be
untested, but used in testing other methods.) The real purpose of the example was to show how a test
suite could be developed. What about the other methods in the FullTimeEmployee class? Should they
be tested also? Probably not. The constructors cannot be tested in isolation; in fact, you could argue that
the suite in FullTimeEmployeeTest tests the constructors as much as testing the toString ( ) method.
Also, there is no point in testing the accessor methods getName ( ) and getGrossPay ( ): they simply
return the values assigned in a constructor.

So at this point, we can be fairly confident in the correctness of the methods in the FullTime
Employee class. For the Company class from Chapter 1, which methods are suitable for testing? There is
no point in testing the main method: it simply invokes the run ( ) method. The run( ) method cannot be
tested without human intervention because the end user must enter the input-file path from the keyboard.
The protected method getNextEmployee (Scanner sc) can be tested—the CompanyTest class will
be a subclass of the Company class. Finally, the findBestPaid (Scanner sc) method can and should
be tested. In fact, that method was, originally, designed to facilitate testing: The reading of file name and
printing of the best-paid employee were moved up to the run( ) method. This illustrates an important
aspect of method design:

In general, methods should be designed to facilitate testing.

Here is a CompanyTest class to test both the getNextEmployee and findBestPaid methods. Note that
the @Before annotation precedes any method that is automatically invoked just prior to each test.

import org.junit.*;

import static org.junit.Assert.*;

import org.junit.runner.Result;

import static org.junit.runner.JUnitCore.runClasses;
import java.util.*;
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public class CompanyTest extends Company
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{
public static void main(String[ ] args)
{
Result result = runClasses (CompanyTest.class);
System.out.println ("Tests run = " + result.getRunCount () +
"\nTests failed = " + result.getFailures());
} // method main
protected Company company;
protected FullTimeEmployee best;
protected Scanner sc;
protected String expected;
@Before
public void runBeforeEveryTest ()
{
company = new Company () ;
} // method runBeforeEveryTest
@Test
public void getNextEmployeeTestl ()
{
sc = new Scanner ("Lucas 350.00");
expected = "Lucas $350.00 FULL TIME";
assertEquals (expected, company.getNextEmployee .toString());
} // method getNextEmployeeTestl
@Test
public void findBestPaidTestl () throws IOException
{
sc = new Scanner (new File ("company.inl"));
best = company.findBestPaid (sc);
expected = "b $150.00 FULL TIME";
assertEquals (expected, best.toString());
} // method findBestPaidTestl
@Test

public void findBestPaidTest2 () throws IOException
{
sc = new Scanner (new File ("company.in2"));
best = company.findBestPaid (sc);
assertEquals (null, best);
} // method findBestPaidTest2
} // class CompanyTest
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The file company.inl contains

a 100
b 149.995
c 140

The file company . in2 is empty. When the above tests were run with the versions of getNextEmployee
(Scanner sc) and findBestPaid (Scanner sc) from Chapter 1, all three test cases were successful.

For the HourlyEmployee class, the only method worthy of testing is the three-parameter construc-
tor. As noted earlier in this section, constructors cannot be tested in isolation. Instead, we will test the
getRegularPay, getOvertimePay, and getGrossPay methods. These accessor methods are worthy of
testing since they do more than simply returning values passed to a constructor. The important aspect
of the following HourlyEmployeeTest class is the testing of a boundary condition: the comparison
(>=, >, <=, <) of a variable to some fixed value; the result of the comparison determines the action
taken. Specifically, the hoursWorked is compared to 40 to determine the regular pay, overtime pay, and
gross pay. To make sure that all boundary cases are covered, there are separate tests for hoursWorked equal
to 39, 40, and 41. In comparing the expected result with the actual result for regularPay, overTimePay,
and grossPay, we should not compare double values for exact equality. So we utilize a three-parameter
assertEquals method, with the third parameter the (very small) difference we will allow between the
expected and actual double values.

Make sure that any boundary conditions are thoroughly tested.

Here is the HourlyEmployeeTest class:

import org.junit.*;

import static org.junit.Assert.*;

import org.junit.runner.Result;

import static org.junit.runner.JUnitCore.runClasses;
import java.util.*;

public class HourlyEmployeeTest
{
public static void main(String[ ] args)
{
Result result = runClasses (HourlyEmployeeTest.class);
System.out.println ("Tests run = " + result.getRunCount () +
"\nTests failed = " + result.getFailures());
} // method main

public static final double DELTA = 0.0000001;
protected HourlyEmployee hourly;

@Test

public void testl()

{
hourly = new HourlyEmployee ("andrew", 39, 10.00);
assertEquals (390.00, hourly.getRegularPay (), DELTA);
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assertEquals (0.00, hourly.getOvertimePay (), DELTA) ;
assertEquals (390.00, hourly.getGrossPay(), DELTA) ;
} // method testl

@Test
public void test2()

{
hourly = new HourlyEmployee ("beth", 40, 20.00);

assertEquals (800.00, hourly.getRegularPay (), DELTA) ;
assertEquals (0.00, hourly.getOvertimePay (), DELTA) ;
assertEquals (800.00, hourly.getGrossPay(), DELTA) ;

} // method test2

@Test

public void test3()

{
hourly = new HourlyEmployee ("terry", 41, 20.00);
assertEquals (800.00, hourly.getRegularPay(), DELTA) ;
assertEquals (30.00, hourly.getOvertimePay (), DELTA) ;
assertEquals (830.00, hourly.getGrossPay (), DELTA) ;

} // method test3

@Test
public void test4 ()

{
hourly = new HourlyEmployee ("karen", 50, 10);

assertEquals (400.00, hourly.getRegularPay (), DELTA) ;
assertEquals (150.00, hourly.getOvertimePay (), DELTA) ;
assertEquals (550.00, hourly.getGrossPay(), DELTA) ;

} // method test4d

} // class HourlyEmployeeTest

What about testing other methods? There is no rule to determine which methods in a class should be
tested. The best strategy is to assume that a method contains subtle flaws that can be revealed only by
rigorous testing.

Good testing requires great skepticism.

This can be a challenge to programmers, who tend to view their work favorably, even glowingly (“a thing
of beauty and a joy forever”). As such, programmers are ill-suited to test their own methods because the
purpose of testing is to uncover errors. Ideally the person who constructs test data should hope that the
method will fail the test. If a method fails a test and the method is subsequently revised, all tests of that
method should be re-run.

In the next section, we introduce Java’s exception-handling facilities, and consider the interplay
between exception-handling and testing.
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2.3 Exception Handling

An exception is an object created by an unusual condition, typically, an attempt at invalid processing. When
an exception object is constructed, the normal flow of control is halted; the exception is said to be thrown.
Control is immediately transferred to code—either in the current method or in some other method—that
“handles” the exception. The exception handling usually depends on the particular exception, and may
involve printing an error message, terminating the program, taking other action, or maybe doing nothing.

A robust program is one that does not terminate unexpectedly from invalid user-input. We almost
always prefer programs that—instead of “crashing”—allow recovery from an error such as the input of
7.0 instead of 7.0 for a double. Java’s exception-handling feature allows the programmer to avoid almost
all abnormal terminations.

For a simple introduction to exception handling, let’s start with a method that takes as a parameter
a (non-null reference to a) String object. The String represents a person’s full name, which should be
in the form “first-name middle-name last-name”. The method returns the name in the form “last-name,
first-name middle-initial.”. For example, if we have

rearrange ("John Quincy Adams"))
The string returned will be
Adams, John Q.

Here is the method specification and a preliminary definition:

/*x*

* Returns a specified full name in the form "last-name, first-name middle-initial."

* @param fullName - a (non-null reference to a) String object that represents the
* specified full name, which should be in the form
* "first-name middle-name last-name".

* @return the name in the form "last-name, first-name middle-initial.".

*/
public String rearrange (String fullName)

{

Scanner sc = new Scanner (fullName) ;

String firstName = sc.next(),
middleName = sc.next (),
lastName = sc.next();

return lastName + ", " + firstName + " " + middleName.charAt (0) + ".";
} // method rearrange

The problem with this method, as currently defined, is that the execution of the method can terminate
abnormally. How? If the argument corresponding to fullName is a (reference to a) String object that
does not have at least three components separated by whitespace, a NoSuchElementException object
will be thrown. In this case, the execution of the method will terminate abnormally. Instead of an abnormal
termination, we want to allow execution to continue even if the argument corresponding to fullName
is not a reference to a String that consists of those three components. That is, we “try” to split up
fullName, and “catch” the given exception. The revised specification and definition are
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Returns a specified full name in the form "last-name, first-name middle-initial.".

@param fullName - a (non-null reference to a) String object that represents the
specified full name, which should be in the form
"first-name middle-name last-name".

@return the name in the form "last-name, first-name middle-initial." if fullName
has three components. Otherwise, return
"java.util.NoSuchElementException: the name is not of the form
"first-name middle-name last-name"".

public String rearrange (String fullName)

{

String result;

try
{

Scanner sc = new Scanner (fullName) ;

String firstName = sc.next(),
middleName = sc.next (),
lastName = sc.next();

result = lastName + ", " + firstName + " " + middleName.charAt (0) + ".";
Y // try
catch (NoSuchElementException e)
{
result = e.toString() + ": " + ": The name is not of the form \"first-name " +
"middle-name last-name\"";
} // catch
return result;

} // method rearrange
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In the execution of this method, the flow of control is as follows. Inside the txy block, if fullName can
be split into first, middle, and last names, the three calls to sc.next ( ) and the subsequent assignment
to result will be executed. The entire catch block will be skipped over, and the return statement
will be executed. But if fullName cannot be split into first, middle, and last names, one of the calls
to sc.next ( ) will throw a NoSuchElementException object, the try block will be exited, and the
statement inside the catch block will executed. Then the return statement will be executed, as before.
In the catch block, the parameter e is (a reference to) the NoSuchElementException object
created and thrown during the execution of one of the calls to sc.next ( ). Specifically, e.toString( )
is the string "java.util.NoSuchElementException". We will see shortly, in Section 2.3.1, how an
exception can be thrown in one method and caught in another method.
Here is a test class for the rearrange method (assume that method is in the NameChange class,
which may consist of nothing except the rearrange method):

import org.junit.*;
import static org.junit.Assert.*;
import org.junit.runner.Result;
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import static org.junit.runner.JUnitCore.runClasses;
import java.util.*;

public class NameChangeTest
{
public static void main(String[ ] args)
{
Result result = runClasses (NameChangeTest.class);
System.out.println ("Tests run = " + result.getRunCount () +
"\nTests failed = " + result.getFailures());
} // method main
public final static String EXCEPTION = "java.util.NoSuchElementException";

public final static int EXCEPTION_LENGTH = EXCEPTION.length() ;
protected NameChange change;
protected String result;

@Before
public void runBeforeEveryTest( )
{
change = new NameChange() ;
} // method runBeforeEveryTest

@Test

public void rearrangeTestl ()

{
result = change.rearrange ("John Quincy Adams") ;
assertEquals ("Adams, John Q.", result);

} // method rearrangeTestl

@Test
public void rearrangeTest2 ()
{
result = change.rearrange ("John Adams") ;
assertEquals (EXCEPTION, result.substring (
} // method rearrangeTest2

o

, EXCEPTION_LENGTH)) ;

@Test
public void rearrangeTest3 ()
{
result = change.rearrange ("John") ;
assertEquals (EXCEPTION, result.substring (
} // method rearrangeTest3

o

, EXCEPTION_LENGTH)) ;

@Test
public void rearrangeTest4 ()
{
result = change.rearrange ("");
assertEquals (EXCEPTION, result.substring (
} // rearrangeTest4d

o

, EXCEPTION_LENGTH)) ;

} // class NameChangeTest
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In this example, the exception was handled—in the catch block—of the rearrange method. In the next
section, we see how to handle exceptions that are not caught within the method in which they are thrown.

2.3.1 Propagating Exceptions

What happens if an exception, such as NoSuchElementException, is thrown in a method that does not
catch that exception? Then control is transferred back to the calling method: the method that called the
method that threw the exception. This transferring of control is known as propagating the exception . For
example, the following method determines whether or not an integer scanned in is a leap year® (one of
the exceptions is explicitly thrown, with a throw statement):

/xx

* Determines if the integer scanned in is a leap year.

*

* @param sc - a (reference to) a Scanner object from which

* the year is scanned in.

*

* @return true - if the integer is a leap year; otherwise, returns false.
*

* @throws InputMismatchException - if the string scanned in from sc is not
* empty but does not consist of an integer.
* @throws NoSuchElementException - if the value scanned in from sc is an
* empty string.

*

* @throws NullPointerException - if sc is null.

* @throws IllegalArgumentException - if the value scanned in from
* sc is an integer less than 1582.
*/

public boolean islLeapYear (Scanner sc)

{
final int FIRST_YEAR = 1582; // start of Gregorian Calendar

int year = sc.nextInt();

if (year < FIRST_YEAR)
throw new IllegalArgumentException() ;
if ((year % 4 == 0) && (year % 100 != 0 || year % 400 == 0))
return true;
return false;
} // method isLeapYear

What can go wrong in a call to this method? One possible error, as indicated in the @throws sections of
the javadoc specification, if the string scanned in from sc is not empty but does not consist of an integer,
InputMismatchException will be thrown. This exception is not caught in the isLeapYear method,
so the exception is propagated back to the method that called isLeapvear. For example, the following
LeapYear class has a run () method that scans five lines from System. in, and determines which lines
contain leap years and which lines contain non-integers.

2Because the earth makes one full rotation around the sun in slightly less than 365.25 days, not every year divisible by 4 is a leap year.
Specifically, a leap year must be both divisible by 4 and either not divisible by 100 or divisible by 400. So 2000 was a leap year, but 2100
will not be a leap year.
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import java.util.*; // for the Scanner class

public class LeapYear
{

public static void main (String args [ 1)

{
new LeapYear () .run();
} // method main

public void run /()

{
final String INPUT_PROMPT = "Please enter the year: ";
Scanner sc = new Scanner (System.in);
for (int 1 = 0; 1 < 5; 1i++)
try

{
System.out.print (INPUT_PROMPT) ;
System.out.println (isLeapYear (sc));

Y // try

catch (InputMismatchException e)

{
System.out.println ("The input is not an integer.");
sc.nextLine() ;

} // catch InputMismatchException

} // method run

public boolean islLeapYear (Scanner sc)

{
final int FIRST_YEAR = 1582; // start of Gregorian Calendar

int year = sc.nextInt();

if (year < FIRST_YEAR)
throw new IllegalArgumentException () ;

if ((year % 4 == 0) && (year % 100 != 0 || year % 400 == 0))
return true;
return false;
} // method isLeapYear

} // class LeapYear
For input of

2000
2100
2010
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2010
2008

the output will be:

true
false
The input is not an integer.
false
true

The above catch block includes a call to sc.nextLine (). If that call had been omitted, the output for
the above input would be

true
false
The input is not an integer.
The input is not an integer.
The input is not an integer.

Why? When the third call to sc.nextInt () in isLeapYear throws InputMismatchException for
“2010”, the scanner remains positioned on the third line instead of advancing to the fourth line. Then
the next two calls to sc.nextInt ( ) also throw InputMismatchException for “2010”. We needed to
include sc.nextLine( ) in the catch block to ensure that the scanner skips over the illegal input.

It is worth noting that in a method’s specification, only propagated exceptions are included in the
@throws javadoc comments. Any exception that is caught within the method definition itself (such as we
did in the rearrange method of Section 2.3) is an implementation detail, and therefore not something
that a user of the method needs to know about.

Incidentally, without too much trouble we can modify the above run method to accommodate an
arbitrary number of input values. To indicate the end of the input, we need a value—called a sentinel —that
is not a legal year. For example, we can use "***" as the sentinel. When that value is entered from the
keyboard, InputMismatchException is thrown in the isLeapYear method and caught in the run
method, at which point a break statement terminates the execution of the scanning loop. Here is the
revised run method:

public void run()

{
final String SENTINEL = "***";

final String INPUT_PROMPT =
"Please enter the year (or " + SENTINEL + " to quit): ";

Scanner sc = new Scanner (System.in);
while (true)
{

try
{
System.out.print (INPUT_PROMPT) ;
System.out.println (" " + isLeapYear (sc) + "\n");
Y // try

catch (InputMismatchException e)
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if (sc.nextLine().equals (SENTINEL))
break;
System.out.println (" The input is not an integer.\n");
} // catch
} // while
} // method run

If a propagated exception is not caught in a method, the exception is propagated back to the calling method.
If the calling method does not handle the exception, then the exception is propagated back to the method
that called the calling method itself. Ultimately, if the exception has not been caught even in the main
method, the program will terminate abnormally and a message describing the exception will be printed.
The advantage to propagating an exception is that the exception can be handled at a higher level in the
program. Decisions to change how exceptions are handled can be made in one place, rather than scattered
throughout the program. Also, the higher level might have facilities not available at lower levels, such as
a Graphical User Interface (GUI) window for output.

2.3.2 Unit Testing and Propagated Exceptions

How can we test a method that propagates an exception? Right after the @Test annotation, we specify the
expected exception. For example, a test of the isLeapYear method might have

@Test (expected = InputMismatchException.class)
public void isLeapYearTest ()
{
leap.isLeapYear (new Scanner ("201o0"));
} // isLeapYearTest

For a complete test suite of the isLeapYear method, we cannot scan over System.in because such
tests would require human intervention. Another option is to scan over a string of lines that contain the
values to be tested. But in JUnit, test methods can be invoked in any order, and the results of one test
do not affect any other test. So to ensure that the calls to the scanner would start on successive lines, we
would have to place all tests in one method. This would be legal but inappropriate because the tests are
independent of each other.

The following test suite for the isLeapYear method has each test in a separate method, and
includes tests for InputMismatchException, NoSuchElementException, NullPointerException
and IllegalArgumentException.

Here is the test class:

import org.junit.*;

import static org.junit.Assert.*;

import org.junit.runner.Result;

import static org.junit.runner.JUnitCore.runClasses;
import java.util.*;

public class LeapYearTest
{
public static void main(String[ ] args)
{
Result result = runClasses (LeapYearTest.class);
System.out.println ("Tests run = " + result.getRunCount () +
"\nTests failed = " + result.getFailures());
} // method main



protected LeapYear leap;
protected boolean answer;

@Before
public void runBeforeEveryTest ()
{
leap = new LeapYear () ;
} // method runBeforeEveryTest

@Test

public void leapYearTestl ()

{
answer = leap.isLeapYear (mew Scanner ("2000"));
assertEquals (true, answer);

} // method leapYearTestl

@Test

public void leapYearTest2 ()

{
answer = leap.isLeapYear (mew Scanner ("2100"));
assertEquals (false, answer);

} // method leapYearTest2

@Test

public void leapYearTest3 ()

{
answer = leap.isLeapYear (mew Scanner ("1582"));
assertEquals (false, answer);

} // method leapYearTest3

@Test (expected = InputMismatchException.class)
public void leapYearTest4 ()
{
leap.isLeapYear (new Scanner ("201o"));
} // method leapYearTest4d

@Test (expected = NoSuchElementException.class)
public void leapYearTest5 ()
{
leap.isLeapYear (new Scanner (""));
} // method leapYearTestbh

@Test (expected = NullPointerException.class)
public void leapYearTesté6 ()
{
leap.isLeapYear (null) ;
} // method leapYearTesté6

@Test (expected = IllegalArgumentException.class)
public void leapYearTest7()
{

leap.isLeapYear (new Scanner ("1581"));
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} // method leapYearTest7

} // class LeapYearTest

What if the exception propagated in the method being tested is not the exception expected in the testing
method? Then the testing method will generate an error message that the exception thrown was not the one
expected. Finally, what if the method being tested propagates an exception but no exception was expected
by the testing method? For example, at the start of leapvYearTest5, suppose we replaced

@Test (expected = NoSuchElementException.class)
with
@Test
Then the test would generate the following error message:
Tests failed = [leapYearTest5 (LeapYearTest): null]

The keyword null signifies that an exception was thrown but no exception was expected. In JUnit,
an error in running a test method occurs if an unexpected exception is thrown or if an expected exception
is not thrown. So it is an error if an exception is thrown but a different exception is expected. Errors
are included in the string returned by the getFailures () method in the runClasses class, but the term
failure is often applied only to those situations in which an assertion is tested and fails. Because testing
assertions is what unit testing is all about, errors must be removed before serious testing can begin.

We defined the above isLeapYear method before we introduced the exception-propagation feature
needed to test that method. What if, as is normally the case, we wanted to test a method before the method
is defined? Specifically, how can we create a stub that will generated an error message for all of the
above tests? If the stub returns true, leapYearTestl () will succeed, and if the stub returns false,
leapYearTest2 () will succeed. Clearly, the stub cannot return either true or false. Instead, the stub
will throw an exception other than the exceptions thrown according to the specifications. For example,

public boolean islLeapYear (Scanner sc)
{

throw new UnsupportedOperationException() ;
} // method isLeapYear

When the test suite LeapYearTest was run on this stub, every test generated an error message (that is
good news), and the output (formatted for readability) was

Tests run = 7
Tests failed =

leapYearTestl (LeapYearTest) : null
leapYearTest2 (LeapYearTest) : null,
leapYearTest3 (LeapYearTest) : null,

leapYearTest4 (LeapYearTest) : Unexpected exception,
expected<java.util.InputMismatchException> but
was<java.lang.UnsupportedOperationException>,

leapYearTest5 (LeapYearTest) : Unexpected exception,
expected<java.util.NoSuchElementException> but
was<java.lang.UnsupportedOperationException>,

leapYearTest6 (LeapYearTest) : Unexpected exception,
expected<java.lang.NullPointerException> but
was<java.lang.UnsupportedOperationException>,
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leapYearTest7 (LeapYearTest) : Unexpected exception,
expected<java.lang.IllegalArgumentException> but
was<java.lang.UnsupportedOperationException>]

2.38.8 Checked Exceptions

Exceptions related to input or output, such as when a file is not found or the end-of-file marker is
encountered while input is being read, are the most common examples of checked exceptions. With a
checked exception, the compiler checks that either the exception is caught within the method itself or—to
allow propagation of the exception—that a throws clause is appended to the method heading. For an
example of the latter, we might have

public void sample() throws IOException
{

This indicates that the sample method might throw an T0OException object. If so, the exception will be
propagated back to the method that called sample. That calling method must either catch TOException
or append the same throws clause to its method heading. And so on. Checked exceptions are propagated
for the same reason that other exceptions are propagated: It might be preferable to handle all exceptions
at a higher level for the sake of uniformity, or there might be better facilities (such as a GUI window)
available at the higher level.

For an example of how a checked exception can be handled in a method, we can revise the run( )
method from Section 2.3.1 to scan lines from a file and determine which lines consist of leap years. The
name of the file will be read from the keyboard in a loop that continues until the name corresponds to an
existing file. Here is the revised run( ) method:

public void run /()
{
final String INPUT_PROMPT = "Please enter the file name: ";

Scanner keyboardScanner = mew Scanner (System.in);
String fileName;

while (true)
{
System.out.print (INPUT_PROMPT) ;
fileName = keyboardScanner.next () ;
try
{
Scanner sc = new Scanner (new File (fileName)) ;
while (sc.hasNext())
try
{
System.out.println (isLeapYear (sc));
} // try to scan a year
catch (InputMismatchException e)
{
System.out.println ("The input is not an integer.");
sc.nextLine() ;
} // catch input mismatch
break;
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} // try to scan the name of an existing file
catch (FileNotFoundException e)
{
System.out.println (e);
} // catch file not found
} // while true
} // method run

The break statement—to exit the outer loop—is executed when the file name scanned from the
keyboard represents an existing file, and that file has been scanned for leap years. The inner-loop
condition—sc . hasNext () —is slightly preferable to sc.hasNextLine (). In particular, if the last line
in the file is blank, sc.hasNext () will return false and the execution of the inner loop will terminate, as
desired. But if the last line in the file is blank, sc.hasNextLine () will return true, and the subsequent
call to sc.nextInt () in the isLeapYear method will throw NoSuchElementException. Of course,
if that exception is caught in the run () method, then sc.hasNextLine () will not be a problem.

A checked exception must be caught or must be specified in a throws clause, and the compiler
“checks” to make sure this has been done. Which exceptions are checked, and which are unchecked? The
answer is simple: run-time exceptions are not checked, and all other exceptions are checked. Figure 2.1
shows Java’s exception hierarchy, including TO0Exception with its subclasses (such as FileNotFound
Exception), and RuntimeException with its subclasses (such as NullPointerException).

Why are run-time exceptions not checked? The motivation behind this is that an exception such as
NullPointerException or NumberFormatException, can occur in almost any method. So appending
a throws clause to the heading of such a method would burden the developer of the method without
providing any helpful information to the reader of that method.

When an exception is thrown, the parameter classes of the subsequent catch blocks are tested, in
order, until (unless) one is found for which the thrown exception is an instance of that class. So if you

Exception

VAN

IOException RuntimeException
[

FileNotFoundException ..

NoSuchElementException IndexOutOfBoundsException NullPointerException ..

ZF VAN

InputMismatchException

ArrayIndexOutOfBoundsException StringIndexOutOfBoundsException

FIGURE 2.1 The exception hierarchy. In the unified modeling language, inheritance is represented with an
arrow from a subclass to its superclass
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want to ensure that all run-time exceptions are caught in a method, you can insert the following as the last
catch block:

catch (RuntimeException e)
{

// code to handle the exception
} // catch RuntimeException

If you do have a catch block for RuntimeException, make sure that catch block is not followed by a
catch block for a subclass of RuntimeException. For example, because NullPointerException is

a subclass of RuntimeException, the following sequence of catch blocks will generate a compile-time
erTor:

catch (RuntimeException e)
{
// code to handle the exception
} // catch RuntimeException
catch (NullPointerException e) // error!
{
// code to handle the exception
} // catch NullPointerException

The error message will inform you that the second catch block is unreachable code.

An exception can be explicitly thrown by the programmer, who gets to decide which exception class
will be instantiated and under what circumstances the exception will be thrown. For example, suppose we
want a method to return the smaller of two double values that represent prices obtained by comparison
shopping. If the prices are too far apart—says, if the difference is greater than the smaller price—we throw
an exception instead of returning the smaller price. The mechanism for explicitly throwing the exception
is the throw statement, which can be placed anywhere a statement is allowed. For example, the code may

be as in the following smaller method (the Math class’s static method abs returns the absolute value
of its argument):

public class Compare
{
public static void main (String[ ] args)
{
new Compare().run() ;
} // method main

public void run()
{
System.out.println (smaller (5.00, 4.00));
System.out.println (smaller (5.00, 20.00));
} // method run

public double smaller (double pricel, double price2)
{
if (Math.abs (pricel - price2) > Math.min (pricel, price2))
throw new ArithmeticException ("difference too large");
return Math.min (pricel, price2);
} // method smaller

} // class Compare
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If the given comparison is true, the throw statement is executed, which creates a new instance of the
exception class ArithmeticException by calling the constructor that takes a String argument. The
exception will be propagated back to the method that called smaller and the execution of the smaller
method will immediately terminate. In the above example, the exception is not caught, so the program
terminates. The output is

4.0
java.lang.ArithmeticException: difference too large

The choice of ArithmeticException as the exception class to be instantiated is somewhat arbitrary.
A user can even create new exception classes. For example,

public class UnreasonablenessException extends RuntimeException

{
public UnreasonablenessException (String s)
{
super (s);
} // constructor with String parameter
} // class UnreasonablenessException

We can rewrite the smaller method to throw this exception:

public double smaller (double pricel, double price2)
{
if (Math.abs (pricel - price2) > Math.min (pricel, price2))
throw new UnreasonablenessException ("difference too large");
return Math.min (pricel, price2);
} // method smaller

This creates a new instance of the class UnreasonablenessException. The above program would
terminate with the message:

UnreasonablenessException: difference too large

The UnreasonablenessException class is a subclass of RuntimeException. The Runtime
Exception class handles® some of the low-level details of exception-handling, such as keeping track of
the method the exception occurred in, the method that called that method, and so on. Such a “call stack”
sequence can help a programmer to determine the root cause of an error.

An alternative to explicitly throwing an exception is to take a default action that overcomes the
mistake. For example, here is a version of the 2-parameter constructor in the FullTimeEmployee class
that replaces a negative value for gross pay with 0.00:

public FullTimeEmployee (String name, double grossPay)
{

this.name = name;

this.grossPay = Math.max (grossPay, 0.00);
} // 2-parameter constructor

3Actually, RuntimeException consists of several constructors, each of which merely invokes the corresponding constructor in Exception,
the superclass of RuntimeException. The Exception class passes the buck to its superclass, Throwable, where the low-level details are
dealt with.
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2.3.4 The f£finally Block

Under normal circumstances, any code you place after the last catch block will be executed whether or not
any exceptions were thrown in the txry block. So you can place clean-up code—such as closing files—after
the last catch block. There are two drawbacks to this approach. First, there may be an exception thrown
in the try block that is not caught in a catch block. Another danger is that one of the catch blocks may
itself throw an exception that is not caught. Then the clean-up code will not be executed. To avoid these
pitfalls, Java allows a £inally block after the last catch block. We can write

try
{
// code that may throw an exception
Y // try
catch (NumberFormatException e)
{
// code to handle NumberFormatException
} // catch NumberFormatException
catch (IOException e)
{
// code to handle IOException
} // catch IOException
finally
{
// clean-up code; will be executed even if there are uncaught
// exceptions thrown in the try block or catch blocks.
} // finally

If your try or catch blocks may throw uncaught exceptions, you should include a finally
block—otherwise, any code placed after the last catch block may not be executed. Finally, a £inally
block is required by the Java language if you have a try block without a catch block.

Lab 2 provides the opportunity for you to practice exception-handling.

You are now prepared to do Lab 2: Exception Handling

The handling of input-output exceptions is one of the essential features of file processing, discussed in
Section 2.4.

2.4 File Output

File output is only slightly different from console output. We first associate a PrintWriter reference
with a file name. For example, to associate printWriter with "scores.out":

PrintWriter printWriter = new PrintWriter (new BufferedWriter
(new FileWriter ("scores.out")));

The Printwriter object that is referenced by printWriter can now invoke the print and println
methods. For example,

printWriter.println (line);
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The output is not immediately stored in the file "scores.out". Instead, the output is stored in a buffer:

a temporary

storage area in memory. After all calls to print and println have been made by print

Writer’s object, that object’s close method must be called:

printWriter.close();

The close method flushes the buffer to the file "scores.out" and closes that file.

The file-processing program we will develop in this section is based on a program from Section 0.2.5
of Chapter 0. That program calculates the sum of scores read in from the keyboard. Here is a slightly
modified version of that program, with a separate method to scan in and add up the scores:

import java.util.*; // for the Scanner class

public class Scoresl

{

public final int SENTINEL = -1;
public static void main (String[ ] args)
{
new Scoresl().run();
} // method main

public void run /()

{

Y/

/**

*

*

*

*/

final String INPUT_PROMPT = "\nOn each line, enter a test score (or " +
SENTINEL + " to quit): ";

final String RESULT = "\n\nThe sum of the scores is ";
Scanner sc = mnew Scanner (System.in);
System.out.print (INPUT_PROMPT) ;

int sum = addScores (sc);

System.out.println (RESULT + sum);

/ method run

Returns the sum of the scores scanned in.

@param sc - a (non-null reference to a) Scanner object from
which the scores are scanned in.

@Qreturn the sum of the scores scanned in from sc.

@throws InputMismatchException - if a value scanned in from sc is not an
integer.

public int addScores (Scanner sc)

{



int score,
sum = 0;

while (true)

{
score = sc.nextInt();
if (score == SENTINEL)

break;

sum += score;

} // while

return sum;

} // method addScores

} // class Scoresl
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In the next version, the output goes to a file. To enable someone reading that file to confirm that the
result is correct for the given input, each score is written to the output file. TOException is caught for
output-file creation. The corresponding try block encompasses the creation of the output file and the input
loop. For the sake of simplicity, there is no try block to catch input-mismatch exceptions (arising from

input values that are not integers).
import java.util.*;
import java.io.*;

public class Scores?2
{

public final int SENTINEL = -1;
public static void main (String [ ] args)
{

new Scores2().run();

} // method main

public void run()
{
final String INPUT_PROMPT =

"\nOn each line, enter a test score (or " + SENTINEL +

final String RESULT = "\n\nThe sum of the scores is ";

to quit): ";

PrintWriter printWriter = null; // to ensure that printWriter is initialized
// before it is closed in the finally block

try

Scanner sc = new Scanner (System.in);
printWriter = new PrintWriter (mew BufferedWriter
(new FileWriter ("scores.out")));

System.out.print (INPUT_PROMPT) ;
addScores (sc, printWriter);
Yy // try
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catch (IOException e)

{
System.out.println (e);

} // catch IOException

finally

{
printWriter.println (RESULT + sum) ;
printWriter.close();

} // finally

} // method run

public int addScores (Scanner sc, PrintWriter printWriter)

{

int score,

sum = 0;

while (true)

{
score = sc.nextInt();
if (score == SENTINEL)

break;

printWriter.println (score);
sum += score;

} // while

return sum;

} // method addScores

} // class Scores2

The simplification of ignoring input-mismatch exceptions leads to an unfortunate consequence: If an input-
mismatch exception is thrown, the program will terminate without printing the final sum. The output file will
be closed before the final sum is printed, and the InputMismatchException message—signifying abnor-
mal termination—will be printed. We could add a catch block for InputMismatchException right after
(or right before) the catch block for T0Exception. This change would not be much of an improvement:
The program would still terminate without printing the final sum, but the termination would be normal.

To enable the program to continue after an input-mismatch exception, we create a new try block
and a corresponding catch block inside the while loop. If the input contains no legal scores, we throw
an exception related to that after the while loop. Here is the revised code:

boolean atLeastOneScore = false;
while (true)
{
try
{
score = sc.nextInt();
if (score == SENTINEL)
break;
printWriter.println (score);
sum += score;
atLeastOneScore = true;
Yy // try
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catch (InputMismatchException e)
{
printWriter.println (e + " " + sc.nextLine());
} // catch InputMismatchException
} // while
if (!atLeastOneScore)
throw new RuntimeException ("The input contains no legal scores. ");

Here is a sample run of the resulting program, with input in boldface:

Please enter test score, or -1 to quit: 50

Please enter test score, or -1 to quit: x

Please enter

a
a

Please enter a test score, or -1 to quit: 80
a test score, or -1 to quit: ¥y
a

Please enter test score, or -1 to quit: -1

The execution of this project has ended.
The file scores.out will now contain the following:

50
java.lang.InputMismatchException: x
80
java.lang.InputMismatchException: y

The sum of the scores is 130

The call to nextLine( ) in the catch block of the addscores method allows the offending input to be
printed to the output file, and also allows the scanner to skip over that line (otherwise, the input prompt
will be continuously repeated, and the output file will continuously get copies of the exception message.

The most important fact to remember about file output is that the file writer must be explicitly closed,
or else the file will be incomplete, and probably empty (depending on whether there was an intermediate
flushing of the buffer). As we will illustrate in the next class, Scores3, we can ensure that a file writer
is closed when (if) a program terminates by enveloping the construction of the file writer in a try block,
which is followed by a £inally block that closes the file writer.

For this final version of the program, we scan from an input file (with one score per line) instead
of from the keyboard. As we saw in Section 0.2.5—file input is almost identical to console input. For
example, to read from the file "scores.inl", we start with

Scanner fileScanner = new Scanner (new File ("scores.inl"));

Warning: This assumes that the file scores.inl is in the expected directory. For some Integrated
Development Environments, the input file is assumed to be in the directory that is one level up from the
source-file directory. Sometimes, you may need to specify a full path, such as

Scanner fileScanner = new Scanner (new File
("c:\\projects\\score_project\\scores.inl"));

Two back-slashes are required because a single back-slash would be interpreted as the escape character.

Input files seldom end with a sentinel because it is too easy to forget to add the sentinel at the end
of the file. Instead, scanning continues as long as the next () or nextLine () method returns true. So for
file input, we write

while (fileScanner.hasNext())
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For the sake of simplicity, if there is only one input file, we will not worry about closing that file at the
end of the program: it will automatically be closed. And when it is re-opened in a subsequent program, its
contents will be unchanged. A program that leaves many input files unclosed can run out of file descriptors,
and an IOException will be thrown.

As noted earlier in this section, closing an output file entails copying the final contents of the file
buffer to the file, so we should explicitly close each output file before the end of a program. Of course, if
the program does not terminate—due to an infinite loop, for example—the file buffer will not be copied
(unless the file was closed before the infinite loop).

The following program combines file input and file output. For the sake of generality, the program
does not “hardwire” the file names (for example, "scores.in" and "scores.out"). In response to
prompts, the end-user enters, from the keyboard, the names of the input and output files. If there is no
input file with the given name, FileNotFoundException is caught, an error message is printed, and the
end-user is re-prompted to enter the name of the input file. To allow this iteration, the try and catch
blocks that involve throwing and handling T0Exception are placed in an outer while loop.

What if there is no file corresponding to the output file name? Normally, this is not a problem: an
empty output file with that name will be created. But if file name is too bizarre for your system, such as

1@#$SN&* ()

an IOException object (specifically, a FileNotFoundException object) will be thrown.
The following program has three try blocks:

1. an outermost try block to set up the files and process them, a catch block to handle a Number
FormatException if the input contains no legal scores, followed by a £inally block to close the
file writer;

2. a try block/catch block sequence in an outer while loop to create the file scanner and file writer
from file names scanned in from the keyboard,

3. a try block/catch sequence block in an inner while loop to scan each line from the input file
and process that line, with output going to the file writer. If the input contains no legal scores, a
NumberFormatException is thrown after this loop.

Here is the program, whose general structure is the same for all file-processing programs:

import java.util.*;
import java.io.*;

public class Scores3
{
public static void main (String [ ] args)
{
new Scores3().run();
} // method main

public void run()
{
final String IN_FILE_PROMPT =
"\nPlease enter the name of the input file: ";



2.4 File Output 87

final String OUT_FILE_PROMPT =
"\nPlease enter the name of the output file: ";

final String RESULT = "\n\nThe sum of the scores is ";

Scanner keyboardScanner = new Scanner (System.in),

fileScanner;

PrintWriter printWriter=null; // to ensure that printWriter has been initialized
// before it is closed in the finally block

int sum = 0;
try

while (true)
{
try
{
System.out.print (IN_FILE_PROMPT) ;
fileScanner=new Scanner (new File (keyboardScanner.nextLine()));
System.out.print (OUT_FILE_PROMPT) ;
printWriter=new PrintWriter (new BufferedWriter
(new FileWriter (keyboardScanner.nextLine())));
sum = addScores (fileScanner, printWriter);
break;
Y // try
catch (IOException e)
{
System.out.println (e);
} // catch
} // while files not OK
Y // try
catch (NumberFormatException e)
{
System.out.println (e);
} // catch NumberFormatException
finally
{
printWriter.println (RESULT + sum) ;
printWriter.close() ;
} // finally
}  // method run

/) **

* Returns the sum of the scores scanned in.
* @param fileScanner - the Scanner object from which the scores are scanned

* @param printWriter - the PrintWriter object to which the scores are written.
* If a score generates InputMismatchException, the message
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* "java.util.InputMismatchException: " precedes the score.

* @return the sum of the scores scanned in from fileScanner.

* @throws NumberFormatException - if the values scanned in do not include
* an integer.

*

*/

public int addScores (Scanner fileScanner, PrintWriter printWriter)
{
final String NO_LEGAL_SCORES_MESSAGE=
"The input contains no legal scores.";

int score,
sum=0;

boolean atlLeastOneScore=false;

while (fileScanner.hasNext())
{
try
{
score=fileScanner.nextInt () ;
printWriter.println (score);
sum+=score;
atLeastOneScore=true;
Yy // try
catch (InputMismatchException e)
{
printWriter.println (e+": "+fileScanner.nextLine());
} // catch InputMismatchException
} // while more scores in input file
if (!atLeastOneScore)
throw new NumberFormatException (NO_LEGAL_SCORES_MESSAGE) ;
return sum;
} // method addScores

} // class Scores3

Note that the message printWriter.close () is not in a catch block because the printwriter should
be closed whether or not any exceptions are thrown.
Assume that the file "scores.inl" consists of the following four lines:

82
8z
77
99

Also, assume that there is no file named "scores.in0" or "scores3.in" in the working directory.
Whether there is already a file named "scores.outl" or not is irrelevant. Here is a sample keyboard
session, with input in boldface:

Please enter the name of the input file: scores.in0
java.io.FileNotFoundException: scores.in0 (The system cannot find the file specified)
Please enter the name of the input file: scores3.in
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java.io.FileNotFoundException: scores3.in (The system cannot find the file specified)
Please enter the name of the input file: scores.inl

Please enter the name of the output file: scores.outl
The final contents of the file "scores.outl" will be

82
java.util.InputMismatchException: 8z
77
99

The sum of the scores is 258

With file input, it is not sufficient that the file exist in order to associate a file scanner with that file. Your
code must also account for the possibility that the file does not exist. The easy way to accomplish this is
to include a throws FileNotFoundException clause immediately after the heading of the method that
associates a file scanner with the file. The drawback to this approach is that if the file name is incorrect—if
either the file does not exist or the file name is misspelled—then the end-user will not have the opportunity
to correct the mistake.

A better alternative, as we did in the run () method of the class Scores3, is to include a try block
and catch block for FileNotFoundException. To enable end-users to recover from incorrect file names,
those blocks should be within a loop that continues until a correct file name has been entered.Similarly,
to construct a file writer, TOException must be caught or declared in a throws clause. That is why, in
the above program, the type of the relevant catch-block parameter is TOException instead of FileNot
FoundException.

There is a common thread in the above examples. The run () method handles the aspects of the
program that require the end user’s intervention, such as input from the keyboard or from a GUI window,
or interpretation, such as output to the console window or to a GUI window. Accordingly, the method
called by the run () method should be festable in JUnit.

The major problem in testing the addScores method above is that the method outputs information
to a file. So we will create an expected output file from a given input file, and check to make sure the
expected output file matches the actual file generated by the addScores method. The expected file will
have one line for each line in the input file, and will not include the final sum — because that value is not
printed in the addScores method. We will also need an exception test for an input file with no legitimate
scores, and exception tests if either the fileScanner or printWriter argument is null. Here is part
of the Scores3Test.java file:

import org.junit.*;

import static org.junit.Assert.*;

import org.junit.runner.Result;

import static org.junit.runner.JUnitCore.runClasses;
import java.util.*;

import java.io.*;

public class Scores3Test

{
public static void main(String[ ] args)
{

Result result = runClasses (Scores3Test.class);
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System.out.println ("Tests run = " + result.getRunCount () +
"\nTests failed = " + result.getFailures());

} // method main

protected Scores3 scores;
@Before
public void runBeforeEveryTest ()
{

scores = new Scores3();
} // method runBeforeEveryTest

@Test
public void scores3Testl () throws IOException
{
Scanner fileScanner = new Scanner (new File ("scores3.inl"));
PrintWriter printWriter = new PrintWriter (mew BufferedWriter
(new FileWriter ("scores3.outl")));

int actualSum = scores.addScores (fileScanner, printWriter) ;

printWriter.close();

Scanner scActual = new Scanner (new File ("scores3.outl")),
scExpected = new Scanner (new File ("scores3.exp")):;

final int INPUT_LINES = 4;
for (int i = 0; 1 < INPUT_LINES; i++)
assertEquals (scExpected.nextLine(), scActual.nextLine());
if (scExpected.hasNext ())
fail();
} // method scores3Testl

@Test (expected = NumberFormatException.class)
public void scores3Test2 () throws IOException
{
Scanner fileScanner = new Scanner (new File ("scores3.in2"));
PrintWriter printWriter = new PrintWriter (new BufferedWriter
(new FileWriter ("scores3.out2")));

int actualSum = scores.addScores (fileScanner, printWriter) ;
} // method scores3Test2

@Test (expected = NullPointerException.class)
public void scores3Test3 () throws IOException
{
int actualSum = scores.addScores (null,
new PrintWriter (mew FileWriter ("scores3.out3")));

} // method scores3Test3

@Test (expected = NullPointerException.class)
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public void scores3Test4 () throws IOException
{

int actualSum = scores.addScores (new Scanner (new File("scores3.inl")), null);
} // method scores3Test4d

} // class Scores3Test
The relevant files are as follows:

scores3.inl
80

X

50

y

scores3.in2

X

Y

scores3.exp

80
java.util.InputMismatchException: x
50

java.uti.InputMismatchException: y

All tests were passed.

You are now prepared to do Lab 3:
More Practice on Unit Testing

2.5 System Testing

Just as it is unusual for a class to have a single method, it is unlikely that a project will have a single class.
For a multi-class project, which class should be tested first? In an object-oriented environment, bottom-up
testing is the norm. With bottom-up testing, a project’s low-level classes—those that are used by but do
not use other classes—are tested and then integrated with higher-level classes and so on. After each of
the component classes has satisfied its tests, we can perform system testing, that is testing the project
as a whole. Inputs for the system tests are created as soon as the project specifications are created. Note
that system tests are not necessarily unit tests because system tests may entail human intervention—for
example, to enter file path from the keyboard.

The purpose of testing is to detect errors in a program (or to increase confidence that no errors exist
in the program). When testing reveals that there is an error in your program, you must then determine
what brought about the error. This may entail some serious detective work. And the purpose of detection
is correction. The entire process—testing, detection and correction—is iterative. Once an error has been
corrected, the testing should start over, because the “correction” may have created new errors.
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2.6 The Java Virtual Machine

Your Java classes are compiled into a low-level but machine-independent language called Java bytecode.
For example, the bytecode version of the file HourlyEmployee.java is stored in the file Hourly
Employee.class. The bytecode files are then interpreted and executed on your computer. The program
that interprets and executes bytecode is the Java Virtual Machine. It is called a virtual machine because
it executes what is almost machine-level code. There are several advantages to this arrangement

source code —— > bytecode —— Java Virtual Machine

instead of

source code ——— machine code

The main advantage is platform independence. It doesn’t matter whether your computer’s operating
system is Windows, Linux, or something else, the results of running your Java program will be exactly
(well, almost exactly) the same on all platforms. A second benefit is customized security. For example, if
the bytecode file is coming from the web, the virtual machine will not allow the application to read from
or write to the local disk. But such activities would be allowed for a local application.

The Java Virtual Machine oversees all aspects of your program’s run-time environment. In
Sections 2.6.1 and 2.6.2, we investigate two tasks of the Java Virtual Machine.

2.6.1 Pre-Initialization of Fields

One of the Java Virtual Machine’s duties is the initialization of fields just prior to the invocation of a
constructor. For example, we might have the following:

new FullTimeEmployee ("Dilbert", 345.00)

First, the new operator allocates space for a FullTimeEmployee object. Then, to ensure that each
field has at least a minimal level of initialization, the Java Virtual Machine initializes all of the class’s
fields according to their types. Reference fields are initialized to null, integer fields to 0, floating-point
fields to 0.0, char fields to the character at position 0 in the Unicode collating sequence, and boolean fields
to £alse. Then the specified constructor is called. Finally, the starting address of the newly constructed
FullTimeEmployee object is returned.

There is an important consequence of this pre-initialization by the Java Virtual Machine. Even if a
default constructor has an empty body—such as the one supplied by the Java compiler if your class does
not declare any constructors—all fields in the class will still get initialized.

Unlike fields, local variables are not automatically initialized. Section 0.2.4 has the details.

2.6.2 Garbage Collection

The memory for objects is allocated when the new operator is invoked, but what about de-allocation?
Specifically, what happens to the space allocated for an object that is no longer accessible? For example,
suppose an object is constructed in a method, and at the end of the execution of that method, there
are no references pointing to the object. The object is then inaccessible: garbage, so to speak. If your
program generates too much garbage, it will run out of memory, which is an error condition. Errors, unlike
exceptions, should not be caught, so an error will force the abnormal termination of your program. Are
you responsible for garbage collection, that is, for de-allocating inaccessible objects?



2.7 Packages 93

Fortunately, you need not worry about garbage collection. The Java run-time system includes a
method that performs automatic garbage collection. This method will be invoked if the new operator is
invoked but there is not enough memory available for the object specified. With the supersizing of memory
in recent years, this is an increasingly rare occurrence. To free up unused memory, the space for any object
to which there are no references can be de-allocated. The garbage collector will seek out big chunks of
garbage first, such as an array. In any event, this is all taken care of behind the scenes, so your overall
approach to the topic of garbage collection should be “Don’t worry. Be happy.”

Section 2.6 investigates the relationship between packages and visibility modifiers.

2.7 Packages

A package is a collection of related classes. For each such class, the file in which the class is declared
starts with the package declaration. For example, a file in a package of classes related to neural networks
might start with

package neuralNetwork;

For another example, the Scanner class, part of the package java.util, is in the file Scanner. java,
which starts with

package java.util;

If a file includes an instance of the Scanner class, that class can be “imported” into the file. This is done
with an import directive, starting with the reserved word import:

import java.util.Scanner;

The advantage of importing is convenience: A declaration such as
Scanner sc;

can be used instead of the fully qualified name:
java.util.Scanner sc;

Many of the classes you create will utilize at least one class from the package java.util, so you can simply
import the whole package:

import java.util.*; //the asterisk indicates that all files from java.util will be available

Occasionally, you may prefer to use the fully qualified name. For example, suppose your project uses two
classes named widget: one in the package com.acme and one in the package com.doodads. To declare
(a reference to) an instance of the latter, you could write

com.doodads .Widget myWidget;

Every Java file must have a class with the visibility modifier public. Also, the name of that public class
must be the same as the name of the file—without the .java extension. At the beginning of the file,
there must be import directives for any package (or file) needed by the file but not part of the file. An
exception is made for the package java.lang, which is automatically imported for any file.

A class member with no visibility modifier is said to have default visibility. A member with default
visibility can be accessed by any object (or class, in the case of a static member) in the same package
as the class in which the member is declared. That is why default visibility is sometimes referred to as
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“package-friendly visibility.” All classes without a package declaration are part of an unnamed package.
But there may be more than one unnamed package so, as a general rule, if your project contains more
than one class file, each file should include a package declaration.

Technically, it is possible for a Java file to have more than one class with public visibility; all but one
of those classes must be nested, that is, declared within another class. The Java Collections Framework,
part of the package java.util, has many nested classes. Except for nested classes, a Java file is allowed to
have only one class with public visibility. Every other non-nested class must have default visibility.

Because of the way the Java language was developed, protected visibility is not restricted to
subclasses. In general, if an identifier in a class has protected visibility, that identifier can also be accessed
in any class that is in the same package as the given class. For example, any class—whether or not a
subclass—that is in the same package as FullTimeEmployee can access the name and grossPay fields
of a FullTimeEmployee object.

In the Java Collections Framework, most of the fields have default visibility or private visibility.
Almost no fields have protected visibility: Subclassing across package boundaries is discouraged in
the Java Collections Framework. Why? The main reason is philosophical: a belief that the efficiency to
users of the subclass is not worth the risk to the integrity of the subclass if the superclass is subsequently
modified. This danger is not merely hypothetical. In Java 1.1, a class in java.security was a subclass of
the Hashtable class. In Java 2, the Hashtable class was modified, and this opened a security hole in
the subclass. Subclassing represents more of a commitment than mere use. So even if a class permits
subclassing, it is not necessarily the wisest choice.

The bottom line is that protected visibility is even less restrictive than default visibility. This
corruption of the meaning of protected visibility may make you reluctant to designate your fields as
protected. An alternative is to designate the fields as private, but to create public methods to get
and set the values of those private fields. As described in Programming Exercise 1.3, an accessor method
returns a copy of a field (or a copy of the object referenced, if the field is a reference), and a mutator
method alters a field (or the object referenced by the field). The usefulness of this approach diminishes as
the number of fields increases.

The final topic in this chapter looks at the importance of overriding the Object class’s equals
method, the barriers to overriding that method, and how those barriers are overcome.

2.8 Overriding the Object Class’s equals Method

In Section 1.3.3, we saw the method specification for the equals method in the Object class, the
superclass of all classes. Here is that specification:

/**
* Determines if this Object object is the same as a specified Object
* object.

* @param obj - the Object object to be compared to the calling Object object.
* @return true - if the two objects are the same.

*/
public boolean equals (Object obj)

This method, as with the other methods in the Object class, is intended to be overridden by subclasses,
which can compare field values, for example. The object class has no fields, so what does it compare?
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It compares references, specifically, the calling object reference with the argument reference. Here is the
definition:

public boolean equals (Object obj)
{

return this == obj;
} // method equals

As we saw in Section 1.3.2, in any class, the reserved word this is a reference to the calling object. For
example, suppose the call is

objl.equals (obj2)

Then in the definition of the equals method, this is a reference to the object that is also referenced by
objl, and obj is a reference to the object that is also referenced by obj2.

Because the Object class’s equals method compares references, any class with an equals method
should define its own version of that method. For example, suppose we decide to add an equals method
to the FullTimeEmployee class. The first question is: Should we overload, that is,

public boolean equals (FullTimeEmployee full)
or override, that is,

public boolean equals (Object obj)
?

Overloading equals—that is, having a different parameter list than the version inherited from the object
class—can be done fairly simply. The only obstacle is that double values should not be directly tested
for equality; note, for example, that System.out.println (.4==10.0 - 9.6) outputs “false”, (but
System.output.println (.4==1.0 - .6) outputs “true”). Here is the definition:

public boolean equals (FullTimeEmployee full)
{
return name.equals (full.name) ""
MONEY. format (grossPay) .equals (MONEY.format (full.grossPay)) ;

} // overloading method equals

Recall that the format method rounds off the value in the grossPay field, so we need not compare
grossPay and full.grossPay for equality. This version compares objects, not references, and so the
value true would be printed by each of the following:

System.out.println (new FullTimeEmployee ("a", 100.00).equals
(new FullTimeEmployee ("a", 100.00)));

System.out.println (new HourlyEmployee ("a", 10, 10.00).equals
(new FullTimeEmployee ("a", 100.00)));

The overloaded version works well as long as the type of the calling object is known, at compile-time,
to be FullTimeEmployee (or subclass of FullTimeEmployee). Sadly, that is not always the case. For
example, many of the classes in the Java Collections Framework store a collection of objects. Those classes
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have a contains method to determine if a given object occurs in the collection. The contains method’s
heading is

public boolean contains (Object obj)

Typically, in testing for containment, the equals method is invoked, with obj as the calling object. For
a given application, the collection may consist of FullTimeEmployee objects. But when the equals
method—called by contains—is compiled, the only information available about the calling object is its
declared type: Object. Therefore, the compiler generates bytecode for a call to the equals method in the
Object class, which takes an Object parameter. At run time, when the class of the object (referenced
by) obj is available, the version of the Object-parameter equals method executed will be the one in
the Object class unless that method has been overridden. Whether the equals method has been overloaded
is irrelevant!

Now that we have established the significance of overriding the Object class’s equals method,
let’s see how to do it. We will take the FullTimeEmployee class as an example. The basic idea is simple:
if the type of the argument object is not FullTimeEmployee, return false. Otherwise, as we did earlier
in this section, compare the values returned by the toString( ) method of the calling object and the
argument object. Here are some sample results:

System.out.println (new FullTimeEmployee ("a", 100.00).equals

("yes")); // false
System.out.println (new FullTimeEmployee ("a", 100.00) .equals

(new FullTimeEmployee ("a", 100.00))); // true
System.out.println (new FullTimeEmployee ("a", 100.00).equals

(new FullTimeEmployee ("b", 100.00))); // false
System.out.println (new FullTimeEmployee ("a", 100.00) .equals

(new FullTimeEmployee ("a", 200.00))); // false

Here is the full definition:

public boolean equals (Object obj)
{
if (! (obj instanceof FullTimeEmployee))
return false;
FullTimeEmployee full = (FullTimeEmployee)obj;
return name.equals (full.name) &&
MONEY. format (grossPay) .equals (MONEY.format (full.grossPay));
} // method equals

To summarize this section:

1. Every class whose instances might be elements of a collection should have an equals method that
overrides the Object class’s equals method.

2. The instanceof operator returns true if and only if, at run-time, the object referenced by the left
operand is an instance of the class that is the right operand.

3. Before comparing the calling object with the argument object, cast the parameter type, Object, to
the class in which equals is being defined.

Programming Exercise 2.11 has even more information about the equals method.



SUMMARY

The static modifier is used for identifiers that apply to
a class as a whole, rather than to a particular instance of
a class. Constants should be declared to be static, because
then there will be only one copy of the constant, instead of
one copy for each instance of the class. To access a static
identifier outside of its class, the class identifier—rather
than an object—is the qualifier.

JUnit is an Open Source software product that
allows the methods in a class to be tested without human
intervention. The tests are developed as soon as the
method specifications are created. In general, methods
should be designed to facilitate testing without human
intervention, so input from System.in and output to
System.out should be avoided in methods to be tested.

An exception is an object that signals a special
situation, usually that an error has occurred. An exception
can be handled with try/catch blocks. The sequence of
statements in the try block is executed. If, during exe-
cution, an exception is thrown (indicating that an error
has occurred), the appropriate catch block is executed
to specify what, if anything, is to be done.

File output is similar to console-oriented output,
except that a PrintWriter object is explicitly created
to write to the specified output file. The output is not
immediately sent to the output file, but rather to a buffer.
At the conclusion of file processing, the buffer is flushed
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to the output file by a call to the close method.

The Java run-time, also known as the Java Vir-
tual Machine, is a program that interprets and exe-
cutes the bytecode output from a Java compiler. Among
other tasks, the Java Virtual Machine is responsible for
pre-initialization of fields, de-allocation of inaccessible
objects, and managing threads.

A package is a collection of related classes. An
identifier with no visibility modifier is said to have default
visibility . Java is “package friendly.” That is, an identifier
with default visibility can be accessed by any object (or
class, in the case of a static member) in the same package
as the class in which the identifier is declared. If a given
class’s identifier has protected visibility, that identifier
can be accessed in any subclass of the given class, even in
a different package. Unfortunately, that identifier may also
be accessed in any class—even if not a subclass—within
the given package’s class.

The equals method in the Object class should
be overridden for any class C whose instances might
become elements of a collection. The overriding method
invokes the instanceof method to return false for
any argument object that is not an instance of class C, and
then casts the Object class to class C in order to make
the appropriate comparison(s).
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CROSSWORD PUZZLE

1 2 3
4 5
6
7
8
9
10
www.CrosswordWeaver.com
ACROSS DOWN
6. An object created by an unusual condition, typically, an 1. The kind of exception for which the compiler
attempt at invalid processing. confirms that the exception is caught within
the method or that a throws clause is appended
8. An identifier associated with a class itself rather than with to the method’s heading.
an instance of the class is called a identifier.
2. When an exception is thrown in a method that
9. A reserved-word modifier associated with a location that does not catch the exception, the transferring of
can be assigned to only once. control back to the calling method is referred to

as_____ the exception.
10. A method in the PrintWriter class that ensures a file
is complete by flushing the output buffer. 3. Aclass member that can be accessed in any
class within the same package as the given class
or in any subclass of the given class is said to
have visibility.

4. A class member that can be accessed in any
class within the same package as the given class,
but not elsewhere, is said to have
visibility.

5. A program that does not terminate unexpectedly
from invalid user-input is called a
program.

7. A collection of related classes.
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CONCEPT EXERCISES

2.1

2.2

2.3

24

2.5
2.6

2.7

2.8

The System class in java.lang has a class constant identifier that has been extensively used in Chapters
0, 1 and 2. What is that constant identifier? Why should a class’s constant identifiers be static ? Should a
method’s constant identifiers be static ? Explain.

Create a catch block that will handle any exception. Create a catch block that will handle any input/output
exception. Create a catch block that will handle any run-time exception.

What is wrong with the following skeleton?
try

{

Yy // try
catch (IOException e)
{

} // catch IOException
catch (FileNotFoundException e)
{

} // catch FileNotFoundException

Suppose fileScanner is a Scanner object for reading from an input file, and printWriter is a Print
Writer object for writing to an output file. What will happen if, at the end of a program, you forget to close
fileScanner ? What will happen if, at the end of a program, you do not close printWriter ?

What does “bottom-up” testing mean with respect to the classes in a project?

Suppose we create a two-dimensional array (literally, an array in which each element is an array). The following
creates an int array with 50000 rows and 100000 columns:

int [ ][ ] a = new int [50000][100000];
If this code is executed, the program terminates abnormally, and the message is

java.lang.OutOfMemoryError
Exception in thread "main"

Why wasn’t memory re-allocated by the garbage collector? Hypothesize whether this abnormal termination be
handled with a try-block and catch-block. Test your hypothesis and explain.

Can a protected field be accessed outside of the class in which it is declared and subclasses of that class?
What does the following statement mean? “Subclassing represents more of a commitment than mere use.”

Arrays are strange objects because there is no array class. But an array object can call methods from the
Object class. Determine and explain the output from the following code:

int [ ] a = new int [10];
int [ ] b = new int [10];
a [3] = 7;
b [3] = 7;

System.out.println (a.equals(b));
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PROGRAMMING EXERCISES

2.1

2.2

2.3

24

2.5

2.6

2.7

Develop the specification for a method that scans one line that is supposed to contain three double values
and returns the largest. Throw all possible exceptions. Start with a stub for your method and create a test class
to test your method. Re-test your method as you define it. Finally, include a main method and a run( )
method that calls the method you developed.

Develop the specification for a method that scans (what are supposed to be) double values from a file and
returns the largest. Throw all possible exceptions. Start with a stub for your method and create a test class
to test your method. Re-test your method as you define it. Finally, include a main method and a run( )
method that calls the method you developed.

Modity the run method for the Company class to scan from an input file and write to an output file. Include
a re-prompt if either the input or output path is incorrect.

Hypothesize what is wrong with the following method:

public static boolean isEven (int 1)
{

if (i & 2 == 0)
return true;
if (1 2 !=0)

return false;
} // method isEven

Test your hypothesis by calling this method from a run( ) method. Can a try-block and catch-block
handle the problem? Explain.

Hypothesize the output from the following:
System.out.println (null + "null");

Test your hypothesis. Provide the code in the String class that explains why the output is what it is.

Give an example to show that private visibility is more restrictive than default visibility. Give an example
to show that default visibility is more restrictive than protected visibility. Give an example to show that
protected visibility is more restrictive than public visibility. In each case, test your code to make sure
that the more restrictive choice generates a compile-time error message. No error message should be generated
for the less restrictive choice.

Protectedness transfers across packages, but only within a subclass, and only for objects whose type is that
subclass. For a bare-bones illustration, suppose we have class A declared in package APackage:

package APackage;

public class A

{
protected int t;
} // class A

Also, suppose that classes C and D are subclasses of A and that C and D are in a different package from
A. Then within class D, the t field is treated as if it were declared in D instead of in A. Here are possible
declarations for classes C and D:

import APackage.*;

public class C extends A { }
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2.9

2.10

2.11
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Class D is declared in another file. For each of the four accesses of t in the following declaration of class D,
hypothesize whether the access is legal or illegal:

import APackage.*;

public class D extends A

{

public void meth ()
{

D d = new D();
d.t = 1; // access 1
t =2; // access 2
A a = new A();
a.t = 3; // access 3
C c = new C();
c.t = 4; // access 4

} method meth

} // class D
Test your hypotheses by creating and running a project that includes the above files.

Re-do Programming Exercise 1.2 to print out the number of above-average salaries. Use an array field to hold
the salaries, and assume there will be at most 10 salaries in the input.

Study the specification of the arraycopy method in the System class, and then write a short program that
uses the arraycopy method to copy all the elements of an array to another array. Output the elements in
the destination array to make sure the copying actually occurred.

Re-do Programming Exercise 2.8 if the input can contain an arbitrary number of salaries.

Hint: Start with an array of length 10. Whenever the number of salaries in the input exceeds the current
length of the array field, create a new array of twice that length, copy the old array to the new array—see
Programming Exercise 2.9—and then assign the new array (reference) to the old array (reference).

According to the full method specification in the Object class, any override of the Object class’s equals
method should satisfy the following five properties:

1. reflexivity, that is, for any non-null reference x,
x.equals (x)

should return true.

2. symmetry, that is, for any non-null references x and v,
x.equals (y)
should return the same result as
v.equals (x)
3. transitivity, that is, for any references x, y and z if
x.equals (y)

returns true, and

v.equals (z)
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returns true, then
x.equals (z)
should return true.
4. consistency, that is, for any non-null references x and y, multiple invocations of
x.equals (y)

should consistently return txrue or consistently return £alse, provided no information used in equals
comparisons on the objects is modified.

5. actuality, that is, for any non-null reference x,
x.equals (null)

should return false.

For the FullTimeEmployee class’s equals method (see Section 2.7), provide examples to support the
claim that the equals method satisfies those five properties. You are not being asked to prove that the
FullTimeEmployee class’s equals method satisfies those properties.

2.12  Create and run a test class for the equals method defined in Section 2.7 for the FullTimeEmployee
class.

Programming Project 2.1

An Integrated Web Browser and Search Engine, Part 1

Note: This project assumes familiarity with developing graphical user interfaces.

This is the first part of a seven-part project to create an integrated web browser and search engine. The
remaining parts are in Chapters 6, 7, 12, 13, 14 and 15. The project is based on a paper by Newhall and Meeden
[2002].

Basically, all the project does at this stage is to display web pages. Initially the output area of the Graphical
User Interface (GUI) window displays the home page. That page has a link to another page, and if the end user
clicks on the link, that page will be displayed in the output area. In addition to the output area, the GUI window
will also have four buttons: one to go forward (currently disabled), one to go backward (currently disabled), one
to display the home page (enabled), and one to conduct a search (currently disabled). Finally, the GUI window
will have an input line that allows an end user to enter a file path; when the Enter key is pressed, that file (that
is, that page) will be displayed.

Analysis The following specifications apply to the GUI:

1. The size of the window will be 700 pixels wide and 500 pixels high.

2. The upper-left-hand corner of the window will have x-coordinate 150 and y-coordinate 250.

3. Each of the four buttons on the top of the window will be 80 pixels wide and 30 pixels high. The
foreground color of the Home button will be green, and the foreground color of the other three buttons will
be red.

4. The input line will be 50 pixels wide.

5. The output area will be scrollable in both directions.
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Here is a diagram of the GUI:

| == || Se== || Home | | Search

|(the input line) ‘

(the output area)

6. The only tags allowed in a page are link tags, for example,
< a href = browser.in4d > browserd < /a >

In this example, the only part that will appear in the output area is browser4.
7. For simplicity, all links (such as browser . in4 above) will come from the same directory, and all
link “nicknames” (such as browser4 above) will consist of a single word.
8. In the output area, the foreground color of each link’s nickname should be blue.
9. Aline in a page may have several link tags, but no tag will be split between two lines.
10. If a page clicked on or typed in does not exist, the following error message should appear in the output
area:

Web page not found: HTTP 404

At that point, the end user can click on the Home button, can enter a new file path in the input line, or
can close the application.

Hints:

Use the layout manager FlowLayout.

N

.

Use a gTextField for the input line and a JTextPane (made scrollable as a JScrollPane) for
the output area. A JTextPane component supports embedded links (as JButton objects).

3. Use a separate listener class so that there can be a listener object for each link that is clicked on.
Here is a sample home page:

In Xanadu did Kubla Khan
A stately pleasure-dome decree:

(continued on next page)
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(continued from previous page)

Where Alph, the sacred river, ran
Through caverns <a href=browser.in2>browser2</a> measureless to man

Down to a sunless sea.
When that page is displayed in the output area, it will appear as

In Xanadu did Kubla Khan
A stately pleasure-dome decree:
Where Alph, the sacred river, ran

Through caverns | browser2 | measureless to man

Down to a sunless sea.

If the end user now clicks on browser2, the contents of browser.in2 will be displayed. Here are the contents
of browser.inl, browser.in2, browser.in4, and browser.in5 (browser.in3 does not exist):

browser.inl:

In Xanadu did Kubla Khan

A stately pleasure-dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down <a href=browser.in2>browser2</a> to a sun-
less <a href=browser.ind>browserd</a> sea.

browser.in2:

In Xanadu did Kubla Khan

A stately <a href=browser.in3>browser3</a> pleasure-dome decree:

Where Alph, the sacred river, <a href=browser.ind>the browserd</a> ran
Through caverns measureless to man

Down to a <a href=browser.in5>browser5</a> sunless sea.

browser.in4

In Xanadu did <a href=browser.inl>browserl</a> Kubla Khan
A stately pleasure-dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

browser.in5:

In Xanadu did <a href=browser.in2>browser2</a> Kubla Khan
A stately pleasure-dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.
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As noted in Section 2.2, a correct method is one that satisfies its specification. In defining a method, the
first goal is to make sure the method is correct, and unit testing allows us to increase our confidence
in a method’s correctness. But if the method’s execution time or memory requirements are excessive,
the method may be of little value to the application. This chapter introduces two tools for measuring a
method’s efficiency. The first tool provides an estimate, based on studying the method, of the number of
statements executed and number of variables allocated in a trace of the method. The second tool entails
a run-time analysis of the method. Both tools are useful for comparing the efficiency of methods, and
the tools can complement each other.

CHAPTER OBJECTIVES

1. Be able to use Big-O (and Big-Theta) notation to estimate the time and space requirements of
methods.

2. Be able to conduct run-time analyses of methods.

3.1 Estimating the Efficiency of Methods

The correctness of a method depends only on whether the method does what it is supposed to do. But
the efficiency of a method depends to a great extent on how that method is defined. How can efficiency
be measured? We could test the method repeatedly, with different arguments. But then the analysis would
depend on the thoroughness of the testing regimen, and also on the compiler, operating system and computer
used. As we will see in Section 3.2, run-time analysis can have blaring weaknesses, mainly due to the
“noise” of other processes that are executing at the same time as the method being tested.

At this stage, we prefer a more abstract analysis that can be performed by directly investigating the
method’s definition. We will ignore all memory restrictions, and so, for example, we will allow an int
variable to take on any integer value and an array to be arbitrarily large. Because we will study the method
without regard to a specific computer environment, we can refer to the method as an algorithm, that is, a
finite sequence of explicit instructions to solve a problem in a finite amount of time.

The question then is, how can we estimate the execution-time requirements of a method from the
method’s definition? We take the number of statements executed in a trace of a method as a measure of
the execution-time requirements of that method. This measure will be represented as a function of the
“size” of the problem. Given a method for a problem of size n, let worstTime(n) be the maximum—over
all possible parameter/input values—number of statements executed in a trace of the method.

For example, let’s determine worstTime(rn) for the following method, which returns the number of
elements greater than the mean of an array of non-negative double values. Here n refers to the length of
the array.

105



106 CHAPTER 3 Analysis of Algorithms

* Returns the number of elements in a non-empty array that are greater than
* the mean of that array.

*  @param a - an array of double values
* (@param mean - the sum of the elements in a, divided by a.length.

* @return the number of elements in a that are greater than mean

*/
public static int aboveMeanCount (double[ ] a, double mean)
{
int n = a.length,
count = 0;

for (int i = 0; 1 < n; 1++4)
if (a [i] > mean)
count++;
return count;
} // method aboveMeanCount

There are six statements that will be executed only once: the assignment of the arguments to the parameters
a and mean; the initialization of n, count and i; and the return of count. Within the for statement,
i will be compared to n a total of n 4 1 times, i will be incremented n times and the comparison of
a [i] to mean will be made n times. If n — 1 elements have the value 1.0 and the other element has the
value 0.0, then a [i] will be greater than mean a total of n — 1 times, so count will be incremented
n — 1 times. The total number of statements executed in the worst case, that is, worstTime(n), is

6+n+1)+n+n+m—1)=4n+6

Sometimes we will also be interested in the average-case performance of a method. We define average-
Time(n) to be the average number of statements executed in a trace of the method. This average is taken
over all invocations of the method, and we assume that each set of n parameter/input values for a call
is equally likely. For some applications, that assumption is unrealistic, so averageTime(n) may not be
relevant.

In the for loop of the just completed example, a [i] will be greater than mean, on average, half
of the time, so count will be incremented only n/2 times. Then averageTime(n) is 3.51n + 7.

Occasionally, especially in Chapters 5 and 11, we will also be interested in estimating the space
requirements of a method. To that end, we define worstSpace(n) to be the maximum number of variables
allocated in a trace of the method, and averageSpace(n) to be the average number of variables allocated
in a trace of the method. For an array, we treat each element—that is, indexed variable—to be a separate
variable. So an array of length n would contribute n variables. The aboveMeanCount method does not
create an array; worstSpace(n) = averageSpace(n) = 5.

3.1.1 Big-O Notation

We need not calculate worstTime(n) and averageTime(n)—or worstSpace(n) and averageSpace(n)—
exactly since they are only crude approximations of the time requirements of the corresponding method.
Instead, we approximate those functions by means of “Big-O” notation, defined in the next paragraph.
Because we are looking at the method by itself, this “approximation of an approximation” is quite satis-
factory for giving us an idea of how fast the method will be.
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The basic idea behind Big-O notation is that we often want to determine an upper bound for the
behavior of a function, that is, to determine how bad the performance of the function can get. For example,
suppose we are given a function f. If some function g is, loosely speaking, an upper bound for f, then
we say that f is Big-O of g. When we replace “loosely speaking” with specifics, we get the following
definition:

Let g be a function that has non-negative integer arguments and returns a non-negative value for all
arguments. A function f is said to be O(g) if for some positive constant C and some non-negative
constant K,

f(n) <Cg(n) forall n=>K.

If f is O(g), pronounced “big-oh of g”, we can also say “f is of order g”.

The idea behind Big-O notation is that if f is O(g) then eventually f is bounded above by some
constant times g, so we can use g as a crude upper-bound estimate of the function f.

By a standard abuse of notation, we often associate a function with the value it calculates. For
example, let g be the function defined by

g(n) = n3, for n=0,1,2,...
Instead of writing O(g) we write O(n>).

The following three examples will help you to understand the details of Big-O notation. Then, in
Section 3.1.2, we will describe how to arrive at Big-O estimates without going through the details.

Example 3.1

Let f be the function worstTime defined for the aboveMeanCount method in Section 3.1 and repeated here:

public static int aboveMeanCount (double[ ] a, double mean)
{
int n = a.length,
count = 0;

for (int i = 0; i < n; i++)
if (a [i] > mean)
count++;
return count;
} // method aboveMeanCount

Then
f(n)=4n+6, for n=0,1,2,...

Show that f is O(n).
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SOLUTION

We need to find non-negative constants C and K such that f(n) < C*n for all n > K. We will show that each
term in the definition of f is less than or equal to some constant times n for n greater than or equal to some
non-negative integer. Right away, we get:

4n < 4n for n>0,and
6<6n for n>1.

Soforanyn > 1,
f(n) <4n+6n =10n.
That is, for C =10 and K = 1,f(n) < C*n for all n > K. This shows that f is O(n).

In general, if f is a polynomial of the form
ain' +ai_n' "'+ an +ag

then we can establish that f is O(n') by choosing K =1, C = |a;| + |a;_1| + - - + |a1| + |ao| and pro-
ceeding as in Example 3.1.

The next example shows that we can ignore the base of a logarithm when determining the order of
a function.

Example 3.2

Let a and b be positive constants. Show that if f is O(log, n) then f is also O(logy, n).

SOLUTION

Assume that f is O(log, n). Then there are non-negative constants C and K such that for all n > K,
f(n) < Cxlog, n
By a fundamental property of logarithms (see Section A2.4 of Appendix 2),
log, n = (log, b) * (log, n) forany n=>0.

Let C1 = Cxlog, b.
Then for all n > K, we have

f(n) < Cxlog, n = C xlog, b xlog, n = Cq xlogy, n,

and so f is O(logy, n).

Because the base of the logarithm is irrelevant in Big-O estimates, the base is usually omitted. For example,
you will often see O(log n) instead of O(log, n) or O(log,, n).

The final example in this introduction to Big-O notation illustrates the significance of nested loops
in estimating worstTime(n).
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Example 3.3

Show that worstTime(n) is O(n?) for the following nested loop:

for (int i = 0; 1 < n; i++)
for (int j = 0; J < n; Jj++)
System.out.println (i + Jj);

SOLUTION

For this nested loop, every trace will entail the execution of the same number of statements. So worstTime(n)
and averageTime(n) will be equal. And that is frequently the case.

In the outer loop, the initialization of i is executed once, the continuation condition, i < n, is
executed n + 1 times, and 1 is incremented n times. So far, we have

1+(n+1)+n

statements executed. For each of the n iterations of the outer loop, the initialization of j is executed once, the
continuation condition, § < n, is executed n + 1 times, j is incremented n times, and the call to println
is executed n times. That increases the number of statements executed by

n(1+(@n+1)+n)
The total number of statements executed is
1+(n+1)+n+nd+n+1)+n=2n°>+4n+2
Since the same number of statements will be executed in every trace, we have
worstTime(n) = 2n? + 4n + 2
By the same technique used in Example 3.1,
worstTime(n) < 8n?> forall n=> 1.

We conclude that worstTime(n) is O(n?).

In Example 3.3, the number of statements executed in the outer loop is only 2n + 2, while 2n* + 2n
statements are executed in the inner loop. In general, most of the execution time of a method with nested
loops is consumed in the execution of the inner(most) loop. So that is where you should devote your
efforts to improving efficiency.

Note that Big-O notation merely gives an upper bound for a function. For example, if f is O(n?),
then f is also O(n? 4 5n 4 2), 0(n>) and O(n'? + 3). Whenever possible, we choose the smallest element
from a hierarchy of orders, of which the most commonly used are shown in Figure 3.1. For example,
if fn)=n+7forn=0,1,2,..., it is most informative to say that f is O(n)—even though f is also
O(n log n) and o(n?). Similarly, we write O(n) instead of O(2n +4) or O(n — log n), even though
O() =02n +4) = O0(n — log n); see Exercise 3.9.

Figure 3.2 shows some more examples of functions and where they fit in the order hierarchy.
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O(1) € O(log n) C O(n'/?) c O(n) C O(nlog n) C O(n* c O c...c OQR")...

FIGURE 3.1 Some elements in the Big-O hierarchy. The symbol “C” means “is contained in”. For example,
every function that is in O(1) is also in O(log n)

Order Sample Function

o(1) f(n) = 3000

O(log n) f() = nxlog,(n+1)+2)/(n+ 1)

O(n) f(n) =5001log, n 4+ n /100000

O(nlog n) f(n) =log, n" /Isee Section A2.4 of Appendix 2
0n?) f)y=nx@n+1)2

o2 f(n) =3500n1% 4 27

FIGURE 3.2 Some sample functions in the order hierarchy

One danger with Big-O notation is that it can be misleading when the values of n are small. For example,
consider the following two functions for n =0,1,2,... .

f(n) = 10007 is O(n)
and
g(n) =n?/10 is O(n?)

But f(n) is larger than g (n) for all values of n less than 10,000.
The next section illustrates how easy it can be to approximate worstTime(n)—or averageTime(n)—
with the help of Big-O notation.

38.1.2 Getting Big-O Estimates Quickly

By estimating the number of loop iterations in a method, we can often determine at a glance an upper
bound for worstTime(n). Let s represent any sequence of statements whose execution does not include a
loop statement for which the number of iterations depends on n. The following method skeletons provide
paradigms for determining an upper bound for worstTime(n).

Skeleton 1. worstTime(n) is O(1):
S
For example, for the following constructor from Chapter 1, worstTime(n) is O(1):

public HourlyEmployee (String name, int hoursWorked, double payRate)
{

this.name = name;

this.hoursWorked = hoursWorked;

this.payRate = payRate;

if (hoursWorked <= MAX_REGULAR_HOURS)

{
regularPay = hoursWorked * payRate;
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overtimePay = 0.00;

Yy // if
else
{

regularPay = MAX_REGULAR_HOURS * payRate;

overtimePay = (hoursWorked - MAX_REGULAR_HOURS) * (payRate * 1.5);
Y // else
grossPay = regularPay + overtimePay;

} // 3-parameter constructor

Because n is not specified or implied, the number of statements executed is constant—no
matter what n is—so worstTime(n) is O(1). It follows that for the following method in the
HourlyCompany class, worstTime(n) is also O(1):

protected FullTimeEmployee getNextEmployee (Scanner sc)
{

String name = sc.next();
int hoursWorked = sc.nextInt();

double payRate = sc.nextDouble() ;
return new HourlyEmployee (name, hoursWorked, payRate) ;
} // method getNextEmployee

Note that the execution of S may entail the execution of millions of statements. For example:

double sum = 0;
for (int i = 0; i < 10000000; i++)
sum += Math.sqgrt (i);

The reason that worstTime(n) is O(1) is that the number of loop iterations is constant and
therefore independent of n. In fact, n does not even appear in the code. In any subsequent
analysis of a method, n will be given explicitly or will be clear from the context, so you
needn’t worry about “What is n?”

Skeleton 2. worstTime(n) is O(log n):

while (n > 1)
{
n=mn/2;
S
} // while
Let #(n) be the number of times that s is executed during the execution of the while
statement. Then 7(n) is equal to the number of times that n can be divided by 2 until
n equals 1. By Example A2.2 in Section A2.5 of Appendix 2, #(n) is the largest integer
<log, n. That is, t(n) = floor(log, n).' Since floor(log, n) <log, (n) for any positive
integer n, we conclude that #(n) is O(log n) and so worstTime(n) is also O(log n).
The phenomenon of repeatedly splitting a collection in two will re-appear time and again
in the remaining chapters. Be on the lookout for the splitting: it signals that worstTime(r)
will be O(log n).

'f1oor (x) returns the largest integer that is less than or equal to x.
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The Splitting Rule

In general, if during each loop iteration, n is divided by some constant greater than 1, worstTime(n) will
be O(log n) for that loop.

As an example of the Splitting Rule, here—from the Arrays class in the package
java.util—is the most widely known algorithm in computer science: the Binary Search
Algorithm. Don’t get hung up in the details; we will study a binary search algorithm
carefully in Chapter 5. Here, n refers to the size of the array being searched.

/ * *

* Searches the specified array of ints for the specified value using the

* binary search algorithm. The array must be sorted (as

* by the sort method, above) prior to making this call. If it

* is not sorted, the results are undefined. If the array contains

* multiple elements with the specified value, there is no guarantee which

* one will be found.

* @param a the array to be searched.
* @param key the value to be searched for.
* @return index of the search key, if it is contained in the list;

* otherwise, (-(insertion point) - 1). The

* insertion point is defined as the point at which the

* key would be inserted into the array a: the index of the first
* element greater than the key, or a.length, if all

* elements in the array are less than the specified key. Note

* that this guarantees that the return value will be greater than
* or equal to 0 if and only if the key is found.

* @see #sort(int[ 1)

*/

public static int binarySearch(int[ ] a, int key)

{
int low = 0;
int high = a.length-1;

while (low <= high)

{
int mid = (low + high) >> 1; // same effect as (low + high) / 2,
// but see Programming Exercise 3.5
int midval = a[mid];
if (midval < key)
low = mid + 1;
else if (midval > key)
high = mid - 1;
else
return mid; // key found
} // while
return - (low + 1); // key not found.

} // method binarySearch
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At the start of each loop iteration, the area searched is from index 1low through index high,
and the action of the loop reduces the area searched by half. In the worst case, the key is not
in the array, and the loop continues until 1ow > high. In other words, we keep dividing
n by 2 until n = 0. (Incidentally, this repeated dividing by 2 is where the “binary” comes
from in Binary Search Algorithm.) Then, by the Splitting Rule, worstTime(rn) is O(log n)
for the loop. And with just a constant number of statements outside of the loop, it is clear
that worstTime(n) is O(log n) for the entire method.

worstTime(n) is O(n):

for (int i = 0; 1 < n; 1i++4)
{

S
} // for

The reason that worstTime(n) is O(n) is simply that the for loop is executed n times. It
does not matter how many statements are executed during each iteration of the £or loop:
suppose the maximum is k statements, for some positive integer k. Then the total number
of statements executed is < kn. Note that kK must be positive because during each iteration,
i is incremented and tested against n.

As we saw in Section 3.1, worstTime(n) is O(n) for the aboveMeanCount method. But
now we can obtain that estimate simply by noting that the loop is executed n times.

public static int aboveMeanCount (double[ ] a, double mean)
{
int n = a.length,
count = 0;

for (int 1 = 0; i < n; i++)
if (a [i] > mean)
count++;
return count;
} // method aboveMeanCount

For another example of a method whose worstTime(n) is O(n), here is another method
from the Arrays class of the package java.util. This method performs a sequential
search of two arrays for equality; that is, the search starts at index O of each array, and
compares the elements at each index until either two unequal elements are found or the
end of the arrays is reached.

/**

* Returns true if the two specified arrays of longs are

* equal to one another. Two arrays are considered equal if both

* arrays contain the same number of elements, and all corresponding pairs
* of elements in the two arrays are equal. In other words, two arrays

* are equal if they contain the same elements in the same order. Also,

* two array references are considered equal if both are null.

* @param a one array to be tested for equality.

* @param a2 the other array to be tested for equality.
* @return true if the two arrays are equal.

*/

public static boolean equals (long[ ] a, long[ ] a2)

{
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if (a==a2)
return true;

if (a==null || a2==null)
return false;

int length = a.length;
if (a2.length != length)
return false;

for (int i=0; i<length; i++)
if (al[i] !'= a2[il)
return false;

return true;
} // method equals

Skeleton 4. worstTime(n) is O(n log n):

int m;

for (int i = 0; i1 < n; i++)
{

m = n;

while (m > 1)

{

} // while
} // for

The for loop is executed n times. For each iteration of the for loop, the while loop
is executed floor(log, n) times—see Example 2 above—which is < log, n. Therefore
worstTime(n) is O(n log n). We needed to include the variable m because if the inner loop
started with while (n > 1), the outer loop would have terminated after just one iteration.

In Chapter 11, we will encounter several sorting algorithms whose worstTime(n) is
O(n log n), where n is the number of items to be sorted.

Skeleton 5. worstTime(n) is O(n2):

a. for (int i1 = 0; 1 < n; 1i++)
for (int j = 0; j < n; Jj++)
{
S
} // for j

The number of times that s is executed is n2. That is all we need to know to conclude
that worstTime(n) is O(n?). In Example 3.3, we painstakingly counted the exact number
of statements executed and came up with the same result.
b. for (int i = 0; i < n; i++)
for (int k = i; k < n; k++)
{

} // for k
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The number of times that s is executed is
nt—D+n -2+ +3+2+1=) k
k=1
As shown in Example A2.1 of Appendix 2, the above sum is equal to

nn+1)/2,

which is O(n?). That is, worstTime(n) is O(n2).
The selectionSort method, developed in Chapter 11, uses the above skeleton. Here,
n refers to the size of the array to be sorted.

/*x*

* Sorts a specified array of int values into ascending order.

* The worstTime(n) is O(n * n).

*
* @param x - the array to be sorted.
*

*/
public static void selectionSort (int [ ] x)
{
// Make x [0 ... i] sorted and <= x [1 + 1] ...x [x.length -1]:
for (int i = 0; i < x.length -1; i++)
{
int pos = i;
for (imt j = i + 1; j < x.length; j++)
if (x [j] < x [pos])

pos = J;
int temp = x [i];
x [1] = x [pos];
x [pos] = temp;
} // for i

} // method selectionSort

There are n — 1 iterations of the outer loop; when the smallest values are at indexes x

[0], x [1], ... x [n — 2], the largest value will automatically be at index x [n — 1]. So
the total number of inner-loop iterations is

n—1
n=—D+n—2+...+1=) i=nn—-1)2
i=1
We conclude that worstTime(n) is O(12).

. for (int i = 0; i < n; 1i++)

{

S
Yy // for i
for (int i = 0; 1 < n; 1i++)
for (int j = 0; J < n; J++)

{
S
} // for jJ
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For the first segment, worstTime(n) is O(n), and for the second segment, worstTime(n)
is O(n?), so for both segments together, worstTime(n) is O(n + n?), which is equal to
O(n?). In general, for the sequence

A
B

if worstTime(n) is O(f) for A and worstTime(n) is O(g) for B, then worstTime(n) is
O(f + g) for the sequence A, B.

3.1.3 Big-Omega, Big-Theta and Plain English

In addition to Big-O notation, there are two other notations that you should know about: Big-Omega and
Big-Theta. Whereas Big-O provides a crude upper bound for a function, Big-Omega supplies a crude lower
bound. Here is the definition:

Let g be a function that has non-negative integer arguments and returns a non-negative value for all
arguments. We define (g) to be the set of functions f such that for some positive constant C and
some non-negative constant K,

f(n) > Cg(n) forall n=>K.

If f is in Q2(g) we say that f is “Big-Omega of g”. Notice that the definition of Big-Omega differs from
the definition of Big-O only in that the last line has f(n) > Cg(n) instead of f(n) < Cg(n), as we had for
Big-O.

All of the Big-O examples from Section 3.1.1 are also Big-Omega examples. Specifically, in
Example 3.1, the function f defined by

fn)y=2n>+4n+2, for n=0,1,2,...

is Q(nz): forC =2and K =0, f(n) > Cn? for all n > K. Also, for all of the code skeletons and methods
in Section 3.1.2, we can replace O with Q as a bound on worstTime(n).

Big-Omega notation is used less frequently than Big-O notation because we are usually more inter-
ested in providing an upper bound than a lower bound for worstTime(rn) or averageTime(n). That is, “can’t
be any worse than” is often more relevant than “can’t be any better than.” Occasionally, knowledge of a the-
oretical lower bound can guide those trying to come up with an optimal algorithm. And in Chapter 11, we
establish the important result that for any comparison-based sort method, averageTime(n)—and therefore,
worstTime(n)—is Q(n log n).

A somewhat artificial example shows that Big-O and Big-Omega are distinct. Let f be the function
defined by

f(m)=n, for n=0,1,2,...

Clearly, f is O(n), and therefore, f is also o(n?). But f is not Q(n?). And that same function f is clearly
Q(n), and therefore €2(1). But f is not O(1). In fact, the Big-Omega hierarchy is just the reverse of the
Big-O hierarchy in Figure 3.1. For example,

Q% c Qn log n) c Qn) c Q)
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In most cases the same function will serve as both a lower bound and an upper bound, and this leads us
to the definition of Big-Theta:

Let g be a function that has non-negative integer arguments and returns a non-negative value for all
arguments. We define ©(g) to be the set of functions f such that for some positive constants C1 and
C», and some non-negative constant K,

Ci9gn) <f(n)<Cog(n) foral n=>K.

The idea is that if f is ®(g), then eventually (that is, for all n > K),f(n) is bounded below by some
constant times g(n) and also bounded above by some constant times g (n). In other words, to say that a
function f is ®(g) is exactly the same as saying that f is both O(g) and 2(g). When we establish that a
function f is ®(g), we have “nailed down” the function f in the sense that f is, roughly, bounded above
by g and also bounded below by g.

As an example of Big-Theta, consider the function f defined by

f(n)=2n*>4+4n+2, forn=0,1,2,...

We showed in Example 3.3 that f is O(n?), and earlier in this section we showed that fis Q(n?). We
conclude that f is O (n?).

For ease of reading, we adopt plain-English terms instead of Big-Theta notation for several families
of functions in the Big-Theta hierarchy. For example, if f is ®(n), we say that f is “linear in n”. Table 3.1
shows some English-language replacements for Big-Theta notation.

We prefer to use plain English (such as “constant,” “linear,” and “quadratic”’) whenever possible.
But as we will see in Section 3.1.5, there will still be many occasions when all we specify is an upper
bound—namely, Big O—estimate.

3.1.4 Growth Rates

In this section, we look at the growth rate of functions. Specifically, we are interested in how rapidly a
function increases based on its Big-Theta classification. Suppose we have a method whose worstTime(n)
is linear in n. Then we can write:

worstTime(n) ~ C n, for some constant C (and for sufficiently large values of n).
What will be the effect of doubling the size of the problem, that is, of doubling n?

worstTime(2n) ~ C 2 n
=2Cn
~ 2 worstTime(n)

In other words, if we double n, we double the estimate of worst time.

Table 3.1 Some English-language equivalents to Big-Theta notation

Big-Theta English

®(c), for some constant ¢ > 0 constant

O(log n) logarithmic in n

On) linear in n

O(n log n) linear-logarithmic in n

On?) quadratic in n
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Similarly, if a method has worstTime(n) that is quadratic in n, we can write:

worstTime(n) ~ C n?, for some constant C (and for sufficiently large values of n).
Then
worstTime(2n) ~ C (2n)?
=C 4 n?
=4 C n?
~ 4 worstTime(n)

In other words, if we double n, we quadruple the estimate of worst time. Other examples of this kind of
relationship are explored in Concept Exercise 3.7, Concept Exercise 11.5 and in later labs.
Figure 3.3 shows the relative growth rates of worstTime(n) for several families of functions.

worstTime(rn)

quadratic in n
linear-logarithmic in n
linear in n

logarithmic in n

constant

FIGURE 3.3 The graphs of worstTime(n) for several families of functions

Figure 3.4 indicates why Big-Theta differences eventually dominate constant factors in estimating
the behavior of a function. For example, if n is sufficiently large, #;(n) = n?/100 is much greater than
tp(n) = 100 n log, n. But the phrase “if n is sufficiently large” should be viewed as a warning. Note that
t is smaller than f, for arguments less than 100,000. So whether Big-Theta (or Big-O or Big-Omega) is
relevant may depend on how large the size of your problem might get.

Figure 3.4 has a concrete example of the differences between several families in the Big-Theta
hierarchy. For a representative member of the family—expressed as a function of n—the time to execute
that many statements is estimated when n equals one billion.

Some of the differences shown in Figure 3.4 are worth exploring. For example, there is a huge
difference between the values of log, n and n. In Chapter 10, we will study a data structure—the binary
search tree—for which averageTime(n) is logarithmic in n for inserting, removing, and searching, but
worstTime(n) is linear in n for those methods.
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Function of n Time Estimate
log, n .0024 seconds
n 17 minutes
nlog, n 7 hours

n? 300 years

FIGURE 3.4 Estimated time to execute a given number of statements for various functions of n when n =
1,000,000,000 and 1,000,000 statements are executed per second. For example, to execute n log, n statements
takes approximately 7 hours

Another notable comparison in Figure 3.4 is between n log, n and n?. In Chapter 11, on sort
methods, we will see tangible evidence of this difference. Roughly speaking, there are two categories
of sort methods: fast sorts, whose averageTime(n) is linear-logarithmic in n, and simple sorts, whose
averageTime(n) is quadratic in n.

All of the methods we have seen so far are polynomial-time methods. A polynomial-time method
is one for which worstTime(n) is O(n') for some positive integer i. For example, a method whose
worstTime(n) is (O n?) is a polynomial-time method. Similarly, a method whose worstTime(n) is (O log n)
is polynomial-time because (Olog n) C O (n).

When we try to develop a method to solve a given problem, we prefer polynomial-time methods
whenever possible. For some methods, their run time is so long it is infeasible to run the methods for large
values of 7. Such methods are in the category of exponential-time methods. An exponential-time method is
one whose worstTime(n) is 2 (x") for some real number x > 0. Then we say worstTime(n) is exponential
in n. For example, a method whose worstTime(n) is €2(2") is an exponential-time method. Chapter 5 has
an example of an exponential-time method, and Labs 7 and 9 have two more exponential-time methods.
As you might expect, a polynomial-time method cannot also be exponential-time (Concept Exercise 3.10).

The existence of exponential-time methods gives rise to an interesting question: For a given
exponential-time method, might there be a polynomial-time method to solve the same problem? In some
cases, the answer is no. An intractable problem is one for which any method to solve the problem is
an exponential-time method. For example, a problem that requires 2" values to be printed is intractable
because any method to solve that problem must execute at least €2(2") statements. The problem in
Chapter 5 for which an exponential-time method is supplied is an intractable problem. The problem in
Lab 9 is also intractable, but the problem in Lab 7 has a polynomial-time solution.

Lab 23 investigates the Traveling Salesperson Problem, for which the only known methods to solve
the problem are exponential-time methods. The most famous open question in computer science is whether
the Traveling Salesperson Problem is intractable. There may be a polynomial-time method to solve that
problem, but no one has found one, and most experts believe that no such method is possible.

If we are working on a single method only, it may be feasible to optimize that method’s
averageTime(n) and worstTime(n), with the intent of optimizing execution time. But for the management
of an entire project, it is usually necessary to strike a balance. The next section explores the relevance of
other factors, such as memory utilization and project deadlines.

3.1.5 Trade-Offs

In the previous section we saw how to estimate a method’s execution-time requirements. The same Big-O
(or Big-Omega or Big-Theta) notation can be used to estimate the memory requirements of a method.
Ideally, we will be able to develop methods that are both fast enough and small enough. But in the real
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world, we seldom attain the ideal. More likely, we will encounter one or more of the following obstacles
during programming:

1. The program’s estimated execution time may be longer than acceptable according to the performance
requirements. Performance requirements, when given, state the time and space upper-bounds for all
or part of a program.

2. The program’s estimated memory requirements may be larger than acceptable according to the per-
formance requirements. This situation frequently arises for hand-held devices.

3. The program may require understanding a technique about which the programmer is only vaguely
familiar. This may create an unacceptable delay of the entire project.

Often, a trade-off must be made: a program that reduces one of the three obstacles may intensify the other
two. For example, if you had to develop a project by tomorrow, you would probably ignore time and
space constraints and focus on understanding the problem well enough to create a project. The point is
that real-life programming involves hard decisions. It is not nearly enough that you can develop programs
that run. Adapting to constraints such as those mentioned above will make you a better programmer by
increasing your flexibility.

We can incorporate efficiency concerns into the correctness of a method by including performance
requirements in the method’s specification (but see Programming Exercise 3.5). For example, part of the
specification for the Quick Sort method in Chapter 11 is:

The worstTime (n) is O(n2).

Then for a definition of that method to be correct, worstTime(n) would have to be O(n?). Recall that
the Big-O estimates provide upper bounds only. But the class developer is free to improve on the upper
bounds for average time or worst time. For example, there is a way to define that sort method so that
worstTime(n) is linear-logarithmic in n.

We want to allow developers of methods the flexibility to improve the efficiency of those methods
without violating the contract between users and developers. So any performance requirements in method
specifications will be given in terms of upper-bounds (that is, Big-O) only. Here are three conventions
regarding the Big-O estimates in method specifications:

0. If a class stores a collection of elements, then unless otherwise noted, the variable n refers to the
number of elements in the collection.

1. For many methods, worstTime(n) is O(1). If no estimate of worstTime(#n) is given, you may assume
that worstTime(n) is O(1).

2. Often, averageTime(n) has the same Big-O estimate as worstTime(n), and then we will specify the
worstTime(n) estimate only. When they are different, we will specify both.

When we analyze the time (or space) efficiency of a specific method definition, we will determine lower
as well as upper bounds, so we will use Big-Theta notation—or the English-language equivalent: constant,
linear-in-n, and so on.

Up until now, we have separated concerns about correctness from concerns about efficiency. Accord-
ing to the Principle of Data Abstraction, the correctness of code that uses a class should be independent
of that class’s implementation details. But the efficiency of that code may well depend on those details. In
other words, the developer of a class is free—for the sake of efficiency—to choose any combination of
fields and method definitions, provided the correctness of the class’s methods do not rely on those choices.
For example, suppose a class developer can create three different versions of a class:
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A: correct, inefficient, does not allow users to access fields;
B: correct, somewhat efficient, does not allow users to access fields;
C: correct, highly efficient, allows users to access fields.

In most cases, the appropriate choice is B. Choosing C would violate the Principle of Data Abstraction
because the correctness of a program that uses C could depend on C’s fields.

Big-O analysis provides a cross-platform estimate of the efficiency of a method. The following
section explores an execution-time tool for measuring efficiency.

3.2 Run-Time Analysis

We have seen that Big-O notation allows us to estimate the efficiency of methods independently of any
particular computing environment. For practical reasons, we may also want to estimate efficiency within
some fixed environment. Why settle for estimates? For one thing,

In multi-programming environments such as Windows, it is very difficult to determine how long a single
task takes.

Why? Because there is so much going on behind the scenes, such as the maintaining the desktop clock,
executing a wait-loop until a mouse click occurs, and updating information from your mailer and browser.
At any given time, there might be dozens of such processes under control of the Windows Manager. And
each process will get a time slice of several milliseconds. The bottom line is that the elapsed time for a
task is seldom an accurate measure of how long the task took.

Another problem with seeking an exact measure of efficiency is that it might take a very long
time—O(forever). For example, suppose we are comparing two sorting methods, and we want to determine
the average time each one takes to sort some collection of elements. The time may depend heavily on
the particular arrangement of the elements chosen. Because the number of different arrangements of n
distinct elements is n!, it is not feasible to generate every possible arrangement, run the method for each
arrangement, and calculate the average time.

Instead, we will generate a sample ordering that is in “no particular order.” The statistical concept
corresponding to “no particular order” is randomness. We will use the time to sort a random sample as an
estimate of the average sorting time. We start with a discussion of timing because, as we will see later,
one aspect of randomness depends on the result of a timing method.

3.2.1 Timing

To assist in the timing of methods, Java supplies nanoTime (), a static method in the System class of
java.lang. This method returns a long whose value is the number of nanoseconds—that is, billionths
of a second—elapsed since some fixed but arbitrary time. To estimate how much execution time a task
consumes, we calculate the time immediately before and immediately after the code for the task. The
difference in the two times represents the elapsed time. As noted previously, elapsed time is a very, very
crude estimate of the time the task consumed. The following code serves as a skeleton for estimating the
time expended by a method:

final String ANSWER_1 = "The elapsed time was ";

final double NANO_FACTOR = 1000000000.0; // nanoseconds per second
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final String ANSWER_2 = " seconds.";

long startTime,
finishTime,

elapsedTime;
startTime = System.nanoTime () ;

// Perform the task:

// Calculate the elapsed time:

finishTime = System. nanoTime () ;

elapsedTime = finishTime - startTime;

System.out.println (ANSWER_1 + (elapsedTime / NANO_FACTOR) + ANSWER_2);

This skeleton determines the elapsed time for the task in seconds, with fractional digits. For example,
if startTime has the value 885161724000 and finishTime has the value 889961724000, then
elapsedTime has the value 4800000000, that is, four billion and eight hundred million. Then
elapsedTime/NANO_FACTOR has the value 4.8 (seconds).

We will use the time to process a random sample of values as an estimate of the average processing
time. Section 3.2.2 contains an introduction to—or review of—the Random class, part of the package
java.util.

3.2.2 Overview of the Random Class

If each number in a sequence of numbers has the same chance of being selected, the sequence is said to
be uniformly distributed. A number so selected from a uniformly-distributed sequence is called a random
number. And a method that, when repeatedly called, returns a sequence of random numbers is called a
random-number generator.

The Random class in java.util supplies several random-number generators. We will look at three
of those methods. Strictly speaking, the sequence of numbers returned by repeated calls to any one of
those methods is a pseudo-random-number sequence because the numbers calculated are not random at
all—they are determined by the code in the method. The numbers appear to be random if we do not see
how they are calculated. If you look at the definition of this method in the Random class, the mystery and
appearance of randomness will disappear.

Here is the method specification for one of the random-number generators:

/**

* Returns a pseudo-random int in the range from 0 (inclusive) to a specified int

*  (exclusive).

*

* @param n - the specified int, one more than the largest possible value
* returned.

* @return a random int in the range from 0 to n -1, inclusive.

* @throws IllegalArgumentException - if n is less than or equal to zero.
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*
*/
public int nextInt (int n)

For example, a call to nextInt (100) will return a random integer in the range from 0 to 99, inclusive.

For another example, suppose we want to simulate the roll of a die. The value from one roll of a
die will be an integer in the range 1... 6, inclusive. The call to nextInt (6) returns an int value in
the range from O to 5, inclusive, so we need to add 1 to that returned value. Here is the code to print out
that pseudo-random die roll:

Random die = new Random() ;
int oneRoll = die.nextInt (6) + 1;

System.out.println (oneRoll);

The value calculated by the nextInt (int n) method depends on the seed it is given. The variable
seed is a private long field in the Random class. The initial value of seed depends on the constructor
called. If, as above, the Random object is created with the default constructor, then seed is initialized to
System.nanoTime () . The other form of the constructor has a long parameter, and seed is initialized
to the argument corresponding to that parameter. Each time the method nextInt (int n) is called,
the current value of the seed is used to determine the next value of the seed, which determines the int
returned by the method.
For example, suppose that two programs have

Random die = new Random (800) ;

for (int i = 0; 1 < 5; i++)
System.out.println (die.nextInt (6) + 1);

The output from both programs would be exactly the same:

N o W U W

This repeatability can be helpful when we want to compare the behavior of programs, as we will in
Chapters 5—15. In general, repeatability is an essential feature of the scientific method.

If we do not want repeatability, we use the default constructor. Recall that the default constructor
initializes the seed to System.nanoTime ().

Here are two other random-number generators in the Random class:

/**

* Returns a pseudo-random int in the range from Integer.MIN_VALUE to
* Integer .MAX_ VALUE.

* @return a pseudo-random int in the range from Integer.MIN_VALUE to
* Integer .MAX_ VALUE.
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*
*/
public int nextInt ()

/‘k‘k
* Returns a pseudo-random double in the range from 0.0 (inclusive) to

* 1.0 (exclusive).
*

*/
public double nextDouble ()

The following program combines randomness and timing with repeated calls to the selectionSort
method of Section 3.1.2. The higher levels of the program—input, output, and exception handling—are
handled in the run( ) method. The randomTimer method generates an array of random integers, calls
the selectionSort method, and calculates the elapsed time. The randomTimer method is not unit-tested
because timing results will vary widely from computer to computer. The unit tests for selectionSort
and other sort methods are in the Chapter 11 directory of the website’s source code section.

import java.util.?*;

public class TimingRandom
{
public static void main (String[ ] args)
{
new TimingRandom() .run() ;
} // method main

public void run/()
{
final int SENTINEL = -1;

final String INPUT_PROMPT = "\nPlease enter the number of"+
" integers to be sorted (or " + SENTINEL + " to quit): ";

final String ANSWER_1 = "The elapsed time was ";
final double NANO_FACTOR = 1000000000.0; // nanoseconds per second

final String ANSWER_2 = " seconds.";
Scanner sc = new Scanner (System.in);
long elapsedTime;

while (true)
{
try
{
System.out.print (INPUT_PROMPT) ;
int n = sc.nextInt();
if (n == SENTINEL)
break;
elapsedTime = randomTimer (n);



Y/

/**

*

*

*

3.2 Run-Time Analysis

System.out.println (ANSWER_1 +
(elapsedTime / NANO_FACTOR) + ANSWER_2) ;
Y // try
catch (Exception e)
{
System.out.println (e);
sc.nextLine() ;
} // catch
} // while
/ method run

Determines the elapsed time to sort a randomly generated array of ints.

@param n - the size of the array to be generated and sorted.

@return the elapsed time to sort the randomly generated array.

@throws NegativeArraySizeException — if n is less than 0.

*/
public long randomTimer (int n)
{

Random r = new Random() ;

Y/

/**
*
*
*
*

*

*/

long startTime,

finishTime,
elapsedTime;
int[ ] X = new int [n];
for (int i = 0; i < n; 1i++)
x [1] = r.nextInt();

startTime = System.nanoTime () ;

// Sort x into ascending order:
selectionSort (x);

// Calculate the elapsed time:
finishTime = System.nanoTime () ;
elapsedTime = finishTime - startTime;
return elapsedTime;

/ method randomTimer

Sorts a specified array of int values into ascending order.
The worstTime(n) is O(n * n).

@param x - the array to be sorted.

public static void selectionSort (int [ ] x)

{

125
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// Make x [0 ... i]
for (int i = 0;

{

sorted and <= x [1 + 1] . x [x.length -1]:

i < x.length - 1; i++)

int pos = i;
for (int j = i + 1; j < x.length; j++)
if (x [Jj] < x [pos])
pos = J;
int temp = x [i];
x [1] = x [pos];
x [pos] = temp;
} // for i

} // method selectionSort

} // class TimingRandom

The number of iterations of the while loop is independent of 7, so for the run () method, worstTime(n)
is determined by the estimate of worstTime(n) for randomTimer. The randomTimer method has a loop
to generate the array, and worstTime(n) for this generation is O(n). Then randomTimer calls selection
sort. In Section 3.1.2, we showed that worstTime(n) for selectionSort is O(n?). Since the number of
iterations is the same for any arrangement of the n elements, averageTime(n) is O(n?). In fact, n> provides
a crude lower bound as well as a crude upper bound, so averageTime(n) is quadratic in n. Then we expect
the average run time—over all possible arrangements of n doubles—to be quadratic in n. As suggested in
Section 3.2, we use the elapsed time to sort n pseudo-random doubles as an approximation of the average
run time for all arrangements of n doubles.

The elapsed time gives further credence to that estimate: for n = 50000, the elapsed time is 19.985
seconds, and for n = 100000, the elapsed time is 80.766 seconds. The actual times are irrelevant since
they depend on the computer used, but the relative times are significant: when n doubles, the elapsed
time quadruples (approximately). According to Section 3.1.4 on growth rates, that ratio is symptomatic of
quadratic time.

Randomness and timing are also combined in the experiment in Lab 4: You are given the unreadable
(but runnable) bytecode versions of the classes instead of source code.

You are now prepared to do Lab 4:

Randomness and Timing of Four Mystery Classes

SUMMARY

Big-O notation allows us to quickly estimate an upper
bound on the time/space efficiency of methods. Because
Big-O estimates allow function arguments to be arbitrarily
large integers, we treat methods as algorithms by ignoring
the space requirements imposed by Java and a particular
computing environment. In addition to Big-O notation,
we also looked at Big-Q2 notation (for lower bounds) and

Big-© notation (when the upper-bound and lower-bound
are roughly the same).

Run-time analysis allows methods to be tested on
a specific computer. But the estimates produced are often
very crude, especially in a multiprogramming environ-
ment. Run-time tools include the nanoTime () method
and several methods from the Random class.
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ACROSS

7. The private long field in the Random class whose
initial value depends on the constructor called.

9. A finite sequence of explicit instructions to solve a
problem in a finite amount of time.

10. A function of g that is both Big O of g and Big
Omega of gis said to be of g.

DOWN

The rule that states “In general, if during each
loop iteration, nis divided by some constant
greater than 1, worstTime(n) will be O(log n)
for that loop.”

A problem for which for which any method to
solve the problem is an exponential-time method
is said to be .

A method whose worstTime(n) is bounded below
by x to the n for some real number x > 1.0 is said
tobean__ time method.

A function of n, the problem size, that returns the
maximum (over all possible parameter/input values)
number of statements executed in a trace of the
method.

A hallmark of the Scientific Method, and the reason
we do not always want a random seed for the random
number generator in the Random class.

A function of nthat is Big Theta of n-squared is said to
be_  inn

A static method in the System class that returns a long
whose value is the number of billionths of a second
elapsed since some fixed but arbitrary time.
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CONCEPT EXERCISES

3.1

3.2

3.3

34

Create a method, sample (int n), for which worstTime(n) is O(n) but worstTime(n) is not linear in n.
Hint: O(n) indicates that n may be (crudely) viewed as an upper bound, but linear-in-n indicates that n may
be (crudely) viewed as both an upper bound and a lower bound.

Study the following algorithm:

i=0;
while (!a [i].equals (element))
1++;
Assume that a is an array of n elements and that there is at least one index kin 0 ... n - 1 such thata

[k] .equals (element).
Use Big-O notation to estimate worstTime(n). Use Big-Q2 and Big-® notation to estimate worstTime(n). In
plain English, estimate worstTime(n).

Study the following method:

/**

* Sorts a specified array of int values into ascending order.
* The worstTime(n) is O(n * n).

*

* @param x - the array to be sorted.
*
*/
public static void selectionSort (int [ ] x)
{
// Make x [0 ... i] sorted and <= x [1 + 1] ... x [x.length -1]:
for (int i1 = 0; i < x.length - 1; i++)
{
int pos = 1i;

for (int j =1 + 1; j < x.length; j++)
if (x [j] < x [posl)

pos = J;
int temp = x [i];
x [1] = x [pos];
x [pos] = temp;
} // for i

} // method selectionSort

a. For the inner for statement, when i = 0, j takes on values from 1 ton - 1, and so there are n - 1
iterations of the inner for statement when i = 0. How many iterations are there when i = 1? When
i=2?

b. Determine, as a function of n, the total number of iterations of the inner for statement as i takes on
values from O ton - 2.

¢. Use Big-O notation to estimate worstTime(n). In plain English, estimate worstTime(n)—the choices are
constant, logarithmic in », linear in n, linear-logarithmic in n, quadratic in n and exponential in 7.

For each of the following functions f, where n =0, 1, 2, 3,..., estimate f using Big-O notation and plain
English:
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3.6

3.7

3.8
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a. f(n) = (2 + n) * (3 + log(n))

b. f(n) =11 * log(n) + n/2 — 3452
c.fm)=1+2+3+--+n
d.fm)=n*@B+n)—7%n

e fm)=T%n+ 0 —1)*log(n —4)

f. f(n) =log n®)+ n

g.f(n)z(n+1)* log(n+n1)—(n+1)+1

h. f(n) =n+ n/2 + n/4d + n/8 + n/16 + ---

In the Order Hierarchy in Figure 3.1, we have..., O(log n), On'/?),.... Show that, for integers n > 16,
log, n < n'/2. Hint from calculus: Show that for all real numbers x > 16, the slope of the function log, x
is less than the slope of the function x'/2. Since log,(16) == 16'/2, we conclude that for all real numbers

x> 16, log, x < x!/2,

For each of the following code segments, estimate worstTime(n) using Big €2 notation or plain English. In
each segment, S represents a sequence of statements in which there are no n-dependent loops.

a. for (int 1 = 0; i * 1 < n; i++)
S
b. for (int i = 0; Math.sqgrt (i) < n; i++)
S
C. int k = 1;
for (int 1 = 0; 1 < n; 1i++)
k *= 2;
for (int i = 0; i < k; i++)

S
Hint: In each case, 2 is part of the answer.

a. Suppose we have a method whose worstTime(n) is linear in n. Estimate the effect of tripling » on run
time—the actual time to execute the method in a particular computing environment. That is, estimate
runTime(3n) in terms of runTime(n).

b. Suppose we have a method whose worstTime(n) is quadratic in n. Estimate the effect of tripling n on
run time—the actual time to execute the method in a particular computing environment. That is, estimate
runTime(3n) in terms of runTime(n).

¢. Suppose we have a method whose worstTime(n) is constant. Estimate the effect of tripling n on run
time—the actual time to execute the method in a particular computing environment. That is, estimate
runTime(3n) in terms of runTime(n).

This exercise proves that the Big-O families do not constitute a strict hierarchy. Consider the function f,
defined for all non-negative integers as follows:

n, if n is even;

fln) =
0, if n is odd

Define a function g on all non-negative integers such that f is not O(g) and g is not O(f).
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3.9
3.10
3.11

3.12

3.13

3.14

Show that O(n) = O(n + 7). Hint: use the definition of Big-O.

Show that if f(n) is polynomial in n, f(n) cannot be exponential in 7.

Suppose, for some method, worstTime(n) = n". Show that the method is an exponential-time method (that
is, worstTime(n) is Q(x") for some real number x > 1.0). But show that worstTime(n) is not ® (x")—that is,
Big Theta of x"—for any real number x > 1.0.

This exercise illustrates some anomalies of ®(1).

a.

b.

Define f(n) to be 0 for all n > 0. Show that f is not @ (1), but f is ®(0).

Define f(n) to be (n+2)/(n+ 1) for all n > 0. Show that f is ®(1)—and so can be said to be
“constant”—even though f is not a constant function.

. Assume that worstTime(n) = C (statements) for some constant C and for all values of n > 0. Determine

worstTime(2n) in terms of worstTime(n).

. Assume that worstTime(n) = log, n (statements) for all values of n > 0. Determine worstTime(2n) in

terms of worstTime(n).

. Assume that worstTime(n) = n (statements) for all values of n > 0. Determine worstTime(2n) in terms of

worstTime(n).

. Assume that worstTime(n) = nlog, n (statements) for all values of n > 0. Determine worstTime(2n) in

terms of worstTime(n).

. Assume that worstTime(n) = n? (statements) for all values of n > 0. Determine worstTime(2n) in terms

of worstTime(n).

. Assume that worstTime(n) = 2" (statements) for all values of n > 0. Determine worstTime(n + 1) in terms

of worstTime(n). Determine worstTime(2n) in terms of worstTime(n).

If worstTime(n) is exponential in n for some method sample, which of the following must be true about
that method?

a.

b.

worstTime(n) is O(2").

worstTime(n) is Q(2").

. worstTime(n) is ®(2").
. worstTime(n) is O(n").

. none of the above.
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In mathematics, the absolute value function returns a non-negative integer for any integer argument. Develop
a run method to show that the Java method Math.abs (int a) does not always return a non-negative
integer.

Hint: See Programming Exercise 0.1.
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Assume that r is (a reference to) an object in the Random class. Show that the value of the following
expression is not necessarily in the range 0. ..99:

Math.abs (r.nextInt()) % 100

Hint: See Programming Exercise 3.1.

Develop a run method that initializes a Random object with the default constructor and then determines the
elapsed time for the nextInt () method to generate 123456789.

Suppose a method specification includes a Big-O estimate for worstTime(n). Explain why it would be impos-
sible to create a unit test to support the Big-O estimate.

In the binarySearch method in Section 3.1.2, the average of 1ow and high was calculated by the following
expression

(low + high) >> 1
Compare that expression to
low + ((high - low) >> 1)

The two expressions are mathematically equivalent, and the first expression is slightly more efficient, but will
return an incorrect result for some values of 1ow and high. Find values of 1ow and high for which the
first expression returns an incorrect value for the average of 1ow and high. Hint: The largest possible int
value is Integer .MAX_VALUE, approximately 2 billion.

Programming Project 3.1

Let’s Make a Deal!

This project is based on the following modification—proposed by Marilyn Vos Savant—to the game show “Let’s
Make a Deal.” A contestant is given a choice of three doors. Behind one door there is an expensive car; behind
each of the other doors there is a goat.

one of them that does not have the car behind it. For example, if the initial guess is door 2 and the car is behind
door 3, then the announcer will show that there is a goat behind door 1.

For example, if the initial guess is door 2 and the car is behind door 2, the announcer will randomly decide whether

to show a goat behind door 1 or a goat behind door 3. After the initial guess has been made and the announcer
has eliminated one of the other doors, the contestant must then make the final choice.

1. Should the contestant stay with the initial guess, or switch?

After the contestant makes an initial guess, the announcer peeks behind the other two doors and eliminates

If the initial guess is correct, the announcer will randomly decide which of the other two doors to eliminate.

Develop and test a program to determine the answer to the following questions:

2. How much more likely is it that an always-switching contestant will win instead of a never-switching contestant?

For the sake of repeatability, the following system tests used a seed of 100 for the random-number generator.

(continued on next page)
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(continued from previous page)

System Test 1:

Please enter the number of times the game will be played: 10000

Please enter O for a never-switching contestant or 1 for always-switching: 0

The number of wins was 3330

System Test 2:

Please enter the number of times the game will be played: 10000

Please enter 0 for a never-switching contestant or 1 for always-switching: 1

The number of wins was 6628

Based on the output, what are your answers to the two questions given above?

Suppose, instead of working with three doors, the number of doors is input, along with the number of times
the game will be played. Hypothesize how likely it is that the always-switching contestant will win. Modify and
then run your project to confirm or reject your hypothesis. (Keep hypothesizing, and modifying and running your
project until your hypothesis is confirmed.)

Hint for Hypothesis: Suppose the number of doors is 7, where n can be any positive integer greater than
2. For an always-switching contestant to win, the initial guess must be incorrect, and then the final guess must be
correct. What is the probability, with n doors, that the initial guess will be incorrect? Given that the initial guess is
incorrect, how many doors will the always-switching contestant have to choose from for the final guess (remember
that the announcer will eliminate one of those doors)? The probability that the always-switching contestant will
win is the probability that the initial guess is incorrect times the probability that the final guess is then correct.




The Java Collections CHAPTER 4
Framework

The Java Collections Framework is an assortment of related interfaces and classes in the package
java.util. For most of the classes in the Java Collections Framework, each instance is a collection,
that is, each instance is composed of elements. The collection classes can have type parameters, a new
feature of Java, so that a user can specify the type of the elements when declaring an instance of a
collection class. In this chapter, we will take a brief tour of the Java Collection Framework’s collection
classes, along with the new features that enhance the utilization of those classes.

CHAPTER OBJECTIVES

Understand what a collection is, and how contiguous collections differ from linked collections.
Be able to create and manipulate parameterized collections.

Identify several of the methods in the Collection interface.

Describe a design pattern in general, and the iterator design pattern in particular.

Compare the ArrayList and LinkedList implementations of the List interface.

AN

Be able to utilize boxing/unboxing and the enhanced for statement.

4.1 Collections

A collection is an object that is composed of elements. The elements can be either values in a primitive
type (such as int) or references to objects. For a familiar example, an array is a collection of elements,
of the same type, that are stored contiguously in memory. Contiguous means “adjacent,” so the individual
elements are stored next to each other'. For example, we can create an array of five String elements
(strictly speaking, each element is a reference to a String object) as follows:

String [ ] names = new String [5];

Here the new operator allocates space for an array of five String references, (each initialized to null by
the Java Virtual Machine), and returns a reference to the beginning of the space allocated. This reference
is stored in names.

‘Actually, all that matters is that, to a user of an array, the elements are stored as if they were contiguous, so an element can be accessed
directly from its index.

133
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There is an important consequence of the fact that arrays are stored contiguously: an individual
element in an array can be accessed without first accessing any of the other individual elements. For
example, names [2] can be accessed immediately—we need not access names [0] and names [1]
first in order to reach names [2]. This random access property of arrays will come in handy in several
subsequent chapters. In each case we will need a storage structure in which an element can be accessed
quickly given its relative position, so an array will be appropriate in each case.

There are several drawbacks to arrays. First, the size of an array is fixed: Space for the entire array (of
primitive values or references) must be allocated before any elements can be stored in the array. If that size
is too small, a larger array must be allocated and the contents of the smaller array copied to the larger array.

Another problem with arrays is that the programmer must provide all the code for operating on an
array. For example, inserting and deleting in an array may require that many elements be moved. Suppose
an array’s indexes range from 0 to 999, inclusive, and there are elements stored in order in the locations at
indexes O to 755. To insert an element into the location with index 300, we must first move the elements at
indexes 300 to 755 into the locations at indexes 301 to 756. Figure 4.1 shows the effect of such an insertion.

(before inserting Kalena) (after inserting Kalena)
0| Alice 0| Alice
1 | Andrew 1 | Andrew
299 | Kaitlin 299 | Kaitlin
300 | Karen 300 | Kalena
301 | Karl 301 | Karen
302 | Karl
755 | Zelda
756 | Zooey 756 | Zelda
757 | Zooey
999 999

FIGURE 4.1 Insertion in an array: to insert “Kalena” at index 300 in the array on the left, the elements at
indexes 300, 301,..., 756 must first be moved, respectively, to indexes 301, 302,..., 757

In your programming career up to now, you have had to put up with the above disadvantages of
arrays. Section 4.1.1 describes an alternative that is almost always superior to arrays: instances of collection
classes.

4.1.1 Collection Classes

Most of what we will do from here on involves collection classes. A collection class is a class in which
each instance is a collection of elements, and each element is (a reference to) an object. For example,
a String object can be an element, or a FullTimeEmployee object can be an element. Values in a
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primitive type are not objects, so we cannot create an instance of a collection class in which each element
is of type int. But for each primitive type, there is a corresponding class, called a wrapper class, whose
purpose is to enable a primitive type to be represented by (that is, wrapped inside) a class. For example,
there is an Integer class, and we can create an Integer object from an int j as follows:

new Integer (Jj)

The new operator returns a reference to an Integer object. Table 4.1 provides several important
conversions.

Table 4.1 Some Important Conversion Formulas

int i;

Integer myInt;

String s;

Object obj;

TO OBTAIN FROM EXAMPLE

Integer int myInt = i; //see Section 4.2.2

int Integer 1 = myInt; //see Section 4.2.2

String int s = Integer.toString (i) ;

String Integer s = mylInt.toString();

Object Integer obj = myInt; //by Subclass Substitution Rule
Object String obj = s; //by Subclass Substitution Rule

int String i = new Integer (s); //if s consists of an int
Integer String myInt = new Integer (s); // if s consists of an int
Integer Object myInt = (Integer)obj;//if obj references an Integer
String Object s = (String)obj;//if obj references a String

The Java Collections Framework includes a number of collection classes that have wide applicability.
All of those collection classes have some common methods. For example, each collection class has an
isEmpty method whose method specification is:

/**

* Determines if this collection has no elements.

*

* @return true - if this collection has no elements.
*

*/
public boolean isEmpty ()

Suppose myList is an instance of the collection class ArrayList, and myList has four elements. The
execution of
System.out.println (myList.isEmpty());
will produce output of
false
Of course, a method specification does not indicate how the method’s task will be accomplished. In

subsequent chapters, we will investigate some of the details for several collection classes. But we can now
introduce a simple classification of collection classes according to the way the elements are stored.
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4.1.2 Storage Structures for Collection Classes

Instances of a collection class usually consume memory in proportion to the number of elements in the
collection. So the way such a collection is stored in memory can have a substantial impact on the space
efficiency of a program. One straightforward way to store a collection instance in memory is to store, in an
array, a reference to each element in the collection. That is, an array could be a field in the collection class.

Such a class is called a contiguous-collection class . For example, the ArrayList class in Chapter 6
has an array field, and (a reference to) each element in an ArrayList instance is stored in that instance’s
array. So ArrayList is a contiguous-collection class. We will study contiguous-collection classes in
Chapters 6, 8 and 13. For many applications of contiguous-collection classes, the random-access feature
of an array is a great asset.

What about the disadvantages, cited earlier, of an array: the size of an array is fixed, and the
programmer is responsible for writing all the code that works with the array? With a contiguous-collection
class, those are problems for the developer of the class, not for users of the class. Basically, the developer
of a contiguous collection class writes the code—once—for methods that manipulate the array. Any user
of that collection class simply invokes the appropriate methods for the given application. The user may
not even be aware that there is an array field in the class, and by the Principle of Data Abstraction, would
not rely on that field anyway.

You probably have not appreciated the random access feature of arrays. That’s because you have
probably not yet seen an alternative to arrays for storing a collection of elements in memory. We now
briefly describe a structure that competes with the array for storing the elements in a collection object.

Instead of a contiguous relationship, the elements are related by links. A link is another name for a
reference. Basically, each element is housed in a special object called an enfry (sometimes called a node).
Within each entry object there will be at least one link to another entry object. In a linked-collection class,
the elements in each instance are stored in entries. Figures 4.2—4.4 show parts of three linked collections.

We will explore linked collections in Chapters 7, 10, 12, 14 and 15.

— |exhale | 4|—> |mellow | —|—> |serene | —|—>

FIGURE 4.2 Part of a linked collection—a singly-linked list—in which each entry contains an element and a
reference to the next entry in the linked collection

Sl T = e g e e

FIGURE 4.3 Part of a linked collection—a doubly-linked list —in which each entry contains an element, a
reference to the previous entry and a reference to the next entry

4.2 Some Details of the Java Collections Framework

In this section we present a little more information about the Java Collections Framework. The Java
Collections Framework consists of a thoroughly tested assortment of interfaces and classes. The classes
represent widely used data structures and algorithms. For most applications in which a collection is needed,
the framework provides the appropriate class. By utilizing the framework classes, you improve your
productivity by not “re-inventing the wheel.”

One of the impediments to understanding the framework is its sheer size; over 200 methods in the
eight classes we will study. Fortunately, there is a lot of duplication. For example, as noted in Section 4.1.1,
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Eric null
/
Allen pullinull Soumya null

a

1

Jack mullnull

FIGURE 4.4 Part of a linked collection—a binary search tree—in which each entry contains an element and
references to three other entries

each of those classes has an isEmpty method. In fact, the definitions of many of the methods are the same
in several classes. One of the unifying tools in the framework is the interface, which imposes method
headings on implementing classes. Section 4.2.1 introduces another, similar unifying tool: the abstract
class.

4.2.1 Abstract Classes

An abstract class is a class that is allowed to have abstract methods as well as defined methods. The
abstract methods must be defined in each subclass (unless the subclass is also abstract). Here is a bare-bones
example of an abstract class:

public abstract class Parent
{

/*x*

* Returns the String object "I am".
*

*  @returns "I am".
*

*/
public String getPrefix()
{
return "I am";
} // method getPrefix

/*x*

* Returns a String object.
*

* @return a String object.
*

*/
public abstract String getClassName () ;

} // class Parent
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An abstract class is denoted by the abstract modifier at the beginning of its declaration. And within
an abstract class, each abstract method’s heading must include the modifier abstract before the return
type, and a semicolon after the method heading. Because the Parent class lacks a definition for one of
its methods, we cannot instantiate the Parent class. That is, we cannot define a Parent object:

Parent p = mnew Parent (); // illegal because Parent is an abstract class
We can now declare two subclasses, Childl and child2, of Parent.

public class Childl extends Parent

{
/**
* Returns the String object "Childl".
*

* @return the String object "Childl".

*
*/
public String getClassName ()
{
return "Childl";
} // method getClassName

} // class Childl

public class Child2 extends Parent
{

/**

* Returns the String object "Child2".

*

* @return the String object "Child2".

*
*/
public String getClassName ()
{
return "Child2";
} // method getClassName

} // class Child2

The main benefit of abstract methods is that they promote flexibility (defined methods may be, but need
not be, overridden in subclasses) and consistency (abstract-class headings must be identical in subclasses).
For example, we can now do the following:

Parent p;

int code;

// Get the value for code;
if (code == 1)

p = new Childl();
else
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p = new Child2();
System.out.println (p.getPrefix() + p.getClassName()) ;

The variable p is a polymorphic reference, so the version of getClassName called depends on the
type—Childl or Child2—of the object referenced by p. The output will be “I am Child1” or “I am
Child2”, depending on the value of the variable code.

The Java Collections Framework has quite a few abstract classes: AbstractCollection,
AbstractList, AbstractSet, and others. Typically, one of these classes will declare as abstract any
method whose definition depends on fields in the subclasses, and define any method whose definition
does not depend on those fields.

For now, a practical application of abstract classes is developed in Lab 5.

You are now prepared to do Lab 5: A Class for Regular Polygons

Here are a few more details on the relationship between interfaces, abstract classes and fully defined
classes:

1. If a class implements some but not all of the methods in an interface, then the class would have to
be declared as an abstract class—and therefore cannot be instantiated.

2. An interface can extend one or more other interfaces. For example, we could have:

public interface Container extends Collection, Comparable

...

Container has abstract methods of its own, and also inherits abstract methods from the interfaces
Collection and Comparable.

3. A class can extend at most one other class; by default, the Object class is the superclass of every
class. Multiple inheritance—the ability of a class to have more than one immediate superclass—is
illegal in Java. Multiple inheritance is illegal because of the danger of ambiguity. For example, view-
ing a teaching assistant as both a student and an employee, we could have a TeachingAssistant
class that is the immediate subclass of classes Student and StaffMember. Now suppose classes
student and StaffMember each has its own getHolidays () method. If we define:

TeachingAssistant teacher = new TeachingAssistant () ;

which getHolidays () method does teacher.getHolidays () invoke? There is no way to tell,
and that is why Java outlaws multiple inheritance. C4++ allows multiple inheritance, but complex
rules and disambiguating language are needed to make it work.

4. A class can implement more than one interface. For example, we could have:

class NewClass implements Interfacel, Interface2

{...

This feature, especially when combined with feature 3, allows us to come close to achieving multiple
inheritance. We can write:

class NewClass extends 0OldClass implements Interfacel, Interface2
{
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There is no ambiguity when a method is invoked because any methods in an interface are abstract, and
any non-final superclass method can be explicitly overridden —that is, re-defined—in the subclass. For
example, suppose 01ldClass, Interfacel, and Interface2 all have a writeout () method, and we
have

NewClass myStuff = new NewClass() ;

myStuff.writeOut () ;

Which version of the writeoOut method will be invoked? Certainly not the version from Interfacel or
Interface2, because those methods must be abstract. If NewClass implements a writeOut () method,
that is the one that will be invoked. Otherwise, the version of writeOut defined in (or inherited by)
0ldclass will be invoked.

4.2.2 Parameterized Types

When collection classes were introduced in Section 4.1.1, we noted that the element type has to be a
reference type: primitive types are not allowed. Starting with J2SE (that is, Java 2 Platform, Standard
Edition) version 5.0, a class’s element type can be specified, in angle brackets, when an instance of the
class is declared. For example, suppose we want to declare and initialize an ArrayList object to hold
a collection of grade point averages in which each grade point average will be stored as a Double. You
don’t have to know the details of the ArrayList class: You will learn some of those in Chapter 6. The
declaration and initialization of the ArrayList object is as follows:

ArrayList <Double> gpalList = new ArrayList <Double> () ;

Only elements of type Double can be inserted into gpaList; an attempt to insert a String or Integer
element will be disallowed by the compiler. As a result, you can be certain that any element retrieved
from gpaList will be of type Double.

Let’s see how elements can be inserted and retrieved from gpaList. In the ArrayList class, the
add method inserts the element argument at the end of the ArrayList object. For example,

gpalList.add (new Double (2.7));

will append to the end of gpaList a (reference to a) Double object whose double value is 2.7.
For retrievals, the get method returns the element in the ArrayList object at a specified index. So
we can access the element at index O as follows:

Double gpa = gpaList.get (0);

Notice that we don’t need to cast the expression on the right-hand side to Double because the element at
index O of gpaList must be of type Double.

Now suppose we want to add that grade point average to a double variable sum, initialized to 0.0.
The method doublevalue () in the Double class returns the double value corresponding to the calling
Double object. The assignment to sum is

sum = sum + gpa.doubleValue() ;

In this example, ArraylList<Double> is a parameterized type. A parameterized type consists of a class
or interface identifier followed, in angle brackets, by a list of one or more class identifiers separated by
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commas. Typically, a parameterized type starts with a collection-class identifier, and the element type is
enclosed in angle brackets. A parameterized type is sometimes called a “generic type”, and the language
feature permitting parameterized types is called “generics”.

Parameterized collection classes improve your productivity as a programmer. You don’t have to
remember what the element type of a collection is, because that type is specified when the collection
is declared, as we did with ArrayList<Double>. If you make a mistake and try to insert an element
of type string for example, you will be notified at compile-time. Without parameterized types, the
insertion would be allowed, but the assignment of (Double)gpaList.get (0) to gpa would generate a
ClassCastException at run time. And this exception, if uncaught, could crash a critical program.

In the previous example, the conversions from double to Double and from Double to double
are annoyances. To simplify your working with parameterized collection classes, the Java compiler auto-
matically translates primitive values into wrapper objects: the technical term is boxing. For example, the
insertion into gpaList can be accomplished as follows:

gpalist.add (2.7); // instead of gpalList.add (new Double (2.7));

Unboxing translates a wrapper object into its primitive value. For example, to increment the above double
variable sum by the value of the Double object gpa, we simply write

sum = sum + gpa; // instead of sum = sum + gpa.doubleValue();

Unboxing eliminates the need for you to invoke the doublevalue () method, and that makes your code
easier to read.

The general idea behind parameterized types and boxing/unboxing is to simplify the programmer’s
work by assigning to the compiler several tasks that would otherwise have to be performed by the
programmer.

Section 4.2.3 introduces the backbone of the Java Collections Framework: the Collection interface.

4.2.3 The Collection Interface

The Java Collections Framework consists basically of a hierarchy. There are interfaces and abstract classes
at every level except the lowest, and the lowest level has implementations of interfaces and extensions of
abstract classes. At the top of the hierarchy are two interfaces, Collection and Map.

In this section, we will focus on the Collection interface. For the sake of specificity, Figure 4.5
presents the Collection interface in UML notation, with the methods listed in alphabetical order. Don’t
worry if some of the method headings are puzzling to you (or make no sense at all). You will learn all
you will need to know in subsequent chapters, when we look at implementations of the interface.

As indicated in Figure 4.5, the Collection interface has E—for “element”—as the type parameter .
That is, E is replaced with an actual class, such as Double or FullTimeEmployee, in the declaration of
an instance of any class that implements the interface. For example, part of the ArrayList heading is

public class ArrayList <E> implements Collection<E> ...
Here is an instance of the ArrayList class with FullTimeEmployee elements:
ArrayList<FullTimeEmployee>employeelList = mnew ArrayList <FullTimeEmployee> () ;

In this example, FullTimeEmployee is the actual class of the elements: the class that replaces the type
parameter E when the ArrayList class is instantiated.
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<<interface>> !

Collection

+ add (element: E): boolean

+ addAll (c: Collection<? extends E>): boolean
+ clear()

+ contains (obj: Object): boolean

+ containsAll (c: Collection<?>): boolean

+ equals (obj: Object): boolean

+ hashCode () : int
+ isEmpty () : boolean
+ iterator(): Iterator<E>

+ remove (obj: Object): boolean
+removeAll (c: Collection<?>): boolean

+ retainAll (c: Collection<?>): boolean

+ size(): int
+ toArray(): Object[ 1]
+ toArray (a: T[ ]): T[ ]

FIGURE 4.5 The Collection interface. In UML, a type parameter—in this case, E—is shown in a dashed
rectangle in the upper-right-hand corner of the interface or class

If you wanted to, you could create your own class that fully implements the Collection interface.
That is, sort of, what happens in Lab 6. Only a few methods are realistically defined; the others just throw
an exception. For example,

public int hashCode()
{
throw new UnsupportedOperationException() ;

}

Such definitions satisfy the compiler, so the resulting class, ArrayCollection, is instantiable. That is,
we can create and initialize an ArrayCollection object:

ArrayCollection<Integer> collection = new ArrayCollection<Integer>();

You are now prepared to do Lab 6: The ArrayCollection Class
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4.2.3.1 Iterators

The Collection interface provides a core of methods useful for applications. But each application will
almost certainly have some specialized tasks that do not correspond to any method in the Collection
interface. Important Note: In the following examples, “Collection object” is shorthand for “object in
a class that implements the Collection interface”, and “Collection class” is shorthand for “class that
implements the Collection interface.”

1. Given a Collection object of students, print out each student who made the Dean’s List.

2. Given a Collection object of words, determine how many are four-letter words.

3. Given a Collection object of club members, update the dues owed for each member.

4. Given a Collection object of full-time employees, calculate the average salary of the employees.

Surely, we cannot create a class that would provide a method for any task in any application—the number
of methods would be limitless. But notice that in each of the four examples above, the task entails access-
ing each element in a Collection object. This suggests that we need to allow users of a Collection
class to be able to construct a loop that accesses each element in a Collection object. As we will
see when we look at classes that implement the Collection interface, developers can straightforwardly
construct such a loop. Why? Because a developer has access to the fields in the class, so the devel-
oper knows how the class is organized. And that enables the developer to loop through each element in
the instance.

According to the Principle of Data Abstraction, a user’s code should not access the implementation
details of a Collection class. The basic problem is this: How can any implementation of the
Collection interface allow users to loop through the elements in an instance of that class without
violating the Principle of Data Abstraction? The solution is in the use of iterators. Iterators are objects
that allow the elements of Collection objects to be accessed in a consistent way without accessing the
fields of the Collection class.

Inside each class that implements the Collection interface, there is an iterator class that allows
a user to access each element in the collection. Each iterator class must itself implement the following
Iterator interface:

public interface Iterator<E>

{
/**
* Determines if this Iterator object is positioned at an element in
* this Collection object.

* @return true - if this Iterator object is positioned at an element
* in this Collection object.

*

*/

boolean hasNext () ;

/**
* Advances this Iterator object, and returns the element this

* Tterator object was positioned at before this call.
*

* @return the element this Iterator object was positioned at when
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* this call was made.

* @throws NoSuchElementException - if this Iterator object is not
* positioned at an element in the Collection object.

*/
E next ();

/**

*  Removes the element returned by the most recent call to next ().

* The behavior of this Iterator object is unspecified if the underlying
* collection is modified - while this iteration is in progress - other
* than by calling this remove () method.

* @throws IllegalStateException - if next () had not been called

* before this call to remove(), or if there had been an
* intervening call to remove() between the most recent
* call to next() and this call.

*

void remove ();

} // interface Iterator<E>

For each class that implements the Collection interface, its iterator class provides the methods for
traversing any instance of that Collection class. In other words, iterators are the behind-the-scenes
workhorses that enable a user to access each element in any instance of a Collection class.

How can we associate an iterator object with a Collection object? The iterator () method
in the Collection class creates the necessary connection. Here is the method specification from the
Collection interface:

/xx

* Returns an Iterator object over this Collection object.
*

* @return an Iterator object over this Collection object.
*

*/
Iterator<E> iterator( );

The value returned is (a reference to) an Iterator object, that is, an object in a class that implements
the Iterator interface. With the help of this method, a user can iterate through a Collection object
For example, suppose that myCo1l1 is (a reference to) an instance of a Collection object with String
elements, and we want to print out each element in myCol1l that starts with the letter ‘a’. We first create
an iterator object:

Iterator<String> itr = myColl.iterator () ;

The variable itr is a polymorphic reference: it can be assigned a reference to an object in any class
that implements the Tterator<String> interface. And myColl.iterator () returns a reference to an
Iterator<String> object that is positioned at the beginning of the myCol1l object.
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The actual iteration is fairly straightforward:

String word;
while (itr.hasNext ())
{
word = itr.next();
if (word.charAt (0) == 'a')
System.out.println (word) ;
} // while

Incidentally, do you see what is wrong with the following?

// Incorrect!
while (itr.hasNext ())
if (itr.next().charAt (0) == 'a')
System.out.println (itr.next());

Because of the two calls to itr.next (), if the next word returned during a loop iteration starts with the
letter ‘a’, the word after that word will be printed.

Very often, all we want to do during an iteration is to access each element in the collection. For such
situations, Java provides an enhanced for statement (sometimes referred to as a for-each statement). For
example, the previous (correct) iteration through myCol1l can be abbreviated to the following:

for (String word : myColl)
if (word.charAt (0) == 'a')
System.out.println (word) ;

The colon should be interpreted as “in”, so the control part of this for statement can be read “For each
word in myCol1l.” The effect of this code is the same as before, but some of the drudgery—creating and
initializing the iterator, and invoking the hasNext () and next () methods—has been relegated to the
compiler.

Here is a complete example of iterating over a Collection object by using an enhanced for
statement. You don’t have to know the details of ArrayList class, the particular implementation of the
Collection interface. You will learn those details in Chapter 6. For the sake of simplicity, Arithm
eticException and InputMismatchException are caught in the same catch block.

// Calculates the mean grade-point-average
import java.util.*;

public class EnhancedFor
{
public static void main (String [ ] args)
{
new EnhancedFor () .run() ;
} // method main

public void run()
{
final double MIN_GPA = 0.0,
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MAX_GPA = 4.0,

SENTINEL = -1.0;
final String INPUT_PROMPT = "Please enter a GPA in the range" +
" from " + MIN_GPA + " to " + MAX GPA + ", inclusive (or "

SENTINEL + " to quit): ";

final String RANGE_ERROR = "The grade point average must" +
" be at least " + MIN_GPA + " and at most " + MAX_GPA + ".";

final String MESSAGE = "\n\nThe mean GPA is ";

final String NO_VALID_INPUT = "\n\nError: there were no valid " +
"grade-point-averages in the input.";

ArrayList<Double> gpaList = new ArrayList<Double> () ;
Scanner sc = new Scanner (System.in);

double oneGPA,
sum = 0.0;

while (true)

{
try
{
System.out.print (INPUT_PROMPT) ;
oneGPA = sc.nextDouble() ;
if (oneGPA == SENTINEL)
break;
if (oneGPA < MIN_GPA || oneGPA > MAX_GPA)
throw new ArithmeticException (RANGE_ERROR) ;
gpalList.add (oneGPA); // inserts at end of gpalList
Y // try
catch (Exception e)
{

System.out.println (e + "\n");
sc.nextLine() ;
} // catch Exception
} // while
for (Double gpa : gpalList)
sum += gpa;
if (gpalList.size() > 0)
System.out.println (MESSAGE +
(sum / gpalList.size()));
else
System.out.println (NO_VALID_INPUT) ;
} // method run

} // class EnhancedFor



4.2 Some Details of the Java Collections Framework 147

The enhanced for statement simplifies your code, and that makes your programs easier to understand.
So you should use an enhanced for statement whenever possible, that is, if you were to use an iterator
instead, the only iterator methods invoked would be hasNext () and next (). You cannot use an enhanced
for statement if the collection may be modified during the iteration. For example, if you wanted to delete,
from gpaList, each grade-point-average below 1.0, you would need to explicitly set up an iterator:

Iterator<Double> itr = gpalList.iterator();
while (itr.hasNext ())
if (itr.next() < 1.0)
itr.remove() ;

4.2.3.2 Design Patterns

In Section 4.2.3.1, we stated a problem, namely, how can the developer of a Collection class allow
users to loop through one of its instances without violating the Principle of Data Abstraction? The solution
to the problem was to employ an iterator. As such, the use of iterators is an example of a design pattern: a
generic programming technique that can be applied in a variety of situations. As we will see in subsequent
chapters, the iterator pattern plays an important role in an assortment of applications.

Throughout the text, we will identify several design patterns and corresponding applications. The
basic idea is that each design pattern provides you with a problem that occurs frequently and the outline
of a solution. You may have to “tweak” the solution for a particular instance of the problem, but at least
you will not be re-inventing the wheel.

In Section 4.2.4, we briefly introduce an extension of the Collection interface and three classes
that implement that extension.

4.2.4 The List Interface

Java Collection Framework’s List interface extends the Collection interface by providing some index-
related methods. For example, there is a get method that returns the element at a given index. In any
List object, that is, in any instance of a class that implements the List interface, the elements are stored
in sequence, according to an index. For example, a List object pets might have the elements arranged as
follows: “dog”, “cat”, “iguana”, “gerbil”, “cat”. Here “dog” is at index 0, “gerbil” is at index 3. Duplicate
elements are allowed: “cat” appears at index 1 and at index 4.

When viewed as a language-independent entity, a list is an abstract data type. Within Java, the List
interface is abstract in the sense that it is not tied down to any particular implementation. In fact, in the
Java Collections Framework, the List interface is not directly implemented. Instead, the abstract class
AbstractList partially implements the List interface, and leaves the rest of the implementation to
subclasses, namely, ArrayList and LinkedList. See Figure 4.6.

The ArrayList class implements the List interface with an underlying array?, and the LinkedList
class implements the List interface with the underlying linked structure shown in Figure 4.3. We will
get to the details in Chapters 6 and 7, respectively. To give you an idea of some of the methods in both
classes, the following class creates and manipulates a List of random Integer objects.

import java.util.*;

public class RandomList

>The stack class also implements the List interface with an underlying array, but the definition of a stack severely restricts access to the
array, so we will ignore the stack class in this discussion.
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public static void main (String[ ] args)
{

new RandomList ().run();
} // method main

public void run()
{
final int SEED = 111;

List<Integer> randList = new ArrayList<Integer> () ;

Random r = new Random (SEED) ;

// Insert 10 random integers, in the range 0...99, into randList:
for (int i = 0; i < 10; 1i++)
randList.add (r.nextInt(100)); // insertion

// Print out randList:
System.out.println (randList) ;

// See if 22 is in randList:
if (randList.contains (22))

System.out.println ("Yes, 22 is in randList.");
else

System.out.println ("No, 22 is not in randList.");

// Print out the Integer at index 3:
System.out.println (randList.get (3) + "is at index 3");

// Remove the Integer at index 6:
randList.remove (6);

// Insert a new random Integer at index 5:
randList.add (5, r.nextInt (100));

// Print out randList.
System.out.println (randList) ;

// Remove all even Integers:
Iterator<Integer> itr = randList.iterator();
while (itr.hasNext())
if (itr.next() % 2 == 0)
itr.remove() ;

// Print out randList;
System.out.println (randList) ;

} // method run

} // class RandomList
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<<interface>> ' E
Collection
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<<interface>>:__ .
List
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AbstractList “]"'“
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FIGURE 4.6 Part of the Java Collections Framework hierarchy dealing with the List interface. In UML, an
abstract-class identifier is italicized

The line
System.out.println (randList) ;
is equivalent to
System.out.println (randList.toString()) ;

The toString method returns a String representation of randList. Every class in the Java Collections
Framework has a toString () method, so all the elements in an instance of one of those classes can be
output with a single call to println.

Because an ArrayList object stores its elements in an underlying array, when the element at index
6 is removed, each element at a higher index is moved to the location at the next lower index. So the
element that was at index 7 is then at index 6, the element that was at index 8 is then at index 7, and so
on. When a new element is inserted at index 5, each element located at that index or higher is moved to
the next higher index. So the element that was at index 5 is then at index 6, the element that was at index
6 is then at index 7, and so on.

The output is

[93, 70, 57, 97, 9, 20, 84, 12, 97, 65]
No, 22 is not in randList.
97 is at index 3
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[93, 70, 57, 97, 9, 60, 20, 12, 97, 65]
[93, 57, 97, 9, 97, 65]

We could not use an enhanced for statement to iterate over randList because we needed to remove
some of that object’s elements, not merely access them.

In the program, randList is declared as a polymorphic reference and then immediately initialized
as a reference to an ArrayList object. To re-run the program with a LinkedList object, the only change
is the constructor call:

List<Integer> randList = new LinkedList<Integer> () ;

How do the two versions compare? Part of the program—printing the Integer at index 3—is executed
more quickly with an ArrayList object because of the random-access ability of the underlying array. And
part of it—removing all even Integer elements—is executed more quickly with a LinkedList object.
That’s because an entry in a linked list can be removed by adjusting links: no movement of elements is

needed. In general, there is no “best” implementation of the List interface.

SUMMARY

A collection is an object that is composed of elements.
The elements may be stored contiguously, that is, at con-
secutive locations in memory. Another option is a linked
structure, in which each element is stored in a special
object called an entry that also includes a reference to
another entry.

A collection class is a class of which each instance
is a collection. The Java Collections Framework, part
of the package java.util, includes a number of collec-
tion classes that have wide applicability. Each of those
classes can be parameterized, which means that the ele-
ment class is specified when the collection-class object
is created. And for any instance of one of those classes,
an iterator can be defined. An iferator is an object that
allows an instance of a collection class to loop through
the elements in that class without violating the Principle
of Data Abstraction.

To simplify the programmer’s work of inserting
elements into an instance of a parameterized class,
Java automatically boxes primitive values into the corre-
sponding wrapper elements. Similarly, wrapper elements
retrieved from a parameter-class instance are automati-
cally unboxed into the corresponding primitive value. A
further simplification of Java is the enhanced for state-
ment, which automates most of the routine code to access
each element during an iteration.

The Collection interface consists of 15 method
specifications for accessing and manipulating an instance
of a class that implements the Collection interface.

The List interface adds several index-related
methods to the Collection interface. The List inter-
face is partially implemented by the AbstractList
class, and fully implemented by the ArrayList and
LinkedList classes.
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CROSSWORD PUZZLE

lN|

10

www.CrosswordWeaver.com

ACROSS DOWN
5. Objects that allow the elements of Collection objects 1. Aclass in which each instance is a collection
to be accessed in a consistent way without accessing the of elements.

fields of the Collection class.
2. The translation, by the compiler, of a wrapper

9. Aclass or interface identifier followed, in angle brackets, object into its primitive value.
by a list of one or more class identifiers separated by
commas. 3. A generic programming technique that can be

applied in a variety of situations.
10. A class whose purpose is to enable a primitive type to be
represented by (that is, wrapped inside) a class. 4. The property by which an individual element in
an array can be accessed without first accessing
any of the other individual elements.

6. A dummy type that is enclosed in angle brackets
in the declaration of a class or interface.

7. An object that is composed of elements.

8. In alinked collection, a special object that houses
an element and at least one link to another entry.
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CONCEPT EXERCISES

4.1 What is a collection? What is a collection class? What is a Collection class? Give an example of a collection
that is not an instance of a collection class. Programming Project 4.1 has an example of a collection class that
is not a Collection class.

4.2  An array is a collection, even though there is no array class. But an array of objects can be converted into an
instance of the ArrayList class. Look in the file Arrays.java in the package java.util to determine the generic
algorithm (that is, static method) that converts an array of objects into an ArrayList of those objects. How
can that ArrayList then be printed without a loop?

4.3  a. Identify each of the following as either an interface or a class:

Collection
LinkedList
Iterator
AbstractList

b. What is the difference between an interface and an abstract class?

¢. Of what value is an abstract class? That is, to what extent can an abstract class make a programmer more
productive?

4.4  What is a list?

PROGRAMMING EXERCISES

4.1 For each of the following, create and initialize a parameterized instance, add two elements to the instance, and
then print out the instance:

a. an ArrayList object, scoreList, of Integer objects;

b. a LinkedList object, salaryList, of Double objects;

4.2 Develop a main method in which two ArrayList objects are created, one with String elements and one
with Integer elements. For each list, add three elements to the list, remove the element at index 1, add an
element at index 0, and print out the list.

4.3 Find an ArrayList method, other than a constructor, that is not also a method in the LinkedList class.
Find a LinkedList method, other than a constructor, that is not also a method in the ArrayList class.

4.4  Suppose we have the following:

LinkedList<String> team = new LinkedList<String> () ;
team.add ("Garcia");

Iterator<String> itr = team.iterator();

Integer player = itr.next ();

What error message will be generated? When (at compile-time or at run-time)? Test your hypotheses.

4.5 Use the ArrayList class three times. First, create an ArrayList object, teaml, with elements of type
String. Add three elements to teaml. Second, create team2, another ArrayList object with elements of
type String. Add four elements to team?2. Finally, create an ArrayList object, league, whose elements
are ArrayList objects in which each element is of type String. Add teaml and team2 to league.
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Programming Project 4.1

Wear a Developer’s Hat and a User’s Hat

In this project, you will get to be a developer of a parameterized class, and then become a user of that class. To
start with, here are method specifications for the parameterized class, Sequence, with E the type parameter:

/**
* 1TInitializes this Sequence object to be empty, with an initial capacity of ten

* elements.

*
)
public Sequence ()

/**
* Initializes this Sequence object to be empty, with a specified initial
* capacity.

* @param capacity - the initial capacity of this Sequence object.
*
* @throw IllegalArgumentException - if capacity is non-positive.
*
*/

public Sequence (int n)

/xx

* Returns the number of elements in this Sequence object.
*

* @return the number of elements in this Sequence object.
*

*/
public int size()

/**

* Appends a specified element to this Sequence object.
*

* (@param element - the element to be inserted at the end of this
* Sequence object.

*

*/

public void append (E element)

/**

* Returns the element at a specified index in this Sequence object.

* The worstTime(n) is constant, where n is the number of elements in this
* Sequence object.

* @param k - the index of the element returned.

(continued on next page)
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*

*/

/**

*

*

*/

(continued from previous page)

@return the element at index k in this Sequence object.

@throws IndexOutOfBoundsException - if k is either negative or greater
than or equal to the number of elements in this Sequence
Sequence object.

public E get (int k)

Changes the element at a specified index in this Sequence object.
The worstTime (n) is constant, where n is the number of elements in this
Sequence object.

@param k - the index of the element returned.
@param newElement - the element to replace the element at index k in
this Sequence object.

@throws IndexOutOfBoundsException - if k is either negative or greater
than or equal to the number of elements in this Sequence
object.

public void set (int k, E newElement)
Part 1 Create unit tests based on the method specifications and stubs.

Part 2 Define the methods in the Sequence class.
Hint: use the following fields:

protected E [ ] data;

protected int size; // the number of elements in the Sequence, not the

// capacity of the data array

Note 1: for the append method, if the data array is currently full, its capacity must be increased before the new
element can be appended. See Programming Exercise 2.10 to see how to accomplish the expansion.

Note 2: for methods that may throw an exception, do not include catch blocks. Instead, the exception will be
propagated, so the handling can be customized for the application.

Part 3 Test the method definitions in your Sequence class.
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One of the skills that distinguish a novice programmer from an experienced one is an understanding
of recursion. The goal of this chapter is to give you a feel for situations in which a recursive method
is appropriate. Along the way you may start to see the power and elegance of recursion, as well as its
potential for misuse. Recursion plays a minor role in the Java Collections Framework: two of the sort
methods are recursive, and there are several recursive methods in the TreeMap class. But the value of
recursion extends far beyond these methods. For example, one of the applications of the Stack class
in Chapter 8 is the translation of recursive methods into machine code. The sooner you are exposed to
recursion, the more likely you will be able to spot situations where it is appropriate—and to use it.

CHAPTER OBJECTIVES

1. Recognize the characteristics of those problems for which recursive solutions may be
appropriate.

2. Compare recursive and iterative methods with respect to time, space, and ease of development.
3. Trace the execution of a recursive method with the help of execution frames.

4. Understand the backtracking design pattern.

5.1 Introduction

Roughly, a method is recursive if it contains a call to itself.! From this description, you may initially fear
that the execution of a recursive method will lead to an infinite sequence of recursive calls. But under
normal circumstances, this calamity does not occur, and the sequence of calls eventually stops. To show
you how recursive methods terminate, here is the skeleton of the body of a typical recursive method:

if (simplest case)
solve directly
else
make a recursive call with a simpler case

This outline suggests that recursion should be considered whenever the problem to be solved has these
two characteristics;

1. The simplest case(s) can be solved directly.

2. Complex cases of the problem can be reduced to simpler cases of the same form as the original
problem.

'A formal definition of “recursive” is given later in this chapter.
155
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Incidentally, if you are familiar with the Principle of Mathematical Induction, you may have observed that
these two characteristics correspond to the base case and inductive case, respectively. In case you are not
familiar with that principle, Section A2.5 of Appendix 2 is devoted to mathematical induction.

As we work through the following examples, do not be inhibited by old ways of thinking. As each
problem is stated, try to frame a solution in terms of a simpler problem of the same form. Think recursively!

5.2 Factorials

Given a positive integer n, the factorial of n, written n!, is the product of all integers between n and 1,
inclusive. For example,
41 =4*3%2%1=24
and
6!=6"5%"4*3%2%1=1720
Another way to calculate 4! is as follows:
4! =4 * 3|
This formulation is not helpful unless we know what 3! is. But we can continue to calculate factorials in
terms of smaller factorials (Aha!):
31=3%2!
21 =2*1!
Note that 1! Can be calculated directly; its value is 1. Now we work backwards to calculate 4!:
20=2*11=2%1=2
31=3%"21=3%2=6
Finally, we get
41 =4*31=4*6=24
For n > 1, we reduce the problem of calculating n! to the problem of calculating (n — 1)!. We stop
reducing when we get to 1!, which is simply 1. For the sake of completeness®, we define 0! to be 1.
There is a final consideration before we specify, test and define the factorial method: what about
exceptions? If n is less than zero, we should throw an exception—IllegalArgumentException is
appropriate. And because n! is exponential in n, the value of n! will be greater than Long.MAX_ VALUE
for not-very-large values of n. In fact, 21!> Long.MAX_VALUE, so we should also throw I1legalArgum
entException for n > 20.
Here is the method specification:
/ * %

* Calculates the factorial of a non-negative integer, that is, the product of all
* integers between 1 and the given integer, inclusive. The worstTime(n) is O(n),

2The calculation of 0! occurs in the study of probability: The number of combinations of n things taken k at a time is calculated as n!/(k! (n
— k)!). When n = k, we get n!/(n!) (0!), which has the value 1 because 0! = 1. And note that 1 is the number of combinations of n things
taken n at a time.
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* where n is the given integer.
* @param n the integer whose factorial is calculated.
* @return the factorial of n

* @throws IllegalArgumentException if n is less than 0 or greater than 20 (note
* that 21! > Long.MAX_ VALUE) .
*
*/
public static long factorial (int n)

Note that factorial has a static modifier in its heading (see Section 2.1 in Chapter 2). Why? All
the information needed by the method is provided by the parameter, and the only effect of a call to the
method is the value returned. So a calling object would neither affect nor be affected by an invocation
of the method. As noted in Chapter 2, we adhere to the test-first model. So the test class, based on the
method specification only, is developed before the method itself is defined. Here is the test class, with
special emphasis on boundary conditions, and including the usual stub within the test class itself:

import org.junit.*;

import static org.junit.Assert.*;

import org.junit.runner.Result;

import static org.junit.runner.JUnitCore.runClasses;
import java.util.*;

public class FactorialTest
{
public static void main(String[ ] args)
{
Result result = runClasses (FactorialTest.class);
System.out.println ("Tests run = " + result.getRunCount () +
"\nTests failed = " + result.getFailures());
} // method main import org.junit.*;

@Test
public void factorialTestl ()
{
assertEquals (24, factorial (4));
} // method factorialTestl

@Test
public void factorialTest2 ()
{
assertEquals (1, factorial (0));
} // method factorialTest2

@Test
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}

public void factorialTest3 ()
{

assertEquals (1, factorial (1));
} // method factorialTest3

@Test
public void factorialTest4 ()
{
assertEquals (2432902008176640000L, factorial (20));
} // method factorialTest4

@Test (expected = IllegalArgumentException.class)
public void factorialTest5 ()
{
factorial (21);
} // method factorialTest5

@Test (expected = IllegalArgumentException.class)
public void factorialTest6 ()
{
factorial (-1);
} // method factorialTest6

public static long factorial (int n)
{

throw new UnsupportedOperationException() ;
} // method factorial

// class FactorialTest

As expected, all tests of the factorial method failed.

We now define the factorial method. For the sake of efficiency, checking for values of n less than
0 or greater than 20 should be done just once, instead of during each recursive call. To accomplish this,
we will define a wrapper method that throws an exception for out-of-range values of n, and (otherwise)
calls a recursive method to actually calculate n!. Here are the method definitions.

public static long factorial (int n)

{

final int MAX_INT = 20; // because 21! > Long.MAX_VALUE

final String ERROR_MESSAGE = "The value of n must be >= 0 and <= " +
Integer.toString (MAX_INT) ;

if (n < 0 || n > MAX_INT)
throw new IllegalArgumentException (ERROR_MESSAGE) ;
return fact (n);
// method factorial
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/**

* Calculates n!.
*

* @param n the integer whose factorial is calculated.
*

* @return n!.

*
*/
protected static long fact (int n)
{

if (n <= 1)

return 1;

return n * fact (n - 1);

} // method fact

The testing of the wrapper method, factorial, incorporates the testing of the wrapped method, fact.
The book’s website has similar test classes for all recursive functions in this chapter.

Within the method fact, there is a call to the method fact, and so fact, unlike factorial, is a
recursive method. The parameter n has its value reduced by 1 with each recursive call. But after the final
call with n = 1, the previous values of n are needed for the multiplications. For example, when n = 4,
the calculation of n * fact (n - 1) is postponed until the call to fact (n - 1) is completed. When
this finally happens and the value 6 (that is, fact (3)) is returned, the value of 4 for n must be available
to calculate the product.

Somehow, the value of n must be saved when the call to fact (n - 1) is made. That value must
be restored after the call to fact (n - 1) is completed so that the value of n * fact (n - 1) can be
calculated. The beauty of recursion is that the programmer need not explicitly handle these savings and
restorings; the compiler and computer do the work.

5.2.1 Execution Frames

The trace of a recursive method can be illustrated through execution frames : boxes that contain information
related to each invocation of the method. Each execution frame includes the values of parameters and
other local variables. Each frame also has the relevant part of the recursive method’s code—especially the
recursive calls, with values for the arguments. When a recursive call is made, a new execution frame will
be constructed on top of the current one; this new frame is destroyed when the call that caused its creation
has been completed. A check mark indicates either the statement being executed in the current frame or the
statement, in a previous frame, whose recursive call created (immediately or eventually) the current frame.

At any time, the top frame contains information relevant to the current execution of the recursive
method. For example, here is a step-by-step, execution-frame trace of the fact method after an initial call
of fact (4):

The analysis of the fact method is fairly clear-cut. The execution-time requirements correspond to
the number of recursive calls. For any argument n, there will be exactly n - 1 recursive calls. During each
recursive call, the if statement will be executed in constant time, so worstTime(n) is linear in n. Recursive
methods often have an additional cost in terms of memory requirements. For example, when each recursive
call to fact is made, the return address and a copy of the argument are saved. So worstSpace (n) is also
linear in n.



160 CHAPTER 5 Recursion

Step 0:
n =4
Frame 0
v return 4 * fact(3);
Step 1:
n =3
Frame 1
v return 3 * fact(2);
n =4
Frame 0
v return 4 * fact(3);
Step 2:
n = 2
Frame 2
v return 2 * fact(1);
n =3
Frame 1
v return 3 * fact(2);
n =4
Frame 0
v return 4 * fact(3);
Step 3:
n=1
Frame 3
v return 1;
1
n =2 \
Frame 2
v return 2 * fact(1);
n =3
Frame 1
v return 3 * fact(2);
n =4
Frame 0
v return 4 * fact(3);
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Step 4:

n = 2
Frame 2
v return 2 *(1);

2

n =3 \
Frame 1

v return 3 * fact (2);

n =4
Frame 0
v return 4 * fact(3);
Step 5:
n =3
Frame 1

v return 3 * 2;

6
n =4 \
Frame 0

v return 4 * fact(3);

Step 6:

n =4
Frame 0
v return 4 * 6;

24

Recursion can often make it easier for us to solve problems, but any problem that can be solved
recursively can also be solved iteratively. An iferative method is one that has a loop instead of a recursive
call. For example, here is an iterative method to calculate factorials. No wrapper method is needed because
there are no recursive calls.

) **

*

*

Calculates the factorial of a non-negative integer, that is, the product of all
integers between 1 and the given integer, inclusive. The worstTime(n) is O(n),
where n is the given integer.

@param n the non-negative integer whose factorial is calculated.

@return the factorial of n

@throws IllegalArgumentException if n is less than 0 or greater than 20 (note
that 21! > Long.MAX_ VALUE) .
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*
*/
public static long factorial (int n)
{
final int MAX_INT = 20; // because 21! > Long.MAX_VALUE

final String ERROR_MESSAGE = "The value of n must be >= 0 and <= " +
Integer.toString (MAX_INT) ;

if (n < 0 || n > MAX_INT)
throw new IllegalArgumentException (ERROR_MESSAGE) ;

long product = n;

if (n == 0)
return 1;
for (int 1 = n-1; i > 1; 1i-)
product = product * i;
return product;
} // method factorial

This version of factorial passed all of the tests in FactorialTest. For this version of factorial,
worstTime(n) is linear in n, the same as for the recursive version. But no matter what value n has, only
three variables (n, product and i) are allocated in a trace of the iterative version, so worstSpace(n)
is constant, versus linear in n for the recursive version. Finally, the iterative version follows directly
from the definition of factorials, whereas the recursive version represents your first exposure to a new
problem-solving technique, and that takes some extra effort.

So in this example, the iterative version of the factorial method is better than the recursive
version. The whole purpose of the example was to provide a simple situation in which recursion was
worth considering, even though we ultimately decided that iteration was better. In the next example, an
iterative alternative is slightly less appealing.

5.3 Decimal to Binary

Humans count in base ten, possibly because we were born with ten fingers. Computers count in base two
because of the binary nature of electronic switches. One of the tasks a computer performs is to convert from
decimal (base ten) to binary (base two). Let’s develop a method to solve a simplified version of this problem:

Given a nonnegative integer n, determine its binary equivalent.

For example, if n is 25, the binary equivalent is 11001 = 1 * 2* 41 * 23 40 * 2240 * 2! 1 * 20,
For a large int value such as one billion, the binary equivalent will have about 30 bits. But 30 digits of
zeros and ones are too big for an int or even a long. So we will store the binary equivalent in a String
object. The method specification is:

/xx
*

* Determines the binary equivalent of a non-negative integer. The worstTime (n)
* is O(log n), where n is the given integer.
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@param n the non-negative integer, in decimal notation.
@return a String representation of the binary equivalent of n.

* @throws IllegalArgumentException if n is negative.
*/
public static String getBinary (int n)

The test class for this method can be found on the book’s website, and includes the following test:

@Test (expected = IllegalArgumentException.class)
public void getBinaryTest5 ()
{
getBinary (-1);
} // method getBinaryTesth

There are several approaches to solving this problem. One of them is based on the following
observation:

The rightmost bit has the value of n % 2; the other bits are the binary equivalent of n/2. (Aha!)

For example, if n is 12, the rightmost bit in the binary equivalent of n is 12% 2, namely, 0; the remaining
bits are the binary equivalent of 12/2, that is, the binary equivalent of 6. So we can obtain all the bits as
follows:

12/2=6;12%2= 0
6/2=3,6%2= 0
3/2=1;3%2= 1

1

When the quotient is 1, the binary equivalent is simply 1. We concatenate (that is, join together) these bits
from the bottom up, so that the rightmost bit will be joined last. The result would then be

1100

The following table graphically illustrates the effect of calling getBinary (12):

n n/2 n% 2 Result

12 6 0

6 3 0

3 1 1

1
| —-—
] —m—
0+—
o+—
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This discussion suggests that we must perform all of the calculations before we return the result. Speaking
recursively, we need to calculate the binary equivalent of n/2 before we append the value of n % 2. In
other words, we need to append the result of n % 2 to the result of the recursive call.

We will stop when n is 1 or 0, and O will occur only if n is initially 0. As we did in Section 5.2,
we make getBinary a wrapper method for the recursive getBin method. The method definitions are:

public static String getBinary (int n)
{
if (n < 0)
throw new IllegalArgumentException() ;
return getBin (n);
} // method getBinary

public static String getBin (int n)
{
if (n <= 1)
return Integer.toString (n);
return getBin (n / 2) + Integer.toString (n % 2);
} // method getBin

We are assured that the simple case of n <= 1 will eventually be reached because in each execution of

the method, the argument to the recursive call is at most half as big as the method parameter’s value.
Here is a step-by-step, execution-frame trace of the getBin method after an initial call of getBin

(12):

The final value returned is the string:

1100

And that is the binary equivalent of 12.

As we noted earlier, the order of operands in the String expression of the last return statement
in getBin enables us to postpone the final return until all of the bit values have been calculated. If the
order had been reversed, the bits would have been returned in reverse order. Recursion is such a powerful
tool that the effects of slight changes are magnified.

Step 0:
n =12
Frame O
v return getBin (6) + Integer.toString (0);
Step 1:
n==ae
Frame 1
v return getBin (3) + Integer.toString (0);
n =12
Frame O
v return getBin (6) + Integer.toString (0);
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Step 2:
n =3
Frame 2
v return getBin (1) + Integer.toString (1);
n==6
Frame 1
v return getBin (3) + Integer.toString (0);
n =12
Frame O
v return getBin (6) + Integer.toString (0);
Step 3:
n=1
v return “1”; Frame 3
\
“p
n=3
Frame 2
v return getBin (1) + Integer.toString (1);
n==6
Frame 1
v return getBin (3) + Integer.toString (0);
n =12
Frame O
v return getBin (6) + Integer.toString (0);
Step 4:
n =3
Frame 2
v return “1” + Integer.toString (1);
N\
n==a6
Frame 1
v return getBin (3) + Integer.toString (0);
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n =12
Frame O
v return getBin (6) + Integer.toString (0);
Step5:
n==a6
Frame 1
v return “11” + Integer.toString (0);
n =12
Frame O
v return getBin (6) + Integer.toString (0);
Step 6:
n =12
Frame O
v return “110” + Integer.toString (0);

“1100”\\

As usually happens with recursive methods, the time and space requirements for getBin are esti-
mated by the number of recursive calls. The number of recursive calls is the number of times that n can
be divided by 2 until n equals 1. As we saw in Section 3.1.2 of Chapter 3, this value is floor(log, n), so

worstTime(n) and worstSpace(n) are both logarithmic in .

A user can call the getBinary method from the following run method (in a BinaryUser class

whose main method simply calls new BinaryUser () .run()):

public static void run()

{

final int SENTINEL

= -1;

final String INPUT_PROMPT =

"\nPlease enter a non-negative base-10 integer

SENTINEL +

final String RESULT_MESSAGE =

" to quit): ";

Scanner sc = new Scanner (System.in);

int n;

while (true)
{

try

{

(or " +

"The binary equivalent is ";
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System.out.print (INPUT_PROMPT) ;
n = sc.nextInt();

if (n == SENTINEL)
break;
System.out.println (RESULT_MESSAGE + getBinary (n));
Yy // try

catch (Exception e)
{
System.out.println (e);
sc.nextLine() ;
}// catch Exception
}// while
} // method run

You are invited to develop an iterative version of the getBinary method. (See Programming Exercise 5.2.)
After you have completed the iterative method, you will probably agree that it was somewhat harder to
develop than the recursive method. This is typical, and probably obvious: recursive solutions usually flow
more easily than iterative solutions to those problems for which recursion is appropriate. Recursion is
appropriate when larger instances of the problem can be reduced to smaller instances that have the same
form as the larger instances.

You are now prepared to do Lab 7: Fibonacci Numbers

For the next problem, an iterative solution is much harder to develop than a recursive solution.

5.4 Towers of Hanoi

3

In the Towers of Hanoi game, there are three poles, labeled ‘A’, ‘B’ and ‘C’, and several, different-sized,
numbered disks, each with a hole in the center. Initially, all of the disks are on pole ‘A’, with the largest
disk on the bottom, then the next largest, and so on. Figure 5.1 shows the initial configuration if we started
with four disks, numbered from smallest to largest.

A B C

FIGURE 5.1 The starting position for the Towers of Hanoi game with four disks

The object of the game is to move all of the disks from pole ‘A’ to pole ‘B’; pole ‘C’ is used for
temporary storage’. The rules of the game are:

1. Only one disk may be moved at a time.
2. No disk may ever be placed on top of a smaller disk.

3. Other than the prohibition of rule 2, the top disk on any pole may be moved to either of the other
two poles.

3In some versions, the goal is to move the disks from pole ‘A’ to pole ‘C’, with pole ‘B’ used for temporary storage.
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A

B

FIGURE 5.2 The game configuration for the Towers of Hanoi just before moving disk 4 from pole ‘A’ to pole

B’

We will solve this problem in the following generalization: Show the steps to move n disks from an origin
pole to a destination pole, using the third pole as a temporary. Here is the method specification for this

generalization:

/**

* Determines the steps needed to move n disks from an origin to a destination.
* The worstTime(n) is 0(2").

* @param n the number of disks to be moved.

* @param orig the pole where the disks are originally.
* @param dest the destination pole

* @param temp the pole used for temporary storage.

* @return a String representation of the moves needed, where each

* move is in the form "Move disk ? from ? to ?\n".

*

* @throws IllegalArgumentException if n is less than or equal to 0.

*/

public static String moveDisks

(int n,

char orig,

char dest,

char temp)

The test class for moveDisks can be found on the book’s website, and includes the following test:

@Test

public void moveDisksTestl ()

{
assertEquals ("Move
"Move
"Move
"Move

disk
disk
disk
disk

} // method moveDisksTestl

A

from
from
from
from

PO B v B

B\nMove disk 2 from A to
C\nMove disk 3 from A to
A\nMove disk 2 from C to

B\n", moveDisks

(3,

A,

C\n"
B\n"
B\n"
B,

+ o+

'C'))

Let’s try to play the game with the initial configuration given in Figure 5.1. We are immediately faced
with a dilemma: Do we move disk 1 to pole ‘B’ or to pole ‘C’? If we make the wrong move, we may
end up with the four disks on pole ‘C’ rather than on pole ‘B’.

Instead of trying to figure out where disk 1 should be moved initially, we will focus our attention
on disk 4, the bottom disk. Of course, we can’t move disk 4 right away, but eventually, disk 4 will have
to be moved from pole ‘A’ to pole ‘B’. By the rules of the game, the configuration just before moving
disk 4 must be as shown in Figure 5.2.

Does this observation help us to figure out how to move 4 disks from ‘A’ to ‘B’? Well, sort of. We
still need to determine how to move three disks (one at a time) from pole ‘A’ to pole ‘C’. We can then
move disk 4 from ‘A’ to ‘B’. Finally, we will need to determine how to move three disks (one at a time)

from ‘C’ to ‘B’.



5.4 Towers of Hanoi 169

The significance of this strategy is that we have reduced the problem from figuring how to move four
disks to one of figuring how to move three disks. (Aha!) We still need to determine how to move three
disks from one pole to another pole.

But the above strategy can be re-applied. To move three disks from, say, pole ‘A’ to pole ‘C’, we
first move two disks (one at a time) from ‘A’ to ‘B’, then we move disk 3 from ‘A’ to ‘C’, and finally,
we move two disks from ‘B’ to ‘C’. Continually reducing the problem, we eventually face the trivial task
of moving disk 1 from one pole to another.

There is nothing special about the number 4 in the above approach. For any positive integer n we
can describe how to move n disks from pole ‘A’ to pole ‘B’: if n = 1, we simply move disk 1 from pole
‘A’ to pole ‘B’. Forn > 1,

1. First, move n — 1 disks from pole ‘A’ to pole ‘C’, using pole ‘B’ as a temporary.
2. Then move disk n from pole ‘A’ to pole ‘B’.

3. Finally, move n — 1 disks from pole ‘C’ to pole ‘B’, using pole ‘A’ as a temporary.
This does not quite solve the problem because, for example, we have not described how to move n — 1
disks from ‘A’ to ‘C’. But our strategy is easily generalized by replacing the constants ‘A’, ‘B’, and ‘C’
with variables origin, destination, and temporary. For example, we will initially have

origin = 'A’'

destination = 'B'
temporary = 'C'

Then the general strategy for moving n disks from origin to destination is as follows:

If n is 1, move disk 1 from origin to destination.

Otherwise,

1. Move n — 1 disks (one at a time) from origin to temporary;
2. Move disk n from origin to destination;
3. Move n — 1 disks (one at a time) from femporary to destination.

The following recursive method incorporates the above strategy for moving n disks. If n = 1, the String
representing the move, namely, "Move disk 1 from " + orig + " to " + dest + "\n" is simply
returned. Otherwise, the String object returned consists of three String objects concatenated together,
namely, the strings returned by

move (n - 1, orig, temp, dest)
"Move disk " + n + " from " + orig + " to " + dest + "\n"
move (n - 1, temp, dest, orig)

When the final return is made, the return value is the complete sequence of moves. This String object
can then be printed to the console window, to a GUI window, or to a file. For the sake of efficiency, the
test for n < 0 is made—once—in a wrapper method moveDisks that calls the move method. Here is the
method specification for moveDisks:

/**
* Determines the steps needed to move disks from an origin to a destination.

* The worstTime(n) is 0(27).
*

* @param n the number of disks to be moved.
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* @param orig the pole where the disks are originally.
* @param dest the destination pole
* @param temp the pole used for temporary storage.

* @return a String representation of the moves needed.
*

* @throws IllegalArgumentException if n is less than or equal to 0.
*/
public static String moveDisks (int n, char orig, char dest, char temp)

The test class for moveDisks can be found on the book’s website. The definitions of moveDisks and
move are as follows:

public static String moveDisks (int n, char orig, char dest, char temp)
{
if (n <= 0)
throw new IllegalArgumentException() ;
return move (n, orig, dest, temp);
} // method moveDisks

/'k'k

* Determines the steps needed to move disks from an origin to a destination.
* The worstTime(n) is 0(27).

*

* @param n the number of disks to be moved.

* @param orig the pole where the disks are originally.

* @param dest the destination pole

* @param temp the pole used for temporary storage.

* @return a String representation of the moves needed.
*

*/
public static String move (int n, char orig, char dest, char temp)

{
final String DIRECT_MOVE =
"Move disk " + n + " from " + orig + " to " + dest + "\n";

if (n == 1)
return DIRECT_MOVE;
String result = move (n - 1, orig, temp, dest);
result += DIRECT_MOVE;
result += move (n - 1, temp, dest, orig);
return result;
} // method move

It is difficult to trace the execution of the move method because the interrelationship of parameter and
argument values makes it difficult to keep track of which pole is currently the origin, which is the
destination and which is the temporary. In the following execution frames, the parameter values are the
argument values from the call, and the argument values for subsequent calls come from the method code
and the current parameter values. For example, suppose the initial call is:

move (3, 'A', 'B', 'C');



Then the parameter values at step 0 will be those argument values, so we have:

n =3

orig =
dest =
temp =

Because n is

String
result
result
return

The values of those arguments are obtained from the parameters’ values, so the statements
equivalent to:

String
result
result
return

A
B
el

not equal to 1, the recursive part is executed:

result = move (n - 1, orig, temp, dest);
+= DIRECT_MOVE;

+= move (n - 1, temp, dest, orig);
result;

result = move (2, 'A', 'C', 'B');
= "Move disk 3 from A to B\n";

= move (2, 'C', 'B', 'A');
result;
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are

Make sure you understand how to obtain the parameter values and argument values before you try to
follow the trace given below.
Here is a step-by-step, execution-frame trace of the move method when the initial call is:

move

(3,

‘A, 'B', 'C');
value of result
Step 0:
n=3
orig = 'A'
dest = 'B'
temp = 'C'
v'String result = move (2, 'A', 'C', 'B');
result += "Move disk 3 from A to B\n";
result += move (2,'C','B','A');
return result;
Step 1:
n =2
orig = 'A'
dest = 'C!
temp = 'B'
v'String result = move (1, 'A', 'B', 'C');
result += "Move disk 2 from A to C\n";
result += move (1,'B','C','A');
return result;
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n =3

orig = 'A'

dest = 'B'

temp = 'C’'

v'String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";
result += move (2,'C','B','A');
return result;

Step 2:

n=1

orig = 'A'

dest = 'B'

temp = 'C!'

v return "Move disk 1 from A to B\n";

n=2
orig = 'A'
dest = 'C!
temp = 'B'
Move disk 1 from A to B

vString result = move (1, 'A', 'B', 'C');

result += "Move disk 2 from A to C\n";

result += move (1, 'B', 'C', 'A');

return result;

n =3

orig = 'A'

dest = 'B'

temp = 'C!'

vString result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";
result += move (2,'C','B','A');
return result;

Step 3:

n =2
orig = 'A'
dest = 'C'
temp = 'B'

Move disk 1 from A to B
String result = move (1, 'A', 'B', 'C'); Move disk 2 from A to C

vresult += "Move disk 2 from A to C\n";
result += move (1,'B','C','A');
return result;




n =23

orig = 'A'

dest = 'B'

temp = 'C!'

v'String result = move (2, 'A', 'C',

result += "Move disk 3 from A to B\n";

'B');

5.4 Towers of Hanoi

result += move (2,'C','B','A');
return result;

Step 4:

n=2

orig = 'A'

dest = 'C!

temp = 'B'
String result = move (1, 'A', 'B', 'C');
result += "Move disk 2 from A to C\n";

vresult += move (1, 'B', 'C', 'A');

return result;

n =3

orig = 'A'

dest = 'C!

temp = 'B'

v'String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";
result += move (2, 'C', 'B', 'A');
return result;

Step 5:

n =1

orig = 'B'

dest = 'C'

temp = 'A'

v return "Move disk 1 from B to C\n";

n=2

orig = 'A'

dest = 'C'

temp = 'B' Move disk 1 from A to B

Move disk 2 from A to C

String result = move (1, 'A', 'B', 'C');

result += "Move disk 2 from A to C\n";
Yresult += move (1,'B','C','A');
return result;

Move disk 1 from B to C

173
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n =3
orig = 'A'
dest = 'B!
temp = 'C'
¥'String result = move (2, 'A', 'C', 'B');
result += "Move disk 3 from A to B\n";
result += move (2,'C','B','A' );
return result;
Step 6:
n =3
orig = 'A'
dest = 'B Move disk 1 from A to B
temp = 'C Move disk 2 from A to C
String result = move (2, 'A', 'C', 'B'); thedﬁklﬁonlBtoC
Yresult += "Move disk 3 from A to B\n"; Move disk 3 from A to B
result += move (2, 'C', 'B', 'A');
return result;
Step 7:
n =3
orig = 'A!
dest = 'B!
temp = 'C!
String result = move (2, 'A', 'C', 'B');
result += "Move disk 3 from A to B\n";
Yresult += move (2, 'C', 'B', 'A');
return result;
Step 8:
n =2
orig = 'C'
dest = 'B!
temp = 'A'
v'String result = move (1, 'C', 'A', 'B');
result += "Move disk 2 from C to B";
result += move (1,'A','B','C'");
return result;
n =3
orig = 'A'
dest = 'B!
temp = 'C'
String result = move (2, 'A', 'C', 'B');
result += "Move disk 3 from A to B\n";
vYresult += move (2,'C','B','A');
return result;
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Step 9:
n=1
orig = 'C'
dest = 'A'
temp = 'B'

vreturn "Move disk 1 from C to A\n";

n =2

orig = 'C'
dest = 'B'
temp = 'A'

v'String result = move (1, 'C', 'A',

'B');

result += "Move disk 2 from C to B\n";
result += move (1, 'A', 'B', 'C');
return result;

n =3

orig = 'A'

dest = 'B'

temp = 'C'
String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";

Move disk 1 from A to B
Move disk 2 from A to C
Move disk 1 from B to C
Move disk 3 from A to B
Move disk 1 from C to A

vresult += move (2, 'C', 'B', 'A');
return result;
Step 10:
n =2
gz;g i ,g, Move disk 1 from A to B
temp = 'A’ MovedfskaromAtOC
Move disk 1 from B to C
String result = move (1, 'C', 'A', 'B'); Move disk 3 from A to B

vresult += "Move disk 2 from C to B\n";

result += move (1,'A','B','C');
return result;
n=3
orig = 'A!
dest = 'B'
temp = 'C'
String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";
vresult += move (2,'C','B','A');
return result;

Move disk 1 from C to A
Move disk 1 from C to B
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Step 11:

n =2

orig = 'C!'
dest = 'B'
temp = 'A'

String result = move (1, 'C', 'A', 'B');
result += "Move disk 2 from C to B\n";

vresult += move (1, 'A', 'B', 'C');
return result;

n =3
orig = 'A'
dest = 'B'
temp = 'C!
String result = move (2, 'A', 'C', 'B');
result += "Move disk 3 from A to B\n";
vresult += move (2, 'C', 'B', 'A');

return result;

Step 12:

n=1

orig = 'A'

dest = 'B!

temp = 'C'

v’ "Move disk 1 from A to B\n";

n=2

orig = 'C! Move disk 1 from A to B
dest = 'B' Move disk 2 from A to C
temp = 'A! Move disk 1 from B to C
. Move disk 3 from A to B
String result = move (1, 'C', 'A', 'B'); Move disk 1 from C to A

result += "Move disk 2 from C to B\n"; .
Move disk 2 from C to B

Yresult += move (1,'A','B','C');

Move disk 1 from A to B
return result;

n =3
orig = 'A'
dest = 'B'
temp = 'C'
String result = move (2, 'A', 'C', 'B');

result += "Move disk 3 from A to B\n";
Yresult += move (2,'C','B','A');
return result;
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Notice the disparity between the relative ease in developing the recursive method and the rela-
tive difficulty in tracing its execution. Imagine what it would be like to trace the execution of move
(15,'a','B', 'Cc"). Fortunately, you need not undergo such torture. Computers handle this type of
tedious detail very well. You “merely” develop the correct program and the computer handles the execu-
tion. For the move method—as well as for the other recursive methods in this chapter—you can actually
prove the correctness of the method. See Exercise 5.5.

The significance of ensuring the precondition (see the @throws specification) is illustrated in the
move method. For example, let’s see what would happen if no exception were thrown and move were
called with O as the first argument. Since n would have the value 0, the condition of the if statement would
be false, and there would be a call to move (-1, ...). Within that call, n would still be unequal to 1, so
there would be a call to move (-2, ...) thentomove (-3,....),move (-4,...),move (-5,...),
and so on. Eventually, saving all those copies of n would overflow an area of memory called the stack . This
phenomenon known is as infinite recursion. A StackOverflowError—not an exception—is generated,
and the execution of the project terminates. In general, infinite recursion is avoided if each recursive call
makes progress toward a “simplest” case. And, just to be on the safe side, the method should throw an
exception if the precondition is violated.

A recursive method does not explicitly describe the considerable detail involved in its execution.
For this reason, recursion is sometimes referred to as “the lazy programmer’s problem-solving tool.” If
you want to appreciate the value of recursion, try to develop an iterative version of the move method.
Programming Project 5.1 provides some hints.

5.4.1 Analysis of the move Method

What about worstTime(n)? In determining the time requirements of a recursive method, the number of
calls to the method is of paramount importance. To get an idea of the number of calls to the move method,
look at the tree in Figure 5.3.

As illustrated in Figure 5.3, the first call to the move method has n as the first argument. During that
call, two recursive calls to the move method are made, and each of those two calls has n - 1 as the first

move (n, ...)
move (n-1, ...) move (n-1, ...)
move (n-2, ...) move (n-2, ...) move (n-2, ...) move (n-2, ...)
move (1, ...) move (1, ...)

FIGURE 5.3 A schematic of the number of calls to the move method
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argument. From each of those calls, we get two more calls to move, and each of those four calls hasn - 2
as the first argument. This process continues until, finally, we get calls with 1 as the first argument.

To calculate the total number of calls to the move method, we augment the tree in Figure 5.3 by
identifying levels in the tree, starting with level O at the top, and include the number of calls at each level.
At level 0, the number of calls is 1(= 2°). At level 1, the number of calls is 2 (= 2!). In general, at level
k there are 2% calls to the move method. Because there are n levels in the tree and the top is level 0, the
bottom must be level n — 1, where there are 2"~! calls to the move method. See Figure 5.4.

From Figure 5.4, we see that the total number of calls to the move method is

n—1
2042 422 423 4 42! :sz
k=0

By Example A2.6 in Appendix 2, this sum is equal to 2" — 1. That is, the number of calls to the move
method is 2" — 1. We conclude that, for the move method, worstTime(r) is exponential in 7; specifically,
worstTime(n) is ©(2"). In fact, since any definition of the move method must return a string that has
2" — 1 lines, the Towers of Hanoi problem is intractable. That is, any solution to the Towers of Hanoi
problem must take exponential time.

The memory requirements for move are modest because although space is allocated when move is
called, that space is deallocated when the call is completed. So the amount of additional memory needed
for move depends, not simply on the number of calls to move, but on the maximum number of started-
but-not-completed calls. We can determine this number from the execution frames. Each time a recursive
call is made, another frame is constructed, and each time a return is made, that frame is destroyed. For
example, if n = 3 in the original call to move, then the maximum number of execution frames is 3. In
general, the maximum number of execution frames is n. So worstSpace(n) is linear in n.

We now turn our attention to a widely known search technique: binary search. We will develop a
recursive method to perform a binary search on an array. Lab 9 deals with the development of an iterative
version of a binary search.

level  # of calls

move (n, ...) 0 20

move (n-1, ...) move (n-1, ...) 1 21

move (n-2, ...) move (n-2, ...) move (n-2, ...) move (n-2, ...) 2 22
move (1, ...) move (1, ...) ... n-1 on-1

FIGURE 5.4 The relationship between level and number of calls to the move method in the tree from Figure 5.3
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5.5 Searching an Array

Suppose you want to search an n-element array for an element. We assume that the element class imple-
ments the Comparable<T> interface (in java.lang):

public interface Comparable<T>

{

/**

* Returns an int less than, equal to or greater than 0, depending on
* whether the calling object is less than, equal to or greater than a
* gpecified object.

* @param obj - the specified object that the calling object is compared to.

* @return an int value less than, equal to, or greater than 0, depending on
* whether the calling object is less than, equal to, or greater than
* obj, respectively.

* @throws ClassCastException - if the calling object and obj are not in the

* same class.
*

*/
public int compareTo (T obj)
} // interface Comparable<T>

For example, the String class implements the Comparable<String> interface, so we can write the
following:

String s = "elfin";

System.out.println (s.compareTo ("elastic"));

The output will be greater than 0 because “elfin” is lexicographically greater than “elastic”; in other
words, “elfin” comes after “elastic” according to the Unicode values of the characters in those two strings.
Specifically, the ‘f” in “elfin” comes after the ‘a’ in “elastic”.

The simplest way to conduct the search is sequentially: start at the first location, and keep checking
successively higher locations until either the element is found or you reach the end of the array. This
search strategy, known as a sequential search, is the basis for the following generic algorithm (that is,
static method):

/**

* Determines whether an array contains an element equal to a given key.
* The worstTime(n) is O(n).

*

* @param a the array to be searched.

* @param key the element searched for in the array a.

* @return the index of an element in a that is equal to key, if such an element
* exists; otherwise, -1.

* @throws ClassCastException, if the element class does not implement the
* Comparable interface.
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*
*/
public static int sequentialSearch (Object[ ] a, Object key)
{
for (int i = 0; i < a.length; i++)
if (((Comparable) a [i]).compareTo (key) == 0)
return i;
return -1;
} // sequentialSearch

Because the element type of the array parameter is Object, the element type of the array argument can be
any type. But within the sequentialSearch method, the compiler requires that a [i] must be cast to
a type that implements the Comparable<Object> interface. For the sake of simplicity, we use the “raw”
type Comparable instead of the equivalent Comparable<Object>

The sequentialSearch method is not explicitly included in the Java Collections Framework. But
it is the basis for several of the method definitions in the ArrayList and LinkedList classes, which are
in the framework.

For an unsuccessful sequential search of an array, the entire array must be scanned. So both
worstTime(n) and averageTime(n) are linear in n for an unsuccessful search. For a successful sequen-
tial search, the entire array must be scanned in the worst case. In the average case, assuming each location
is equally likely to house the element sought, we probe about n/2 elements. We conclude that for a
successful search, both worstTime(n) and averageTime(n) are also linear in n.

Can we improve on these times? Definitely. In this section we will develop an array-based search
technique for which worstTime(n) and averageTime(n) are only logarithmic in n. And in Chapter 14,
we will encounter a powerful search technique—hashing—for which averageTime(n) is constant, but
worstTime(n) is still linear in n.

Given an array to be searched and a value to be searched for, we will develop a binary search, so
called because the size of the region searched is divided by two at each stage until the search is completed.
Initially, the first index in the region is index 0, and the last index is at the end of the array. One important
restriction is this: A binary search requires that the array be sorted.

We assume, as above, that the array’s element class implements the Comparable interface.

Here is the method specification, identical to one in the Arrays class in the package java.util:

* Searches the specified array for the specified object using the binary
* gsearch algorithm. The array must be sorted into ascending order

* according to the <i>natural ordering</i> of its elements (as by

* <tt>Sort (Object[ ]1</tt>), above) prior to making this call. If it is
* not sorted, the results are undefined. If the array contains multiple
* elements equal to the specified object, there is no guarantee which

* one will be found. The worstTime(n) is O(log n).

* @param a the array to be searched.
* @param key the value to be searched for.

* @return index of the search key, if it is contained in the array;

* otherwise, <tt>(-(<i>insertion point</i>) - 1l)</tt>. The

* <i>insertion point</i> is defined as the point at which the
* key would be inserted into the array: the index of the first
* element greater than the key, or <tt>a.length</tt>, if all

* elements in the array are less than the specified key. Note
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* that this guarantees that the return value will be >= 0 if
* and only if the key is found.

* @throws ClassCastException if the array contains elements that are not

* <i>mutually comparable</i> (for example, strings and integers),
* or the search key in not mutually comparable with the elements
* of the array.

* @see Comparable
* @see #sort(Object[ 1)
*/
public static int binarySearch (Object[ ] a, Object key)

In javadoc, the html tag <tt> signifies code, <i> signifies italics, and &gt; signifies the greater than
symbol, ‘>’. The symbol ‘>’ by itself would be interpreted as part of an html tag. The “#” in one of the
@see lines creates a link to the given sort method in the document generated through javadoc; that line
expands to

See Also:

sort (Object[])

The BinarySearchTest class is available from the book’s website, and includes the following test (names
is the array of string elements from Figure 5.5):

@Test
public void binarySearchTest6 ()
{
assertEquals (-11, binarySearch (names, "Joseph"));
} // method binarySearchTest6

For the sake of utilizing recursion, we will focus on the first and last indexes in the region being searched.
Initially, first = 0 and last = a.length - 1. So the original version of binarySearch will be a
wrapper that simply calls

return binarySearch (a, 0, a.length - 1, key):;
The corresponding method heading is
public static int binarySearch (Object[ ] a, int first, int last, Object key)

For defining this version of the binarySearch method, the basic strategy is this: We compare the element
at the middle index of the current region to the key sought. If the middle element is less than the key, we
recursively search the array from the middle index 4 1 to index last. If the middle element is greater
than the key, we recursively search the array from index first to the middle index — 1. If the middle
element is equal to the key, we are done.

Assume, for now, that first <= last. Later on we’ll take care of the case where first > last.
Following the basic strategy given earlier, we start by finding the middle index:

int mid = (first + last) >> 1;

The right-hand-side expression uses the right-shift bitwise operator, >>, to shift the binary representation
of (first + last) to the right by 1. This operation is equivalent to, but executes faster than

int mid = (first + last) / 2;
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The middle element is at index mid in the array a. We need to compare (the element referenced by) a
[mid] to (the element referenced by) key. The compareTo method is ideal for the comparison, but that
method is not defined in the element class, Object. Fortunately, the compareTo method is defined in any
class that implements the Comparable interface. So we cast a [mid] to a Comparable object and then
call the method compareTo:

Comparable midval = (Comparable)a [mid];
int comp = midval.compareTo (key) ;

If the result of this comparison is <0, perform a binary search on the region from mid + 1 to last and
return the result of that search. That is:

if (comp < 0)
return binarySearch (a, mid + 1, last, key);

Otherwise, if comp > 0, perform a binary search on the region from first to mid - 1 and return the
result. That is,

if (comp > 0)
return binarySearch (a, first, mid - 1, key);

Otherwise, return mid, because comp == 0 and so a [mid] is equal to key.

For example, let’s follow this strategy in searching for “Frank” in the array names shown in
Figure 5.5. That figure shows the state of the program when the binarySearch method is called to
find “Frank”.

The assignment:

mid = (first + last) >> 1;

gives mid the value (0 + 9)/2, which is 4.

first mid last a [mid] key
0 4 9 Ed Frank

Ada a[0]

Ben a[l]

Carol a[2]

Dave a[3]

Ed af4]

Frank a[5]

Gerri a[6]

Helen a[7]

Iegy a[8]

Joan a[9]

FIGURE 5.5 The state of the program at the beginning of the method called binarySearch (names, 0, 9,
"Frank"). The parameter list is Object[ 1 a, int first, int last and Object key. (For simplicity, we
pretend that names is an array of Strings rather than an array of references to Strings)
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The middle element, “Ed”, is less than “Frank”, so we perform a binary search of the region from
mid + 1 to last. The call is

binarySearch (a, mid + 1, last, key);

The parameter first gets the value of the argument mid + 1. During this execution of binarySearch,
the assignment

mid = (first + last) >> 1;

gives mid the value (5 + 9)/2, which is 7, so midval is “Helen”. See Figure 5.6.
The middle element, “Helen”, is greater than “Frank”, so a binary search is performed on the region
from indexes 5 through 6. The call is

binarySearch (a, first, mid - 1, key);

The parameter last gets the value of the argument mid - 1. During this execution of binarySearch,
the assignment

mid = (first + last) >> 1;

gives mid the value (5 4+ 6)/2, which is 5, so the middle element is “Frank”. See Figure 5.7.

Success! The middle element is equal to key, so the value returned is mid, the index of the middle
element.

The only unresolved issue is what happens if the array does not have an element equal to key. In
that case, we want to return -insertion Point - 1, where insertionPoint is the index where key
could be inserted without disordering the array. The reason we don’t return -insertionPoint is that we
would have an ambiguity if insertionPoint were equal to 0: a return of O could be interpreted as the
index where key was found.

How can we determine what value to give insertionPoint? If first > last initially, we must

have an empty region, with first = 0 and last = -1, SO insertionPoint should get the value of

first mid last a [mid] key
5 7 9 Helen Frank

Ada a [0]

Ben a[l]

Carol a[2]

Dave a[3]

Ed al4]

Frank a[5]

Gerri a[6]

Helen a[7]

Iggy a[8]

Joan a[9]

FIGURE 5.6 The state of the program at the beginning of the binary search for “Frank” in the region from
indexes 5 through 9
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first mid last a [mid] key
5 5 6 Frank Frank

Ada a[0]

Ben a[l]

Carol a[2]

Dave a[3]

Ed af4]

Frank a[5]

Gerri a[6]

Helen al7]

Iggy a 8]

Joan a[9]

FIGURE 5.7 The state of the program at the beginning of the binary search for “Frank” in the region from
indexes 5 through 6

first. Otherwise we must have first <= last during the first call to binarySearch. Whenever
first <= last at the beginning of a call to binarySearch, we have

first <= mid <= last

Somid + 1 < = last + 1 and first - 1 < = mid - 1.
If comp < 0, we call

binarySearch (a, mid + 1, last, key);

At the beginning of that call, we have
first <= last + 1

On the other hand, if comp > 0, we call
binarySearch (a, first, mid - 1, key);

At the beginning of that call, we have
first - 1 <= last

In either case, at the beginning of the call to binarySearch, we have
first <= last + 1

So when we finally get first > last, we must have
first = last + 1

But any element with an index less than first must be less than key, and any element with an index
greater than last must be greater than key, so when we finish, first is the smallest index of any element
greater than key. That is where key should be inserted.
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Here is the complete definition:

public static int binarySearch(Object[ ] a, int first, int last, Object key)
{
if (first <= last)
{
int mid = (first + last) >> 1;
Comparable midval = (Comparable)a [mid];

int comp = midval.compareTo (key) ;
if (comp < 0)
return binarySearch (a, mid + 1, last, key);
if (comp > 0)
return binarySearch (a, first, mid - 1, key);
return mid; // key found
} // if first <= last
return -first - 1; // key not found; belongs at al[first]
} // method binarySearch

Here is a BinarySearchUser class that allows an end-user to enter names for which a given array will
be searched binarily:

public class BinarySearchUser
{
public static void main (String[ ] args)
{
new BinarySearchUser ().run();
} // method main

public void run()
{
final String ARRAY MESSAGE =
"The array on which binary searches will be performed is:\n" +
"Ada, Ben, Carol, Dave, Ed, Frank, Gerri, Helen, Iggy, Joan";
final String SENTINEL = "***",

final String INPUT_PROMPT =
"\n\nPlease enter a name to be searched for in the array (or " +
SENTINEL + " to quit): ";

final String[ ] names = {"Ada", "Ben", "Carol", "Dave", "Ed", "Frank",
"Gerri", "Helen", nggyu, "Joan"};

final String FOUND = "That name was found at index ";

final String NOT_FOUND = "That name was not found, but could be " +

"inserted at index ";
String name;
Scanner sc = new Scanner (System.in);
int index;

System.out.println (ARRAY_ MESSAGE) ;
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while (true)
{
System.out.print (INPUT_PROMPT) ;
name = sc.next();
if (name.equals (SENTINEL) )
break;
index = binarySearch (names, 0, names.length - 1, name);
if (index >= 0)
System.out.println (FOUND + index) ;

else
System.out.println (NOT_FOUND + (-index - 1));
} // while
} // method run
public static int binarySearch(Object[ ] a, int first, int last, Object key)
{
if (first <= last)
{
int mid = (first + last) >> 1;
Comparable midval = (Comparable)a [mid];

int comp = midval.compareTo (key) ;
if (comp < 0)
return binarySearch (a, mid + 1, last, key);
if (comp > 0)
return binarySearch (a, first, mid - 1, key);
return mid; // key found
} // if first <= last
return -first - 1; // key not found; belongs at al[first]
} // method binarySearch

} // class BinarySearchUser
Here is a step-by-step, execution-frame trace of the binarySearch method after an initial call of
binarySearch (names, 0, 9, "Dan");

Note that “Dan” is not in the array names.

Step 0:

a = [“Ada" , “Ben”, ZCarol” , “Dave”, w3 L, Frank” s
“Gerri”, “Helen”, “Iggy”, “Joan”]

first = 0

last = 9

key = “Dan” Frame 0

mid = 4

midval = “Ed”

comp is > 0

return binarySearch (a, 0, 3, “Dan”);
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Step 1:

a = [“Ada" , “Ben”, “Carol” , “Dave”, wEd” S Frank” ,
“Gerri”, “Helen”, “ Iggy”, “Joan” ]

first = 0

last = 3

key = “Dan” F |

mid = 1 rame

midval = “Ben”

comp is < 0

return binarySearch (a, 2, 3, “Dan”);

a = [\\Adall , \\Benll , \\Carol " , \\Davell , \\Ed" , " Frankﬂ ,
\\Gerri " , \\Helenﬂ , w Igg-y!! , \\Joanﬂ]

first = 0

last = 9

key = “Dan” Frame 0

mid = 4

midval = “Ed”

comp is > 0

return binarySearch (a, 0, 3, “Dan”);

Step 2:

a = [“Ada” , “Ben” , “Carol” , “Dave” , w3 , "Frank” ,
“Gerri”, “Helen”, “ Iggy”, “Joan” ]

first = 2

last = 3

key = “Dan” F )

mid = 2 rame

midval = “Carol”

comp is < 0

return binarySearch (a, 3, 3, “Dan”);

a = [\\Adall , \\Benll , \\Carol " , \\Davell , \\Edll , " Frankll ,

\\Gerri " , “Helel’l" , w Igg-ylr , \\Joanll]

first = 0

last = 3

key = “Dan” Frame 1

mid = 1

midval = “Ben”

comp is < 0

return binarySearch (a, 2, 3, “Dan”);
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a = [“Ada" , “Ben”, “Carol” , “Dave”, “Ed” )" Frank” ,
“Gerri” , “Helen” , " Iggy” , “Joan” ]

first = 0

last = 9

key = “Dan” F 0

mid = 4 rame

midval = “Ed”

comp is > 0

return binarySearch (a, 0, 3, “Dan”);

Step 3:

a = [“Ada" , “Ben” , “Carol” , “Dave” , w3 , "Frank” ,
“Gerri”, “Helen”, " Iggy”, “Joan” ]

first = 3

last = 3

key = “Dan” Frame 3

mid = 3

midval = “Dave”

comp is > 0

return binarySearch (a, 3, 2, “Dan”);

a = [“Ada" , “Ben”, “Carol” , “Dave”, “E4” )" Frank” ,
“Gerri” , “Helen” , " Iggy" , “Joan” ]

first = 2

last = 3

key = “Dan” )

mid = 2 Frame

midval = “Carol”

comp is < 0

return binarySearch (a, 3, 3, “Dan”);

a = [\\Adall , \\Ben" , \\Carol ”n , \\Dave" , \\Ed" , ”n Frankﬂ ,
“Gerri”, “Helen”, " Iggy”, “Joan” ]

first = 0

last = 3

key = “Dan” Frame 1

mid = 1

midval = “Ben”

comp is < 0

return binarySearch (a, 2, 3, “Dan”);
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a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,
“Gerri”, “Helen”, “Iggy”, “Joan”]

first = 0
last = 9

key = “Dan”
mid = 4
midval = “Ed”
comp is > 0

return binarySearch (a, 0, 3, “Dan”);

Frame 0

Step 4:

a = [“Ada", “Ben”, “Carol", “Dave” , “Ed","Frank",
“Gerri”, “Helen”, “Iggy”, “Joan”]

first = 3

last = 2

key = “Dan”

return —-3-1;

-4
a = [“Adaﬂ \\Benll \\Carolll \\Davell \\Edll " Frankll
“Gerri", “Helen”, “Iggy”, “Joan”]
first = 3
last = 3
key = “Dan”
mid = 3
midval = “Dave”

comp is > 0

return binarySearch (a, 3, 2, “Dan”);

—4
a = [“Ada", “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,
“Gerri”, “Helen”, “Iggy”, “Joan”]
first = 2
last = 3
key = “Dan”
mid = 2
midval = “Carol”

comp is < 0

return binarySearch (a, 3, 3, “Dan”);

Frame 4

Frame 3

Frame 2

189
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|

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,”Frank”,
“Gerri”, “Helen”, “Iggy”, “Joan” ]

first = 0

last = 3

key = “Dan”
mid = 1

midval = “Ben”
comp is < 0

Frame 1

return binarySearch (a, 2, 3, “Dan”);

|

a = [“Ada”, “Ben”, “Carol”, “Dave”, “Ed”,"”Frank”,
“Gerri”, “Helen”, “Iggy”, “Joan”]

first = 0
last = 9

key = “Dan”
mid = 4
midval = “Ed”
comp is > 0

Frame O

return binarySearch (a, 0, 3, “Dan”);
_41

How long does the binarySearch method take? We need to make a distinction between an unsuc-
cessful search, in which the element is not found, and a successful search, in which the element is found.
We start with an analysis of an unsuccessful search.

During each execution of the binarySearch method in which the middle element is not equal to
key, the size of the region searched during the next execution is, approximately, halved. If the element
sought is not in the array, we keep dividing by 2 as long as the region has at least one element. Let n
represent the size of the region. The number of times n can be divided by 2 until n = 0 is logarithmic in
n—this is, basically, the Splitting Rule from Chapter 3. So for a failed search, worstTime(n) is logarithmic
in n. Since we are assuming the search is unsuccessful, the same number of searches will be performed
in the average case as in the worst case, so averageTime(n) is logarithmic in n for a failed search.

The worst case for a successful search requires one less call to the binarySearch method than the
worst case (or average case) for an unsuccessful search. So for a successful search, worstTime(n) is still
logarithmic in n. In the average case for a successful search, the analysis—see Concept Exercise 5.15—is
more complicated, but the result is the same: averageTime(n) is logarithmic in 7.

During each call, a constant amount of information is saved: the entire array is not saved, only
a reference to the array. So the space requirements are also logarithmic in n, for both successful and
unsuccessful searches and for both the worst case and the average case.
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In the Arrays class of the java.util package, there is an iterative version of the binary search
algorithm. In Lab 8, you will conduct an experiment to compare the time to recursively search an array
of int s, iteratively search an array of int s, and iteratively search an array of Integer s. Which of the
three do you think will be slowest?

You are now prepared to do Lab 8: Iterative Binary Search

Lab 9 introduces another recursive method whose development is far easier than its iterative coun-
terpart. The method for generating permutations is from Roberts’ delightful book, Thinking Recursively
[Roberts, 1986].

You are now prepared to do Lab 9: Generating Permutations

Section 5.6 deals with another design pattern (a general strategy for solving a variety of problems):
backtracking. You have employed this strategy whenever you had to re-trace your steps on the way to
some goal. The BackTrack class also illustrates the value of using interfaces.

5.6 Backtracking

The basic idea with backtracking is this: From a given starting position, we want to reach a goal position.
We repeatedly choose, maybe by guessing, what our next position should be. If a given choice is valid—that
is, the new position might be on a path to the goal—we advance to that new position and continue. If a
choice leads to a dead end, we back up to the previous position and make another choice. Backtracking
is the strategy of trying to reach a goal by a sequence of chosen positions, with a re-tracing in reverse
order of positions that cannot lead to the goal.

For example, look at the picture in Figure 5.8. We start at position PO and we want to find a path to
the goal state, P14. We are allowed to move in only two directions: north and west. But we cannot “see”
any farther than the next position. Here is a strategy: From any position, we first try to go north; if we
are unable to go north, we try to go west; if we are unable to go west, we back up to the most recent
position where we chose north and try to choose west instead. We never re-visit a position that has been
discovered to be a dead end. The positions in Figure 5.8 are numbered in the order they would be tried
according to this strategy.

Figure 5.8 casts some light on the phrase “re-tracing in reverse order.” When we are unable to go
north or west from position P4, we first back up to position P3, where west is not an option. So we back
up to P2. Eventually, this leads to a dead end, and we back up to P1, which leads to the goal state.

When a position is visited, it is marked as possibly being on a path to the goal, but this marking
must be undone if the position leads only to a dead end. That enables us to avoid re-visiting any dead-end
position. For example, in Figure 5.8, PS5 is not visited from P8 because by the time we got to P8, P5 had
already been recognized as a dead end.

We can now refine our strategy. To try to reach a goal from a given position, enumerate over all
positions directly accessible from the given position, and keep looping until either a goal has been reached
or we can no longer advance to another position. During each loop iteration, get the next accessible
position. If that position may be on a path to a goal, mark that position as possibly leading to a goal and,
if it is a goal, the search has been successful; otherwise, attempt to reach a goal from that position, and
mark the position as a dead end if the attempt fails.
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P15 (GOAL)
P14 P4
A A
P13 P7 P3
A T A
P12 P6 «+—— P5 «—— P2
P11 < P10 « P9 « P8 « Pl
A

PO

FIGURE 5.8 Backtracking to obtain a path to a goal. The solution path is PO, P1, P8, P9, P10, P11, P12, P13,
P14, P15

Make sure you have a good understanding of the previous paragraph before you proceed. That
paragraph contains the essence of backtracking. The rest of this section and Section 5.6.1 are almost
superfluous by comparison.

Instead of developing a backtracking method for a particular application, we will utilize a generalized
backtracking algorithm from Wirth [1976, p.138]. We then demonstrate that algorithm on a particular
application, maze searching. Four other applications are left as programming projects in this chapter.
And Chapter 15 has another application of backtracking: a programming project for searching a network.
Backtracking is a design pattern because it is a generic programming technique that can be applied in a
variety of contexts.

The BackTrack class below is based on one in Noonan [2000]. The details of the application
class will be transparent to the BackTrack class, which works through an interface, Application. The
Application interface will be implemented by the particular application.

A user (of the BackTrack class) supplies:

e the class implementing the Application interface (note: to access the positions available from a
given position, the iterator design-pattern is employed, with a nested iterator class);

* a Position class to define what “position” means for this application;

The Application methods are generalizations of the previous outline of backtracking. Here is the Appli
cation interface:

import java.util.*;

public interface Application
{
/**
* Determines if a given position is legal and not a dead end.

*

* @param pos - the given position.

*

* @return true if pos is a legal position and not a dead end.
*/

boolean isOK (Position pos);
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/**

* Indicates that a given position is possibly on a path to a goal.

*

* @param pos the position that has been marked as possibly being on a
* path to a goal.

*/

void markAsPossible (Position pos);

/**
* Indicates whether a given position is a goal position.

*

* @param pos the position that may or may not be a goal position.

*

* @return true if pos is a goal position; false otherwise.
*/

boolean isGoal (Position pos) ;

/**

* Indicates that a given position is not on any path to a goal position.

*

* @param pos the position that has been marked as not being on any path to
* a goal position.

*/

void markAsDeadEnd (Position pos);

/**

* Converts this Application object into a String object.

*

* @return the String representation of this Application object.
*/

String toString() ;

/**

* Produces an Iterator object that starts at a given position.

* @param pos the position the Iterator object starts at.

* @return an Iterator object that accesses the positions directly
* available from pos.

*/

Iterator<Position> iterator (Position pos);

} // interface Application

193

The BackTrack class has two responsibilities: to initialize a BackTrack object from a given application
object, and to try to reach a goal position from a given position. The method specifications are

/**

* Initializes this BackTrack object from an application.



194 CHAPTER 5 Recursion

*

* @param app the application
*/
public BackTrack (Application app)

/**

* Attempts to reach a goal through a given position.
*

* @param pos the given position.
*

* @return true if the attempt succeeds; otherwise, false.
*/
public boolean tryToReachGoal (Position pos)

The only field needed is (a reference to) an Application. The definition of the constructor is straightfor-
ward. The definition of the tryToReachGoal method is based on the outline of backtracking given above:
To “enumerate over all positions accessible from the given position,” we create an iterator. The phrase
“attempt to reach a goal from that position” becomes a recursive call to the method tryToReachGoal.
The complete BackTrack class, without any application-specific information, is as follows:

import java.util.*;

public class BackTrack
{
protected Application app;

/**
* Initializes this BackTrack object from an application.
*
* @param app the application
*/
public BackTrack (Application app)
{
this.app = app;
} // constructor

/**

* Attempts to reach a goal through a given position.
*

* @param pos the given position.

*

* @return true if the attempt succeeds; otherwise, false.
*/

public boolean tryToReachGoal (Position pos)

{

Tterator<Position> itr = app.iterator (pos);

while (itr.hasNext())
{
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pos = itr.next();
if (app.isOK (pos))
{
app.markAsPossible (pos) ;
if (app.isGoal (pos) || tryToReachGoal (pos))
return true;
app.markAsDeadEnd (pos) ;
} // pos may be on a path to a goal
} // while
return false;
} // method tryToReachGoal

} // class BackTrack

Let’s focus on the tryToReachGoal method, the essence of backtracking. We look at the possible choices
of moves from the pos parameter. There are three possibilities:

1. One of those choices is a goal position. Then true is returned to indicate success.

2. One of those choices is valid but not a goal position. Then another call to tryToReachGoal is made,
starting at the valid choice.

3. None of the choices is valid. Then the while loop terminates and false is returned to indicate
failure to reach a goal position from the current position.

The argument to tryToReachGoal represents a position that has been marked as possibly being on a
path to a goal position. Whenever a return is made from tryToReachGoal, the pre-call value of pos is
restored, to be marked as a dead end if it does not lead to a goal position.

Now that we have developed a framework for backtracking, it is straightforward to utilize this
framework to solve a variety of problems.

5.6.1 An A-maze-ing Application

For one application of backtracking, let’s develop a program to try to find a path through a maze. For
example, Figure 5.9 has a 7-by-13 maze, with a 1 representing a corridor and a O representing a wall.
The only valid moves are along a corridor, and only horizontal and vertical moves are allowed; diagonal
moves are prohibited. The starting position is in the upper left-hand corner and the goal position is in the
lower-right-hand corner.

O == = e
O — O O O =
O~ OO = =
o~ oco~o
— e = s e e
— 00~ O0 O —
— oo~ ——=0
—_ o O O o~ O
— 0O = =0
e =
—_— O O = = =
— 00 ~O0 O —
—_—O O = = = =

0000

FIGURE 5.9 A maze: 1 represents a corridor and O represents a wall. Assume the starting position is in the
upper left-hand corner, and the goal position is in the lower right-hand corner
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A successful traversal of this maze will show a path leading from the start position to the goal
position. We mark each such position with the number 9. Because there are two possible paths through
this maze, the actual path chosen will depend on how the iterator class orders the possible choices. For
the sake of specificity, assume the order of choices is north, east, south, and west. For example, from the
position at coordinates (5, 8), the first choice would be (4, 8), followed by (5, 9), (6, 8), and (5, 7).

From the initial position at (0, 0), the following positions are recorded as possibly being on a
solution-path:

(0, 1) // moving east
(0, 2) // moving east
(1, 2) // moving south
(1, 3) // moving east
(1, 4) // moving east
(0, 4) // moving north
(0, 5) // moving east;

This last position is a dead end, so we “undo” (0, 5) and (0, 4), backtrack to (1, 4) and then record the
following as possibly leading to the goal:

(2, 4) // moving south
(3, 4) // moving south
(3, 5) // moving east;

From here we eventually reach a dead end. After we undo (3, 5) and re-trace to (3, 4), we advance—without
any further backtracking—to the goal position. Figure 5.10 uses 9’ to show the corresponding path through
the maze of Figure 5.9, with dead-end positions marked with 2’s.

For this application, a position is simply a pair: row, column. The Position class is easily developed:

public class Position

{
protected int row,

column;

/**

* Tnitializes this Position object to (0, 0).
*/

public Position ()

{

row = 0;

9990220002222
1099902222202
1000902020202
1000922020222
1111900001000
0000900000000
0000999999999

FIGURE 5.10 A path through the maze of Figure 5.9. The path positions are marked with 9’s and the dead-end
positions are marked with 2’s
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column = 0;
} // default constructor
/**
* Initializes this Position object to (row, column).
*
* @param row the row this Position object has been initialized to.
* @param column the column this Position object has been initialized to.
*/
public Position (int row, int column)
{
this.row = row;
this.column = column;
} // constructor
/**
* Determines the row of this Position object.
*
* @return the row of this Position object.
*/
public int getRow ()
{
return row;
} // method getRow
/**
* Determines the column of this Position object.
*
* @return the column of this Position object.
*/
public int getColumn ()
{
return column;
} // method getColumn

} // class Position

For this application, the Application interface is implemented in a Maze class. The only fields are a
grid to hold the maze and start and finish positions. Figure 5.11 has the UML diagrams for the Maze class
and Application interface.

Except for the Maze class constructor and the three accessors (getGrid was developed for the sake of
testing), the method specifications for the Maze class are identical to those in the Application interfaces
given earlier. For the embedded MazeIterator class, the constructor’s specification is provided, but the
method specifications for the hasNext, next and remove methods are boilerplate, so we need not list
them. Here are the specifications for the Maze and MazeIterator constructors:

/**

* Initializes this Maze object from a file scanner over a file.
*

* @param fileScanner - the scanner over the file that holds the
* maze information.

* @throws InputMismatchException - if any of the row or column values are non-
* integers, or if any of the grid entries are non-integers.

* @throws NumberFormatException - if the grid entries are integers but neither
* WALL nor CORRIDOR
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<<interfacex>>
Application

+ 1sOK (pos: Position): boolean

+ markAsPossible (pos: Position)

+ goalReached (pos: Position): boolean
+ markAsDeadEnd (pos: Position)

+ toString(): String

+ iterator (pos: Position): Iterator<Positions>

Maze

# grid: bytel 11[ 1

Position
# start: Position

# finish: Position

+ Maze (fileScanner: Scanner) # column: int

+ isOK (pos: Position): boolean + Position()

+ markAsPossible (pos: Position) + Position (row: int, column int)
+ goalReached (pos: Position): boolean| | + getRow(): int

+ markAsDeadEnd (pos: Position) + getColumn() : int

+ toString(): String

+ iterator (pos: Position): Iterator

+ getStart(): Position
+ getFinish(): Position
+ getGrid(): bytel[ 11[ 1

FIGURE 5.11 The class diagram for the Maze class, which implements the Application interface and has
grid, start, and finish fields

*/
public Maze (Scanner fileScanner)

/**

* Initializes this Mazelterator object to start at a given position.

*

* @param pos the position the Iterator objects starts at.
*/

public Mazelterator (Position pos)
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The MazeTest class, available on the book’s website, starts by declaring a maze field and then creating
a maze (the one shown in Figure 5.9) from a file:

protected Maze maze;

@Before
public void runBeforeEachTest () throws IOException
{
fileScanner = new Scanner (new File ("maze.txt"));
maze = new Maze (fileScanner);
} // method runBeforeEachTest

Here are four of the boundary-condition tests of the is0K method:

Here is the complete Maze class, including the embedded MazeIterator class:

@Test
public void isOKTestl ()
{
Position pos = mew Position (0, 0);
assertEquals (true, maze.isOK (pos));
} // isOKTestl

@Test
public void isOKTest2 ()
{
Position pos = new Position (6, 12);
assertEquals (true, maze.isOK (pos));
} // 1isOKTest2

@Test
public void isOKTest3 ()
{
Position pos = mnew Position (7, 0);
assertEquals (false, maze.isOK (pos));
} // 1isOKTest3

@Test
public void isOKTest4 ()
{
Position pos = new Position (0, 13);
assertEquals (false, maze.isOK (pos));
} // 1isOKTest4

import java.util.*;

public class Maze implements Application

{

public static final byte WALL = 0;
public static final byte CORRIDOR = 1;
public static final byte PATH = 9;
public static final byte DEAD_END = 2;

protected Position start,
finish;
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protected byte[ ][ ] grid;

/**

* Initializes this Maze object from a file scanner over a file.

* @param fileScanner - the scanner over the file that holds the
* maze information.

* @throws InputMismatchException - if any of the row or column values are non-
* integers, or if any of the grid entries are non-integers.

* @throws NumberFormatException - if the grid entries are integers but neither

* WALL nor CORRIDOR
*/
public Maze (Scanner fileScanner)
{
int rows = fileScanner.nextInt (),
columns = fileScanner.nextInt();

grid = new byte [rows] [columns];

start = new Position (fileScanner.nextInt(),
fileScanner.nextInt ()) ;

finish = new Position (fileScanner.nextInt(),
fileScanner.nextInt()) ;

for (int i = 0; i1 < rows; i++)
for (int j = 0; j < columns; Jj++)
{
grid [i][j] = fileScanner.nextByte() ;
if (grid [i]1[J] != WALL "" grid [i][j] != CORRIDOR)
throw new NumberFormatException ("At position (" + i+ ", "+3j+ "), " +

grid [i]1[J] + " should be " +
WALL + " or " +4+ CORRIDOR + ".");
Y // for j
} // constructor

/**

* Determines if a given position is legal and not a dead end.

* @param pos - the given position.
*

* @return true if pos is a legal position and not a dead end.

*/
public boolean isOK (Position pos)
{
return pos.getRow() >= 0 "" pos.getRow() < grid.length ""
pos.getColumn() >= 0 "" pos.getColumn() < grid [0].length ""

grid [pos.getRow()] [pos.getColumn ()] == CORRIDOR;
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} // method isOK

/**
* Indicates that a given position is possibly on a path to a goal.
*

* @param pos the position that has been marked as possibly being on a path

* to a goal.
*/
public void markAsPossible (Position pos)
{
grid [pos.getRow ()] [pos.getColumn ()] = PATH;
} // method markAsPossible

/**
* Indicates whether a given position is a goal position.
*
* @param pos the position that may or may not be a goal position.
*
* @return true if pos is a goal position; false otherwise.
*/
public boolean isGoal (Position pos)
{

return pos.getRow() == finish.getRow() ""

pos.getColumn() == finish.getColumn() ;

} // method isGoal

/**

* Indicates that a given position is not on any path to a goal position.
*

* @param pos the position that has been marked as not being on any path to a
*
*/
public void markAsDeadEnd (Position pos)

{

goal position.

grid [pos.getRow ()] [pos.getColumn()] = DEAD_END;
} // method markAsDeadEnd

/**

* Converts this Application object into a String object.

*

* @return the String representation of this Application object.
*/

public String toString ()

{

String result = "\n";
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result += start.getRow() + " " + start.getColumn() + "\n";

result += finish.getRow() + " " + finish.getColumn() + "\n";

for (int row = 0; row < grid.length; row++)

{
for (int column = 0; column < grid [0].length; column++)

result += String.valueOf (grid [row] [column]) + * ’;

result += "\n";

} // for row = 0

return result;

} // method toString

/**

* Produces an Iterator object, over elements of type Position, that starts at a given
* position.
*
* @param pos - the position the Iterator object starts at.
*
* @return the Iterator object.
*/
public Iterator<Position> iterator (Position pos)
{
return new Mazelterator (pos);
} // method iterator

/**

* Returns the start position of this maze.
*

* @return - the start position of this maze
*

*/

public Position getStart()

{

return start;
} // method getStart

/**

* Returns the finish position of this maze.
*

* @return - the finish position of this maze
*

*/

public Position getFinish()

{

return finish;
} // method getFinish

VAR

* Returns a 2-dimensional array that holds a copy of the maze configuration.
*
* @return - a 2-dimensional array that holds a copy of the maze configuration.
*

*/
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public byte[ ][ ] getGrid()
{

byte[ ][ ] gridCopy = new byte[grid.length] [grid[0].length];

for (int 1 = 0; i < grid.length; i++)
for (int j = 0; j < grid[i].length; J++)
gridCopy[i][]j] = grid[i]([]];

return gridCopy;
} // method getGrid

protected class Mazelterator implements Iterator<Position>
{

protected static final int MAX_MOVES = 4;

protected int row,
column,

count;

/**

* Initializes this Mazelterator object to start at a given position.
*
* @param pos the position the Iterator objects starts at.
*/
public MazeIterator (Position pos)
{
row = pos.getRow() ;
column = pos.getColumn() ;
count = 0;
} // constructor

/**

* Determines if this Mazelterator object can advance to another
* position.
*

* @return true if this MazeIterator object can advance; false otherwise.
*/
public boolean hasNext ()
{
return count < MAX_ MOVES;
} // method hasNext

/**

* Advances this MazeIterator object to the next position.
*

* @return the position advanced to.

*/

public Position next ()

{

Position nextPosition = new Position();
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switch (count++)

{

case 0: nextPosition = new Position (row-1, column); // north

break;

case 1: nextPosition = new Position (row, column+l); // east
break;

case 2: nextPosition = new Position (row+l, column); // south
break;

case 3: nextPosition = new Position (row, column-1); // west

} // switch;
return nextPosition;
} // method next

public void remove ()

{
// removal is illegal for a MazeIlterator object
throw new UnsupportedOperationException() ;

} // method remove

} // class Mazelterator

} // class Maze

To show how a user might utilize the Maze class, we develop a MazeUser class. The MazeUser class
creates a maze from a file scanner. There is a method to search for a path through the maze. The output
is either a solution or a statement that no solution is possible. The method specifications (except for the
usual main method) are

/**

* Runs the application.
*/

public void run/()

/**

* Searches for a solution path through the maze from the start position

*  @param maze - the maze to be searched

*

* @return true - if there is a path through the maze; otherwise, false.
*

*/

public boolean searchMaze (Maze maze)

Figure 5.12 has the UML class diagrams that illustrate the overall design. Because the Position class is
quite simple and its diagram is in Figure 5.11, its class diagram is omitted.
The implementation of the MazeUser class is as follows:

import java.io.*;
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+ main (args: String[ ])
+ runf()
# searchMaze (maze: Maze): boolean

5.6 Backtracking 205

Maze BackTrack
# grid: bytel 1[ ] # app: Application
# start: Position + BackTrack (app: Application)
# finish: Position + tryToReachGoal (pos: Position) :boolean
+ Maze (fileScanner: Scanner) T
+ 1isOK (pos: Position): boolean \V/
<<interface>>
+ markAsPossible (pos: Position) Application
+ goalReached (pos: Position): boolean||+ isOK (pos: Position): boolean
+ markAsDeadEnd (pos: Position) + markAsPossible (pos: Position)
+ toString(): String + goalReached (pos: Position): boolean
+ iterator (pos: Position): Iterator + markAsDeadEnd (pos: Position)
+ getStart(): Position + toString(): String
+ getFinish(): Position + iterator (pos: Position): Iterator<Position>
+ getGrid(): bytel 1[ 1

FIGURE 5.12 The UML class diagrams for the maze-search project

import java.util.*;

public class MazeUser

{

public static void main (Stringl[ ]
{

new MazeUser () .run() ;
} // method main

public void run/()

args)
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final String INPUT_PROMPT =
"\n\nPlease enter the path for the file whose first line contains the " +
"number of rows and columns, \nwhose 2nd line the start row and column, " +

"whose 3rd line the finish row and column, and then the maze, row-by-row: ";

final String INITIAL_STATE =
"\nThe initial state is as follows (0 = WALL, 1 = CORRIDOR):\n";

final String START INVALID = "The start position is invalid.";
final String FINISH_INVALID = "The finish position is invalid.";

final String FINAL_STATE =
"The final state is as follows (2 = DEAD END, 9 = PATH):\n";

final String SUCCESS = "\n\nA solution has been found:";
final String FAILURE = "\n\nThere is no solution:";

Maze maze = null;

Scanner keyboardScanner = new Scanner (System.in),
fileScanner = null;

String fileName;

while (true)

{
try
{
System.out.print (INPUT_PROMPT) ;
fileName = keyboardScanner.next () ;
fileScanner = new Scanner (new File (fileName)) ;
break;
Y // try
catch (IOException e)
{
System.out.println ("\n" + e);
} // catch IOException
} // while
try

{

maze = new Maze (fileScanner) ;

System.out.println (INITIAL_STATE + maze) ;

Scanner stringScanner = new Scanner (maze.toString());

Position start = mew Position (stringScanner.nextInt (), stringScanner.nextInt()),

finish = new Position (stringScanner.nextInt(), stringScanner.nextInt());
if (!maze.isOK (start))
System.out.println (START_INVALID) ;

else if (!maze.isOK (finish))

System.out.println (FINISH_INVALID) ;
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else
{
if (searchMaze (maze, start))
System.out.println (SUCCESS) ;
else
System.out.println (FAILURE) ;
System.out.println (FINAL_STATE + maze) ;
} // else valid search
Yy // try
catch (InputMismatchException e)
{
System.out.println ("\n" + e + ": " + fileScanner.nextLine());
} // catch InputMismatchException
catch (NumberFormatException e)
{
System.out.println ("\n" + e);
} // catch NumberFormatException
catch (RuntimeException e)
{
System.out.println ("\n" + e);
System.out.println (FINAL_STATE + maze) ;
} // catch NumberFormatException
} // method run

/**

* Performs the maze search.
*

* @param maze - the maze to be searched.

*

* @return true - if there is a path through this maze; otherwise, false
*

*/

public boolean searchMaze (Maze maze)
{
Position start = maze.getStart();
maze.markAsPossible (start);
BackTrack backTrack = nmew BackTrack (maze);
if (maze.isGoal (start) || backTrack.tryToReachGoal (start))
return true;
maze.markAsDeadEnd (start) ;
return false;
} // method searchMaze

} // class MazeUser

In this project, and in general, the run method is not tested because it involves end-user input and output.
All of the files, including the Application interface and the BackTrack, Position, Maze, MazeTest,
MazeUser, and MazeUserTest (for the searchMaze method) classes, are available from the book’s
website.
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1 01 1 0 1 1 O
1 01 1 0 1 1 O
11 1 1 1 1 1 1

FIGURE 5.13 A worst-case maze: in columns 1, 4, 7,..., every row except the last contains a 0; every other
position in the maze contains a 1. The start position is in the upper-left corner, and the finish position is in the
lower-right corner

How long does the tryToReachGoal method in the BackTrack class take? Suppose the maze has
n positions. In the worst case, such as in Figure 5.13, every position would be considered, so worstTime(n)
is linear in n. And with more than half of the positions on a path to the goal position, there would be at
least n/2 recursive calls to the tryToReachGoal method, so worstSpace(n) is also linear in 7.

Projects 5.2, 5.3, 5.4, and 5.5 have other examples of backtracking. Because the previous project
separated the backtracking aspects from the maze traversing aspects, the BackTrack class and Applica
tion interface are unchanged. The Position class for Projects 5.2, 5.3, and 5.5 is the same Position
class declared earlier, and the Position class for Project 5.4 is only slightly different.

We will re-visit backtracking in Chapter 15 in the context of searching a network. And, of course,
the BackTrack class and Application interface are the same as given earlier.

At the beginning of this chapter we informally described a recursive method as a method that called
itself. Section 5.7 indicates why that description does not suffice as a definition and then provides a
definition.

5.7 Indirect Recursion

Java allows methods to be indirectly recursive. For example, if method A calls method B and method B
calls method A, then both A and B are recursive. Indirect recursion can occur in the development of a
grammar for a programming language such as Java.

Because indirect recursion is legal, we cannot simply define a method to be recursive if it calls
itself. To provide a formal definition of recursive, we first define active. A method is active if it is being
executed or has called an active method. For example, consider a chain of method calls

A > B > C > D

That is, A calls B, B calls C, and C calls D. When D is being executed, the active methods are

D, because it is being executed;
C, because it has called D and D is active;

B, because it has called C and C is active;
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A, because it has called B and B is active.

We can now define “recursive.” A method is recursive if it can be called while it is active. For example,
suppose we had the following sequence of calls:

|

Then B, C, and D are recursive because each can be called while it is active.

When a recursive method is invoked, a certain amount of information must be saved so that infor-
mation will not be written over during the execution of the recursive call. This information is restored
when the execution of the method has been completed. This saving and restoring, and other work related
to the support of recursion, carry some cost in terms of execution time and memory space. Section 5.8
estimates the cost of recursion, and attempts to determine whether that cost is justified.

A

5.8 The Cost of Recursion

We have seen that a certain amount of information is saved every time a method calls itself. This information
is collectively referred to as an activation record because it pertains to the execution state of the method
that is active during the call. In fact, an activation record is created whenever any method is called; this
relieves the compiler of the burden of determining if a given method is indirectly recursive.

Essentially, an activation record is an execution frame without the statements. Each activation record
contains:

a. the return address, that is, the address of the statement that will be executed when the call has been
completed;

b. the value of each argument: a copy of the corresponding argument is made (if the type of the argument
is reference-to-object, the reference is copied);

c¢. the values of the local variables declared within the body of the called method.

After the call has been completed, the previous activation record’s information is restored and the execution
of the calling method is resumed. For methods that return a value, the value is placed on top of the previous
activation record’s information just prior to the resumption of the calling method’s execution. The calling
method’s first order of business is to get that return value.

There is an execution-time cost of saving and restoring these records, and the records themselves
take up space. But these costs are negligible relative to the cost of a programmer’s time to develop
an iterative method when a recursive method would be more appropriate. Recursive methods, such as
move, tryToReachGoal, and permute (from Lab 9) are far simpler and more elegant than their iterative
counterparts.

How can you decide whether a recursive method or iterative method is more appropriate? Basically, if
you can readily develop an iterative solution, go for it. If not, you need to decide if recursion is appropriate
for the problem. That is, if complex cases of the problem can be reduced to simpler cases of the same
form as the original and the simplest case(s) can be solved directly, you should try to develop a recursive
method.

If an iterative method is not easy to develop, and recursion is appropriate, how does recursion compare
with iteration? At worst, the recursive will take about as long (and have similar time/space performance)
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as the iterative version. At best, developing the recursive method will take far less time than the iterative
version, and have similar time/space performance. See, for example, the move, tryToReachGoal, and
permute methods. Of course, it is possible to design an inefficient recursive method, such as the original
version of £ib in Lab 7, just as iterative methods can have poor performance.

In this chapter we have focused on what recursion is. We postpone to Chapter 8 a discussion of
the mechanism, called a stack, by which the compiler implements the saving and restoring of activation
records. As we saw in Chapter 1, this abstraction—the separation of what is done from how it is done—is

critically important in problem solving.

SUMMARY

The purpose of this chapter was to familiarize you with
the basic idea of recursion so you will be able to under-
stand the recursive methods in subsequent chapters and
to design your own recursive methods when the need
arises.

A method is recursive if it can be called while it
is active—an active method is one that either is being
executed or has called an active method.

If an iterative method to solve a problem can read-
ily be developed, then that should be done. Otherwise,
recursion should be considered if the problem has the
following characteristics:

1. Complex cases of the problem can be reduced to
simpler cases of the same form as the original
problem.

2. The simplest case(s) can be solved directly.

For such problems, it is often straightforward to develop
a recursive method. Whenever any method (recursive or
not) is called, a new activation record is created to pro-
vide a frame of reference for the execution of the method.
Each activation record contains

a. the return address, that is, the address of the state-
ment that will be executed when the call has been
completed;

b. the value of each argument: a copy of the corre-
sponding argument is made (if the type of the argu-
ment is reference-to-object, the reference is copied);

c. the values of the method’s other local variables;

Activation records make recursion possible because they
hold information that might otherwise be destroyed if
the method called itself. When the execution of the cur-
rent method has been completed, a return is made to the
address specified in the current activation record. The
previous activation record is then used as the frame of
reference for that method’s execution.

Any problem that can be solved with recursive
methods can also be solved iteratively, that is, with a
loop. Typically, iterative methods are slightly more effi-
cient than their recursive counterparts because far fewer
activation records are created and maintained. But the
elegance and coding simplicity of recursion more than
compensates for this slight disadvantage.

A backtracking strategy advances step-by-step
toward a goal. At each step, a choice is made, but when
a dead end is reached, the steps are re-traced in reverse
order; that is, the most recent choice is discarded and a
new choice is made. Backtracking was deployed for the
maze-search application above, and can be used in Pro-
gramming Projects 5.2 (eight-queens), 5.3 (knight’s tour),
5.4 (Sudoku), and 5.5 (Numbrix).



Crossword Puzzle 211

CROSSWORD PUZZLE
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www.CrosswordWeaver.com
ACROSS DOWN
3. The strategy of trying to reach a goal by 1. The mechanism by which the compiler
a sequence of chosen positions, with a implements the saving and restoring of
re-tracing in reverse order of positions that activation records.

cannot lead to the goal.
2. In the binarySearch method, the index

6. For the move method, worstSpace(n) is where the key could be inserted without
inn. disordering the array.
7. A precondition of the binarySearch 4. A method is if it can be called
method is that the array is . while it is active.
8. What is generated when infinite recursion 5. A method is if it is being
occurs. executed or has called an active
method.

9. Boxes that contain information (both
variables and code) related to each
invocation of the method.

10. The information that is saved every time
a method is called.
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CONCEPT EXERCISES

5.1

5.2

5.3

What is wrong with the following underlying method for calculating factorials?

/**

* Calculates the factorial of a non-negative integer, that is, the product of all
* integers between 1 and the given integer, inclusive. The worstTime(n) is O(n),
* where n is the given integer.

* @param n the non-negative integer whose factorial is calculated.

* @return the factorial of n
*

*/
public static long fact (int n)
{
if (n <= 1)
return 1;
return fact (n+l) / (n+l);
} // fact

Show the first three steps in an execution-frames trace of the move method after an initial call of
move (4, 'A', 'B', 'C');

Perform an execution-frames trace to determine the output from the following incorrect version of the
recPermute method (from Lab 9) after an initial call to

permute ("ABC");

invokes

recPermute ([‘A’, ‘B’, ‘C’]l, 0);

/*

*
*

*

*

Finds all permutations of a subarray from a given position to the end of the array.

@param c an array of characters
@param k the starting position in c¢ of the subarray to be permuted.

@return a String representation of all the permutations.

/

public static String recPermute (char[ ] c, int k)

{

if (k == c.length - 1)
return String.valueOf (c) + "\n";
else
{
String allPermutations = new String() ;

char temp;
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for (int i = k; i1 < c.length; i++)
{

temp = ¢ [i];

c [1] = ¢ [k + 1];
c [k + 1] = temp;
allPermutations += recPermute (String.valueOf (c).toCharArray (), k+1);
}y // for
return allPermutations;
} // else

} // method recPermute

5.4 Perform an execution-frames trace to determine the output from the following incorrect version of the
recPermute method (from Lab 9) after an initial call to

permute ("ABC");
invokes

recPermute ([‘'A’, ‘B’, ‘C’], 0);

/**

Finds all permutations of a subarray from a given position to the end of the array.

* @param c an array of characters
@param k the starting position in c¢ of the subarray to be permuted.

* @return a String representation of all the permutations.
*

*/
public static String recPermute (char[ ] c, int k)
{
if (k == c.length - 1)
return String.valueOf (c) + "\n";
else
{

String allPermutations = new String() ;
char temp;

for (int i = k; 1 < c.length; i++)

{
allPermutations += recPermute (String.valueOf (c).toCharArray (), k+1);
temp = ¢ [i];
c [i] = ¢ [k];
c [k] = temp;

} // for

return allPermutations;

} // else

} // method recPermute
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5.5

5.6

5.7

5.8

Use the Principle of Mathematical Induction (Appendix 1) to prove that the move method in the Towers of
Hanoi example is correct, that is, for any integern > = 1,move (n, orig, dest, temp) returns the
steps to move n disks from pole orig to pole dest.

Hint: forn =1, 2, 3,..., let S,, be the statement:

move (n, orig, dest, temp) returns the steps to move n disks from any pole orig to any
other pole dest.

a. base case. Show that S is true.

b. inductive case. Let n be any integer greater than 1 and assume S,_; is true. Then show that S, is true.
According the code of the move method, what happens when move (n, orig, dest, temp) is
called and n is greater than 1?

In an execution trace of the move method in the Towers of Hanoi application, the number of steps is equal to
the number of recursive calls to the move method plus the number of direct moves. Because each call to the
move method includes a direct move, the number of recursive calls to the move method is always one less
than the number of direct moves. For example, in the execution trace shown in the chapter, n = 3. The total
number of calls to move is 2" — 1 = 7. Then the number of recursive calls to move is 6, and the number
of direct moves is 7, for a total of 13 steps (recall that we started at Step 0, so the last step is Step 12). How
many steps would there be for an execution trace with n = 4?

Show that, for the recursive binarySearch method, averageTime(n) is logarithmic in n for a successful
search.
Hint: Let n represent the size of the array to be searched. Because the average number of calls is a non-
decreasing function of n, it is enough to show that the claim is true for values of n that are one less than a
power of 2. So assume that

n =25 — 1, for some positive integer k.
In a successful search,

one call is sufficient if the item sought is half-way through the region to be searched;
two calls are needed if the item sought is one-fourth or three-fourths of the way through that region;

three calls are needed if the item sought is one-eighth, three-eighths, five-eighths or seven-eighths of the way
through the region;

and so on.
The total number of calls for all successful searches is

A D+Q*D+C H+G*8)+(5*16) 4+ (k* 2]

The average number of calls, and hence an estimate of averageTime(n), is this sum divided by n. Now use
the result from Exercise 2.6 of Appendix 2 and the fact that

k =log, (n+1)

If a call to the binarySearch method is successful, will the index returned always be the smallest index
of an item equal to the key sought? Explain.

PROGRAMMING EXERCISES

5.1

Develop an iterative version of the getBinary method in Section 5.3. Test that method with the same
BinaryTest class (available on the book’s website) used to test the recursive version.
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5.2 Develop an iterative version of the permute method (from Lab 9). Here is the method specification:
/ * %

* Finds all permutations of a specified String.
*

* @param s - the String to be permuted.
*

* @return a String representation of all the permutations, with a line separator
* (that is, "\n") after each permutation.

*/

public static String permute (String s)

For example, if the original string is “BADCGEFH”, the value returned would be

ABCDEFGH
ABCDEFHG
ABCDEGFH
ABCDEGHF
ABCDEHFG

and so on. Test your method with the same PermuteTest method developed in Lab 9 to test the recursive
version.

Hint: One strategy starts by converting s to a character array c. Then the elements in ¢ can be easily
swapped with the help of the index operator, [ ]. To get the first permutation, use the static method sort in
the Arrays class of java.util. To give you an idea of how the next permutation can be constructed from the
current permutation, suppose, after some permutations have been printed,

¢ =[A", 'H', 'E, G, 'F, D, 'C, 'B]

What is the smallest index whose character will be swapped to obtain the next permutation? It is index 2,
because the characters at indexes 3 through 7 are already in reverse alphabetical order: ‘G’ > ‘F* > ‘D’ >
‘C’ > ‘B’. We swap ‘E’ with ‘F’, the smallest character greater than ‘E’ at an index greater than 2. After
swapping, we have

¢ =[A, H,'F,'G, E, D, 'C, B]
We then reverse the characters at indexes 3 through 7 to get those characters into increasing order:
¢ =[A, H,'F, B, 'C. D, E, 'G],

the next higher permutation after ‘A’, ‘H’, ‘E’, ‘G’, ‘F’, ‘'D’, ‘C’, ‘B’.
Here is an outline:

public static String permute (String s)
{

int n = s.length();

boolean finished = false;

char[ ] ¢ = s.toCharArray () ;

String perms = "";

Arrays.sort (c); // ¢ 1s now in ascending order
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while (!finished)
{

perms += String.valueOf (c));

// In 0 ... n-1, find the highest index p such that
// p=0orc[p-1] <c [p].

if (p == 0)
finished = true;
else

{
// In p ... n-1, find the largest index i such that c [i] > ¢ [p - 1].

// Swap c¢ [i] with ¢ [p - 1].

// Swap ¢ [p] with ¢ [n-1], swap c¢ [p+1l] with c[n-2],
// swap c [p+2] with ¢ [n-3], ...

} // else
} // while
return perms;

} // method permute

s

In the above example, p - 1 = 2 and 1 = 4, s0 ¢ [p - 1], namely, ‘E’ is swapped with ¢ [i],
namely, ‘F’.
Explain how strings with duplicate characters are treated differently in this method than in the recursive

version.
5.3  Given two positive integers i and j, the greatest common divisor of i and j, written
ged (1, 3J)
is the largest integer k such that
i%k =0) and (G %k = 0).

For example, ged (35, 21) = 7 and ged (8, 15) = 1. Test and develop a wrapper method and a wrapped
recursive method that return the greatest common divisor of i and j. Here is the method specification for the
wrapper method:

/**

* Finds the greatest common divisor of two given positive integers
*

* @param 1 - one of the given positive integers.

* @param j - the other given positive integer.
*
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* @return the greatest common divisor of iand j.
*

* @throws IllegalArgumentException - if either i or j is not a positive integer.
*

*/
public static int gcd (int i, int j)

Big hint: According to Euclid’s algorithm, the greatest common divisor of i and j isj if i % j = 0. Otherwise,
the greatest common divisor of i and j is the greatest common divisor of j and (i % j).

A palindrome is a string that is the same from right-to-left as from left-to-right. For example, the following
are palindromes:

ABADABA

RADAR

OTTO

MADAMIMADAM

EVE

For this exercise, we restrict each string to upper-case letters only. (You are asked to remove this restriction
in the next exercise.)

Test and develop a method that uses recursion to check for palindromes. The only parameter is a string that
is to be checked for palindromity. The method specification is

* Determines whether a given string of upper-case letters is a palindrome.
* A palindrome is a string that is the same from right-to-left as from left-to-right.

* @param s - (a reference to) the given string
* @return true - if the string s is a palindrome; otherwise, false.

* @throws NullPointerException - if s is null.

* @throws IllegalArgumentException - if s is the empty string.
*

*/

public static boolean isPalindrome (String s)
Expand the recursive method (and test class) developed in Programming Exercise 5.4 so that, in testing to
see whether s is a palindrome, non-letters are ignored and no distinction is made between upper-case and
lower-case letters. Throw I1legalArgumentException if s has no letters. For example, the following
are palindromes:
Madam, I'm Adam.
Able was I ’ere I saw Elba.
A man. A plan. A canal. Panama!

Hint: The toUpperCase () method in the String class returns the upper-case String corresponding to
the calling object.
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5.6

5.7

a. Test and develop a wrapper method power and an underlying recursive method that return the result of
integer exponentiation. The method specification of the wrapper method is

VAR

*

*

Calculates the value of a given integer raised to the power of a second integer.
The worstTime(n) is O(n), where n is the second integer.

@param 1 - the base integer (to be raised to a power).
@param n - the exponent (the power 1 is to be raised to).

@return the value of i to the nth power.

@throws IllegalArgumentException - if n is a negative integer or if i raised to
to the n is greater than Long.MAX_VALUE.

*/
public static long power (long i, int n)

Hint: We define 0° = 1, so for any integer i,i® = 1. For any integers i> 0 and n > 0,
i — el
b. Develop an iterative version of the power method.
¢. Develop an underlying recursive version called by the power method for which worstTime(n) is logarithmic
in n.

Hint: If n is even, power (i, n) =power (i * i, n/2);ifnisodd, power (i, n) = i *

i~ 1= i * power (i * i, n/2).

For testing parts b and c, use the same test suite you developed for part a.

Test and develop a recursive method to determine the number of distinct ways in which a given amount of
money in cents can be changed into quarters, dimes, nickels, and pennies. For example, if the amount is 17
cents, then there are six ways to make change:

1 dime, 1 nickel and 2 pennies;
1 dime and 7 pennies;

3 nickels and 2 pennies;

2 nickels and 7 pennies;

1 nickel and 12 pennies;

17 pennies.

Here are some amount/ways pairs. The first number in each pair is the amount, and the second number is the
number of ways in which that amount can be changed into quarters, dimes, nickels and pennies:

17 6
5 2
10 4
25 13
42 31
61 73

99 213
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Here is the method specification:

* Calculates the number of ways that a given amount can be changed
* into coins whose values are no larger than a given denomination.

* @param amount - the given amount.

* @param denomination - the given denomination (1 = penny,

* 2 = nickel, 3 = dime, 4 = quarter).

*

* @return 0 - if amount is less than 0; otherwise, the number of ways
* that amount can be changed into coins whose values are no

* larger than denomination.

*

*/

public static int ways (int amount, int denomination)

For the sake of simplifying the ways method, either develop an enumerated type Coin or develop a coins
method that returns the value of each denomination. Thus, coins (1) returns 1, coins (2) returns 5,
coins (3) returns 10, and coins (4) returns 25.

Hint: The number of ways that one can make change for an amount using coins no larger than a quarter is
equal to the number of ways that one can make change for amount—25 using coins no larger than a quarter
plus the number of ways one can make change for amount using coins no larger than a dime.

Modify the maze-search application to allow an end user to enter the maze information directly, instead of in

a file. Throw exceptions for incorrect row or column numbers in the start and finish positions.

Modify the maze-search application so that diagonal moves would be valid.
Hint: only the MazeIterator class needs to be modified.

Programming Project 5.1

Iterative Version of the Towers of Hanoi

Develop an iterative version of the moveDisks method in the Towers of Hanoi game. Test your version with the

same test suite, on the book’s website, developed for the recursive version.

Hint: We can determine the proper move at each stage provided we can answer the following three questions:

1.

Which disk is to be moved?
To answer this question, we set up an n-bit counter, where n is the number of disks, and initialize that counter
to all zeros. The counter can be implemented as an n-element array of zeros and ones, or as an n-element array
of boolean values. That is the only array you should use for this project.

For example, if n = 5, we would start with

00000

Each bit position corresponds to a disk: the rightmost bit corresponds to disk 1, the next rightmost bit to
disk 2, and so on.

(continued on next page)
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(continued from previous page)

At each stage, the rightmost zero bit corresponds to the disk to be moved, so the first disk to be moved is,
as you would expect, disk 1.

After a disk has been moved, we increment the counter as follows: starting at the rightmost bit and working
to the left, keep flipping bits (0 to 1, 1 to 0) until a zero gets flipped. For example, the first few increments and
moves are as follows:

00000 // move disk 1
00001 // move disk 2
00010 // move disk 1
00011 // move disk 3
00100 // move disk 1
00101 // move disk 2

After 31 moves, the counter will contain all ones, so no further moves will be needed or possible. In general,
2" — 1 moves and 2" — 1 increments will be made.

2. In which direction should that disk be moved?
If n is odd, then odd-numbered disks move clockwise:

A—B —C

|

and even-numbered disks move counter clockwise:

A— B —C

|

If n is even, even-numbered disks move clockwise and odd-numbered disks move counter clockwise.

If we number the poles 0, 1, and 2 instead of ‘A’, ‘B’, and ‘C’, then movements can be accomplished simply
with modular arithmetic. Namely, if we are currently at pole k, then

k=(k+1) % 3;

achieves a clockwise move, and

k (k + 2) % 3;

achieves a counter-clockwise move. For the pole on which the just moved disk resides, we cast back to a
character:

char(k + ‘A’)

3. Where is that disk now?
Keep track of where disk 1 is. If the counter indicates that disk 1 is to be moved, use the answer to question 2
to move that disk. If the counter indicates that the disk to be moved is not disk 1, then the answer to question
2 tells you where that disk is now. Why? Because that disk cannot be moved on top of disk 1 and cannot be
moved from the pole where disk 1 is now.
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Programming Project 5.2

Eight Queens

(This problem can be straightforwardly solved by using the BackTrack class and implementing the Application
interface.) Test and develop an EightQueens class to place eight queens on a chess board in such a way that
no queen is under attack from any other queen. Also, test and develop an EightQueensUser classsimilar to the
MazeUser class in Section 5.6.1.

Analysis A chess board has eight rows and eight columns. In the game of chess, the queen is the most powerful
piece: she can attack any piece in her row, any piece in her column, and any piece in either of her diagonals. See
Figure 5.14.

e :

7'y
o
v

FIGURE 5.14 Positions vulnerable to a queen in chess. The arrows indicate the positions that can be
attacked by the queen ‘Q’ in the center of the figure

The output should show the chess board after the placement of the eight queens. For example:

012 3 45 6 7

Q

N0 A W = O
e

Hint: There must be exactly one queen in each row and exactly one queen in each column. There is no input:
start with a queen at (0, 0), and place a queen in each column. A valid position is one that is not in the same
row, column or diagonal as any queen placed in a previous column. The QueensIterator constructor should
advance to row 0 of the next column. The next method should advance to the next row in the same column. So

(continued on next page)
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(continued from previous page)

the first time the tryToReachGoal method in the BackTrack class (which cannot be modified by you) is called,
the choices are:

(0, 1) // invalid: in the same row as the queen at (0, 0)
(1, 1) // invalid: in the same diagonal as the queen at (0, 0)
2, 1) // valid

When the tryToReachGoal method is called again, the choices are:

(0, 2) // invalid: in the same row as the queen at (0, 0)

(1, 2) // invalid: in the same diagonal as the queen at (1, 2)
(2, 2) // invalid: in the same row as the queen at (1, 2)

(3, 2) // invalid: in the same diagonal as the queen at (1, 2)
(4, 2) // valid

Programming Project 5.3

A Knight’s Tour

(This problem can be straightforwardly solved by using the BackTrack class and implementing the Application
interface.) Test and develop a KnightsTour class to show the moves of a knight in traversing a chess board. Also,
test and develop a KnightsTourUser class—similar to the MazeUser class in Section 5.6.1. The Backtrack
class and Application interface are not to be modified by you.

Analysis A chess board has eight rows and eight columns. From its current position, a knight’s next position will
be either two rows and one column or one row and two columns from the current position. For example, Figure 5.15
shows the legal moves of a knight at position (5, 3), that is, row 5 and column 3.

01 2 3 456 7

0

1

2

3 K7 KO

4 K6 K1
5 K

6 K5 K2
7 K4| [K3

FIGURE 5.15 For a knight (K) at coordinates (5, 3), the legal moves are to the grid entries labeled KO
through K7

For simplicity, the knight starts at position (0, 0). Assume the moves are tried in the order given in Figure 5.15. That is,
from position (row, column), the order tried is:

(row — 2, column + 1)
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(row — 1, column + 2)
(row + 1, column + 2)
(row + 2, column + 1)
(row + 2, column — 1)
(row + 1, column — 2)
(row — 1, column — 2)
(row — 2, column — 1)

Figure 5.16 shows the first few moves.

012 3 45 6 7

0]1 3

1 2 4

2 10
3 5
4 9

5

6 8

7 7

FIGURE 5.16 The first few valid moves by a knight that starts at position (0, 0) and iterates according to the
order shown in Figure 5.15. The integer at each filled entry indicates the order in which the moves were made

For the nine moves, starting at (0, 0), in Figure 5.16, no backtracking occurs. In fact, the first 36 moves are
never backtracked over. But the total number of backtracks is substantial: over 3 million. The solution obtained by the
above order of iteration is:

012 3 45 6 7
1 (38(55|34| 3 |36(19|22
54|47\ 2 (37|20(23| 4 |17
39|56|33(46|35(18(21|10
48|53(40|57|24|11|16( 5
59(32|45(52|41(26| 9 |12
44149(58|25|62(15| 6 (27
3160|51({42|29| 8 [13|64
50(43|30(61|14(63|28| 7

N O R WD = O

Notice that the 37" move, from position (1, 3), does not take the first available choice—to position (3, 2)—nor the
second available choice —to position (2, 1). Both of those choices led to dead ends, and backtracking occurred. The
third available choice, to (0, 1), eventually led to a solution.

(continued on next page)
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(continued from previous page)

System Test 1 (the input is in boldface)

Enter the starting row and column: 0 0

Starting at row 0 and column 0, the solution is

012 3 456 7
1 (38(55|34| 3 |36(19|22
54|47\ 2 (37|20(23| 4 |17
39|56|33(46|35(18|21|10
48|53(40|57|24|11|16( 5
59(32|45(52|41(26| 9 |12
44149(58(25|62(15| 6 |27
31|60|51({42|29| 8 [13|64
50(43|30(61|14(63|28| 7

N O R WD = O

Note: The lines are not part of the output; they are included for readability.

System Test 2

Enter the starting row and column: 3 5

Starting at row 3 and column 5, the solution is

01 2 3 45 6 7
33142(35|38|31(40|19(10
36(57(32]|41({20{ 9| 2 |17
43134|37(30|39[18 (11| 8
56(51|58(21(28| 1 |16( 3
59144129(52147(22( 7 |12
50(55|46(27|62|15| 4 (23
45160(53(48|25[ 6 (13|64
54(49126|61(14(63|24| 5

~N O R WD = O

This solution requires 11 million backtracks. Some starting positions, for example (0, 1), require over 600 million
backtracks. But for every possible starting position, there is a solution.
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Programming Project 5.4

Sudoku

(This problem can be solved by using the BackTrack class and implementing the Application interface.) Sudoku
(from the Japanese “single number”) is a puzzle game in which the board is a 9-by-9 grid, further subdivided into
nine 3-by-3 minigrids. Initially, each cell in the grid has either a single digit or a blank. For example, here (from
http://en.wikipedia.org/wiki/Sudoku) is a sample initial configuration:

513 7
6 1195
918 6
8 6 3
4 8 3 1
7 2 6
6 218
41119 5
8 719

The rules of the game are simple: Replace each blank cell with a single digit so that each row, each column, and
each minigrid contain the digits 1 through 9. For example, in the above grid, what digit must be stored in the cell
at row 6 and column 5? (The row numbers and column numbers start at 0, so the cell at (6, 5) is in the upper
right-hand corner of the bottom center minigrid.) The value cannot be

1, because there is already a 1 in that minigrid

2, because there is already a 2 in row 6

3, because there is already a 3 in column 5

4, because there is already a 4 in that minigrid

5, because there is already a 5 in column 5

6, because there is already a 6 in row 6

8, because there is already an 8 in that minigrid (and in row 6)
9, because there is already a 9 in that minigrid

By a process of elimination, we conclude that the digit 7 should be placed in the cell at (6, 5). Using logic only,
you can determine the complete solution to the puzzle. If you click on the link above, you will see the solution.

(continued on next page)
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(continued from previous page)

Instead of solving Sudoku puzzles by logic, you can solve them with backtracking. You would not want to
do this by hand, because for some Sudoku puzzles, over 100,000 backtracks would be needed. But you can solve
any Sudoku puzzle with the help of the BackTrack class (which you are not allowed to modify). You will need
to supply a Sudoku class that implements the Application interface, and a SudokuUser class (similar to the
MazeUser class in Section 5.6.1). You may want to modify the Position class from Section 5.6.1 to include a
digit field. Then the iteration will be over the digit values that a position can take on, and the SudokuIterator
constructor will advance to the next position in the grid whose digit value is 0.

The initial configuration will be supplied from a file in which each line has a row, column, and digit-value.
For example,

AL LW W WO N = === 0 00O
N0 L W O 0O N Lt W N X W W~
AN AN OO = DNV WO WK R = O\
00 0 00 00 N N 1 1O O Lt i B
~N L W= N WD 0O 0O N
~N oo L B0 NN 9NN N R = O W

For the sudokuTest class, include a test to make sure the iterator method starts at the appropriate row
and column, and the next method advances the position’s digit. For one test of the isOK method, the initial
configuration should have 2 in (0, 0) and 1 in (0, 1); after several calls to the next () method, the is0ox method
should return true. To test the isGoal method, the initial configuration should be a complete solution except for
a blank in (8, 8); isGoal should eventually return true.

Also include tests for the following:

InputMismatchException, if the row or column is not an int, or if the value is not a byte.
ArrayIndexOutOfBoundsException, if the row or column is not in the range 0. .. 8, inclusive.

IllegalArgumentException, if the value is not a single digit or duplicates the value in the same row, same
column, or same minigrid.

IllegalStateException, if there is no solution to the puzzle.

Include tests in which the solution is found.
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Programming Project 5.5

Numbrix

(This problem can be straightforwardly solved by using the BackTrack class and implementing the Application
interface.) Numbrix, invented by Marilyn vos Savant, is a number-positioning puzzle. You start with a square
grid—we will use a 9 x 9 grid for example. Initially, some of the grid has been filled in with integers in the
range from 1 through 81. The goal is to complete the grid so that each number (except 81) is connected to the

next higher number either horizontally or vertically.
Here is an initial state:

310 330
0 29 0 35
250 0 O
0 230 0
9 0 0 O
0O 1 0 O
7 0 0 O
0O 3 0 17
5 0 150
Here is the final state:
31 32 33 34
30 29 28 35
25 26 27 36
24 23 22 21
9 10 11 20
8§ 1 12 19
7 2 13 18
6 3 14 17
5 4 15 16

Design, test and write and program to solve any Numbrix puzzle.
grid’s side length, and each subsequent line will contain the row,

grid.

System Test 1 (input in boldface)

Please enter the path for the file that contains, on the first line, the grid length, and then, on each other line, the
row, column, and value of each non-zero entry in the initial state: numbrix.inl

39
38
37
58
59
60
63
64
65

40
41
42
57
56
61
62
67
66

45

S O O O © © O

45
44
43
54
55
76
75
68
69

0
49

53

77

73

46
49
50
53
78
71
74
73
70

The first line of the input file will contain the
column and value of some initial entry in the

47

51

79

81

71

47
48
51
52
79
80
81
7
71

(continued on next page)
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(continued from previous page)

The initial state is as follows:

31 0 330

0 29
25 0
0 23

w O 3 O O
S W O = O

31 32
30 29
25 26
24 23
10

L N N 0 \©
AW O =

-V VLI S I S . e R e R e B e B e ]
S N = 00 O N WL W= 0 A B~ DN O

0
0
0

o e e @

15

33
28
27
22
11
12
13
14
15

0

34
35
36
21
20
19
18
17
16

Note: The file numbrix.inl consists of the following:

39

S O O O o o o

A solution has been found. The final state is as follows:

39
38
37
58
59
60
63
64
65

0

40
41
42
57
56
61
62
67
66

45

S O O O © © O

45
44
43
54
55
76
75
68
69

00 00 00 00 00 N N 0 9 O &N LB
0 A AN O NN W~ 0O NN~

0
49

53

77

73

47

51

79

81

71

47
48
51
52
79
80
81
72
71

79

77

81

17
67
73

15
65
69
71
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System Test 2 (input in boldface)

Please enter the path for the file that contains, on the first line, the grid length, and then, on each other line, the
row, column, and value of each non-zero entry in the initial state: numbrix.in2

The initial state is as follows:

A solution has been found:

The final state is as follows:

9 0

0
15
0
25
0
37
0
39

9

10
15
16
25
26
37
38
39

11
0
17
0
27

8

11
14
17
24
27
36
41
40

S O OO O OO

A~
@

7

12
13
18
23
28
35
42
43

S O OO O wm o

— & U O

29
34
33
44

Note: The file numbrix.in2 consists of the following:

A LW WNRDND= === 0000C o\
O N —= 00 O NN W W= 00 b~ NO

— 3 O

77
11

71
75
15
79
17
65
25

S O OO O OO~

N
()

W N =

21
30
31
32
45

—_

O O OO O O

72
71
70
69
68
55
54
53
46

73

[=lelNoloelolNoNe)

73
74
81
66
67
56
57
52
47

[olile clie o le <IN RN EEN B e Nie) SRV, BNV, I Y
O AN P NVNO IV W= 0O I~ 0

0
75
0
65
0
61
0
51
0

77

79

63

59

49

77
78
79
64
63
60
59
50
49

63
27
61
37
59
41
33
53
51
39
43
45
47
49

(continued on next page)
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(continued from previous page)

Also include tests for the following:

InputMismatchException, if the row or column is not an int, or if the value is not an int.
ArrayIndexOutOfBoundsException, if the row or column is not in the range 0. .. grid length, inclusive.

IllegalArgumentException, if the value is greater than grid length squared or duplicates a value already in
the grid.

IllegalStateException, if there is no solution to the puzzle.

Hint: The implementation is simplified if you assume that one of the original values in the grid is 1, as in System
Tests 1 and 2. After you have tested your implementation with that assumption, remove the assumption. Here are
two system tests in which 1 is not one of the original values in the grid:

System Test 3 (input in boldface)

Please enter the path for the file that contains, on the first line, the grid length, and then, on each other line, the
row, column, and value of each non-zero entry in the initial state: numbrix.in3
The initial state is as follows:

75 76 81 66 65 14 13 8 7
740 0 0 0 O O O 6
730 0 0 0O O O O 5
720 0 0 0 0 O O 4
550 0 0 0 0 0 0 23
540 0 0 OO O 0 24
450 0 0 0 O O O 25
40 0 0 0 O O O 26

43 42 41 40 39 34 33 28 27

A solution has been found:
The final state is as follows:

75 76 81 66 65 14 13 8 7
74 77 80 67 64 15 12 9 6
73 78 79 68 63 16 11 10 5
72 71 70 69 62 17 2 3 4
55 56 57 58 61 18 1 22 23
54 53 52 59 60 19 20 21 24
45 46 51 50 37 36 31 30 25
44 47 48 49 38 35 32 29 26
43 42 41 40 39 34 33 28 27
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Note: The file numbrix.in3 consists of the following:

A LWNDNDFE P, OOODODOOO OOV

SO XV O 0O XO XTI W~ O

System Test 4 (input in boldface)

75
76
81
66
65
14
13
8
7
74
6
73
5
72
4
55

0 00 00 0 OO0 00 00 00 00 1 1 O\ O Lt Lt B~
0 I NP WD~ OO D O ®

23
54
24
45
25
44
26
43
42
41
40
39
34
33
28
27

Please enter the path for the file that contains, on the first line, the grid length, and then, on each other line, the

row, column, and value of each non-zero entry in the initial state: numbrix.in4

The initial state is as follows:

A solution has been found:

The final state is as follows:

25

(=l e )

~N QN =N

o0 W K~ W

S L © WO

o O O OO

S O = O O
(@)

Note: The file numbrix.in4 consists of the following:

A LD = O W

23 22
18 19
17 16
10 11
12

9

N = W= O

25

SO O OO

21
20
15
14
13
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Array-Based Lists CHAPTER 6

We begin this chapter by introducing the Java Collection Framework’s List interface, which extends
the Collection interface by providing some index-related methods. For example, there is a get
method that returns the element at a given index. In any List object, that is, in any instance of a class
that implements the List interface, the elements are stored in sequence, according to an index. For

example, a List object pets might have the elements arranged as follows: “dog”, ‘“‘cat”, “‘iguana”,
“gerbil”. Here ““dog” is at index 0, and “‘gerbil” is at index 3.

The main focus of this chapter is the user’s view of the ArrayList class. We start by investigating the
method specifications. We then briefly turn to the developer’s view: The Java Collection Framework’s
ArrayList class implements the List interface with an underlying array that allows constant-time access
of any element from its index. We finish up the chapter with an application in the area of public-key
cryptography.

As with all of the other collection classes in the Java Collections Framework, the ArrayList class is
parameterized, and the element class is the type parameter, so it would be more appropriate to refer to the
class as ArrayList<E>. When a user creates an instance of the ArrayList<E> class, the user specifies
the element type that will replace the type parameter E. For example, to create an empty ArrayList
object whose elements must be of type (reference to) String, we write

ArrayList<String> myList = new ArrayList<String>();

As we saw in Chapter 4, the only stipulation on the element type is that it cannot be a primitive type,
such as int (but the wrapper class Integer is acceptable).

Chapter 7 covers another List implementation, the LinkedList class The ArrayList and
LinkedList classes have their own advantages and disadvantages: there is no “best” List implemen-
tation. A major goal of the two chapters is to help you recognize situations in which one of the classes
would be preferable to the other.

CHAPTER OBJECTIVES
1. Recognize the methods in the List interface that are not in the Collection interface.
2. Understand the user’s view of the ArrayList class.

3. Be able to decide when an ArrayList is preferable to an array —and vice versa.

4. Understand the VeryLongInt class from both the user’s view and the developers’ view.

233
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6.1 The List Interface

The List interface extends the Collection interface with methods that have an index as either a param-
eter or a return type. Here are thumbnail sketches of five of the methods. For each method below, E (for
“element”) is the type parameter.

// Returns the element at position index in this List object. The worstTime(n) is O(n).
E get (int index);

// Replaces the element that was at position index in this List object with the
// parameter element, and returns the previous occupant. The worstTime(n) is O(n).
E set (int index, E element) ;

// Returns the index of the first occurrence of obj in this List object, if obj
// appears in this List object.. Otherwise, returns -1. The worstTime(n) is O(n).
int indexOf (Object obj);

// Inserts element at position index in this List object; every element that

// was at a position >= index before this call is now at the next higher position.
// The worstTime(n) is O(n).

void add (int index, E element) ;

// Removes and returns the element at position index in this List object; every

// element that was at a position > index before this call is now at the next lower
// position. The worstTime(n) is O(n).

E remove (int index);

Any implementation of this interface may improve on the time-estimate upper bounds for the methods;
and, in fact, for the ArrayList class (see following), worstTime(n) is O(1) for both the get and set
methods. We cannot give examples of calls to the List methods because interfaces cannot be instantiated,
but the above five methods should give you the idea that many of the methods in a List object are
index based. Of course, we also have some holdovers from the Collection interface: the methods size,
isEmpty, contains, clear, and so on. And the add (E element) method specifies that the element
is inserted at the end of the list.

Section 6.2 introduces the ArrayList class, which implements the List interface. We will empha-
size the user’s perspective of the ArrayList class by studying the method specifications. In Section 6.3,
we take a quick look at the developer’s perspective: the actual fields and method definitions in the Java
Collections Framework. Then we return to the user’s view with an application of the ArrayList class.

6.2 The ArrayList Class

As we will see shortly, an ArrayList object can be thought of as an improved version of the one-
dimensional array. Like an array, the ArrayList class supports random access of its elements, that is,
any element can be accessed in constant time, given only the index of the element. But unlike an array,
an ArrayList object’s size (as well as its capacity) is automatically maintained during the execution of
a program. Also, there are ArrayList methods for inserting and deleting at any index—if you insert or
delete in an array, you must write the code to open up or close up the space. Finally, if you want to insert
an element into an array that is already full, you must write the code (to create a new array, copy the old
array to the new array, and so on). With an ArrayList object, such expansions are handled automatically.
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Figure 6.1 has the big picture from the user’s perspective: the method heading for each public method
in the ArrayList class. Except for the constructors, the headings are in alphabetical order by method
identifier. The type parameter E may appear as the return type as well as the element type of a parameter.

Section 6.2.1 has more detail: the method specifications, with examples, for several ArrayList
methods.

public ArrayList (int initialCapacity)

public ArrayList()

public ArrayList (Collection<? extends E> c) // See Section 6.2.1
public boolean add (E element) // inserts at back
public void add (int index, E element)

public boolean addAll (Collection<? extends E> c)
public boolean addAll (int index, Collection<? extends E> c)
public void clear() // worstTime (n) is O(n)

public Object clone()

public boolean contains (Object obj)

public boolean containsAll (Collection<?> c)

public void ensureCapacity (int minCapacity)

public boolean equals (Object obj)

public E get (int index) // worstTime (n) is constant
public int hashCode()

public int indexOf (Object obj)

public boolean isEmpty ()

public Iterator<E> iterator ()

public int lastIndexOf (Object element)

public ListIterator<E> listIterator( )

public ListIterator<E> listIterator (final int index)
public boolean remove (Object obj)

public E remove (int index)

public boolean removeAll (Collection<?> c)

public boolean retainAll (Collection<?> c)

public E set (int index, E element)

public int size( )

public List<E> subList (int fromIndex, int toIndex)
public Object[ ] toArray( )

public T[ ] toArray (T[ ] a)// ClassCastException unless T extends E
public String toString()

public void trimToSize( )

FIGURE 6.1 Public methods in the class ArrayList<E>, where E is the type parameter. Except for the
constructors, the method headings are in alphabetical order by method identifier

6.2.1 Method Specifications for the ArrayList Class

The method specifications following use javadoc, and will yield specifications that are similar to, but
shorter than, those provided with Sun’s Application Programming Interface (API). You are strongly urged
to consult that API to get the full details of each specification. The phrase “this ArrayList object” refers
to the calling object.



236 CHAPTER 6 Array-Based Lists

Each method’s time requirements are specified with Big-O notation because we are merely estab-

lishing an upper bound: a specific implementation of the method may reduce that upper bound. If no time
estimate for a method is given, you may assume that worstTime(#) is constant. If a method’s average-time
estimate is the same as the worst-time estimate, only the worst-time estimate is given.

The following method specifications give you a user’s view of the ArrayList class. For each

method, we include an example and a comparison with an array.

1.

/**
*
*
*

*

*

*

*/

Constructor with initial-capacity parameter

Initializes this ArrayList object to be empty, with the specified initial capacity.
@param initialCapacity the initial capacity of the list.

@throws IllegalArgumentException - if the specified initial capacity is negative

public ArrayList (int initialCapacity)

/**

Example The following creates an empty ArrayList object called fruits, with String elements
and an initial capacity of 100:

ArrayList<String> fruits = new ArrayList<String> (100);

Note: There is also a default constructor. For example,
ArrayList<String> fruits = new ArrayList<String>();

simply constructs an empty ArrayList object with a default initial capacity (namely, 10).

Comparison to an array: An array object can be constructed with a specified initial capacity. For
example,

String [ ] vegetables = new String [10];

makes vegetables an array object with null references at indexes O through 9. Unlike an
ArrayList object, an array object can consist of primitive elements. For example,

double [ ] salaries = new double [200];
constructs an array object whose elements will be of type double and whose initial capacity is 200.

Copy constructor

Constructs a list containing the elements of the specified collection, in the order
they are stored in the specified collection. This ArrayList object has an

initial capacity of 110% the size of the specified collection. The worstTime (n)
is O(n), where n is the number of elements in the specified collection.
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@param ¢ - the specified collection whose elements this ArrayList object is
initialized from.

public ArrayList (Collection<? extends E> c)

Example Suppose that myList is an ArrayList object whose elements are the Strings ‘“‘yes”,
“no”’, and ““maybe”’. We can create another ArrayList object that initially contains a copy of myList
as follows:

ArrayList<String> newList = new ArrayList<String> (myList);

Note 1: This constructor is called the copy constructor.
Note 2: The argument corresponding to the parameter ¢ must be an instance of a class (not necessarily
the ArrayList class) that implements the Collection interface. And the element type must be the
same as the element type of the calling object or a subclass of that type.

For example, if intList is an ArrayList object whose elements are of type Integer (a subclass
of Object), we can create an ArrayList object of type Object as follows:

ArrayList<Object> objList = mnew ArrayList<Object> (intList);

At this point, all of the elements in objList are of type Integer, but we can add elements of type
Object (and, therefore, elements of type Integer) to objList.

It might seem that it would be sufficient for the parameter type to be Collection<E> instead
of Collection<? extends E>. After all, an instance of the class ArrayList<Object> is legal
as the argument corresponding to a parameter of type Collection<E>, so by the Subclass Sub-
stitution Rule, an instance of any subclass of ArrayList<Object> would also be legal. But even
though Integer is a subclass of Object, ArrayList<Integer> is not allowed as a subclass of
ArrayList<Object>.! Otherwise, the following code fragment would be able to violate the type
restrictions by adding a string to an ArrayList of Integer:

ArrayList<Integer> intList = new ArrayList<Integer> () ;
ArrayList<Object> objList = intList; // illegal!
objList.add ("oops"):;

Then intList would have “oops” at index 0.

Note 3: The new ArrayList object contains a copy of the elements in c. Strictly speaking, those
elements are references, not objects; the objects referenced are not copied. For this reason, the copy
constructor is said to produce a shallow copy .

Note 4: The clone () method is an alternative, but less desirable way to obtain a shallow copy of
an ArrayList object. Here is the method specification:

/*x*

* Returns a shallow copy of this ArrayList object.

I'This phenomenon is called invariant subtyping, and it is required for type safety. Why? The element type of a parameterized collection is
not available at run time, so the type checking of elements cannot be done at run time. This is in contrast to arrays, whose element type is
available at run time. As a result, arrays use covariant subtyping; for example, String[ ] is a subclass of Object][ ].
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* The worstTime(n) is O(n).
*

*
*/
public Object clone()

@return a shallow copy of this ArrayList object.

For example, if myList is an ArrayList object, we can create a shallow copy of myList as follows:
ArrayList<String> newList = (ArrayList<String>)myList.clone();

Unfortunately, there is no assurance of type safety, so the assignment will be made even if myList is
an ArrayList object with Integer elements. See Programming Exercise 6.4 for details. For more
discussion of clone drawbacks, see Bloch 2001, pages 45-52.

Comparison to an array: An array object can be copied with the static method arraycopy in
the System of the package java.lang. For example,

System.arraycopy (vegetables, i, moreVeggies, 0, 3);

performs a shallow copy of the array object vegetables, starting at index i, to the array object
moreVeggies, starting at index 0. A total of 3 elements are copied.

One-parameter add method

/**
* Appends the specified element to the end of this ArrayList object.

* The worstTime(n) is O(n) and averageTime (n) is constant.
*
* @param element - the element to be appended to this ArrayList object

* @return true (as per the general contract of the Collection.add method)
*

*/
public boolean add (E element)

Note. According to the general contract of the add method in the Collection interface, true is
returned if the element is inserted. So this ArrayList method will always return true. Then why
bother to have it return a value? Because if we replace the return type boolean with void, then
the ArrayList class would no longer implement the Collection interface. Incidentally, there are
some implementations—the TreesSet class, for example—of the Collection interface that do not
allow duplicate elements, so false will sometimes be returned when a TreeSet object calls this
version of the add method.

Example We can insert items at the end of an ArrayList object as follows:

ArrayList<String> fruits = new ArrayList<String> (100);
fruits.add ("oranges");

fruits.add ("apples");

fruits.add ("durian");

fruits.add ("apples");

The ArrayList object fruits will now have “oranges” at index 0, “apples” at index 1, “durian”
at index 2, and “apples” at index 3.
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Comparison to an array: To insert into an array, an index must be specified:

String [ ] vegetables = mew String [10];
vegetables [0] = "carrots";

vegetables [1] = "broccoli";

vegetables [2] = "spinach";

vegetables [3] = "corn";

The size method

/'k'k
* Determines the number of elements in this ArrayList object.
*

* @return the number of elements in this ArrayList object.
*

*/
public int size()

Example Suppose we create an ArrayList object as follows:

ArrayList<String> fruits = new ArrayList<String> (100);
fruits.add ("oranges");

fruits.add ("apples");
fruits.add ("durian");
fruits.add ("apples");
Then

System.out.println (fruits.size());
will output 4.
Comparison to an array: Arrays have nothing that corresponds to a size () method. The length

field contains the capacity of the array, that is, the maximum number of elements that can be inserted
into the array, not the current number of elements in the array.

The get method

/**

* Returns the element at the specified index.
*

* @param index - the index of the element to be returned.

* @return the element at the specified index

* @throws IndexOutOfBoundsException - if index is less than 0 or greater
* than or equal to size()
*/

public E get (int index)
Note: Since no time estimates are given, you may assume that worstTime(n) is constant.
Example Suppose we start by constructing an ArrayList object:

ArrayList<String> fruits = mnew ArrayList<String> (100);
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fruits.add ("oranges");
fruits.add ("apples");
fruits.add ("durian");
fruits.add ("apples");

Then
System.out.println (fruits.get (2));

will output ““durian’.

Comparison to an array: The get method is similar to, but weaker than, the index operator for
arrays. For example, suppose we start by constructing an array object:

String [ ] vegetables = new String [10];
vegetables [0] = "carrots";

vegetables [1] = "broccoli";

vegetables [2] = "spinach";

vegetables [3] = "corn";

Then

System.out.println (vegetables [11]);

Will output “broccoli”. But we can also overwrite that element:
vegetables [1] = "potatoes";

In contrast, the following is illegal if fruits is an ArrayList object:
fruits.get (1) = "pears"; // illegal

6. The set method

/*x*

*

* Replaces the element at the specified index in this ArrayList object with the
* gpecified element.

* @param index - the index of the element to be replaced.
* @param element - the element to be stored at the specified index

* @return the element previously stored at the specified index

* @throws IndexOutOfBoundsException - if index is less than 0 or greater
* than or equal to size()
*/

public E set (int index, E element)
Note: The worstTime(n) is constant.
Example Suppose we start by constructing an ArrayList object:

ArrayList<String> fruits = new ArrayList<String> (100) ;
fruits.add ("oranges");
fruits.add ("apples"):;
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fruits.add ("durian");
fruits.add ("apples");

Then
System.out.println (fruits.set (2, "bananas"));
will change the element at index 2 to ““bananas” and output “durian”, the element that had been at

index 2 before the set method was invoked.

Comparison to an array: As noted in the comparison for the get method, an array’s index operator
can be used on the left-hand side of an assignment statement. For example, if vegetables is an
array object,

vegetables [1] = "potatoes";
will change the element at index 1 to “potatoes”.

Two-parameter add method

/**

* Inserts the specified element at the specified index in this ArrayList object.
* All elements that were at positions greater than or equal to the specified

* index have been moved to the next higher position. The worstTime(n) is

*  0O(n).

* @param index - the index at which the specified element is to be inserted.

* @param element - the element to be inserted at the specified index

*

* @throws IndexOutOfBoundsException - if index is less than 0 or greater
* than size().

*/

public void add (int index, E element)

Example Suppose we start by constructing an Arrayl.ist object:

ArrayList<String> fruits = new ArrayList<String> (100);
fruits.add ("oranges");
fruits.add ("apples");
fruits.add ("durian");
fruits.add ("apples");

Then

fruits.add (1, "cherries");
for (int i = 0; i < fruits.size(); 1i++)
System.out.println (fruits.get (i));

will produce output of

oranges
cherries
apples
durian
apples
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Comparison to an array: For an insertion anywhere except at the end of the array object, the code
must be written to open up the space. For example, suppose we start by constructing an array object:

String [ ] vegetables = mew String [10];
vegetables [0] = "carrots";

vegetables [1] = "broccoli";

vegetables [2] = "spinach";

vegetables [3] = "corn";

We can insert “lettuce” at index 1 as follows:

for (int j = 4; j > 1; j--)
vegetables [j] = vegetables [j - 1]1;
vegetables [1] = "lettuce";

The array vegetables now consists of “carrots”, “lettuce”, “broccoli”, “spinach”, “corn”, null,
null, null, null, null. Note that an insertion in a full array will throw an ArrayIndexOutOf
Bounds exception.

8. The remove method with an index parameter
/ * %
* Removes the element at the specified index in this ArrayList object.

* All elements that were at positions greater than the specified index have
* Dbeen moved to the next lower position. The worstTime(n) is O(n).

* @param index - the index of the element to be removed.

* @return the element removed the specified index

* @throws IndexOutOfBoundsException - if index is less than 0 or greater
* than or equal to size()
*/

public E remove (int index)
Example Suppose we start by constructing an ArrayList object:

ArrayList<String> fruits = new ArrayList<String> (100) ;
fruits.add ("oranges");
fruits.add ("apples");
fruits.add ("durian");
fruits.add ("apples");

Then we can remove (and return) the element at index 2 as follows:
System.out.println (fruits.remove (2));
The output will be ““durian”, and fruits will now contain ““oranges”, “‘apples’, and “‘apples’.

Comparison to an array: For removal anywhere except at the end of an array, the code must be
written to close up the space. For example, suppose we start by creating an array object:

String [ ] vegetables = new String [10];
vegetables [0] = "carrots";
vegetables [1] = "broccoli";

vegetables [2] = "spinach";
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vegetables [3] = "corn";
vegetables [4] = "potatoes";

vegetables [5] "squash";

Then we can remove the element at index 2 as follows:

for (int j = 2; j < 5; j++)
vegetables [j] = vegetables [j + 1];

The array vegetables now consists of “carrots”, “broccoli”, “corn”, “potatoes”, “squash”, null,
null, null, null and null

The index0f method

Searches for the first occurrence of a specified element, testing for equality with
the equals method. The worstTime(n) is O(n).

@param obj - the element to be searched for.

@return the index of the first occurrence of obj in this ArrayList object; if
obj is not in this ArrayList object, -1 is returned.

public int indexOf (Object obj)

Example Suppose we start by constructing an ArrayList object:

ArrayList<String> fruits = new ArrayList<String> (100);
fruits.add ("oranges");

fruits.add ("apples"):;
fruits.add ("durian");
fruits.add ("apples");
Then

System.out.println (fruits.indexOf ("apples"));
will output 1, and
System.out.println (fruits.indexOf ("kiwi"));

will output —1.

Note: The type of the parameter element is Object, not E, so the following is legal:
System.out.println (fruits.indexOf (new Integer (8)));

Of course, the output will be —1, because all the elements in fruits are of type String.

Comparison to an array: An explicit search must be conducted to determine if an element occurs
in an array. For example, suppose we start by creating an array object:

String [ ] vegetables = mew String [10];
vegetables [0] = "carrots";
vegetables [1] = "broccoli";
vegetables [2] = "spinach";
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vegetables [3] = "corn";
vegetables [4] = "potatoes";
vegetables [5] = "squash";

If myVeg is a String variable, we can print the index of the first occurrence of myveg in the
vegetables array as follows:

boolean found = false;
for (int j = 0; j < 6 && !found; j++)
if (vegetables [j].equals (myVeg))
{
System.out.println (3);
found = true;
Yy // if
if (!found)
System.out.println (-1);

If myveg does not occur in the array object vegetables, —1 will be output.

These represent just a sampling of the ArrayList class’s methods, but even at this point you can see
that an ArrayList object is superior, in most respects, to an array object. For example, an ArrayList
object’s size and capacity are automatically maintained, but an array object’s size and capacity must be
explicitly maintained by the programmer.

6.2.2 A Simple Program with an ArrayList Object

Perhaps you need more convincing that ArrayList objects are more convenient than array objects. Here
is a simple program that creates an ArrayList object from a file of words (one word per line), and
then searches for a word in the ArrayList object, removes all instances of a word, appends a word and
converts a word to upper case. The resulting ArrayList object is then printed out—with a single call to
println. Because this is an illustrative program, there are no constant identifiers.

import java.util.*;
import java.io.*;

public class ArrayListExample
{
public static void main (String[ ] args)
{
new ArrayListExample () .run() ;
} // method main

public void run()
{

ArrayList<String> aList = new ArrayList<String>();

Scanner keyboardScanner = new Scanner (System.in),
fileScanner;

String inFilePath,
word;
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try

System.out.print ("\n Please enter the path for the input file: ");
inFilePath = keyboardScanner.nextLine() ;
fileScanner = new Scanner (new File (inFilePath));
while (fileScanner.hasNext())
{
word = fileScanner.next();
System.out.println (word) ;
aList.add (word) ;
} // while not end of file

System.out.print ("\n\n Please enter the word you want to search for: ");
word = keyboardScanner.next () ;
if (aList.indexOf (word) >= 0)
System.out.println (word + " was found.\n\n");
else
System.out.println (word + " was not found.\n\n");

System.out.print ("Please enter the word you want to remove: ");
word = keyboardScanner.next () ;
int removalCount = 0;
while (aList.remove (word))

removalCount++;
if (removalCount == 0)

System.out.println (word + " was not found, so not removed.\n\n");
else if (removalCount == 1)

System.out.println ("The only instance of " + word +

" was removed.\n\n");

else

System.out.println ("All " + removalCount + " instances of " +

word + " were removed.\n\n");

System.out.print ("Please enter the word you want to append: ");
word = keyboardScanner.next () ;

aList.add (word) ;

System.out.println (word + " was appended.\n\n");

System.out.print ("Please enter the word you want to upper case: ");
word = keyboardScanner.next () ;
int position = aList.indexOf (word);
if (position >= 0)
{
alist.set (position, word.toUpperCase()) ;
System.out.println (word + " was converted to upper-case.\n\n");
} // if word is in alList
else
System.out.println (word +

" was not found, so not upper-cased.\n\n");
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System.out.println ("Here is the final version:\n" + alList);
// same as aList.toString/()
Y // try
catch (IOException e)
{
System.out.println (e);
} // catch
} // method run

} // class ArrayListExample

When this program was run, the file a.in1 contained the following words, one per line:
Don’'t get mad Don’t get even Get over it all and get on with

Here is a sample run, with input in boldface:

Please enter the path for the input file: a.inl

Please enter the word you want to search for: even
even was found.

Please enter the word you want to remove: all
The only instance of all was removed.

Please enter the word you want to append: life
life was appended.

Please enter the word you want to convert to upper case: over
over was converted to upper-case.

Here is the final version:
[Don’t, get, mad, Don’t, get, even, Get, OVER, it, and, get, on, with, life]

In the above program, each removal takes linear time. Programming Exercise 6.8 suggests how to perform
all removals in a single loop. And you are invited, in Programming Exercise 6.9, to endure the grind of
converting the program from ArrayList-based to array-based.

In Sections 6.2.3 and 6.2.4, we briefly put on a developer’s hat and look at the ArrayList class
heading, fields and a few method definitions. In Section 6.3, we return to a user’s perspective with an
application of the ArrayList class.

6.2.3 The ArrayList Class’s Heading and Fields
Here is the heading of the ArrayList class:

public class ArrayList<E> extends AbstractList<E>

implements List<E>, RandomAccess, Cloneable, java.io.Serializable
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This says that the ArrayList class is a subclass of the class AbstractList, and implements four
interfaces: List, RandomAccess, Cloneable, and Serializable. Figure 6.2 has a UML diagram to
indicate where the ArrayList class fits in the Java Collections Framework, with a solid-line arrow from
an extension (to a class or interface) and a dashed-line arrow from a class to an interface implemented by
the class.

The AbstractCollection class provides a minimal implementation of the Collection interface,
just as the rbstractList class provides a “bare bones” implementation of the List interface. As we
saw in Section 6.1, the List interface extends the Collection interface by including some index-related
methods, such as get (int index) and remove (int index).

Basically, a class that implements the Cloneable interface must have a method that returns a shallow
copy of the calling object. For a description of the clone () method, see Note 4 on the copy constructor
(method number 2) in Section 6.2.1. The RandomAccess interface ensures that if an implementation of
the List interface satisfies the random-access property (with an underlying array), then any sub-list of that
list will also satisfy the random-access property. The Serializable interface, discussed in Appendix 1,
has to do with saving objects to a stream (such as a disk file), which is called serialization, and restoring
those object from the stream, called deserialization .

<<interface>>|

Collection ‘

b

I B! —— B
<<interface>>1__ | |AbstractCollection _ .
List
L e
1
1 R
) ] , ! LR
<<interface>>|| <<interface>> <<interface>> 1
AbstractList
Cloneable RandomAccess Serializable
A , A
1 1 1
1 1 1
1 1 1
1 | 1 Hatniaia]
1 L 1 ' E
N s ——

L e e e e e m = ArrayList

FIGURE 6.2 The UML diagram to illustrate the relative position of the ArrayList<E> class in the Java
Collections Framework
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It may come as no surprise to you that the ArrayList class has an array field:
private transient E[ ] elementData;

The reserved word transient indicates that this field is not saved during serialization (see Appendix 1).
That is, each element would be saved, but not the entire array. The field is private instead of protected
because the developers of the Java Collections Framework were opposed to giving users who subclass
direct access to a superclass’s fields. See Section 2.6 for a discussion of this choice.

The only other field defined in the ArrayList class is

private int size;

So an ArrayList object has an array field to store the elements and an int field to keep track of the
number of elements.

We will finish up our developer’s view of the ArrayList class by studying the implementation of
the add method that appends an element to the end of the calling ArrayList object.

6.2.4 Definition of the One-Parameter add Method

To give you an idea of how expansion of an ArrayList object is accomplished, let’s look at the definition
of the one-parameter add method:

public boolean add (E element)

{
ensureCapacity (size + 1);
elementData [size++] = element;
return true;

}

The call to the ensureCapacity method expands the underlying array, if necessary, to accommodate the
new element; we’ll get to the details of that method momentarily. Then the new element, element, is
inserted at index size in the array, size is incremented, and true is returned. Suppose that fruits has
been constructed as an empty ArrayList by a default-constructor call, and the next message is

fruits.add ("oranges");

After that message is processed, the elementData and size fields in fruits will have the contents
shown in Figure 6.3.

Now let’s get back to the ensureCapacity method. If the underlying array is not filled to capac-
ity, then the call to ensureCapacity does nothing. But if size == elementData.length, then the
argument size + 1 must be greater than elementData.length, so we need to expand the array. First,
the array’s current reference, elementData, is copied to oldData:

E oldData [ ] = elementData;
This does not make a copy of the array, just a copy of the reference. Then a new array object is constructed:
elementData = (E[ ]) new Object [newCapacity];

where (because the argument was size + 1) the variable newCapacity was given a value about 50%
larger than oldData.length. The cast was necessary because the new operator must be applied to a
“real” type, not to a type parameter (such as ). Finally, the arraycopy method in the System class is
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elementData

=

v

oranges

null

null

. null
size

null

null

null

null

null

null

FIGURE 6.3 The contents of the elementData and size fields in the ArrayList object fruits after the
message fruits.add ("oranges") is sent. As usual, we pretend that the non-null elements in the array are
objects; in fact, the elements are references to objects

called to copy all the elements from oldData to elementData; the number of elements copied is the
value of size.
Here is the complete definition:

public void ensureCapacity (int minCapacity)
{
modCount++; // discussed in Appendix 1
int oldCapacity = elementData.length;
if (minCapacity > oldCapacity)
{
E oldDatal[ ] = elementData;
int newCapacity = (oldCapacity * 3) / 2 + 1;
if (newCapacity < minCapacity) // can’t happen if argument is size + 1
newCapacity = minCapacity;
elementData = (E[ ]) new Object [newCapacity];
System.arraycopy (oldData, 0, elementData, 0, size);

}

To see the effect of an expansion, suppose that the ArrayList object fruits already has ten elements
and the following message is sent:

fruits.add ("cantaloupes");

Figure 6.4 shows the effect of this message on the elementData and size fields of fruits.

What are the time estimates of the one-parameter add method? Let n represent the number of
elements in the calling ArrayList object. In the worst case, we will have n = elementData.length,
and so, in the ensureCapacity method, we will have minCapacity > oldCapacity. Then the call to
arrayCopy entails copying n elements from oldData to elementData. We conclude that worstTime(n)
is linear in n.
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fruits.elementData

» oranges [0]
bananas [1]
kiwi [2]
apples [3]

fruits.size
pears [4]

11

oranges [5]
grapes [6]
plums [7]

peaches [8]

apricots 9]

cantaloupes | [10]

null [11]

null [12]
null [13]
null [14]
null [15]

FIGURE 6.4 The contents of the elementData and size fields in the ArrayList object fruits, if fruits
already had ten elements when the message fruits.add ("cantaloupes") was sent. As usual, we pretend
that the non-null elements in the array are objects instead of references

What about the average case? The only occasion for copying occurs when n = elementD
ata.length. But then, by the details of the ensureCapacity method, no copying would have occurred
in the previous n/3 (approximately) calls to the one-parameter add method. So in n/3 4 1 calls to that
add method, the total number of elements copied would be 7, and the average number of elements copied
per call would be about 3. We conclude, since the only non-constant-time code in the ensureCapacity
method is in the initialization of elementData and in the call to arrayCopy, that averageTime(n) is
constant for the one-parameter add method.

Incidentally, the developers of the ArrayList class could have doubled oldCapacity instead of
increasing it by about 50%. There is a trade-off: with doubling, additional space is allocated immediately,
but then there will be a longer period before the next re-sizing occurs. In fact, in the C4++ analogue of
the ArrayList class, the old capacity is doubled when a re-sizing occurs.

The previous examination of fields and implementation details is intended just to give you the flavor
of the developer’s view of the ArrayList class. A few more ArrayList method-definitions are covered
in Lab 10. Of course, all of the ArrayList definitions are available in the ArrayList (or AbstractList
or AbstractCollection) class of java.util.
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You are now prepared to do Lab 10: More Details on the ArrayList Class

Section 6.3 presents an application of the ArrayList class, so the emphasis once again is on the user’s
viewpoint.

6.3 Application: High-Precision Arithmetic

We now introduce high-precision arithmetic as an application of the ArrayList class. We will get to the
details shortly, but it is worth recalling that the use of a class is independent (except for efficiency) of how
the class is implemented. So we are not locked in to any particular implementation of the ArrayList
class.

In public-key cryptography (see Simmons [1992]), information is encoded and decoded using integers
more than 100 digits long. The essential facts about the role of these very long integers in public-key
cryptography are:

1. It takes relatively little time—O(n3)—to generate a very long integer with n digits that is prime?.

For example, suppose we want to generate a prime number that has 500 digits. Then the number of
loop iterations required is approximately 500° = 125,000, 000.

2. Tt takes a very long time—currently, Q(10"/%)—to determine the prime factors of a very long integer
with n digits that is not prime. For example, suppose we want to factor a non-prime with 500 digits.
Then the number of loop iterations required is approximately (10°%%/2) = 102,

3. Assume that you have generated p and ¢, two very long integers that are prime. You then calculate
another prime e to be greater than pg. The product pg can be calculated quickly, and you supply this
product, and e, to anyone who wants to send you a message, M. First, the sender splits the message
M up into sequences of characters M, M,,.... The sequence M; is then treated as a very long
integer V; by concatenating the bits in each character in M;. The encrypted integer corresponding
to Vi is V§ % pq. That is, we raise V; to the power e and then take the remainder when the result
of that exponentiation is divided by pg. This seems complicated, but in fact, the calculation can be
performed relatively quickly. (See Simmons, [1992] for details.) The encoded message, as well as pg
and e, are public, that is, transmitted over an insecure channel such as a telephone, postal service,
or computer network.

4. But decoding the message requires knowing the values of p and ¢. Since determining the factors p
and g takes a prohibitively long time, only you can decode the message.

Very long integers require far greater precision than is directly available in programming languages. We
will now design and implement a simple version of the VeryLongInt class. Exercise 6.5 asks you to
amplify this version, Lab 12 involves the testing of the amplified version, and Programming Assignment
6.1 further expands the veryLongInt class.

For an industrial-strength class that is applicable to public-key cryptography, see the BigInteger
class in java.math. The BigInteger class includes efficient methods for primality testing, multiplication,
and modular exponentiation.

2An integer p > 1 is prime if the only positive-integer factors of p are 1 and p itself.
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6.3.1 Method Specifications and Testing of the VeryLongInt Class

There will be only three methods: A very long integer can be constructed from a string, converted to a
string, or incremented by another very long integer. Here are the method specifications, with examples:

1. J**
* Initializes this VeryLongInt object from the digit characters in a
* given String object.
* There are no leading zeros, except for 0 itself, which has a single ‘'0’.
* The worstTime(n) is O(n), where n represents the number of characters in s.

* @param s - the given String object.

*

* @throws NullPointerException - if s is null.

* @throws IllegalArgumentException - if s contains no digit characters.
*

*/

public VeryLongInt (String s)
Example Suppose we have
VeryLongInt veryLong = new VeryLongInt ("11223?344556677889900") ;

Then veryLong will be initialized to the vVeryLongInt object whose integer value is
11223344556677889900. The ‘?’ is ignored because it is not a digit character. The value is greater
than the largest int value.

2. /** Returns a String representation of this VeryLongInt object. The worstTime (n) is
* O0(n), where n represents the number of digits in this VeryLongInt object.

*

* @return a String representation of this VeryLongInt object in the form ‘[’ followed
* by the digits, separated by commas and single spaces, followed by ‘]°’.

*

*/

public String toString()
Example Suppose we have

VeryLongInt veryLong = new VeryLongInt ("52?2481");
System.out.println (veryLong); // same as
// System.out.println (veryLong.toString());

The output would be

[5,2,4,8,1]

3. /**
* Increments this VeryLongInt object by a specified VeryLongInt object.
* The worstTime(n) is O(n), where n is the number of digits in the larger of this
*  VeryLongInt object (before the call) and the specified VeryLongInt object.

* @param otherVeryLong - the specified VeryLongInt object to be added to
* this VeryLongInt object.
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* @throws NullPointerException - if otherVeryLong is null.
*

*/
public void add (VeryLongInt otherVeryLong)

Example Suppose that newInt and oldInt are VeryLongInt objects with values of 328 and 97,
respectively, and the message sent is

newInt.add (oldInt);

Then the value of newInt has become 425.

Note: This method performs the arithmetic operation of addition. Contrast that to the ArrayList
class’s one-paramter add method, which appends the argument to the calling ArrayList object.

The book’s website has a VeryLongIntTest class, with the following fields:

protected VeryLongInt very;

protected String answer;

That class also includes the following tests, one for a constructor call with an argument that has no digits,
and one for a simple addition:

@Test (expected = IllegalArgumentException.class)
public void testConstructorWithNoDigits()
{
very = new VeryLongInt ("x t?.o");
} // method testConstructorWithNoDigits

@Test
public void testAdd()
{
very = new VeryLongInt ("99");
VeryLongInt other = new VeryLongInt ("123");
very.add (other);
answer = very.toString() ;
assertEquals ("[2, 2, 21"
} // method testAdd

answer) ;

6.3.2 Fields in the VeryLongInt Class

As often happens in developing a class, the major decision involves the field(s) to represent the class.
Should we store a very long integer in an array-based structure such as an ArrayList, or would a linked
structure be better? (An array itself is not a good idea because then we would have to write the code—for
example, to keep track of the number of elements in the array—instead of simply calling methods). In this
chapter, we will use the ArrayList class and represent each very long integer as a sequence of digits. In
Chapter 7, we will consider a linked structure.

Which is the appropriate relationship between VeryLongInt and ArrayList: is-a (inheritance)
or has-a (aggregation)? That is, should VeryLongInt be a subclass of ArrayList, or should veryL
ongInt have a field of type ArrayList ? The primary purpose of the VeryLongInt class is to perform
arithmetic; as such, it shares little functionality with the ArrayList class. So it makes more sense to say
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“aVeryLongInt object has-an ArrayList field” than “a VeryLongInt object is-an ArrayList object.”
The only field in the VeryLongInt class will be an ArrayList object whose elements are of type
Integer:

protected ArrayList<Integer> digits;

Each element in the ArrayList object digits will be an Integer object whose value is a single digit
(Exercise 6.6 expands each value to a five-digit integer).
Figure 6.5 has the UML diagram for the VeryLongInt class.

VeryLongInt

digits: ArrayList<Integer>

toString(): String

#
+ VeryLongInt (s: String)
+
+

add (otherVeryLong: VeryLongInt)

FIGURE 6.5 The class diagram for the VeryLongInt class

6.3.3 Method Definitions of the VeryLongInt Class

The digits in the ArrayList field digits will be stored from left-to-right, that is, in their normal order.
For example, if the underlying integer value of a VeryLongInt object is 328, we would store the 3 at
index 0 in digits, the 2 at index 1, and the 8 at index 2.

Notice that by having the insertions take place at the end of the ArraylList object, we take advantage
of the average-case speed of the ArrayList class’s one-parameter add method, which is not related to
the VeryLongInt method named add. If, instead, we stored a number in reverse order, we would be
repeatedly inserting at the front of the ArrayList object digits. Exercise 6.7 explores the effect on
efficiency if the digits are stored in reverse order.

We now define the String -parameter constructor, the toString () method and the add method.
While we do we will keep in mind the strengths (fast random access and fast end-insertions) and weakness
(slow insertions at other-than-the-end positions) of the ArrayList class.

For the string-parameter constructor, we loop through the characters in s. For each character in
s, if the character is a digit character, we convert that character to the corresponding digit by subtracting
the Unicode representation of ‘0’ from the character. For example,

7 o g = 7

Finally, we append that digit (as an Integer) to digits. The ArrayList field digits never needs
resizing during the execution of this constructor because that field is constructed with initial capacity of
s.length (). Here is the code:

public VeryLongInt (String s)

{
final char LOWEST_DIGIT_CHAR = '0';

digits = new ArrayList<Integer> (s.length());
char c;

int digit;
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boolean atLeastOneDigit = false;

for (int i = 0; i < s.length(); i++)
{
c = s.charAt (i);
if (Character.isDigit(c))
{
digit = ¢ - LOWEST _DIGIT_CHAR;
digits.add (digit); // digit is boxed to an Integer object
atLeastOneDigit = true;
}y // 1f a digit
y // for
if (!atLeastOneDigit)
throw new IllegalArgumentException() ;
} // constructor with string parameter

How long will this method take? Assume that there are n characters in the input. Then the loop will be
executed n times. For the ArrayList class’s one-parameter add method, averageTime (n) is constant,
so for this constructor, averageTime(n) is linear in n (that is, O(n) and Q(n)). As we saw in the analysis
of that add method, if n represents the number of elements in the ArrayList object, worstTime(n) is
O(n) for n calls to that add method, So for this constructor in the VeryLongInt class, worstTime(n)
is O(n). In fact, because worstTime(n) > averageTime(n) and averageTime(n) is 2 (n), worstTime(n) must
be ©2(n). We conclude that worstTime(#n) is linear in n.
For the toString () method, we simply invoke the ArrayList class’s toString () method:

public String toString/()
{

return digits.toString() ;
} // method toString

For an example of a call to this method, if veryLong is a VeryLongInt object with a value of 6713, the
output from the call to

System.out.println (veryLong) ; // same as System.out.println (veryLong.toString());
will be
[6,7, 1, 3]

For this method, worstTime(n) is linear in n, the number of digits in the calling VeryLongInt object.
To convince yourself of this estimate, look at the definition of the toString () method in the Abstract
Collection class, a superclass of ArrayList.

Finally, we tackle the add (VeryLongInt otherVeryLong) method in the VeryLongInt class.
We obtain partial sums by adding otherVeryLong to the calling object digit-by-digit, starting with the
least significant digit in each number. Each partial sum, divided by 10, is appended to the end of the
ArrayList object sumDigits, which is initially empty.

Because we will be using the ArrayList class’s one-parameter add method on the partial sums,
we must reverse sumDigits after adding so that the most significant digit will end up at index 0. For
example, suppose newInt is a VeryLongInt object with the value 328 and oldiInt is a VeryLongInt
object with the value 47. If the message is

newInt.add (oldInt);
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then after adding and appending the partial sums to the VeryLongInt object sum, sum will have the value

573. When this is reversed—by the generic algorithm reverse in the Collections class of the package

java.util—the sum will be correct. Note that the add method in the ArrayList class is used to

append a digit to the end of sumDigits; the ArrayList class’s add method does not perform arithmetic.
Here is the definition of the add method in the veryLongInt class:

public void add (VeryLongInt otherVeryLong)

{
final int BASE = 10;

int largerSize,
partialSum,
carry = 0;

if (digits.size() > otherVeryLong.digits.size())
largerSize = digits.size();

else
largerSize = otherVeryLong.digits.size();

ArrayList<Integer> sumDigits = new ArrayList<Integer> (largerSize + 1);
for (int i = 0; i < largerSize; i++)

{

partialSum = least (i) + otherVeryLong.least (i) + carry;

carry = partialSum / BASE;
sumDigits.add (partialSum % BASE) ;
}y // for
if (carry == 1)

sumDigits.add (carry);
Collections.reverse (sumDigits);
digits = sumDigits;
} // method add

The call to the 1east method with an argument of i returns the i™ least significant digit in the calling
object’s digits field. The units (rightmost) digit is considered the Oth least significant digit, the tens digit
is considered the 1st least significant digit, and so on. For example, suppose that the calling VeryLongInt
object has the value 3284971, and i has the value 2. Then the digit returned by the call to least (2) will
be 9 because 9 is the 2" least significant digit in the calling object’s digits field; the 0™ least-significant
digit is 1 and the 1% least-significant digit is 7. The method definition is:

/** Returns the ith least significant digit in digits if i is a non-negative int less than

* digits.size(). Otherwise, returns 0.

*

* @param i1 - the number of positions from the right-most digit in digits to the
* digit sought.

* @return the ith least significant digit in digits, or 0 if there is no such digit.

* @throws IndexOutOfBoundsException - if i is negative.
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*
*/
protected int least

{

(int i)

if (i >= digits.size())
return O;
-1i-1);

return digits.get (digits.size()

} // least

For the 1east method, worstTime(n) is constant because for the size and get methods in the ArrayList
class, worstTime(n) is constant.

We can now estimate the time requirements for the VeryLongInt class’s add method. Assume, for
simplicity, that the calling object and otherVeryLongInt are very long integers with n digits. There will
be n iterations of the for loop in the definition of the add method, and during each iteration, a digit is
appended to sumDigits. For appending n elements to the end of an ArrayList, worstTime(n) is linear
in n; see Exercise 6.2. The reverse generic algorithm also takes linear-in-n time, so for the add method
in the VeryLongInt class, worstTime(n) is linear in n.

The book’s website has a class, VeryLongIntUser, to demonstrate how an end user might work
with the VeryLongInt class. The run method inputs a line from the keyboard, calls a process method
to parse the line and invoke the appropriate method,, and outputs the result of processing to the screen.
For the testing of that process method, see the test class, VeryLongIntUserTest, also on the book’s

website.

Programming Exercise 6.7 expands on the VeryLongInt class. You should complete that exercise

before you attempt to do Lab 11.

You are now prepared to do Lab 11: Expanding the VeryLongInt Class

Exercise 7.7 explores the modifications needed to develop the VeryLongInt class with digits a

LinkedList field instead of an ArrayList field.

SUMMARY

In this chapter we introduced the List interface, which
extends the Collection interface by adding several
index-based methods. We then studied the ArrayList
class, an implementation of the Li st interface that allows
random-access—that is, constant-time access—of any
element from its index. Using an ArrayList object is
similar to using an array, but one important difference
is that ArrayList objects are automatically resizable.
When an ArrayList outgrows the current capacity of
its underlying array, an array of 1.5 times that size is

created, and the old array is copied to the larger array.
This is similar to what hermit crabs do each time they
outgrow their shell. A further advantage of ArrayList
object over arrays is that, for inserting and deleting, users
are relieved of the burden of writing the code to make
space for the new entry or to close up the space of the
deleted entry.

The application of the ArrayList class was
in high-precision arithmetic, an essential component of
public-key cryptography.
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CROSSWORD PUZZLE

1 2 3
4

5

6
7 8

9
10
www.CrosswordWeaver.com
ACROSS DOWN

1. The immediate superclass of ArrayList. . The method, because it

5. Currently, determining the prime factors
of a non-prime very long integer of n
digits requires in ntime.

6. The fact that string[ ] is a subclass of
Object [ ] is an example of
subtyping.

7. A constructor that initializes the calling
object to a copy of the argument
corresponding to the given parameter.

9. The fact that ArrayList<Strings> is not
a subclass of ArrayList<Objects> is an
example of subtyping.

10. In public-key cryptography, information
is encoded and decoded using

does not guarantee type safety, is
inferior to the copy constructor for
obtaining a copy of an ArrayList object.

. An interface that extends the Collection

interface with methods that have an
index as either a parameter or a return
type.

. Because the elements in any Collection

object are references, the ArrayList’s
copy constructor is said to produce a

___ copy.

. A positive integer greater than 1 that

has no positive-integer factors other
than 1 and itself is called a
number.
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CONCEPT EXERCISES

6.1
6.2
6.3

6.4
6.5

6.6

6.7

6.8

6.9

State two advantages, and one disadvantage, of using an ArrayList object instead of an array object.
Show that, for the task of appending n elements to an ArrayList object, worstTime(n) is linear in 7.

The one-parameter add method in the ArrayList class always returns true. Would it make sense to change
the return type from boolean to void ? Explain.

For the one-parameter add method in the ArrayList class, estimate worstSpace(n) and averageSpace(n).

In choosing fields for the VeryLongInt class, we decided to use, rather than inherit from, the ArrayList
class. Why?

Hint: How much commonality is there between the methods in the ArrayList class and the methods in the
VeryLongInt class?

Suppose you modified the VeryLongInt class as follows: each element in digits consists of a five-digit
integer. What effect do you think this will have on Big-O time? What about run-time?

Suppose, in developing the VeryLong