DATA STRUCTURES
& ALGORITHMS
IN JAVA

SECONDMEDITION

ROBERT LAFORE

SAMS

Robert Lafore

Data Structures
& Algorithms
IN Java

Second Edition

800 East 96th Street, Indianapolis, Indiana 46240

Data Structures and Algorithms in Java,
Second Edition
Copyright © 2003 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the prepara-
tion of this book, the publisher and author assume no responsibil-
ity for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

International Standard Book Number: 0-672-32453-9
Library of Congress Catalog Card Number: 2002106907
Printed in the United States of America

First Printing: December 2002

05 04 03 4 3

Trademarks

All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Sams
Publishing cannot attest to the accuracy of this information. Use of
a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from
the information contained in this book.

Bulk Sales

Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
1-317-428-3341
international@pearsontechgroup.com

Executive Editor
Michael Stephens

Acquisitions Editor
Carol Ackerman

Development Editor
Songlin Qiu

Managing Editor
Charlotte Clapp

Project Editor
Matt Purcell

Copy Editor
Chuck Hutchinson

Indexer
Johnna Dinse

Proofreader
Cindy Long

Technical Editor
Mike Kopack

Team Coordinator
Lynne Williams

Multimedia Developer
Dan Scherf

Interior Designer
Gary Adair

Cover Designer
Alan Clements

Production
Plan-it Publishing

Contents at a Glance

W N O L AW IN =

v~]

Introduction
Overview

Arrays

Simple Sorting
Stacks and Queues
Linked Lists
Recursion
Advanced Sorting
Binary Trees
Red-Black Trees
2-3-4 Trees and External Storage
Hash Tables

Heaps

Graphs

Weighted Graphs
When to Use What

Appendixes
Running the Workshop Applets and Example Programs
Further Reading

Answers to Questions

Index

33

77
115
179
251
315
365
429
463
519
579
615
669
717

729
735
739

749

Table of Contents

Introduction 1
What's New in the Second Edition ..., 1
Additional TOPICS ..ueveeiiriiiiieiiieeeeee et 1
End-of-Chapter QUESTIONSccoccoueeiriiieiiriiieeiriiteeeieeee e 2
EXPEIIIMENTS ...ooiiiiiiiiiiiiiiiiiiiice e 2
Programming Projectscccccccccviiiiiiiiiiiiiiiiii e 2
What This Book Is About ..., 2
What's Different About This BOOKccccociiiiiiiiiiiii, 3
Easy to Understandcccocueeeriiiieiiiiieeeiiieceeieeeeeee e 3
WOTKSNOPD APPILELS ..eeeiiiiiiiiieiiieeeee et 4
Java Example Codecccccoiiiiiiiiiiiiiiiiiiiii 5
Who This Book Is For
What You Need to Know Before You Read This BOOKcccoecvvvierciieennas 5
The Software You Need to Use This BOOKccccccoiiiiiiiiiiiiiiiiiiiii, 6
How This BOOK Is O1ganizedccoocuveiiriiieiiniiieiiiieeerieeeeeeee e 6
ENjOy YOUTSEIE] ..oeeiiiiiiieiiee ettt 8
1 Overview 9
What Are Data Structures and Algorithms Good For?cccoccceveviiieenas 9
Real-World Data StOrageccoeeeeeirniieiiniiieeeiiteeeiee e 10
Programmer’s TOOISc..ueiiiiiieiiiiiiieiiiiec et 11
Real-World Modelingcccccovviiiiiiiiiiiiiniiiiiiiiiccece e, 11
Overview of Data Structuresccoceiviiiiiiiiiiiii e 11
Overview of AIGOTItNIMS ...ccceiiiiiiiiiiiiiiii e 12
Some Definitions ..o 13
Databasecc.eeiiiiiiiiiiie s 13
RECOTA ettt e e 13
Field .ooiiiiiiii 13
KEY oo 14
Object-Oriented Programimingccccceeeeueeinniieeiniiieeiniieeeeieeeeeieeeene 14
Problems with Procedural Languagesccccoecveeeriiieeinineeennnnees. 14
Objects in @ Nutshellccoociiiiiiiiiiiicec e 15
A Runnable Object-Oriented Programccccoeveveeriiieeinnieeeennns 18
Inheritance and Polymorphismccccccoiiiiiiiiiin, 21

Software ENgineeringc.cccceevviiiiiiiiiiiiiiiiiiiicc e 21

Java for Ct+ PrOGIaINIMIETS «....oeeiviuiiiiiniiieeiiiieeeiiiee et e e 22

NO POINETS ..ot 22
Overloaded OPEratorsccoccceeeirriireeriiiierniireeeiieeeerree e e e 25
Primitive Variable TYPeSccceiiriiiiiiiiiiieiiiieeeiieeeeeec e 25
INPUL/OULPUL ..o 26
Java Library Data Structurescccocccveiiiiiiiiiniiiiiniiiicciiccceec e 29
SUITIMIATY .evvviiiiiiiiiiiiiiiiiiec e siaanns 30
QUESTIOTIS .uniiiiieieiieeeeiee e e tee e et e e et eeeeea e e eeaeeesateeesatneesssaneesasaneessanaeasrannns 30
Arrays 33
The Array WOTKShop Appletcooiiiiiiiiiiiiicecc e, 33
INSEItionooooiiiiiiiiiiiiii 35
SEATCRINIG ..viiiiiiiiiiiiiee e 36
Deletionccoiiiiiiiiiiiiiiiiii 36
The Duplicates ISSUEccceeieriuiieiiiiiieeniieeerie ettt 37
NOt TOO SWIEE .oeiiiiiiiiiiiieieceec e 39
The Basics of Arrays in Javacccoccveiiiiiiiiiiiiiiiiiiieeccc e 39
Creating an AITAYcccccvvviiiiiiiiiiiiieiiic e 40
Accessing Array Elementscccoocveiiviiiiiiiiiiiiniiieciecee e 40
Initialization ... 41
An Array EXample ..o 41
Dividing a Program into Classescccccoiiiriiiiiiniiiiiiiniiiiniiiieeciieeene 44
Classes LowArray and LOWALTayAPD ..ccccveeeerurreeniireeeniieeeennneee e 46
Class INterfacescccooviiiiiiiiiiii 46
Not SO CONVENIENtcoovviiiiiiiiiiiiiiii 47
Who's Responsible for What?ccocciiiiiiiiiiniiiiiiiiecieeceee, 48
The highArray.java EXamplecccoviiiiniieiiiiiieiinieeerieeeee 48
The User’s Life Made EQSIerc.ccocverviiiiiiiiniiiiniiieniieiieccieceieeeae 52
ADStIaCtioncccociiiiiiiiiiii 52
The Ordered Workshop Appletcooviiiiiiiiiiiiiiieiiieceec e 52
Linear Searchccccciiiiiiiiiiiiiii 53
Binary Searchcocccueeiiiiiiiiiiiii e 54
Java Code for an Ordered ATTAYccccceervieeerniieeeniieeeeniieeeeieeeeeiieeeens 56
Binary Search with the find() Method ..., 56
The OrdArray CLASScccvvvveiieeeeeeeeiiiiieeeeeeeerrrieeeeeeeerrrieeeeeesrerrnnnaaeens 58
Advantages of Ordered AITAYSccccoeevueeimiiiieeiniiiieeiniieeeenieeeennns 61
LOGATItRINS cneiiiiiiiiiii i 62
The EQUAtIONeeiiiiiiiiiiiiiiieieeeeeeee et 63

The Opposite of Raising TWo t0 @ POWETccceeevviiiiirniiiiiniiieeenns 64

Vi

Data Structures & Algorithms in Java, Second Edition

StOTING ODJECES .eneiiiiiiiiiiiiiie et
The Person Class
The classDataArray.java Programcccccccccevveeinniieennieeeennnes 65
Big O NOtAtiON .eeeviiiiiiiiiii e 70
Insertion in an Unordered Array: Constantcccccceveieinnnnen. 70
Linear Search: Proportional to Ncccccoiiiiiiiiiiiiniiiiiiiiiccen, 70
Binary Search: Proportional to 10g(N)ccccceviiiiiniiiiiiniiiceinneen. 71
Don't Need the Constantcccocceiviiiiiiiiiiiiii e 71
Why Not Use Arrays for Everything?cccccccoiiiiiiiiiiiiniiiicceeeee, 72
SUITIIMIATY wetviieiiiiiiiiiiiieee ettt e e et e e e e e e e e e e e e e aannnee 73
(@ TS 4T} s LSRR 74
EXPEIIMEeNtscooviiiiiiiiiiiiiiiiiiii i 75
Programming Projectsccccccciiiiiiiiiiiiiiiiiiiiiiiie i 76
Simple Sorting 77
How Would YOU DO Tt? .coiiiiiiiiiiiieieiteeeieeeeee et 78
Bubble SOrtocviiiiiiii 79
Bubble Sort on the Baseball Playerscccccccevveiieiiviiecinineennnneen. 79
The BubbleSort Workshop Appletccccveeeveiiiiiniiiciniiiciinieeenne 81
Java Code for a Bubble SOTtcoovvvviiieeiiiiiiiiiieeeeeeeeeeee e 85
INVATIANES L.oviiiiiiiiiii e 88
Efficiency of the Bubble SOrtccccociiiiiiiiiiiiiiiiiiccceee 88
Selection SOtcciiiiiiiiiiiiii e 89
Selection Sort on the Baseball Playersccccococeevviiiiiniiicennnneen. 89
The SelectSort WOorkshop Appletcooocveeeviiieiiiiieeiniiiceinieeeene 90
Java Code for Selection SOTtcovvvvuiieeeiiiiiiiiiieeee e 92
INVATIANT ..oiiiiiiiiii e 95
Efficiency of the Selection SOItcccccocviiiiiiniiiiniiiiiiiiiicciiees 95
INSETtion SOItoociiiiiiiiiiiii e 95
Insertion Sort on the Baseball Playersccccocccvevviiiiiniieennnneen. 95
The InsertSort Workshop Appletcooociieiiiiiiiiiiiiinniicciieceee 97
Java Code for INSertion SOTtoevvvuiieeeiiiiiiiiieeee s 99
Invariants in the Insertion SOItccccoeviiiiiiiiiiiiniiiciiieceee, 103
Efficiency of the Insertion SOrItcccccociiiviiniiiiiiiiiiiniiicneee 103
SOTting ODJECES ...eeviiiiiiiiiiiiieeicc e 103
Java Code for Sorting ODbjJectscccccevviiiiiiiiiiiiiiiiiiiiiiicieeees 104
Lexicographical COmMPATiSOnSccceecuvteervirieeniiieeinieeeniiee e 107
SADILILY ..ooiiiiiii 107
Comparing the Simple SOTtScc.eeiiroiiiiiiiiieiiiiieeeceeeceeee e 108

SUITIMIATY wevviteiiiiiiiiiietee ettt e e e e e e e e e e st eeeeeeeennnnes 108

Contents vii

(@18 T (o) s LSRN 109
EXPOIImenNts ...cccooviiiiiiiiiiiiiiiiiiiiicciice e 111
Programming PTOJECtScoovviiiiiiiiiiiiiiiiiiiiicieeeceeeece e 112
Stacks and Queues 115
A Different Kind of Structureccooccviiiiiiiiniiiiiiniieeieecieeeeee 115
Programmer’s TOOIScccceerviiiiimiiiiiiiniiiieiieceeieec e 115
Restricted ACCESSococuiiiiiiiiiiiiiiiiciic e 116
MOTE ADSTIACE ..eeiiiiiiiiiiiiiiee ittt 116
SEACKS i 116
The Postal ANalogycccccviiviiiiiiiiiiiiiciccec e 117
The Stack WOrkshop Appletcooviiiiiiiiiiniiiiiiiiceiieeeeieeee 118
Java Code fOr @ StACKcovvvviieiiiiiiiceeeeeeeee e 120
Stack Example 1: Reversing a Wordccccccceeeviiieiiniiieinniiecennnes 124
Stack Example 2: Delimiter Matchingccceceeeiviiieiiniieeennnnne 127
Efficiency of Stacksc.cccvviiiiiiiiiiiiiiiii 132
QUEUES ...eevviiiieeeeeeeriieeeeeeeerarteaaeeeesessataeeessesssnnnaaeesssssssnnaseesessssrnnnseeeesens 132
The Queue WOIrkshop Appletccccvveiviiiiiiniiiiiiniiiiiiiieceieeeee 133
A CiIrcular QUEUEceiiieeiiiiieeeeeeeeeeiieee et e e e e e e e e e evaaeee s 136
Java Code for @ QUEUEuueeeiiiiiiiiiiieeeeeeeeieeeee e 137
Efficiency Of QUEUESeeeiiiiieiiiiiiieiiieeeeeceeee e 142
DRQUES .ttt e e e 143
Priority QUEUESooiiiiiiiiiiiiiiiiiiicccete e 143
The PriorityQ Workshop Appletccoovveiiviiiiiiniiiiiiiieiieeeee 144
Java Code for a Priority QUeUEcccoccuveiiviiiiiniiiiiiieeeiiieeeeee 147
Efficiency of Priority QUEUeSccceevvuiiiiriiiiiiniiiiiinieeceeeceee 149
Parsing Arithmetic EXPressionscccoocviiiiiiiiniiiiiiiieiiiiiniiececceeee 149
POStfix NOtAtiON .evieiiiiiiiiiiieceiee e 150
Translating Infix to POStIiXccceeoiiiiiiiiiiiniee 151
Evaluating Postfix EXPressionsccccecceveeviieeiniiiiceiniieeennieeeennnes 167
SUINMIATY ©evviiiiiiiiiiiiiiiiiieieeii et e e e 173
QUESTIOTIS wruniiiieeeiieee ettt e e tee e e e e e e et e e e st e e sateeesatneeessaneeseraneesnen 174
EXPOIIMENTS .oeiiiiiiiiiiiiiiiiiiiee e 176
Programming PIOjectscccccciiiiiiiiiiiiiiiiiiiie 176
Linked Lists 179
LANIKS Lo 179
References and BasiC TYPESceeovviiiiriiiiiiniiiiiiniieeeeiee e 180

Relationship, NOt POSItiONcccccciiiiiiiiiiiiiiiiiiiiicies 182

viii

Data Structures & Algorithms in Java, Second Edition

The LinkList WOrkshop Appletcc.ooiiviiiiiiiiiiiiiiciiceecceeeees 183
N s T o <) 2 L o) o N 183
The Find BUttOnovvviiiiiiiiiiiiiiiiiiieiiiiiiieeiiiiiieeeeeeeeeeaeeeaeeees 184
The Delete BUttONcoovvvviiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee s 184
A Simple Linked Listccccooiiiiiiiiii 185
The Link ClasS .iiiiiiiiiiiiiiiiiiiieiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeseeeeeees 185
The LinKLiSt CLASS ...vvuvvvvvrrerriierrierireereeereeereeeaeaeeennneesnnnsnnnnnnnnnnnnnnes 186
The insertFirst () Methodccccoooeeeiiiiiiiiiiiieiiiiice e 187
The deleteFirst() Methodccoooeeeiiiiiiiiiiiieeiieieeeeeeeeeeee s 188
The displayList() Methodccccooiiiiiiiiiiiiiiiieeeeeeeieeee e 189
The linkList.java PrOgramcccooviiiiiiiiiniiiiiiniiiiiieeens 190
Finding and Deleting Specified Linkscccocciiiniiiiiniiiiiinniiicinnneene 193
The Find () Methodoovvieeeiiiiiiiiiieeeeeeeeeee e 196
The delete () Methodceeeeiiiiiiiiiiieeeieeieecee e 196
Other Methodsccoooiiiiiiiiiieeeeeeeeeeeeeeeeees 197
Double-Ended LiStS ...cccceeeeeeiieeiieeiieeeeeeeeeeeeeeeeeeeeeeeeeee e 198
Linked-List EffiCIeNCY ...cccccovviiiiiiiiiiiiiiiiiiececcee e 202
Abstract Data TYPES ...ccccviiiiiiiiiiiiiiiiiicccee e 202
A Stack Implemented by a Linked Listcccccooveiiiiniiiiinniniinnnnns 203
A Queue Implemented by a Linked Listccccovviiiiniiiiiiniiieennans 206
Data Types and ADStractionccceccceeeeiiieeiniieeenniieeeniieeeeee 210
ADT LISES wruieeiiiiiiiiiiieee et e e e e e e e e aee e e e e e eaaeneeeeeeeeaaaananns 211
ADTs as a Design TOOlccccoiiiiiiiiiiiiiiiiiiiiiiees 212
SOTEEA LISES e e e e e e e e e e e e e e e ee e e e e e e e e e e eeeeeeeeeaaaaaaenns 212
Java Code to Insert an Item in a Sorted Listcccooeeviiviiiiiiieneenns 213
The sortedList.java Programccccoveiimiiieiiniiieenniieeenneeenne 215
Efficiency of Sorted Linked LiStsccccoevviiiiniiieiiniieciiniiecennee. 218
List INSertion SOTtuueeeiiiiiiiiiieee e 218
Doubly Linked Listscccoooiiiiiiiiiiiiiiiiiiii e 221
TrAVETSAL oeeiiiiiiieiieiiiiceeeeeeeeeeeee e 222
| s 1S3 (o) o K PO PPPRPRRPINN 223
Deletionccooeeeiiiiiiii s 225
The doublyLinked.java Programccccooveiimniieiinniiiecennnneenn. 226
Doubly Linked List as Basis for Dequescccocceeevviieeinneiecennnen. 231
TEETATOTS eaeeeaeaas 231
A Reference in the List Itself?cccccviiiiiiiiiiiiiiiiiiieeeeeeeeees 232
AN TETator ClASS .iiviiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee e e e e e e e e e e e eeereeereees 232
Additional Iterator Featuresccccccvviiiiiiiiiiiiiirieieieeeeeeeeeereeeeeens 233
Iterator Methods ... 234

The interIterator.java Program ... 235

Contents

Where Does the Iterator Point?ccccccevviiieiiiiiiiinniieiniieeenn, 242
The atEnd () Methodovvvieeiiiiiiiiiiieeeeeeeeee e 242
[terative OPerationsccoovveeuiiiiiiiiiiiiiiiiiiieeeeeeeieeeee e 243
Other Methodscoooiiiiiiiiiiiiiii e 244
SUITIIMIATY cevtiieeeeeeeiiiit ettt e e ettt e e e e st e e e e e e s e anreeeeeeeeeeeanns
QUESTIONIS 1evvvuieeeeeeeiiiiieeeeeeererieeeeeeeeertateeeeeaessssnnaeeeessssssnnaseesessssrnnnseaeesens
Experiments
Programming PrOjectscccocviiiiiiiiiiiiiiiiiiiiiiiiice 247
Recursion 251
Triangular NUMDETScccceeiiiiiiiiiiiiiiiiice s 251
Finding the nth Term Using a LOOP ...cccceeveiieiiiiieiiniiciiieeeeee, 252
Finding the nth Term Using Recursionccccoccccevnieiinnieeennnne. 253
The triangle.java PrOGIamcccccocecevmiiiiiiniieeiniiieeeiieeeeieeeeae 255
What’s Really Happening?ccoccvveeiviiieiiniieeiinieeeniieeeeieeeeae 257
Characteristics of Recursive Methodsc.ccccocveviiiiiiiiniiinninn. 259
Is Recursion Efficient?cccccooviiiiiiiiiiiniiiiiiiiec s 259
Mathematical INdUCtiONcccceeiiiiiiiiiiiiiiiiceeee 259
Factorials ..o 260
ADNAZIAINS .eiiiiiiiiiiiiiiiii e 262
A Recursive Binary Searchcccooccciiviiiiiiiiiiiiiiiiecee e 268
Recursion Replaces the LOODccccoovuiiiiiiiiiiiiiiiiiiiiicieccs 268
Divide-and-Conquer Algorithmscccccviiviiiiiiniiiiinniiiiinns 272
The Towers of HANO1 ..ccccveeiiiiiiiiiiiiiiiiiiiicciiiccccc e 273
The Towers WOrkshop Appletcccccveevviiieiiniieeiiniiiiniieeeieeeee 274
MOVING SUDIIEESeveeiiiiiiiiiiiiiceece e 275
The Recursive AIGOTItRIMccoocuiiiiiiiiiiiiiiiiiiceceeeeceeeee 276
The towers.java Programcccccccccceiiiiiiiiiiieeeeinnnniieeeee e 277
IMETZESOTT .eeiniiiiiiiiiiii ittt e e e sanee e snnee s 279
Merging TWO SOrted AITAYS ...ccceeeevvirieiriiieeinieeeeieeeeieee e 280
SOrting by Mergingcccccveeeiviieiimiiiiiiiiieeeiieceeieec e 283
The MergeSort Workshop Appletcoocveiiiiiiiiiniiiniiicenieeeeae 285
The mergeSort.java Programccccocceeiriiieeiniiceeeniieeeeniieeenas 287
Efficiency of the mMergesortccccoevviieeriiieeiniiieenniee e 291
Eliminating RECUISIONccccciiiiiiiiiiiiiiiiiiiiciiiccceeeceec e 294
Recursion and Stacksccooeceveiiiiiiiiiiiiiiiiiccec e 294
Simulating a Recursive Methodccccoevviiiiniiiiiinniiiniecines 294
What Does This Prove?ccccccciiiiiiiiiiiiiiiiiiccicce 301
Some Interesting Recursive Applicationscccccovvieeiiiiiniiiiiiececinnnnnn. 303

Raising a Number t0 @ POWETcccoocviiiiiiiiiiiiiiiiicccce 303

Data Structures & Algorithms in Java, Second Edition

7

The Knapsack Problemcccocceiiniiiiinniiiiiniiiieiiiecciec e 305
Combinations: Picking a Teamc..ccccceevviieiiniiieinniieciniieeennee. 306
SUITIMIATY wevviiiiiiiiiiiiiiieeee ettt e e e e e e e e e e e eaannes 308
(@8 1) (e s LSS 310
EXPerimentscccoviiiiiiiiiiiiiiiiiiiiiiic s 312
Programming PIOJECSccceeiviiiiiiiiiiiiiiiiiiiicceecceecc e 312
Advanced Sorting 315
SREIISOTT ettt e e e s 315
Insertion Sort: Too Many CoOPpiescccceecuviiiviiiiiiiiiiciiiiieeeneee, 316
IN-SOTHIIEZ woveeiiiiiiiiiice e 316
Diminishing Gapscccccccvvrieiiniiiiiiiieeeiceee e 317
The Shellsort Workshop Appletcccoovveiimiiiiiiniiiiiniiieeenieeene 319
Java Code for the ShellSOTrtcoovvvvuiieeeeiiiiiiiiieeeeeeeeeeeee e, 321
Other Interval SEQUENCESccoovoviiiiiiiiiiiiiiiiiieiieeeeee e 324
Efficiency of the ShellSOrtccocceeviiiiiiiniiiniiiiicieccecceee 324
Partitioningooccceiiiiiiiiiiiiiicc e 325
The Partition Workshop Appletccccoviiiimiiiiiniiiiiiieceeeee 325
The partition.java Programcccoiimiiiiiniiieinniiecenieeene 327
The Partition AIOTItRIMNcooviiiiiiiiiiiiecee 330
Efficiency of the Partition Algorithmcccoocoiiiiiiiiinniicinnnnen. 332
QUICKSOTT eiiiiiiieee et e e e e e ettt eeeeeereabe e e eeeeesassnaeeeeesesssannaaaaaes 333
The Quicksort AIOTithmccoooiiiiiiiiiiiiiis 333
Choosing a Pivot Valuecccoeciiiiiiiiiiniiiiiiiccciee e 335
The QuickSortl Workshop Appletccoccceiiviiiiiiniiieiniiiecinieeene 340
Degenerates to O(N2) Performanceccccccceeeeveeerviieeinnieeeennnee. 344
Median-of-Three Partitioningcccoccceernviiiiniiiiniieceiieeees 345
Handling Small Partitionsc.cccccoviiiiiiiiiiiiniiiiiiiiccee, 350
Removing ReCUISIONcccccviiiiiiiiiiiiiiiiiiiiiiiee, 354
Efficiency of QUICKSOItcooooiiiiiiiiiiiiiiiiiiiiccecccec e 355
RAdix SOTT .eiiiiiiiiii 357
Algorithm for the RadixX SOTtcccceeiviiiiiiiiiiiiiiciieceeees 358
Designing a PrOgramcccccveiieeiiiiiiiiiiiiieeeeeeieeee e 358
Efficiency of the Radix SOtccccoviiiiiiiiiiiniiiiiiiccicceee 359
SUIMINIATY ettt e e 359
(@ T (e) s PP 361
EXPEIIMENtS .oooiiiiiiiiiiiiiiiiiiiiii s 363

Programming PrOjectscccccviiiiiiiiiiiiiiiiiiiiiiiiiceceeeeee s 363

Contents

8 Binary Trees 365
Why Use Binary Trees?ccceeeiiiiiiiiiiiiniieniieeiee e e 365
Slow Insertion in an Ordered AITayccccccevviviiiniiieiiniieeennne. 365

Slow Searching in a Linked LiStccccccceeiiiiiiiniiiiiiniiiceiieecene 366
Trees to the Rescue ..., 366
What Is @ Tree?cccoiiiiiiiiiiiiiiiiiiic 366

Tree TerminolOoZY ..cccccvvviiiiiiiiiiiiiiiie e 367
Pathl oo 368

ROOt e 368
Parentcoooiiiiiiiiiii e 369
Child ..o 369

Leaf oo 369
SUDLICE .ottt et e e 369
VISIEING cooiiiiiiiiiiiii 369
TIAVETSITIZ .eeeiiiiiiiiiiiiiie ettt 369
LEVELS oot 369

KOYS et 369
BINary TI@ESccciiiiiiiiiiiiiiiiiiiiiiiiccec e 370

AN ANALOZY it 370
How Do Binary Search Trees WOTK?ccccoevviiiiiiiiniiiniiiiiieiicceene 371
The Binary Tree Workshop Appletcccccovviiiiiniiiiiiniiiiiiiiienns 371
Representing the Tree in Java Codecccoccviiiviiiiiiniiiiinniieennnnes 373
FINAING @ NOAE neiiiiiiiiiiiiiiiicec e 376
Using the Workshop Applet to Find a Nodecccoeeeerniieiinnnnne 376

Java Code for Finding a NOdecccooceeeiiiiiiiiniiieiiniiecieeceees 377

Tree EffiCIenCY .cc.ooovviiiiiiiiiiiii e 378
Inserting @ NOA@ccoooiiiiiiiiiiiiiiiii e 378
Using the Workshop Applet to Insert a Nodecccooceeeeniiieinnnns 379

Java Code for Inserting a NOdeccccceeiiviiiiiniiieiiniiecciniieeenns 379
Traversing the Treecccccoiiiiiiiiiiiiniiie e 381
Inorder Traversalcocccccoirieiiriiiieeniieeeee et 381

Java Code for Traversingcccccecveeeviieniieniieniieeeiee e 382
Traversing a Three-Node Treecccooevviiiniiiiiiiiiiiiiiniiiieinieeee 382
Traversing with the Workshop Appletcccoccceiiiiiiiniiiiiniiienn. 384
Preorder and Postorder Traversalsccccociviiiiiiiiiiiiiinininnnn. 385
Finding Maximum and Minimum Valuesccccocoeiriiiiiiniieennnnees. 388
Deleting @ NOGEeeeiiiiiiiiiiiieeeite et 389
Case 1: The Node to Be Deleted Has No Children 389

Case 2: The Node to Be Deleted Has One Childccecceeennis 391

Case 3: The Node to Be Deleted Has Two Children 393

Xi

xii Data Structures & Algorithms in Java, Second Edition

The Efficiency of Binary Treescccocoviiriiiiiiiiiiiiiiiiiiiiieeceeeees 401
Trees Represented as AITAYS ...c.ceevvvuiiiiiiiiieiniiieeiiiee e 403
DUPLICate KEYS .ecovviiiiiiiiiiiiiieieiiiecete ettt 404
The Complete tree.java Programccccccccceeviiiieiniiieiinnieeeinieeeennnes 405
The Huffman Codeccceeiiriiiiiiiiiiiiiieeiiteceee et 415
Character COAESeeeiiiiiiiiiiiiieeiee e eeeeeee e 415
Decoding with the Huffman Treecccccoiiiviiiiiiniiiiinniiiinnn, 417
Creating the Huffman Treeccooccceimiiiiiiniiiiiniiiiceiiicccee, 418
Coding the MeSSAZeeeevviiiiiiiiieiiiiiceiiee e 420
Creating the Huffman Codecccocoeiiriiiiiiniiiiiniiiiciiiicceeee, 421
SUITIMIATY «eeviiiiiiiiiiiiiiiiee ettt e e e e e e e e e e e e 422
QUESTIOTIS ieiiiiiiiieeeeeieiiieee e e e e ee et ee e e e e e ettt e e e e eeeeesanaeeeeeeenssnnnaseeeensasnnnaaaes 423
EXPETIIMENTS ...ooiiiiiiiiiiiiiiiiiiicccc e 425
Programming Projectscccooooiiiiiiiiiiiiiiiiiiii 425
9 Red-Black Trees 429
Our Approach to the DisCussionccccoceiiiiiiiiiiiiiiiniiiieeee 429
ConCePtUAloiiiiiiiiii 430
Top-Down INSertionccccccovviiiiiiiiiiiiiiiicceee 430
Balanced and Unbalanced Treescccccoeviiiiiiiiiiiiiiiiiinicice 430
Degenerates t0 O(IN) o.uviiiiiiiiiiiiiieiiieeeetee e 431
Balance to the ReSCUEcocceeiiiiiiiiiniiiiiiiieeeecceee e 432
Red-Black Tree CharacteristiCscooecceveeeeeeeiiiniiiiieeeeeenneeiiennees 432
Fixing Rule VIOlationsc.cccccoviiiiiiiiiiiiiiiiiiiiiiiciecceeccs 434
Using the RBTree WOrkshop Appletcooviiiiniiiiiiiiiiiiiiiciiiecceee, 434
Clicking 0n @ NOAeoeeiviiiiiiiiiiiiiiiicciiee e 435

The Start Button ..., 435

The INs BUttON ...cooiviiiiiiiiiiiieeee e 435

The Del BUttON ...coiiiiiiiiiiiiiieiiie e 436

The FIIp BUttOncoociiiiiiiiiiiiiiiiicicic e 436

The ROL BUttoncccccoviiiiiiiiiiiiiiiiii 436

The ROR BUtton ..., 436

The R/B BUttOnccoociiiiiiiiiiiiiiic e, 436

TeXt MESSAZES ..vvveeiiiiiiiiiiiiitee ettt e e e 437
Where’s the Find Button?cccoecveeiviieiiniiieeiieeeeeeeeeieeeee 437
Experimenting with the Workshop Appletcccociiiiiiiiiininiinnnnn. 437
Experiment 1: Inserting Two Red Nodesccccoeciiiiiiiiininnnn. 437
Experiment 2: ROtationsccccccccviiiiiiiiiiiiiiiiniiiiinn 438

Experiment 3: COlOr FIIPSoceoviiiiiiniiiiiiiiiiiieecciieccceceee, 439

10

Contents

Experiment 4: An Unbalanced Treeccccccceeveiveiiniiecenninecennnnns 439
More EXPerimentsccccveviiiiiiiiiiiiiiiiiiiiiiiiicceeceeee 440
The Red-Black Rules and Balanced Treescccoccceeevvierieniineenne 440
NUIl ChildIen ...eeeeiiiiiiiiiiiieeeieeee e 441
ROTAtIONS .evvvviiiiiiiiiiiiiiiici s 441
Simple ROtationsScoocciiiiiiiiiiiiiiiiiiiiccccce s 442
The Weird Crossover NOdeccccoeeiviiieiiniiieeiniiieeniieeeeieeeenne 442
Subtrees on the MOVeccocccciiiiiiiiiiiiiiiiicecec e 444
Human Beings Versus COmMpPuUtersccccceeeeeiiiiiiiiiiiieeeiiniiiinnnens 445
Inserting a NewW NOGEccoouiiiiiiiiiiiiiiiieenec e 445
Preview of the Insertion ProCessccceeevvieeiriiieeiniieeeriiieeenees 446
Color Flips on the Way DOWILccoooiiiiiiiiiiiniiiiiiiicciieeces 446
Rotations After the Node Is Insertedccccccceveiiiiiniiiiinniciinnnes 448
Rotations on the Way DOWNccccceiiviiiiiiiiiiiiniiiciiecceeceee 454
DLELION ..eeiiiiiiiiiiiei et 457
The Efficiency of Red-Black Treesccccceeviiiiiniiiiiiniieiinieeceieeeeeee 457
Red-Black Tree Implementationcccocciiiiiiiiiiniiiiniiiiiie, 458
Other Balanced TIeesccccceiiiiiiiiiiiiiiiniiiiciiiccceeceeecceee e 458
SUITMMIATY ©evviiiiiiiiiiiiiiiiiiicieeiirc e 459
(@10 1 (o) s LSRRI 460
EXPOIIMENtS .oeciiiiiiiiiiiiiiiiiiiiiiiitee e 462
2-3-4 Trees and External Storage 463
Introduction to 2-3-4 TIEEScccccuviiiiiiiiiiiiiiiiiiiiieeciee e 463
What's in @ Name?ccccciiiiiiiiiiiiiieiieciee e 464
2-3-4 Tree Organizationccccccccceviiiiiiiiiieeiiiiiniiiiieeeeeeeineees 465
Searching a 2-3-4 TIEEcooeevoiiiiiiiiiiiiiiieeeeeeeeeee e 466
INSEItionooooiiiiiiiiiii 466
NOAE SPLILS .eeiiiiiiiiiiiii e 467
Splitting the ROOtccoociiiiiiiiiiiiiiiiiiccccec s 468
Splitting on the Way DOWNccocciiiiiiiiiiiiiiiiiiicciec e 469
The Tree234 WOrkshop APPLetcc.ceviviiiiiiiiiiiiiiiciieceee e 470
The Fill BUTEON ..ooiiiiiiiiiiiiiiiiiiicceeceeee e 471
The Find BUttonccooooiiiiiiiiiii e 471
The Ins Buttonccccoiiiiiiiiiiiiiiiiicccccee e 472
The Zoom BUttonccoccviiiiiiiiiiiiiiiiiiiceccecceee e 472
Viewing Different NOAESccccceeviiiiiiiiiiiiniiieiiiiceiieeeeeieeeee 473
EXPOIimentscccooviiiiiiiiiiiiiiiiiiiiiiiccieeeeeee e 474

Java Code for a 2-3-4 TI€€cooviiiiiiiiiiiiiiii e 475

xiii

Xiv

Data Structures & Algorithms in Java, Second Edition

11

The DataItem Classcccccoiiiiiiiiiiiiiiiiic e, 475
The Node Classccccoovviiiiiiiiiiiiiiii e, 475
The Tree234 Classccccociiiiiiiiiiiiiiiiii e, 476
The Tree234ApP CLASScvvvviiiiiiiiiieiereeeerereeeeeeeaeereeereeerreerre————————————— 477
The Complete tree234.java Programccccceeeiiiiiiiiiinncennnen. 478
2-3-4 Trees and Red-Black Treescccccoveieeiiiiiiiiiiiieeeiiinniiieeeceeeeee 486
Transformation from 2-3-4 to Red-Blackccceccvviviiiiinnininnn. 486
Operational EQUIvalencecccccccovviiiiiiiiiiiniiiiiiiiececiecc e, 488
Efficiency Of 2-3-4 TICES ..eeevuviiiiiiiiiiiiiiiie ettt 491
SPCEA ittt 491
Storage ReqUIrementsooceevviiieiiiiiiiiiiiiieeeiienieceeee e 491
223 TE@ES eeteeeeeeee ettt ettt e e ettt e e e s e e e e e e e e e e e e e 492
NOAE SPLILS .eeiiiiiiiiiiiiiceie e 492
Implementationcccccceiiviiiiiiiiiii e 494
External StOTageceeeviiiiiiiiiiiiiiiccie e 496
Accessing External Datacccooeceiiiiiiiiiiiiiieiniice e 496
Sequential Orderingcccoceeiiriiiiiniiieiiieeeeee e 499
B-TIEES oo 500
INAEXING .oviiiiiiiiiiiiiie e 506
Complex Search Criteriacccoccccevrviiiiiiniiiiiniiiiiiieeccieceeee, 509
Sorting External Filescccoccciimiiiiiiiiiiiiiiieiccecceeceee 509
SUITIMIATY weeviiiiiiiiiiiiiiiiceeee et e e e e e e e 513
(@18 <1 u (o) s LU UPP USRI 514
EXPEOIIMEenNtscooviiiiiiiiiiiiiiiiiiir s 516
Programming Projectscccccoiiiiiiiiiiiiiiiiiiie 516
Hash Tables 519
Introduction to Hashingccoocoieiiiiiiiiiiiiiiceeeceeeec e 520
Employee Numbers as Keysccccccoviiiiiiiiiiiiniiis 520
A DICHONATY cieiiiiiiiiiiiiiiieeieceee e 521
HaSRING ..ooviiiiiiii e 525
COIlISIONS ..ottt 527
Open AdAIESSINIE ..eeeriiiiiiiiiiiiiiiiieeeiee ettt ettt e iraee e 528
Linear PrODING ...coocovieiiiiiiiiiiiieiietee et 528
Java Code for a Linear Probe Hash Tableccccccvvvvvvivnnvnnnnnnnn. 533
Quadratic Probingcccecveiiiiiiiiiiiiiiiiiiiccc 542
Double Hashingccooccviiiiiiiiiiiiiiiiiccieccecc e 544
Separate Chainingccccoeciiiiiiiiiiiiceee e 552
The HashChain Workshop Appletc..cccccovvieiiiniiiiinniiiiiniiieenne 552

Java Code for Separate Chainingcccceeeeeeeriiieeinnieeeinnieeennnes 555

12

Contents

Hash FUNCHONScoooiiiiiiiiiiiiii e 561
Quick COMPULAION ...evviiiiiiiiiiiiieciec e 561
RaANAOM KOS ...eeiiiiiiiiiiiiiiiiieceetee et 562
Non-Random Keysccc.eeeiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 562
Hashing Stringsccoocoiiiiiiiiiiiie s 563
FOLAING et 566

Hashing EffiCIeNCYcoocviiiiiiiiiiiiiiiiiiccccccecc e 566
Open AdAIESSING ...ceeevuriiiriiieiiiiiee et 566
Separate Chainingccccoviiiiiiiiiiiiiiiceecee e 568
Open Addressing Versus Separate Chainingcccccovvenineeeeeen. 570

Hashing and External Storagecccccoovviiiiniiiiiiniiiiniieece, 571
Table of File POINtersccccocovviiiiiiiiiiiiiiiiic, 571
Non-Full BIOCKScccoiviiiiiiiiiiiiiiii, 571
Full BIOCKS ..eoiiiiiiiiiiiiiiiiiicic e 572

SUITIIMIATY cevviiiiiiiiiiiiiiiiee ettt e e e e e e e 573

QUESTIOTIS oevniiiiieeeiiie et e e e et e e et eeeate e e s bt eessraeeesaaaeeesees 574

EXPETIMENTSooiiiiiiiiiiiiiiiiiiiiii e 576

Programming PIOjectscccccviiiiiiiiiiiiiiiiiiie 577

Heaps 579

Introduction t0 HEAPScceciiiiiiiiiiiiiiiiieineeceeeeee e 580
Priority Queues, Heaps, and ADTSccccoeoiiiiviiiiiiiiiiiiniiincinns 581
Weakly Orderedccoovviiiiiiiiiiiiiiiiiiiiiccicc e 582
Removal ... 583
INSEItionooooiiiiiiiiiiii 585
Not Really SWappedcoooviiiiiiiiiiiiiieeeieeeeec e 586

The Heap WOIKShOp APPILetcooviiiiiiniiiiiiiiieeeireceeec et 587
The Fill BUttONoooviiiiiiiiiiiiiiiiiiic e 587
The Change Buttoncccccciiiiiiiiiiiiiiiiiiccceee 588
The Remove Button ..., 588
The Insert Button ..., 588

Java Code fOr Heapscc.coeeviiiiiiiiiiiiiiieciiec et 588
INSETHION .eeiiiiiiiiiiie e 589
REIMOVAL ... 590
Key CRANGEooeiiiiiiiiiiiiiiiiiicc e 591
The ATTay SiZ€coivviiiiiiiiiiiiiieccc e 592
The heap.java Programcccccceevieeiniieiiniiieiinicceeieeeeeieeeee 592
Expanding the Heap AITayccoccceeeimiiiiiniiiieinieeceiee e 599

Efficiency of Heap Operationsccccccceeeviiieeiniieeenneecennieeeee 599

XV

XVi

Data Structures & Algorithms in Java, Second Edition

13

A Tree-based Heapcocccceiiiiiiiiiiiiiiiiiiicciiieccecc e 600
HEAPSOIt weeiiiiiiiiiiiiiiiiii e 601
Trickling Down in Placecccceevviieiiiiiieiiniiieiiniicccieeeeieeeee 602
Using the Same ATTAYccoovveeiiiiiiiieniieeeiieeceeee et 604
The heapSort.java Programcccccccccvvieeiniieeeiniieeennieeenieeeenne 605
The Efficiency of Heapsortccccccooveeviiiniiiiiiiiniiiniieeeceieceee, 610
SUIMNIMATY .oeiiiiiiiiiiiiiie e 610
(@ 18 T (o) s LR 611
EXPOIimentsccoovviiiiiiiiiiiiiiiiiiiiiii e 612
Programming PIOJECtSccoovvviiiiiiiiiiiiiiiiiii e 612
Graphs 615
Introduction to GIaphscccccoveiieiiiiiiiiiiccce e 615
Definitions ... 616
Historical NOteccccoiiiiiiiiiiiiiiiiiii 618
Representing a Graph in a Programccccccccevvieeinnieeenniiecennnes 619
Adding Vertices and Edges to a Graphccccccoviiiiiiiiiininn, 622
The Graph ClaSS .uuuueeeeieeeieiiiiieeeeeeeriiiieeeeeeerrstieeeeeerrrsteeeeeeeerssnnaaes 622
SEATCRES ..o 623
Depth-First Searchcccccoviiiiiiiiiiiiiiiiiccec e 625
Breadth-First Searchcccccooiiiiiiii 636
Minimum Spanning Treesccccceiviiiiiiiiiiiiiiiiiiieeeee e 643
GraphN Workshop Applet ..., 644
Java Code for the Minimum Spanning Treecccocccceevviiinnnns 644
The mst.java PrOgramcccccceeeviiieiniiieiiniiieeinieeeeieee e 645
Topological Sorting with Directed Graphscccccoeeivviieiiniiiciiniieeennnes 649
An Example: Course PrerequiSitescccoecvveeevviieeiniieeernieeeennnes 649
Directed GIaphsccocovviiiiiiiiiiiiiecee e 650
Topological SOTtingccccccovviiiiiiiiiiiiiiiii e 651
The GraphD Workshop Appletccccovvviiiiiiiiiiiniiiiiiccieeee 652
Cycles and TIEESceeevuiiiiiiiieiiiiiiee ittt 653
JAVA COAE uunniiiiiiiieee et 654
Connectivity in Directed Graphscccocoveiiiiiiiiiiiiiniiiciieeceeeeee 661
The Connectivity Tableccccccoiiiiiiiiiiiiiniiieeeeeeeeee 662
Warshall’s AIGOTithmccoiimiiiiiiiiiii e 662
Implementation of Warshall’s Algorithmcccccoeiiiiii 664
SUITIMIATY wevvviiiiiiiiiiiiiiiiicc it e e e e e e 665
(@ 18 < (o) s LU URUPPRN 665
EXPEIIMEeNtS .oooooiiiiiiiiiiiiiiiiiiic e 667

Programming PTOJECEScccovviiiiiiiiiiiiiiiiiiic e 667

Contents

14 Weighted Graphs 669
Minimum Spanning Tree with Weighted Graphsccccccccciniiiinnis 669
An Example: Cable TV in the Jungleccccccciniiiiiiniiiiininnnnnn, 670

The GraphW Workshop Appletcccooveiiiiiniiiiiiniiiiiiiieeeieeee 670

Send Out the SUIVEYOTScocciiiiiiiiiiiiiiiiiieceeeceee e 672
Creating the AIZOrithmcccoiviiiiiiiiiiiii e 676

JAVA COAE uunniiieieieee e e 678

The mstw. java Programccccoeoviiiiiiiiiiniiiiiiiiiicieeee 681

The Shortest-Path Problemcccccooiiiiiiiiiiiii, 687
The Railroad Linecccccooiiiiiiiiniiii, 687
Dijkstra’s AIGOTItNMcceeiiiiiiiiiiiiiiiicc e 689
Agents and Train RIdesccocccveiiiiiiiiiiieiiniieciieceeeceeeeeee 689
Using the GraphDW Workshop Appletcccoocveeiniieiiniieeennnnee. 694

JAVA COA@ ..ot 698

The path.java Programcccceeviiiniiiiiiniiiiiiiiiiiieecceieeeee 703

The All-Pairs Shortest-Path Problemcccccceeviiiiiiiiiiiiiniiiiiieens 708
EffICIEIICY weeiiiiiiiiiiie et 710
Intractable Problemsccccocciiiiiiiiiiiiiii 710
The Knight's TOUTLceiiiiiiiiiiiiiieiitieeeee ettt 711

The Traveling Salesman Problemccoccoieieiiiiiiiiiiiiinnnns 711
Hamiltonian CycClesccoovviiiiiiiiiiiiiiiiiiiiiceccecceec s 712
SUITIMIATY «evviiiiiiiiiiiiiiiiiiieiirr et e e e e 713
(@10 T (o) s LU UPPURUPPRN 713
EXPOIIMENtS .oeeiiiiiiiiiiiiiiiiiiiiii e 715
Programming Projectscccocc 715
15 When to Use What 717
General-Purpose Data Structuresccccovveveeiiniiiieiniiieeniiieceniee e 717
Speed and AIGOTItRINScooiiiiiiiiiiiiiiiee e 718
LIDTATI®S ..vveeeeiiiieiiiiieeieitee ettt 719
ATTAYS ©oiiiiiiiiii i 720
Linked Listscooiiiiiiiiiiiiiiiiiiic 720
Binary Search TIeesccccovvviiiiiiiiiiiiiiiiiiiiec e 720
Balanced Treescccccovviiiiiiiiiiiiiiiiii 721

Hash Tables ... 721
Comparing the General-Purpose Storage Structurescc...... 722
Special-Purpose Data Structurescccociiiviiiiiiniiiiiniiiiiiiiecce, 722
SEACK v 723

[T3 PPN 723

Xvii

xviii

Data Structures & Algorithms in Java, Second Edition

Priority QUEUEccceeiiiiiiiiiiiiiiiiiiie e
Comparison of Special-Purpose Structurescccccceeeeveueeennnnee.
SOTHIIG ittt
GTAPNIS ettt ettt st
External StOTaZeceeivmiiiiiiiieiiiieceete e
Sequential StOTage ..o
Indexed Filesoccoiiiiiiiiiiiiiiiiic

HaSHING ooviiiiiiii e
VIrtual MeINOTY .coouviiiiiiiiiiiiiiieeiieeeeeteecee et
ONWATA ittt et e sttt e st e e et eeseabaeeeeas

Appendixes

Running the Workshop Applets and Example Programs

The WOrkshop APpIets ...
The Example PrOgramscccccooviiiiiiiiiiiiniiiiiiiiiecceee e
The Sun Microsystem'’s Software Development Kitccccceevviiennins
Command-line PrOgramsccccccceeviiieemniieeiniiieeeiieeeereee e
Setting the Pathccooiiiiiiiiii e
Viewing the WoOrkshop Appletscccccceeeiiiiiiniiiciiniieeeinieceeees
Operating the Workshop Appletsccccciiiiiiiiiiiiiiiniin,
Running the Example Programscccecviiiniiiiiiniiiiiiniineennnns
Compiling the Example Programsccccccccevvviieeniiieeeninneeennneen.
Editing the Source Codecccovviiiiiniiiiiiiiiieiniiicniee e
Terminating the Example Programsccccccceevviiciiniiiiieniineennne
Multiple Class FIlescc.ueiiiiiiiiiriiiiiiiiee ettt
Other Development SySteImsccccceiviiiiiiiiiiiiiiiiiii e

Further Reading

Data Structures and AlGOTithmScceoviiiiiiiiiieiiiiicccecceeeee
Object-Oriented Programming Languagescccoocceeerrvveeiiniiveeennnneennne
Object-Oriented Design (OOD) and Software Engineering

Answers to Questions

Chapter 1, OVEIVIEWciiiiiiiiiiiiiiieiiieeeiite ettt e e
ANswers t0 QUESTIONSeiiivieiiiiiieieiieeeeiieeeeee et e e e e eaanns
Chapter 2, AITAYScoocoiiiiiiiiiiiiiiiciiie e
Answers t0 QUESTIONSuuuueeieieeiiiiiiieeeeeeeeieee e e eeeree e e e e eerar s

729

729
730
730
731
731
731
732
732
733
733
733
733
734

735

735
736
736

Contents

Chapter 3, Simple SOTtingccoccvveiiiiiieiiiiiiiiiceecereceee e
Answers to Questions
Chapter 4, Stacks and Queues
ANswers t0 QUESTIONSuiiiiieiiiiiieeeiieeeeeeeeeee e e eaaans
Chapter 5, Linked LiStSccooooiiiiiiiiiiiiiceerieeeeeee e
Answers tO0 QUESTIONSovvvieeieieiiiiiiieeeeeeeereee e e eer e e e e eererees
Chapter 6, RECUISIONccooviiiiiiiiiiiiiiieiiicceecee e
ANswers tO QUESTIONS ...ccvvveiiiiiieeiiiieee e e e e e e e eeees
Chapter 7, Advanced Sorting
ANswers t0 QUESTIONSueiiiiieeiiiiieeeiiieeeeie e eaaans
Chapter 8, Binary Treesccccocoviiiiiiiiiiiiiiiiiiiiiiiiccceccceec e,
Answers to Questions
Chapter 9, Red-Black Trees
Answers to Questions

Chapter 10, 2-3-4 Trees and External Storagecccccceevvvieiiniieeennnneen. 745
ANswers t0 QUESTIONSuuiiiiieeeiiiieieiieeeeeeeeeeee e e eaaans 745
Chapter 11, Hash Tablescccocoiiiiiiiiiiniiiicecc, 745
Answers tO0 QUESTIONScuvvieeieieiiiiiiiee e eeeerieee e eeeeree e e e eereranees 745
Chapter 12, HeaAPS ..cccoouiiiiiiiiiiiiieiiiiieeeecc et 746
ANswers tO QUESTIONS ...ccevveiiiiiieeiiiiee e e e e e e 746
Chapter 13, GIaphis ...occueeiiiiiiiiiiiieec e 746
ANswers t0 QUESTIONSueiiivieeiiiiieeeiieeeeeeeeeee e eaaans 746
Chapter 14, Weighted Graphsccccccceiviiiiiiiiiiiiiec, 747

Answers to Questions

Xix

About the Author

— Robert Lafore has degrees in Electrical Engineering and
Mathematics, has worked as a systems analyst for the Lawrence
Berkeley Laboratory, founded his own software company, and is
a best-selling writer in the field of computer programming.
Some of his current titles are C++ Interactive Course and Object-
Oriented Programming in C++. Earlier best-selling titles include
Assembly Language Primer for the IBM PC and XT and (back at the
beginning of the computer revolution) Soul of CP/M.

Dedication

This book is dedicated to my readers, who have rewarded me
over the years not only by buying my books, but with helpful
suggestions and kind words. Thanks to you all.

Acknowledgments to the First Edition

My gratitude for the following people (and many others) cannot be fully expressed
in this short acknowledgment. As always, Mitch Waite had the Java thing figured out
before anyone else. He also let me bounce the applets off him until they did the job,
and extracted the overall form of the project from a miasma of speculation. My
editor, Kurt Stephan, found great reviewers, made sure everyone was on the same
page, kept the ball rolling, and gently but firmly ensured that I did what I was
supposed to do. Harry Henderson provided a skilled appraisal of the first draft, along
with many valuable suggestions. Richard S. Wright, Jr., as technical editor, corrected
numerous problems with his keen eye for detail. Jaime Nifio, Ph.D., of the University
of New Orleans, attempted to save me from myself and occasionally succeeded, but
should bear no responsibility for my approach or coding details. Susan Walton has
been a staunch and much-appreciated supporter in helping to convey the essence of
the project to the non-technical. Carmela Carvajal was invaluable in extending our
contacts with the academic world. Dan Scherf not only put the CD-ROM together,
but was tireless in keeping me up to date on rapidly evolving software changes.
Finally, Cecile Kaufman ably shepherded the book through its transition from the
editing to the production process.

Acknowledgments to the Second Edition

My thanks to the following people at Sams Publishing for their competence, effort,
and patience in the development of this second edition. Acquisitions Editor Carol
Ackerman and Development Editor Songlin Qiu ably guided this edition through the
complex production process. Project Editor Matt Purcell corrected a semi-infinite
number of grammatical errors and made sure everything made sense. Tech Editor
Mike Kopak reviewed the programs and saved me from several problems. Last but
not least, Dan Scherf, an old friend from a previous era, provides skilled manage-
ment of my code and applets on the Sams Web site.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we're doing right, what we could do
better, what areas you’d like to see us publish in, and any other words of wisdom
you're willing to pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can
email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of
this book. We do have a User Services group, however, where I will forward specific
technical questions related to the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and
share them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Michael Stephens
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our
Web site at www.samspublishing.com. Type the ISBN (excluding hyphens) or the title of
a book in the Search field to find the page you're looking for.

Introduction

This introduction tells you briefly

What’s new in the Second Edition

What this book is about

Why it’s different

Who might want to read it

What you need to know before you read it

The software and equipment you need to use it

How this book is organized

What’'s New in the Second Edition

This second edition of Data Structures and Algorithms in Java has been augmented to
make it easier for the reader and for instructors using it as a text in computer science
classes. Besides coverage of additional topics, we’ve added end-of-chapter questions,
experiments, and programming projects.

Additional Topics

We've added a variety of interesting new topics to the book. Many provide a basis
for programming projects. These new topics include

Depth-first-search and game simulations
The Josephus problem

Huffman codes for data compression
The Traveling Salesman problem
Hamiltonian cycles

The Knight’s Tour puzzle

Floyd'’s algorithm

Warshall’s algorithm

2-3 trees

Data Structures & Algorithms in Java, Second Edition

e The knapsack problem
e Listing N things taken K at a time
e Folding-digits hash functions

e The radix sort

End-of-Chapter Questions

Short questions covering the key points of each chapter are included at the end of
each chapter. The answers can be found in Appendix C, “Answers to Questions.”
These questions are intended as a self-test for readers, to ensure that they have
understood the material.

Experiments

We include some suggested activities for the reader. These experiments often involve
using the Workshop applets or example programs to examine certain features of an
algorithm’s operation, but some are pencil-and-paper or “thought experiments.”

Programming Projects

Most importantly, we have included at the end of each chapter a number (usually
five) of challenging programming projects. They cover a range of difficulty. The
easiest are simple variations on the example programs. The most challenging are
implementations of topics discussed in the text but for which there are no example
programs. Solutions to the Programming Projects are not provided in this book, but
see the adjacent note.

NOTE

It is expected that the programming projects will be useful for instructors looking for class
assignments. To this end, qualified instructors can obtain suggested solutions to the program-
ming projects in the form of source code and executable code. Contact the Sams Web site for
information on Instructors Programs.

What This Book Is About

This book is about data structures and algorithms as used in computer programming.
Data structures are ways in which data is arranged in your computer’s memory

(or stored on disk). Algorithms are the procedures a software program uses to
manipulate the data in these structures.

Introduction

Almost every computer program, even a simple one, uses data structures and algo-
rithms. For example, consider a program that prints address labels. The program
might use an array containing the addresses to be printed and a simple for loop to
step through the array, printing each address.

The array in this example is a data structure, and the for loop, used for sequential
access to the array, executes a simple algorithm. For uncomplicated programs with
small amounts of data, such a simple approach might be all you need. However, for
programs that handle even moderately large amounts of data, or which solve prob-
lems that are slightly out of the ordinary, more sophisticated techniques are neces-
sary. Simply knowing the syntax of a computer language such as Java or C++ isn't
enough.

This book is about what you need to know after you've learned a programming
language. The material we cover here is typically taught in colleges and universities
as a second-year course in computer science, after a student has mastered the
fundamentals of programming.

What's Different About This Book

There are dozens of books on data structures and algorithms. What's different about
this one? Three things:

e Our primary goal in writing this book is to make the topics we cover easy to
understand.

e Demonstration programs called Workshop applets bring to life the topics we
cover, showing you step by step, with “moving pictures,” how data structures
and algorithms work.

e The example code is written in Java, which is easier to understand than C,
C++, or Pascal, the languages traditionally used to demonstrate computer
science topics.

Let’s look at these features in more detail.

Easy to Understand

Typical computer science textbooks are full of theory, mathematical formulas, and
abstruse examples of computer code. This book, on the other hand, concentrates on
simple explanations of techniques that can be applied to real-world problems. We
avoid complex proofs and heavy math. There are lots of figures to augment the text.

Many books on data structures and algorithms include considerable material on soft-
ware engineering. Software engineering is a body of study concerned with designing
and implementing large and complex software projects.

Data Structures & Algorithms in Java, Second Edition

However, it’s our belief that data structures and algorithms are complicated enough
without involving this additional discipline, so we have deliberately de-emphasized
software engineering in this book. (We'll discuss the relationship of data structures

and algorithms to software engineering in Chapter 1, “Overview.”)

Of course, we do use an object-oriented approach, and we discuss various aspects

of object-oriented design as we go along, including a mini-tutorial on OOP in
Chapter 1. Our primary emphasis, however, is on the data structures and algorithms
themselves.

Workshop Applets

From the Sams Web site you can download demonstration programs, in the form of
Java applets, that cover the topics we discuss. These applets, which we call Workshop
applets, will run on most Web browsers. (See Appendix A, “Running the Workshop
Applets and Example Programs,” for more details.) The Workshop applets create
graphic images that show you in “slow motion” how an algorithm works.

For example, in one Workshop applet, each time you push a button, a bar chart
shows you one step in the process of sorting the bars into ascending order. The
values of variables used in the sorting algorithm are also shown, so you can see
exactly how the computer code works when executing the algorithm. Text displayed
in the picture explains what'’s happening.

Another applet models a binary tree. Arrows move up and down the tree, so you
can follow the steps involved in inserting or deleting a node from the tree. There
are more than 20 Workshop applets, at least one for each of the major topics in
the book.

These Workshop applets make it far more obvious what a data structure really looks
like, or what an algorithm is supposed to do, than a text description ever could. Of

course, we provide a text description as well. The combination of Workshop applets,
clear text, and illustrations should make things easy.

These Workshop applets are standalone graphics-based programs. You can use them
as a learning tool that augments the material in the book. Note that they’re not the
same as the example code found in the text of the book, which we’ll discuss next.

NOTE

The Workshop applets, in the form of Java .class files, are available on the Sams Web site at
http://www.samspublishing.com/. Enter this book’s ISBN (without the hyphens) in the
Search box and click Search. When the book’s title is displayed, click the title to go to a page
where you can download the applets.

Introduction

Java Example Code

The Java language is easier to understand (and write) than languages such as C and
C++. The biggest reason for this is that Java doesn’t use pointers. Some people are
surprised that pointers aren’t necessary for the creation of complex data structures
and algorithms. In fact, eliminating pointers makes such code not only easier to
write and to understand, but more secure and less prone to errors as well.

Java is a modern object-oriented language, which means we can use an object-
oriented approach for the programming examples. This is important, because object-
oriented programming (OOP) offers compelling advantages over the old-fashioned
procedural approach, and is quickly supplanting it for serious program development.
Don’t be alarmed if you aren’t familiar with OOP. It’s not that hard to understand,
especially in a pointer-free environment such as Java. We'll explain the basics of
OOP in Chapter 1.

NOTE

Like the Workshop applets, the example programs (both source and executable files) can be
downloaded from the Sams Web site.

Who This Book Is For

This book can be used as a text in a Data Structures and Algorithms course, typically
taught in the second year of a computer science curriculum. However, it is also
designed for professional programmers and for anyone else who needs to take the
next step up from merely knowing a programming language. Because it’s easy to
understand, it is also appropriate as a supplemental text to a more formal course.

What You Need to Know Before You Read This Book

The only prerequisite for using this book is a knowledge of some programming
language.

Although the example code is written in Java, you don’t need to know Java to follow
what’s happening. Java is not hard to understand, and we’ve tried to keep the syntax
as general as possible, avoiding baroque or Java-specific constructions whenever
possible.

Of course, it won't hurt if you're already familiar with Java. Knowing C++ is essen-
tially just as good, because Java syntax is based so closely on C++. The differences are
minor as they apply to our example programs (except for the welcome elimination
of pointers), and we’ll discuss them in Chapter 1.

Data Structures & Algorithms in Java, Second Edition

The Software You Need to Use This Book

To run the Workshop applets, you need a Web browser such as Microsoft Internet
Explorer or Netscape Communicator. You can also use an applet viewer utility.
Applet viewers are available with various Java development systems, including the
free system from Sun Microsystems, which we'll discuss in Appendix A.

To run the example programs, you can use the MS-DOS utility in Microsoft Windows
(called MS-DOS Prompt) or a similar text-oriented environment.

If you want to modify the source code for the example programs or write your own
programs, you'll need a Java development system. Such systems are available
commercially, or you can download an excellent basic system from Sun
Microsystems, as described in Appendix A.

How This Book Is Organized

This section is intended for teachers and others who want a quick overview of the
contents of the book. It assumes you're already familiar with the topics and terms
involved in a study of data structures and algorithms.

The first two chapters are intended to ease the reader into data structures and
algorithms as painlessly as possible.

Chapter 1, “Overview,” presents an overview of the topics to be discussed and intro-
duces a small number of terms that will be needed later on. For readers unfamiliar
with object-oriented programming, it summarizes those aspects of this discipline
that will be needed in the balance of the book, and for programmers who know C++
but not Java, the key differences between these languages are reviewed.

Chapter 2, “Arrays,” focuses on arrays. However, there are two subtexts: the use of
classes to encapsulate data storage structures and the class interface. Searching, inser-
tion, and deletion in arrays and ordered arrays are covered. Linear searching and
binary searching are explained. Workshop applets demonstrate these algorithms with
unordered and ordered arrays.

In Chapter 3, “Simple Sorting,” we introduce three simple (but slow) sorting tech-
niques: the bubble sort, selection sort, and insertion sort. Each is demonstrated by a
Workshop applet.

Chapter 4, “Stacks and Queues,” covers three data structures that can be thought of
as Abstract Data Types (ADTs): the stack, queue, and priority queue. These structures
reappear later in the book, embedded in various algorithms. Each is demonstrated by
a Workshop applet. The concept of ADTs is discussed.

Introduction

Chapter 5, “Linked Lists,” introduces linked lists, including doubly linked lists and
double-ended lists. The use of references as “painless pointers” in Java is explained. A
Workshop applet shows how insertion, searching, and deletion are carried out.

In Chapter 6, “Recursion,” we explore recursion, one of the few chapter topics that is
not a data structure. Many examples of recursion are given, including the Towers of
Hanoi puzzle and the mergesort, which are demonstrated by Workshop applets.

Chapter 7, “Advanced Sorting,” delves into some advanced sorting techniques:
Shellsort and quicksort. Workshop applets demonstrate Shellsort, partitioning (the
basis of quicksort), and two flavors of quicksort.

In Chapter 8, “Binary Trees,” we begin our exploration of trees. This chapter covers
the simplest popular tree structure: unbalanced binary search trees. A Workshop
applet demonstrates insertion, deletion, and traversal of such trees.

Chapter 9, “Red-Black Trees,” explains red-black trees, one of the most efficient
balanced trees. The Workshop applet demonstrates the rotations and color switches
necessary to balance the tree.

In Chapter 10, “2-3-4 Trees and External Storage,” we cover 2-3-4 trees as an example
of multiway trees. A Workshop applet shows how they work. We also discuss 2-3
trees and the relationship of 2-3-4 trees to B-trees, which are useful in storing exter-
nal (disk) files.

Chapter 11, “Hash Tables,” moves into a new field, hash tables. Workshop applets
demonstrate several approaches: linear and quadratic probing, double hashing, and
separate chaining. The hash-table approach to organizing external files is discussed.

In Chapter 12, “Heaps,” we discuss the heap, a specialized tree used as an efficient
implementation of a priority queue.

Chapters 13, “Graphs,” and 14, “Weighted Graphs,” deal with graphs, the first with
unweighted graphs and simple searching algorithms, and the second with weighted
graphs and more complex algorithms involving the minimum spanning trees and
shortest paths.

In Chapter 15, “When to Use What,” we summarize the various data structures
described in earlier chapters, with special attention to which structure is appropriate
in a given situation.

Appendix A, “Running the Workshop Applets and Example Programs,” provides
details on how to use these two kinds of software. It also tells how to use the
Software Development Kit from Sun Microsystems, which can be used to modify the
example programs and develop your own programs, and to run the applets and
example programs.

Data Structures & Algorithms in Java, Second Edition

Appendix B, “Further Reading,” describes some books appropriate for further reading
on data structures and other related topics.

Appendix C, “Answers to Questions,” contains the answers to the end-of-chapter
questions in the text.

Enjoy Yourself!

We hope we’ve made the learning process as painless as possible. Ideally, it should
even be fun. Let us know if you think we’ve succeeded in reaching this ideal, or if
not, where you think improvements might be made.

1 IN THIS CHAPTER

e What Are Data Structures and

OVQI‘ViQW Algorithms Good For?

e Overview of Data Structures

A e Overview of Algorithms
s you start this book, you may have some questions:

e Some Definitions

e What are data structures and algorithms?

e Object-Oriented
e What good will it do me to know about them? Programming
e Why can't I just use arrays and for loops to handle))
my data? e Software Engineering

e When does it make sense to apply what I learn here? * Java for C++ Programmers

e Java Library Data Structures
This chapter attempts to answer these questions. We'll also
introduce some terms you'll need to know and generally
set the stage for the more detailed chapters to follow.

Next, for those of you who haven'’t yet been exposed to an
object-oriented language, we'll briefly explain enough
about OOP to get you started. Finally, for C++ program-
mers who don’t know Java we’ll point out some of the
differences between these languages.

What Are Data Structures and
Algorithms Good For?

The subject of this book is data structures and algorithms.
A data structure is an arrangement of data in a computer’s
memory (or sometimes on a disk). Data structures include
arrays, linked lists, stacks, binary trees, and hash tables,
among others. Algorithms manipulate the data in these
structures in various ways, such as searching for a particu-
lar data item and sorting the data.

10

CHAPTER 1 Overview

What sorts of problems can you solve with a knowledge of these topics? As a rough
approximation, we might divide the situations in which they’re useful into three
categories:

e Real-world data storage
e Programmer’s tools

e Modeling

These are not hard-and-fast categories, but they may help give you a feeling for the
usefulness of this book’s subject matter. Let’s look at them in more detail.

Real-World Data Storage

Many of the structures and techniques we’ll discuss are concerned with how to
handle real-world data storage. By real-world data, we mean data that describes phys-
ical entities external to the computer. As some examples, a personnel record
describes an actual human being, an inventory record describes an existing car part
or grocery item, and a financial transaction record describes, say, an actual check
written to pay the electric bill.

A non-computer example of real-world data storage is a stack of 3-by-5 index cards.
These cards can be used for a variety of purposes. If each card holds a person’s name,
address, and phone number, the result is an address book. If each card holds the
name, location, and value of a household possession, the result is a home inventory.

Of course, index cards are not exactly state-of-the-art. Almost anything that was
once done with index cards can now be done with a computer. Suppose you want to
update your old index-card system to a computer program. You might find yourself
with questions like these:

e How would you store the data in your computer’s memory?
e Would your method work for a hundred file cards? A thousand? A million?

e Would your method permit quick insertion of new cards and deletion of old
ones?

e Would it allow for fast searching for a specified card?

e Suppose you wanted to arrange the cards in alphabetical order. How would you
sort them?

In this book, we will be discussing data structures that might be used in ways similar
to a stack of index cards.

Overview of Data Structures

Of course, most programs are more complex than index cards. Imagine the database
the Department of Motor Vehicles (or whatever it’s called in your state) uses to keep
track of drivers’ licenses, or an airline reservations system that stores passenger and
flight information. Such systems may include many data structures. Designing such
complex systems requires the application of software engineering techniques, which
we’ll mention toward the end of this chapter.

Programmer’s Tools

Not all data storage structures are used to store real-world data. Typically, real-world
data is accessed more or less directly by a program’s user. Some data storage struc-
tures, however, are not meant to be accessed by the user, but by the program itself. A
programmer uses such structures as tools to facilitate some other operation. Stacks,
queues, and priority queues are often used in this way. We’ll see examples as we go
along.

Real-World Modeling

Some data structures directly model real-world situations. The most important data
structure of this type is the graph. You can use graphs to represent airline routes
between cities or connections in an electric circuit or tasks in a project. We’ll cover
graphs in Chapter 13, “Graphs,” and Chapter 14, “Weighted Graphs.” Other data
structures, such as stacks and queues, may also be used in simulations. A queue, for
example, can model customers waiting in line at a bank or cars waiting at a toll
booth.

Overview of Data Structures

Another way to look at data structures is to focus on their strengths and weaknesses.
In this section we’ll provide an overview, in the form of a table, of the major data
storage structures we’ll be discussing in this book. This is a bird’s-eye view of a land-
scape that we'll be covering later at ground level, so don’t be alarmed if the terms
used are not familiar. Table 1.1 shows the advantages and disadvantages of the
various data structures described in this book.

TABLE 1.1 Characteristics of Data Structures

Data Structure Advantages Disadvantages
Array Quick insertion, very Slow search,
fast access if index slow deletion,
known. fixed size.
Ordered array Quicker search than Slow insertion and

unsorted array. deletion, fixed size.

12

CHAPTER 1 Overview

TABLE 1.1 Continued
Data Structure

Advantages

Disadvantages

Stack

Queue

Linked list

Binary tree

Red-black tree

2-3-4 tree

Hash table

Heap

Graph

Provides last-in,
first-out access.
Provides first-in,
first-out access.

Quick insertion,

quick deletion.

Quick search, insertion,
deletion (if tree
remains balanced).
Quick search, insertion,
deletion. Tree always
balanced.

Quick search, insertion,
deletion. Tree always
balanced. Similar trees
good for disk storage.
Very fast access if

key known. Fast insertion.

Fast insertion, deletion,
access to largest item.
Models real-world
situations.

Slow access to
other items.
Slow access to
other items.
Slow search.

Deletion algorithm
is complex.

Complex.

Complex.

Slow deletion,

access slow if key

not known, inefficient
memory usage.

Slow access to

other items.

Some algorithms are
slow and complex.

The data structures shown in Table 1.1, except the arrays, can be thought of as
Abstract Data Types, or ADTs. We'll describe what this means in Chapter 5, “Linked

Lists.”

Overview of Algorithms

Many of the algorithms we’ll discuss apply directly to specific data structures. For
most data structures, you need to know how to

e Insert a new data item.
e Search for a specified item.

e Delete a specified item.

Some Definitions 13

You may also need to know how to iterate through all the items in a data structure,
visiting each one in turn so as to display it or perform some other action on it.

Another important algorithm category is sorting. There are many ways to sort data,
and we devote Chapter 3, “Simple Sorting,” and Chapter 7, “Advanced Sorting,” to
these algorithms.

The concept of recursion is important in designing certain algorithms. Recursion
involves a method calling itself. We'll look at recursion in Chapter 6, “Recursion.”
(The term method is used in Java. In other languages, it is called a function, proce-
dure, or subroutine.)

Some Definitions
Let’s look at a few of the terms that we’ll be using throughout this book.

Database

We'll use the term database to refer to all the data that will be dealt with in a particu-
lar situation. We'll assume that each item in a database has a similar format. As an
example, if you create an address book using index cards, these cards constitute a
database. The term file is sometimes used in this sense.

Record

Records are the units into which a database is divided. They provide a format for
storing information. In the index card analogy, each card represents a record. A
record includes all the information about some entity, in a situation in which there
are many such entities. A record might correspond to a person in a personnel file, a
car part in an auto supply inventory, or a recipe in a cookbook file.

Field

A record is usually divided into several fields. A field holds a particular kind of data.
On an index card for an address book, a person’s name, address, or telephone
number is an individual field.

More sophisticated database programs use records with more fields. Figure 1.1 shows
such a record, where each line represents a distinct field.

In Java (and other object-oriented languages), records are usually represented by
objects of an appropriate class. Individual variables within an object represent data
fields. Fields within a class object are called fields in Java (but members in some other
languages such as C++).

14

CHAPTER 1 Overview

Employee number:
Social security number:
Last name:

First name:

Street address:

City:

State:

Zip code:

Phone number:

Date of birth:

Date of first employment:
Salary:

FIGURE 1.1 A record with multiple fields.

Key

To search for a record within a database, you need to designate one of the record’s
fields as a key (or search key). You'll search for the record with a specific key. For
instance, in an address book program, you might search in the name field of each
record for the key “Brown.” When you find the record with this key, you can access
all its fields, not just the key. We might say that the key unlocks the entire record.
You could search through the same file using the phone number field or the address
field as the key. Any of the fields in Figure 1.1 could be used as a search key.

Object-Oriented Programming

This section is for those of you who haven’t been exposed to object-oriented
programming. However, caveat emptor. We cannot, in a few pages, do justice to all
the innovative new ideas associated with OOP. Our goal is merely to make it possible
for you to understand the example programs in the text.

If, after reading this section and examining some of the example code in the follow-
ing chapters, you still find the whole OOP business as alien as quantum physics, you
may need a more thorough exposure to OOP. See the reading list in Appendix B,
“Further Reading,” for suggestions.

Problems with Procedural Languages

OOP was invented because procedural languages, such as C, Pascal, and early
versions of BASIC, were found to be inadequate for large and complex programs.
Why was this?

Object-Oriented Programming 15

There were two kinds of problems. One was the lack of correspondence between the
program and the real world, and the other was the internal organization of the
program.

Poor Modeling of the Real World

Conceptualizing a real-world problem using procedural languages is difficult.
Methods carry out a task, while data stores information, but most real-world objects
do both of these things. The thermostat on your furnace, for example, carries out
tasks (turning the furnace on and off) but also stores information (the current
temperature and the desired temperature).

If you wrote a thermostat control program in a procedural language, you might end
up with two methods, furnace_on() and furnace_off (), but also two global vari-
ables, currentTemp (supplied by a thermometer) and desiredTemp (set by the user).
However, these methods and variables wouldn’t form any sort of programming unit;
there would be no unit in the program you could call thermostat. The only such
concept would be in the programmer’s mind.

For large programs, which might contain hundreds of entities like thermostats, this
procedural approach made things chaotic, error-prone, and sometimes impossible to
implement at all. What was needed was a better match between things in the
program and things in the outside world.

Crude Organizational Units

A more subtle, but related, problem had to do with a program’s internal organiza-
tion. Procedural programs were organized by dividing the code into methods. One
difficulty with this kind of method-based organization was that it focused on
methods at the expense of data. There weren’t many options when it came to data.
To simplify slightly, data could be local to a particular method, or it could be
global—accessible to all methods. There was no way (at least not a flexible way) to
specify that some methods could access a variable and others couldn’t.

This inflexibility caused problems when several methods needed to access the same
data. To be available to more than one method, such variables needed to be global,
but global data could be accessed inadvertently by any method in the program. This
lead to frequent programming errors. What was needed was a way to fine-tune data
accessibility, allowing data to be available to methods with a need to access it, but
hiding it from other methods.

Objects in a Nutshell

The idea of objects arose in the programming community as a solution to the prob-
lems with procedural languages.

16

CHAPTER 1 Overview

Objects

Here'’s the amazing breakthrough that is the key to OOP: An object contains both
methods and variables. A thermostat object, for example, would contain not only
furnace_on() and furnace_off () methods, but also variables called currentTemp
and desiredTemp. In Java, an object’s variables such as these are called fields.

This new entity, the object, solves several problems simultaneously. Not only does an
object in a program correspond more closely to an object in the real world, but it
also solves the problem engendered by global data in the procedural model. The
furnace_on() and furnace_off () methods can access currentTemp and desiredTemp.
These variables are hidden from methods that are not part of thermostat, however,
so they are less likely to be accidentally changed by a rogue method.

Classes

You might think that the idea of an object would be enough for one programming
revolution, but there’s more. Early on, it was realized that you might want to make
several objects of the same type. Maybe you’re writing a furnace control program for
an entire apartment building, for example, and you need several dozen thermostat
objects in your program. It seems a shame to go to the trouble of specifying each
one separately. Thus, the idea of classes was born.

A class is a specification—a blueprint—for one or more objects. Here’s how a thermo -
stat class, for example, might look in Java:

class thermostat

{

private float currentTemp();
private float desiredTemp();

public void furnace_on()
{
// method body goes here
}

public void furnace_off()
{
// method body goes here
}

} // end class thermostat

The Java keyword class introduces the class specification, followed by the name you
want to give the class; here it’s thermostat. Enclosed in curly brackets are the fields
and methods that make up the class. We've left out the bodies of the methods;
normally, each would have many lines of program code.

Object-Oriented Programming

C programmers will recognize this syntax as similar to a structure, while C++
programmers will notice that it’s very much like a class in C++, except that there’s
no semicolon at the end. (Why did we need the semicolon in C++ anyway?)

Creating Objects

Specifying a class doesn’t create any objects of that class. (In the same way, specify-
ing a structure in C doesn't create any variables.) To actually create objects in Java,
you must use the keyword new. At the same time an object is created, you need to
store a reference to it in a variable of suitable type—that is, the same type as the
class.

What’s a reference? We'll discuss references in more detail later. In the meantime,
think of a reference as a name for an object. (It's actually the object’s address, but
you don’t need to know that.)

Here’s how we would create two references to type thermostat, create two new ther-
mostat objects, and store references to them in these variables:

thermostat thermi, therm2; // create two references

thermi = new thermostat(); // create two objects and
therm2 = new thermostat(); // store references to them

Incidentally, creating an object is also called instantiating it, and an object is often
referred to as an instance of a class.

Accessing Object Methods
After you specify a class and create some objects of that class, other parts of your
program need to interact with these objects. How do they do that?

Typically, other parts of the program interact with an object’s methods, not with its
data (fields). For example, to tell the therm2 object to turn on the furnace, we would

say

therm2.furnace_on();
The dot operator (.) associates an object with one of its methods (or occasionally
with one of its fields).

At this point we’ve covered (rather telegraphically) several of the most important
features of OOP. To summarize:

e Objects contain both methods and fields (data).
e A class is a specification for any number of objects.

e To create an object, you use the keyword new in conjunction with the class
name.

e To invoke a method for a particular object, you use the dot operator.

17

18

CHAPTER 1 Overview

These concepts are deep and far reaching. It's almost impossible to assimilate them
the first time you see them, so don’t worry if you feel a bit confused. As you see
more classes and what they do, the mist should start to clear.

A Runnable Object-Oriented Program

Let’s look at an object-oriented program that runs and generates actual output. It
features a class called BankAccount that models a checking account at a bank. The
program creates an account with an opening balance, displays the balance, makes a
deposit and a withdrawal, and then displays the new balance. Listing 1.1 shows
bank.java.

LISTING 1.1 The bank. java Program

// bank.java

// demonstrates basic OOP syntax

// to run this program: C>java BankApp
LEEETELEEEEEEEEEE e r e r i e nrrri i r
class BankAccount

{

private double balance; // account balance

public BankAccount(double openingBalance) // constructor

{
balance = openingBalance;
}
public void deposit(double amount) /] makes deposit
{
balance = balance + amount;
}
public void withdraw(double amount) /| makes withdrawal
{
balance = balance - amount;
}
public void display() /| displays balance
{
System.out.println("balance=" + balance);
}

} // end class BankAccount
LEELLEELETE LIt il

Object-Oriented Programming

LISTING 1.1 Continued

class BankApp
{

public static void main(String[] args)

{

BankAccount bal = new BankAccount(100.00); // create acct

System.out.print("Before transactions, ");

bal.display(); // display balance
bal.deposit(74.35); /| make deposit
bal.withdraw(20.00); // make withdrawal

System.out.print("After transactions, ");
bal.display(); // display balance
} // end main()

} // end class BankApp

Here'’s the output from this program:

Before transactions, balance=100
After transactions, balance=154.35

There are two classes in bank. java. The first one, BankAccount, contains the fields
and methods for our bank account. We'll examine it in detail in a moment. The
second class, BankApp, plays a special role.

The BankApp Class
To execute the program in Listing 1.1 from an MS-DOS prompt, you type java
BankApp following the C: prompt:

C:\>java BankApp
This command tells the java interpreter to look in the BankApp class for the method
called main (). Every Java application must have a main() method; execution of the

program starts at the beginning of main(), as you can see in Listing 1.1. (You don't
need to worry yet about the String[] args argument in main().)

The main() method creates an object of class BankAccount, initialized to a value of
100.00, which is the opening balance, with this statement:

BankAccount bal = new BankAccount(100.00); // create acct

19

20

CHAPTER 1 Overview

The System.out.print() method displays the string used as its argument, Before
transactions:, and the account displays its balance with this statement:

bai.display();

The program then makes a deposit to, and a withdrawal from, the account:

bal.deposit(74.35);
bal.withdraw(20.00);

Finally, the program displays the new account balance and terminates.

The BankAccount Class

The only data field in the BankAccount class is the amount of money in the account,
called balance. There are three methods. The deposit() method adds an amount to
the balance, withdrawal() subtracts an amount, and display () displays the balance.

Constructors

The BankAccount class also features a constructor, which is a special method that’s
called automatically whenever a new object is created. A constructor always has
exactly the same name as the class, so this one is called BankAccount (). This
constructor has one argument, which is used to set the opening balance when the
account is created.

A constructor allows a new object to be initialized in a convenient way. Without the
constructor in this program, you would have needed an additional call to deposit()
to put the opening balance in the account.

Public and Private

Notice the keywords public and private in the BankAccount class. These keywords
are access modifiers and determine which methods can access a method or field. The
balance field is preceded by private. A field or method that is private can be
accessed only by methods that are part of the same class. Thus, balance cannot be
accessed by statements in main() because main() is not a method in BankAccount.

All the methods in BankAccount have the access modifier public, however, so they
can be accessed by methods in other classes. That’s why statements in main() can
call deposit(), withdrawal(), and display().

Data fields in a class are typically made private and methods are made public. This

protects the data; it can’t be accidentally modified by methods of other classes. Any
outside entity that needs to access data in a class must do so using a method of the
same class. Data is like a queen bee, kept hidden in the middle of the hive, fed and
cared for by worker-bee methods.

Software Engineering 21

Inheritance and Polymorphism

We'll briefly mention two other key features of object-oriented programming: inheri-
tance and polymorphism.

Inheritance is the creation of one class, called the extended or derived class, from
another class called the base class. The extended class has all the features of the base
class, plus some additional features. For example, a secretary class might be derived
from a more general employee class and include a field called typingSpeed that the
employee class lacked.

In Java, inheritance is also called subclassing. The base class may be called the super-
class, and the extended class may be called the subclass.

Inheritance enables you to easily add features to an existing class and is an impor-
tant aid in the design of programs with many related classes. Inheritance thus makes
it easy to reuse classes for a slightly different purpose, a key benefit of OOP.

Polymorphism involves treating objects of different classes in the same way. For poly-
morphism to work, these different classes must be derived from the same base class.
In practice, polymorphism usually involves a method call that actually executes
different methods for objects of different classes.

For example, a call to display() for a secretary object would invoke a display
method in the secretary class, while the exact same call for a manager object would
invoke a different display method in the manager class. Polymorphism simplifies and
clarifies program design and coding.

For those not familiar with them, inheritance and polymorphism involve significant
additional complexity. To keep the focus on data structures and algorithms, we have
avoided these features in our example programs. Inheritance and polymorphism are
important and powerful aspects of OOP but are not necessary for the explanation of
data structures and algorithms.

Software Engineering

In recent years, it has become fashionable to begin a book on data structures and
algorithms with a chapter on software engineering. We don'’t follow that approach,
but let’s briefly examine software engineering and see how it fits into the topics we
discuss in this book.

Software engineering is the study of ways to create large and complex computer
programs, involving many programmers. It focuses on the overall design of the
programs and on the creation of that design from the needs of the end users.
Software engineering is concerned with the life cycle of a software project, which
includes specification, design, verification, coding, testing, production, and
maintenance.

CHAPTER 1 Overview

It’s not clear that mixing software engineering on one hand and data structures and
algorithms on the other actually helps the student understand either topic. Software
engineering is rather abstract and is difficult to grasp until you've been involved
yourself in a large project. The use of data structures and algorithms, on the other
hand, is a nuts-and-bolts discipline concerned with the details of coding and data
storage.

Accordingly, we focus on the essentials of data structures and algorithms. How do
they really work? What structure or algorithm is best in a particular situation? What
do they look like translated into Java code? As we noted, our intent is to make the
material as easy to understand as possible. For further reading, we mention some
books on software engineering in Appendix B.

Java for C++ Programmers

If you're a C++ programmer who has not yet encountered Java, you might want to
read this section. We'll mention several ways that Java differs from C++.

This section is not intended to be a primer on Java. We don’t even cover all the
differences between C++ and Java. We're interested in only a few Java features that
might make it hard for C++ programmers to figure out what’s going on in the
example programs.

No Pointers

The biggest difference between C++ and Java is that Java doesn’t use pointers. To a
C++ programmer, not using pointers may at first seem quite amazing. How can you
get along without pointers?

Throughout this book we’ll use pointer-free code to build complex data structures.
You'll see that this approach is not only possible, but actually easier than using C++
pointers.

Actually, Java only does away with explicit pointers. Pointers, in the form of memory
addresses, are still there, under the surface. It’s sometimes said that, in Java, every-
thing is a pointer. This statement is not completely true, but it’s close. Let’s look at
the details.

References
Java treats primitive data types (such as int, float, and double) differently than
objects. Look at these two statements:

int intVar; // an int variable called intVar
BankAccount bc1; // reference to a BankAccount object

Java for C++ Programmers

In the first statement, a memory location called intvar actually holds a numerical
value such as 127 (assuming such a value has been placed there). However, the
memory location bc1 does not hold the data of a BankAccount object. Instead, it
contains the address of a BankAccount object that is actually stored elsewhere in
memory. The name bc1 is a reference to this object; it’s not the object itself.

Actually, bc1 won't hold a reference if it has not been assigned an object at some
prior point in the program. Before being assigned an object, it holds a reference to a
special object called null. In the same way, intVar won't hold a numerical value if
it's never been assigned one. The compiler will complain if you try to use a variable
that has never been assigned a value.

In C++, the statement

BankAccount bci;

actually creates an object; it sets aside enough memory to hold all the object’s data.
In Java, all this statement creates is a place to put an object’s memory address. You
can think of a reference as a pointer with the syntax of an ordinary variable. (C++
has reference variables, but they must be explicitly specified with the & symbol.)

Assignment
It follows that the assignment operator (=) operates differently with Java objects than
with C++ objects. In C++, the statement

bc2 = bcl;

copies all the data from an object called bc1 into a different object called bc2.
Following this statement, there are two objects with the same data. In Java, on the
other hand, this same assignment statement copies the memory address that bc1

refers to into bc2. Both bc1 and bc2 now refer to exactly the same object; they are
references to it.

This can get you into trouble if you're not clear what the assignment operator does.
Following the assignment statement shown above, the statement

bc1.withdraw(21.00);

and the statement

bc2.withdraw(21.00);

both withdraw $21 from the same bank account object.

Suppose you actually want to copy data from one object to another. In this case you
must make sure you have two separate objects to begin with and then copy each
field separately. The equal sign won'’t do the job.

23

24

CHAPTER 1 Overview

The new Operator

Any object in Java must be created using new. However, in Java, new returns a refer-
ence, not a pointer as in C++. Thus, pointers aren’t necessary to use new. Here’s one
way to create an object:

BankAccount bai;
bal = new BankAccount();

Eliminating pointers makes for a more secure system. As a programmer, you can'’t
find out the actual address of ba1, so you can’t accidentally corrupt it. However, you
probably don’t need to know it, unless you're planning something wicked.

How do you release memory that you’ve acquired from the system with new and no
longer need? In C++, you use delete. In Java, you don’t need to worry about releas-
ing memory. Java periodically looks through each block of memory that was
obtained with new to see if valid references to it still exist. If there are no such refer-
ences, the block is returned to the free memory store. This process is called garbage
collection.

In C++ almost every programmer at one time or another forgets to delete memory
blocks, causing “memory leaks” that consume system resources, leading to bad
performance and even crashing the system. Memory leaks can’t happen in Java (or at
least hardly ever).

Arguments

In C++, pointers are often used to pass objects to functions to avoid the overhead of
copying a large object. In Java, objects are always passed as references. This approach
also avoids copying the object:

void methodi ()
{
BankAccount bal = new BankAccount(350.00);
method2(bat);
}

void method2(BankAccount acct)

{
}

In this code, the references bai and acct both refer to the same object. In C++ acct
would be a separate object, copied from bat.

Primitive data types, on the other hand, are always passed by value. That is, a new
variable is created in the method and the value of the argument is copied into it.

Java for C++ Programmers 25

Equality and Identity
In Java, if you're talking about primitive types, the equality operator (==) will tell you
whether two variables have the same value:

int intVari = 27;

int intvar2 = intvari;

if(intvar1 == intvar2)
System.out.println("They're equal");

This is the same as the syntax in C and C++, but in Java, because relational operators
use references, they work differently with objects. The equality operator, when
applied to objects, tells you whether two references are identical—that is, whether
they refer to the same object:

carPart cpl = new carPart("fender");
carPart cp2 = cpi;
if(cpl == cp2)

System.out.println("They're Identical");

In C++ this operator would tell you if two objects contained the same data. If you
want to see whether two objects contain the same data in Java, you must use the
equals() method of the Object class:

carPart cpl = new carPart("fender");

carPart cp2 = cpi;

if(cpl.equals(cp2))
System.out.println("They're equal");

This technique works because all objects in Java are implicitly derived from the
Object class.

Overloaded Operators

This point is easy: There are no overloaded operators in Java. In C++, you can rede-
fine +, *, =, and most other operators so that they behave differently for objects of a
particular class. No such redefinition is possible in Java. Use a named method
instead, such as add () or whatever.

Primitive Variable Types

The primitive or built-in variable types in Java are shown in Table 1.2.

26

CHAPTER 1 Overview

TABLE 1.2 Primitive Data Types

Name Size in Bits Range of Values

boolean 1 true or false

byte 8 -128 to +127

char 16 "\u00o0' to '\uFFFF'

short 16 -32,768 to +32,767

int 32 -2,147,483,648 to +2,147,483,647

long 64 -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

float 32 Approximately 10 to 10+%¥; 7 significant digits

double 64 Approximately 10% to 10+%; 15 significant digits

Unlike C and C++, which use integers for true/false values, boolean is a distinct type
in Java.

Type char is unsigned, and uses two bytes to accommodate the Unicode character

representation scheme, which can handle international characters.

The int type varies in size in C and C++, depending on the specific computer plat-
form; in Java an int is always 32 bits.

Literals of type float use the suffix F (for example, 3.14159F); literals of type double
need no suffix. Literals of type long use suffix L (as in 45L); literals of the other
integer types need no suffix.

Java is more strongly typed than C and C++; many conversions that were automatic
in those languages require an explicit cast in Java.

All types not shown in Table 1.2, such as String, are classes.

Input/Output

There have been changes to input/output as Java has evolved. For the console-mode
applications we'll be using as example programs in this book, some clunky-looking
but effective constructions are available for input and output. They're quite different
from the workhorse cout and cin approaches in C++ and printf() and scanf()

in C.

Older versions of the Java Software Development Kit (SDK) required the line
import java.io.*;

at the beginning of the source file for all input/output routines. Now this line is
needed only for input.

Java for C++ Programmers 27

Output
You can send any primitive type (numbers and characters), and String objects as
well, to the display with these statements:

System.out.print(var); /| displays var, no linefeed
System.out.println(var); // displays var, then starts new line

The print () method leaves the cursor on the same line; println() moves it to the
beginning of the next line.

In older versions of the SDK, a System.out.print() statement did not actually write
anything to the screen. It had to be followed by a System.out.println()or
System.out.flush() statement to display the entire buffer. Now it displays
immediately.

You can use several variables, separated by plus signs, in the argument. Suppose in
this statement the value of ans is 33:

System.out.println("The answer is " + ans);

Then the output will be

The answer is 33

Inputting a String

Input is considerably more involved than output. In general, you want to read any
input as a String object. If you're actually inputting something else, say a character
or number, you then convert the String object to the desired type.

As we noted, any program that uses input must include the statement

import java.io.*;

at the beginning of the program. Without this statement, the compiler will not
recognize such entities as I0Exception and InputStreamReader.

String input is fairly baroque. Here’s a method that returns a string entered by the
user:

public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readlLine();
return s;

}

28

CHAPTER 1 Overview

This method returns a String object, which is composed of characters typed on the
keyboard and terminated with the Enter key. The details of the InputStreamReader
and BufferedReader classes need not concern us here.

Besides importing java.io.*, you'll need to add throws IOException to all input
methods, as shown in the preceding code. In fact, you’ll need to add throws
I0Exception to any method, such as main(), that calls any of the input methods.

Inputting a Character

Suppose you want your program'’s user to enter a character. (By enter, we mean
typing something and pressing the Enter key.) The user may enter a single character
or (incorrectly) more than one. Therefore, the safest way to read a character involves
reading a String and picking off its first character with the charAt() method:

public static char getChar() throws IOException
{
String s = getString();
return s.charAt(0);

}

The charAt () method of the String class returns a character at the specified position
in the String object; here we get the first character, which is number 0. This
approach prevents extraneous characters being left in the input buffer. Such charac-
ters can cause problems with subsequent input.

Inputting Integers

To read numbers, you make a String object as shown before and convert it to the
type you want using a conversion method. Here’s a method, getInt(), that converts
input into type int and returns it:

public int getInt() throws IOException

{
String s = getString();
return Integer.parselnt(s);

}

The parseInt() method of class Integer converts the string to type int. A similar
routine, parseLong(), can be used to convert type long.

In older versions of the SDK, you needed to use the line
import java.lang.Integer;

at the beginning of any program that used parseInt(), but this convention is no
longer necessary.

Java Library Data Structures 29

For simplicity, we don’t show any error-checking in the input routines in the
example programs. The user must type appropriate input, or an exception will occur.
With the code shown here the exception will cause the program to terminate. In a
serious program you should analyze the input string before attempting to convert it
and should also catch any exceptions and process them appropriately.

Inputting Floating-Point Numbers

Types float and double can be handled in somewhat the same way as integers, but
the conversion process is more complex. Here’s how you read a number of type
double:

public int getDouble() throws IOException
{
String s = getString();
Double aDub = Double.valueOf(s);
return aDub.doubleValue();

}

The String is first converted to an object of type Double (uppercase D), which is a
“wrapper” class for type double. A method of Double called doubleValue() then
converts the object to type double.

For type float, there’s an equivalent Float class, which has equivalent valueOf ()
and floatValue() methods.

Java Library Data Structures

The java.util package contains data structures, such as Vector (an extensible array),
Stack, Dictionary, and Hashtable. In this book we’ll usually ignore these built-in
classes. We're interested in teaching fundamentals, not the details of a particular
implementation. However, occasionally we'll find some of these structures useful.
You must use the line

import java.util.*;

before you can use objects of these classes.

Although we don’t focus on them, such class libraries, whether those that come with
Java or others available from third-party developers, can offer a rich source of versa-
tile, debugged storage classes. This book should equip you with the knowledge to
know what sort of data structure you need and the fundamentals of how it works.
Then you can decide whether you should write your own classes or use someone
else’s.

30

CHAPTER 1 Overview

Summary

e A data structure is the organization of data in a computer’s memory or in a

disk file.

The correct choice of data structure allows major improvements in program
efficiency.

Examples of data structures are arrays, stacks, and linked lists.
An algorithm is a procedure for carrying out a particular task.
In Java, an algorithm is usually implemented by a class method.

Many of the data structures and algorithms described in this book are most
often used to build databases.

Some data structures are used as programmer’s tools: They help execute an
algorithm.

Other data structures model real-world situations, such as telephone lines
running between cities.

A database is a unit of data storage composed of many similar records.
A record often represents a real-world object, such as an employee or a car part.

A record is divided into fields. Each field stores one characteristic of the object
described by the record.

A key is a field in a record that’s used to carry out some operation on the data.
For example, personnel records might be sorted by a LastName field.

A database can be searched for all records whose key field has a certain value.
This value is called a search key.

Questions

These questions are intended as a self-test for readers. Answers to the questions may
be found in Appendix C.

1. In many data structures you can a single record, it, and

it.

2. Rearranging the contents of a data structure into a certain order is called

Questions

3. In a database, a field is
a. a specific data item.
b. a specific object.
c. part of a record.
d. part of an algorithm.
4. The field used when searching for a particular record is the
5. In object-oriented programming, an object
a. is a class.
b. may contain data and methods.
c. is a program.
d. may contain classes.
6. A class
a. is a blueprint for many objects.
b. represents a specific real-world object.
c. will hold specific values in its fields.
d. specifies the type of a method.
7. In Java, a class specification
a. creates objects.
b. requires the keyword new.
c. creates references.
d. none of the above.
8. When an object wants to do something, it uses a
9. In Java, accessing an object’s methods requires the _____ operator.

10. In Java, boolean and byte are

(There are no experiments or programming projects for Chapter 1.)

31

2 IN THIS CHAPTER

e The Basics of Arrays in Java

Arrays

e Dividing a Program into
Classes

T e Class Interfaces
he array is the most commonly used data storage struc-

ture; it’s built into most programming languages. Because * Java Code for an Ordered
arrays are so well known, they offer a convenient jumping- Array

off place for introducing data structures and for seeing
how object-oriented programming and data structures
relate to one another. In this chapter we'll introduce arrays e Storing Objects
in Java and demonstrate a home-made array class.

e Logarithms

* Big O Notation
We'll also examine a special kind of array, the ordered
array, in which the data is stored in ascending (or descend-
ing) key order. This arrangement makes possible a fast way Everything?
of searching for a data item: the binary search.

e Why Not Use Arrays for

We'll start the chapter with a Java Workshop applet that
shows insertion, searching, and deletion in an array. Then
we’ll show some sample Java code that carries out these
same operations.

Later we’ll examine ordered arrays, again starting with a
Workshop applet. This applet will demonstrate a binary
search. At the end of the chapter we’ll talk about Big O
notation, the most widely used measure of algorithm
efficiency.

The Array Workshop Applet

Suppose you're coaching kids-league baseball, and you
want to keep track of which players are present at the prac-
tice field. What you need is an attendance-monitoring
program for your laptop—a program that maintains a data-
base of the players who have shown up for practice. You
can use a simple data structure to hold this data. There are
several actions you would like to be able to perform:

e Insert a player into the data structure when the
player arrives at the field.

34

CHAPTER 2 Arrays

e Check to see whether a particular player is present, by searching for the player’s
number in the structure.

e Delete a player from the data structure when that player goes home.

These three operations—insertion, searching, and deletion—will be the fundamental
ones in most of the data storage structures we’ll study in this book.

We'll often begin the discussion of a particular data structure by demonstrating it
with a Workshop applet. This approach will give you a feeling for what the structure
and its algorithms do, before we launch into a detailed explanation and demonstrate
sample code. The Workshop applet called Array shows how an array can be used to
implement insertion, searching, and deletion.

Now start up the Array Workshop applet, as described in Appendix A, “Running the
Workshop Applets and Example Programs,” with

C:\>appletviewer Array.html

Figure 2.1 shows the resulting array with 20 elements, 10 of which have data items
in them. You can think of these items as representing your baseball players. Imagine
that each player has been issued a team shirt with the player’s number on the back.
To make things visually interesting, the shirts come in a variety of colors. You can
see each player’s number and shirt color in the array.

B Applet Viewer: Anrap_class M= E3
Applet

New | Fill | [Ins | Find | Del | :::p:uﬂf Number: |

Press any button

-0 WM aew N -0

-

Applet started.

FIGURE 2.1 The Array Workshop applet.

The Array Workshop Applet 35

This applet demonstrates the three fundamental procedures mentioned earlier:
e The Ins button inserts a new data item.
e The Find button searches for specified data item.

e The Del button deletes a specified data item.

Using the New button, you can create a new array of a size you specify. You can fill
this array with as many data items as you want using the Fill button. Fill creates a set
of items and randomly assigns them numbers and colors. The numbers are in the
range 0 to 999. You can’t create an array of more than 60 cells, and you can't, of
course, fill more data items than there are array cells.

Also, when you create a new array, you'll need to decide whether duplicate items will
be allowed; we’ll return to this question in a moment. The default value is no dupli-
cates, so the No Dups radio button is initially selected to indicate this setting.

Insertion

Start with the default arrangement of 20 cells and 10 data items, and the No Dups
button selected. You insert a baseball player’s number into the array when the player
arrives at the practice field, having been dropped off by a parent. To insert a new
item, press the Ins button once. You’ll be prompted to enter the value of the item:

Enter key of item to insert

Type a number, say 678, into the text field in the upper-right corner of the applet.
(Yes, it is hard to get three digits on the back of a kid's shirt.) Press Ins again and the
applet will confirm your choice:

Will insert item with key 678

A final press of the button will cause a data item, consisting of this value and a
random color, to appear in the first empty cell in the array. The prompt will say
something like

Inserted item with key 678 at index 10

Each button press in a Workshop applet corresponds to a step that an algorithm
carries out. The more steps required, the longer the algorithm takes. In the Array
Workshop applet the insertion process is very fast, requiring only a single step. This
is true because a new item is always inserted in the first vacant cell in the array, and
the algorithm knows this location because it knows how many items are already in
the array. The new item is simply inserted in the next available space. Searching and
deletion, however, are not so fast.

36

CHAPTER 2 Arrays

In no-duplicates mode you're on your honor not to insert an item with the same key
as an existing item. If you do, the applet displays an error message, but it won't
prevent the insertion. The assumption is that you won’t make this mistake.

Searching

To begin a search, click the Find button. You'll be prompted for the key number of
the person you're looking for. Pick a number that appears on an item somewhere in
the middle of the array. Type in the number and repeatedly press the Find button. At
each button press, one step in the algorithm is carried out. You'll see the red arrow
start at cell 0 and move methodically down the cells, examining a new one each
time you press the button. The index number in the message

Checking next cell, index = 2

will change as you go along. When you reach the specified item, you'll see the
message

Have found item with key 505

or whatever key value you typed in. Assuming duplicates are not allowed, the search
will terminate as soon as an item with the specified key value is found.

If you have selected a key number that is not in the array, the applet will examine
every occupied cell in the array before telling you that it can’t find that item.

Notice that (again assuming duplicates are not allowed) the search algorithm must
look through an average of half the data items to find a specified item. [tems close to
the beginning of the array will be found sooner, and those toward the end will be
found later. If N is the number of items, the average number of steps needed to find
an item is N/2. In the worst-case scenario, the specified item is in the last occupied
cell, and N steps will be required to find it.

As we noted, the time an algorithm takes to execute is proportional to the number of
steps, so searching takes much longer on the average (N/2 steps) than insertion (one

step).

Deletion

To delete an item, you must first find it. After you type in the number of the item to
be deleted, repeated button presses will cause the arrow to move, step by step, down
the array until the item is located. The next button press deletes the item, and the
cell becomes empty. (Strictly speaking, this step isn’t necessary because we’re going
to copy over this cell anyway, but deleting the item makes it clearer what'’s
happening.)

The Array Workshop Applet 37

Implicit in the deletion algorithm is the assumption that holes are not allowed in the
array. A hole is one or more empty cells that have filled cells above them (at higher
index numbers). If holes are allowed, all the algorithms become more complicated
because they must check to see whether a cell is empty before examining its
contents. Also, the algorithms become less efficient because they must waste time
looking at unoccupied cells. For these reasons, occupied cells must be arranged
contiguously: no holes allowed.

Therefore, after locating the specified item and deleting it, the applet must shift the
contents of each subsequent cell down one space to fill in the hole. Figure 2.2 shows
an example.

Item to be
deleted

0 1 2 3 4 5 6 7 8 9

84 61 15 73 26 38 11 49 53 32

LA A A .
(1] (2] (3) (4]
0 1 2 3 4 5 6 7 8
84 61 15 73 26 11 49 53 32 Contents
shifted
down

FIGURE 2.2 Deleting an item.

If the item in cell 5 (38, in Figure 2.2) is deleted, the item in 6 shifts into 5, the item
in 7 shifts into 6, and so on to the last occupied cell. During the deletion process,
when the item is located, the applet shifts down the contents of the higher-indexed
cells as you continue to press the Del button.

A deletion requires (assuming no duplicates are allowed) searching through an
average of N/2 elements and then moving the remaining elements (an average of
N/2 moves) to fill up the resulting hole. This is N steps in all.

The Duplicates Issue

When you design a data storage structure, you need to decide whether items with
duplicate keys will be allowed. If you're working with a personnel file and the key is
an employee number, duplicates don’t make much sense; there’s no point in assign-
ing the same number to two employees. On the other hand, if the key value is last
names, then there’s a distinct possibility several employees will have the same key
value, so duplicates should be allowed.

38

CHAPTER 2 Arrays

Of course, for the baseball players, duplicate numbers should not be allowed.
Keeping track of the players would be hard if more than one wore the same number.

The Array Workshop applet lets you select either option. When you use New to
create a new array, you're prompted to specify both its size and whether duplicates
are permitted. Use the radio buttons Dups OK or No Dups to make this selection.

If you're writing a data storage program in which duplicates are not allowed, you
may need to guard against human error during an insertion by checking all the data
items in the array to ensure that none of them already has the same key value as the
item being inserted. This check is inefficient, however, and increases the number of
steps required for an insertion from one to N. For this reason, our applet does not
perform this check.

Searching with Duplicates

Allowing duplicates complicates the search algorithm, as we noted. Even if it finds a
match, it must continue looking for possible additional matches until the last occu-
pied cell. At least, this is one approach; you could also stop after the first match.
How you proceed depends on whether the question is “Find me everyone with blue
eyes” or “Find me someone with blue eyes.”

When the Dups OK button is selected, the applet takes the first approach, finding all
items matching the search key. This approach always requires N steps because the
algorithm must go all the way to the last occupied cell.

Insertion with Duplicates

Insertion is the same with duplicates allowed as when they’re not: A single step
inserts the new item. But remember, if duplicates are not allowed, and there’s a
possibility the user will attempt to input the same key twice, you may need to check
every existing item before doing an insertion.

Deletion with Duplicates

Deletion may be more complicated when duplicates are allowed, depending on
exactly how “deletion” is defined. If it means to delete only the first item with a
specified value, then, on the average, only N/2 comparisons and N/2 moves are
necessary. This is the same as when no duplicates are allowed.

If, however, deletion means to delete every item with a specified key value, the same
operation may require multiple deletions. Such an operation will require checking N
cells and (probably) moving more than N/2 cells. The average depends on how the
duplicates are distributed throughout the array.

The applet assumes this second meaning and deletes multiple items with the same
key. This is complicated because each time an item is deleted, subsequent items must
be shifted farther. For example, if three items are deleted, then items beyond the last

The Basics of Arrays in Java 39

deletion will need to be shifted three spaces. To see how this operation works, set the
applet to Dups OK and insert three or four items with the same key. Then try delet-
ing them.

Table 2.1 shows the average number of comparisons and moves for the three opera-
tions, first where no duplicates are allowed and then where they are allowed. N is
the number of items in the array. Inserting a new item counts as one move.

TABLE 2.1 Duplicates OK Versus No Duplicates

No Duplicates Duplicates OK
Search N/2 comparisons N comparisons
Insertion No comparisons, one move No comparisons, one move
Deletion N/2 comparisons, N/2 moves N comparisons, more than N/2 moves

You can explore these possibilities with the Array Workshop applet.

The difference between N and N/2 is not usually considered very significant, except
when you're fine-tuning a program. Of more importance, as we’ll discuss toward the
end of this chapter, is whether an operation takes one step, N steps, log(N) steps, or
N2 steps.

Not Too Swift

One of the significant things to notice when you’re using the Array applet is the
slow and methodical nature of the algorithms. With the exception of insertion, the
algorithms involve stepping through some or all of the cells in the array. Different
data structures offer much faster (but more complex) algorithms. We’ll see one, the
binary search on an ordered array, later in this chapter, and others throughout this
book.

The Basics of Arrays in Java

The preceding section showed graphically the primary algorithms used for arrays.
Now we’ll see how to write programs to carry out these algorithms, but we first want
to cover a few of the fundamentals of arrays in Java.

If you're a Java expert, you can skip ahead to the next section, but even C and C++
programmers should stick around. Arrays in Java use syntax similar to that in C and
C++ (and not that different from other languages), but there are nevertheless some
unique aspects to the Java approach.

40

CHAPTER 2 Arrays

Creating an Array

As we noted in Chapter 1, “Overview,” there are two kinds of data in Java: primitive
types (such as int and double) and objects. In many programming languages (even
object-oriented ones such as C++), arrays are primitive types, but in Java they’re
treated as objects. Accordingly, you must use the new operator to create an array:

int[] intArray; /| defines a reference to an array
intArray = new int[100]; /| creates the array, and
/] sets intArray to refer to it

Or you can use the equivalent single-statement approach:
int[] intArray = new int[100];
The [] operator is the sign to the compiler we're naming an array object and not an

ordinary variable. You can also use an alternative syntax for this operator, placing it
after the name instead of the type:

int intArray[] = new int[100]; // alternative syntax
However, placing the [] after the int makes it clear that the [] is part of the type,
not the name.

Because an array is an object, its name—intArray in the preceding code—is a refer-
ence to an array; it’s not the array itself. The array is stored at an address elsewhere
in memory, and intArray holds only this address.

Arrays have a length field, which you can use to find the size (the number of
elements) of an array:

int arrayLength = intArray.length; // find array size

As in most programming languages, you can’t change the size of an array after it's
been created.

Accessing Array Elements
Array elements are accessed using an index number in square brackets. This is similar
to how other languages work:

temp = intArray[3]; // get contents of fourth element of array
intArray[7] = 66; // insert 66 into the eighth cell

Remember that in Java, as in C and C++, the first element is numbered 0O, so that the
indices in an array of 10 elements run from O to 9.

The Basics of Arrays in Java

If you use an index that’s less than O or greater than the size of the array less 1,
you'll get the Array Index Out of Bounds runtime error.

Initialization

Unless you specify otherwise, an array of integers is automatically initialized to O
when it’s created. Unlike C++, this is true even of arrays defined within a method
(function). Say you create an array of objects like this:

autoData[] carArray = new autoData[4000];

Until the array elements are given explicit values, they contain the special null
object. If you attempt to access an array element that contains null, you'll get the
runtime error Null Pointer Assignment. The moral is to make sure you assign
something to an element before attempting to access it.

You can initialize an array of a primitive type to something besides 0 using this
syntax:

int[] intArray = { 0, 3, 6, 9, 12, 15, 18, 21, 24, 27 };

Perhaps surprisingly, this single statement takes the place of both the reference decla-
ration and the use of new to create the array. The numbers within the curly brackets
are called the initialization list. The size of the array is determined by the number of
values in this list.

An Array Example

Let’s look at some example programs that show how an array can be used. We'll start
with an old-fashioned procedural version and then show the equivalent object-
oriented approach. Listing 2.1 shows the old-fashioned version, called array.java.

LISTING 2.1 The array.java Program

// array.java

// demonstrates Java arrays

// to run this program: C>java arrayApp
LHEEEEEEEEEEEEEEE L e rry
class ArrayApp

{

public static void main(String[] args)
{
long[] arr; // reference to array
arr = new long[100]; // make array

int nElems = 0; // number of items

42 CHAPTER 2 Arrays

LISTING 2.1 Continued

int j; /] loop counter
long searchKey; /] key of item to search for

R
arr[0] = 77; /] insert 10 items
arr[1] = 99;
arr[2] = 44;
arr[3] = 55;
arr[4] = 22;
arr[5] = 88;
arr[6] = 11;
arr[7] = 00;
arr[8] = 66;
arr[9] = 33;
nElems = 10; /] now 10 items in array

R
for(j=0; j<nElems; j++) /] display items

System.out.print(arr[j] + " ");
System.out.println("");

R
searchKey = 66; /] find item with key 66
for(j=0; j<nElems; j++) /] for each element,

if(arr[j] == searchKey) // found item?
break; // yes, exit before end
if(j == nElems) /] at the end?
System.out.println("Can't find " + searchKey); // yes
else
System.out.println("Found " + searchKey); /1 no
R
searchKey = 55; /] delete item with key 55
for(j=0; j<nElems; j++) /] look for it
if(arr[j] == searchKey)
break;

for(int k=j; k<nElems-1; k++) /1 move higher ones down
arr[k] = arr[k+1];

nElems- -; // decrement size

R
for(j=0; j<nElems; j++) /] display items

System.out.print(arr[j] + " ");
System.out.println("");
} // end main()
} // end class ArrayApp

The Basics of Arrays in Java 43

In this program, we create an array called arr, place 10 data items (kids’ numbers) in
it, search for the item with value 66 (the shortstop, Louisa), display all the items,
remove the item with value 55 (Freddy, who had a dentist appointment), and then
display the remaining 9 items. The output of the program looks like this:

77 99 44 55 22 88 11 0 66 33
Found 66
77 99 44 22 88 11 0 66 33

The data we're storing in this array is type long. We use long to make it clearer that
this is data; type int is used for index values. We’ve chosen a primitive type to
simplify the coding. Generally, the items stored in a data structure consist of several
fields, so they are represented by objects rather than primitive types. We'll see such
an example toward the end of this chapter.

Insertion
Inserting an item into the array is easy; we use the normal array syntax:

arr[Q] = 77;

We also keep track of how many items we've inserted into the array with the nElems
variable.

Searching

The searchKey variable holds the value we're looking for. To search for an item, we
step through the array, comparing searchKey with each element. If the loop variable
j reaches the last occupied cell with no match being found, the value isn’t in the
array. Appropriate messages are displayed: Found 66 or Can't find 27.

Deletion

Deletion begins with a search for the specified item. For simplicity, we assume
(perhaps rashly) that the item is present. When we find it, we move all the items
with higher index values down one element to fill in the “hole” left by the deleted
element, and we decrement nElems. In a real program, we would also take appropri-
ate action if the item to be deleted could not be found.

Display
Displaying all the elements is straightforward: We step through the array, accessing
each one with arr[j] and displaying it.

Program Organization

The organization of array.java leaves something to be desired. The program has
only one class, ArrayApp, and this class has only one method, main(). array.java is
essentially an old-fashioned procedural program. Let’s see if we can make it easier to
understand (among other benefits) by making it more object oriented.

44

CHAPTER 2 Arrays

We're going to provide a gradual introduction to an object-oriented approach, using
two steps. In the first, we’ll separate the data storage structure (the array) from the
rest of the program. The remaining part of the program will become a user of the
structure. In the second step, we’ll improve the communication between the storage
structure and its user.

Dividing a Program into Classes

The array. java program in Listing 2.1 essentially consists of one big method. We
can reap many benefits by dividing the program into classes. What classes? The data
storage structure itself is one candidate, and the part of the program that uses this
data structure is another. By dividing the program into these two classes, we can
clarify the functionality of the program, making it easier to design and understand
(and in real programs to modify and maintain).

In array.java we used an array as a data storage structure, but we treated it simply
as a language element. Now we’ll encapsulate the array in a class, called LowArray.
We'll also provide class methods by which objects of other classes (the LowArrayApp
class in this case) can access the array. These methods allow communication between
LowArray and LowArrayApp.

Our first design of the LowArray class won't be entirely successful, but it will demon-
strate the need for a better approach. The lowArray.java program in Listing 2.2
shows how it looks.

LISTING 2.2 The lowArray.java Program

// lowArray.java

// demonstrates array class with low-level interface

// to run this program: C>java LowArrayApp
LEEETELEEEEEEEEEE e n e r i et nr i r
class LowArray

{
private long[] a; /] ref to array a
R
public LowArray(int size) // constructor
{ a = new long[size]; } // create array
L R
public void setElem(int index, long value) /] set value
{ a[index] = value; }
L R

public long getElem(int index) /] get value
{ return a[index]; }

Dividing a Program into Classes

LISTING 2.2 Continued

} /] end class LowArray
LEEEEEEEEEEEEEEEEE L e i e rry
class LowArrayApp

{

public static void main(String[] args)
{
LowArray arr; /| reference
arr = new LowArray(100); /| create LowArray object
int nElems = 0; // number of items in array
int j; // loop variable

arr.setElem(0, 77); // insert 10 items
arr.setElem(1, 99)

arr.setElem(2, 44)

arr.setElem(3, 55)

arr.setElem(4, 22);

arr.setElem(5, 88)

arr.setElem(6, 11)

arr.setElem(7, 00)

arr.setElem(8, 66)

arr.setElem(9, 33)

nElems = 10; // now 10 items in array

for(j=0; j<nElems; j+t+) /] display items
System.out.print(arr.getElem(j) + " ");
System.out.println("");

int searchKey = 26; // search for data item
for(j=0; j<nElems; j++) // for each element,
if(arr.getElem(j) == searchKey) // found item?
break;
if(j == nElems) /] no
System.out.println("Can't find " + searchKey);
else /] yes

System.out.println("Found " + searchKey);

// delete value 55

for(j=0; j<nElems; j++) /] look for it
if(arr.getElem(j) == 55)
break;

for(int k=j; k<nElems; k++) // higher ones down

46

CHAPTER 2 Arrays

LISTING 2.2 Continued

arr.setkElem(k, arr.getElem(k+1));
nElems- -; /] decrement size

for(j=0; j<nElems; j++) /| display items
System.out.print(arr.getElem(j) + " ");
System.out.println("");
} // end main()
} // end class LowArrayApp
LEEETEEEEEEL Tt i il

The output from the lowArray.java program is similar to that from array.java,
except that we try to find a non-existent key value (26) before deleting the item with
the key value 55:

77 99 44 55 22 88 11 0 66 33
Can't find 26
77 99 44 22 88 11 0 66 33

Classes LowArray and LowArrayApp

In lowArray.java, we essentially wrap the class LowArray around an ordinary Java
array. The array is hidden from the outside world inside the class; it’s private, so only
LowArray class methods can access it. There are three LowArray methods: setElem()
and getElem(), which insert and retrieve an element, respectively; and a constructor,
which creates an empty array of a specified size.

Another class, LowArrayApp, creates an object of the LowArray class and uses it to
store and manipulate data. Think of LowArray as a tool and LowArrayApp as a user of
the tool. We've divided the program into two classes with clearly defined roles. This
is a valuable first step in making a program object oriented.

A class used to store data objects, as is LowArray in the lowArray.java program, is
sometimes called a container class. Typically, a container class not only stores the data
but also provides methods for accessing the data and perhaps also sorting it and
performing other complex actions on it.

Class Interfaces

We've seen how a program can be divided into separate classes. How do these classes
interact with each other? Communication between classes and the division of
responsibility between them are important aspects of object-oriented programming.

Class Interfaces

This point is especially true when a class may have many different users. Typically, a
class can be used over and over by different users (or the same user) for different
purposes. For example, someone might use the LowArray class in some other
program to store the serial numbers of his traveler’s checks. The class can handle this
task just as well as it can store the numbers of baseball players.

If a class is used by many different programmers, the class should be designed so that
it’s easy to use. The way that a class user relates to the class is called the class inter-
face. Because class fields are typically private, when we talk about the interface, we
usually mean the class methods—what they do and what their arguments are. By
calling these methods, a class user interacts with an object of the class. One of the
important advantages conferred by object-oriented programming is that a class inter-
face can be designed to be as convenient and efficient as possible. Figure 2.3 is a
fanciful interpretation of the LowArray interface.

Private Data

Interface

FIGURE 2.3 The LowArray interface.

Not So Convenient

The interface to the LowArray class in lowArray.java is not particularly convenient.
The methods setElem() and getElem() operate on a low conceptual level, perform-
ing exactly the same tasks as the [] operator in an ordinary Java array. The class user,
represented by the main() method in the LowArrayApp class, ends up having to carry
out the same low-level operations it did in the non-class version of an array in the

47

48

CHAPTER 2 Arrays

array.java program. The only difference was that it related to setElem() and
getElem() instead of the [] operator. It’s not clear that this approach is an
improvement.

Also notice that there’s no convenient way to display the contents of the array.
Somewhat crudely, the LowArrayApp class simply uses a for loop and the getElem()
method for this purpose. We could avoid repeated code by writing a separate method
for LowArrayApp that it could call to display the array contents, but is it really the
responsibility of the LowArrayApp class to provide this method?

Thus, lowArray.java demonstrates how to divide a program into classes, but it really
doesn’t buy us too much in practical terms. Let’s see how to redistribute responsibili-
ties between the classes to obtain more of the advantages of OOP.

Who's Responsible for What?

In the lowArray.java program, the main()routine in the LowArrayApp class, the user
of the data storage structure, must keep track of the indices to the array. For some
users of an array, who need random access to array elements and don’t mind keeping
track of the index numbers, this arrangement might make sense. For example,
sorting an array, as we'll see in the next chapter, can make efficient use of this direct
hands-on approach.

In a typical program, however, the user of the data storage device won't find access
to the array indices to be helpful or relevant.

The highArray.java Example

Out next example program shows an improved interface for the storage structure
class, called HighArray. Using this interface, the class user (the HighArrayApp class)
no longer needs to think about index numbers. The setElem() and getElem()
methods are gone; they’re replaced by insert(), find(), and delete(). These new
methods don’t require an index number as an argument because the class takes
responsibility for handling index numbers. The user of the class (HighArrayApp) is
free to concentrate on the what instead of the how—what’s going to be inserted,
deleted, and accessed, instead of exactly how these activities are carried out.

Figure 2.4 shows the HighArray interface, and Listing 2.3 shows the highArray.java
program.

Private Data

Class Interfaces

\/

highArray class
FIGURE 2.4 The HighArray interface.

LISTING 2.3 The highArray.java Program

Interface

/1 highArray.java

/| demonstrates array class with high-level interface

/] to run this program: C>java HighArrayApp
THEEEEEEEEEEEETIL i i i i e rrry
class HighArray

{
private long[] a; // ref to array a
private int nElems; /] number of data items
R
public HighArray(int max) // constructor
{
a = new long[max]; /| create the array
nElems = 0; /] no items yet
}
R
public boolean find(long searchKey)
{ // find specified value
int j;
for(j=0; j<nElems; j++) /] for each element,

if(a[j] == searchKey) // found item?

49

50 CHAPTER 2 Arrays

LISTING 2.3 Continued

break; /] exit loop before end
if(j == nElems) /] gone to end?
return false; /] yes, can't find it
else
return true; // no, found it
} // end find()
R
public void insert(long value) // put element into array
{
a[nElems] = value; // insert it
nElems++; /] increment size
}
R
public boolean delete(long value)
{
int j;
for(j=0; j<nElems; j++) /] look for it
if(value == a[j])
break;
if (j==nElems) /] can't find it
return false;
else /] found it
{
for(int k=j; k<nElems; k++) // move higher ones down
a[k] = a[k+1];
nElems--; /| decrement size
return true;
}
} // end delete()
R
public void display() /| displays array contents
{
for(int j=0; j<nElems; j++) /| for each element,

System.out.print(a[j] + " "); // display it
System.out.println("");

} // end class HighArray
NNy,
class HighArrayApp

{

public static void main(String[] args)

Class Interfaces

LISTING 2.3 Continued

}

{
int maxSize = 100; // array size
HighArray arr; // reference to array

arr = new HighArray(maxSize); // create the array

arr.insert(77); // insert 10 items
arr.insert(99);
arr.insert(44);
arr.insert(55);
arr.insert(22);
arr.insert(88);
arr.insert(11);
arr.insert(00);
arr.insert(66);
arr.insert(33);

arr.display(); // display items

int searchKey = 35; // search for item
if(arr.find(searchKey))
System.out.println("Found " + searchKey);
else
System.out.println("Can't find " + searchKey);

arr.delete(00); /] delete 3 items
arr.delete(55);
arr.delete(99);

arr.display(); // display items again
} // end main()
// end class HighArrayApp

LEEEEEETEEEEEE T e i i iery

The HighArray class is now wrapped around the array. In main(), we create an array
of this class and carry out almost the same operations as in the lowArray.java
program: We insert 10 items, search for an item—one that isn’t there—and display
the array contents. Because deleting is so easy, we delete 3 items (0, 55, and 99)
instead of 1 and finally display the contents again. Here’s the output:

77 99 44 55 22 88 11 0 66 33
Can't find 35
77 44 22 88 11 66 33

51

52

CHAPTER 2 Arrays

Notice how short and simple main() is. The details that had to be handled by main()
in lowArray.java are now handled by HighArray class methods.

In the HighArray class, the find() method looks through the array for the item
whose key value was passed to it as an argument. It returns true or false, depending
on whether it finds the item.

The insert() method places a new data item in the next available space in the array.
A field called nElems keeps track of the number of array cells that are actually filled
with data items. The main() method no longer needs to worry about how many
items are in the array.

The delete() method searches for the element whose key value was passed to it as
an argument and, when it finds that element, shifts all the elements in higher index
cells down one cell, thus writing over the deleted value; it then decrements nElems.

We've also included a display () method, which displays all the values stored in the
array.

The User’s Life Made Easier

In lowArray.java (Listing 2.2), the code in main() to search for an item required
eight lines; in highArray. java, it requires only one. The class user, the HighArrayApp
class, need not worry about index numbers or any other array details. Amazingly, the
class user doesn’t even need to know what kind of data structure the HighArray class is
using to store the data. The structure is hidden behind the interface. In fact, in the
next section, we’ll see the same interface used with a somewhat different data
structure.

Abstraction

The process of separating the how from the what—how an operation is performed
inside a class, as opposed to what’s visible to the class user—is called abstraction.
Abstraction is an important aspect of software engineering. By abstracting class func-
tionality, we make it easier to design a program because we don’t need to think
about implementation details at too early a stage in the design process.

The Ordered Workshop Applet

Imagine an array in which the data items are arranged in order of ascending key
values—that is, with the smallest value at index O, and each cell holding a value
larger than the cell below. Such an array is called an ordered array.

When we insert an item into this array, the correct location must be found for the
insertion: just above a smaller value and just below a larger one. Then all the larger
values must be moved up to make room.

The Ordered Workshop Applet

Why would we want to arrange data in order? One advantage is that we can speed
up search times dramatically using a binary search.

Start the Ordered Workshop applet, using the procedure described in Chapter 1.
You'll see an array; it’s similar to the one in the Array Workshop applet, but the data
is ordered. Figure 2.5 shows this applet.

R Applet Viewer: Ordered.class HEEE|
Applet
New Fiﬂl Ins Findl Del fekmear MNumber: |
" Binary

Press any button

Applet started.

FIGURE 2.5 The Ordered Workshop applet.

In the ordered array we’ve chosen not to allow duplicates. As we saw earlier, this
decision speeds up searching somewhat but slows down insertion.

Linear Search

Two search algorithms are available for the Ordered Workshop applet: linear and
binary. Linear search is the default. Linear searches operate in much the same way as
the searches in the unordered array in the Array applet: The red arrow steps along,
looking for a match. The difference is that in the ordered array, the search quits if an
item with a larger key is found.

Try out a linear search. Make sure the Linear radio button is selected. Then use the
Find button to search for a non-existent value that, if it were present, would fit
somewhere in the middle of the array. In Figure 2.5, this number might be 400.
You'll see that the search terminates when the first item larger than 400 is reached;
it's 427 in the figure. The algorithm knows there’s no point looking further.

Try out the Ins and Del buttons as well. Use Ins to insert an item with a key value
that will go somewhere in the middle of the existing items. You'll see that insertion
requires moving all the items with key values larger than the item being inserted.

53

54

CHAPTER 2 Arrays

Use the Del button to delete an item from the middle of the array. Deletion works
much the same as it did in the Array applet, shifting items with higher index
numbers down to fill in the hole left by the deletion. In the ordered array, however,
the deletion algorithm can quit partway through if it doesn’t find the item, just as
the search routine can.

Binary Search

The payoff for using an ordered array comes when we use a binary search. This kind
of search is much faster than a linear search, especially for large arrays.

The Guess-a-Number Game

Binary search uses the same approach you did as a kid (if you were smart) to guess a
number in the well-known children’s guessing game. In this game, a friend asks you
to guess a number she’s thinking of between 1 and 100. When you guess a number,
she’ll tell you one of three things: Your guess is larger than the number she’s think-
ing of, it’s smaller, or you guessed correctly.

To find the number in the fewest guesses, you should always start by guessing 50. If
your friend says your guess is too low, you deduce the number is between 51 and
100, so your next guess should be 75 (halfway between 51 and 100). If she says it’s
too high, you deduce the number is between 1 and 49, so your next guess should
be 25.

Each guess allows you to divide the range of possible values in half. Finally, the
range is only one number long, and that’s the answer.

Notice how few guesses are required to find the number. If you used a linear search,
guessing first 1, then 2, then 3, and so on, finding the number would take you, on
the average, 50 guesses. In a binary search each guess divides the range of possible
values in half, so the number of guesses required is far fewer. Table 2.2 shows a game
session when the number to be guessed is 33.

TABLE 2.2 Guessing a Number

Step Number Number Guessed Result Range of Possible Values
0 1-100

1 50 Too high 1-49

2 25 Too low 26-49

3 37 Too high 26-36

4 31 Too low 32-36

5 34 Too high 32-33

6 32 Too low 33-33

7 33 Correct

The Ordered Workshop Applet 55

The correct number is identified in only seven guesses. This is the maximum. You
might get lucky and guess the number before you’'ve worked your way all the way
down to a range of one. This would happen if the number to be guessed was 50, for
example, or 34.

Binary Search in the Ordered Workshop Applet

To perform a binary search with the Ordered Workshop applet, you must use the
New button to create a new array. After the first press, you'll be asked to specify the
size of the array (maximum 60) and which kind of searching scheme you want:
linear or binary. Choose binary by clicking the Binary radio button. After the array is
created, use the Fill button to fill it with data items. When prompted, type the
amount (not more than the size of the array). A few more presses fills in all the
items.

When the array is filled, pick one of the values in the array and see how you can use
the Find button to locate it. After a few preliminary presses, you'll see the red arrow
pointing to the algorithm’s current guess, and you'll see the range shown by a verti-
cal blue line adjacent to the appropriate cells. Figure 2.6 depicts the situation when
the range is the entire array.

Ef Applet Viewer: Ordered class = B |
Applet
New | Fill | ins | Find | Del | Sdmer G ber: [
um [
= Binary

Checking index 14. range = 0 to 29

o2
1 19 ar
a8

a9

- DWW N
L

-

Applet started.

FIGURE 2.6 Initial range in the binary search.

At each press of the Find button, the range is halved and a new guess is chosen in
the middle of the range. Figure 2.7 shows the next step in the process.

56

CHAPTER 2 Arrays

Ef Applet Viewer: Oidered. class = E3
Applet
" Linear
Mew | Fill | Inz | Find | Del Number: |559
[Now | [Fi] [ios | [Find | [Dot] _ o Number
Checking index 22, range = 15 to 29
o2 ' 38
1 19 7
2| 52 26| 7 s
3 27| 821 39
4 28| 865
5 23| 988
6 30
7 3
8 32
9| 447 3
10| 460 34
11| 4865 35
Applet started.

FIGURE 2.7 Range in step 2 of the binary search.

Even with a maximum array size of 60 items, a half-dozen button presses suffices to
locate any item.

Try using the binary search with different array sizes. Can you figure out how many
steps are necessary before you run the applet? We'll return to this question in the
last section of this chapter.

Notice that the insertion and deletion operations also employ the binary search
(when it’s selected). The place where an item should be inserted is found with a
binary search, as is an item to be deleted. In this applet, items with duplicate keys
are not permitted.

Java Code for an Ordered Array

Let’s examine some Java code that implements an ordered array. We'll use the
OrdArray class to encapsulate the array and its algorithms. The heart of this class is
the find() method, which uses a binary search to locate a specified data item. We'll
examine this method in detail before showing the complete program.

Binary Search with the find() Method

The find() method searches for a specified item by repeatedly dividing in half the
range of array elements to be considered. The method looks like this:

public int find(long searchKey)
{
int lowerBound = 0;
int upperBound = nElems-1;

Java Code for an Ordered Array 57

int curln;

while(true)
{
curIn = (lowerBound + upperBound) / 2;
if(a[curIn]==searchKey)

return curln; // found it
else if(lowerBound > upperBound)
return nElems; // can't find it
else // divide range
{

if(a[curIn] < searchKey)
lowerBound = curIn + 1; // it's in upper half
else
upperBound = curIn - 1; // it's in lower half
} // end else divide range
} // end while
} // end find()

The method begins by setting the lowerBound and upperBound variables to the first
and last occupied cells in the array. Setting these variables specifies the range where
the item we're looking for, searchKey, may be found. Then, within the while loop,
the current index, curln, is set to the middle of this range.

If we're lucky, curIn may already be pointing to the desired item, so we first check if
this is true. If it is, we’ve found the item, so we return with its index, curIn.

Each time through the loop we divide the range in half. Eventually, the range will
get so small that it can’t be divided any more. We check for this in the next state-
ment: If lowerBound is greater than upperBound, the range has ceased to exist. (When
lowerBound equals upperBound, the range is one and we need one more pass through
the loop.) We can’t continue the search without a valid range, but we haven’t found
the desired item, so we return nElems, the total number of items. This isn’t a valid
index because the last filled cell in the array is nElems-1. The class user interprets
this value to mean that the item wasn’t found.

If curlIn is not pointing at the desired item, and the range is still big enough, we're
ready to divide the range in half. We compare the value at the current index,
a[curIn], which is in the middle of the range, with the value to be found,
searchKey.

If searchKey is larger, we know we should look in the upper half of the range.
Accordingly, we move lowerBound up to curlIn. Actually, we move it one cell beyond
curIn because we've already checked curlIn itself at the beginning of the loop.

58

CHAPTER 2 Arrays

If searchKey is smaller than a[curIn], we know we should look in the lower half of
the range. So we move upperBound down to one cell below curIn. Figure 2.8 shows
how the range is altered in these two situations.

lowerBound curln upperBound

v v v

— 1

lowerBound upperBound lowerBound upperBound
. lﬁ curln —l : lﬁ curln —l

N N [N — —

New range if New range if
searchKey<a[curln] searchKey>a[curln]

FIGURE 2.8 Dividing the range in a binary search.

The ordArray Class

In general, the orderedArray. java program is similar to highArray.java (Listing
2.3). The main difference is that find() uses a binary search, as we've seen.

We could have used a binary search to locate the position where a new item will be
inserted. This operation involves a variation on the find() routine, but for simplicity
we retain the linear search in insert(). The speed penalty may not be important
because, as we’ve seen, an average of half the items must be moved anyway when an
insertion is performed, so insertion will not be very fast even if we locate the item
with a binary search. However, for the last ounce of speed, you could change the
initial part of insert() to a binary search (as is done in the Ordered Workshop
applet). Similarly, the delete() method could call find() to figure out the location
of the item to be deleted.

The ordArray class includes a new size() method, which returns the number of data
items currently in the array. This information is helpful for the class user, main(),
when it calls find (). If find() returns nElems, which main() can discover with
size(), then the search was unsuccessful. Listing 2.4 shows the complete listing for
the orderedArray.java program.

Java Code for an Ordered Array

LISTING 2.4 The orderedArray.java Program

/| orderedArray.java

/| demonstrates ordered array class

// to run this program: C>java OrderedApp
NNy,
class OrdArray

{
private long[] a; // ref to array a
private int nElems; /] number of data items
R
public OrdArray(int max) // constructor
{
a = new long[max]; /| create array
nElems = 0;
}
R

public int size()
{ return nElems; }

public int find(long searchKey)
{
int lowerBound = 0;
int upperBound = nElems-1;
int curln;

while(true)

{

curIn = (lowerBound + upperBound) / 2;
if (a[curIn]==searchKey)

return curln; // found it
else if(lowerBound > upperBound)
return nElems; /] can't find it
else // divide range
{

if(a[curIn] < searchKey)
lowerBound = curIn + 1; // it's in upper half
else
upperBound = curIn - 1; // it's in lower half
} // end else divide range
} // end while
} // end find()

59

60 CHAPTER 2 Arrays

LISTING 2.4 Continued

public void insert(long value) // put element into array
{
int j;
for(j=0; j<nElems; j++) // find where it goes
if(a[j] > value) // (linear search)
break;
for(int k=nElems; k>j; k--) // move bigger ones up
alk] = a[k-1];
a[j] = value; /] insert it
nElems++; /] increment size
} // end insert()
R R
public boolean delete(long value)
{
int j = find(value);
if (j==nElems) /] can't find it
return false;
else /] found it
{

for(int k=j; k<nElems; k++) // move bigger ones down
a[k] = a[k+1];

nElems--; /| decrement size
return true;
}
} // end delete()
R R R R
public void display() // displays array contents
{
for(int j=0; j<nElems; j++) /| for each element,

System.out.print(a[j] + " "); // display it
System.out.println("");

} // end class OrdArray

LEEETEEEEEEEEEEE i r e r i e nr el
class OrderedApp

{
public static void main(String[] args)
{
int maxSize = 100; /| array size

OrdArray arr; // reference to array

Java Code for an Ordered Array

LISTING 2.4 Continued

}

arr = new OrdArray(maxSize); /| create the array

arr.insert(77); // insert 10 items
arr.insert(99);
arr.insert(44
arr.insert(55);

)
)
)
)
arr.insert(22);
)
)
)
)
)

)

)

arr.insert(88
arr.insert(11
arr.insert (00
arr.insert (66
arr.insert(33

)

)

)

)

int searchKey = 55; /| search for item

if(arr.find(searchKey) != arr.size())
System.out.println("Found " + searchKey);

else

System.out.println("Can't find " + searchKey);

arr.display(); // display items

arr.delete(00); /| delete 3 items
arr.delete(55);
arr.delete(99);

arr.display(); // display items again
} // end main()
/| end class OrderedApp

LHETELTTEL LT LT T T

Advantages of Ordered Arrays

What have we gained by using an ordered array? The major advantage is that search
times are much faster than in an unordered array. The disadvantage is that insertion
takes longer because all the data items with a higher key value must be moved up to
make room. Deletions are slow in both ordered and unordered arrays because items
must be moved down to fill the hole left by the deleted item.

Ordered arrays are therefore useful in situations in which searches are frequent, but
insertions and deletions are not. An ordered array might be appropriate for a data-
base of company employees, for example. Hiring new employees and laying off

61

62

CHAPTER 2 Arrays

existing ones would probably be infrequent occurrences compared with accessing an
existing employee’s record for information, or updating it to reflect changes in
salary, address, and so on.

A retail store inventory, on the other hand, would not be a good candidate for an
ordered array because the frequent insertions and deletions, as items arrived in the
store and were sold, would run slowly.

Logarithms

In this section we’ll explain how logarithms are used to calculate the number of
steps necessary in a binary search. If you’re a math major, you can probably skip this
section. If math makes you break out in a rash, you can also skip it, except for taking
a long hard look at Table 2.3.

We've seen that a binary search provides a significant speed increase over a linear
search. In the number-guessing game, with a range from 1 to 100, a maximum of
seven guesses is needed to identify any number using a binary search; just as in an
array of 100 records, seven comparisons are needed to find a record with a specified
key value. How about other ranges? Table 2.3 shows some representative ranges and
the number of comparisons needed for a binary search.

TABLE 2.3 Comparisons Needed in Binary Search

Range Comparisons Needed
10 4

100 7

1,000 10

10,000 14

100,000 17

1,000,000 20

10,000,000 24

100,000,000 27

1,000,000,000 30

Notice the differences between binary search times and linear search times. For very
small numbers of items, the difference isn’t dramatic. Searching 10 items would take
an average of five comparisons with a linear search (N/2) and a maximum of four
comparisons with a binary search. But the more items there are, the bigger the differ-
ence. With 100 items, there are 50 comparisons in a linear search, but only 7 in a
binary search. For 1,000 items, the numbers are 500 versus 10, and for 1,000,000
items, they're 500,000 versus 20. We can conclude that for all but very small arrays,
the binary search is greatly superior.

Logarithms

The Equation

You can verify the results of Table 2.3 by repeatedly dividing a range (from the first
column) in half until it’s too small to divide further. The number of divisions this
process requires is the number of comparisons shown in the second column.

Repeatedly dividing the range by two is an algorithmic approach to finding the
number of comparisons. You might wonder if you could also find the number using
a simple equation. Of course, there is such an equation, and it’s worth exploring
here because it pops up from time to time in the study of data structures. This
formula involves logarithms. (Don’t panic yet.)

The numbers in Table 2.3 leave out some interesting data. They don’t answer such
questions as, What is the exact size of the maximum range that can be searched in
five steps? To solve this problem, we must create a similar table, but one that starts at
the beginning, with a range of one, and works up from there by multiplying the
range by two each time. Table 2.4 shows how this looks for the first seven steps.

TABLE 2.4 Powers of Two

Step s, Range r Range Expressed
same as as Power of
log,(r) 2(2)

0 1 20

1 2 2!

2 4 22

3 8 23

4 16 24

5 32 25

6 64 26

7 128 27

8 256 28

9 512 2°

10 1024 210

For our original problem with a range of 100, we can see that 6 steps don’t produce a
range quite big enough (64), while 7 steps cover it handily (128). Thus, the 7 steps
that are shown for 100 items in Table 2.3 are correct, as are the 10 steps for a range
of 1000.

Doubling the range each time creates a series that’s the same as raising two to a
power, as shown in the third column of Table 2.4. We can express this power as a
formula. If s represents steps (the number of times you multiply by two—that is, the
power to which two is raised) and r represents the range, then the equation is

r=2¢

63

64

CHAPTER 2 Arrays

If you know s, the number of steps, this tells you r, the range. For example, if s is 6,
the range is 2¢, or 64.

The Opposite of Raising Two to a Power

Our original question was the opposite of the one just described: Given the range,
we want to know how many comparisons are required to complete a search. That is,
given r, we want an equation that gives us s.

The inverse of raising something to a power is called a logarithm. Here’s the formula
we want, expressed with a logarithm:

s = log,(1)

This equation says that the number of steps (comparisons) is equal to the logarithm
to the base 2 of the range. What’s a logarithm? The base 2 logarithm of a number r is
the number of times you must multiply two by itself to get r. In Table 2.4, we show
that the numbers in the first column, s, are equal to log,(r).

How do you find the logarithm of a number without doing a lot of dividing? Pocket
calculators and most computer languages have a log function. It is usually log to the
base 10, but you can convert easily to base 2 by multiplying by 3.322. For example,
log,,(100) = 2, so log,(100) = 2 times 3.322, or 6.644. Rounded up to the whole
number 7, this is what appears in the column to the right of 100 in Table 2.4.

In any case, the point here isn’t to calculate logarithms. It's more important to
understand the relationship between a number and its logarithm. Look again at
Table 2.3, which compares the number of items and the number of steps needed to
find a particular item. Every time you multiply the number of items (the range) by a
factor of 10, you add only three or four steps (actually 3.322, before rounding off to
whole numbers) to the number needed to find a particular element. This is true
because, as a number grows larger, its logarithm doesn’t grow nearly as fast. We'll
compare this logarithmic growth rate with that of other mathematical functions
when we talk about Big O notation later in this chapter.

Storing Objects

In the Java examples we’ve shown so far, we’ve stored primitive variables of type
long in our data structures. Storing such variables simplifies the program examples,
but it’s not representative of how you use data storage structures in the real world.
Usually, the data items (records) you want to store are combinations of many fields.
For a personnel record, you would store last name, first name, age, Social Security
number, and so forth. For a stamp collection, you would store the name of the
country that issued the stamp, its catalog number, condition, current value, and

SO on.

Storing Objects 65

In our next Java example, we’ll show how objects, rather than variables of primitive
types, can be stored.

The Person Class

In Java, a data record is usually represented by a class object. Let’s examine a typical
class used for storing personnel data. Here’s the code for the Person class:

class Person
{
private String lastName;
private String firstName;
private int age;

public Person(String last, String first, int a)
{ /| constructor
lastName = last;
firstName = first;
age = a;

public void displayPerson()
{
System.out.print(" Last name: " + lastName);
System.out.print(", First name: " + firstName);
System.out.println(", Age: " + age);

public String getlLast() // get last name
{ return lastName; }
} // end class Person

We show only three variables in this class, for a person’s last name, first name, and
age. Of course, records for most applications would contain many additional fields.

A constructor enables a new Person object to be created and its fields initialized. The
displayPerson() method displays a Person object’s data, and the getLast () method
returns the Person’s last name; this is the key field used for searches.

The classbDataArray.java Program

The program that makes use of the Person class is similar to the highArray.java
program (Listing 2.3) that stored items of type long. Only a few changes are neces-
sary to adapt that program to handle Person objects. Here are the major changes:

66

CHAPTER 2 Arrays

e The type of the array a is changed to Person.

e The key field (the last name) is now a String object, so comparisons require
the equals() method rather than the == operator. The getLast() method of
Person obtains the last name of a Person object, and equals () does the
comparison:

if(a[j].getLast().equals(searchName)) // found item?

e The insert() method creates a new Person object and inserts it in the array,
instead of inserting a long value.

The main() method has been modified slightly, mostly to handle the increased quan-
tity of output. We still insert 10 items, display them, search for 1 item, delete 3
items, and display them all again. Listing 2.5 shows the complete
classDataArray.java program.

LISTING 2.5 The classDataArray.java Program

/| classDataArray.java
// data items as class objects
// to run this program: C>java ClassDataApp
LHEEEEEEEEEEEEEEE L e rr g
class Person

{

private String lastName;

private String firstName;

private int age;

L R
public Person(String last, String first, int a)
{ /| constructor
lastName = last;
firstName = first;
age = a;
}
L R

public void displayPerson()
{
System.out.print(" Last name: " + lastName);
System.out.print(", First name: " + firstName);
System.out.println(", Age: " + age);

Storing Objects

LISTING 2.5 Continued

public String getlLast() // get last name
{ return lastName; }
} // end class Person
LEETTELLEEEL LIt i il
class ClassDataArray

{
private Person[] a; // reference to array
private int nElems; /] number of data items
public ClassDataArray(int max) // constructor
{
a = new Person[max]; /| create the array
nElems = 0; /] no items yet
}
R
public Person find(String searchName)
{ // find specified value
int j;
for(j=0; j<nElems; j++) /| for each element,
if(a[j].getLast().equals(searchName)) // found item?
break; // exit loop before end
if(j == nElems) /] gone to end?
return null; /] yes, can't find it
else
return afj]; // no, found it
} // end find()
[m e o
// put person into array
public void insert(String last, String first, int age)
{
a[nElems] = new Person(last, first, age);
nElems++; // increment size
}
R
public boolean delete(String searchName)
{ /] delete person from array
int j;
for(j=0; j<nElems; j++) /] look for it
if(a[j].getLast().equals(searchName))
break;

if (j==nElems) // can't find it

67

68 CHAPTER 2 Arrays

LISTING 2.5 Continued

return false;

else /] found it
{
for(int k=j; k<nElems; k++) /] shift down
a[k] = a[k+1];
nElems- -; // decrement size
return true;
}
} // end delete()
L R
public void displayA() // displays array contents
{
for(int j=0; j<nElems; j++) /| for each element,
a[j].displayPerson(); // display it
}
R

} // end class ClassDataArray
LEEEEEEEEEEEEEEEEE e e rry
class ClassDataApp

{

public static void main(String[] args)
{
int maxSize = 100; /| array size
ClassDataArray arr; // reference to array

arr = new ClassDataArray(maxSize); // create the array
/] insert 10 items
arr.insert("Evans", "Patty", 24);
arr.insert("Smith", "Lorraine", 37);
arr.insert("Yee", "Tom", 43);
arr.insert("Adams", "Henry", 63);
arr.insert("Hashimoto", "Sato", 21);
arr.insert("Stimson", "Henry", 29);
arr.insert("Velasquez", "Jose", 72);
arr.insert("Lamarque", "Henry", 54);
arr.insert("vVang", "Minh", 22);
arr.insert("Creswell", "Lucinda", 18);

arr.displayA(); /| display items

String searchKey = "Stimson"; // search for item
Person found;

Storing Objects

LISTING 2.5 Continued

found=arr.find(searchKey);
if(found != null)
{
System.out.print("Found ");
found.displayPerson();
}
else
System.out.println("Can't find " + searchKey);

System.out.println("Deleting Smith, Yee, and Creswell");
arr.delete("Smith"); /] delete 3 items
arr.delete("Yee");

arr.delete("Creswell");

arr.displayA(); // display items again
} // end main()
} // end class ClassDataApp
LEEEEEEEEEEEEEEEEE e i e e rry

Here'’s the output of this program:

Last name: Evans, First name: Patty, Age: 24

Last name: Smith, First name: Lorraine, Age: 37

Last name: Yee, First name: Tom, Age: 43

Last name: Adams, First name: Henry, Age: 63

Last name: Hashimoto, First name: Sato, Age: 21

Last name: Stimson, First name: Henry, Age: 29

Last name: Velasquez, First name: Jose, Age: 72

Last name: Lamarque, First name: Henry, Age: 54

Last name: Vang, First name: Minh, Age: 22

Last name: Creswell, First name: Lucinda, Age: 18
Found Last name: Stimson, First name: Henry, Age: 29
Deleting Smith, Yee, and Creswell

Last name: Evans, First name: Patty, Age: 24

Last name: Adams, First name: Henry, Age: 63

Last name: Hashimoto, First name: Sato, Age: 21

Last name: Stimson, First name: Henry, Age: 29

Last name: Velasquez, First name: Jose, Age: 72

Last name: Lamarque, First name: Henry, Age: 54

Last name: Vang, First name: Minh, Age: 22

69

70

CHAPTER 2 Arrays

The classDataArray.java program shows that class objects can be handled by data
storage structures in much the same way as primitive types. (Note that a serious
program using the last name as a key would need to account for duplicate last
names, which would complicate the programming as discussed earlier.)

Big O Notation

Automobiles are divided by size into several categories: subcompacts, compacts,
midsize, and so on. These categories provide a quick idea what size car you're talking
about, without needing to mention actual dimensions. Similarly, it’s useful to have a
shorthand way to say how efficient a computer algorithm is. In computer science,
this rough measure is called “Big O” notation.

You might think that in comparing algorithms you would say things like “Algorithm
A is twice as fast as algorithm B,” but in fact this sort of statement isn’t too meaning-
ful. Why not? Because the proportion can change radically as the number of items
changes. Perhaps you increase the number of items by 50%, and now A is three
times as fast as B. Or you have half as many items, and A and B are now equal. What
you need is a comparison that tells how an algorithm’s speed is related to the
number of items. Let’s see how this looks for the algorithms we’ve seen so far.

Insertion in an Unordered Array: Constant

Insertion into an unordered array is the only algorithm we’ve seen that doesn’t
depend on how many items are in the array. The new item is always placed in the
next available position, at a[nElems], and nElems is then incremented. Insertion
requires the same amount of time no matter how big N—the number of items in the
array—is. We can say that the time, T, to insert an item into an unsorted array is a
constant K:

T=K

In a real situation, the actual time (in microseconds or whatever) required by the
insertion is related to the speed of the microprocessor, how efficiently the compiler
has generated the program code, and other factors. The constant K in the preceding
equation is used to account for all such factors. To find out what K is in a real situa-
tion, you need to measure how long an insertion took. (Software exists for this very
purpose.) K would then be equal to that time.

Linear Search: Proportional to N

We've seen that, in a linear search of items in an array, the number of comparisons
that must be made to find a specified item is, on the average, half of the total
number of items. Thus, if N is the total number of items, the search time T is propor-
tional to half of N:

T=K*N/2

Big O Notation 71

As with insertions, discovering the value of K in this equation would require timing
a search for some (probably large) value of N and then using the resulting value of T
to calculate K. When you know K, you can calculate T for any other value of N.

For a handier formula, we could lump the 2 into the K. Our new K is equal to the
old K divided by 2. Now we have
T=K*N

This equation says that average linear search times are proportional to the size of the
array. If an array is twice as big, searching it will take twice as long.

Binary Search: Proportional to log(N)

Similarly, we can concoct a formula relating T and N for a binary search:
T =K *log,(N)

As we saw earlier, the time is proportional to the base 2 logarithm of N. Actually,
because any logarithm is related to any other logarithm by a constant (3.322 to go
from base 2 to base 10), we can lump this constant into K as well. Then we don’t
need to specify the base:

T =K *log(N)

Don’t Need the Constant

Big O notation looks like the formulas just described, but it dispenses with the
constant K. When comparing algorithms, you don’t really care about the particular
microprocessor chip or compiler; all you want to compare is how T changes for
different values of N, not what the actual numbers are. Therefore, the constant isn’t
needed.

Big O notation uses the uppercase letter O, which you can think of as meaning
“order of.” In Big O notation, we would say that a linear search takes O(N) time, and
a binary search takes O(log N) time. Insertion into an unordered array takes O(1), or
constant time. (That’s the numeral 1 in the parentheses.)

Table 2.5 summarizes the running times of the algorithms we’ve discussed so far.

TABLE 2.5 Running Times in Big O Notation

Algorithm Running Time in Big O Notation
Linear search O(N)

Binary search O(log N)

Insertion in unordered array o(1)

Insertion in ordered array O(N)

Deletion in unordered array O(N)

Deletion in ordered array O(N)

72

CHAPTER 2 Arrays

Figure 2.9 graphs some Big O relationships between time and number of items. Based
on this graph, we might rate the various Big O values (very subjectively) like this:
0O(1) is excellent, O(log N) is good, O(N) is fair, and O(N?) is poor. O(N?) occurs in
the bubble sort and also in certain graph algorithms that we’ll look at later in this
book.

40

]

35

0(N?)

|

I

30 1
|

|

25

|
i

20 |
|

I

Number of steps

I~
I~
I~

I~
I~
I~

0(log N)

5 10 15 20 25

Number of items (N)
FIGURE 2.9 Graph of Big O times.

The idea in Big O notation isn’t to give actual figures for running times but to
convey how the running times are affected by the number of items. This is the most
meaningful way to compare algorithms, except perhaps actually measuring running
times in a real installation.

Why Not Use Arrays for Everything?

Arrays seem to get the job done, so why not use them for all data storage? We've
already seen some of their disadvantages. In an unordered array you can insert items

Summary 73

quickly, in O(1) time, but searching takes slow O(N) time. In an ordered array you
can search quickly, in O(logN) time, but insertion takes O(N) time. For both kinds of
arrays, deletion takes O(N) time because half the items (on the average) must be
moved to fill in the hole.

It would be nice if there were data structures that could do everything—insertion,
deletion, and searching—quickly, ideally in O(1) time, but if not that, then in
O(logN) time. In the chapters ahead, we’ll see how closely this ideal can be
approached, and the price that must be paid in complexity.

Another problem with arrays is that their size is fixed when they are first created
with new. Usually, when the program first starts, you don’t know exactly how many
items will be placed in the array later, so you guess how big it should be. If your
guess is too large, you'll waste memory by having cells in the array that are never
filled. If your guess is too small, you'll overflow the array, causing at best a message
to the program’s user, and at worst a program crash.

Other data structures are more flexible and can expand to hold the number of items
inserted in them. The linked list, discussed in Chapter 5, “Linked Lists,” is such a
structure.

We should mention that Java includes a class called Vector that acts much like an
array but is expandable. This added capability comes at the expense of some loss of
efficiency.

You might want to try creating your own vector class. If the class user is about to
overflow the internal array in this class, the insertion algorithm creates a new array
of larger size, copies the old array contents to the new array, and then inserts the
new item. This whole process would be invisible to the class user.

Summary

e Arrays in Java are objects, created with the new operator.
e Unordered arrays offer fast insertion but slow searching and deletion.

e Wrapping an array in a class protects the array from being inadvertently
altered.

e A class interface is composed of the methods (and occasionally fields) that the
class user can access.

e A class interface can be designed to make things simple for the class user.
e A binary search can be applied to an ordered array.

e The logarithm to the base B of a number A is (roughly) the number of times
you can divide A by B before the result is less than 1.

e Linear searches require time proportional to the number of items in an array.

74 CHAPTER 2 Arrays

e Binary searches require time proportional to the logarithm of the number of
items.

e Big O notation provides a convenient way to compare the speed of algorithms.

e An algorithm that runs in O(1) time is the best, O(log N) is good, O(N) is fair,
and O(N?) is pretty bad.

Questions

These questions are intended as a self-test for readers. Answers may be found in
Appendix C.

1. Inserting an item into an unordered array
a. takes time proportional to the size of the array.
b. requires multiple comparisons.
c. requires shifting other items to make room.
d. takes the same time no matter how many items there are.

2. True or False: When you delete an item from an unordered array, in most cases
you shift other items to fill in the gap.

3. In an unordered array, allowing duplicates
a. increases times for all operations.
b. increases search times in some situations.
c. always increases insertion times.
d. sometimes decreases insertion times.

4. True or False: In an unordered array, it’s generally faster to find out an item is
not in the array than to find out it is.

5. Creating an array in Java requires using the keyword
6. If class A is going to use class B for something, then
a. class A’s methods should be easy to understand.
b. it’s preferable if class B communicates with the program’s user.
c. the more complex operations should be placed in class A.
d. the more work that class B can do, the better.

7. When class A is using class B for something, the methods and fields class A can
access in class B are called class B's

Experiments

8. Ordered arrays, compared with unordered arrays, are
a. much quicker at deletion.
b. quicker at insertion.
c. quicker to create.
d. quicker at searching.
9. A logarithm is the inverse of
10. The base 10 logarithm of 1,000is _____ .

11. The maximum number of elements that must be examined to complete a
binary search in an array of 200 elements is

a. 200.
b. 8.
c 1.
d. 13.
12. The base 2 logarithm of 64is _____ .
13. True or False: The base 2 logarithm of 100 is 2.
14. Big O notation tells
a. how the speed of an algorithm relates to the number of items.
b. the running time of an algorithm for a given size data structure.
c. the running time of an algorithm for a given number of items.

d. how the size of a data structure relates to the number of items.

15. O(1) means a process operates in time.
16. Either variables of primitive types or can be placed in an array.
Experiments

Carrying out these experiments will help to provide insights into the topics covered
in the chapter. No programming is involved.

1. Use the Array Workshop applet to insert, search for, and delete items. Make
sure you can predict what it’s going to do. Do this both when duplicates are
allowed and when they’re not.

2. Make sure you can predict in advance what range the Ordered Workshop
applet will select at each step.

76 CHAPTER 2 Arrays

3.

In an array holding an even number of data items, there is no middle item.
Which item does the binary search algorithm examine first? Use the Ordered
Workshop applet to find out.

Programming Projects

Writing programs to solve the Programming Projects helps to solidify your under-
standing of the material and demonstrates how the chapter’s concepts are applied.
(As noted in the Introduction, qualified instructors may obtain completed solutions
to the Programming Projects on the publisher’s Web site.)

2.1

2.2

2.3

2.4

2.5

2.6

To the HighArray class in the highArray.java program (Listing 2.3), add a
method called getMax () that returns the value of the highest key in the array,
or -1 if the array is empty. Add some code in main() to exercise this method.
You can assume all the keys are positive numbers.

Modify the method in Programming Project 2.1 so that the item with the
highest key is not only returned by the method, but also removed from the
array. Call the method removeMax ().

The removeMax () method in Programming Project 2.2 suggests a way to sort
the contents of an array by key value. Implement a sorting scheme that does
not require modifying the HighArray class, but only the code in main(). You'll
need a second array, which will end up inversely sorted. (This scheme is a
rather crude variant of the selection sort in Chapter 3, “Simple Sorting.”)

Modity the orderedArray.java program (Listing 2.4) so that the insert() and
delete() routines, as well as find(), use a binary search, as suggested in the
text.

Add a merge () method to the OrdArray class in the orderedArray.java
program (Listing 2.4) so that you can merge two ordered source arrays into an
ordered destination array. Write code in main() that inserts some random
numbers into the two source arrays, invokes merge (), and displays the contents
of the resulting destination array. The source arrays may hold different
numbers of data items. In your algorithm you will need to compare the keys of
the source arrays, picking the smallest one to copy to the destination. You'll
also need to handle the situation when one source array exhausts its contents
before the other.

Write a noDups () method for the HighArray class of the highArray.java
program (Listing 2.3). This method should remove all duplicates from the
array. That is, if three items with the key 17 appear in the array, noDups ()
should remove two of them. Don’t worry about maintaining the order of the
items. One approach is to first compare every item with all the other items and
overwrite any duplicates with a null (or a distinctive value that isn’t used for
real keys). Then remove all the nulls. Of course, the array size will be reduced.

3
Simple Sorting

As soon as you create a significant database, you'll proba-
bly think of reasons to sort it in various ways. You need to
arrange names in alphabetical order, students by grade,
customers by ZIP code, home sales by price, cities in order
of increasing population, countries by GNP, stars by
magnitude, and so on.

Sorting data may also be a preliminary step to searching it.
As we saw in Chapter 2, “Arrays,” a binary search, which
can be applied only to sorted data, is much faster than a
linear search.

Because sorting is so important and potentially so time-
consuming, it has been the subject of extensive research in
computer science, and some very sophisticated methods
have been developed. In this chapter we’ll look at three of
the simpler algorithms: the bubble sort, the selection sort,
and the insertion sort. Each is demonstrated with its own
Workshop applet. In Chapter 7, “Advanced Sorting,” we'll
look at more sophisticated approaches: Shellsort and
quicksort.

The techniques described in this chapter, while unsophisti-
cated and comparatively slow, are nevertheless worth
examining. Besides being easier to understand, they are
actually better in some circumstances than the more
sophisticated algorithms. The insertion sort, for example, is
preferable to quicksort for small files and for almost-sorted
files. In fact, an insertion sort is commonly used as a part
of a quicksort implementation.

The example programs in this chapter build on the array
classes we developed in the preceding chapter. The sorting
algorithms are implemented as methods of similar array
classes.

IN THIS CHAPTER

e How Would You Do It?
e Bubble Sort

e Selection Sort

e Insertion Sort

« Sorting Objects

e Comparing the Simple Sorts

78

CHAPTER 3 Simple Sorting

Be sure to try out the Workshop applets included in this chapter. They are more
effective in explaining how the sorting algorithms work than prose and static
pictures could ever be.

How Would You Do It?

Imagine that your kids-league baseball team (mentioned in Chapter 1, “Overview”) is
lined up on the field, as shown in Figure 3.1. The regulation nine players, plus an
extra, have shown up for practice. You want to arrange the players in order of
increasing height (with the shortest player on the left) for the team picture. How
would you go about this sorting process?

ittt

FIGURE 3.1 The unordered baseball team.

As a human being, you have advantages over a computer program. You can see all
the kids at once, and you can pick out the tallest kid almost instantly. You don’t
need to laboriously measure and compare everyone. Also, the kids don’t need to
occupy particular places. They can jostle each other, push each other a little to make
room, and stand behind or in front of each other. After some ad hoc rearranging,
you would have no trouble in lining up all the kids, as shown in Figure 3.2.

L1

FIGURE 3.2 The ordered baseball team.

Bubble Sort

A computer program isn’t able to glance over the data in this way. It can compare
only two players at one time because that’s how the comparison operators work. This
tunnel vision on the part of algorithms will be a recurring theme. Things may seem
simple to us humans, but the algorithm can’t see the big picture and must, therefore,
concentrate on the details and follow some simple rules.

The three algorithms in this chapter all involve two steps, executed over and over
until the data is sorted:

1. Compare two items.

2. Swap two items, or copy one item.

However, each algorithm handles the details in a different way.

Bubble Sort

The bubble sort is notoriously slow, but it’s conceptually the simplest of the sorting
algorithms and for that reason is a good beginning for our exploration of sorting
techniques.

Bubble Sort on the Baseball Players

Imagine that you're near-sighted (like a computer program) so that you can see only
two of the baseball players at the same time, if they're next to each other and if you
stand very close to them. Given this impediment, how would you sort them? Let’s
assume there are N players, and the positions they’re standing in are numbered from
0 on the left to N-1 on the right.

The bubble sort routine works like this: You start at the left end of the line and
compare the two kids in positions 0 and 1. If the one on the left (in 0) is taller, you
swap them. If the one on the right is taller, you don’t do anything. Then you move
over one position and compare the kids in positions 1 and 2. Again, if the one on
the left is taller, you swap them. This sorting process is shown in Figure 3.3.

Here are the rules you're following:
1. Compare two players.
2. If the one on the left is taller, swap them.

3. Move one position right.

Sw.

iufnitd
ittt
hitiith
it

Bubble Sort

You continue down the line this way until you reach the right end. You have
by no means finished sorting the kids, but you do know that the tallest kid is
on the right. This must be true because, as soon as you encounter the tallest
kid, you’ll end up swapping him (or her) every time you compare two kids,
until eventually he (or she) will reach the right end of the line. This is why it’s
called the bubble sort: As the algorithm progresses, the biggest items “bubble
up” to the top end of the array. Figure 3.4 shows the baseball players at the end
of the first pass.

itiitdt

Sorted

FIGURE 3.4 Bubble sort: the end of the first pass.

After this first pass through all the data, you’ve made N-1 comparisons and
somewhere between 0 and N-1 swaps, depending on the initial arrangement of
the players. The item at the end of the array is sorted and won’t be moved
again.

Now you go back and start another pass from the left end of the line. Again,
you go toward the right, comparing and swapping when appropriate. However,
this time you can stop one player short of the end of the line, at position N-2,
because you know the last position, at N-1, already contains the tallest player.
This rule could be stated as:

4. When you reach the first sorted player, start over at the left end of the line.

You continue this process until all the players are in order. Describing this process is
much harder than demonstrating it, so let’s watch the BubbleSort Workshop applet
at work.

The BubbleSort Workshop Applet

Start the BubbleSort Workshop applet. You'll see something that looks like a bar
graph, with the bar heights randomly arranged, as shown in Figure 3.5.

81

82

CHAPTER 3 Simple Sorting

[Ej'Apple.t Viewer: bubbleS ort_class

Applet

mner mmn'l
Will be swapped

Applet started.

IIHJI'

IS[=1 3

ou‘ter

FIGURE 3.5 The BubbleSort Workshop applet.

The Run Button

This Workshop applet contains a two-speed graph: You can either let it run by itself,
or you can single-step through the process. To get a quick idea what happens, click
the Run button. The algorithm will bubble-sort the bars. When it finishes, in 10
seconds or so, the bars will be sorted, as shown in Figure 3.6.

[Ej'Apple.t Viewer: bubbleS ort.class

Applet

.Jlﬂ

lD’lMI41
'll not be swapped
outer

Applet started.

(s:::n::r;anﬁ _New | Size | [Diaw]| Run | Step |

IS[=1 E3

FIGURE 3.6 After the bubble sort.

Bubble Sort 83

The New Button

To do another sort, press the New button. New creates a new set of bars and initial-
izes the sorting routine. Repeated presses of New toggle between two arrangements
of bars: a random order, as shown in Figure 3.5, and an inverse ordering where the
bars are sorted backward. This inverse ordering provides an extra challenge for many
sorting algorithms.

The Step Button
The real payoff for using the BubbleSort Workshop applet comes when you single-
step through a sort. You can see exactly how the algorithm carries out each step.

Start by creating a new randomly arranged graph with New. You'll see three arrows
pointing at different bars. Two arrows, labeled inner and inner+1, are side by side on
the left. Another arrow, outer, starts on the far right. (The names are chosen to
correspond to the inner and outer loop variables in the nested loops used in the
algorithm.)

Click once on the Step button. You'll see the inner and the inner+1 arrows move
together one position to the right, swapping the bars if appropriate. These arrows
correspond to the two players you compared, and possibly swapped, in the baseball
scenario.

A message under the arrows tells you whether the contents of inner and inner+1 will
be swapped, but you know this just from comparing the bars: If the taller one is on
the left, they’ll be swapped. Messages at the top of the graph tell you how many
swaps and comparisons have been carried out so far. (A complete sort of 10 bars
requires 45 comparisons and, on the average, about 22 swaps.)

Continue pressing Step. Each time inner and inner+1 finish going all the way from O
to outer, the outer pointer moves one position to the left. At all times during the
sorting process, all the bars to the right of outer are sorted; those to the left of (and
at) outer are not.

The Size Button
The Size button toggles between 10 bars and 100 bars. Figure 3.7 shows what the 100
random bars look like.

You probably don’t want to single-step through the sorting process for 100 bars,
unless you're unusually patient. Press Run instead, and watch how the blue inner
and inner+1 pointers seem to find the tallest unsorted bar and carry it down the row
to the right, inserting it just to the left of the previously sorted bars.

Figure 3.8 shows the situation partway through the sorting process. The bars to the
right of the red (longest) arrow are sorted. The bars to the left are beginning to look
sorted, but much work remains to be done.

84 CHAPTER 3 Simple Sorting

ES Applet Viewer: bubbleSort class BEE
Applet

1

Applet started.

FIGURE 3.7 The BubbleSort applet with 100 bars.

ES Applet Viewer: bubbleSort class BEE
Applet

Swoms - 1536 soa Mew| Size | [Diaw]| Run | Step |

alll HlH\M M

Applet started.

FIGURE 3.8 The 100 partly sorted bars.

If you started a sort with Run and the arrows are whizzing around, you can freeze
the process at any point by pressing the Step button. You can then single-step to
watch the details of the operation or press Run again to return to high-speed mode.

The Draw Button

Sometimes while running the sorting algorithm at full speed, the computer takes
time off to perform some other task. This can result in some bars not being drawn. If
this happens, you can press the Draw button to redraw all the bars. Doing so pauses
the run, so you'll need to press the Run button again to continue.

Bubble Sort 85

You can press Draw at any time there seems to be a glitch in the display.

Java Code for a Bubble Sort

In the bubbleSort.java program, shown in Listing 3.1, a class called ArrayBub encapsu-
lates an array a[], which holds variables of type long.

In a more serious program, the data would probably consist of objects, but we use a
primitive type for simplicity. (We'll see how objects are sorted in the objectSort.java
program in Listing 3.4.) Also, to reduce the size of the listing, we don’t show find()
and delete() methods with the ArrayBub class, although they would normally be part

of a such a class.

LISTING 3.1

// bubbleSort.java
// demonstrates bubble sort

The bubbleSort.java Program

// to run this program: C>java BubbleSortApp
LEEETEEEEEEEEEEE e n e rr i i e r i rrrri i rr

class ArrayBub

{

private long[] a; /] ref to array a
private int nElems; // number of data items
R
public ArrayBub(int max) // constructor
{
a = new long[max]; /| create the array
nElems = 0; // no items yet
}
R R
public void insert(long value) // put element into array
{
a[nElems] = value; // insert it
nElems++; // increment size
}
LR
public void display() // displays array contents

{

for(int j=0; j<nElems; j++)

System.out.print(af[j] + " ");

System.out.println("");

public void bubbleSort()

/| for each element,
/] display it

86 CHAPTER 3 Simple Sorting

LISTING 3.1 Continued

{

int out, in;

for(out=nElems-1; out>1; out--) // outer loop (backward)
for(in=0; in<out; in++) // inner loop (forward)
if(a[in] > a[in+1]) /] out of order?
swap(in, in+1); // swap them
} /] end bubbleSort()

private void swap(int one, int two)
{
long temp = a[one];
afone] = a[two];
a[two] = temp;

} // end class ArrayBub

LEEEEEEEEEEEEEEEE e i e r g
class BubbleSortApp

{

public static void main(String[] args)
{
int maxSize = 100; /| array size
ArrayBub arr; // reference to array

arr = new ArrayBub(maxSize); // create the array

arr.insert(77); // insert 10 items
arr.insert(99);
arr.insert(44);
arr.insert(55);
arr.insert(22);
arr.insert(88);
arr.insert(11);
arr.insert(00);
arr.insert(66);
arr.insert(33);

arr.display(); /] display items

arr.bubbleSort(); // bubble sort them

Bubble Sort

LISTING 3.1 Continued

arr.display(); // display them again
} // end main()
} // end class BubbleSortApp
LEPTTEELETEL i i il

The constructor and the insert() and display() methods of this class are similar to
those we’ve seen before. However, there’s a new method: bubbleSort (). When this
method is invoked from main(), the contents of the array are rearranged into sorted
order.

The main() routine inserts 10 items into the array in random order, displays the
array, calls bubbleSort() to sort it, and then displays it again. Here’s the output:

77 99 44 55 22 88 11 0 66 33
0 11 22 33 44 55 66 77 88 99
The bubbleSort() method is only four lines long. Here it is, extracted from the listing:

public void bubbleSort()
{

int out, in;

for(out=nElems-1; out>1; out--) // outer loop (backward)

for(in=0; in<out; in++) /] inner loop (forward)
if(a[in] > a[in+1]) // out of order?
swap(in, in+1); /| swap them

} // end bubbleSort()

The idea is to put the smallest item at the beginning of the array (index 0) and the
largest item at the end (index nElems-1). The loop counter out in the outer for loop
starts at the end of the array, at nElems-1, and decrements itself each time through
the loop. The items at indices greater than out are always completely sorted. The out
variable moves left after each pass by in so that items that are already sorted are no
longer involved in the algorithm.

The inner loop counter in starts at the beginning of the array and increments itself
each cycle of the inner loop, exiting when it reaches out. Within the inner loop, the
two array cells pointed to by in and in+1 are compared, and swapped if the one in in
is larger than the one in in+1.

For clarity, we use a separate swap() method to carry out the swap. It simply
exchanges the two values in the two array cells, using a temporary variable to hold
the value of the first cell while the first cell takes on the value in the second and

87

88

CHAPTER 3 Simple Sorting

then setting the second cell to the temporary value. Actually, using a separate swap()
method may not be a good idea in practice because the function call adds a small
amount of overhead. If you're writing your own sorting routine, you may prefer to
put the swap instructions in line to gain a slight increase in speed.

Invariants

In many algorithms there are conditions that remain unchanged as the algorithm
proceeds. These conditions are called invariants. Recognizing invariants can be useful
in understanding the algorithm. In certain situations they may also be helpful in
debugging; you can repeatedly check that the invariant is true, and signal an error if
it isn’t.

In the bubbleSort.java program, the invariant is that the data items to the right of
out are sorted. This remains true throughout the running of the algorithm. (On the
first pass, nothing has been sorted yet, and there are no items to the right of out
because it starts on the rightmost element.)

Efficiency of the Bubble Sort

As you can see by watching the BubbleSort Workshop applet with 10 bars, the inner
and inner+1 arrows make nine comparisons on the first pass, eight on the second,
and so on, down to one comparison on the last pass. For 10 items, this is

9+48+7+6+5+4+3+2+1=45

In general, where N is the number of items in the array, there are N-1 comparisons
on the first pass, N-2 on the second, and so on. The formula for the sum of such a
series is

(N=1) + (N=2) + (N=3) + ... + 1 = N*(N=1)/2
N*(N=1)/2 is 45 (10*9/2) when N is 10.

Thus, the algorithm makes about Y comparisons (ignoring the -1, which doesn't
make much difference, especially if N is large).

There are fewer swaps than there are comparisons because two bars are swapped only
if they need to be. If the data is random, a swap is necessary about half the time, so
there will be about ¥4 swaps. (Although in the worst case, with the initial data
inversely sorted, a swap is necessary with every comparison.)

Both swaps and comparisons are proportional to N2 Because constants don’t count
in Big O notation, we can ignore the 2 and the 4 and say that the bubble sort runs in
O(N?) time. This is slow, as you can verify by running the BubbleSort Workshop
applet with 100 bars.

Selection Sort

Whenever you see one loop nested within another, such as those in the bubble sort
and the other sorting algorithms in this chapter, you can suspect that an algorithm

runs in O(N?) time. The outer loop executes N times, and the inner loop executes N
(or perhaps N divided by some constant) times for each cycle of the outer loop. This
means you're doing something approximately N*N or N? times.

Selection Sort

The selection sort improves on the bubble sort by reducing the number of swaps
necessary from O(N?) to O(N). Unfortunately, the number of comparisons remains
O(N?). However, the selection sort can still offer a significant improvement for large
records that must be physically moved around in memory, causing the swap time to
be much more important than the comparison time. (Typically, this isn’t the case in
Java, where references are moved around, not entire objects.)

Selection Sort on the Baseball Players

Let’s consider the baseball players again. In the selection sort, you can no longer
compare only players standing next to each other. Thus, you'll need to remember a
certain player’s height; you can use a notebook to write it down. A magenta-colored
towel will also come in handy.

A Brief Description
What’s involved in the selection sort is making a pass through all the players and
picking (or selecting, hence the name of the sort) the shortest one. This shortest

player is then swapped with the player on the left end of the line, at position 0. Now

the leftmost player is sorted and won’t need to be moved again. Notice that in this
algorithm the sorted players accumulate on the left (lower indices), whereas in the
bubble sort they accumulated on the right.

The next time you pass down the row of players, you start at position 1, and, finding

the minimum, swap with position 1. This process continues until all the players are
sorted.

A More Detailed Description

In more detail, start at the left end of the line of players. Record the leftmost player’s

height in your notebook and throw the magenta towel on the ground in front of
this person. Then compare the height of the next player to the right with the height
in your notebook. If this player is shorter, cross out the height of the first player and
record the second player’s height instead. Also move the towel, placing it in front of
this new “shortest” (for the time being) player. Continue down the row, comparing
each player with the minimum. Change the minimum value in your notebook and

move the towel whenever you find a shorter player. When you're done, the magenta

towel will be in front of the shortest player.

89

90

CHAPTER 3 Simple Sorting

Swap this shortest player with the player on the left end of the line. You've now
sorted one player. You've made N-1 comparisons, but only one swap.

On the next pass, you do exactly the same thing, except that you can completely
ignore the player on the left because this player has already been sorted. Thus, the
algorithm starts the second pass at position 1, instead of 0. With each succeeding
pass, one more player is sorted and placed on the left, and one less player needs to
be considered when finding the new minimum. Figure 3.9 shows how this sort looks
for the first three passes.

The SelectSort Workshop Applet

To see how the selection sort looks in action, try out the SelectSort Workshop applet.
The buttons operate the same way as those in the BubbleSort applet. Use New to
create a new array of 10 randomly arranged bars. The red arrow called outer starts on
the left; it points to the leftmost unsorted bar. Gradually, it will move right as more
bars are added to the sorted group on its left.

The magenta min arrow also starts out pointing to the leftmost bar; it will move to
record the shortest bar found so far. (The magenta min arrow corresponds to the
towel in the baseball analogy.) The blue inner arrow marks the bar currently being
compared with the minimum.

As you repeatedly press Step, inner moves from left to right, examining each bar in
turn and comparing it with the bar pointed to by min. If the inner bar is shorter, min
jumps over to this new, shorter bar. When inner reaches the right end of the graph,
min points to the shortest of the unsorted bars. This bar is then swapped with outer,
the leftmost unsorted bar.

Figure 3.10 shows the situation midway through a sort. The bars to the left of outer
are sorted, and inner has scanned from outer to the right end, looking for the short-
est bar. The min arrow has recorded the position of this bar, which will be swapped
with outer.

Use the Size button to switch to 100 bars, and sort a random arrangement. You'll see
how the magenta min arrow hangs out with a perspective minimum value for a while
and then jumps to a new one when the blue inner arrow finds a smaller candidate.
The red outer arrow moves slowly but inexorably to the right, as the sorted bars
accumulate to its left.

Selection Sort 91

okttt

92

CHAPTER 3 Simple Sorting

S Applet Viewer: selectSoit class | _ O] %]
Applet

g:::;l;s:ns o Mew | Size I [Drawl| Run | Step |

Jlllll

ouler

innes
man
Searching for minimum

Applet started.

FIGURE 3.10 The SelectSort Workshop applet.

Java Code for Selection Sort

The listing for the selectSort.java program is similar to that for bubbleSort.java,
except that the container class is called ArraySel instead of ArrayBub, and the
bubbleSort() method has been replaced by selectSort(). Here’s how this method
looks:

public void selectionSort()

{

int out, in, min;

for(out=0; out<nElems-1; out++) // outer loop

{
min = out; // minimum
for(in=out+1; in<nElems; in++) // inner loop
if(a[in] < a[min]) /] if min greater,
min = in; // we have a new min
swap(out, min); // swap them

} // end for(out)
} // end selectionSort()

The outer loop, with loop variable out, starts at the beginning of the array (index 0)
and proceeds toward higher indices. The inner loop, with loop variable in, begins at
out and likewise proceeds to the right.

At each new position of in, the elements a[in] and a[min] are compared. If a[in] is
smaller, then min is given the value of in. At the end of the inner loop, min points to

the minimum value, and the array elements pointed to by out and min are swapped.

Selection Sort

Listing 3.2 shows the complete selectSort.java program.

LISTING 3.2 The selectSort.java Program

// selectSort.java
/| demonstrates selection sort

// to run this program: C>java SelectSortApp
LEETTEELETEL il

class ArraySel
{
private long[] a; /]
private int nElems; /1l

public ArraySel(int max) /1l
{
a = new long[max];
nElems = 0;

public void insert(long value) /1l
{
a[nElems] = value; /1l
nElems++; /1l

public void display() /1l
{
for(int j=0; j<nElems; j++)
System.out.print(af[j] + " ");
System.out.println("");

public void selectionSort()

{

int out, in, min;

for(out=0; out<nElems-1; out++)
{
min = out;
for(in=out+1; in<nElems; in++)
if(a[in] < a[min])
min = in;

ref to array a
number of data items

constructor

/| create the array
/] no items yet

put element into array

insert it
increment size

displays array contents
/| for each element,

/] display it

/| outer loop

// minimum

// inner loop

/] if min greater,
// we have a new min

93

94

CHAPTER 3 Simple Sorting

LISTING 3.2 Continued

swap (out, min); /] swap them
} // end for(out)
} // end selectionSort()

R R LR PR EE
private void swap(int one, int two)

{

long temp = a[one];

afone] = a[two];

a[two] = temp;

}
R R LR PR EEE

} // end class ArraySel
[ITTLEETTE LTI LT T
class SelectSortApp

{

public static void main(String[] args)
{
int maxSize = 100; /| array size
ArraySel arr; // reference to array

arr = new ArraySel(maxSize); // create the array

arr.insert(77); // insert 10 items
arr.insert(99);
arr.insert(44);
arr.insert(55);
arr.insert(22);
arr.insert(88);
arr.insert(11);
arr.insert(00);
arr.insert(66);
arr.insert(33);

arr.display(); /| display items
arr.selectionSort(); // selection-sort them
arr.display(); // display them again

} // end main()
} /] end class SelectSortApp
LHETLLETTEE LT T

Insertion Sort

The output from selectSort.java is identical to that from bubbleSort.java:

77 99 44 55 22 88 11 0 66 33
0 11 22 33 44 55 66 77 88 99

Invariant

In the selectSort.java program, the data items with indices less than or equal to out
are always sorted.

Efficiency of the Selection Sort

The selection sort performs the same number of comparisons as the bubble sort:
N*(N-1)/2. For 10 data items, this is 45 comparisons. However, 10 items require fewer
than 10 swaps. With 100 items, 4,950 comparisons are required, but fewer than 100
swaps. For large values of N, the comparison times will dominate, so we would have
to say that the selection sort runs in O(N?) time, just as the bubble sort did. However,
it is unquestionably faster because there are so few swaps. For smaller values of N,
the selection sort may in fact be considerably faster, especially if the swap times are
much larger than the comparison times.

Insertion Sort

In most cases the insertion sort is the best of the elementary sorts described in this
chapter. It still executes in O(N?) time, but it’s about twice as fast as the bubble sort
and somewhat faster than the selection sort in normal situations. It’s also not too
complex, although it’s slightly more involved than the bubble and selection sorts.
It’s often used as the final stage of more sophisticated sorts, such as quicksort.

Insertion Sort on the Baseball Players

To begin the insertion sort, start with your baseball players lined up in random order.
(They wanted to play a game, but clearly there’s no time for that.) It’s easier to think
about the insertion sort if we begin in the middle of the process, when the team is
half sorted.

Partial Sorting

At this point there’s an imaginary marker somewhere in the middle of the line.
(Maybe you threw a red T-shirt on the ground in front of a player.) The players to
the left of this marker are partially sorted. This means that they are sorted among
themselves; each one is taller than the person to his or her left. However, the players
aren’t necessarily in their final positions because they may still need to be moved
when previously unsorted players are inserted between them.

95

96

CHAPTER 3 Simple Sorting

Note that partial sorting did not take place in the bubble sort and selection sort. In
these algorithms a group of data items was completely sorted at any given time; in
the insertion sort a group of items is only partially sorted.

The Marked Player
The player where the marker is, whom we’ll call the “marked” player, and all the
players on her right, are as yet unsorted. This is shown in Figure 3.11.a.

wttinid

Partially L'Marked" player
Sorted

LEm ty space
To be shifted PLYSP
(Taller than marked player)

wtitilitd

lnsened—f L'Marked" player

Shifted

Internally sorted

FIGURE 3.11 The insertion sort on baseball players.

Insertion Sort 97

What we’re going to do is insert the marked player in the appropriate place in the
(partially) sorted group. However, to do this, we’ll need to shift some of the sorted
players to the right to make room. To provide a space for this shift, we take the
marked player out of line. (In the program this data item is stored in a temporary
variable.) This step is shown in Figure 3.11.b.

Now we shift the sorted players to make room. The tallest sorted player moves into
the marked player’s spot, the next-tallest player into the tallest player’s spot, and
SO on.

When does this shifting process stop? Imagine that you and the marked player are
walking down the line to the left. At each position you shift another player to the
right, but you also compare the marked player with the player about to be shifted.
The shifting process stops when you've shifted the last player that’s taller than the
marked player. The last shift opens up the space where the marked player, when
inserted, will be in sorted order. This step is shown in Figure 3.11.c.

Now the partially sorted group is one player bigger, and the unsorted group is one
player smaller. The marker T-shirt is moved one space to the right, so it’s again in
front of the leftmost unsorted player. This process is repeated until all the unsorted
players have been inserted (hence the name insertion sort) into the appropriate place
in the partially sorted group.

The InsertSort Workshop Applet

Use the InsertSort Workshop applet to demonstrate the insertion sort. Unlike the
other sorting applets, it’s probably more instructive to begin with 100 random bars
rather than 10.

Sorting 100 Bars

Change to 100 bars with the Size button, and click Run to watch the bars sort them-
selves before your very eyes. You'll see that the short red outer arrow marks the
dividing line between the partially sorted bars to the left and the unsorted bars to
the right. The blue inner arrow keeps starting from outer and zipping to the left,
looking for the proper place to insert the marked bar. Figure 3.12 shows how this
process looks when about half the bars are partially sorted.

The marked bar is stored in the temporary variable pointed to by the magenta arrow
at the right end of the graph, but the contents of this variable are replaced so often
that it’s hard to see what’s there (unless you slow down to single-step mode).

Sorting 10 Bars
To get down to the details, use Size to switch to 10 bars. (If necessary, use New to
make sure they’re in random order.)

98

CHAPTER 3 Simple Sorting

ES Applet Viewer: insestSort class | _ O] %]
Applet

E:ﬁ;ﬁ’:gf:= i New | Size I [Drawl| Run | Step |

il T.|| |

Applet started.

FIGURE 3.12 The InsertSort Workshop applet with 100 bars.

At the beginning, inner and outer point to the second bar from the left (array index
1), and the first message is Will copy outer to temp. This will make room for the
shift. (There’s no arrow for inner-1, but of course it’s always one bar to the left of
inner.)

Click the Step button. The bar at outer will be copied to temp. We say that items are
copied from a source to a destination. When performing a copy, the applet removes
the bar from the source location, leaving a blank. This is slightly misleading because
in a real Java program the reference in the source would remain there. However,
blanking the source makes it easier to see what’s happening.

What happens next depends on whether the first two bars are already in order
(smaller on the left). If they are, you'll see the message Have compared inner-1 and
temp, no copy necessary.

If the first two bars are not in order, the message is Have compared inner-1 and temp,
will copy inner-1 to inner. This is the shift that’s necessary to make room for the
value in temp to be reinserted. There’s only one such shift on this first pass; more
shifts will be necessary on subsequent passes. The situation is shown in Figure 3.13.

On the next click, you'll see the copy take place from inner-1 to inner. Also, the
inner arrow moves one space left. The new message is Now inner is @, so no copy
necessary. The shifting process is complete.

No matter which of the first two bars was shorter, the next click will show you Will
copy temp to inner. This will happen, but if the first two bars were initially in order,
you won't be able to tell a copy was performed because temp and inner hold the same
bar. Copying data over the top of the same data may seem inefficient, but the algo-
rithm runs faster if it doesn’t check for this possibility, which happens comparatively
infrequently.

Insertion Sort

@Applet Viewer: insertSortclass
Applet

Cainms sy sl | orsw | [[Sten]

nTllul lemp
inner
Have compared inner-1 and temp
Will copy inner-1 to inner

Applet started.

FIGURE 3.13 The InsertSort Workshop applet with 10 bars.

Now the first two bars are partially sorted (sorted with respect to each other), and
the outer arrow moves one space right, to the third bar (index 2). The process
repeats, with the Will copy outer to temp message. On this pass through the sorted
data, there may be no shifts, one shift, or two shifts, depending on where the third
bar fits among the first two.

Continue to single-step the sorting process. Again, you can see what'’s happening
more easily after the process has run long enough to provide some sorted bars on the
left. Then you can see how just enough shifts take place to make room for the rein-
sertion of the bar from temp into its proper place.

Java Code for Insertion Sort

Here’s the method that carries out the insertion sort, extracted from the
insertSort.java program:

public void insertionSort()

{

int in, out;

for(out=1; out<nElems; out++) // out is dividing line
{
long temp = afout]; // remove marked item
in = out; /| start shifts at out
while(in>0 && a[in-1] >= temp) // until one is smaller,
{

afin] = a[in-1]; /] shift item right,

99

100

CHAPTER 3 Simple Sorting

--in; // go left one position
}

a[in] = temp; // insert marked item

} // end for

} // end insertionSort()

In the outer for loop, out starts at 1 and moves right. It marks the leftmost unsorted
data. In the inner while loop, in starts at out and moves left, until either temp is
smaller than the array element there, or it can’t go left any further. Each pass
through the while loop shifts another sorted element one space right.

It may be hard to see the relation between the steps in the InsertSort Workshop
applet and the code, so Figure 3.14 is an activity diagram of the insertionSort()
method, with the corresponding messages from the InsertSort Workshop applet.
Listing 3.3 shows the complete insertSort.java program.

[outer==nElems]
®
lelse] [=~~~ °° “Will copy
outer to temp”
temp=alouter]
_ _ _ |"will copy
: temp to inner”

inner=outer
N
N [else]

[inner>0]

afinner]=temp
outer++

“Have compared AN

= =|inner—1 and temp.

< No copy necessary”
[else]

“Have compared AN

------- inner—1 and temp.
Will copy inner—1
to inner”

afinner—1]
>=temp

afinner]=a[inner-1]
--inner

FIGURE 3.14 Activity diagram for insertSort().

Insertion Sort

LISTING 3.3 The insertSort.java Program

// insertSort.java
/| demonstrates insertion sort

/] to run this program: C>java InsertSortApp

[mmmmm e e
class Arraylns
{
private long[] a; /]
private int nElems; /1l
R R
public ArrayIns(int max) /1l
{
a = new long[max];
nElems = 0;
}
R R
public void insert(long value) /1l
{
a[nElems] = value; /1l
nElems++; /1l
}
R R
public void display() /]
{
for(int j=0; j<nElems; j++)
System.out.print(a[j] + " ");
System.out.println("");
}
R T

public void insertionSort()

{

int in, out;

for(out=1; out<nElems; out++)

{

long temp = afout];

in = out;

while(in>0 && a[in-1] >= temp)
{
a[in] = a[in-1];
--1in;

ref to array a
number of data items

constructor

/| create the array
/] no items yet

put element into array

insert it
increment size

displays array contents
/] for each element,

/] display it

// out is dividing line

// remove marked item
// start shifts at out
// until one is smaller,

// shift item to right
/] go left one position

101

102 CHAPTER 3 Simple Sorting

LISTING 3.3 Continued
a[in] = temp; // insert marked item

} // end for
} // end insertionSort()

} // end class Arraylns
LHEEEEEEEEEETTTEL L i i i r g
class InsertSortApp

{

public static void main(String[] args)
{
int maxSize = 100; /| array size
ArrayIns arr; // reference to array

arr = new ArrayIns(maxSize); // create the array

arr.insert(77); // insert 10 items
arr.insert(99);
arr.insert(44);
arr.insert(55);
arr.insert(22);
arr.insert(88);
arr.insert(11);
arr.insert(00);
arr.insert(66);
arr.insert(33);

arr.display(); /| display items
arr.insertionSort(); // insertion-sort them
arr.display(); // display them again

} // end main()
} /] end class InsertSortApp
LITLEETTEE LT

Here’s the output from the insertSort.java program,; it’s the same as that from the
other programs in this chapter:

77 99 44 55 22 88 11 0 66 33
0 11 22 33 44 55 66 77 88 99

Sorting Objects 103

Invariants in the Insertion Sort

At the end of each pass, following the insertion of the item from temp, the data items
with smaller indices than outer are partially sorted.

Efficiency of the Insertion Sort

How many comparisons and copies does this algorithm require? On the first pass, it
compares a maximum of one item. On the second pass, it's a maximum of two
items, and so on, up to a maximum of N-1 comparisons on the last pass. This is

1+2+3+...+N-1=N*N-1)/2

However, because on each pass an average of only half of the maximum number of
items are actually compared before the insertion point is found, we can divide by 2,
which gives

N*(N-1)/4

The number of copies is approximately the same as the number of comparisons.
However, a copy isn’t as time-consuming as a swap, so for random data this algo-
rithm runs twice as fast as the bubble sort and faster than the selection sort.

In any case, like the other sort routines in this chapter, the insertion sort runs in
O(N?) time for random data.

For data that is already sorted or almost sorted, the insertion sort does much better.
When data is in order, the condition in the while loop is never true, so it becomes a
simple statement in the outer loop, which executes N-1 times. In this case the algo-
rithm runs in O(N) time. If the data is almost sorted, insertion sort runs in almost
O(N) time, which makes it a simple and efficient way to order a file that is only
slightly out of order.

However, for data arranged in inverse sorted order, every possible comparison and
shift is carried out, so the insertion sort runs no faster than the bubble sort. You can
check this using the reverse-sorted data option (toggled with New) in the InsertSort
Workshop applet.

Sorting Objects

For simplicity we’ve applied the sorting algorithms we’ve looked at thus far to a
primitive data type: long. However, sorting routines will more likely be applied to
objects than primitive types. Accordingly, we show a Java program in Listing 3.4,
objectSort.java, that sorts an array of Person objects (last seen in the
classDataArray.java program in Chapter 2).

104

CHAPTER 3 Simple Sorting

Java Code for Sorting Objects

The algorithm used in our Java program is the insertion sort from the preceding
section. The Person objects are sorted on lastName; this is the key field. The
objectSort.java program is shown in Listing 3.4.

LISTING 3.4 The objectSort.java Program

/| objectSort.java
/| demonstrates sorting objects (uses insertion sort)
/] to run this program: C>java ObjectSortApp
LEPETELEEEE TR i i i rr
class Person
{
private String lastName;
private String firstName;
private int age;

public Person(String last, String first, int a)
{ /1 constructor
lastName = last;
firstName = first;
age = a;

public void displayPerson()
{
System.out.print(" Last name: " + lastName);
System.out.print(", First name: " + firstName);
System.out.println(", Age: " + age);

public String getLast() /] get last name
{ return lastName; }
} // end class Person
LEPETEEEEEEL TR i i i il
class ArrayInOb

{
private Person[] a; /] ref to array a
private int nElems; /] number of data items
R R
public ArrayInOb(int max) /| constructor

{

Sorting Objects

LISTING 3.4 Continued

a = new Person[max]; /| create the array
nElems = 0; // no items yet
}

/] put person into array
public void insert(String last, String first, int age)

{
a[nElems] = new Person(last, first, age);
nElems++; // increment size
}
L R
public void display() // displays array contents
{
for(int j=0; j<nElems; j++) // for each element,
a[j].displayPerson(); // display it
System.out.println("");
}
R
public void insertionSort()
{
int in, out;
for(out=1; out<nElems; out++) // out is dividing line
{
Person temp = af[out]; // remove marked person
in = out; // start shifting at out
while(in>0 && // until smaller one found,
afin-1].getLast().compareTo(temp.getLast())>0)
{
alin] = a[in-1]; // shift item to the right
--in; // go left one position
}
a[in] = temp; // insert marked item
} // end for
} // end insertionSort()
R

} // end class ArrayInOb
LEEEEEEEEEEEEEEEEE L e i e rry
class ObjectSortApp

{

105

106 CHAPTER 3 Simple Sorting

LISTING 3.4 Continued

public static void main(String[] args)

{
int maxSize = 100; /] array size
ArrayInOb arr; // reference to array

arr = new ArrayInOb(maxSize); // create the array

arr.insert("Evans", "Patty", 24);
arr.insert("Smith", "Doc", 59);
arr.insert("Smith", "Lorraine", 37);
arr.insert("Smith", "Paul", 37);
arr.insert("Yee", "Tom", 43);
arr.insert("Hashimoto", "Sato", 21);
arr.insert("Stimson", "Henry", 29);
arr.insert("Velasquez", "Jose", 72);
arr.insert("vang", "Minh", 22);
arr.insert("Creswell", "Lucinda", 18);

System.out.println("Before sorting:");
arr.display(); // display items

arr.insertionSort(); // insertion-sort them

System.out.println("After sorting:");
arr.display(); // display them again
} // end main()
} // end class ObjectSortApp
NNy,

Here’s the output of this program:

Before sorting:
Last name: Evans, First name: Patty, Age: 24
Last name: Smith, First name: Doc, Age: 59
Last name: Smith, First name: Lorraine, Age: 37
Last name: Smith, First name: Paul, Age: 37
Last name: Yee, First name: Tom, Age: 43
Last name: Hashimoto, First name: Sato, Age: 21
Last name: Stimson, First name: Henry, Age: 29
Last name: Velasquez, First name: Jose, Age: 72
Last name: Vang, First name: Minh, Age: 22
Last name: Creswell, First name: Lucinda, Age: 18

Sorting Objects 107

After sorting:
Last name: Creswell, First name: Lucinda, Age: 18
Last name: Evans, First name: Patty, Age: 24
Last name: Hashimoto, First name: Sato, Age: 21
Last name: Smith, First name: Doc, Age: 59
Last name: Smith, First name: Lorraine, Age: 37
Last name: Smith, First name: Paul, Age: 37
Last name: Stimson, First name: Henry, Age: 29
Last name: Vang, First name: Minh, Age: 22
Last name: Velasquez, First name: Jose, Age: 72
Last name: Yee, First name: Tom, Age: 43

Lexicographical Comparisons

The insertSort() method in objectSort.java is similar to that in insertSort.java, but
it has been adapted to compare the lastName key values of records rather than the
value of a primitive type.

We use the compareTo() method of the String class to perform the comparisons in the
insertSort() method. Here’s the expression that uses it:

afin-1].getlLast().compareTo(temp.getLast()) > 0

The compareTo() method returns different integer values depending on the lexico-
graphical (that is, alphabetical) ordering of the String for which it’s invoked and the
String passed to it as an argument, as shown in Table 3.1.

TABLE 3.1 Operation of the compareTo() Method

s2.compareTo(s1) Return Value
s1 <s2 <0

s1 equals s2 0

s1>s2 >0

For example, if s1 is "cat" and s2 is "dog", the function will return a number less
than 0. In the objectSort.java program, this method is used to compare the last
name of a[in-1] with the last name of temp.

Stability

Sometimes it matters what happens to data items that have equal keys. For example,
you may have employee data arranged alphabetically by last names. (That is, the last
names were used as key values in the sort.) Now you want to sort the data by ZIP

code, but you want all the items with the same ZIP code to continue to be sorted by

108

CHAPTER 3 Simple Sorting

last names. You want the algorithm to sort only what needs to be sorted, and leave
everything else in its original order. Some sorting algorithms retain this secondary
ordering; they’re said to be stable.

All the algorithms in this chapter are stable. For example, notice the output of the
objectSort.java program (Listing 3.4). Three persons have the last name of Smith.
Initially, the order is Doc Smith, Lorraine Smith, and Paul Smith. After the sort, this
ordering is preserved, despite the fact that the various Smith objects have been
moved to new locations.

Comparing the Simple Sorts

There’s probably no point in using the bubble sort, unless you don’t have your algo-
rithm book handy. The bubble sort is so simple that you can write it from memory.
Even so, it’s practical only if the amount of data is small. (For a discussion of what
“small” means, see Chapter 15, “When to Use What.”)

The selection sort minimizes the number of swaps, but the number of comparisons is
still high. This sort might be useful when the amount of data is small and swapping
data items is very time-consuming compared with comparing them.

The insertion sort is the most versatile of the three and is the best bet in most situa-
tions, assuming the amount of data is small or the data is almost sorted. For larger
amounts of data, quicksort is generally considered the fastest approach; we'll
examine quicksort in Chapter 7.

We've compared the sorting algorithms in terms of speed. Another consideration for
any algorithm is how much memory space it needs. All three of the algorithms in
this chapter carry out their sort in place, meaning that, besides the initial array, very
little extra memory is required. All the sorts require an extra variable to store an item
temporarily while it’s being swapped.

You can recompile the example programs, such as bubbleSort.java, to sort larger
amounts of data. By timing them for larger sorts, you can get an idea of the differ-
ences between them and the time required to sort different amounts of data on your
particular system.

Summary

e The sorting algorithms in this chapter all assume an array as a data storage
structure.

e Sorting involves comparing the keys of data items in the array and moving the
items (actually, references to the items) around until they’re in sorted order.

Questions 109

e All the algorithms in this chapter execute in O(N?) time. Nevertheless, some
can be substantially faster than others.

e An invariant is a condition that remains unchanged while an algorithm runs.
e The bubble sort is the least efficient, but the simplest, sort.

e The insertion sort is the most commonly used of the O(N?) sorts described in
this chapter.

e A sort is stable if the order of elements with the same key is retained.

e None of the sorts in this chapter require more than a single temporary variable,
in addition to the original array.

Questions

These questions are intended as a self-test for readers. Answers may be found in
Appendix C.

1. Computer sorting algorithms are more limited than humans in that
a. humans are better at inventing new algorithms.
b. computers can handle only a fixed amount of data.
c. humans know what to sort, whereas computers need to be told.
d. computers can compare only two things at a time.

2. The two basic operations in simple sorting are items and
them (or sometimes them).

3. True or False: The bubble sort always ends up comparing every item with every
other item.

4. The bubble sort algorithm alternates between
a. comparing and swapping.
b. moving and copying.
c¢. moving and comparing.
d. copying and comparing.

5. True or False: If there are N items, the bubble sort makes exactly N*N
comparisons.

110 CHAPTER 3 Simple Sorting

6.

10.

11.

12.

13.

In the selection sort,
a. the largest keys accumulate on the left (low indices).
b. a minimum key is repeatedly discovered.

c. a number of items must be shifted to insert each item in its correctly
sorted position.

d. the sorted items accumulate on the right.

True or False: If, in a particular sorting situation, swaps take much longer than
comparisons, the selection sort is about twice as fast as the bubble sort.

A copy is times as fast as a swap.
What is the invariant in the selection sort?

In the insertion sort, the “marked player” described in the text corresponds to
which variable in the insertSort.java program?

a. in
b. out
c. temp
d. afout]
In the insertion sort, “partially sorted” means that
a. some items are already sorted, but they may need to be moved.

b. most items are in their final sorted positions, but a few still need to be
sorted.

c. only some of the items are sorted.

d. group items are sorted among themselves, but items outside the group
may need to be inserted in it.

Shifting a group of items left or right requires repeated

In the insertion sort, after an item is inserted in the partially sorted group, it
will

a. never be moved again.
b. never be shifted to the left.
c. often be moved out of this group.

d. find that its group is steadily shrinking.

Experiments

14. The invariant in the insertion sort is that

15. Stability might refer to

a. items with secondary keys being excluded from a sort.

b. keeping cities sorted by increasing population within each state, in a sort
by state.

c. keeping the same first names matched with the same last names.

d. items keeping the same order of primary keys without regard to
secondary keys.

Experiments

Carrying out these experiments will help to provide insights into the topics covered
in the chapter. No programming is involved.

1

In bubbleSort.java (Listing 3.1) rewrite main() so it creates a large array and fills
that array with data. You can use the following code to generate random
numbers:

for(int j=0; j<maxSize; j++) // fill array with
{ // random numbers
long n = (long)(java.lang.Math.random()*(maxSize-1));
arr.insert(n);

}

Try inserting 10,000 items. Display the data before and after the sort. You'll see
that scrolling the display takes a long time. Comment out the calls to display()
so you can see how long the sort itself takes. The time will vary on different
machines. Sorting 100,000 numbers will probably take less than 30 seconds.
Pick an array size that takes about this long and time it. Then use the same

array size to time selectSort.java (Listing 3.2) and insertSort.java (Listing 3.3).

See how the speeds of these three sorts compare.

. Devise some code to insert data in inversely sorted order (99,999, 99,998,

99,997, ...) into bubbleSort.java. Use the same amount of data as in
Experiment 1. See how fast the sort runs compared with the random data in
Experiment 1. Repeat this experiment with selectSort.java and
insertSort.java.

Write code to insert data in already-sorted order (O, 1, 2, ...) into
bubbleSort.java. See how fast the sort runs compared with Experiments 1 and
2. Repeat this experiment with selectSort.java and insertSort.java.

111

112

CHAPTER 3 Simple Sorting

Programming Projects

Writing programs that solve the Programming Projects helps to solidify your under-
standing of the material and demonstrates how the chapter’s concepts are applied.
(As noted in the Introduction, qualified instructors may obtain completed solutions
to the Programming Projects on the publisher’s Web site.)

3.1

3.2

33

3.4

In the bubbleSort.java program (Listing 3.1) and the BubbleSort Workshop
applet, the in index always goes from left to right, finding the largest item and
carrying it toward out on the right. Modify the bubbleSort() method so that it’s
bidirectional. This means the in index will first carry the largest item from left
to right as before, but when it reaches out, it will reverse and carry the smallest
item from right to left. You'll need two outer indexes, one on the right (the old
out) and another on the left.

Add a method called median() to the ArrayIns class in the insertSort.java
program (Listing 3.3). This method should return the median value in the
array. (Recall that in a group of numbers half are larger than the median and
half are smaller.) Do it the easy way.

To the insertSort.java program (Listing 3.3), add a method called nobups () that
removes duplicates from a previously sorted array without disrupting the order.
(You can use the insertionSort() method to sort the data, or you can simply
use main() to insert the data in sorted order.) One can imagine schemes in
which all the items from the place where a duplicate was discovered to the end
of the array would be shifted down one space every time a duplicate was
discovered, but this would lead to slow O(N?) time, at least when there were a
lot of duplicates. In your algorithm, make sure no item is moved more than
once, no matter how many duplicates there are. This will give you an algo-
rithm with O(N) time.

Another simple sort is the odd-even sort. The idea is to repeatedly make two
passes through the array. On the first pass you look at all the pairs of items,
a[j] and a[j+1], where j isodd (j =1, 3, 5, ...). If their key values are out of
order, you swap them. On the second pass you do the same for all the even
values (j = 2, 4, 6, ...). You do these two passes repeatedly until the array is
sorted. Replace the bubbleSort() method in bubbleSort.java (Listing 3.1) with
an oddEvenSort () method. Make sure it works for varying amounts of data.
You'll need to figure out how many times to do the two passes.

The odd-even sort is actually useful in a multiprocessing environment, where a
separate processor can operate on each odd pair simultaneously and then on
each even pair. Because the odd pairs are independent of each other, each pair
can be checked—and swapped, if necessary—by a different processor. This
makes for a very fast sort.

3.5

3.6

Programming Projects

Modify the insertionSort() method in insertSort.java (Listing 3.3) so it counts
the number of copies and the number of comparisons it makes during a sort
and displays the totals. To count comparisons, you'll need to break up the
double condition in the inner while loop. Use this program to measure the
number of copies and comparisons for different amounts of inversely sorted
data. Do the results verify O(N?) efficiency? Do the same for almost-sorted data
(only a few items out of place). What can you deduce about the efficiency of
this algorithm for almost-sorted data?

Here'’s an interesting way to remove duplicates from an array. The insertion sort
uses a loop-within-a-loop algorithm that compares every item in the array with
every other item. If you want to remove duplicates, this is one way to start.
(See also Exercise 2.6 in Chapter 2.) Modify the insertionSort() method in the
insertSort.java program so that it removes duplicates as it sorts. Here’s one
approach: When a duplicate is found, write over one of the duplicated items
with a key value less than any normally used (such as -1, if all the normal keys
are positive). Then the normal insertion sort algorithm, treating this new key
like any other item, will put it at index 0. From now on the algorithm can
ignore this item. The next duplicate will go at index 1, and so on. When the
sort is finished, all the removed dups (now represented by —1 values) will be
found at the beginning of the array. The array can then be resized and shifted
down so it starts at O.

113

4 IN THIS CHAPTER

o A Different Kind of Structure

Stacks and Queues

e Stacks
e Queues
In this chapter we’ll examine three data storage structures: * Priority Queues

the stack, the queue, and the priority queue. We'll begin « Parsing Arithmetic Expressions
by discussing how these structures differ from arrays; then

we’ll examine each one in turn. In the last section, we’ll

look at an operation in which the stack plays a significant

role: parsing arithmetic expressions.

A Different Kind of Structure

There are significant differences between the data struc-
tures and algorithms we’ve seen in previous chapters and
those we’ll look at now. We'll discuss three of these differ-
ences before we examine the new structures in detail.

Programmer’s Tools

Arrays—the data storage structure we’ve been examining
thus far—as well as many other structures we’ll encounter
later in this book (linked lists, trees, and so on) are appro-
priate for the kind of data you might find in a database
application. They're typically used for personnel records,
inventories, financial data, and so on—data that corre-
sponds to real-world objects or activities. These structures
facilitate access to data: They make it easy to insert, delete,
and search for particular items.

The structures and algorithms we’ll examine in this
chapter, on the other hand, are more often used as
programmer’s tools. They’re primarily conceptual aids
rather than full-fledged data storage devices. Their lifetime
is typically shorter than that of the database-type struc-
tures. They are created and used to carry out a particular
task during the operation of a program; when the task is
completed, they’re discarded.

116

CHAPTER 4 Stacks and Queues

Restricted Access

In an array, any item can be accessed, either immediately—if its index number is
known—or by searching through a sequence of cells until it’s found. In the data
structures in this chapter, however, access is restricted: Only one item can be read or
removed at a given time (unless you cheat).

The interface of these structures is designed to enforce this restricted access. Access to
other items is (in theory) not allowed.

More Abstract

Stacks, queues, and priority queues are more abstract entities than arrays and many
other data storage structures. They're defined primarily by their interface: the permis-
sible operations that can be carried out on them. The underlying mechanism used to
implement them is typically not visible to their user.

The underlying mechanism for a stack, for example, can be an array, as shown in
this chapter, or it can be a linked list. The underlying mechanism for a priority
queue can be an array or a special kind of tree called a heap. We'll return to the topic
of one data structure being implemented by another when we discuss Abstract Data
Types (ADTs) in Chapter 5, “Linked Lists.”

Stacks

A stack allows access to only one data item: the last item inserted. If you remove this
item, you can access the next-to-last item inserted, and so on. This capability is
useful in many programming situations. In this section we'll see how a stack can be
used to check whether parentheses, braces, and brackets are balanced in a computer
program source file. At the end of this chapter, we'll see a stack playing a vital role in
parsing (analyzing) arithmetic expressions such as 3*(4+5).

A stack is also a handy aid for algorithms applied to certain complex data structures.
In Chapter 8, “Binary Trees,” we’ll see it used to help traverse the nodes of a tree. In
Chapter 13, “Graphs,” we’ll apply it to searching the vertices of a graph (a technique
that can be used to find your way out of a maze).

Most microprocessors use a stack-based architecture. When a method is called, its
return address and arguments are pushed onto a stack, and when it returns, they're
popped off. The stack operations are built into the microprocessor.

Some older pocket calculators used a stack-based architecture. Instead of entering
arithmetic expressions using parentheses, you pushed intermediate results onto a
stack. We'll learn more about this approach when we discuss parsing arithmetic
expressions in the last section in this chapter.

Stacks

The Postal Analogy

To understand the idea of a stack, consider an analogy provided by the U.S. Postal
Service. Many people, when they get their mail, toss it onto a stack on the hall table
or into an “in” basket at work. Then, when they have a spare moment, they process
the accumulated mail from the top down. First, they open the letter on the top of
the stack and take appropriate action—paying the bill, throwing it away, or what-
ever. After the first letter has been disposed of, they examine the next letter down,
which is now the top of the stack, and deal with that. Eventually, they work their
way down to the letter on the bottom of the stack (which is now the top). Figure 4.1
shows a stack of mail.

This letter

processed first

Newly arrived
letters placed

on top of
stack

FIGURE 4.1 A stack of letters.

This “do the top one first” approach works all right as long as you can easily process
all the mail in a reasonable time. If you can't, there’s the danger that letters on the
bottom of the stack won't be examined for months, and the bills they contain will
become overdue.

117

118

CHAPTER 4 Stacks and Queues

Of course, many people don’t rigorously follow this top-to-bottom approach. They
may, for example, take the mail off the bottom of the stack, so as to process the
oldest letter first. Or they might shuffle through the mail before they begin process-
ing it and put higher-priority letters on top. In these cases, their mail system is no
longer a stack in the computer-science sense of the word. If they take letters off the
bottom, it’s a queue; and if they prioritize it, it’s a priority queue. We'll look at these
possibilities later.

Another stack analogy is the tasks you perform during a typical workday. You're busy
on a long-term project (A), but you're interrupted by a coworker asking you for
temporary help with another project (B). While you're working on B, someone in
accounting stops by for a meeting about travel expenses (C), and during this meeting
you get an emergency call from someone in sales and spend a few minutes trou-
bleshooting a bulky product (D). When you're done with call D, you resume meeting
C; when you’re done with C, you resume project B, and when you're done with B,
you can (finally!) get back to project A. Lower-priority projects are “stacked up”
waiting for you to return to them.

Placing a data item on the top of the stack is called pushing it. Removing it from the
top of the stack is called popping it. These are the primary stack operations. A stack is
said to be a Last-In-First-Out (LIFO) storage mechanism because the last item inserted
is the first one to be removed.

The Stack Workshop Applet

Let’s use the Stack Workshop applet to get an idea how stacks work. When you start
up this applet, you'll see four buttons: New, Push, Pop, and Peek, as shown in
Figure 4.2.

E__,-‘»':Applet VYiewer: Stack_class Hi=E
Applet

Neﬂl Pu:hl Popl Peekl Humber: I—

Press any button

O = MNWda MmO W

Applet started.

FIGURE 4.2 The Stack Workshop applet.

Stacks 119

The Stack Workshop applet is based on an array, so you'll see an array of data items.
Although it’s based on an array, a stack restricts access, so you can'’t access elements
using an index. In fact, the concept of a stack and the underlying data structure used
to implement it are quite separate. As we noted earlier, stacks can also be imple-
mented by other kinds of storage structures, such as linked lists.

The New Button

The stack in the Workshop applet starts off with four data items already inserted. If
you want to start with an empty stack, the New button creates a new stack with no
items. The next three buttons carry out the significant stack operations.

The Push Button

To insert a data item on the stack, use the button labeled Push. After the first press of
this button, you'll be prompted to enter the key value of the item to be pushed.
After you type the value into the text field, a few more presses will insert the item on
the top of the stack.

A red arrow always points to the top of the stack—that is, the last item inserted.
Notice how, during the insertion process, one step (button press) increments (moves
up) the Top arrow, and the next step actually inserts the data item into the cell. If
you reversed the order, you would overwrite the existing item at Top. When you're
writing the code to implement a stack, it’s important to keep in mind the order in
which these two steps are executed.

If the stack is full and you try to push another item, you'll get the Can't insert:
stack is full message. (Theoretically, an ADT stack doesn’t become full, but the
array implementing it does.)

The Pop Button

To remove a data item from the top of the stack, use the Pop button. The value
popped appears in the Number text field; this corresponds to a pop() routine
returning a value.

Again, notice the two steps involved: First, the item is removed from the cell pointed
to by Top; then Top is decremented to point to the highest occupied cell. This is the
reverse of the sequence used in the push operation.

The pop operation shows an item actually being removed from the array and the cell
color becoming gray to show the item has been removed. This is a bit misleading, in
that deleted items actually remain in the array until written over by new data.
However, they cannot be accessed after the Top marker drops below their position,
so conceptually they are gone, as the applet shows.

After you've popped the last item off the stack, the Top arrow points to -1, below the
lowest cell. This position indicates that the stack is empty. If the stack is empty and
you try to pop an item, you’ll get the Can't pop: stack is empty message.

120

CHAPTER 4 Stacks and Queues

The Peek Button

Push and pop are the two primary stack operations. However, it's sometimes useful
to be able to read the value from the top of the stack without removing it. The peek
operation does this. By pushing the Peek button a few times, you’ll see the value of
the item at Top copied to the Number text field, but the item is not removed from
the stack, which remains unchanged.

Notice that you can peek only at the top item. By design, all the other items are
invisible to the stack user.

Stack Size

Stacks are typically small, temporary data structures, which is why we’ve shown a
stack of only 10 cells. Of course, stacks in real programs may need a bit more room
than this, but it’s surprising how small a stack needs to be. A very long arithmetic
expression, for example, can be parsed with a stack of only a dozen or so cells.

Java Code for a Stack

Let’s examine a program, stack.java, that implements a stack using a class called
StackX. Listing 4.1 contains this class and a short main() routine to exercise it.

LISTING 4.1 The stack.java Program

/| stack.java

/| demonstrates stacks

// to run this program: C>java StackApp

LEETTEELETEL e il
class StackX

{
private int maxSize; /| size of stack array
private long[] stackArray;
private int top; /] top of stack
R
public StackX(int s) // constructor
{
maxSize = s; /] set array size
stackArray = new long[maxSize]; // create array
top = -1; /] no items yet
}
R
public void push(long j) // put item on top of stack
{
stackArray[++top] = j; /] increment top, insert item

}

Stacks

LISTING 4.1 Continued

public long pop() /| take item from top of stack
{

return stackArray[top--]; // access item, decrement top

public long peek() /] peek at top of stack
{

return stackArray[top];

public boolean isEmpty() /] true if stack is empty
{

return (top == -1);

public boolean isFull() /] true if stack is full
{

return (top == maxSize-1);

} // end class StackX
LEEEEEEEEEEEEEEEEE L e e rr g
class StackApp

{
public static void main(String[] args)
{
StackX theStack = new StackX(10); // make new stack
theStack.push(20); // push items onto stack
theStack.push(40);
theStack.push(60);
theStack.push(80);
while(!theStack.isEmpty()) // until it's empty,
{ /] delete item from stack
long value = theStack.pop();
System.out.print(value); // display it

System.out.print(" ");
} // end while
System.out.println("");
} // end main()

121

122

CHAPTER 4 Stacks and Queues

LISTING 4.1 Continued

} // end class StackApp
PIPLTTLETEL LTI T T]

The main() method in the StackApp class creates a stack that can hold 10 items,
pushes 4 items onto the stack, and then displays all the items by popping them off
the stack until it's empty. Here’s the output:

80 60 40 20

Notice how the order of the data is reversed. Because the last item pushed is the first
one popped, the 80 appears first in the output.

This version of the StackX class holds data elements of type long. As noted in Chapter
3, “Simple Sorting,” you can change this to any other type, including object types.

StackX Class Methods

The constructor creates a new stack of a size specified in its argument. The fields of
the stack are made up of a variable to hold its maximum size (the size of the array),
the array itself, and a variable top, which stores the index of the item on the top of
the stack. (Note that we need to specify a stack size only because the stack is imple-
mented using an array. If it had been implemented using a linked list, for example,
the size specification would be unnecessary.)

The push() method increments top so it points to the space just above the previous
top and stores a data item there. Notice again that top is incremented before the item
is inserted.

The pop() method returns the value at top and then decrements top. This effectively
removes the item from the stack; it’s inaccessible, although the value remains in the
array (until another item is pushed into the cell).

The peek() method simply returns the value at top, without changing the stack.

The isEmpty() and isFull() methods return true if the stack is empty or full, respec-
tively. The top variable is at -1 if the stack is empty and maxSize-1 if the stack is full.

Figure 4.3 shows how the stack class methods work.

Error Handling

There are different philosophies about how to handle stack errors. What happens if
you try to push an item onto a stack that’s already full or pop an item from a stack
that’s empty?

Top —>

49

27

92

64

Top —> 49
27 27
14 14
3 3
92 92
64 64
New item pushed on stack
<«— Top
Top —»
14
3
92
64

Two items popped from stack

Top —»>

FIGURE 4.3 Operation of the StackX class methods.

Stacks

~

14

3

92

64

We've left the responsibility for handling such errors up to the class user. The user
should always check to be sure the stack is not full before inserting an item:

if(!theStack.isFull())

insert(item);
else

System.out.print("Can't insert, stack is full");

In the interest of simplicity, we’ve left this code out of the main() routine (and

anyway, in this simple program, we know the stack isn’t full because it has just been

initialized). We do include the check for an empty stack when main() calls pop().

Many stack classes check for these errors internally, in the push() and pop() methods.
This is the preferred approach. In Java, a good solution for a stack class that discovers
such errors is to throw an exception, which can then be caught and processed by the

class user.

123

124

CHAPTER 4 Stacks and Queues

Stack Example 1: Reversing a Word

For our first example of using a stack, we’ll examine a very simple task: reversing a
word. When you run the program, it asks you to type in a word. When you press
Enter, it displays the word with the letters in reverse order.

A stack is used to reverse the letters. First, the characters are extracted one by one
from the input string and pushed onto the stack. Then they’re popped off the stack
and displayed. Because of its Last-In-First-Out characteristic, the stack reverses the
order of the characters. Listing 4.2 shows the code for the reverse.java program.

LISTING 4.2 The reverse.java Program

/] reverse.java
/| stack used to reverse a string
/] to run this program: C>java ReverseApp
import java.io.*; /] for I/0
THEEEEEEEEEEEEEE I i e rrr g
class StackX

{

private int maxSize;

private char[] stackArray;

private int top;

public StackX(int max) /| constructor
{

maxSize = max;
stackArray = new char[maxSize];
top = -1;

public void push(char j) // put item on top of stack

{
stackArray[++top] = j;

public char pop() /| take item from top of stack

{
return stackArray[top--];

public char peek() /| peek at top of stack

{
return stackArray[top];

Stacks

LISTING 4.2 Continued

}
R
public boolean isEmpty() // true if stack is empty
{
return (top == -1);
}
R

} // end class StackX
LEELEEEETEEETE i rr i rrr i et b rr i irrrd
class Reverser

{
private String input; // input string
private String output; // output string
R
public Reverser(String in) // constructor
{ input = in; }
R
public String doRev() // reverse the string
{
int stackSize = input.length(); // get max stack size
StackX theStack = new StackX(stackSize); // make stack
for(int j=0; j<input.length(); j++)
{
char ch = input.charAt(j); // get a char from input
theStack.push(ch); // push it
}
output = "";
while(!theStack.isEmpty())
{
char ch = theStack.pop(); // pop a char,
output = output + ch; // append to output
}
return output;
} // end doRev()
R R

} // end class Reverser
LEEEEETEEEEEEEEEE e i rr g
class ReverseApp

{

public static void main(String[] args) throws IOException

125

126

CHAPTER 4 Stacks and Queues

LISTING 4.2 Continued

{

String input, output;

while(true)
{
System.out.print("Enter a string: ");
System.out.flush();

input = getString(); // read a string from kbd
if(input.equals("")) /] quit if [Enter]
break;

// make a Reverser
Reverser theReverser = new Reverser(input);
output = theReverser.doRev(); // use it
System.out.println("Reversed: " + output);
} // end while
} // end main()

R
public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;
}
R

} // end class ReverseApp
PIELITLETEE LT T T]

We've created a class Reverser to handle the reversing of the input string. Its key
component is the method doRev (), which carries out the reversal, using a stack. The
stack is created within doRev (), which sizes the stack according to the length of the
input string.

In main() we get a string from the user, create a Reverser object with this string as an
argument to the constructor, call this object’s doRev() method, and display the return
value, which is the reversed string. Here’s some sample interaction with the program:

Enter a string: part
Reversed: trap
Enter a string:

Stacks 127

Stack Example 2: Delimiter Matching

One common use for stacks is to parse certain kinds of text strings. Typically, the
strings are lines of code in a computer language, and the programs parsing them are
compilers.

To give the flavor of what’s involved, we’ll show a program that checks the delim-
iters in a line of text typed by the user. This text doesn’t need to be a line of real Java
code (although it could be), but it should use delimiters the same way Java does. The
delimiters are the braces { and }, brackets [and], and parentheses (and). Each
opening or left delimiter should be matched by a closing or right delimiter; that is,
every { should be followed by a matching } and so on. Also, opening delimiters that
occur later in the string should be closed before those occurring earlier. Here are
some examples:

cld] /1 correct

a{b[c]d}e // correct

a{b(c]d}e // not correct;] doesn't match (
a[b{c}d]e} // not correct; nothing matches final }
a{b(c) /] not correct; nothing matches opening {

Opening Delimiters on the Stack

This delimiter-matching program works by reading characters from the string one at
a time and placing opening delimiters when it finds them, on a stack. When it reads
a closing delimiter from the input, it pops the opening delimiter from the top of the
stack and attempts to match it with the closing delimiter. If they’re not the same
type (there’s an opening brace but a closing parenthesis, for example), an error
occurs. Also, if there is no opening delimiter on the stack to match a closing one, or
if a delimiter has not been matched, an error occurs. A delimiter that hasn’t been
matched is discovered because it remains on the stack after all the characters in the
string have been read.

Let’s see what happens on the stack for a typical correct string:

a{b(c[d]e)f}

Table 4.1 shows how the stack looks as each character is read from this string. The
entries in the second column show the stack contents, reading from the bottom of
the stack on the left to the top on the right.

As the string is read, each opening delimiter is placed on the stack. Each closing
delimiter read from the input is matched with the opening delimiter popped from
the top of the stack. If they form a pair, all is well. Non-delimiter characters are not
inserted on the stack; they’re ignored.

128

CHAPTER 4 Stacks and Queues

TABLE 4.1 Stack Contents in Delimiter Matching
Character Read Stack Contents

~~ —Hh ~ O — QO — O —~ T ~ o
e e e e e e e

This approach works because pairs of delimiters that are opened last should be closed
first. This matches the Last-In-First-Out property of the stack.

Java Code for brackets.java
The code for the parsing program, brackets.java, is shown in Listing 4.3. We've
placed check(), the method that does the parsing, in a class called BracketChecker.

LISTING 4.3 The brackets.java Program

/] brackets.java
/| stacks used to check matching brackets
/] to run this program: C>java BracketsApp
import java.io.*; /] for I/0
PEEETELEEEEL IRt i il
class StackX
{
private int maxSize;
private char[] stackArray;
private int top;

public StackX(int s) /| constructor
{
maxSize = s;
stackArray = new char[maxSize];
top = -1;

Stacks

LISTING 4.3 Continued

public void push(char j) // put item on top of stack

{
stackArray[++top] = j;

public char pop() /| take item from top of stack
{

return stackArray[top--1];

public char peek() /| peek at top of stack
{

return stackArray[top];

public boolean isEmpty() /] true if stack is empty
{

return (top == -1);

} // end class StackX
LHEEEEELEE L r i ni i bt irr
class BracketChecker

{
private String input; /] input string
o m e oo
public BracketChecker(String in) /| constructor
{ input = in; }
R
public void check()
{
int stackSize = input.length(); /] get max stack size

StackX theStack = new StackX(stackSize); // make stack

for(int j=0; j<input.length(); j++) // get chars in turn

{
char ch = input.charAt(j); /] get char
switch(ch)

{

case '{': /] opening symbols

case '[':

129

130 CHAPTER 4 Stacks and Queues

LISTING 4.3 Continued

case '(':
theStack.push(ch); /] push them
break;

case '}': // closing symbols
case ']':
case ')':
if(!theStack.isEmpty()) // if stack not empty,
{
char chx = theStack.pop(
if((ch=='}"' && chx!="'{'
(ch=="]" && chx!="["
(ch==")"' && chx!="(")
System.out.println("Error: "+ch+" at "+j);

; /] pop and check

)
) |
) |1

}
else // prematurely empty
System.out.println("Error: "+ch+" at "+j);
break;
default: // no action on other characters
break;
} // end switch
} // end for
// at this point, all characters have been processed
if(!theStack.isEmpty())
System.out.println("Error: missing right delimiter");
} /] end check()

} // end class BracketChecker
LEETTEEEEEEL i i i r
class BracketsApp
{
public static void main(String[] args) throws IOException
{
String input;
while(true)
{
System.out.print(
"Enter string containing delimiters: ");
System.out.flush();
input = getString(); // read a string from kbd
if(input.equals("")) // quit if [Enter]

Stacks

LISTING 4.3 Continued

break;
/| make a BracketChecker
BracketChecker theChecker = new BracketChecker(input);
theChecker.check(); /| check brackets
} // end while
} // end main()

e e o
public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;
}
R

} // end class BracketsApp
PILLITLETEL LT T T]

The check() routine makes use of the StackX class from the reverse.java program
(Listing 4.2). Notice how easy it is to reuse this class. All the code you need is in one
place. This is one of the payoffs for object-oriented programming.

The main() routine in the BracketsApp class repeatedly reads a line of text from the
user, creates a BracketChecker object with this text string as an argument, and then
calls the check () method for this BracketChecker object. If it finds any errors, the
check () method displays them; otherwise, the syntax of the delimiters is correct.

If it can, the check() method reports the character number where it discovered the
error (starting at O on the left) and the incorrect character it found there. For
example, for the input string

a{b(cld}e

the output from check() will be

Error:] at 5

The Stack as a Conceptual Aid

Notice how convenient the stack is in the brackets.java program. You could have set
up an array to do what the stack does, but you would have had to worry about
keeping track of an index to the most recently added character, as well as other
bookkeeping tasks. The stack is conceptually easier to use. By providing limited
access to its contents, using the push() and pop() methods, the stack has made your

131

132

CHAPTER 4 Stacks and Queues

program easier to understand and less error prone. (As carpenters will tell you, it’s
safer to use the right tool for the job.)

Efficiency of Stacks

Items can be both pushed and popped from the stack implemented in the StackX
class in constant O(1) time. That is, the time is not dependent on how many items
are in the stack and is therefore very quick. No comparisons or moves are necessary.

Queues

The word queue is British for line (the kind you wait in). In Britain, to “queue up”
means to get in line. In computer science a queue is a data structure that is some-
what like a stack, except that in a queue the first item inserted is the first to be
removed (First-In-First-Out, FIFO), while in a stack, as we’ve seen, the last item
inserted is the first to be removed (LIFO). A queue works like the line at the movies:
The first person to join the rear of the line is the first person to reach the front of
the line and buy a ticket. The last person to line up is the last person to buy a ticket
(or—if the show is sold out—to fail to buy a ticket). Figure 4.4 shows how such a
queue looks.

People join the

queue at the rear

People leave the
queue at the front

fifits

FIGURE 4.4 A queue of people.

Queues are used as a programmetr’s tool as stacks are. We'll see an example where a
queue helps search a graph in Chapter 13. They’re also used to model real-world situ-
ations such as people waiting in line at a bank, airplanes waiting to take off, or data
packets waiting to be transmitted over the Internet.

There are various queues quietly doing their job in your computer’s (or the
network’s) operating system. There’s a printer queue where print jobs wait for the

Queues

printer to be available. A queue also stores keystroke data as you type at the
keyboard. This way, if you're using a word processor but the computer is briefly
doing something else when you hit a key, the keystroke won'’t be lost; it waits in the
queue until the word processor has time to read it. Using a queue guarantees the
keystrokes stay in order until they can be processed.

The Queue Workshop Applet

Let’s use the Queue Workshop applet to get an idea how queues work. When you
start up the applet, you'll see a queue with four items preinstalled, as shown in
Figure 4.5.

ES Applet Viewer: Queue class M= E3
Applet

(Now| [ins | Rem | Peck| ~ Number [

Press any button

1] #— Fiont

Applet started.

FIGURE 4.5 The Queue Workshop applet.

This applet demonstrates a queue based on an array. This is a common approach,
although linked lists are also commonly used to implement queues.

The two basic queue operations are inserting an item, which is placed at the rear of
the queue, and removing an item, which is taken from the front of the queue. This is
similar to a person joining the rear of a line of movie-goers and, having arrived at
the front of the line and purchased a ticket, removing herself from the front of the
line.

The terms for insertion and removal in a stack are fairly standard; everyone says push
and pop. Standardization hasn’t progressed this far with queues. Insert is also called
put or add or enque, while remove may be called delete or get or deque. The rear of the
queue, where items are inserted, is also called the back or tail or end. The front,
where items are removed, may also be called the head. We'll use the terms insert,
remove, front, and rear.

134

CHAPTER 4 Stacks and Queues

The Insert Button

By repeatedly pressing the Ins button in the Queue Workshop applet, you can insert
a new item. After the first press, you're prompted to enter a key value for a new item
into the Number text field; this should be a number from 0 to 999. Subsequent
presses will insert an item with this key at the rear of the queue and increment the
Rear arrow so it points to the new item.

The Remove Button

Similarly, you can remove the item at the front of the queue using the Rem button.
The item is removed, the item’s value is stored in the Number field (corresponding to
the remove () method returning a value), and the Front arrow is incremented. In the
applet, the cell that held the deleted item is grayed to show it’s gone. In a normal
implementation, it would remain in memory but would not be accessible because
Front had moved past it. The insert and remove operations are shown in Figure 4.6.

\ Rear —» 6

Rear —» 80 80
12 12

94 96

26 26

Front —» 59 Front—» 59

New item inserted at rear of queue

6 6 <—Rear 6 <«— Rear
<«— Rear
80 80 80
12 12 12
94 94 94 <«—Front
26 26 <«—Front

59 K’

Two items removed from front of queue

FIGURE 4.6 Operation of the Queue class methods.

Queues 135

Unlike the situation in a stack, the items in a queue don’t always extend all the way
down to index O in the array. After some items are removed, Front will point at a cell
with a higher index, as shown in Figure 4.7.

In Figure 4.7, notice that Front lies below Rear in the array; that is, Front has a lower
index. As we’ll see in a moment, this isn’t always true.

The Peek Button

We show one other queue operation, peek. Peek finds the value of the item at the
front of the queue without removing the item. (Like insert and remove, peek, when
applied to a queue, is also called by a variety of other names.) If you press the Peek
button, you'll see the value at Front transferred to the Number field. The queue is
unchanged. This peek() method returns the value at the front of the queue. Some
queue implementations have a rearPeek() and a frontPeek() method, but usually you
want to know what you're about to remove, not what you just inserted.

MaxSize-1—> 9
Empty cells
8
7 79 <«— Rear
6 32
5 6
4 80
3 12 <— Front
2
1 Empty cells
0

FIGURE 4.7 A queue with some items removed.

The New Button
If you want to start with an empty queue, you can use the New button to create one.

Empty and Full

If you try to remove an item when there are no more items in the queue, you'll get
the Can't remove, queue is empty error message. If you try to insert an item when all
the cells are already occupied, you’ll get the Can't insert, queue is full message.

136

CHAPTER 4 Stacks and Queues

A Circular Queue

When you insert a new item in the queue in the Queue Workshop applet, the Front
arrow moves upward, toward higher numbers in the array. When you remove an
item, Rear also moves upward. Try these operations with the Workshop applet to
convince yourself it’s true. You may find the arrangement counter-intuitive, because
the people in a line at the movies all move forward, toward the front, when a person
leaves the line. We could move all the items in a queue whenever we deleted one,
but that wouldn’t be very efficient. Instead, we keep all the items in the same place
and move the front and rear of the queue.

The trouble with this arrangement is that pretty soon the rear of the queue is at the
end of the array (the highest index). Even if there are empty cells at the beginning of
the array, because you've removed them with Rem, you still can’t insert a new item
because Rear can’t go any further. Or can it? This situation is shown in Figure 4.8.

MaxSize-1 —> 9 44 <«— Rear
8 21
7 79
6 32
: I . f
New item:
4 80 Where can
it go?
3 12 <— Front
2
1
0

FIGURE 4.8 Rear arrow at the end of the array.

Wrapping Around

To avoid the problem of not being able to insert more items into the queue even
when it’s not full, the Front and Rear arrows wrap around to the beginning of the
array. The result is a circular queue (sometimes called a ring buffer).

You can see how wraparound works with the Workshop applet. Insert enough items
to bring the Rear arrow to the top of the array (index 9). Remove some items from

Queues

the front of the array. Now insert another item. You'll see the Rear arrow wrap
around from index 9 to index O; the new item will be inserted there. This situation is
shown in Figure 4.9.

Insert a few more items. The Rear arrow moves upward as you'd expect. Notice that
after Rear has wrapped around, it’s now below Front, the reverse of the original
arrangement. You can call this a broken sequence: The items in the queue are in two
different sequences in the array.

MaxSize-1 —> 9 44
8 21
7 79
6 32
5 6
4 80
3 12 <«— Front
2
1
0 63 <«— Rear

FIGURE 4.9 The Rear arrow wraps around.

Delete enough items so that the Front arrow also wraps around. Now you're back to
the original arrangement, with Front below Rear. The items are in a single contiguous
sequence.

Java Code for a Queue
The queue. java program features a Queue class with insert(), remove(), peek(),
isFull(), isEmpty(), and size() methods.

The main() program creates a queue of five cells, inserts four items, removes three
items, and inserts four more. The sixth insertion invokes the wraparound feature. All
the items are then removed and displayed. The output looks like this:

40 50 60 70 80

137

138

CHAPTER 4 Stacks and Queues

Listing 4.4 shows the queue.java program.

LISTING 4.4 The queue.java Program

/] queue.java

/] demonstrates queue

// to run this program: C>java QueueApp

LEEETEEEEEL TP e i i il
class Queue

private int maxSize;
private long[] queArray;
private int front;
private int rear;
private int nItems;

public Queue(int s) /] constructor

{

maxSize = s;

queArray = new long[maxSize];
front = 0;

rear = -1;

nItems = 0;

public void insert(long j) // put item at rear of queue

{
if(rear == maxSize-1) /| deal with wraparound
rear = -1;
queArray[++rear] = j; // increment rear and insert
nltems++; // one more item
}
public long remove() /] take item from front of queue
{
long temp = queArray[front++]; // get value and incr front
if (front == maxSize) /| deal with wraparound
front = 0;
nltems--; /] one less item
return temp;
}
public long peekFront() /] peek at front of queue

{

Queues

LISTING 4.4 Continued

return queArray[front];

}
R
public boolean isEmpty() /] true if queue is empty
{
return (nItems==0);
}
R
public boolean isFull() /] true if queue is full
{
return (nItems==maxSize);
}
R
public int size() // number of items in queue
{
return nltems;
}
R R

} // end class Queue
LEPETELEEEEEEEEE i e e i e r
class QueueApp

{

public static void main(String[] args)

{

Queue theQueue = new Queue(5); // queue holds 5 items

theQueue.insert(10); /] insert 4 items
theQueue.insert(20);

(30)
(40)

)

theQueue.insert (30
theQueue.insert (40

)

theQueue.remove(); // remove 3 items
theQueue.remove(); /1l (10, 20, 30)
theQueue.remove();

theQueue.insert(50); // insert 4 more items
theQueue.insert(60); /] (wraps around)
theQueue.insert(70);

theQueue.insert(80);

while(!theQueue.isEmpty()) /1 remove and display
{ /1 all items

139

140

CHAPTER 4 Stacks and Queues

LISTING 4.4 Continued

long n = theQueue.remove(); // (40, 50, 60, 70, 80)
System.out.print(n);
System.out.print(" ");
}
System.out.println("");
} // end main()
} // end class QueueApp

We've chosen an approach in which Queue class fields include not only front and
rear, but also the number of items currently in the queue: nItems. Some queue
implementations don't use this field; we’ll show this alternative later.

The insert() Method

The insert() method assumes that the queue is not full. We don’t show it in main(),
but normally you should call insert() only after calling isFull() and getting a return
value of false. (It's usually preferable to place the check for fullness in the insert()
routine and cause an exception to be thrown if an attempt was made to insert into a
full queue.)

Normally, insertion involves incrementing rear and inserting at the cell rear now
points to. However, if rear is at the top of the array, at maxSize-1, then it must wrap
around to the bottom of the array before the insertion takes place. This is done by
setting rear to -1, so when the increment occurs, rear will become 0, the bottom of
the array. Finally, nItems is incremented.

The remove () Method

The remove () method assumes that the queue is not empty. You should call isEmpty/()
to ensure this is true before calling remove (), or build this error-checking into
remove().

Removal always starts by obtaining the value at front and then incrementing front.
However, if this puts front beyond the end of the array, it must then be wrapped
around to 0. The return value is stored temporarily while this possibility is checked.
Finally, nItems is decremented.

The peek() Method

The peek() method is straightforward: It returns the value at front. Some implemen-
tations allow peeking at the rear of the array as well; such routines are called some-
thing like peekFront() and peekRear() or just front() and rear().

The isEmpty(), isFull(), and size() Methods
The isEmpty(), isFull(), and size() methods all rely on the nItenms field, respectively
checking if it’s O, if it’s maxSize, or returning its value.

Queues 141

Implementation Without an Item Count

The inclusion of the field nItems in the Queue class imposes a slight overhead on the
insert() and remove () methods in that they must respectively increment and decre-
ment this variable. This may not seem like an excessive penalty, but if you're dealing
with huge numbers of insertions and deletions, it might influence performance.

Accordingly, some implementations of queues do without an item count and rely on
the front and rear fields to figure out whether the queue is empty or full and how
many items are in it. When this is done, the isEmpty(), isFull(), and size() routines
become surprisingly complicated because the sequence of items may be either
broken or contiguous, as we’ve seen.

Also, a strange problem arises. The front and rear pointers assume certain positions
when the queue is full, but they can assume these exact same positions when the
queue is empty. The queue can then appear to be full and empty at the same time.

This problem can be solved by making the array one cell larger than the maximum
number of items that will be placed in it. Listing 4.5 shows a Queue class that imple-
ments this no-count approach. This class uses the no-count implementation.

LISTING 4.5 The Queue Class Without nItems

class Queue
{
private int maxSize;
private long[] queArray;
private int front;
private int rear;

R R
public Queue(int s) /| constructor
{
maxSize = s+1; // array is 1 cell larger
queArray = new long[maxSize]; // than requested
front = 0;
rear = -1;
}
] m e oo
public void insert(long j) // put item at rear of queue
{
if(rear == maxSize-1)
rear = -1;
queArray[++rear] = j;
}
R
public long remove() /] take item from front of queue

{

142

CHAPTER 4 Stacks and Queues

LISTING 4.5 Continued

long temp = queArray[front++];
if(front == maxSize)

front = 0;
return temp;
}
R
public long peek() /| peek at front of queue
{
return queArray|[front];
}
R
public boolean isEmpty() /] true if queue is empty
{
return (reart+i==front || (front+maxSize-1==rear))
}
[s
public boolean isFull() /] true if queue is full
{
return (rear+2==front || (front+maxSize-2==rear))
}
R
public int size() /] (assumes queue not empty)
{
if(rear >= front) // contiguous sequence
return rear-front+1;
else // broken sequence
return (maxSize-front) + (rear+l);
}
R

} // end class Queue

Notice the complexity of the isFull(), isEmpty(), and size() methods. This no-count
approach is seldom needed in practice, so we'll refrain from discussing it in detail.

Efficiency of Queues

As with a stack, items can be inserted and removed from a queue in O(1) time.

Priority Queues 143

Deques

A deque is a double-ended queue. You can insert items at either end and delete them
from either end. The methods might be called insertLeft() and insertRight(), and
removeLeft() and removeRight().

If you restrict yourself to insertLeft() and removeLeft() (or their equivalents on the
right), the deque acts like a stack. If you restrict yourself to insertLeft() and
removeRight () (or the opposite pair), it acts like a queue.

A deque provides a more versatile data structure than either a stack or a queue and is
sometimes used in container class libraries to serve both purposes. However, it’s not
used as often as stacks and queues, so we won’t explore it further here.

Priority Queues

A priority queue is a more specialized data structure than a stack or a queue.
However, it's a useful tool in a surprising number of situations. Like an ordinary
queue, a priority queue has a front and a rear, and items are removed from the front.
However, in a priority queue, items are ordered by key value so that the item with
the lowest key (or in some implementations the highest key) is always at the front.
Items are inserted in the proper position to maintain the order.

Here’s how the mail sorting analogy applies to a priority queue. Every time the
postman hands you a letter, you insert it into your pile of pending letters according
to its priority. If it must be answered immediately (the phone company is about to
disconnect your modem line), it goes on top, whereas if it can wait for a leisurely
answer (a letter from your Aunt Mabel), it goes on the bottom. Letters with interme-
diate priorities are placed in the middle; the higher the priority, the higher their
position in the pile. The top of the pile of letters corresponds to the front of the
priority queue.

When you have time to answer your mail, you start by taking the letter off the top
(the front of the queue), thus ensuring that the most important letters are answered
first. This situation is shown in Figure 4.10.

Like stacks and queues, priority queues are often used as programmer’s tools. We'll
see one used in finding something called a minimum spanning tree for a graph, in
Chapter 14, “Weighted Graphs.”

Also, like ordinary queues, priority queues are used in various ways in certain
computer systems. In a preemptive multitasking operating system, for example,
programs may be placed in a priority queue so the highest-priority program is the
next one to receive a time-slice that allows it to execute.

144 CHAPTER 4 Stacks and Queues

Letter on top
is always
processed

first

More urgent letters are
inserted higher

Less urgent letters are
inserted lower

FIGURE 4.10 Letters in a priority queue.

In many situations you want access to the item with the lowest key value (which
might represent the cheapest or shortest way to do something). Thus, the item with
the smallest key has the highest priority. Somewhat arbitrarily, we’ll assume that’s
the case in this discussion, although there are other situations in which the highest
key has the highest priority.

Besides providing quick access to the item with the smallest key, you also want a
priority queue to provide fairly quick insertion. For this reason, priority queues are,
as we noted earlier, often implemented with a data structure called a heap. We'll look
at heaps in Chapter 12, “Heaps.” In this chapter, we’ll show a priority queue imple-
mented by a simple array. This implementation suffers from slow insertion, but it’s
simpler and is appropriate when the number of items isn’t high or insertion speed
isn’t critical.

The PriorityQ Workshop Applet

The PriorityQ Workshop applet implements a priority queue with an array, in which
the items are kept in sorted order. It’s an ascending-priority queue, in which the item
with smallest key has the highest priority and is accessed with remove(). (If the
highest-key item were accessed, it would be a descending-priority queue.)

Priority Queues

The minimum-key item is always at the top (highest index) in the array, and the
largest item is always at index O. Figure 4.11 shows the arrangement when the applet
is started. Initially, there are five items in the queue.

S Applet Viewer: Prioiityl).class

Applet
[Now| [ins | [Rem | Peok| ~ Number: [

Press any button

M
w

+— Front

-
(=
-

|

-
(]
o

|

.
L
W

|

O =N Wm0 W

(5]
o
-~

&———~Rear

|

Applet started.

FIGURE 4.11 The PriorityQ Workshop applet.

The Insert Button

Try inserting an item. You'll be prompted to type the new item’s key value into the
Number field. Choose a number that will be inserted somewhere in the middle of
the values already in the queue. For example, in Figure 4.11 you might choose 300.
Then, as you repeatedly press Ins, you'll see that the items with smaller keys are
shifted up to make room. A black arrow shows which item is being shifted. When
the appropriate position is found, the new item is inserted into the newly created
space.

Notice that there’s no wraparound in this implementation of the priority queue.
Insertion is slow of necessity because the proper in-order position must be found,
but deletion is fast. A wraparound implementation wouldn’t improve the situation.
Note too that the Rear arrow never moves; it always points to index O at the bottom
of the array.

The Delete Button

The item to be removed is always at the top of the array, so removal is quick and
easy; the item is removed and the Front arrow moves down to point to the new top
of the array. No shifting or comparisons are necessary.

In the PriorityQ Workshop applet, we show Front and Rear arrows to provide a
comparison with an ordinary queue, but they’re not really necessary. The algorithms

145

146 CHAPTER 4 Stacks and Queues

know that the front of the queue is always at the top of the array at nItems-1, and
they insert items in order, not at the rear. Figure 4.12 shows the operation of the
PriorityQ class methods.

500
43 <— Front

43 <— Front 109

109 320

320 500

632 632

841 <«— Rear 841 <«— Rear

New item inserted in priority queue
43 <— Front /_>~ ~
109 109 J «— Front /_»
320 320 320 <— Front
500 500 500
632 632 632
841 <«— Rear 841 <«— Rear 841 <«— Rear

Two items removed from front of priority queue

FIGURE 4.12 Operation of the PriorityQ class methods.

The Peek and New Buttons
You can peek at the minimum item (find its value without removing it) with the
Peek button, and you can create a new, empty, priority queue with the New button.

Other Implementation Possibilities
The implementation shown in the PriorityQ Workshop applet isn't very efficient for
insertion, which involves moving an average of half the items.

Another approach, which also uses an array, makes no attempt to keep the items in
sorted order. New items are simply inserted at the top of the array. This makes

Priority Queues 147

insertion very quick, but unfortunately it makes deletion slow because the smallest
item must be searched for. This approach requires examining all the items and shift-
ing half of them, on the average, down to fill in the hole. In most situations the
quick-deletion approach shown in the Workshop applet is preferred.

For small numbers of items, or situations in which speed isn’t critical, implementing
a priority queue with an array is satisfactory. For larger numbers of items, or when
speed is critical, the heap is a better choice.

Java Code for a Priority Queue

The Java code for a simple array-based priority queue is shown in Listing 4.6.

LISTING 4.6 The priorityQ.java Program

// priorityQ.java
// demonstrates priority queue
// to run this program: C>java PriorityQApp
LEEETEEEEEEEEEEE e n e rr i i e r i rrrri i rr
class PriorityQ
{
// array in sorted order, from max at @ to min at size-1
private int maxSize;
private long[] queArray;
private int nItems;

R R R
public PriorityQ(int s) // constructor
{
maxSize = s;
queArray = new long[maxSize];
nlItems = 0;
}
R
public void insert(long item) // insert item
{
int j;
if(nItems==0) // if no items,
queArray[nltems++] = item; /! insert at @
else // if items,
{
for(j=nltems-1; j>=0; j--) /| start at end,
{
if(item > queArray[j]) // if new item larger,

queArray[j+1] = queArray[j]; // shift upward

148 CHAPTER 4 Stacks and Queues

LISTING 4.6 Continued

else /] if smaller,
break; /] done shifting
} // end for
queArray[j+1] = item; // insert it
nltems++;

} // end else (nItems > 0)
} /] end insert()

R
public long remove() // remove minimum item
{ return queArray[--nItems]; }
R
public long peekMin() /| peek at minimum item
{ return queArray[nItems-1]; }
e e e
public boolean isEmpty() /] true if queue is empty
{ return (nItems==0); }
R
public boolean isFull() // true if queue is full
{ return (nItems == maxSize); }
R

} // end class PriorityQ
LEPETELEEEEE LI i il
class PriorityQApp
{
public static void main(String[] args) throws IOException
{
PriorityQ thePQ = new PriorityQ(5);
thePQ.insert(30);
thePQ.insert(50);
thePQ.insert(10);
thePQ.insert(40);
thePQ.insert(20);

while(!thePQ.isEmpty())
{
long item = thePQ.remove();
System.out.print(item + " "); // 10, 20, 30, 40, 50
} // end while
System.out.println("");
} // end main()

} // end class PriorityQApp

Parsing Arithmetic Expressions 149

In main() we insert five items in random order, and then remove and display them.
The smallest item is always removed first, so the output is

10, 20, 30, 40, 50

The insert() method checks whether there are any items; if not, it inserts one at
index 0. Otherwise, it starts at the top of the array and shifts existing items upward
until it finds the place where the new item should go. Then it inserts the item and
increments nItems. Note that if there’s any chance the priority queue is full, you
should check for this possibility with isFull() before using insert().

The front and rear fields aren’t necessary as they were in the Queue class because, as
we noted, front is always at nItems-1 and rear is always at O.

The remove () method is simplicity itself: It decrements nItems and returns the item
from the top of the array. The peekMin() method is similar, except it doesn’t decre-
ment nItems. The isEmpty() and isFull() methods check if nItems is O or maxSize,
respectively.

Efficiency of Priority Queues

In the priority-queue implementation we show here, insertion runs in O(N) time,
while deletion takes O(1) time. We'll see how to improve insertion time with heaps
in Chapter 12.

Parsing Arithmetic Expressions

So far in this chapter, we’ve introduced three different data storage structures. Let’s
shift gears now and focus on an important application for one of these structures.
This application is parsing (that is, analyzing) arithmetic expressions such as 2+3 or
2*(3+4) or ((2+4)*7)+3*(9-5). The storage structure it uses is the stack. In the
brackets.java program (Listing 4.3), we saw how a stack could be used to check
whether delimiters were formatted correctly. Stacks are used in a similar, although
more complicated, way for parsing arithmetic expressions.

In some sense this section should be considered optional. It’s not a prerequisite to
the rest of the book, and writing code to parse arithmetic expressions is probably not
something you need to do every day, unless you are a compiler writer or are design-
ing pocket calculators. Also, the coding details are more complex than any we've
seen so far. However, seeing this important use of stacks is educational, and the
issues raised are interesting in their own right.

As it turns out, it’s fairly difficult, at least for a computer algorithm, to evaluate an
arithmetic expression directly. It's easier for the algorithm to use a two-step process:

150

CHAPTER 4 Stacks and Queues

1. Transform the arithmetic expression into a different format, called postfix
notation.

2. Evaluate the postfix expression.

Step 1 is a bit involved, but step 2 is easy. In any case, this two-step approach results
in a simpler algorithm than trying to parse the arithmetic expression directly. Of
course, for a human it’s easier to parse the ordinary arithmetic expression. We'll
return to the difference between the human and computer approaches in a moment.

Before we delve into the details of steps 1 and 2, we’ll introduce postfix notation.

Postfix Notation

Everyday arithmetic expressions are written with an operator (+, -, *, or /) placed
between two operands (numbers, or symbols that stand for numbers). This is called
infix notation because the operator is written inside the operands. Thus, we say 2+2
and ¥, or, using letters to stand for numbers, A+B and %.

In postfix notation (which is also called Reverse Polish Notation, or RPN, because it
was invented by a Polish mathematician), the operator follows the two operands.
Thus, A+B becomes AB+, and % becomes AB/. More complex infix expressions can
likewise be translated into postfix notation, as shown in Table 4.2. We'll explain how
the postfix expressions are generated in a moment.

TABLE 4.2 Infix and Postfix Expressions

Infix Postfix
A+B-C AB+C-

A*B/C AB*C/

A+B*C ABC*+

A*B+C AB*C+
A*(B+C) ABC+*
A*B+C*D AB*CD*+
(A+B)*(C-D) AB+CD-*
((A+B)*C)-D AB+C*D-
A+B*(C-D/(E+F)) ABCDEF+/—*+

Some computer languages also have an operator for raising a quantity to a power
(typically, the ” character), but we’ll ignore that possibility in this discussion.

Besides infix and postfix, there’s also a prefix notation, in which the operator is
written before the operands: +AB instead of AB+. This notation is functionally
similar to postfix but seldom used.

Parsing Arithmetic Expressions 151

Translating Infix to Postfix

The next several pages are devoted to explaining how to translate an expression from
infix notation into postfix. This algorithm is fairly involved, so don’t worry if every
detail isn't clear at first. If you get bogged down, you may want to skip ahead to the
section “Evaluating Postfix Expressions.” To understand how to create a postfix
expression, you might find it helpful to see how a postfix expression is evaluated; for
example, how the value 14 is extracted from the expression 234+* which is the
postfix equivalent of 2*(3+4). (Notice that in this discussion, for ease of writing, we
restrict ourselves to expressions with single-digit numbers, although these expres-
sions may evaluate to multidigit numbers.)

How Humans Evaluate Infix

How do you translate infix to postfix? Let’s examine a slightly easier question first:
How does a human evaluate a normal infix expression? Although, as we stated
earlier, such evaluation is difficult for a computer, we humans do it fairly easily
because of countless hours in Mr. Klemmer’s math class. It’s not hard for us to find
the answer to 3+4+5, or 3*(4+5). By analyzing how we evaluate this expression, we
can achieve some insight into the translation of such expressions into postfix.

Roughly speaking, when you “solve” an arithmetic expression, you follow rules
something like this:

1. You read from left to right. (At least, we’ll assume this is true. Sometimes
people skip ahead, but for purposes of this discussion, you should assume you
must read methodically, starting at the left.)

2. When you've read enough to evaluate two operands and an operator, you do
the calculation and substitute the answer for these two operands and operator.
(You may also need to solve other pending operations on the left, as we'll see
later.)

3. You continue this process—going from left to right and evaluating when
possible—until the end of the expression.

Tables 4.3, 4.4, and 4.5 show three examples of how simple infix expressions are
evaluated. Later, in Tables 4.6, 4.7, and 4.8, we'll see how closely these evaluations
mirror the process of translating infix to postfix.

To evaluate 3+4-5, you would carry out the steps shown in Table 4.3.

152

CHAPTER 4 Stacks and Queues

TABLE 4.3 Evaluating 3+4-5

Item Read Expression Parsed So Far Comments
3 3
+ 3+
4 3+4
- 7 When you see the —, you can evaluate 3+4.
7—
5 7-5
End 2 When you reach the end of the expression, you

can evaluate 7-5.

You can’t evaluate the 3+4 until you see what operator follows the 4. If it's an * or /,
you need to wait before applying the + sign until you've evaluated the * or /.

However, in this example the operator following the 4 is a —, which has the same
precedence as a +, so when you see the —, you know you can evaluate 3+4, which is
7. The 7 then replaces the 3+4. You can evaluate the 7-5 when you arrive at the end
of the expression.

Figure 4.13 shows this process in more detail. Notice how you go from left to right
reading items from the input, and then, when you have enough information, you go
from right to left, recalling previously examined input and evaluating each operand-
operator-operand combination.

Because of precedence relationships, evaluating 3+4*5 is a bit more complicated, as
shown in Table 4.4.

TABLE 4.4 Evaluating 3+4*5

Item Read Expression Parsed So Far Comments
3 3
+ 3+
4 3+4
* 3+4* You can’t evaluate 3+4 because * is higher
precedence than +.
5 3+4*5 When you see the 5, you can evaluate 4*5.
3+20
End 23 When you see the end of the expression, you can

evaluate 3+20.

Here you can’t add the 3 until you know the result of 4*5. Why not? Because multi-
plication has a higher precedence than addition. In fact, both * and / have a higher
precedence than + and -, so all multiplications and divisions must be carried out
before any additions or subtractions (unless parentheses dictate otherwise; see the
next example).

Parsing Arithmetic Expressions 153

@ Read @ Read @Read @ Read

@ Evaluate Recall Recall Recall
the + the 4
/\
@ Read . Read
the 5 the End
7 5__End
. Evaluate Recall Recall Recall
7-5 the 7 the - the 5

2

/

@ Recall

the 2

FIGURE 4.13 Details of evaluating 3+4-5.

Often you can evaluate as you go from left to right, as in the preceding example.
However, you need to be sure, when you come to an operand-operator-operand
combination such as A+B, that the operator on the right side of the B isn’t one with
a higher precedence than the +. If it does have a higher precedence, as in this
example, you can’t do the addition yet. However, after you've read the 5, the multi-
plication can be carried out because it has the highest priority; it doesn’t matter
whether a * or / follows the 5. However, you still can’t do the addition until you've
found out what'’s beyond the 5. When you find there’s nothing beyond the 5 but the
end of the expression, you can go ahead and do the addition. Figure 4.14 shows this
process.

Parentheses are used to override the normal precedence of operators. Table 4.5 shows
how you would evaluate 3*(4+5). Without the parentheses, you would do the multi-
plication first; with them, you do the addition first.

154

CHAPTER 4 Stacks and Queues

@ Read

the 3 the +

S

3 +4 * 5 End

@Evaluate Recall
the 4

. Read

the End
3 + 20 End

. Evaluate Recall
3420 the 3

23

/

@ Recall

the 23

FIGURE 4.14 Details of evaluating 3+4*5.

TABLE 4.5 Evaluating 3*(4+5)

Item Read Expression Parsed So Far

Recall Recall
the * the 5
Recall Recall
the + the 20
Comments

3 3

* 3*

3*(
3*(4
3*(4+
3*(4+5
3*(4+5)
3*9

27

- un o+ hA~

End

You can’t evaluate 3*4 because of the parenthesis.
You can’t evaluate 4+5 yet.
When you see the), you can evaluate 4+5.

After you've evaluated 4+5, you can evaluate 3*9.

Nothing left to evaluate.

Here we can’t evaluate anything until we’ve reached the closing parenthesis.
Multiplication has a higher or equal precedence compared to the other operators, so
ordinarily we could carry out 3*4 as soon as we see the 4. However, parentheses have
an even higher precedence than * and /. Accordingly, we must evaluate anything in
parentheses before using the result as an operand in any other calculation. The

Parsing Arithmetic Expressions

closing parenthesis tells us we can go ahead and do the addition. We find that 4+5 is
9, and when we know this, we can evaluate 3*9 to obtain 27. Reaching the end of
the expression is an anticlimax because there’s nothing left to evaluate. This process
is shown in Figure 4.15.

@Evaluale Discard &call &Recall Recall Discard

the (the 4 the + the 5 the)

3 * 9 _End

‘(/”‘“‘\\\\
@ Evaluale . Recall Recall . Recall

the 3 the * the 9

. Recall

the End

27 End

. Recall

the 27

FIGURE 4.15 Details of evaluating 3*(4+5).

As we've seen, in evaluating an infix arithmetic expression, you go both forward and
backward through the expression. You go forward (left to right) reading operands
and operators. When you have enough information to apply an operator, you go
backward, recalling two operands and an operator and carrying out the arithmetic.

Sometimes you must defer applying operators if they’re followed by higher prece-
dence operators or by parentheses. When this happens, you must apply the later,
higher-precedence, operator first; then go backward (to the left) and apply earlier
operators.

We could write an algorithm to carry out this kind of evaluation directly. However,
as we noted, it’s actually easier to translate into postfix notation first.

155

156

CHAPTER 4 Stacks and Queues

How Humans Translate Infix to Postfix

To translate infix to postfix notation, you follow a similar set of rules to those for
evaluating infix. However, there are a few small changes. You don’t do any arith-
metic. The idea is not to evaluate the infix expression, but to rearrange the operators
and operands into a different format: postfix notation. The resulting postfix expres-
sion will be evaluated later.

As before, you read the infix from left to right, looking at each character in turn. As
you go along, you copy these operands and operators to the postfix output string.
The trick is knowing when to copy what.

If the character in the infix string is an operand, you copy it immediately to the
postfix string. That is, if you see an A in the infix, you write an A to the postfix.
There’s never any delay: You copy the operands as you get to them, no matter how
long you must wait to copy their associated operators.

Knowing when to copy an operator is more complicated, but it’s the same as the rule
for evaluating infix expressions. Whenever you could have used the operator to eval-
uate part of the infix expression (if you were evaluating instead of translating to
postfix), you instead copy it to the postfix string.

Table 4.6 shows how A+B-C is translated into postfix notation.

TABLE 4.6 Translating A+B—C into Postfix

Character Infix Postfix Comments

Read from Expression Expression

Infix Parsed So Written So

Expression Far Far

A A A

+ A+ A

B A+B AB

- A+B- AB+ When you see the —, you can copy the +
to the postfix string.

C A+B-C AB+C

End A+B-C AB+C- When you reach the end of the expression,

you can copy the —.

Notice the similarity of this table to Table 4.3, which showed the evaluation of the
infix expression 3+4-5. At each point where you would have done an evaluation in
the earlier table, you instead simply write an operator to the postfix output.

Table 4.7 shows the translation of A+B*C to postfix. This evaluation is similar to
Table 4.4, which covered the evaluation of 3+4*5.

TABLE 4.7 Translating A+B*C to Postfix

Parsing Arithmetic Expressions

Character Infix Postfix Comments

Read from Expression Expression

Infix Parsed So Written So

Expression Far Far

A A A

+ A+ A

B A+B AB

* A+B* AB You can’t copy the + because * is

higher precedence than +.

C A+B*C ABC When you see the C, you can copy the *.
A+B*C ABC*

End A+B*C ABC*+ When you see the end of the

expression, you can copy the +.

As the final example, Table 4.8 shows how A*(B+C) is translated to postfix. This
process is similar to evaluating 3*(4+5) in Table 4.5. You can’t write any postfix
operators until you see the closing parenthesis in the input.

TABLE 4.8 Translating A*(B+C) into Postfix

Character Infix Postfix Comments

Read from Expression Expression

Infix Parsed so Written So

Expression Far Far

A A A

* A* A

(AX(A

B A*(B AB You can’t copy * because of the
parenthesis.

+ A*(B+ AB

C A*(B+C ABC You can’t copy the + yet.

) A*(B+C) ABC+ When you see the), you can copy the +.

A*(B+C) ABC+* After you've copied the +, you can copy

the *.

End A*(B+C) ABC+* Nothing left to copy.

As in the numerical evaluation process, you go both forward and backward through
the infix expression to complete the translation to postfix. You can’t write an opera-
tor to the output (postfix) string if it’s followed by a higher-precedence operator or a
left parenthesis. If it is, the higher-precedence operator or the operator in parenthe-

ses must be written to the postfix before the lower-priority operator.

157

158

CHAPTER 4 Stacks and Queues

Saving Operators on a Stack

You'll notice in both Table 4.7 and Table 4.8 that the order of the operators is
reversed going from infix to postfix. Because the first operator can’t be copied to the
output until the second one has been copied, the operators were output to the
postfix string in the opposite order they were read from the infix string. A longer
example may make this operation clearer. Table 4.9 shows the translation to postfix
of the infix expression A+B*(C-D). We include a column for stack contents, which
we’ll explain in a moment.

TABLE 4.9 Translating A+B*(C-D) to Postfix

Character Infix Postfix Stack

Read from Expression Expression Contents

Infix Parsed So Written So

Expression Far Far

A A A

+ A+ A

B A+B AB

* A+B* AB +*

(A+B*(AB +*(

C A+B*(C ABC +*(

- A+B*(C- ABC +*(-

D A+B*(C-D ABCD +*(=

) A+B*(C-D) ABCD- +*(
A+B*(C-D) ABCD- +*(
A+B*(C-D) ABCD- +*
A+B*(C-D) ABCD-* +
A+B*(C-D) ABCD-*+

Here we see the order of the operands is +*- in the original infix expression, but the
reverse order, —*+, in the final postfix expression. This happens because * has higher
precedence than +, and —, because it’s in parentheses, has higher precedence than *.

This order reversal suggests a stack might be a good place to store the operators while
we're waiting to use them. The last column in Table 4.9 shows the stack contents at
various stages in the translation process.

Popping items from the stack allows you to, in a sense, go backward (right to left)
through the input string. You're not really examining the entire input string, only
the operators and parentheses. They were pushed on the stack when reading the

input, so now you can recall them in reverse order by popping them off the stack.

The operands (A, B, and so on) appear in the same order in infix and postfix, so you
can write each one to the output as soon as you encounter it; they don’t need to be
stored on a stack.

Parsing Arithmetic Expressions 159

Translation Rules

Let’s make the rules for infix-to-postfix translation more explicit. You read items
from the infix input string and take the actions shown in Table 4.10. These actions
are described in pseudocode, a blend of Java and English.

In this table, the < and >= symbols refer to the operator precedence relationship, not
numerical values. The opThis operator has just been read from the infix input, while
the opTop operator has just been popped off the stack.

TABLE 4.10 Infix to Postfix Translation Rules

Item Read from Input Action

(Infix)

Operand Write it to output (postfix)

Open parenthesis (Push it on stack

Close parenthesis) While stack not empty, repeat the following:

Pop an item,
If item is not (, write it to output
Quit loop if item is (
Operator (opThis) If stack empty,
Push opThis
Otherwise,
While stack not empty, repeat:
Pop an item,
If item is (, push it, or
If item is an operator (opTop), and
If opTop < opThis, push opTop, or
If opTop >= opThis, output opTop
Quit loop if opTop < opThis or item is (
Push opThis
No more items While stack not empty,
Pop item, output it.

Convincing yourself that these rules work may take some effort. Tables 4.11, 4.12,
and 4.13 show how the rules apply to three example infix expressions. These tables
are similar to Tables 4.6, 4.7, and 4.8, except that the relevant rules for each step
have been added. Try creating similar tables by starting with other simple infix
expressions and using the rules to translate some of them to postfix.

160 CHAPTER 4 Stacks and Queues

TABLE 4.11 Translation Rules Applied to A+B-C

Character Infix Postfix Stack Rule

Read from Parsed So Written So Contents

Infix Far Far

A A A Write operand to output.

+ A+ A + If stack empty, push opThis.
B A+B AB + Write operand to output.

- A+B- AB Stack not empty, so pop item.

A+B- AB+ opThis is —, opTop is +,

opTop>=opThis, so output
opTop.

A+B- AB+ - Then push opThis.

C A+B-C AB+C - Write operand to output.

End A+B-C AB+C- Pop leftover item, output it.

TABLE 4.12 Translation Rules Applied to A+B*C

Character Infix Postfix Stack Rule

Read From Parsed Written Contents

Infix So Far So Far

A A A Write operand to postfix.

+ A+ A + If stack empty, push opThis.

B A+B AB + Write operand to output.

* A+B* AB + Stack not empty, so pop
opTop.

A+B* AB + opThis is *, opTop is +,
opTop<opThis, so push
opTop.

A+B* AB +* Then push opThis.

C A+B*C ABC +* Write operand to output.

End A+B*C ABC* + Pop leftover item, output it.
A+B*C ABC*+ Pop leftover item, output it.

TABLE 4.13 Translation Rules Applied to A*(B+C)

Character Infix Postfix Stack Rule

Read From Parsed Written Contents

Infix So Far So Far

A A A Write operand to postfix.

* A* A * If stack empty, push opThis.

(AX(A *(Push (on stack.

Parsing Arithmetic Expressions

TABLE 4.13 Continued

Character Infix Postfix Stack Rule

Read From Parsed Written Contents

Infix So Far So Far

B A*(B AB *(Write operand to postfix.

+ A*(B+ AB * Stack not empty, so pop item.
A*(B+ AB *(It’s (, so push it.
A*(B+ AB *(+ Then push opThis.

C A*(B+C ABC *(+ Write operand to postfix.

) A*(B+C) ABC+ *(Pop item, write to output.
A*(B+C) ABC+ * Quit popping if (.

End A*(B+C) ABC+* Pop leftover item, output it.

Java Code to Convert Infix to Postfix
Listing 4.7 shows the infix.java program, which uses the rules from Table 4.10 to
translate an infix expression to a postfix expression.

LISTING 4.7 The infix.java Program

/] infix.java
/] converts infix arithmetic expressions to postfix
/] to run this program: C>java InfixApp
import java.io.*; /] for I/0
LELETEEEEEEL i i r il
class StackX
{
private int maxSize;
private char[] stackArray;
private int top;

R
public StackX(int s) /| constructor
{
maxSize = s;
stackArray = new char[maxSize];
top = -1;
}
R
public void push(char j) // put item on top of stack
{ stackArray[++top] = j; }
] m e oo

public char pop() /| take item from top of stack

161

162

CHAPTER 4 Stacks and Queues

LISTING 4.7 Continued

{ return stackArray[top--]; }

public char peek() /| peek at top of stack
{ return stackArray[top]; }

public boolean isEmpty() // true if stack is empty
{ return (top == -1); }

public int size() /] return size
{ return top+1; }

public char peekN(int n) // return item at index n
{ return stackArray[n]; }

public void displayStack(String s)
{
System.out.print(s);
System.out.print("Stack (bottom-->top): ");
for(int j=0; j<size(); j++)
{
System.out.print(peekN(j));
System.out.print(' ');
}
System.out.println("");

} // end class StackX
LEEETELEEEEEEEEEE b r i i e r i rr i rll
class InToPost /] infix to postfix conversion

{

private StackX theStack;

private String input;

private String output = "";

public InToPost(String in) /| constructor
{
input = in;
int stackSize = input.length();
theStack = new StackX(stackSize);

Parsing Arithmetic Expressions

LISTING 4.7 Continued

public String doTrans() // do translation to postfix
{
for(int j=0; j<input.length(); j++)
{

char ch = input.charAt(j);
theStack.displayStack("For "+ch+" "); // *diagnostic*

switch(ch)
{
case '+': /] it's + or -
case '-':
gotOper(ch, 1); /] go pop operators
break; /] (precedence 1)
case '*': /] it's * or /
case '/':
gotOper(ch, 2); /] go pop operators
break; /] (precedence 2)
case '(': /] it's a left paren
theStack.push(ch); // push it
break;
case ')': /] it's a right paren
gotParen(ch); /] go pop operators
break;
default: /] must be an operand
output = output + ch; // write it to output
break;
} // end switch
} // end for
while(!theStack.isEmpty()) // pop remaining opers
{

theStack.displayStack("While "); // *diagnostic*
output = output + theStack.pop(); // write to output

}
theStack.displayStack("End "); /] *diagnostic*
return output; /] return postfix
} // end doTrans()
[mm e e
public void gotOper(char opThis, int precl)
{ // got operator from input
while(!theStack.isEmpty())
{

char opTop = theStack.pop();

163

164 CHAPTER 4 Stacks and Queues

LISTING 4.7 Continued

if(opTop == '(') /] if it's a ‘('
{
theStack.push(opTop); /] restore '(
break;
}
else // it's an operator
{
int prec2; // precedence of new op
if (opTop=="+"' || opTop=='-') // find new op prec
prec2 = 1;
else
prec2 = 2;
if(prec2 < prect) // if prec of new op less
{ /] than prec of old
theStack.push(opTop); // save newly-popped op
break;
}
else /] prec of new not less

output = output + opTop; // than prec of old
} // end else (it's an operator)
} // end while
theStack.push(opThis); // push new operator
} /] end gotOp()

R
public void gotParen(char ch)
{ // got right paren from input
while(!theStack.isEmpty())
{
char chx = theStack.pop();
if(chx == "(') /] if popped ' ('
break; // we're done
else // if popped operator
output = output + chx; // output it
} // end while
} 1/ end popOps ()
R

} // end class InToPost
LEECEEEEEEEETL i nr i i rnr i rrr i irr il
class InfixApp

{

Parsing Arithmetic Expressions 165

LISTING 4.7 Continued

public static void main(String[] args) throws IOException
{
String input, output;
while(true)
{
System.out.print("Enter infix: ");
System.out.flush();

input = getString(); // read a string from kbd
if(input.equals("")) // quit if [Enter]
break;

// make a translator
InToPost theTrans = new InToPost(input);
output = theTrans.doTrans(); // do the translation
System.out.println("Postfix is " + output + '\n');
} // end while
} // end main()

R
public static String getString() throws IOException
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;
}
R

} /] end class InfixApp
LHETELETTLLETE LT T T

The main() routine in the InfixApp class asks the user to enter an infix expression.
The input is read with the readString() utility method. The program creates an
InToPost object, initialized with the input string. Then it calls the doTrans() method
for this object to perform the translation. This method returns the postfix output
string, which is displayed.

The doTrans() method uses a switch statement to handle the various translation rules
shown in Table 4.10. It calls the gotOper() method when it reads an operator and the
gotParen() method when it reads a closing parenthesis,). These methods implement
the second two rules in the table, which are more complex than other rules.

We've included a displayStack() method to display the entire contents of the stack
in the StackX class. In theory, this isn’t playing by the rules; you're supposed to
access the item only at the top. However, as a diagnostic aid, this routine is useful if

166

CHAPTER 4 Stacks and Queues

you want to see the contents of the stack at each stage of the translation. Here’s
some sample interaction with infix.java:

Enter infix: A*(B+C)-D/(E+F)
bottom-

For
For
For
For
For
For
For
For
For
For
For
For
For

A

*

—_ O + W —

Stack
Stack
Stack
Stack
Stack
Stack
Stack

- Stack

Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack

bottom- -
bottom- -
bottom- -
bottom- -
bottom- -
bottom- -
bottom- -
bottom- -
(bottom- -

(->top):
(bottom- -
(bottom- -
(bottom- -
(bottom- -
(bottom- -
(bottom- -
(bottom- -
(bottom- -
(
(
(
(
(
(
(
(

Postfix is ABC+*DEF+/-

*
+ o+

o — — — —
+ +

The output shows where the displayStack() method was called (from the for loop,
the while loop, or at the end of the program) and, within the for loop, what
character has just been read from the input string.

You can use single-digit numbers like 3 and 7 instead of symbols like A and B.
They’re all just characters to the program. For example:

Enter

For
For
For
For
For

While
While

End

infix:

Stack
Stack
Stack
Stack
Stack
Stack
Stack
Stack

2+3*4

(bottom- -
(bottom- -
(bottom- -
(bottom- -
(bottom- -
(bottom- -
(bottom- -
(bottom- -

Postfix is 234*+

+ 4+ + o+ o+
* *

Of course, in the postfix output, the 234 means the separate numbers 2, 3, and 4.

Parsing Arithmetic Expressions

The infix.java program doesn’t check the input for errors. If you type an incorrect
infix expression, the program will provide erroneous output or crash and burn.

Experiment with this program. Start with some simple infix expressions, and see if
you can predict what the postfix will be. Then run the program to verify your
answer. Pretty soon, you'll be a postfix guru, much sought after at cocktail parties.

Evaluating Postfix Expressions

As you can see, converting infix expressions to postfix expressions is not trivial. Is all
this trouble really necessary? Yes, the payoff comes when you evaluate a postfix
expression. Before we show how simple the algorithm is, let’s examine how a human
might carry out such an evaluation.

How Humans Evaluate Postfix
Figure 4.16 shows how a human can evaluate a postfix expression using visual
inspection and a pencil.

FIGURE 4.16 Visual approach to postfix evaluation of 345+*612+/-.

Start with the first operator on the left, and draw a circle around it and the two
operands to its immediate left. Then apply the operator to these two operands—
performing the actual arithmetic—and write down the result inside the circle. In the
figure, evaluating 4+5 gives 9.

Now go to the next operator to the right, and draw a circle around it, the circle you
already drew, and the operand to the left of that. Apply the operator to the previous
circle and the new operand, and write the result in the new circle. Here 3*9 gives 27.
Continue this process until all the operators have been applied: 1+2 is 3, and 6/3 is
2. The answer is the result in the largest circle: 27-2 is 25.

Rules for Postfix Evaluation

How do we write a program to reproduce this evaluation process? As you can see,
each time you come to an operator, you apply it to the last two operands you've

seen. This suggests that it might be appropriate to store the operands on a stack.

167

168

CHAPTER 4 Stacks and Queues

(This is the opposite of the infix-to-postfix translation algorithm, where operators
were stored on the stack.) You can use the rules shown in Table 4.14 to evaluate
postfix expressions.

TABLE 4.14 Evaluating a Postfix Expression

Item Read from Postfix Action

Expression

Operand Push it onto the stack.

Operator Pop the top two operands from the stack and apply the operator to

them. Push the result.

When you’re done, pop the stack to obtain the answer. That'’s all there is to it. This
process is the computer equivalent of the human circle-drawing approach of Figure
4.16.

Java Code to Evaluate Postfix Expressions

In the infix-to-postfix translation, we used symbols (A, B, and so on) to stand for
numbers. This approach worked because we weren’t performing arithmetic opera-
tions on the operands but merely rewriting them in a different format.

Now we want to evaluate a postfix expression, which means carrying out the arith-
metic and obtaining an answer. Thus, the input must consist of actual numbers. To
simplify the coding, we’ve restricted the input to single-digit numbers.

Our program evaluates a postfix expression and outputs the result. Remember
numbers are restricted to one digit. Here’s some simple interaction:

Enter postfix: 57+

5 Stack (bottom-->top):

7 Stack (bottom-->top): 5

+ Stack (bottom-->top): 5 7
Evaluates to 12

You enter digits and operators, with no spaces. The program finds the numerical
equivalent. Although the input is restricted to single-digit numbers, the results are
not; it doesn’t matter if something evaluates to numbers greater than 9. As in the
infix.java program, we use the displayStack() method to show the stack contents at
each step. Listing 4.8 shows the postfix.java program.

LISTING 4.8 The postfix.java Program

/| postfix.java
/| parses postfix arithmetic expressions
// to run this program: C>java PostfixApp

Parsing Arithmetic Expressions

LISTING 4.8 Continued

import java.io.*; /] for I/0
NNy,
class StackX

{

private int maxSize;

private int[] stackArray;

private int top;

[mm e e
public StackX(int size) /] constructor
{
maxSize = size;
stackArray = new int[maxSize];
top = -1;
}
R
public void push(int j) /] put item on top of stack
{ stackArray[++top] = j; }
R
public int pop() /| take item from top of stack
{ return stackArray[top--]; }
R
public int peek() /] peek at top of stack
{ return stackArray[top]; }
R
public boolean isEmpty() /] true if stack is empty
{ return (top == -1); }
R
public boolean isFull() /] true if stack is full
{ return (top == maxSize-1); }
R
public int size() /] return size
{ return top+1; }
R
public int peekN(int n) /] peek at index n
{ return stackArray[n]; }
[mm s e

public void displayStack(String s)
{
System.out.print(s);
System.out.print("Stack (bottom-->top): ");
for(int j=0; j<size(); j++)

169

CHAPTER 4 Stacks and Queues

LISTING 4.8 Continued

{
System.out.print(peekN(j));
System.out.print(' ');

}
System.out.println("");

} /] end class StackX
LEPETELEEEEEEEEE Tt rr
class ParsePost

{

private StackX theStack;

private String input;

R
public ParsePost(String s)
{ input = s; }
LR
public int doParse()
{
theStack = new StackX(20); // make new stack
char ch;
int j;

int numi, num2, interAns;

for(j=0; j<input.length(); j++) /| for each char,
{
ch = input.charAt(j); /] read from input
theStack.displayStack(""+ch+" "); // *diagnostic*
if(ch >= '0' && ch <= '9") /] if it's a number
theStack.push((int)(ch-'0")); // push it
else /] it's an operator
{
num2 = theStack.pop(); /| pop operands
numi = theStack.pop();
switch(ch) // do arithmetic
{
case '+':
interAns = num1 + num2;
break;
case '-':

interAns = num1 - num2;

Parsing Arithmetic Expressions

LISTING 4.8 Continued

break;
case '*':
interAns = numl * num2;
break;
case '/':
interAns = numl / num2;
break;
default:
interAns = 0;
} // end switch
theStack.push(interAns); /] push result
} // end else
} // end for
interAns = theStack.pop(); /] get answer

return interAns;
} // end doParse()
} // end class ParsePost
LEPTTELLEIEL LI r i i il
class PostfixApp

{
public static void main(String[] args) throws IOException
{
String input;
int output;
while(true)

{
System.out.print("Enter postfix: ");
System.out.flush();

input = getString(); // read a string from kbd
if(input.equals("")) // quit if [Enter]
break;

/| make a parser
ParsePost aParser = new ParsePost(input);
output = aParser.doParse(); // do the evaluation
System.out.println("Evaluates to " + output);
} // end while
} // end main()

public static String getString() throws IOException
{

171

172

CHAPTER 4 Stacks and Queues

LISTING 4.8 Continued

InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);

String s = br.readLine();

return s;

} /] end class PostfixApp
LIPTLLEETEEE LT

The main() method in the PostfixApp class gets the postfix string from the user and
then creates a ParsePost object, initialized with this string. It then calls the doParse()
method of ParsePost to carry out the evaluation.

The doParse () method reads through the input string character by character. If the
character is a digit, it’s pushed onto the stack. If it's an operator, it’s applied immedi-
ately to the two operators on the top of the stack. (These operators are guaranteed to
be on the stack already because the input string is in postfix notation.)

The result of the arithmetic operation is pushed onto the stack. After the last charac-
ter (which must be an operator) is read and applied, the stack contains only one
item, which is the answer to the entire expression.

Here’s some interaction with more complex input: the postfix expression
345+*612+/-, which we showed a human evaluating in Figure 4.16. This expression
corresponds to the infix 3*(4+5)-6/(1+2). (We saw an equivalent translation using
letters instead of numbers in the previous section: A*(B+C)-D/(E+F) in infix is
ABC+*DEF+/- in postfix.) Here’s how the postfix is evaluated by the postfix.java
program

Enter postfix: 345+*612+/-
3 Stack (bottom-->top):

4 Stack (bottom-->top): 3

5 Stack (bottom-->top): 3 4

+ Stack (bottom-->top): 3 4 5

* Stack (bottom-->top): 3 9

6 Stack (bottom-->top): 27

1 Stack (bottom-->top): 27 6

2 Stack (bottom-->top): 27 6 1

+ Stack (bottom-->top): 27 6 1 2
| Stack (bottom-->top): 27 6 3

- Stack (bottom-->top): 27 2
Evaluates to 25

Summary

As with the infix.java program (Listing 4.7), postfix.java doesn’t check for input
errors. If you type in a postfix expression that doesn’t make sense, results are
unpredictable.

Experiment with the program. Trying different postfix expressions and seeing how
they’re evaluated will give you an understanding of the process faster than reading
about it.

Summary

Stacks, queues, and priority queues are data structures usually used to simplify
certain programming operations.

In these data structures, only one data item can be accessed.
A stack allows access to the last item inserted.

The important stack operations are pushing (inserting) an item onto the top of
the stack and popping (removing) the item that’s on the top.

A queue allows access to the first item that was inserted.

The important queue operations are inserting an item at the rear of the queue
and removing the item from the front of the queue.

A queue can be implemented as a circular queue, which is based on an array in
which the indices wrap around from the end of the array to the beginning.

A priority queue allows access to the smallest (or sometimes the largest) item.

The important priority queue operations are inserting an item in sorted order
and removing the item with the smallest key.

These data structures can be implemented with arrays or with other
mechanisms such as linked lists.

Ordinary arithmetic expressions are written in infix notation, so-called because
the operator is written between the two operands.

In postfix notation, the operator follows the two operands.

Arithmetic expressions are typically evaluated by translating them to postfix
notation and then evaluating the postfix expression.

A stack is a useful tool both for translating an infix to a postfix expression and
for evaluating a postfix expression.

173

174 CHAPTER 4 Stacks and Queues

Questions

These questions are intended as a self-test for readers. Answers may be found in
Appendix C.

1. Suppose you push 10, 20, 30, and 40 onto the stack. Then you pop three items.
Which one is left on the stack?

2. Which of the following is true?

a. The pop operation on a stack is considerably simpler than the remove
operation on a queue.

b. The contents of a queue can wrap around, while those of a stack cannot.
c. The top of a stack corresponds to the front of a queue.

d. In both the stack and the queue, items removed in sequence are taken
from increasingly high index cells in the array.

3. What do LIFO and FIFO mean?

4. True or False: A stack or a queue often serves as the underlying mechanism on
which an ADT array is based.

5. Assume an array is numbered with index O on the left. A queue representing a
line of movie-goers, with the first to arrive numbered 1, has the ticket window
on the right. Then

a. there is no numerical correspondence between the index numbers and
the movie-goer numbers.

b. the array index numbers and the movie-goer numbers increase in
opposite left-right directions.

c. the array index numbers correspond numerically to the locations in the
line of movie-goers.

d. the movie-goers and the items in the array move in the same direction.

6. As other items are inserted and removed, does a particular item in a queue
move along the array from lower to higher indices, or higher to lower?

7. Suppose you insert 15, 25, 35, and 45 into a queue. Then you remove three
items. Which one is left?

8. True or False: Pushing and popping items on a stack and inserting and
removing items in a queue all take O(N) time.

10.

11.

12.

13.

14.

Questions

A queue might be used to hold

a.
b.
c.

d.

the items to be sorted in an insertion sort.
reports of a variety of imminent attacks on the star ship Enterprise.
keystrokes made by a computer user writing a letter.

symbols in an algebraic expression being evaluated.

Inserting an item into a typical priority queue takes what big O time?

The term priority in a priority queue means that

a.
b.
c.

d.

the highest priority items are inserted first.
the programmer must prioritize access to the underlying array.
the underlying array is sorted by the priority of the items.

the lowest priority items are deleted first.

True or False: At least one of the methods in the priorityQ.java program
(Listing 4.6) uses a linear search.

One difference between a priority queue and an ordered array is that

a.

d.

the lowest-priority item cannot be extracted easily from the array as it
can from the priority queue.

the array must be ordered while the priority queue need not be.

the highest priority item can be extracted easily from the priority queue
but not from the array.

All of the above.

Suppose you based a priority queue class on the OrdArray class in the
orderedArray.java program (Listing 2.4) in Chapter 2, “Arrays.” This will buy
you binary search capability. If you wanted the best performance for your
priority queue, would you need to modify the OrdArray class?

15. A priority queue might be used to hold

a.

b.

passengers to be picked up by a taxi from different parts of the city.
keystrokes made at a computer keyboard.
squares on a chessboard in a game program.

planets in a solar system simulation.

175

176

CHAPTER 4 Stacks and Queues

Experiments

Carrying out these experiments will help to provide insights into the topics covered
in the chapter. No programming is involved.

1.

Start with the initial configuration of the Queue Workshop applet. Alternately
remove and insert items. (This way, you can reuse the deleted key value for the
new item without typing it.) Notice how the group of four items crawls up to
the top of the queue and then reappears at the bottom and keeps climbing.

Using the PriorityQ Workshop applet, figure out the positions of the Front and
Rear arrows when the priority queue is full and when it is empty. Why can't a
priority queue wrap around like an ordinary queue?

. Think about how you remember the events in your life. Are there times when

they seem to be stored in your brain in a stack? In a queue? In a priority
queue?

Programming Projects

Writing programs that solve the Programming Projects helps to solidify your under-
standing of the material and demonstrates how the chapter’s concepts are applied.
(As noted in the Introduction, qualified instructors may obtain completed solutions
to the Programming Projects on the publisher’s Web site.)

4.1

4.2

4.3

4.4

Write a method for the Queue class in the queue.java program (Listing 4.4) that
displays the contents of the queue. Note that this does not mean simply
displaying the contents of the underlying array. You should show the queue
contents from the first item inserted to the last, without indicating to the
viewer whether the sequence is broken by wrapping around the end of the
array. Be careful that one item and no items display properly, no matter where
front and rear are.

Create a Deque class based on the discussion of deques (double-ended queues) in
this chapter. It should include insertLeft(), insertRight(), removeLeft(),
removeRight (), isEmpty(), and isFull() methods. It will need to support wrap-
around at the end of the array, as queues do.

Write a program that implements a stack class that is based on the Deque class
in Programming Project 4.2. This stack class should have the same methods
and capabilities as the StackX class in the stack.java program (Listing 4.1).

The priority queue shown in Listing 4.6 features fast removal of the high-prior-
ity item but slow insertion of new items. Write a program with a revised
PriorityQ class that has fast O(1) insertion time but slower removal of the high-
priority item. Include a method that displays the contents of the priority
queue, as suggested in Programming Project 4.1.

Programming Projects 177

4.5 Queues are often used to simulate the flow of people, cars, airplanes, transac-
tions, and so on. Write a program that models checkout lines at a supermarket,
using the Queue class from the queue.java program (Listing 4.4). Several lines of
customers should be displayed; you can use the display() method of
Programming Project 4.1. You can add a new customer by pressing a key. You'll
need to determine how the customer will decide which line to join. The check-
ers will take random amounts of time to process each customer (presumably
depending on how many groceries the customer has). Once checked out, the
customer is removed from the line. For simplicity, you can simulate the passing
of time by pressing a key. Perhaps every keypress indicates the passage of one
minute. (Java, of course, has more sophisticated ways to handle time.)

5 IN THIS CHAPTER

Linked Lists "™

¢ A Simple Linked List

e Finding and Deleting

I Specified Links
n Chapter 2, “Arrays,” we saw that arrays had certain

disadvantages as data storage structures. In an unordered * Double-Ended Lists
array, searching is slovy, whereas in an ord.ered' array, inser- Linked-List Efficiency
tion is slow. In both kinds of arrays, deletion is slow. Also,

the size of an array can’t be changed after it’s created. e Abstract Data Types
In this chapter we’ll look at a data storage structure that e Sorted Lists

solves some of these problems: the linked list. Linked lists
are probably the second most commonly used general-
purpose storage structures after arrays. o |terators

 Doubly Linked Lists

The linked list is a versatile mechanism suitable for use in
many kinds of general-purpose databases. It can also
replace an array as the basis for other storage structures
such as stacks and queues. In fact, you can use a linked list
in many cases in which you use an array, unless you need
frequent random access to individual items using an index.

Linked lists aren’t the solution to all data storage problems,
but they are surprisingly versatile and conceptually simpler
than some other popular structures such as trees. We'll
investigate their strengths and weaknesses as we go along.

In this chapter we’ll look at simple linked lists, double-
ended lists, sorted lists, doubly linked lists, and lists with
iterators (an approach to random access to list elements).
We'll also examine the idea of Abstract Data Types (ADTs),
and see how stacks and queues can be viewed as ADTs and
how they can be implemented as linked lists instead of
arrays.

Links

In a linked list, each data item is embedded in a link. A
link is an object of a class called something like Link.
Because there are many similar links in a list, it makes
sense to use a separate class for them, distinct from the

180

CHAPTER 5 Linked Lists

linked list itself. Each Link object contains a reference (usually called next) to the
next link in the list. A field in the list itself contains a reference to the first link. This
relationship is shown in Figure 5.1.

Linked List
A—
Link Link Link Link
Data Data Data Data
first J—) next next next next
— Null

FIGURE 5.1 Links in a list.

Here's part of the definition of a class Link. It contains some data and a reference to
the next link:

class Link
{
public int iData; // data
public double dData; // data
public Link next; // reference to next link
}

This kind of class definition is sometimes called self-referential because it contains a
field—called next in this case—of the same type as itself.

We show only two data items in the link: an int and a double. In a typical applica-
tion there would be many more. A personnel record, for example, might have name,
address, Social Security number, title, salary, and many other fields. Often an object
of a class that contains this data is used instead of the items:

class Link
{
public inventoryItem iI; // object holding data
public Link next; /| reference to next link
}

References and Basic Types

You can easily get confused about references in the context of linked lists, so let’s
review how they work.

Links 181

Being able to put a field of type Link inside the class definition of this same type may
seem odd. Wouldn'’t the compiler be confused? How can it figure out how big to
make a Link object if a link contains a link and the compiler doesn’t already know
how big a Link object is?

The answer is that in Java a Link object doesn’t really contain another Link object,
although it may look like it does. The next field of type Link is only a reference to
another link, not an object.

A reference is a number that refers to an object. It's the object’s address in the
computer’s memory, but you don’t need to know its value; you just treat it as a
magic number that tells you where the object is. In a given computer/operating
system, all references, no matter what they refer to, are the same size. Thus, it’s no
problem for the compiler to figure out how big this field should be and thereby
construct an entire Link object.

Note that in Java, primitive types such as int and double are stored quite differently
than objects. Fields containing primitive types do not contain references, but actual
numerical values like 7 or 3.14159. A variable definition like

double salary = 65000.00;

creates a space in memory and puts the number 65000.00 into this space. However, a
reference to an object like

Link aLink = someLink;

puts a reference to an object of type Link, called someLink, into aLink. The someLink

object itself is located elsewhere. It isn’t moved, or even created, by this statement; it
must have been created before. To create an object, you must always use new:

Link someLink = new Link();
Even the someLink field doesn’t hold an object; it’s still just a reference. The object is
somewhere else in memory, as shown in Figure 5.2.

Other languages, such as C++, handle objects quite differently than Java. In C++ a
field like

Link next;

actually contains an object of type Link. You can’t write a self-referential class defini-
tion in C++ (although you can put a pointer to a Link in class Link; a pointer is
similar to a reference). C++ programmers should keep in mind how Java handles
objects; this usage may be counter-intuitive.

182 CHAPTER 5 Linked Lists

— alink

— someLink

aLink and
someLink
refer to
an object
of type
link

— object of type Link

AN

Memory

FIGURE 5.2 Objects and references in memory.

Relationship, Not Position

Let’s examine one of the major ways in which linked lists differ from arrays. In an
array each item occupies a particular position. This position can be directly accessed
using an index number. It’s like a row of houses: You can find a particular house
using its address.

In a list the only way to find a particular element is to follow along the chain of
elements. It's more like human relations. Maybe you ask Harry where Bob is. Harry
doesn’t know, but he thinks Jane might know, so you go and ask Jane. Jane saw Bob
leave the office with Sally, so you call Sally’s cell phone. She dropped Bob off at

The LinkList Workshop Applet 183

Peter’s office, so...but you get the idea. You can’t access a data item directly; you
must use relationships between the items to locate it. You start with the first item, go
to the second, then the third, until you find what you’re looking for.

The LinkList Workshop Applet

The LinkList Workshop applet provides three list operations. You can insert a new
data item, search for a data item with a specified key, and delet