
Lecture Notes in Computer Science 2025
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Michael Kaufmann Dorothea Wagner (Eds.)

Drawing Graphs

Methods and Models

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Michael Kaufmann
University of Tübingen, Wilhelm Schickard Institute for Computer Science
Sand 13, 72076 Tübingen, Germany
E-mail: mk@informatik.uni-tuebingen.de

Dorothea Wagner
University of Konstanz, Department of Computer & Information Science
Box D 188, 78457 Konstanz, Germany
E-mail: Dorothea.Wagner@uni-konstanz.de

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Drawing graphs : methods and models / Michael Kaufmann ; Dorothea
Wagner (ed.). - Berlin ; Heidelberg ; NewYork ; Barcelona ; Hong Kong ;
London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2001

(Lecture notes in computer science ; 2025)
ISBN 3-540-42062-2

CR Subject Classification (1998): G.2, I.3, F.2

ISSN 0302-9743
ISBN 3-540-42062-2 Springer-Verlag Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg NewYork
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 10782379 06/3142 5 4 3 2 1 0

Preface

Drawings are an attractive and effective way of conveying information. Graph
Drawing includes all aspects of visualizing structural relations between ob-
jects. The range of topics extends from graph algorithms, graph theory, ge-
ometry and topology, to visual languages, visual perception, and informa-
tion visualization, and to computer-human interaction and graphics design.
Clearly, the design of appropriate drawings is a complex and costly task where
automation is urgently required.

The automated generation of graph drawings has important applications
in many areas of computer science, such as compilers, data bases, software
engineering, VLSI and network design, and graphical interfaces. Applications
in other areas include graphical data analysis (e.g. in all fields of engineering,
biology, or social sciences) and the visualization of information in general
(e.g. by flow charts, schematic maps, or all kinds of diagrams).

The purpose of this book is to give an overview of the state of the art
in graph drawing. It concentrates on algorithmic aspects, with an emphasis
on interesting visualization problems with elegant solution methods. Each
chapter provides a survey of some part of the field; in addition some se-
lected results are described in more detail. This approach should make the
book suitable for a first introduction as well as a good basis for an advanced
course, where it may be supplemented by other sources. There is no claim of
completeness – graph drawing is a very dynamic area – so the reader should
be aware of the possibility that further progress might have been made since
the publication of this book. There is also a chance that we may have failed
to notice some subjects, since the necessity of drawing graphs arises in so
many different areas.

The rapid growth of graph drawing as a field has caused some incon-
sistencies in terminology: terms like “drawing”, “layout”, “representation”,
or “model” are often used with different meanings. The authors have tried
to achieve consistent notation; this has not always been possible without
breaking with existing conventions, and we apologize for all remaining incon-
sistencies.

The book arose from a seminar for young computer scientists. The idea of
the “GI Research Seminars” is to provide young researchers with the oppor-
tunity to gain insight into a new, relevant, and interesting area of computer

VI Preface

science. The topics were chosen and prepared by the organizers. Lectures
on the topics were then presented by the young researchers at the research
seminar, which took place in April 1999 at Schloß Dagstuhl. Based on the
presentations and discussions during the seminar, each chapter was elabo-
rated by a team of authors, and carefully reviewed by other participants of
the seminar. In addition, we obtained expert advice from Therese Biedl and
David Wood. They provided detailed comments and improvements on several
chapters in a preliminary version of the book.

The material covered in this book can be organized in various ways. How-
ever, a strict separation of topics according to, e.g., models, representations,
or methods, would inevitably lead to an artificial distinction between topics
that are in fact closely related with respect to some other aspect. There-
fore, we decided to do without a strict partition into chapters under a single
category of distinction, but rather provide cross-pointers where appropriate.

In the first chapter, Rudolf Fleischer and Colin Hirsch review some ap-
plication areas. They discuss the traditional applications of graph drawing
like ER-diagrams or software engineering, but also some of the areas that are
less related to computer science like social networks or workflow. From those
applications, different tasks and basic techniques are derived such that the
reader can get some motivation to learn of the methods to solve the tasks.

We then start from a more graph-theoretic point of view. Planarity is a
classical topic in graph theory and algorithms, and an important and central
aspect in graph drawing as well. René Weiskircher reviews basic algorithms
related to planar graphs (planarity tests, st-orderings, etc.). He then turns
to simple and advanced drawing algorithms for straight-line and related rep-
resentations of planar graphs.

In the following chapter, some further special classes of graphs are con-
sidered by Matthias Müller-Hannemann. Drawing algorithms for trees and
series-parallel graphs typically use their recursive structure. A closely related
issue is the drawing of order diagrams and lattices, which is summarized as
well. Although at first sight, this topic seems to be only of special interest,
the algorithms presented have direct applications since many structures to
be visualized are just trees or series-parallel.

In the chapter on methods based on physical analogies, Ulrik Brandes
gives an overview of the ideas behind the so-called spring embedder and its
variants. These methods work by iterative improvement. Related methods to
compute a minimum of the objective function directly are included as well.
In the last subsection, the reader gets an idea of the wide field of possible
applications of the underlying principle which ranges from clustering and 3D
to dynamics and constraints.

A classical topic in graph drawing which cannot be missed in a review
like this is an approach supporting layered drawings. This method is mainly
used to display temporal structures like workflow or other unidirectional de-
pendencies. Several interesting methodological questions like the maximal

Preface VII

acyclic subgraph problem and the level-wise crossing minimization problem
are discussed in this chapter by Oliver Bastert and Christian Matuszewski.

A long chapter is devoted to orthogonal layouts, written by Markus Eigls-
perger, Sándor P. Fekete, and Gunnar W. Klau. Historically, the first meth-
ods for orthogonal layouts were developed in the context of VLSI routing and
placement. Changing some of the criteria gave room for improvements and
variations like visibility representations. After the review of some heuristics
for planar and nonplanar graphs, a very elegant flow-based approach to solve
the bend-minimization problem for planar graphs is considered in the second
part of the chapter. The final part is devoted to compaction, i.e., the post-
processing phase where the components of the layout are squeezed together
to save area, edge length, or bends. Here again, VLSI methods are reviewed
and new LP-based methods are presented that solve the compaction problem
regarding some specific criteria to optimality.

The methods described in chapters 1–5 are fundamental. The following are
more advanced and mostly arise from application demands such as labeling,
clustering and hierarchies, dynamics and interactiveness, or 3D.

The generalization from drawing in the plane to 3D graph drawing is
discussed by Britta Landgraf. Various representations are covered. Starting
from force-directed methods and layered approaches such as cone trees, she
reviews the most important techniques of orthogonal routing in 3D in more
detail and ends with the discussion on finding the best point from which to
view a three-dimensional structure.

Handling large graphs is an important problem where some new meth-
ods are needed. Sabine Cornelsen and Ralf Brockenauer present some of the
common clustering techniques like partitions and structural clusterings. Fur-
thermore, hierarchical graphs are discussed with the focus on planar drawings
and on the concept of compound graphs as well. Moreover, it is shown how
force-directed methods can be applied to visualize clusters.

Dynamic graph drawing is a very recent and relevant topic. Jürgen Branke
highlights many concepts in this area, like maintaining the mental map and
support of dynamics in orthogonal structures and force-directed approaches.

At first glance, labeling is a side topic in graph drawing. However, labels
arise in nearly all practical applications, and the labeling problem is highly
nontrivial. Gabriele Neyer reviews different labeling models and most impor-
tant methods. Most of them come from the fields of computational geometry,
cartography, and optimization. The various aspects considered include the
relation to satisfyability problems, sliding labels, and the combination with
compaction.

In various aspects graph drawing is motivated by the relevance of visual-
izing relational data in many field of applications. Therefore, software tools
for drawing graphs and algorithms libraries are an important issue in graph
drawing. However, some difficulties about this topic prevented us from mak-
ing it a regular chapter. Many graph drawing tools and libraries have been

VIII Preface

developed over the last few years, but easy access to the tools, stability, and
support are often not guaranteed. Typically, software developed in academia
cannot have the pretension of being “made for eternity”. Moreover, it is hard
to get an overview of the graph drawing tools available, or even reliable infor-
mation about their actual abilities. On the other hand, we thought it would
be useful to share what we knew of some existing systems. In the appendix,
Thomas Willhalm provides an overview of some of the most common systems
for graph drawing.

Finally, it is our pleasure to thank all the people whose contribution has
made this book possible. First and foremost, these are the authors of the
chapters, who not only put a huge amount of work into their own chapters,
but also carefully reviewed other chapters. Special thanks go to Ulrik Brandes,
who supported this project from the very beginning in many ways. Not only
did he do a lot of administrative work in preparation of the research seminar,
but he also inspired the choice of topics and supported the collection of
relevant material. Last but not least, he handled most of the technical parts
of the editing process. Finally, we would like to express our gratitude to the
external experts Therese Biedl and David Wood, who did us the favor of
reviewing several chapters in a preliminary version of the book.

January 2001 Michael Kaufmann
Dorothea Wagner

Table of Contents

1. Graph Drawing and Its Applications
Rudolf Fleischer and Colin Hirsch . 1

1.1 Introduction . 1
1.2 Some Applications . 3
1.3 How to Draw a Graph . 17
1.4 Algorithmic Approaches to Graph Drawing 20
1.5 Conclusion . 21

2. Drawing Planar Graphs
René Weiskircher . 23

2.1 Introduction . 23
2.2 What Is a Planar Graph? . 23
2.3 Planarity Testing . 25
2.4 How to Make a Graph Planar . 29
2.5 How to Make a Planar Graph 2-Connected Planar 31
2.6 Convex Representations . 33
2.7 Methods Based on Canonical Orderings 37

3. Drawing Trees, Series-Parallel Digraphs, and Lattices
Matthias Müller-Hannemann . 46

3.1 Trees . 46
3.2 Series-Parallel Digraphs . 52
3.3 Lattices . 63

4. Drawing on Physical Analogies
Ulrik Brandes . 71

4.1 The Springs . 71
4.2 Force-Directed Placement . 72
4.3 Energy-Based Placement . 78
4.4 Modeling with Forces and Energies . 82

X Table of Contents

5. Layered Drawings of Digraphs
Oliver Bastert and Christian Matuszewski . 87

5.1 Introduction . 87
5.2 Cycle Removal . 89
5.3 Layer Assignment . 96
5.4 Crossing Reduction . 101
5.5 Horizontal Coordinates . 112
5.6 Positioning of Edges . 115
5.7 Related Approaches . 118

6. Orthogonal Graph Drawing
Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau 121

6.1 Introduction . 121
6.2 Angles in Drawings . 122
6.3 Orthogonal Drawings and Their Encoding 126
6.4 Heuristics . 132
6.5 Flow-Based Methods . 147
6.6 Compaction . 155
6.7 Improving Other Aesthetic Criteria . 167
6.8 Conclusions and Open Problems . 170

7. 3D Graph Drawing
Britta Landgraf . 172

7.1 Introduction . 172
7.2 Physical Simulation . 173
7.3 Layering . 174
7.4 3D Orthogonal Drawings of Graphs of Maximum Degree Six . 176
7.5 3D Orthogonal Drawings of Graphs of Arbitrary Degree 182
7.6 Viewpoints . 190

8. Drawing Clusters and Hierarchies
Ralf Brockenauer and Sabine Cornelsen . 193

8.1 Definitions . 193
8.2 Clustering Methods . 197
8.3 Planar Drawings of Hierarchical Clustered Graphs 202
8.4 Hierarchical Representation of Compound Graphs 210
8.5 Force-Directed Methods for Clustered Graphs 216
8.6 Online Graph Drawing of Huge Graphs – A Case Study 222
8.7 Summary . 227

Table of Contents XI

9. Dynamic Graph Drawing
Jürgen Branke . 228

9.1 Introduction . 228
9.2 Maintaining the Mental Map – What Does It Mean? 229
9.3 Coping with the Dynamics . 236
9.4 Conclusion and Future Work . 245

10. Map Labeling with Application to Graph Drawing
Gabriele Neyer . 247

10.1 Formal Background . 248
10.2 Contents and Complexity Overview . 251
10.3 Point Feature Label Placement . 251
10.4 Line Feature Label Placement . 265
10.5 Graphical Feature Label Placement . 268
10.6 General Optimization Strategies Applied to Map Labeling . . . 272

A. Software Packages
Thomas Willhalm . 274

Bibliography . 283

Index . 307

List of Contributors

Editors

Michael Kaufmann
Universität Tübingen
Institut für Informatik
Sand 13
72076 Tübingen, Germany
mk@informatik.uni-tuebingen.de

Dorothea Wagner
Universität Konstanz
Fachbereich Informatik
& Informationswissenschaft
Fach D 188
78457 Konstanz, Germany
Dorothea.Wagner@uni-konstanz.de

Authors

Oliver Bastert
Technische Universität München
Zentrum Mathematik
80290 München, Germany
bastert@mathematik.tu-muenchen.de

Ulrik Brandes
Universität Konstanz
Fachbereich Informatik
& Informationswissenschaft
Fach D 188
78457 Konstanz, Germany
Ulrik.Brandes@uni-konstanz.de

Jürgen Branke
Universität Karlsruhe (TH)
Institut für Angewandte Informatik
und Formale Beschreibungsverfahren
76128 Karlsruhe, Germany
branke@aifb.uni-karlsruhe.de

Ralf Brockenauer
Algorithmic Solutions
Postfach 15 11 01
66041 Saarbrücken, Germany
Ralf.Brockenauer@algorithmic-

solutions.com

Sabine Cornelsen
Universität Konstanz
Fachbereich Informatik
& Informationswissenschaft
Fach D 188
78457 Konstanz, Germany
Sabine.Cornelsen@uni-konstanz.de

Markus Eiglsperger
Universität Tübingen
Institut für Informatik
Sand 13
72076 Tübingen, Germany
eiglsper@informatik.uni-

tuebingen.de

XIV List of Contributors

Sándor P. Fekete
Technische Universität Berlin
Fachbereich Mathematik
Straße des 17. Juni 136
10623 Berlin, Germany
fekete@math.tu-berlin.de

Rudolf Fleischer
The Hong Kong University
of Science and Technology
Department of Computer Science
Clear Water Bay, Kowloon
Hong Kong
rudolf@cs.ust.hk

Colin Hirsch
RWTH Aachen
Lehrstuhl für Informatik VII
52056 Aachen, Germany
hirsch@informatik.rwth-aachen.de

Gunnar W. Klau
Technische Universität Wien E186
Abteilung für Algorithmen
und Datenstrukturen
Favoritenstraße 9–11
1040 Wien, Austria
gunnar@ads.tuwien.ac.at

Britta Landgraf
Universität Bonn
Institut für Informatik I
Römerstraße 164
53117 Bonn, Germany
landgraf@informatik.uni-bonn.de

Christian Matuszewski
Universität Halle-Wittenberg
Institut für Informatik
06099 Halle/Saale, Germany
matuszew@informatik.uni-halle.de

Matthias Müller-Hannemann
Technische Universität Berlin
Fachbereich Mathematik
Straße des 17. Juni 136
10623 Berlin, Germany
mhannema@math.tu-berlin.de

Gabriele Neyer
ETH Zürich
Institut für Theoretische Informatik
CLW B2
8092 Zürich, Switzerland
neyer@inf.ethz.ch

René Weiskircher
Technische Universität Wien E186
Abteilung für Algorithmen
und Datenstrukturen
Favoritenstraße 9–11
1040 Wien, Austria
weiskircher@ads.tuwien.ac.at

Thomas Willhalm
Universität Konstanz
Fachbereich Informatik
& Informationswissenschaft
Fach D 188
78457 Konstanz, Germany
Thomas.Willhalm@uni-konstanz.de

1. Graph Drawing and Its Applications

Rudolf Fleischer and Colin Hirsch

1.1 Introduction

Graph drawing has emerged in recent years as a very lively area in computer
science. We would like to explain in this chapter why this happened and why
graph drawing is an important problem which should interest many people.

First of all, graphs are abstract mathematical objects (see Berge (1993);
West (1996), for example), so why should it be important for non-mathemati-
cians ever to draw one? Many probably would not even know a graph if
they encountered one. One reason might be that people want to visualize
information, i.e., objects and relations between objects. And even if they do
not know it, this is exactly what graphs are designed for: describing relations
between objects. The objects are called nodes, and relations between objects
are called edges. If all relations are between two objects, we have an ordinary
graph, otherwise we have a hypergraph. If the same set of objects is related
in several different ways, we have multiple or parallel edges, and the resulting
graph is a multigraph. A relation between an object and itself is a self-loop.
There are a few more things you should know about graphs, when reading
this book but you do not need to know more in this chapter.

Let’s take an example from daily life. Living in a big city with a subway1,
we are confronted with a graph whenever we use the subway and try to
find out which train to take to our destination. This information is usually
displayed in form of a map, where stations are drawn as circles, and train
lines are drawn as lines connecting the circles (see Figure 1.1). Stations are
labeled by their name, and lines are either labeled by the train number, or
different colors are used to distinguish between different trains. Such a map
can naturally be interpreted as a graph. The circles (stations) are the nodes,
and the lines (trains) connecting the stations are the edges. There are rarely
selfloops, but there might be parallel edges if two train lines connect the same
two stations and both connections are displayed by their own separate line.

We give a second example. People interested in genealogy try to find out
as much as possible about their ancestors and then visualize this information
by drawing a genealogy tree (see Figure 1.2)2. Note that trees are a subclass
of graphs with a very simple structure: there are no cycles, so every two nodes
of the graph are connected by exactly one path. In this sense, in a genealogy
1 There is nothing special about subways here. Just replace ‘subway’ by ‘bus’ if
your city hasn’t got one yet.

2 Actually, genealogy trees are not always trees because marriages can create cy-
cles, for example.

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 1-22, 2001.
 Springer-Verlag Berlin Heidelberg 2001

2 Rudolf Fleischer and Colin Hirsch

Fig. 1.1. Subway map, New York City (MTA, 1999).

tree each person is a node (labeled by the name of the person), and edges
indicate direct decendency.

A natural question arises from these two examples: “What is the best way
to represent a graph (and the information contained in it)?”. Of course, we
could describe a subway map by a list of sentences of the form “Train 1 runs
from station A to station B via stations C, D, and E. At station D you can
change to trains 3 and 11, etc.” And a genealogy tree could easily be described
by sentences of the form “A.B. C married D. E and they had two daughters F
and G, and one son H, etc.”. These verbal descriptions obviously contain all
the information. However, this information is not easily accessible. A better
way to present such data is by drawing a nice picture, i.e., a subway map
or a genealogy tree (remember the proverb “A picture is worth a thousand
words”). While reading the previous paragraphs you probably had a picture
of your home town subway map or the genealogy tree of your family before
your inner eye. This leads us to the problem of graph drawing. If we can
describe our data as a graph, how should we draw the graph such as to best
reveal all its information? In particular, this includes the question of which

1. Graph Drawing and Its Applications 3

Fig. 1.2. Canaan Genealogy.

criteria determine whether a drawing is good or bad. We come back to this
question in Section 1.3 after we have seen a few more applications of graph
drawing in the next section.

1.2 Some Applications

In this section we will give some concrete examples for applications and their
requirements from a user’s point of view. Most applications inherently limit
the types of graphs occuring to some intuitively or formally defined subclass,
for example trees as in the genealogy example given above or graphs with a
natural “layering”. In some cases this can be a significant aid to an automatic
layout algorithm trying to find a “good” drawing of a given graph. In more
general cases, however, the lack of understanding of the intended structure
and semantics of a graph seems to limit the usefulness of automatically drawn
graphs. This does not even take into account that other measures for the
quality of a graph drawing, like aesthetics, are difficult to quantify and even
more difficult to realize in an implementation due to their very individual

4 Rudolf Fleischer and Colin Hirsch

and subjective nature. Further demands are placed on the drawing algorithm
in case of dynamic graph representations, where the graph to be drawn is
modified over time, or in the case of very large graphs.

Most information in this section was gathered by talking to people at
RWTH Aachen, Germany. In all cases graph drawing is not their main re-
search subject. The drawing problem rather arises as by-product doing re-
search on other subjects. Many thanks to Frank Huch, Stephan Kanthak, Ralf
Molitor and Ansgar Schleicher for information, background and pictures on
specification/verification, speech recognition, description logics and workflow
diagrams, respectively.

1.2.1 Word-Graphs

One of the more promising, but also most demanding fields of research in
computer science is speech processing and especially speech recognition. It
is often seen in the context of building more user friendly computer systems
capable of adapting to the human way of communication instead of the other
way round. Of course the human brain and a common digital computer have
entirely different approaches to information processing. This necessitates the
use of complex mathematical methods and algorithms from stochastics and
signal processing to handle natural language in form of speech.

Speech recognition is a process that involves several steps, each trans-
forming the input information to a higher level of abstraction. First the audio
signal is transformed into the frequency domain using cosine transformations
and further normalizing steps. Next the building blocks of our speech, the
phonemes3 are identified. Then, omitting the intermediate step of syllables,
the phonemes are put together to words and the words in turn form sentences.

Experiments have shown that a human listening to speech only recognizes
about 70% of all phonemes correctly. However the higher-level capabilities of
our brain including the so-called language model together with the context
and semantics of what we hear enable us to understand whole sentences with
next to no mistakes. Since speech recognition systems are built to imitate
the behavior of the human brain they cannot be expected to, and indeed do
not, perform better with respect to the phoneme error rate. Consequently,
when transforming speech to text, such a system has to take into account
that some phonemes are not correctly recognized. However, as some pairs of
phonemes are more alike than others, a sane approach is to select a small set
of phonemes which the system believes to have a high probability of faithfully
representing the speach signal at each point in time. Using a dictionary it is
then possible to eliminate most combinations and recognize the correct word
with high probability.

Such a collection of hypothes finds a natural visualization in shape of a
word-graph (Oerder and Ney, 1993). A word-graph is a layered graph, where

3 Phonemes can be thought of as the atoms of speech such as “ah”, “sh”, “mhm”.

1. Graph Drawing and Its Applications 5

consecutive layers represent consecutive time intervals. Each layer consists
of a set of possible phonemes, augmented by additional data such as the
probability of each phoneme. The possible words can be shown as paths
going from layer to layer and so selecting one phoneme out of each layer.

This visualization is not necessary when using speech recognition as end-
user or application developer; however, it is an invaluable debugging tool
for the speech recognition system developer. Currently word-graphs are used
in the VERBMOBIL project (German Research Center for Artificial Intelli-
gence GmbH, 1999; Warnke et al., 1997; Amtrup and Jost, 1996).

#NIB#
61.008

#PAUSE#
650.415

#PAUSE#
589.694

ja
430.842

ja
370.117

ja
368.653

hallo
682.381

hallo
621.357

ich
183.477

w"urde
373.131

gern
484.199
gerne

485.596

#PAUSE#
233.731

#PAUSE#
362.977
#NIB#

359.453
#PAUSE#
296.374

einen
296.330
#NIB#

294.198

einem
984.672

an
374.786

einem
922.165

"ahm
861.036
einem

857.347
einem

549.466
ein

424.620
einen

424.666
Termin
866.411

mit
371.675

Ihnen
361.464

vereinbaren
1503.650
vereinbaren
1562.935

#NIB#
2991.591

#NIB#
2953.566

#PAUSE#
291.687

#NIB#
2602.964

#NIB#
2640.989

#PAUSE#
38.7971

2

3 4

5

6 7 8 9

10

11

12

13

14 15 16 17 18

19

20 21 22 23

Fig. 1.3. Word graph.

Figures 1.3 and 1.4 show two typical word graphs. The horizontal posi-
tions of nodes are given by their points in time. Each edge represents one
hypothesis about the words recognized during the interval given by the two
incident nodes. The most probable path from left to right of the word graph
is emphasized, showing what the system ultimately believes was spoken.

#PAUSE#
840.455

#PAUSE#
590.548

#PAUSE#
649.439

#PAUSE#
712.021

#NIB#
59.763

#NIB#
578.422

#NIB#
374.807

#NIB#
187.287

#NIB#
124.347

#NIB#
247.909

#NIB#
185.808

#NIB#
310.237

#NIB#
246.456

#NIB#
62.859

#NIB#
122.149

#NIB#
251.175

#NIB#
184.245

#NIB#
60.304

#NIB#
124.255

#NIB#
191.185

#NIB#
201.971

#NIB#
66.477

#NIB#
137.322

#NIB#
135.044

ja
630.178

na
263.139

ja
559.218

ja
494.556

ja
421.971
ja

360.599

hallo
780.231

hallo
1020.002
hallo

960.006

also
1024.746

#NIB#
299.617

was
491.947
was

429.896
was

553.966

#NIB#
61.008

was
433.532
was

371.514

von
368.979

dann
305.567
haben

306.379

"ahm
245.016

am
242.639

Sie
190.027

wir
375.669

wir
439.172

gesagt
804.133

sollen
612.815

so
245.174

sein
488.898

ein
307.520

#PAUSE#
994.374

#PAUSE#
934.812

#NIB#
118.320

#NIB#
466.446

#NIB#
3056.659

#NIB#
3095.160

#NIB#
2977.099

#NIB#
2628.935
#PAUSE#

39.439

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

Fig. 1.4. Word graph.

Since the horizontal coordinate of each node is given, the problem of
finding a suitable layout is greatly reduced. This strong limitation of the

6 Rudolf Fleischer and Colin Hirsch

possible node and edge arrangements is the main reason for the graph drawing
problem associated with this application to be solved in practice. That is,
drawing algorithms currently in use produce layouts faithfully representing
the intended meaning of the graph.

The layout algorithm here directly uses the position on the timeline for
the horizontal placement of nodes. The freedom for the vertical positioning
is used to minimize heuristically the number of edge crossings. The labels
are added at the center of the corresponding nodes and edges, respectively.
More on layered graphs can be found in Chapter 5. The placement of labels
in general is considered in Chapter 10.

1.2.2 Specification and Verification

A software system running on a set of distinct machines with the capability
to exchange data and synchronization events via some means of communica-
tion is called a distributed system. The added complexity in designing (the
software for) a distributed system requires more advanced support techniques
compared to dealing with single computing nodes. Various methods to model
and/or verify properties of distributed systems are available.

The basic abstraction underlying these methods looks upon distributed
systems as (finite) transition systems. A transition system in turn can be
defined using so-called process algebras. A process algebra is a formalism
used to describe inductively transition systems and is similar to a grammar
used to describe formal languages. Since states of a distributed system have
to contain the state of each component, the state space grows exponentially
in the number of components.

Therefore a specification for a distributed system is typically broken down
into specifications for each component. These component-wise specifications
contain, besides a set of states and actions or transitions leading from one
state to another, information on which transitions are to be synchronized with
transitions in other components. Given such a specification of each compo-
nent, the transition system modeling the complete distributed system can
be generated automatically. These formal specifications are used for several
purposes.

When writing the software intended to implement a specification, it is
necessary to place procedure calls to communicate with remote components
in the program text whenever an action has to be executed synchronously
at two or more components. Using the formal approach of process algebras
this step can be automated — the specification is in a format that can easily
be machine processed and contains all required information. The benefits of
this approach are twofold. For one the time and consequently the costs of the
programing phase are reduced. Furthermore, one possible cause of errors in
the implementation is eliminated, once the tool converting specifications into
the basic application source code is debugged.

1. Graph Drawing and Its Applications 7

The downside is that using process algebras in the specification process
is rather unintuitive. Before proceeding with further steps it has to be veri-
fied that the written specification is correct with respect to the ideas of the
developers. To overcome this problem, graph drawing is used to give a more
intuitive representation of the transition systems (Indermark et al., 1999).

Fig. 1.5. Component transition diagram.

Figure 1.5 gives an example of a hand-drawn transition system belonging
to one component of a distributed system. This particular example is used
in testing a tool taking a different approach. Here the specification is entered
graphically by the user and machine-translated into an algebraic specification
later. However, the availability of this technology does not obsolete the earlier

8 Rudolf Fleischer and Colin Hirsch

approach and the necessity to automatically layout these graphs, since there
are cases when it is not feasible to use this method, especially when the
specification was machine generated from some other form of description and
creating the graph would add more work.

As can be seen, these graphs come with node and edge labels, giving
information about the states and the actions associated with the transitions,
respectively. Hence a layout algorithm for these graphs should be able to cope
with edge labels. However the greater problem is to layout according to the
semantics of the graph. In this example the top five nodes form a directed
rooted tree, inducing a natural layering on these nodes. The layout chosen
obviously disregards this fact, rather using the semantics of the graph for a
differing layering.

Regarding the lower half of the graph it does not seem clear, from an al-
gorithmic point of view, why the strongly connected nodes necessarily belong
to one layer. The question arises how much additional information an algo-
rithm needs in order to obtain a layout of similar quality? Furthermore, is it
necessary for this information to refer explicitly to the layout (e.g., “nodes
A and B are on the same level”), or is it sufficient to formalize some of the
semantics (e.g., “node C is a rejecting end node”). In favor of flexibility and
intuitivity the second choice would be preferable. However it is unclear how
to formalize or process this kind of data.

Taking the leap from the transition system of an individual component
to that of the whole distributed system most noticably comes with a large
increase in size. Figure 1.6 gives a typical, if rather simple example of a
transition system. Apart from the greater size and complexity in comparison
to the single components, additional requirements arise due to the way the
users work with these graphs.

Besides the behaviour of the single components, it has to be verified that
the whole system satisfies certain requirements. Traditionally these require-
ments are formalized using some temporal logic. Characteristic for these logics
is that they check whether any or all paths in the transition system satisfy
some properties. Hence, especially in the case that the automatic verification
fails, the user needs to trace manually along paths in order to find the error
and adapt the specification.

As can be seen, the layout shown in Figure 1.6 is not well suited. Many
edges cover large distances and as such are difficult to follow. This problem is
further amplified if the graph is too large to fit onto the display and the user
has to scroll the image. A layout algorithm is needed that tries to minimize
the length of the edges. Furthermore it is desirable to be able to select paths
and emphasize them in the drawing. However, optimizing the layout for the
selected path should not completely change the rest of the drawing. After
working with a graph for some time, the so-called “mental map” forms in
the mind of the user. If the layout completely changes each time a path
is examined, the user has to orientate herself anew. Isolating a path and

1. Graph Drawing and Its Applications 9

(2!T[ask, 1])

(2!T[ask, 1])

(2!T[ask, 4])

?(in)

?(T[ask, 1])

(2!T[ask, 1])

?(in)

?(dec)

BeginProp{cs[4]}

?(in)

(3!dec)

(2!T[ask, 1])

(3!inc)

?(in)

EndProp{cs[4]}

?(inc)

(3!dec)

(2!T[ask, 1])

(3!inc)

(4!in)

BeginProp{cs[4]}

(2!T[ask, 1])

?(dec)

(4!in)

EndProp{cs[4]}

(2!T[ask, 1])

?(dec)

(4!in)

?(dec)

?(dec)

BeginProp{cs[4]}

(2!T[ask, 1])

?(dec)

(4!in)

?(inc)

?(inc)

EndProp{cs[4]}

(2!T[ask, 4])

?(inc)

(2!T[exit, 1])

?(inc)

?(dec)

BeginProp{cs[4]}

?(inc)

?(inc)

(2!T[ask, 4])

?(in)

?(dec)

?(dec)

EndProp{cs[1]}

?(in)

?(dec)

?(in)

EndProp{cs[1]}

?(inc)

(2!T[ask, 4])

(1!in)

?(inc)

(2!T[ask, 4])

EndProp{cs[1]}

(1!in)

?(inc)

(2!T[ask, 4])

EndProp{cs[1]}

(1!in)

(2!T[ask, 4])

(2!T[ask, 4])

(3!dec)

?(dec)

(3!inc)

(1!in)

(2!T[ask, 4])

(2!T[ask, 4])

?(dec)

?(inc)

(2!T[ask, 4])

(1!in)

?(inc)

(1!in)

(3!dec)

(1!in)

(3!inc)

?(dec)

?(dec)

(1!in)

?(inc)

?(inc)

(2!T[ask, 4])

(4!in)

BeginProp{cs[1]}

(2!T[ask, 4])

(2!T[ask, 4])

?(in)

BeginProp{cs[1]}

?(in)

(2!T[ask, 4])

?(in)

?(dec)

?(dec)

BeginProp{cs[1]}

?(in) (2!T[ask, 4])?(in) ?(inc)?(inc) BeginProp{cs[1]}

(2!T[ask, 4])

BeginProp{cs[1]}

?(in)

BeginProp{cs[1]}

(2!T[ask, 4])

BeginProp{cs[1]}

?(dec)

?(dec)

?(in)

BeginProp{cs[1]}

(2!T[ask, 4])

?(dec)

?(in)

BeginProp{cs[1]}

?(inc)

?(inc)?(in) BeginProp{cs[1]}

?(dec)

?(inc)

?(in)

BeginProp{cs[1]}

?(in)

(2!T[ask, 4])

?(inc)

(3!dec)

?(T[ask, 1])

(3!inc)

?(T[ask, 1])

(3!dec)

?(dec)

(3!inc)

?(T[ask, 1])

(3!dec)

?(inc)

(3!inc)

?(in)

?(dec)

BeginProp{cs[4]}?(inc)

(3!dec)

(2!T[ask, 4])

(3!inc)

(2!T[exit, 1])

EndProp{cs[4]}

(2!T[ask, 4])

?(dec)

(2!T[exit, 1])

?(in)

?(dec)

?(dec)

(2!T[ask, 4])

?(dec)

(2!T[exit, 1])

BeginProp{cs[4]}

?(inc)

?(dec)

?(dec)

?(dec)

?(inc)

EndProp{cs[4]}

(2!T[ask, 4])

?(in)

EndProp{cs[1]}

?(inc)

EndProp{cs[1]} ?(inc)

EndProp{cs[1]}

?(inc)

?(dec)

BeginProp{cs[4]}

EndProp{cs[1]}

?(inc)

?(inc) ?(inc)EndProp{cs[1]} EndProp{cs[4]}

(4!in)

(4!in)?(dec)(4!in) ?(inc)

?(T[exit, 1])

?(T[exit, 1])

?(dec)

?(T[exit, 1])?(inc)

(2!T[ask, 1])

(2!T[ask, 4])

(2!T[ask, 1])

(2!T[ask, 4]) ?(dec)

(2!T[ask, 1]) (2!T[ask, 4]) ?(inc)

(2!T[ask, 1])

(2!T[ask, 4])

?(T[ask, 4]) ?(T[ask, 4])

?(T[ask, 4]) ?(dec)?(T[ask, 4]) ?(inc)

?(T[exit, 1])

(2!T[ask, 1]) ?(in)

(2!T[ask, 1])(2!T[exit, 4])

(2!T[ask, 1]) BeginProp{cs[4]}

(2!T[ask, 1]) (3!dec)(3!inc)

(2!T[ask, 1]) EndProp{cs[4]}

(2!T[ask, 1]) (3!dec)(3!inc)

(2!T[ask, 1]) BeginProp{cs[4]}

(2!T[ask, 1])(2!T[exit, 4])

(2!T[ask, 1]) ?(dec) EndProp{cs[4]}

(2!T[ask, 1]) ?(dec)

(2!T[ask, 1]) ?(dec) BeginProp{cs[4]}

(2!T[ask, 1]) (2!T[exit, 4])?(dec)

(2!T[ask, 1]) ?(inc) EndProp{cs[4]}

(2!T[ask, 1]) ?(inc)

(2!T[ask, 1]) ?(inc)BeginProp{cs[4]}

(2!T[ask, 1]) (2!T[exit, 4]) ?(inc)

?(T[exit, 4]) ?(T[exit, 4])

?(T[exit, 4])

?(dec)

?(T[exit, 4])

?(inc)

1

42

83

124

2

43

84125 3

44

85

126

4

45

86

127

5

46

87

128

6

47

88

129

7

48

89

130

8

49

90

131

9

50

91

132

10

51

92

133

11

52

93

134

12 53

94

135

13

54

95

136

14

55

96

137

15

56

97

138

16

57

98

139

17

58

99

140 18

59

100

141

19

60

101

142

20

61

102

143

21

62

103

22

63 104

23

64

105

24

65

106

25

66

107

26

67

108

27

68

109

28

69

110

29

70

111

30

71

112

31

72

11332

73

114

33

74

115

34 75

116

35

76

117

36

77

118

37

78

119

38

79

120

39

80121

40

81

122

41

82

123

Fig. 1.6. Full transition diagram.

rendering it into a seperate window would make it difficult to retain the
surrounding for orientation. Dynamic layout and mental maps are considered
in more detail in Chapter 9.

1.2.3 Workflow

Workflow technology has emerged as an important tool in managing vari-
ous types of business processes. This includes purely administrative tasks
such as keeping track of employee holiday requests or processing orders from
customers to more technical development and production processes such as
quality assurance or organizing the steps of a chemical reprocessing plant.
In all cases the expected benefits of using a workflow system are manifold
(Abbott and Sarin, 1994; Georgakopoulos et al., 1995; Carpano, 1980b).

Our task is to record and store knowledge about details of the processes
used in a company on an everyday basis. In many cases no documentation
for these processes has been created. Rather the people on the job have an
implicit knowledge of what to do when, which is later passed on to their
successors. However the infrastructure of a company consists not only of
material values. The corporate identity and resources to be found in the
experience of the workforce constitutes a significant fraction of the overall
value – especially in technology oriented branches. Without documentation,
the loss of one or more employees in a position crucial to a process, be it due
to staffing a new company branch, illness or retirement, can lead to severe
problems when training new people.

10 Rudolf Fleischer and Colin Hirsch

Another aspect is to gain further insight into the processes themselves. In
our highly competitive economy each production process has to be stream-
lined in order to reduce costs and enable faster delivery of service to the
customer. The data gathered in the workflow management system makes it
possible to identify, and, equally important, to prioritize places of inefficiency.
These can then be handled one at a time starting with the most dire cases.
Furthermore, only when the processes which form the activities of a company
are fully understood is it possible to make accurate predictions on the impact
of making changes to the structure, or even noticing changes happening by
themselves over time.

To achieve these goals the data collected by a workflow system is as diverse
as the fields of application. The temporal aspects have to be considered as well
as resource usage and information flow. Resources are funds, raw materials,
employees, machinery, etc. For each step of the process the resources and
information it requires and the output have to be made explicit.

In order to comprehend the nature of a process once all the relevant in-
formation has been entered into a workflow management system, the only
feasible approach is to give the user a graphical view of the process graph.
This graph is obtained by creating nodes for the individual steps of the pro-
cess. Edges depict temporal dependencies as well as the flow of information
and/or objects. Figure 1.7 gives a simple example of a graph that was laid
out manually.

Fig. 1.7. Process graph, laid out manually.

Such a graph often consists of several types of nodes and edges. The main
nodes represent stages or steps of the process. In the graph of Figure 1.7
smaller, attached nodes rendered as black discs are used to group and expose
certain types of adjacent edges. A layout algorithm has to take some con-
straints about the relative positions of nodes into account, in order to place
these extra nodes near the principal nodes. Such weight and constraint based
methods are presented in more detail in Chapter 8.

Different kinds of edges are used to represent different kinds of depen-
dencies and/or flows. This can be used to seperate information or other non-
physical goods from physical objects being passed along or to differentiate

1. Graph Drawing and Its Applications 11

information and meta-information. In some cases one kind of edge is more im-
portant than others, so the layout should be optimized accordingly. Consider
planning the arrangement of machinery in an industrial plant. In this case
the layout of the process graph can be made to follow mainly one criteria,
e.g. the flow of information.

This application is especially sensitive to the quality of the layout in terms
of correct logical groupings and aesthetics. Process graphs can be used for
visual presentations when trying to convince customers or superiors of new
ideas. If a production process is implemented and something goes wrong it is
crucial to understand quickly where the problem is and which other parts of
the process could be affected.

1.2.4 Data Modeling

One of the areas in computer science and information technology enjoying
a rapid evolution and growth of importance are databases and data ware-
houses. This development is fueled by the wide availability of cheap powerful
networking infrastructure making it feasible to store centrally large amounts
of data and allowing concurrent remote access.

An important step in the creation of a database is the design phase.
The information to be stored has to be categorized and typed; relationships
between different types have to be found and conflicting types resolved. De-
pending on the underlying database paradigm this process can look rather
differently.

One of the most important database models is the relational database
model (Ullman, 1989; Vossen, 1991). Here, data elements are stored as lines in
tables, or, mathematically speaking, tuples in relations. Each table represents
a set of objects. The attributes of the object are the components of the tuples.
Relationships and dependencies between objects are again written into tables.

Entity-relationship diagrams are the most common method to aid struc-
turing large volumes of data by defining attributes on and relations between
the data. Both objects, or entities, and their attributes are modeled as nodes
of a graph. Edges linking an attribute to an entity express that said attribute
is indeed an attribute of said entity. Annotated edges linking entities depict a
relation with cardinality constraints between these entities. Figure 1.8 gives
an example of an entity-relationship diagram.

The most noticeable feature is the possibility of edges being incident to
more than two nodes, i.e., entity-relationship diagrams are actually hyper-
graphs. A layout algorithm can either directly handle these cases or introduce
new nodes to join the different parts of such an edge. Furthermore, as op-
posed to many other graph drawing applications, no prior statement about
the structure of the entity-relationship diagram can be made. The underlying
graph can contain circles or be a tree, although typically without root or any
other “special” element that can be taken as starting point for the layout.

12 Rudolf Fleischer and Colin Hirsch

number

code

name

grade

name place

namecourse
n

student

*

institute
1

Fig. 1.8. Entity-relationship diagram.

Hierarchical Models In contrast to the relational model, which proposes a
flat view of the different object types, many other database paradigms have
a hierarchical type system. The most prominent version at the moment are
object oriented databases (Hughes, 1993). The idea is similar to that of the
relational database in that each entity, here called an object, belongs to a
certain table or type, here called a class, sharing the same set of attributes.
However, classes may inherit attribute sets from other classes. For exam-
ple, first define a class building with attributes such as address, owner and
colour, then define hotel as building with additional attributes name, rat-
ing . . .

This results in a directed acyclic graph representing the “inherits” rela-
tion between all classes. Visualizing this graph is an important issue during
the design phase where one tries to find mistakenly introduced cyclic depen-
dencies.

A kind of inclusion dependency between different types resulting in sim-
ilar graphs arises in the context of terminological knowledge representation
systems or description logics, as used in the CLASSIC structural data model
(Borgida et al., 1989). However, there is a huge difference in how the graph is
obtained. In case of an object oriented database, it is explicitly stated which
class inherits the properties of what other classes. Hence the user starts with
a fairly accurate idea about the class hierarchy.

In the case of description logics the knowledge base consists of a set of
formulae defining inclusions and other constraints about the types. Further
inclusions can follow from this set of formulae. Hence a visualization is nec-
essary to give the user an idea about what the complete hierarchy looks like.
In that case an automated method is used to compute this hierarchy.

Figure 1.9 gives a partial example of such a hierarchy. As can be seen the
graph is fairly tree-like, with few edges to the contrary. Since trees are both
planar and naturally layered, finding satisfiable layout algorithms is compar-
atively easy. On the other hand the subsumption hierarchy of a real world

1. Graph Drawing and Its Applications 13

Fig. 1.9. Subsumption hierarchy.

example can easily have several thousands of nodes, severely complicating
matters.

The user would like to be able to view parts of the hierarchy without
losing all edges adjacent to nodes outside of the current drawing. Also the
layout should take into account that the simple way of drawing trees as used
in Figure 1.9 produces rather long edges in the higher levels of the tree.
Of course not all applications generate clean trees, and the general case of
directed acyclic graphs should be handled appropriately.

14 Rudolf Fleischer and Colin Hirsch

Clustering methods and hierarchical layouts as described in Chapter 8
can help giving an overview and navigating in larger graphs.

1.2.5 Social Networks

An interesting interdisciplinary field of research using methods from group
theory, statistics, discrete combinatorics and graph-drawing for sociological
studies are social networks (Freeman, 1999a; McGrath and Borgatti, 1999;
Blythe et al., 1996; Kenis, 1999; Brandes et al., 1999). Simply speaking a
social network is obtained by taking a group of people as nodes and insert-
ing edges based on some abstract relationship between these people. This
research is motivated by the belief that visualizing social structures and de-
tecting patterns gives insight into how a society works, how individuals in-
teract with society and even why certain societies or individuals are more
successful than others. Aspects taken into account can be sociological, eco-
nomical, demographical, ethnical, or even medical, and are used for various
purposes on all scales. Examples are analyses of economic growth in third-
world countries, changes in social relationships of married couples over time
or the social networks of ethnic minorities and their function.

Figure 1.10 shows a small hand-drawn social network. Each node repre-
sents a person, each edge represents a relationship such as acquainted (dotted
line) and marriage (triple line). Most nodes and edges are annotated with ages
and dates adding a temporal aspect to the picture.

Fig. 1.10. Hand drawn social network.

1. Graph Drawing and Its Applications 15

What makes the graph-drawing problem interesting here is that there
is no fixed a-priori idea of what is a good, or even “optimal” layout. The
patterns implicitly contained in the description of a workflow diagram for
example, which can be used by a human for drawing the graph manually or
evaluating the quality of an automatic layout, are not yet known. Indeed, the
drawing of the network is intended to aid the user in finding these patterns.
Hence improving and judging the quality of layout algorithms is an especially
demanding problem.

Fig. 1.11. Five drawings of a single network (Blythe et al., 1996).

Figure 1.11 shows five different layouts of the same graph of a social
network. Regarding each of the drawings by itself leads to completely different
conclusions: the upper left image suggests the existance of three groups of four
individuals, whereas the one in the lower right looks rather tigthly interwoven.

It would be desirable to find one layout expressing the key features and
patterns of the given graph. When dealing with larger sets of individuals a
further help would be to identify dense regions and fold these into aggregate
nodes. Such a clustering allows for an analysis of the macroscopic structure
without getting lost in the details.

Another idea examined at the moment applies algorithms from molecular
visualiziations to social networks (Humphrey et al., 1996; Hermansson and
Ojamae, 1994; Freeman, 1999b). Implementations used in chemistry have
been available for some time. Besides the capability of dealing with coloured

16 Rudolf Fleischer and Colin Hirsch

nodes, the most exciting benefit is the ability to visualize dynamically data in
form of animations. The application of this feature is immediate, since social
networks naturally change over time.

1.2.6 Data Structures

When writing new software typically less than half the required time is used
for actually writing new lines of code. Most of the time is spent looking for
bugs and errors in the finished code. Therefore special software has been
developed to aid this process by tracking runs of other software.

This greatly simplifies testing, since the programmer does not need to
trace manually the state of his software. Rather it is possible to output and
analyze the contents of data storage during runtime. This is especially im-
portant when using error-prone dynamic data structures. It lies in the nature
of dynamic data structures that many small objects reside in the storage of
the machine. These data elements are linked together via references to other
data elements. We thus obtain a directed graph where each data element is
a node connected to the data elements it refers to.

Interactive debuggers give the user the opportunity to browse these data
structures (Zeller and Lütkehaus, 1996; Isoda et al., 1987). Figure 1.12 shows
the output of such a debugger.

(Tree *) 0x40289480

1: tree

weight = 1496
data = 0x40837230
left = 0x40289600
right = 0x40289240

2: *tree

weight = 1496
data = 0x40837230
left = 0x40289600
right = 0x40289240

2: *tree

000: f3 d9 d1 92 90 03 9b c3
008: 39 2b d9 91 45 45 43 21
010: 4e 75 ea 4a fc d8 29 79
018: 00 85 14 da 5c 9f 9d 30
020: 6f 20 4e 4f 54 20 73 65
028: 74 20 69 6e 69 74 64 ea
030: 44 53 57 00 38 b9 c3 91
038: 08 32 8b cd a9 fa 41 3e
040: 91 94 58 da fb f9 97 48
048: f0 4e 72 00 00 00 04 bf
050: 04 90 4f 9f c3 7a f9 e2
058: 81 b8 bf 98 74 71 fe 00

6: *tree->left->data

3: *tree->left

4:..ee->left->left 5:..->right->right

weight = 4821

weight = 9616 weight = 3451

data = 0x40827430
left = 0x408a8890
right = 0x408ac400

data = 0x408a9270
left = 0x408a9f90
right = 0x408b0220

data = 0x40867ea0
left = 0x408996b0
right = NULL

Fig. 1.12. Graphical debugger.

The first problem for any graph layout algorithm is the vastly different
sizes of the nodes. Data structures of completely different type and size may
refer to each other. Also the structure of the graph is completely arbitrary.

1. Graph Drawing and Its Applications 17

Most demanding are the interactive and the dynamic aspect of the data,
the program execution and the user input. The two phases of letting the
software run and examining the results alternate throughout the debugging
process. In the first phase new data elements can be created and others
deleted. During the second phase the user takes the currently displayed sub-
graph as starting point and continues to fold and unfold parts of the graph
along references. The size of the complete graph can easily be in the range
of millions, hence drawing the whole thing is not feasible and this kind of
incremental navigation essential.

Depending on the number of nodes already visible it is again desirable to
retain key features of the current layout when adding or removing nodes to
let the user build a mental map. Unfortunately, the more nodes are present,
the more important this effect becomes, but also the more difficult to take
into account. Various methods have been proposed that either reduce the
necessary changes to the layout or limit the adverse effects on the mental
map (see Chapter 9).

1.3 How to Draw a Graph

1.3.1 Graph Representations

In the previous section we have seen many examples of graph drawings which
differ widely in their appearance. Depending on the application, the basic
features of a graph should be drawn in different ways. Nodes may be drawn
as dots (as in Figures 1.1 and 1.2), circles (as in Figures 1.3, 1.4, and 1.6),
boxes (as in Figures 1.5 and 1.12), a mixture of styles (as in Figures 1.7, 1.8
and 1.11), or not at all as in Figures 1.9 and 1.10 where nodes are represented
implicitly by their name labels. Edges may be drawn as straight lines (as in
Figures 1.2, 1.5, 1.7, 1.9 1.11 and 1.12), orthogonal polygonal paths (as in
Figure 1.8), arbitrary polygonal paths (as in Figures 1.3 and 1.4), or arbitrary
curves (as in Figures 1.1, 1.6 and 1.10). The information corresponding to the
nodes and edges can be visualized using text labels at various positions in or
next to a graph object, different colors (as on a subway map), or other visual
elements such as thickness of lines, size of boxes, etc. A graph may be drawn
in the plane or in three dimensions. It may be drawn completely, partially,
or hierarchically, i.e., clusters are shrunken to a single node which can be
expanded on request. We call these (and other) drawing style considerations
the representation of a graph.

A special case of graphs are planar graphs, i.e., graphs that can be drawn
in the plane without edge crossings. Planar graphs arise in algorithm ani-
mation, CAD systems, circuit schematics, information systems design, and
VLSI schematics, for example. We have seen planar drawings of graphs in
Figures 1.3, 1.4, 1.5, 1.8 and 1.12. Algorithms for drawing planar graphs are
given in Chapter 2.

18 Rudolf Fleischer and Colin Hirsch

A subclass of planar graphs are trees (see Figures 1.8 and 1.12, for exam-
ple). They can be found in algorithm animation, circuit design, visualization
of class hierarchies, flowcharts, project management diagrams, and syntax
trees. We deal with trees in Chapter 3.

Planar graphs are often drawn orthogonally as in Figure 1.8 because or-
thogonal drawings usually look much tidier than drawings with arbitrarily
curved edges (note that the near-orthogonal drawings in Figures 1.3, 1.4,
1.5 and 1.9 are not bad either). Other applications for orthogonal draw-
ings include architectural floorplan design, network visualization, data base
schemas, flow diagrams, entity relationship diagrams, molecular structure di-
agrams, project management charts, software engineering diagrams, VLSI
schematics, and workflow visualization. Algorithms for orthogonal drawings
can be found in Chapter 6.

Three-dimensional drawings are suitable to display large and dense graphs
such as file system graphs or WWW structure graphs. They are also used in
algorithm animation, business graphics, database design, visualization of mul-
timedia documents, software engineering tools, and VLSI schematics. Chap-
ter 7 describes techniques for three-dimensional drawings.

1.3.2 Aesthetics Criteria

Once we have decided upon the representation we face the question of how
to actually draw the nodes and edges of a graph. A drawing, or better a
layout, is a mapping of the nodes and edges into the plane (or into R3 for
three-dimensional drawings). But what distinguishes a good layout from a
bad one? The two examples in the Introduction indicate that different appli-
cations may require different criteria. For example, drawing a genealogy tree
with an algorithm designed to draw subway maps (trees are a subclass of
subway graphs, so this should be possible) will most likely produce a highly
unsatisfactory picture. That is because an algorithm for drawing a subway
graph also uses some general knowledge on subways. For example, customers
would be highly confused if stations were drawn at random locations on the
map instead of at locations (approximately) corresponding to the locations
were they would be found on a real map of the city. On the other hand,
genealogists would expect the drawing to reflect the chronology of events;
so genealogy trees are usually drawn with nodes ordered by time (left-right
or top-down), and the nodes corresponding to a married couple are usually
drawn next to each other.

So for every particular graph drawing problem (subway maps, genealogy
trees, etc.) we need specially customized algorithms which look beyond the
structural properties of the given graphs and also use additional knowledge
about the semantics behind the graph structure. This seems to imply that we
would need a great number of different graph drawing algorithms, one for each
application (in a recent survey of the graph drawing literature, we counted
more than 130 different applications). Fortunately, this is not the case. There

1. Graph Drawing and Its Applications 19

are a few general concepts and techniques which are powerful enough to
cover a wide range of graph drawing applications. Finding a good layout
is thus reduced to optimizing one or a few criteria. In applications where
the main goal is to produce layouts for human consumption these criteria are
appropriately called aesthetics criteria, however in applications where graphs
are drawn for other purposes as in VLSI schematics, for example, technical
criteria such as wire length might be more important than aesthetics criteria.
Also, in some cases traditional drawing styles must be honored (it would be
very unusual to draw an electrical circuit non-orthogonal, for example).

We now list some of the commonly used aesthetics criteria together with
examples of their practical importance. Note that these criteria depend en-
tirely or mostly on the structure of the graph, so algorithms for optimizing
these criteria can be devised easily and plugged in as extension to improve
the output of a graph drawing system.

Unfortunately, there is no clear ranking among these criteria which would
be valid for all possible applications. Figure 1.11 shows that emphasizing some
criteria over others can result in very different layouts of the same graph. And
each layout has its own virtues, depending on the semantics of the graph it
is supposed to depict.

Crossing minimization. If too many edges cross each other, the human eye
can not easily find out which nodes are connected by an edge. If a graph
can be drawn without edge crossings (such graphs are called planar), then
this is very often preferable to a drawing with edge crossings. To compute a
planar layout is not too difficult, even if we restrict ourselves to straight line
edges (see Chapter 2). Crossing minimization is also an important technical
criterion. In circuit schematics, wire crossings should be avoided as much as
possible to reduce the number of layers.

Bend minimization. This is an important aesthetics criterion for orthogonal
layouts because the human eye can much more easily follow an edge with none
or only a few bends than an edge wildly zig-zagging through the picture. In
VLSI production, bends in wires are potential spots of trouble, so minimizing
bends is also an important technical criterion.

Area minimization. Minimizing the area of a layout is again crucial for VLSI
schematics, but it is also a general aesthetics criterion: a picture looks much
better if the nodes and edges fill the space with homogenous density. There
may also be more profane reasons for area minimization, e.g. when producing
pocket size maps of a bus network (see Herdeg (1981, page 137, fig. 263)).

Angle maximization. This aesthetics criterion becomes more important now-
adays. If a graph is displayed on a video screen with low resolution, it is
important that edges are as far apart as possible. In numerics, simulations
using finite element nets behave better if the net embeddings have large
angles.

20 Rudolf Fleischer and Colin Hirsch

Length minimization. In VLSI schematics, edges correspond to wires which
carry information from one point on the chip to another. To do this fast,
wires should be short.

Symmetries. If a graph contains symmetrical information then it is important
to reflect this symmetry in its layout. Technical drawings often contain hidden
symmetries. Unfortunately, displaying symmetries is not an easy task.

Clustering. When drawing social networks, parse trees, graphs in CASE
tools, or large graphs such as WWW graphs, large networks, or graphs arising
in VLSI schematics, then it is necessary to cluster the nodes to reveal some
of the graph’s structure.

Layered drawings. Organizational charts, ER diagrams, flow diagrams, or
graphs in CASE tools usually require a layered layout where node positions
are restricted to distinct layers.

1.4 Algorithmic Approaches to Graph Drawing

Having decided on the representation and the right mix of aesthetics criteria,
we usually face two problems. Firstly, many of the criteria cannot be opti-
mized efficiently, so we must retreat to approximation algorithms or heuris-
tics. An example is crossing minimization without fixed embedding. And
secondly, if we need to optimize several criteria at the same time, we might
find this task impossible because the criteria might contradict each other. For
example, there are graphs whose optimal orthogonal layout needs an edge of
length Ω(n2) with Ω(n) bends (Tamassia et al., 1991).

There are a few powerful techniques which can be used to attack these
optimizing problems. They are described in detail in other chapters of this
book, so we give here only a short summary.

Planarization. Planar layouts are usually much more appealing than non-
planar layouts. Also, in circuit schematics these planarization techniques are
important for layer minimization. Unfortunately, in practice many graphs are
non-planar. Then one can try to make it planar by removing as few edges
as possible (this is an NP-complete problem) or by removing those edges
whose insertion would afterwards create the least number of crossings. The
problem of crossing minimization is in general NP-hard, but some heuristics
for planarization yield acceptable results. These techniques are discussed in
Chapter 2.

Force-directed methods. In Chapter 4 we describe energy based layout algo-
rithms. These algorithm interpret a graph as a physical system with forces
between the nodes and then try to minimize the energy of the system to ob-
tain a nice drawing. Such algorithms are used for drawing arbitrary (sparse)
networks such as flow charts, program planning graphs, telephone call graphs,
etc. They can also be applied to clustered layouts.

1. Graph Drawing and Its Applications 21

Sugiyama-like methods. The most widely used algorithms for drawing layered
graphs are the Sugiyama type algorithms (see Chapter 5). They produce
layered layouts while also trying to minimize the number of crossings or the
area of the layout.

Flow methods. Bend minimization can efficiently be solved by reduction to a
network flow problem (see Chapter 6), at least if the topology of the embed-
ding is fixed. The same techniques can be used to maximize angles between
edges (see Chapter 6).

Interactive drawings. The methods above are good for drawing static graphs.
However, interactive applications such as the visualization of debugging
tools, document retrieval, entity relationship modules, VLSI schematics, and
WWW graphs require the display of graphs which change over time. Tech-
niques for interactive graph drawing are described in Chapter 9.

Labeling. Another important aspect of graph drawing, for example in drawing
maps, state diagrams, or engineering diagrams, is labeling, i.e., naming nodes
and edges in the drawing. Methods for labeling are discussed in Chapter 10.

These aesthetics and efficiency criteria stand in contrast to more intuitive
criteria concerning the semantics and intended meanings of graphs. As the
example of Figure 1.5 shows, the semantics and the structure of a graph
can give very different hints for the layout. However, completely disregarding
aspects such as the length of edges, a purely technical term, can lead to rather
unbalanced and difficult to trace layouts as in Figure 1.6.

It can be speculated that the lack of layout algorithms respecting the se-
mantics of graphs and therefore being more capable of creating a drawing that
is informative as well as “favourable to the eye” lies in the nature of the prob-
lem. The manually arranged drawings were all created by individuals with
an intimate knowledge of the semantics. Disregarding the aesthetic aspect
concerning aesthetics as in artwork, it remains a challenge to identify and,
more importantly, formalize aesthetics criteria taking the semantic aspects
into account. The word graphs in Figures 1.3 and 1.4 using the additional
information “time” is but a small step in this direction.

1.5 Conclusion

Graph drawing applications are so manifold that we could only show a few
examples in this chapter. They mainly come from applications within com-
puter science — not too surprising since both authors work in that field.
We found these examples just by talking to the people in the offices around
the corner. This shows that graph drawing problems appear in many places,
indicating that its study is an important task.

The examples also show that graph drawing is not a single well-defined
problem but an art, namely the art of describing what a nice drawing of

22 Rudolf Fleischer and Colin Hirsch

a graph means in the context of a particular application. In Section 1.3.2
we have seen a list (which should not be understood to be complete) of
aesthetics criteria whose optimization can lead to acceptable layouts. Most
of the following chapters of this book give algorithms for optimizing these
criteria.

However, these algorithms should not be considered as the final solution
to the graph drawing problem, i.e., even if we put them all together in a
tool box we cannot expect to always find at least one algorithm perfectly
suited for a particular application problem at hand. More often than not,
the output from an automatic graph drawing tool can ‘easily’ be improved
manually (so far, the winning drawings in the annual graph drawing compe-
tition (Eades and Marks, 1995, 1996; Eades et al., 1996, 1997c, 1998) have
never been produced fully automatically, except when explicitly demanded).
The reason is that graphs in an application usually have semantics known to
the people working with the graph but not known to the graph drawing tool
(because it was designed to draw graphs according to some aesthetics crite-
ria, not according to some particular graph semantics). Therefore, for most
applications the standard algorithms for optimizing standard aesthetics cri-
teria (these algorithms are covered by this book) must be refined to include
problem specific aesthetics criteria (as given by the graph semantics). On the
other hand, there are many commercial and non-commercial graph drawing
tools available, so chances are good that for a given application one might
find some tool which produces at least reasonable drawings, but one should
not expect miracles. In Appendix A, we give a short summary of some of the
better (in our opinion) tools.

2. Drawing Planar Graphs

René Weiskircher

2.1 Introduction

When we want to draw a graph to make the information contained in its
structure easily accessible, it is highly desirable to have a drawing with as
few edge crossings as possible (Purchase et al., 1997; Purchase, 1997). The
class of graphs that can be drawn with no crossings at all is the class of planar
graphs . Algorithms for drawing planar graphs are the main subject of this
chapter.

We first give some necessary definitions and basic properties of planar
graphs. In section 2.3, we take a closer look at two linear time algorithms for
testing if a graph is planar. When a graph is not planar but we want to apply
an algorithm for drawing planar graphs, we can transform the graph into a
similar planar graph; Section 2.4 gives an overview of methods to do so.

Most drawing algorithms presented in this chapter require a 2-connected
planar graph as input. If a planar graph does not have this property, we
can add edges to make it 2-connected and planar. Section 2.5 describes ways
to accomplish this. The following sections describe drawing algorithms for
planar graphs. Section 2.6 treats the generation of convex straight-line rep-
resentations, while section 2.7 gives an overview of some algorithms that use
a special ordering of the vertices of a graph called a canonical ordering.

2.2 What Is a Planar Graph?

To define what we mean by the term planar graph we first have to define
what is meant by the term planar representation.

Definition 2.1 (Planar Representation). A planar representation D of
a graph G = (V,E) is a mapping of the vertices in V to distinct points in
the plane and of the edges in E to open Jordan curves with the following
properties:

– For all edges e ∈ E, the representation of edge e = (v1, v2) connects the
representation of v1 with the representation of v2.

– The representations of two disjoint edges e1 = (v1, v2) and e2 = (v3, v4)
have no common points except at common endpoints.

– The representation of edge e = (v1, v2) does not contain the representation
of v3 ∈ V with v3 �∈ {v1, v2}.

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 23-45, 2001.
 Springer-Verlag Berlin Heidelberg 2001

24 René Weiskircher

If D is a planar representation, the set R2 −D is open and its regions are
called the faces of D. Since D is bounded, exactly one of the faces of D is
unbounded. This face is called the outer face of D.

Using the definition of planar representations, it is easy to define the term
planar graph.

Definition 2.2 (Planar Graph). A graph G is planar if and only if there
exists a planar representation of G.

There is an infinite number of different planar representations of a pla-
nar graph. We can define a finite number of equivalence classes of planar
representations of the same graph using the term planar embedding.

Definition 2.3 (Planar Embedding). Two representations D1 and D2 of
a planar graph G realize the same planar embedding of G, if and only if the
following two conditions hold:

– The cycles of G that bound the faces of D1 are the same cycles that bound
the faces of D2.

– The outer face in D1 is bounded by the same cycle of G as in D2.

The definition of a planar graph above is very simple but it is a geometric
definition. Since the set of all planar representations of a graph is infinite and
uncountable, it is not immediately clear how to test a graph for planarity.
Kuratowski found a combinatorial description of planar graphs but to present
this description, we have to define the subdivision of a graph.

Definition 2.4 (Subdivision). A subdivision of a graph G = (V,E) is
a graph G′ = (V ′, E′) that can be obtained from G by a sequence of split
operations where we insert a new vertex u and replace an edge e = (v1, v2)
by the two edges e1 = (v1, u) and e2 = (u, v2).

Thus, a subdivision of a graph is another graph where some edges of the
original graph have been replaced by paths. Planar graphs are now charac-
terized by the following:

Theorem 2.5. A graph G is planar if and only if it does not contain a sub-
division of K5 (the complete graph with 5 vertices, see Figure 2.1(a)) or K3,3

(the complete bipartite graph with 3 vertices in each set, see Figure 2.1(b)).

If a graph G is directed (each edge is an ordered pair of vertices), we can
define a more restricted class of planar graphs, the upward planar graphs .
First we define the term upward representation.

Definition 2.6 (Upward Representation). Let G = (V,E) with E ⊆
V × V be a directed graph. A representation of G is called upward if the
representation of every edge (u, v) is monotonically nondecreasing in the y-
direction when traced from u to v.

2. Drawing Planar Graphs 25

(a) K5

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

(b) K3,3

Fig. 2.1. The basic non-planar graphs.

We use this definition to define upward graphs and upward planar graphs.

Definition 2.7 (Upward Graph). A directed graph is upward if and only
if it admits an upward representation.

Definition 2.8 (Upward Planar Graph). A directed graph is upward pla-
nar if and only if it admits an upward and planar representation.

It is possible to test in linear time whether a directed graph admits an
upward representation (because only acyclic graphs admit such a representa-
tion) and, as we will see in the next section, we can test in linear time, whether
a graph admits a planar representation. But testing whether a graph admits
an upward planar representation is NP-complete for general graphs (Garg
and Tamassia, 1995a).

A survey about upward planarity testing can be found in Garg and Tamas-
sia (1995a). We will not treat the topic in this chapter, but algorithms for
drawing upward graphs can be found in Di Battista and Tamassia (1988).

2.3 Planarity Testing

The first algorithm for testing whether a given graph is planar was developed
by Auslander and Parter (1961) and Goldstein (1963). Hopcroft and Tarjan
(1974) improved this result to linear running time. Another linear time algo-
rithm for planarity testing was developed by Lempel, Even and Cederbaum
(Lempel et al., 1967) and Booth and Lueker (1976). We will only give a short
overview of the two linear time algorithms.

2.3.1 The Algorithm of Hopcroft and Tarjan

This overview of the algorithm follows that of Mutzel (1994). In principle, the
algorithm works as follows: Search for a cycle C whose removal disconnects
the graph. Then check recursively whether the graphs that are constructed

26 René Weiskircher

by merging the connected components of G− C and the cycle C are planar.
In a second step, combine the computed embeddings for the components to
get a planar embedding of the whole graph, if possible.

The algorithm needs a depth first search tree G′ = (V, T,B), where V
is the set of DFS numbers of the vertices in G, T is the set of tree edges of
the depth first search tree and B the set of back edges (for DFS trees, see
Mehlhorn (1984)). We assume that G is 2-connected (this is not a restriction,
because a graph is planar if and only if all its 2-connected components are
planar).

Let C be a spine cycle of G, which is a cycle consisting of a path of
tree edges starting at the root (vertex 1) of the DFS tree followed by a
single back edge back to the root vertex. Because G is 2-connected, such a
cycle must exist. We assume that removing all edges of C splits G into the
subgraphs G1, G2, . . . , Gk. For 1 ≤ i ≤ k, we define the graph G′

i as the
graph Gi together with the cycle C and all edges in G between a vertex in Gi

and a vertex on C. First, we recursively check whether each G′
i is planar and

compute a planar embedding for it. Planar embeddings are equivalence classes
of planar representations that describe the topology of the representation but
not the length and shape of edges or the position of vertices (see definition
2.3).

The planar embeddings of the G′
i must have all edges and vertices of C on

the outer face. Now we assume that we have found a suitable embedding for
each G′

i. We must test whether we can combine these embeddings to a planar
embedding of G. The reason why this may fail is that each Gi shares at least
two vertices with C. Figure 2.2 shows how this fact can make it impossible
to embed two graphs Gi and Gj on the same side of C. We say that the two
graphs interlace.

Gi

Gi
Gj

Gj

C C

Fig. 2.2. Interlacing graphs Gi and Gj that can’t be embedded on the same side
of C.

2. Drawing Planar Graphs 27

To test whether there is an assignment of the Gi’s to the two sides of C so
that the resulting representation is planar, we build the interlace graph IG.
This graph has one vertex for each Gi and two vertices are adjacent if and
only if they interlace. We can only draw G planar if IG is bipartite. If there
is an embedding with the necessary properties for each G′

i and the interlace
graph is bipartite, we know that G is planar and we can construct a planar
embedding for it.

2.3.2 The Algorithm of Lempel, Even, and Cederbaum

A vertex-based method for planarity testing is the test developed by Lempel
et al. (1967); Even (1979). We say that this test is vertex-based because we
add the vertices one by one to a special data structure and check after each
step if the information seen so far proves that the graph is non-planar. This
test can be implemented in linear time (Booth and Lueker, 1976), like the
algorithm of Hopcroft and Tarjan discussed above.

The input of the algorithm is again a 2-connected graph G = (V,E). We
assume that V = {v1, v2, . . . , vn} where the numbering of the vertices is an
st-numbering as defined below.

Definition 2.9 (st-numbering). Given an edge {s, t} in a graph G =
(V,E) with n vertices, an st-numbering is a function g : V → {1, . . . , n},
such that

– g(s) = 1, g(t) = n
– ∀v ∈ V \ {s, t} ∃u,w ∈ V ({u, v}, {v, w} ∈ E ∧ g(u) < g(v) < g(w))

Lempel, Even and Cederbaum showed that for every edge {s, t} in a graph
G, there exists an st-numbering if and only if G is 2-connected. A linear time
algorithm to find it is given in Even (1979).

We define Gk as the subgraph of G induced by {v1, . . . , vk}. This graph is
extended to a graph Bk as follows. For each edge (u, v) ∈ E with u in Gk and
v not in Gk, the graph Bk has a new virtual vertex and an edge connecting u
to this vertex. So there may be several virtual vertices in Bk that correspond
to the same vertex in G. The idea of the algorithm is to check whether we can
identify the virtual vertices corresponding to the same vertex in G without
losing the planarity property.

If G is planar, Bk has a planar embedding where each vertex vi for 1 ≤ i ≤
k is drawn on y-coordinate i, all virtual vertices are placed on y-coordinate
k+1 and all edges are disjoint y-monotone curves (which means that they are
only intersected at most once by any horizontal line). Such a representation
is called a bush form. Figure 2.3 shows an example for a bush form.

Let vi be a vertex in a bush form. If the removal of vi disconnects the bush
form, we call it a cut vertex. Let B′ be the bush-form after the removal of
vi. The split-components of vi are those connected components of B′, where
the indices of all vertices are greater than i. Now consider the bush form in

28 René Weiskircher

1

8 9 9 9 8 9 8 9

2

3

4

5

6

7

Level

8

7

6

5

4

3

2

1

Fig. 2.3. A bush form.

Figure 2.3. Since the labels of the vertices are their st-numbers, this is bush
form B7. When we want to draw B8, we must first transform B7 so that all
virtual vertices with label 8 form a consecutive sequence on level 8. This can
be done by flipping around the split component of vertex 1 which includes
the vertices 2 and 3, so that the virtual vertices labeled 8 and 9 in the split
component swap their positions. We also have to move the virtual vertex
labeled 9 adjacent to vertex 4 to the right and flip the split component of
vertex 4 with the vertices 6 and 7. The resulting graph is shown in Figure 2.4.

1

9 9998

4

5

2

3

9 8 8

7

6

8

7

6

5

4

3

2

1

Level

Fig. 2.4. The bush form from Figure 2.3 has been transformed so that all vertices
labeled 8 form a consecutive sequence.

If v is a split vertex of a bush form (which means that removing v discon-
nects the bush form), then we can freely permute the split components which

2. Drawing Planar Graphs 29

have vertices with higher st-number than v and we can flip each individual
component. There may be several possible ways of producing a consecutive
sequence of the vertices labeled k + 1 and since not all may eventually lead
to a planar representation of G, we have to keep track of all of them. This
can be done in linear time using a data structure called PQ-tree proposed by
Booth and Lueker (1976). If it is not possible to make the vertices labeled
k+1 consecutive, we know that the graph is not planar. Otherwise, the algo-
rithm will produce a planar embedding of the graph. In Mehlhorn and Näher
(1999) a detailed description of the complete algorithm can be found.

2.4 How to Make a Graph Planar

There are many popular algorithms for drawing planar graphs and they pro-
duce a great variety of styles of representations. Therefore, it makes sense to
transform a non-planar graph into a similar planar graph, apply a graph draw-
ing algorithm for planar graphs to the result and then modify the resulting
representation so that it becomes a representation of the original non-planar
graph. A survey of methods for doing this can be found in Liebers (1996).

A quite drastic way of making a graph planar is to delete vertices. This
method is not used very much in graph drawing, because deleting vertices
changes a graph considerably. The problem of deciding for an integer k if
we can make a non-planar graph planar by deleting at most k vertices is
NP-complete (Lewis and Yannakakis, 1980).

Another way of making a graph planar is to split vertices. This is a rather
complex operation, so we will give the formal definition from Liebers (1996).

Definition 2.10 (Vertex Splitting). Let G = (V,E) and G′ = (V ′, E′) be
two graphs. Then we say G′ has been obtained by splitting vertex v of G into
the vertices v1 and v2 if the following conditions are satisfied:

V = (V ′\{v1, v2}) ∪ {v}
E = (E′\{uvi |u ∈ V ′ and uvi ∈ E′ for i ∈ {1, 2}}

∪{uv |u ∈ V \{v} and (uv1 ∈ E′ or uv2 ∈ E′)}
Splitting a vertex is also a drastic operation and is not commonly used

in graph drawing to planarize graphs. Testing whether a non-planar graph
can be made planar by at most k vertex-splitting operations is NP-complete
(Faria et al., 1998).

Two more commonly used ways of transforming a non-planar graph into
a planar graph are the insertion of new vertices and the deletion of edges.

2.4.1 Inserting Vertices

Assume we have a non-planar graph G and a representation D of G with k
crossings. Then we can transform G into a planar graph G′ in the following

30 René Weiskircher

way: Let e = (u, v) and f = (x, y) be two edges that cross in D. Then we can
add a new vertex vc to G, remove the edges e and f from G and insert the
four new edges e1 = (u, vc), e2 = (vc, v), f1 = (x, vc) and f2 = (vc, y). This is
equivalent to replacing the crossing in D between e and f by the new vertex
vc. If we do this for every pair of crossing edges, we will transform G into a
planar graph G′ and D into a planar representation D′ of G′.

Since the graph G′ is planar, we can draw it by using any algorithm for
drawing planar graphs. IfD′′ is the resulting representation, we can transform
this representation into a representation of the original non-planar graph G
by replacing all introduced vertices by crossings again. Since we want to
have as few crossings as possible in the resulting representation, we want to
introduce as few new vertices as possible.

The minimum number of vertices we have to insert is equal to the min-
imum number of crossings in any representation of G. But the problem of
deciding for a graph G whether it can be drawn with at most k crossings is
NP-complete (Garey and Johnson, 1983). The only known heuristics for in-
serting few vertices to construct a planar graph are the algorithms for drawing
non-planar graphs. By inserting vertices at every crossing of the representa-
tion produced we get a planar graph.

2.4.2 Deleting Edges

If G is a non-planar graph, there is a non-empty subgraph of G that is planar.
In particualr, each spanning tree of G is planar, since every graph without
cycles is planar. So we can derive a planar graph from a non-planar graph
by deleting a subset of its edges. But the problem of deciding for a non-
planar graph G = (V,E) and a number k < |E| if there is a planar subgraph
with at least k edges is NP-complete. This was independently shown by Liu
and Geldmacher (1977), Yannakakis (1978) and Watanabe et al. (1983). The
associated NP-hard maximization problem is to find a planar subgraph of
a G with the property that there exists no other planar subgraph that has
more edges. This problem is called the maximum planar subgraph problem.
The problem of finding a planar subgraph, which is not a proper subgraph of
another planar subgraph of G is called the maximal planar subgraph problem
and is solvable in polynomial time.

Definition 2.11 (Maximal Planar Subgraph). A maximal planar sub-
graph of a graph G = (V,E) is a subgraph G′ = (V,E′) of G in which there
exists no edge in E − E′ that can be added to G′ without losing planarity.

One approach to solving this problem is to start with the subgraph G1 =
(V, ∅) of G and to test for each edge if we can add it to the current solution
without losing planarity. If we can do that, we add the edge and proceed to
the next edge. Since we have to perform a planarity test for each edge of the
graph and such a test can be implemented in linear time, this algorithm has

2. Drawing Planar Graphs 31

a running time of O(n ·m) where n is the number of vertices in the graph
and m the number of edges.

Di Battista and Tamassia developed a data structure called SPQR-tree,
which can be used for decomposing a planar 2-connected graph into its 3-
connected components and for fast online planarity testing (Di Battista and
Tamassia, 1989; Di Battista and Tamassia, 1990; Di Battista and Tamassia,
1996). Using this data structure, they were able to develop an algorithm for
finding a maximal planar subgraph in O(m log n) running time. There is also
an algorithm with the same asymptotic running time developed by Cai et al.
(1993) which is based on the planarity testing algorithm in Hopcroft and
Tarjan (1974).

La Poutré (Poutré, 1994) proposed an algorithm for incremental planarity
testing yielding an algorithm for the maximal planar subgraph problem run-
ning in time O(n +m · α(m,n)) where α(m,n) is the inverse of the Acker-
mann function and grows very slowly. There are even linear time algorithms
for the problem, by Djidjev (1995) and by Hsu (1995), which has the best
asymptotic running time possible for solving the maximal planar subgraph
problem.

A heuristic for the maximum planar subgraph problem is the Deltahedron
heuristic (Foulds and Robinson, 1978; Foulds et al., 1985). This heuristic
starts with the complete graph on 4 vertices (tetrahedron) as the initial planar
subgraph and then places the remaining vertices into the faces of the current
planar subgraph. The sequence of the vertices depends on a chosen weight
function. Leung (1992) proposed a generalization of this method. The current
planar subgraph has only triangular faces and in each step, we add a single
vertex and 3 edges or we add 3 vertices and 9 edges. A list of other heuristics
can be found in Liebers (1996).

Jünger and Mutzel (Mutzel, 1994; Jünger and Mutzel, 1996) proposed a
branch and cut algorithm for solving the maximum planar subgraph problem
based on an integer linear program that excludes the presence of subdivisions
of K3,3 and K5 in the solution graph. The advantage of a branch and cut
algorithm is that it either finds an optimum solution together with a proof
of optimality or finds a solution together with an upper bound on the value
of the optimum solution. For problems of moderate size (about 50 vertices),
their approach finds an optimal solution in most cases.

2.5 How to Make a Planar Graph 2-Connected Planar

Many graph drawing algorithms only work for 2-connected or 3-connected
graphs. This is true for most algorithms presented in this chapter. Therefore
if we want to draw a graph which does not have the necessary connectivity
property for applying a specific graph drawing algorithm, we can increase its
connectivity by adding new edges (Augmentation). After a representation of
the augmented graph has been computed, we remove the representations of

32 René Weiskircher

the additional edges to get a representation of the original graph. Since we do
not want to change the graph too much, we want to add a minimum number
of edges in the augmentation step.

The planar augmentation problem is the problem of adding a minimum
number of edges to a given planar graph so that the resulting graph is 2-
connected and planar. Kant and Bodlaender (1991) introduced this problem
and showed that it is NP-hard. They have also given a 2-approximation
algorithm running in time O(n logn) and a 3

2 -approximation algorithm with
running time O(n2 logn), where n is the number of vertices in the graph.
However, the 3

2 -approximation algorithm is not correct because there are
problem instances where it computes only a 2-approximation.1

Fialko and Mutzel developed a 5
3 -approximation algorithm (Fialko and

Mutzel, 1998). The running time of the algorithm is O(n2T) where T is the
amortized time bound per insertion operation in incremental planarity test-
ing. Using the algorithm in Poutré (1994), a running time of O(n2α(k, n)) can
be achieved where α is the inverse Ackermann function and k is O(n2). Re-
cently, the algorithm has been improved by Mutzel (private communication)
to guarantee a 3

2 -approximation.
The 5

3 -approximation algorithm works on the block tree of the graph we
want to make 2-connected. The block tree has two types of vertices: The
b-vertices correspond to the maximal 2-connected components of the graph
and the c-vertices to the cut vertices (as already mentioned, the removal of
a cut vertex disconnects the graph). We have an edge between a c-vertex
and a b-vertex if and only if the corresponding cut vertex belongs to the 2-
connected component represented by the b-vertex. The idea is now to insert
edges, merging paths of the block tree into single blocks until the tree has
only one vertex and is thus 2-connected.

A crucial role in the algorithm is played by the pendants of the block
tree, which are b-vertices with degree one. The algorithm connects pendants
via edges if possible and otherwise connects pendants to non-pendant blocks.
To achieve the approximation ratio, pendants are combined to form larger
structures that are called labels. The algorithm looks at these labels in the
order of decreasing number of pendants and tries to connect the pendants
of two labels by introducing new edges. Inserting edges that connect the
pendants of two labels is called a label matching.

The algorithm prefers certain matchings, but because the resulting graph
has to be planar, not all of the preferred label matchings can be realized.
Some labels cannot be matched at all and so the algorithm introduces edges
that connect pendants of the same label and an additional edge from one of
the pendants to a non-pendant vertex outside the label.

The approximation guarantee of the algorithm is tight which means that
graphs exist for which the number of added edges is 5

3 of the optimum num-
ber. On realistic instances, the algorithm performs very well and very often
1 Goos Kant, personal communication (1994).

2. Drawing Planar Graphs 33

1

8

9 7
4

6
5

2

3

7

6

4

4,5

27,9 4,6,7

6,8

1,2,4

2,3

Fig. 2.5. A graph and its block tree.

finds a solution that uses at most one edge more than the optimum solution.
This has been tested using a branch and cut algorithm for the planar augmen-
tation problem developed by Mutzel (1995) which is able to solve instances
of realistic size optimally.

2.6 Convex Representations

Some planar graphs can be drawn in such a way that all cycles that bound
faces are drawn as convex polygons. An example for such a drawing is given in
Figure 2.6. Such a representation is only possible if all face boundaries of the
graph are simple cycles. Thus, a graph that is not 2-connected cannot have a
convex representation. It has been shown that such a convex representation
exists for all 3-connected graphs (Tutte, 1960) and Tutte gave an algorithm
for producing representations of 3-connected graphs which involves solving
O(n) linear equations, where n is the number of vertices in the graph (Tutte,
1963).

Nishizeki and Chiba (1988) developed an algorithm for producing a con-
vex representation of a 2-connected planar graph (if it admits a convex rep-
resentation) in linear time. The drawing algorithm is based on the proof of
Tutte’s result given by Thomassen (1980). The testing algorithm works by di-
viding a 2-connected planar graph into 3-connected components as described

34 René Weiskircher

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Fig. 2.6. A convex drawing of a graph.

in Hopcroft and Tarjan (1973) and testing planarity of a special graph con-
structed from the original graph using the algorithm described in Hopcroft
and Tarjan (1974).

To give a short outline of the drawing algorithm, we have to define what
we mean by the term extendible polygonal representation of a face cycle of a
graph G. A face cycle is a cycle in the graph that is the boundary of a face
(region) of a planar representation of the graph. A convex representation S∗

of a face cycle S is a convex polygon in which all vertices of S are drawn on
the boundary of S∗ and each apex of S∗ is occupied by the representation
of a vertex on S. The polygonal representation S∗ of S is called extendible
if there is a convex representation of G, in which S∗ is the outer face of the
representation.

Thomassen (1980) showed that the polygonal representation S∗ of S is
extendible if and only if the following conditions hold.

1. For each vertex v of G not on S, there are three vertex disjoint paths
from v to vertices on S.

2. There are no connected components C in G− S, in which all vertices in
S adjacent to a vertex in C are located on the same straight segment P
of S∗.

3. There is no edge that connects two vertices on a straight segment of S∗.
4. Any cycle in G that does not share an edge with S has at least three

vertices with degree greater than 2.

If the conditions above are satisfied, the following algorithm will correctly
compute a convex representation of G.

The input of the algorithm convex-draw is a triple consisting of the graph
G, a face cycle S of G and an extendible polygonal representation S∗ of S.

Algorithm convex-draw (G,S, S∗):

1. We assume that G has more than 3 vertices, and some of them do not
belong to S, otherwise, our problem is already solved. Select an arbitrary

2. Drawing Planar Graphs 35

apex vertex v of S∗ and set G′ = G − v. Divide G′ into the blocks
B1, . . . , Bp as shown in Figure 2.7 according to the cut vertices on S∗.

2. Draw each Bi convex applying the following procedure:
a) Let vi and vi+1 be the cut vertices that split Bi from the rest of G′.

Then these two vertices have already a fixed position, because they
belong to S. These vertices also belong to the outer facial cycle Si of
Bi. We now draw all the vertices of Si that do not belong to S on a
convex polygon S∗

i inside the triangle given by the vertices v, vi and
vi+1. Each apex of the polygon is occupied by a vertex of Si which is
in G adjacent to v. The other vertices of Si are drawn on the straight
line segments of S∗

i .
b) Recursively call the procedure convex-draw for all blocks with the

arguments (Bi, Si, S
∗
i).

B1

B1B1

B1

v1

v

v

v3

v

2

4

Fig. 2.7. Recursive computation of a convex representation.

The algorithm for testing whether a 2-connected planar graph has a con-
vex representation relies on determining the separation pairs of the graph. A
separation pair is a pair of vertices whose removal disconnects the graph.

Definition 2.12 (Separation Pair). A separation pair of a graph is a pair
of vertices {x, y} ⊂ V so that there exist two subgraphs G1 = (V1, E1) and
G2 = (V2, E2) which satisfy the following conditions:

1. V = V1 ∪ V2, V1 ∩ V2 = {x, y}
2. E = E1 ∪E2, E1 ∩ E2 = ∅, |E1| ≥ 2, |E2| ≥ 2.

A separation pair is called prime separation pair if at least one of the
graphs G1 and G2 is either 2-connected or is a subdivision of an edge joining
two vertices with degree greater than two.

In the algorithm for testing convex planarity, the forbidden separation
pairs (FSPs) and the critical separation pairs (CSPs) play a crucial role.

36 René Weiskircher

Definition 2.13 (Forbidden Separation Pair). A prime separation pair
is called a forbidden separation pair (FSP) if it has at least four split com-
ponents or three split components none of which is a path.

If a graph has an FSP, then it has no convex representation of the graph.
Figure 2.8 shows two examples of FSPs. Neither of these graphs has a convex
drawing.

x

y

x

y

Fig. 2.8. Two examples of FSPs {x, y}. The shaded regions in the drawing on the
right are subgraphs.

Definition 2.14 (Critical Separation Pair). A prime separation pair is
a critical separation pair (CSP) if it has 3 split components of which at least
one is a path or if it has two split components of which none is a path.

x

y

x

y

Fig. 2.9. Two examples for CSPs {x, y}. The shaded regions in the drawings are
subgraphs.

The algorithm convex-test works as follows:

1. Find all separation pairs of G by the linear time algorithm described in
Hopcroft and Tarjan (1973) for finding 3-connected components. Deter-
mine the set F of FSPs and the set C of CSPs.

2. Drawing Planar Graphs 37

2. If F �= ∅, then there is no convex representation of G. If both F and C
are empty, we can produce a convex representation by choosing any face
cycle of G as the cycle S that starts the computation. If there is exactly
one pair in C, we choose S as a cycle with the CSP on it, depending on
the structure of the split components. If there is more than one pair in
the set C, we go to the next step.

3. We transform each CSP with three split components by removing one
component that is a path. Then we connect all vertices of all pairs in
C to a new vertex vS and check if the resulting graph G′ is planar. If
this is not the case, we know that there is no convex representation of G.
Otherwise, let Z be any planar representation of G′. Let S be the face
cycle that surrounds vS in Z after deleting all edges incident to vS . Then
we know that there is a convex representation of G if we choose S as the
start cycle for the recursive computation of the algorithm convex-draw.
This is the case because all CSPs belong to S.

2.7 Methods Based on Canonical Orderings

There are several methods for drawing a planar graph that rely on a spe-
cial ordering of the vertices which is often called the canonical ordering. The
vertices are ordered and successively added in this special order to a data
structure that describes a representation of the graph. In some of these algo-
rithms, the vertices are added one by one while in others a set of vertices can
be added in one step. Before the execution of each step, the data structure
always describes a representation of the subgraph induced by the vertices
that have already been added.

The vertex orderings used in all these algorithms and the algorithms them-
selves have several common properties:

1. The ordering is defined by some embedding of the graph.
2. The ordering of the vertices defines an ordered partition V1, V2, . . . , Vk

of the vertices in the vertex set V of the graph. The union of the Vi is V ,
each Vi has at least one vertex and the Vi are pairwise disjoint.

3. In step i of the algorithm, the vertices in Vi together with the edges
that connect them to the vertices in V1 ∪ V2 ∪ . . . ∪ Vi−1 and the edges
between the vertices in Vi are added to the data structure that defines
the representation.

4. The set V1 has at least 2 elements and there is at least one edge in the
subgraph induced by V1 which is on the outer face of every representation
Di.

5. Let Si be the data structure after inserting the vertices in Vi and let Di

be the corresponding representation. Then Di is the representation of a
2-connected graph where all vertices adjacent to vertices in Vi+1∪. . .∪Vk

are on the outer face of the representation.

38 René Weiskircher

The last point is not true for the algorithm proposed by Schnyder (1990)
because in this algorithm, the vertices are inserted inside the triangle given
by the three vertices in V1. This algorithm (described in subsection 2.7.2) is
quite different from all others treated in this section, because it computes
three barycentric coordinates for each vertex before computing the x- and
y-coordinates.

2.7.1 The Algorithm of De Fraysseix, Pach, and Pollack

The first algorithm using a canonical ordering for drawing planar graphs
with straight edges using polynomial area was described by de Fraysseix
et al. (1990). The algorithm draws a planar triangulated graph on a grid
of size (2n − 4) × (n − 2), where n is the number of vertices in the graph.
The running time of the algorithm is O(n log n). In the same paper, the
authors give a linear time and space algorithm for adding edges to a planar
connected graph to produce a planar triangulated graph. The outer face of the
representation is always a triangle. This result was later improved by Kant
(1996), but his algorithm is very similar to the one described in de Fraysseix
et al. (1990).

Let G = (V,E) be a triangulated graph with a planar representation D
where (u, v) ∈ E is on the outer face. Let π = (v1, . . . , vn) be a numbering
of the vertices in V with v1 = u and v2 = v. We define Gi as the subgraph
induced by the vertex set {v1, . . . , vi}. The face Ci is the outer face of the
representationDi of Gi that we get by removing all representations of vertices
and edges from D that do not belong to Gi.

Then π is a canonical ordering if and only if the following conditions hold
for all 4 ≤ i ≤ n:
– The subgraph Gi−1 is 2-connected and Ci−1 contains the edge (v1, v2).
– In the representation D, the vertex vi is in the outer face of Gi−1 and its
neighbors in Gi−1 form a subinterval of the path Ci−1 with at least two
elements.

Such a canonical ordering exists for any triangulated planar graph and
can be computed in linear time by starting with the representation D and
successively removing single vertices from the outer face that are not incident
to any chords of the outer face. It is easy to show that such a vertex always
exists for a triangulated planar graph.

The invariants of the actual drawing algorithm are that after step i (in-
serting the vertex vi and the necessary edges), the following conditions hold:

– The vertex v1 is at position (0, 0) and v2 at position (2i− 4, 0).
– If the sequence of the vertices on the outer face is c1, c2, . . . , ck with c1 = v1
and ck = v2, then we have x(cj) < x(cj+1) for 1 ≤ j < k.

– The edge (cj , cj+1) has slope +1 or −1 for 1 ≤ j < k.

2. Drawing Planar Graphs 39

To describe the idea of the drawing algorithm, we define the left-vertex cl
of vertex vi as the leftmost vertex on Ci−1 that is adjacent to vi. By leftmost
we mean that the vertex comes first on the path from v1 via Ci−1 to v2 that
does not use the edge (v1, v2). The right-vertex cr of vi is defined as the
rightmost vertex on Ci−1 adjacent to vi. From now on we will refer to the
vertex cl+1 on Ci−1 as the vertex directly right of cl on Ci−1.

When we want to add the vertex vi, we move the vertices cl+1 to cr−1

one unit to the right while we move the vertices cr to ck two units to the
right. We also have to move some inner vertices of the representation to the
right to make sure that the representation remains planar. This is achieved
by storing for every vertex v on Ci a set of dependent vertices that have to
be moved in parallel with v. When v vanishes from the outer cycle, we add
v to its own list of dependent vertices and make this updated list the set of
dependent vertices of the new vertex on the outer cycle.

We place vi at the intersection of the line with slope +1 starting at cl and
the line with slope −1 starting at cr. Figure 2.10 shows an example for the
construction of such a representation. This approach can also be applied to
non-triangulated graphs by first adding edges to make the graph triangulated
(augmentation), applying the algorithm, and deleting the additional edges in
the computed representation.

Fig. 2.10. An example for the straight-line algorithm of de Fraysseix, Pach and
Pollack.

2.7.2 The Barycentric Algorithm of Schnyder

In the same year, Schnyder described an algorithm for solving the same task
in time O(n) using a grid of size (n − 2) × (n − 2) (Schnyder, 1990). This
algorithm computes three coordinates for each vertex in the sequence given
by the same canonical ordering as used by de Fraysseix, Pach and Pollack. In

40 René Weiskircher

a second step, it computes the actual grid coordinates for the vertices using
the barycentric coordinates.

The vertex positions are defined using a barycentric representation of the
input graph G.

Definition 2.15 (Barycentric Representation). A barycentric represen-
tation of G is an injective function

v ∈ V → (v1, v2, v3) ∈ R3

satisfying the following conditions:

1. v1 + v2 + v3 = 1 for all vertices v.
2. For each edge {u, v} and each vertex w �∈ {u, v} there is some k ∈ {1, 2, 3}

such that uk < wk and vk < wk.

A barycentric representation of the input graph is computed by first con-
structing a normal labeling of the angles of the faces of the input graph.
Since the input graph is triangulated, every face has exactly three angles.
The angles of each face are numbered 1, 2 and 3 so that the numbers appear
in counterclockwise order around the face and for each interior vertex, the
angles around it in counterclockwise order form a nonempty sequence of 1’s
followed by a nonempty sequence of 2’s followed by a nonempty sequence of
3’s. Such a labeling can be constructed in linear time.

For each normal labeling, every edge has two different labels on one end
while the labels on both sides of the other end are the same. We call the
repeated label the label of the edge. Thus, each normal labeling defines a
realizer of the graph.

Definition 2.16 (Realizer). A realizer of a triangular graph G is a parti-
tion of the interior edges of G into three sets T1, T2 and T3 of directed edges
so that for each interior vertex v the following conditions are satisfied:

1. The vertex v has outdegree 1 in T1, T2 and T3.
2. The counterclockwise order of the edges around v is: leaving in T1, en-

tering in T3, leaving in T2, entering in T1, leaving in T3, entering in
T2.

Every normal labeling has the following property: For each number in
{1, 2, 3} there is exactly one vertex on the outer face where every adjacent
angle is labeled i. For each interior vertex, there is exactly one path leaving
the vertex where all edges are labeled i for i ∈ {1, 2, 3}. This path ends in the
vertex of the outer face where all adjacent edges are labeled i. These 3 paths
leaving each interior vertex define 3 regions of the graph and the number of
faces in each of these regions are the 3 barycentric coordinates of the vertex.

If we have 3 arbitrary non-collinear points α, β and γ in the plane and ver-
tex v has the barycentric coordinates (v1, v2, v3), then drawing every vertex
v at position v1α+ v2β + v3γ will result in a planar straight-line embedding
of the graph.

2. Drawing Planar Graphs 41

2.7.3 The Straight-Line Algorithm of Kant

Kant used the canonical ordering approach to develop several drawing algo-
rithms (Kant, 1996). The first one also produces straight-line representations,
but in contrast to the algorithms mentioned before, it guarantees that the in-
ner regions are convex for 3-connected graphs, even if it is not the case that
every face of the graph is bounded by 3 edges. This is not necessarily the
case for the algorithms mentioned before, because if we want to apply them
to non-triangulated graphs, we first have to augment the graph by adding
edges to produce a second graph where every face is a triangle, then produce
a representation for this graph and finally delete the added edges from the
final representation. Thus it might happen that not every inner face of the
representation is convex. The algorithm of Kant has a maximum grid-size of
(2n − 4) × (n − 2) and runs in O(n) time. Chrobak and Kant (1997) later
improved this algorithm so that it only uses an area of (n− 2)× (n− 2).

Since this algorithm is an improved version of the algorithm of de Frays-
seix et al. (1990), we will only give an overview of the differences. The algo-
rithm of Kant can also handle 3-connected graphs that are not triangulated.
This is achieved by defining the canonical ordering not as an ordering of the
vertices but rather as an ordered partition of the vertices. Let G = (V,E) be
a 3-connected graph with a planar representation D where v1 ∈ V is on the
outer face. Let π = (V1, . . . , Vk) be a partition of V and Gi the subgraph of
G induced by V1 ∪ V2 ∪ . . .∪ Vi. The face Ci is the outer face of the represen-
tation Di of Gi that we get by removing all representations of vertices and
edges from D that do not belong to Gi.

Then π is a canonical ordering if and only if the following conditions hold:

– V1 = {v1, v2}, v1 and v2 both lie on the outer face of D and (v1, v2) ∈ E.
– Vk = vn and vn lies on the outer face of D with (v1, vn) ∈ E and vn �= v2.
– Each Ci for i > 1 is a cycle containing (v1, v2).
– Each Gi is 2-connected and internally 3-connected (removing any two inner
vertices will not disconnect the graph).

– For each i ∈ {2, . . . , k − 1} one of the following conditions holds:
1. Vi is a single vertex z belonging to Ci and having at least one neighbor

in G−Gi.
2. The vertices in Vi form a chain (a path where all inner vertices have

degree 2) (z1, . . . , zl) on Ci where each zj has at least one neighbor in
G −Gi. The vertices z1 and zl each have exactly one neighbor in Ci−1,
and these are the only neighbors of the vertices in Vi.

This canonical ordering can be computed in linear time by starting with
the representation D and successively removing chains or single vertices from
the outer face so that the resulting graph G′ is 2-connected. To do this in
linear time, we have to store and update for each face the number of its ver-
tices and edges on the outer face and for each vertex the number of adjacent
faces having a separation pair.

42 René Weiskircher

To compute the actual representation, the canonical ordering is first trans-
formed into a leftmost canonical ordering which can be computed in linear
time from a canonical ordering and is necessary for achieving linear running
time. The invariants of the drawing algorithm after step i (inserting the ver-
tices of the set Vi and the necessary edges) are:

– v1 is at position (0, 0) and v2 at position (2i− 4, 0).
– If the sequence of the vertices on the outer face is c1, c2, . . . , ck with c1 = v1
and ck = v2, then we have x(cj) < x(cj+1) for 1 ≤ j < k.

The only difference in the actual drawing algorithm compared to the
algorithm of de Fraysseix, Pach and Pollack is that we can now insert several
vertices at once. These vertices form a chain and we give them the same
y-coordinate. Figure 2.11 shows an example for the construction of such a
representation.

Fig. 2.11. An example for the straight-line algorithm of Kant.

2.7.4 The Orthogonal Algorithms of Kant

In the same paper (Kant, 1996), Kant also gives two algorithms for producing
orthogonal representations of planar graphs. In an orthogonal representation,
all edges consist only of horizontal and vertical segments. If every vertex is
drawn as a point, such a representation can only be used for planar graphs in
which every vertex has at most degree 4 (4-planar graphs). Since orthogonal
drawing algorithms are explicitly treated in Chapter 6, we will only give a
short overview of the two algorithms. The first algorithm draws 3-connected
4-planar graphs on an n× n grid with at most � 32n�+ 4 bends so that each
edge has at most two bends. The second algorithm produces an orthogonal
representation for planar graphs with maximum degree 3 having at most
�n

2 �+1 bends on a grid of size �n
2 �×�n

2 �. The running time of both algorithms
is linear.

The algorithm for producing orthogonal representations of 3-connected
4-planar graphs given in Kant (1996) also uses the canonical ordering. Since
the edges only consist of vertical and horizontal segments, there are exactly
4 directions from which an edge can attach to a vertex v. They are called
up(v), down(v), left(v) and right(v). One of these directions is called free if we

2. Drawing Planar Graphs 43

have not yet attached an edge to it. The idea of the algorithm is to add each
vertex v in the canonical ordering to the subgraph that is already placed so
that down(v) is not free and up(v) is free. The algorithm works in two phases.
In the first phase, we assign the 4 directions of each vertex to the incident
edges and give the vertices the y-coordinates. We also store for each vertex
and bend a pointer to its column. During the algorithm, we may have to add
new columns. In the second phase, we assign x-coordinates to the columns
and thus indirectly to the vertices and bends of the representation.

The algorithm in Kant (1996) for drawing planar graphs with maximum
degree 3 is based on an algorithm for 3-connected graphs with maximum de-
gree 3. This algorithm is similar to the algorithm of the last paragraph, but
we can place all vertices of the same partition of the canonical ordering on the
same y-coordinate. The algorithm is generalized for working on 2-connected
3-planar graphs using SPQR-trees. We recursively use the algorithm for draw-
ing 3-connected 3-planar graphs and then merge the representations into a
representation for the whole graph. This method is again generalized to con-
nected 3-planar graphs by drawing every 2-connected component so that the
cut vertex is in the upper-left corner and then merging the representations
into a representation of the whole graph without introducing new bends.

2.7.5 The Mixed Model

Kant also introduces a new method for drawing 3-connected planar graphs
called the Mixed Model. In this model, each edge is a poly-line which may
have at most three bends. Each edge consists of at most four parts. The parts
connected to the vertices may be diagonal, while the two middle parts of each
edges are vertical and horizontal. The principle of the algorithm is to define
a set of points around each vertex where the orthogonal edges coming from
other vertices connect. These points define the boundary of the bounding box
of the vertex. The points are then connected by straight lines to the vertex
itself. Each edge consists of a straight line segment between the start vertex
and a point on the boundary of the bounding box, an orthogonal part with
at most one bend from the bounding box of the start-vertex to the bounding
box of the target-vertex and another straight part from the boundary of the
bounding box of the target-vertex to the target-vertex itself.

The grid size for this algorithm is (2n− 6)× (3n− 9) and the number of
bends is at most 5n− 15. An important property of the algorithm is that it
guarantees that the angle between two edges emanating from the same vertex
is larger than 2/d radians where d is the degree of the vertex. The minimum
angle of two edges emanating from the same vertex in a representation is
called the angular resolution of the representation. Having a large angular
resolution improves the readability of a drawing.

Gutwenger and Mutzel have improved Kant’s algorithm for the Mixed
Model to achieve a grid size of (2n− 5)× (3

2n− 7
2) (Gutwenger and Mutzel,

1998). They also have improved the angular resolution for graphs which are

44 René Weiskircher

not 3-connected. Since Kant’s algorithm only works for 3-connected graphs,
graphs that are not 3-connected have to be augmented by adding additional
edges before the algorithm is applied and afterwards the additional edges
have to be deleted from the representation. This can lead to an angular
resolution of 4

3d+7 where d is the maximum degree in the original graph.
Since the algorithm in Gutwenger and Mutzel (1998) can be applied directly
to 2-connected graphs, an angular resolution of 2/d can be guaranteed for
any planar graph. The running time for both algorithms is linear.

The algorithm for drawing graph G works in three phases:

1. If the graph is not 2-connected, edges are added to produce a planar
2-connected graph G′.

2. A suitable canonical ordering for G′ is computed.
3. This ordering is used to draw the original graph G.

For each vertex, we define a set of inpoints and outpoints. The inpoints are
the points where the edges from vertices that have already been placed arrive
and the outpoints are the points where the edges to vertices that still have
to be placed leave. The inpoints and outpoints of each vertex are located on
the boundary of a roughly diamond shaped bounding box and will be placed
on grid coordinates. Figure 2.12 shows two examples of bounding boxes.

Fig. 2.12. Two examples of bounding boxes.

The point straight down from a vertex as well as the two points straight
to the right and to the left are inpoints, while the point straight above the
vertex is always an outpoint. Thus, a vertex with an indegree not greater
than 3 and an outdegree of at most 1 will have no adjacent diagonal edges.
These inpoints together with the edges that connect them to the vertex form
a cross. We denote the four sectors defined by this cross NW,NE, SE and
SW, as on a compass.

If there are more than three incoming edges, we distribute the remaining
inpoints evenly among the sectors SE and SW . If there are at least two
outgoing edges, they are distributed evenly between the sectors NE and
NW . If the remaining number of edges is not even, we get an asymmetric
configuration like in the right picture of Figure 2.12.

When a vertex is placed, we have to avoid overlapping bounding boxes
except if we can identify the outpoint of an adjacent vertex with the vertex

2. Drawing Planar Graphs 45

we want to place. If the set Vi of vertices in the canonical order we want to
add in step i has only one element v, we place this vertex directly above the
adjacent vertex which is connected by the inedge going straight down. We
choose the y-coordinate so that the minimum vertical distance between the
bounding box of an adjacent vertex and the bounding box of v is 1. We may
have to shift the adjacent vertices already placed and their dependent sets
to the right to make room for the edges. If Vi has more than one element, all
the vertices in the set will get the same y-coordinate. Figure 2.13 shows an
example of a drawing produced with Kant’s original algorithm. Figure 2.14
shows two drawings computed with the algorithm of Gutwenger and Mutzel
(1998).

Fig. 2.13. A drawing produced by the Mixed Model algorithm of Kant.

Fig. 2.14. Example drawings produced by the algorithm of Gutwenger and Mutzel.

3. Drawing Trees, Series-Parallel Digraphs,

and Lattices

Matthias Müller-Hannemann∗

In many applications of graph drawing which have been described in Chap-
ter 1 one faces graph classes with a special structure. First of all, this means
that specific layout criteria become possible. Second, the structural proper-
ties of these classes allow the development of more powerful algorithms with
respect to running time and layout space requirements. Among the many
special graph classes which exist, probably most attention has been paid to
trees and planar graphs. Algorithms and methods for planar graphs in general
have been given in Chapter 2. This chapter concentrates on three different
graph classes, namely on trees and series-parallel digraphs (which are, of
course, even more specialized planar graphs), but also on graphs arising from
lattices, more precisely, on covering digraphs of lattices.

In the corresponding sections, we first discuss the required terminology,
explain the specific layout styles and criteria, and then give a (partial) survey
of the main results in these areas. The main part of each section presents some
typical highlight in more detail. In Section 3.1, we describe recent work of
Chan (1999) on the drawing of ordered binary trees with near-linear area
bounds. For the drawing of series-parallel digraphs, we also selected some
very recent work, namely that of Hong et al. (1998) devoted to the display
of symmetries. Finally, in our section on the drawing of lattice diagrams
our presentation is application-driven: we sketch the field of formal concept
analysis as introduced by Wille and co-workers.

3.1 Trees

Trees are widely used as a data structure and representation of hierarchies.
Applications requiring a suitable visualization include among others organi-
zation charts of companies, search trees, parse trees of computer programs
or family trees in genealogy.

3.1.1 Rooted Trees

We adopt the following standard terminology for trees. A tree is a connected
acyclic graph. A rooted tree T is a tree with a special vertex r ∈ T , the so-
called root of T . For rooted trees, it is common to orient the edges “away
∗ The author was partially supported by the special program “Efficient Algorithms
for Discrete Problems and Their Applications” of the Deutsche Forschungsge-
meinschaft (DFG) under grant Mo 446/2-3.

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 46-70, 2001.
 Springer-Verlag Berlin Heidelberg 2001

3. Drawing Trees, Series-Parallel Digraphs, and Lattices 47

from the root” such that the root is the only vertex with no incoming edge,
but every other vertex has exactly one incoming edge. In particular, there is
a unique path from the root to each vertex. For a directed edge (u, v) in a
rooted tree, the vertex u is the parent of v and v is a child of u. In a rooted
tree, the depth of a vertex v is the number of edges of the path from v to the
root. A vertex is called leaf if it has no child. A binary tree is a rooted tree
where each vertex has no more than two children.

An ordered tree is a rooted tree with a given ordering of the children of
each vertex. In an ordered binary tree, the first child of a vertex with two
children is called the left and the second one is called the right child. If v is
the vertex of some rooted tree T , then the subtree rooted at v is the subgraph
induced by all vertices reachable on directed paths starting at v. In case of an
ordered binary tree and a vertex v with two children, the subtree rooted at
the left or right child of v is the left subtree and right subtree of v, respectively.

Free trees are trees without a prespecified root. However, after selecting
some vertex as a fictitious root they can be handled like rooted trees. A
typical choice for a root of a free tree is a center, that is a vertex such that
the height of the resulting rooted tree is minimized.

Typical requirements for “ideal drawings” of rooted trees involve repre-
sentations, layout models and constraints of the following kind.

1. Planar drawings : No two edges cross.
2. Grid drawings : Vertices have integer coordinates.
3. Straight-line drawings : Each edge is a straight-line segment, whereas in

a polyline drawing each edge is a polygonal chain.
4. (Strictly) upward drawings : A child should be placed (strictly) below its

parent in the y-direction.
5. Strongly order-preserving drawings : The line segments from the parent

to the leftmost child is monotone decreasing in the x-direction, whereas
the line segment to the rightmost child is monotone increasing, and the
line segments of all children from a vertex are sorted by angle from left
to right.

A layered drawing of a tree is a drawing where a vertex v of depth i has
as y-coordinate the negative of its depth, that is y(v) = −i. Hence, a layer
is formed by the set of vertices of the same depth. In radial drawings, the
layers are mapped to concentric circles. In an orthogonal drawing each edge
is a chain of alternating horizontal and vertical segments. An hv-drawings is
a planar straight-line orthogonal and upward drawing where additionally for
every vertex the smallest bounding rectangles of its subtrees do not intersect.
See Figure 3.1 for examples of a layered, a hv- and a radial drawing.

3.1.2 Area Bounds

The area of a drawing of a tree is, as usual, defined as the area of the smallest
rectangular box with horizontal and vertical sides covering the area under

48 Matthias Müller-Hannemann

Fig. 3.1. Examples of a layered, a hv-, and a radial tree drawing.

some resolution convention (for example, that any two vertices have minimum
distance one). Similarly, the aspect ratio of the drawing is the ratio of the
length of the longest side to the length of the shortest side of the smallest
enclosing box. In many cases, there is a trade-off between the required area or
the achievable aspect ratio and some of the mentioned aesthetic requirements.
Table 3.1 gives an overview of existing algorithms, the criteria they meet and
the achieved bounds on the area and the aspect ratio.

Layered tree-drawings with several nice additional features (straight-line,
grid, order-preserving, isomorphic subtrees have congruent drawings) require
O(n2) area and can be found in linear time (Reingold and Tilford, 1981). A
layered tree-drawing of a binary tree with minimum width can be solved in
polynomial time by means of linear programming, but if a grid drawing is
required, the width minimization problem becomes NP-hard (Supowit and
Reingold, 1983).

Table 3.1. Upward grid drawings of rooted trees. The columns indicate whether
the drawings are strictly upward (2), straight-line (3), orthogonal (4), or (strongly)
order preserving (5), and give bounds for the area (6) and aspect ratio (7).

tree st
r.

up
w
.

st
ra
ig
ht
-li
ne

or
th
og

on
al

or
d.

pr
es
.

(s
tr
on

gl
y)

area ratio reference

rooted + + – + O(n2) O(n)
Reingold and
Tilford (1981)

rooted + + – – Θ(n log n) O(n
log n)

Shiloach
(1976),
Crescenzi
et al. (1992)

binary – + + – O(n log n) O(1)
Chan et al.
(1996)

binary – – + – Θ(n log log n) O(n log log n

log2 n
)

Garg et al.
(1996)

binary + + – + (+) O(n1+ε) O(n) Chan (1999)

Fibonacci + + – – Θ(n) O(1)
Crescenzi et al.
(1992)

AVL + + – – Θ(n) O(n
log n)

Crescenzi and
Piperno (1995)

degree–
O(na),
0 ≤ a < 1

– – – – Θ(n) O(na)
Garg et al.
(1996)

3. Drawing Trees, Series-Parallel Digraphs, and Lattices 49

An area bound of O(n logn) is possible if the property of being order-
preserving is dropped (Shiloach, 1976; Crescenzi et al., 1992). This area bound
is tight, that is, there is a class of binary trees which requires Θ(n log n) area
in any strictly upward planar grid drawing.

For binary trees, upward, order-preserving polyline drawings also achieve
the bound Θ(n log n) (Garg et al., 1996), whereas it is interesting to note that
upward orthogonal polyline grid drawings (but not order-preserving ones)
allow even tight bounds of Θ(n log logn) (Garg et al., 1996).

Linear-area drawing algorithms are available for AVL-trees (Crescenzi and
Piperno, 1995) and Fibonacci trees (Crescenzi et al., 1992). Moreover, for any
rooted bounded-degree tree one can construct a planar upward grid polyline
drawing with O(n) area but not preserving a given order (Garg et al., 1996).

We note that these theoretical results usually assume that vertices con-
sume the same space. However, the drawing area required to display vertex
labels may be quite different.

Chan’s Binary Tree Drawing. In the following, we will present recent
methods of Chan (1999) for binary trees achieving a near-linear area bound
for planar, straight-line, strictly upward and strongly order-preserving draw-
ings. The analysis of these methods may highlight the typical kind of reason-
ing necessary for similar results on area bounds.

L R
L

RL

R

Fig. 3.2. Left-right-rules.

Let us consider a recursive procedure for drawing a given ordered binary
tree T with root v. If we have constructed drawings of the left subtree L and
the right subtree R, these partial drawings can be combined by two rules as
follows. In the left rule, we vertically align v with the root of R, place the
right upper corner of the bounding box of L one unit below and one unit
to the left of v, and place the upper border of the bounding box of R on
the same line as the lower border of the bounding box of L. Symmetrically,
we define the right rule, see Figure 3.2. If we specify which rule to use, we
immediately get a drawing algorithm. A first and very simple method is given
in Algorithm 1.

The validity of the claimed properties of the output specification should
be obvious. It is also immediate that the height of such a drawing is at most
n = |T |; a bound on the width, however, is not obvious.

50 Matthias Müller-Hannemann

Algorithm 1: Simple binary tree drawing.
input : an ordered binary tree T with root v

output : a straight-line planar, strictly upward and strongly order preserv-
ing drawing of the binary tree T

begin
if |T | ≤ 1 then return trivial drawing;
L← left subtree of T ;
R← right subtree of T ;
draw L and R;
if |L| ≤ |R| then

combine drawings using the left rule;

else
combine drawings using the right rule;

end

A reformulation of this algorithm in a slightly different way makes the
analysis of the required width more accessible.

Algorithm 2: Generic binary tree drawing.
input : an ordered binary tree T with root v

output : a straight-line planar, strictly upward and strongly order preserv-
ing drawing of the binary tree T

begin
if |T | ≤ 1 then return trivial drawing;
determine a path P = (v0 = r, v1, . . . , vk) from the root to some leaf vk;
for i = 0 to k do

draw the subtree rooted at the sibling of vi;

combine the drawings by applying the left and right rules at nodes of P
such that all nodes of P are vertically aligned;

end

Algorithm 2 is a generic version which is identical to Algorithm 1 if the
greedy path P is chosen as follows: Let vi, Li, Ri be the root, left and right
subtree of Ti, respectively. If |Ri| ≤ |Li|, then set Ti+1 = Li, and set Ti+1 =
Ri, otherwise. See Figure 3.3 for an illustration.

Lemma 3.1. For any two different subtrees α and β of the greedy path, either
(i) |α| ≤ n/2 and |β| ≤ (n− |α|)/2 or (ii) |β| ≤ n/2 and |α| ≤ (n− |β|)/2.

If we denote the width of a drawing for T by W (T), then

W (T) =W (α) +W (β) + 2

for some left subtree α and some right subtree β of the path P . With
Lemma 3.1 we get the following recurrence on the maximum width W (n)
for trees of size n:

3. Drawing Trees, Series-Parallel Digraphs, and Lattices 51

Fig. 3.3. Chan’s generic algorithm (with the greedy path).

W (n) ≤ max
n1≤n/2, n2≤(n−n1)/2

(W (n1) +W (n2) + 2).

It can be shown that this recurrence solves to W (n) = O(n0.695).

Near-Linear Drawings. A further improvement on the area bounds can
be achieved by extending the left and right rules. The extended left rule
applied at the root v of T translates the bounding box of the right subtree R
horizontally by an arbitrary amount, as long as the x-coordinate of the root
of R is not less than the x-coordinate of v. The extended right rule is defined
symmetrically. Clearly both rules still guarantee straight-line planar, strictly
upward and strongly order preserving drawings.

Consider the greedy path P = (v0, v1, . . .) and subtrees Ti rooted at vi as
defined above. For some fixed parameter A to be chosen later, let k be the
largest index such that |Tk| ≥ n−A. Suppose that vk is a left (right) child. Let
P ′ be the subpath (v0, v1, . . . , vk) and P ′′ be the leftmost (rightmost) path
from vk+1 to a leaf. The generic Algorithm 2 applied on the concatenation
of the two paths P ′ and P ′′ leads to the improved Algorithm 3, shown in
Figure 3.4.

For the analysis we may assume that vk is a left child. Then the width
W (T) is given by

W (T) = max{W (α) +W (β) + 2,W (γ) + 1},

where α and β are left and right subtrees of P ′, respectively, and γ is a right
subtree of P ′′.

Lemma 3.2. Let P ′ and P ′′ be defined as above. Then for any subtree α of
a vertex of P ′, |α| ≤ A. For any subtree γ of a vertex of P ′′, |γ| ≤ n−A.

Hence, for any choice ofA we get the following recurrence on the maximum
width W (n) for trees of size n:

W (n) ≤ max{2W (A) + 2, W (n−A) + 1}.

52 Matthias Müller-Hannemann

From that, one can obtain

W (n) ≤ 2W (A) +O(n/A).

If we set the parameter A = n/21/ε for a fixed ε > 0, the recurrence solves
to W (n) = O(21/εnε). This implies an area bound of O(n1+ε). However, the
best result is achieved for a non-constant value ε = 1/

√
log2 n which leads to

the following theorem.

Theorem 3.3 (Chan 1999). Any binary tree of size n admits a straight-
line planar, strictly upward and strongly order-preserving drawing of height
at most n− 1 and width O(4

√
log2 n).

A similar result is also possible for ordered trees of arbitrary degree:

Theorem 3.4 (Chan 1999). Any ordered tree of size n admits a straight-
line planar, strictly upward and strongly order-preserving drawing with an
area of O(n4

√
2 log2 n).

kv

vk-1

Fig. 3.4. Chan’s improved algorithm (extended left-right-rule).

3.2 Series-Parallel Digraphs

Series-parallel digraphs arise in the analysis of electrical networks, and they
appear in flow diagrams, dependency charts, and PERT networks. This sec-
tion first reviews basic facts about such graphs, and then describes algorithms
for upward straight-line drawings. In the main part we sketch a recent method
for symmetry drawings.

3. Drawing Trees, Series-Parallel Digraphs, and Lattices 53

Algorithm 3: Improved binary tree drawing.
input : an ordered binary tree T with root v, a parameter A

output : a straight-line planar, strictly upward and strongly order preserv-
ing drawing of the binary tree T

begin
if |T | ≤ 1 then return trivial drawing;
determine the greedy path P = (v0 = r, v1, . . . , v�) from the root to
some leaf v�;
let k be the largest index such that |Tk| ≥ n−A for the subtree rooted
at vk;
if vk is a left child then

let P ′ = (v0, v1, . . . , vk);
let P ′′ the leftmost path from vk+1 to a leaf;
draw the subtrees of P ′ and P ′′;
combine the drawings by applying the left and right rules at
v0, v1, . . . , vk−2 such that v0, v1, . . . , vk−1 are vertically aligned;
apply the left rule at nodes on P ′′ and vk such that these nodes are
vertically aligned as well;
apply the extended left rule at vk−1 such that vk is aligned with the
left side of the bounding box of the entire drawing of T ;

else
“symmetric case”, choosing the rightmost path from vk and replac-
ing right for left;

end

3.2.1 Terminology and Basic Facts

Series-parallel digraphs (more precisely, sometimes also called two-terminal
series-parallel multidigraphs) are defined recursively as follows. A digraph
consisting of two vertices, a source s and a sink t, joined by a single edge is
a series-parallel digraph. If G1 and G2 are series-parallel digraphs, so are the
digraphs constructed by each of the following operations:

1. The parallel composition: Identify the source of G1 with the source of G2

and the sink of G1 with the sink of G2.
2. The series composition: Identify the sink of G1 with the source of G2.

There exist other notions of series-parallel digraphs (see e.g. Valdes et al.
1982), but to our knowledge only the given one has been studied for spe-
cialized drawing algorithms. Note that every series-parallel digraph is acyclic
and planar. Drawing algorithms for series-parallel digraphs usually assume
that the given graphs are simple.

Decomposition and Recognition. Given an arbitrary multidigraph G, a
series reduction is an operation which can be applied to the arcs (u, v), (v, w)
if v has in-degree and out-degree one. In such a case this operation deletes v
and both incident arcs from G and reinserts a new arc (u,w). In a parallel
reduction, exactly one arc of a pair of parallel arcs is deleted.

54 Matthias Müller-Hannemann

P

SS S

P

SS

Fig. 3.5. Example of a canonical decomposition tree for a series-parallel digraph.

Based on reductions, series-parallel digraphs can also be characterized by
the following lemma.

Lemma 3.5. A graph is a series-parallel digraph if and only if it can be
reduced to the one-edge series-parallel digraph by a sequence of series and
parallel reductions.

Using this lemma, one obtains an efficient algorithm for the recognition of
series-parallel digraphs. Given a graph G, one repeatedly applies series and
parallel reductions until no reduction is possible. It is a nice property of series-
parallel digraphs that the result of such a reduction sequence is independent
of the order in which the specific reductions are applied.

A series-parallel digraphG can be represented in a natural way as a binary
decomposition tree T , which is obtained as a by-product of such a reduction
sequence. The decomposition tree contains S-nodes, P -nodes and Q-nodes
and is recursively defined as follows. If G is a single edge, then T consists of a
single Q-node. If G is a series composition of G1 and G2 with decomposition
trees T1 and T2 and roots r1 and r2, respectively, then T consists of an S-
node root with left child r1 and right child r2. Similarly, if G is a parallel

3. Drawing Trees, Series-Parallel Digraphs, and Lattices 55

composition of G1 and G2 with decomposition trees T1 and T2 and roots r1
and r2, respectively, then T consists of a P -node root with children r1 and
r2 (in an arbitrary order).

Valdes et al. (1982) describe how to recognize and to build up a binary
decomposition tree of a series-parallel digraph in linear time. It is straightfor-
ward to get a canonical decomposition tree (no longer binary) by contracting
each connected group of S-nodes and each connected group of P -nodes into
a single node. Such a tree is unique up to reordering the children of each
P -node. See Figure 3.5 for an example.

In the following we assume that the decomposition tree T of a series-
parallel graph G is given as part of the input for the drawing algorithm.

3.2.2 Upward Straight-Line Drawings

Fixed Embedding Requires Exponential Area. We start with the nega-
tive result that upward straight-line drawings of series-parallel digraphs which
preserve a given embedding may require exponential area. Consider the re-
cursively defined class Gn of series-parallel digraphs as shown in Figure 3.6.

G Gn0 Gn+1

Fig. 3.6. The class Gn of series-parallel digraphs leading to exponential area
bounds.

Lemma 3.6 (Bertolazzi et al. 1994a). There exist embedded series-
parallel digraphs such that any upward straight-line drawing that preserves
the embedding requires exponential area, namely Ω(4n) under any resolution
rule for the class Gn.

Linear-Time Drawings with O(n2) Area. However, if one allows small
changes in the embedding much better area bounds are possible. In a so-
called right-pushed embedding, a single edge which forms a component of a
parallel composition is always embedded on the right side. (Since we assume
that the series-parallel digraphs are simple, there is at most one single edge
component in a parallel composition.)

Bertolazzi et al. (1994a) describe an algorithm for right-pushed embed-
dings. The ∆-drawing Γ of a series-parallel digraph is inductively defined

56 Matthias Müller-Hannemann

inside a bounding triangle ∆(Γ) that is isosceles and right angled. The hy-
potenuse of ∆(Γ) is a vertical segment, and the other two sides are on its
left. See Figure 3.7 for a sketch of the construction for the base case, a series
composition and for parallel compositions (from left to right) in the corre-
sponding Algorithm ∆-SP-Draw. More details can be found in the book of
Di Battista et al. (1999).

Theorem 3.7 (Bertolazzi et al. 1994a). Let G be a series-parallel di-
graph with n vertices. The algorithm ∆-SP-Draw yields a strictly upward
planar straight-line grid drawing of G with O(n2) area such that isomorphic
components of G have drawings congruent up to a translation. This algorithm
can be implemented to run in linear time.

t

1t

2s
1s

v

u
1

G

G1

2

G 2G

2

Fig. 3.7. Construction steps in Algorithm ∆-SP-Draw (sketch): base case, series
composition, parallel composition (general case; the edges (s1, u) and (v, t1) are the
rightmost edges incident on the source and sink of G1), and parallel composition
with a right-pushed single edge (from left to right).

Extension to Dynamic Drawings. We also mention extensions to dy-
namic drawings. For more information on dynamic drawings in general see
Chapter 9.

Cohen et al. (1995) consider a framework for dynamic graph drawings
where an implicit representation of the drawing of a graph is maintained
such that the following operations can efficiently be performed.

– Update operations, i.e., insertion and deletion of vertices and edges or re-
placement of an edge by a graph.

– Drawing queries, which return the drawing of a subgraph S of a graph G
consistent with the drawing of G.

3. Drawing Trees, Series-Parallel Digraphs, and Lattices 57

– Point location queries, which return the vertex, edge or face containing a
given point p in the subdivision of the plane induced by the drawing of G.

– Window queries, which return the portion of the drawing inside a query
rectangle.

Within this framework the algorithm ∆-SP-Draw can be modified such that
updates take O(log n) time and O(n) memory space, drawing queries take
time O(k+logn) for a series-parallel subgraph and O(k logn) for an arbitrary
subgraph of size k, point location queries take O(log n) time, and window
queries O(k log2 n) time.

3.2.3 Display of Symmetries

Very recent work studies how to draw series-parallel digraphs with as much
symmetry as possible (Hong et al., 1998, 1999a).

An automorphism of an undirected graph is a permutation of the vertex
set which preserves adjacency of vertices. For a directed graph G = (V,E),
we will consider two kind of automorphisms. A direction preserving automor-
phism is a permutation p of the vertex set V such that (u, v) ∈ E if and only
if (p(u), p(v)) ∈ E, whereas in a direction reversing automorphism we require
that (u, v) ∈ E if and only if (p(v), p(u)) ∈ E. The set of all automorphisms
(direction preserving and reversing) forms the automorphism group of G.

In general, the problem of finding an automorphism group of a graph
is isomorphism complete, i.e., as hard as testing whether two graphs are
isomorphic. The exact complexity status of this problem is open, namely, it
is neither known to be NP-complete nor are polynomial algorithms available.

In our context, we are only interested in those automorphisms which can
be represented geometrically as a symmetry of an upward planar drawing.
The corresponding groups are called upward planar automorphism groups.
Based on earlier work of Manning (1990) and Lin (1992), Hong et al. show
that only a few different automorphism groups occur for upward planar draw-
ings. Examples are shown in Figure 3.8.

Lemma 3.8 (Hong et al. 1999a). An upward planar automorphism group
of a series-parallel digraph is either

– trivial, or
– {1, p} where p is either vertical, horizontal, or a rotation of 180 degrees,
or

– {1, p, q, r} where p is of type vertical, q of type horizontal, and r a rotation
of 180 degrees.

The detection of upward planar automorphisms involves the following steps:

1. Construct the canonical decomposition tree.
2. Check for existence of horizontal automorphisms.
3. Check for existence of vertical automorphisms.

58 Matthias Müller-Hannemann

Fig. 3.8. Examples of automorphism groups: vertical, horizontal, rotational, and
group of size 4 (from left to right).

4. Check for existence of rotational automorphisms.
5. Compute the maximum upward planar automorphism group.

Detection of Vertical Automorphisms. We will only sketch the detec-
tion of vertical automorphisms. The detection of horizontal and rotational
automorphisms is similar, but slightly more complicated. For details we refer
to Hong et al. (1999a).

Lemma 3.9 (Hong et al. 1999a). Suppose that G is a series-parallel di-
graph, where the children of the root in the canonical decomposition tree rep-
resent G1, . . . , Gk, and α is a vertical automorphism. If G is a series com-
position, then α fixes each one of G1, . . . , Gk. If G is a parallel composition,
then α fixes at most one of G1, . . . , Gk.

An automorphism partition of a set G of graphs is a partition of G into
subsets G1,G2, . . . ,Gm such that two graphs are in the same subset if and
only if they are isomorphic. The sets Gi are called isomorphism classes. The
partition can be expressed by assigning an integer label code(G) to every
graph G ∈ G such that, for each G,G′ ∈ G, code(G) = code(G′) if and only
if G is isomorphic to G′.

An adaption of a tree isomorphism algorithm (Aho et al., 1974), applied
to the canonical decomposition tree of a series-parallel digraph, allows an
efficient labeling procedure (Algorithm 4) which yields the following lemma.

Lemma 3.10 (Hong et al. 1999a). Suppose that u, v are nodes on the
same level in the canonical decomposition tree of a series-parallel digraph
G. Then the component represented by u is isomorphic to the component
represented by v if and only if code(u) = code(v).

See Figure 3.9 for an example of such a labeling of a canonical decompo-
sition tree.

Theorem 3.11 (Hong et al. 1999a). Suppose that G is a series-parallel
digraph.

3. Drawing Trees, Series-Parallel Digraphs, and Lattices 59

Algorithm 4: Vertical labeling of a canonical decomposition tree.
input : a canonical decomposition tree T of a series-parallel digraph

output : a vertical labeling of T

begin
initialize the tuples for each leaf u of T with tuple(u) = (0);
for each level i, from the maximum level to the root level do

for each internal node u of T at level i do
set tuple(u) = (code(v1), code(v2), . . . , code(vk)), where the chil-
dren of u are v1, v2, . . . , vk, from left to right;

if u is a P -node then
sort tuple(u);

let S be the sequence of tuples for the nodes on level i. Sort S
lexicographically;
for each node u at level i do

set code(u) = j if u is represented by the j-th distinct tuple of
the sorted sequence S;

end

c=1
t=0

c=1
t=0

c=1
t=(1,1)

c=1
t=0

c=1
t=0

S c=1
t=(1,1)

c=1
t=0

c=1
t=0

c=1
t=(1,1)

S

P

P

c=1
t=(1,1,2)

c=1
t=(1,1)

S S S

c=2
t=(1,2,1)

t=(1,1)
c=2

c=1 c=1 c=1 c=1
t=0 t=0 t=0 t=0

Fig. 3.9. Example of the vertical labeling of a canonical decomposition tree (the
code of a component is abbreviated with c, an auxiliary tuple with t).

60 Matthias Müller-Hannemann

1. If G is a series composition of G1, . . . , Gk, then G has a vertical automor-
phism if and only if each one of G1, . . . , Gk has a vertical automorphism.

2. Suppose G is a parallel composition of G1, . . . , Gk. Consider the auto-
morphism partition of G1, . . . , Gk.
a) If there is more than one isomorphism class with an odd number of

elements, then G has no vertical automorphism.
b) If all automorphism classes have an even number of elements, then
G has a vertical automorphism.

c) If one isomorphism class has an odd number of elements, then G has
a vertical automorphism if and only if the component of the odd size
automorphism class has a vertical automorphism.

Proof. Just look at Figure 3.10. Note that for an isomorphic pair Gi, Gj , we
can construct drawings Di of Gi and Dj of Gj such that Di is a mirror im-
age of Dj . By applying a “croissant-shape”–transformation (see Figure 3.11)
to both drawings, isomorphic pairs can be arranged symmetrically on the
opposite sides of a vertical line as in Figure 3.10.

Fig. 3.10. Vertical arrangements for the different cases in Theorem 3.11.

Fig. 3.11. The “croissant” transformation.

3. Drawing Trees, Series-Parallel Digraphs, and Lattices 61

From Theorem 3.11 a recursive checking algorithm for vertical automor-
phisms is immediate, see Algorithm 5.

Algorithm 5: Checking for a vertical automorphism.
input : a canonical decomposition tree T of a series-parallel digraph with

root u and a vertical labeling

output : TRUE if T has a vertical automorphism, and FALSE otherwise

begin
if u is a Q-node then

return TRUE;

if u is a S-node then
if vertical-check(v) == TRUE for every child v of u then

return TRUE;

else
return FALSE;

if u is a P -node then
partition the children of u into classes with equal values of code;
if all the sizes of the classes are even then

return TRUE;

if more than one class has odd size then
return FALSE;

if only one class has odd size then
choose some node v in this odd sized class;
return vertical-check(v);

end

Note that a topological embedding of a series-parallel digraph is defined
by the order of the P -nodes in the canonical decomposition tree. It is straight-
forward to adjust the subroutines of the checking algorithm for the maximum
upward planar automorphism group such that it reorders the P -nodes corre-
sponding to that automorphism.

It remains to explain how to construct a symmetric drawing based on such
an embedding. We will sketch the construction for two layout styles, namely
visibility drawings and bus-orthogonal drawings . In a visibility drawing, each
vertex is mapped to a horizontal and each edge to a vertical line segment. For
a series-parallel digraph, we may also require that the vertical line segment for
the source is a horizontal translation of the vertical line segment for the sink.
The drawing for a graph with a single edge is obvious. In general, the visibility
drawing is constructed recursively by series and parallel compositions, as
illustrated in Figure 3.12.

The principle of bus-orthogonal drawings is to connect neighboring ver-
tices via a so-called bus. A bus is a horizontal line segment just below or
above a vertex. In a bus-orthogonal drawing of a series-parallel digraph, the

62 Matthias Müller-Hannemann

Fig. 3.12. Recursive construction of visibility drawings for series-parallel digraphs:
Given two visibility representations (first two figures), a representation for a series
composition (third figure) is obtained by “stretching” the narrower and identify-
ing the sink of the first with the source of the second, whereas a representation
(right figure) for a parallel composition is constructed by “stretching” the shorter
representation and identifying the sources and sinks.

source s has a bus just above, the sink t has a bus just below, and all other
vertices have exactly one bus above and one below. Each vertex is connected
to its bus(ses) by vertical line segments, and neighboring vertices share a
bus. An easy transformation yields bus-orthogonal drawings from visibility
drawings, see Figure 3.13.

Fig. 3.13. Transformation from visibility drawings to bus-orthogonal drawings.

3.2.4 Three-Dimensional Drawings

Finally, we report on an algorithm for a bus-orthogonal drawing in three di-
mensions which minimizes the footprint (Hong et al., 1999b). The footprint
of a three-dimensional drawing is its projection into the xy–plane, its size is
measured by the minimum enclosing rectangle. A layout has minimal foot-
print if it has size X×Y , and there is no layout with footprint of size X ′×Y ′

where X ′ ≤ X,Y ′ ≤ Y , and (X ′, Y ′) = (X,Y).
Hong et al. (1999b) developed a dynamic programming approach which

yields a minimum size footprint layout. The basic idea is that for each par-
allel node in the canonical decomposition tree we have the freedom either to

3. Drawing Trees, Series-Parallel Digraphs, and Lattices 63

align all its children with the x-axis or with the y-axis. By a rotation of a
component by 90◦ at the z-axis, it might be possible to reduce the footprint,
see Figure 3.14. In contrast, the extent in the z-axis is fixed by the height
of the canonical decomposition tree. Hence, in order to minimize the foot-
print one has to choose for each parallel composition the alignment to either
the x- or y-axis. The mentioned dynamic programming algorithm traverses
the canonical decomposition tree in a bottom-up fashion and computes the
minimal layouts for each node of the decomposition tree from the minimal
layouts of its children. For the details, we refer to Hong et al. (1999b).

Theorem 3.12 (Hong et al. 1999b). There is a dynamic programming
algorithm which computes a minimum size footprint layout of a series-parallel
digraph in time O(n2).

x

z
y

Fig. 3.14. Two- and three-dimensional bus-orthogonal drawings, the latter after
rotations as indicated on the left side.

3.3 Lattices

The theory of ordered sets and lattices has become a fundamental discipline
in modern mathematics. In many cases a diagram generated from an abstract
representation of a lattice (or an ordered set) is an important aid for the un-
derstanding of its structure. Therefore, researchers quite often use diagrams
to gain structural insights about lattices. Besides these inner-mathematical
applications, the practical need for drawings arises in scheduling, in graphical
analysis of statistical data, and formal concept analysis, where “the diagrams
should not only reflect the structure of a concept lattice but also unfold views
for interpreting the data” (Wille, 1989).

Lattices are usually represented by hierarchically layered drawings. A
complete chapter of this book (Chapter 5) is devoted to general methods
for layered drawings. These methods usually take arbitrary digraphs as in-
put, but are, of course, well-suited for acyclic digraphs related to ordered

64 Matthias Müller-Hannemann

sets. In this section we will only introduce the general concept of a diagram
for ordered sets but then specialize our treatment to results for lattices. In
particular, we discuss in more detail the relationship of lattices and planarity
in Subsection 3.3.2, and the application of lattices in formal concept analysis
in Subsection 3.3.3.

3.3.1 Order Diagrams

Let (P,≤) be a partially ordered set (poset) with ground set P and order
relation ≤ which is a reflexive, antisymmetric and transitive binary relation
on P . Distinct elements a, b ∈ P are comparable when either a < b or b < a.
For two elements a, b ∈ P , we say b covers a and a is covered by b (written
as a ≺ b) if a < b and a ≤ c < b implies c = a. We also call a a lower cover
of b, and b an upper cover of a. In addition, (a, b) is called a covering pair.

The line diagram (Hasse diagram) or simply diagram of a poset draws
the elements of P as small circles (vertices) in the plane such that if a, b ∈ P ,
and a < b then a is drawn with smaller y-coordinate than b. There is an
edge between a and b if and only if a ≺ b. In other words, the diagram is an
upward planar drawing of the covering digraph of a poset which contains the
poset elements as vertex set and the covering pairs as directed edges from
the lower to the upper covers. See Figure 3.15 for an example of a diagram.
Posets and their diagrams are closely related to each other.

Fig. 3.15. Example of a Hasse diagram.

Lemma 3.13 (Uniqueness of the diagram). A finite partially ordered
set is determined up to isomorphism by its diagram.

When Q ⊂ P , the set {p ∈ P : q ≤ p in P for every q ∈ Q} is the set of
upper bounds for Q. Dually, the set {p ∈ P : q ≥ p in P for every q ∈ Q} is
the set of lower bounds for Q. If it exists, the unique smallest upper bound of
a, b ∈ P is called the join a∨b, and similarly, the unique greatest lower bound
of a, b ∈ P is the meet a ∧ b. A poset is a lattice if for every two elements
a, b ∈ P the join a ∨ b and the meet a ∧ b exist.

Figure 3.16 shows all lattices with five elements.

3. Drawing Trees, Series-Parallel Digraphs, and Lattices 65

Fig. 3.16. Diagrams of lattices with 5 elements.

Criteria for Good Diagrams. To emphasize the ordering relation, edges
in a diagram are usually drawn as “steep” as possible. An obvious goal is
also to draw the diagram without crossings, if possible. In addition, whatever
symmetries exist should be made “apparent.”

Apart from that, general criteria for good drawings of lattices are hard
to find. To see that such criteria depend on its intended use, consider the
example of the lattice 24 (2n denotes the lattice of all subsets of an n-element
set ordered by inclusion). Figure 3.17, taken from Rival (1985), shows four
different drawings of this lattice, the first is a drawing as the direct product
21× 23, the second as the direct product 22× 22, and the other two drawings
are “merely” symmetric drawings. Obviously, there may be a conflict between
the goals of highlighting symmetry and putting emphasis on certain structural
properties.

Fig. 3.17. Four different drawings of the lattice 24.

66 Matthias Müller-Hannemann

3.3.2 Planar Lattices

Special attention has been paid to planar lattices. A lattice is called planar
if it has a planar diagram.

A first characterization of planar lattices needs some more definitions.
A poset is a chain (also a totally ordered set or a linearly ordered set) if
each pair of elements of the ground set is comparable. A linear extension
of a poset (P,≤) is a chain (P,≤′) defined on the same ground set which
respects all comparabilities of the relation ≤. The (order) dimension of a
poset (P,≤) is the least t for which there exists a family {L1, L2, . . . , Lt} of
linear extensions of P such that P = L1 ∩ L2 ∩ · · · ∩ Lt. Baker et al. (1971)
gave a characterization in terms of the dimension of a lattice.

Theorem 3.14 (Baker et al. 1971). A lattice is planar if and only if it
has order dimension at most two.

In contrast, Kelly and Rival (1975) characterized finite lattices in terms
of forbidden configurations, so-called obstructions. They showed that a cer-
tain family L of non-planar lattices is a minimal obstruction set for planar
diagrams.

Theorem 3.15 (Kelly and Rival 1975). A finite lattice is planar if and
only if it contains no subset isomorphic to a member of the family L.

An necessary and sufficient condition for planar lattices that can be tested
efficiently has been given by Platt (1976).

Theorem 3.16 (Platt 1976). A finite lattice is planar if and only if the
undirected covering graph plus an additional edge from the maximum to the
minimum element is planar.

In addition to planarity, one has studied the criterion to use as few slopes
as possible for the drawing of the covering edges. For a while, it was thought
that the minimum number of slopes needed to draw a lattice depends only
on the maximum number of upper covers (the maximum up-degree) and the
maximum number of lower covers (the maximum down-degree) among the
elements of the lattice. Of course, for any ordered set, the maximum of the
up-degrees and the down-degrees is a lower bound on the number of slopes
needed. However, the conjecture that this is the actual number of slopes
needed has been disproved for lattices in general (Czyzowicz et al., 1990;
Czyzowicz, 1991). In contrast, nice positive results have been found for planar
lattices.

Theorem 3.17 (Czyzowicz et al. 1990). Every finite planar lattice with
maximum up-degree and down-degree two has a planar, two-slope diagram.

3. Drawing Trees, Series-Parallel Digraphs, and Lattices 67

3.3.3 Concept Lattices

We conclude our section on lattices with an application of graph drawing
for the visualization of formal concepts. The description is based on Wille
(1997), Wille (1989), Vogt and Wille (1995), Ganter and Wille (1999), and
Vogt (1996).

A formal context is a triple (G,M,R) where G is a set of objects, M a set
of attributes, and R a relation between objects and attributes.

Such a context is often described as a cross table, see Table 3.2. We take
the example of the context Living Beings and Water from Wille (1997) and
Ganter and Wille (1999).

For formalizing concepts within a context we define the following deriva-
tion operators:

A �→ A′ := {m ∈M | gRm for all g ∈ A} for A ⊆ G,
B �→ B′ := {g ∈ G | gRm for all m ∈ B} for B ⊆M.

By means of the derivation operators, we define the formal concept of a
context (G,M,R) as a pair (A,B) with A ⊆ G,B ⊆M and A′ = B,B′ = A.
A is called the extent, B the intent of the concept. Note that for each A ⊆ G,
the set A′ is the intent of some concept, because (A′′, A′) is always a concept.
The set A′′ is the smallest extent of a concept which contains A. In the given
example (Table 3.2), we have 19 formal concepts in total, among them the
concepts ({1, 2, 3}, {a, b, g}) and ({2, 3}, {a, b, g, h}).

The subconcept-superconcept-relationship describes the order relation be-
tween concepts:

(A1, B1) ≤ (A2, B2) :⇔ A1 ⊆ A2(⇔ B1 ⊇ B2).

The set of all concepts of a context (G,M,R) together with the subcon-
cept-superconcept-relation is the concept lattice of (G,M,R).

Construction of the Concept Lattice. To build the concept lattice from
a given context one has to determine all concepts first. An efficient approach
computes the extents of all concepts in a certain order.

For simplicity we assume that G = {1, 2, . . . , n}. A subset A ⊆ G is
smaller in the so-called lectic order as a set B = A, if the smallest element
for which A and B differ from each other belong to B. More formally,

A < B :⇔ ∃i∈B\A A ∩ {1, 2, . . . , i− 1} = B ∩ {1, 2, . . . , i− 1}.
Suppose that we are able to compute for any given set A ⊂ G the smallest

extent of a context which is larger than A with respect to the lectic order.
Then there is an obvious algorithm to compute all extents. The smallest
extent is ∅′′. We get all other extents if we determine successively from the
last found extent the next one in lectic order. The process terminates with
the largest extent, namely G.

68 Matthias Müller-Hannemann

To do that, we define for A,B ⊆ G, i ∈ G,

A <i B :⇔ i ∈ B \A and A ∩ {1, 2, . . . , i− 1} = B ∩ {1, 2, . . . , i− 1},

A⊕ i := ((A ∩ {1, 2, . . . , i− 1}) ∪ {i})′′.

Table 3.2. Cross table of the context ‘Living Beings and Water’ from Wille (1997).

a b c d e f g h i

1 leech X X X

2 bream X X X X

3 frog X X X X X

4 dog X X X X X

5 spike-weed X X X X

6 reed X X X X X

7 bean X X X X

8 maize X X X X

a = needs water to live
b = lives in water
c = lives on land
d = needs chlorophyll
e = two germ-layers
f = one germ-layer
g = can move about
h = has limbs
i = suckles its offspring

Theorem 3.18. Let A ⊂ G be a set, and let i be the largest element of G
with A <i A⊕ i. Then A⊕ i is the smallest extent that is larger than A with
respect to the lectic order.

Hence, for a given set A ⊂ G we can find the next extent in lectic order in
the following way. We successively test for all elements i ∈ G\A, starting with
the largest element and continuing in decreasing order, whether A <i A⊕ i.
As soon as this condition becomes true, we get A⊕ i as the next extent.
Labeled Line Diagrams. The concept lattice of the context in Table 3.2 is
represented in Figure 3.18 as a labeled line diagram. An element labeled by an
object g represents the concept with the smallest extent containing g, whereas
an element labeled by an attributem represents the concept with the smallest
intent containingm. The extent of each concept can be obtained by collecting
all objects which can be reached by descending paths, and conversely, the
intent can be obtained dually by collecting all attributes which can be reached
by ascending paths.

3. Drawing Trees, Series-Parallel Digraphs, and Lattices 69

lives on
land

leech spike-weed

reedbean

maize

has limbs

can move about lives in
water

one germ-layer

needs chlorophyll

two germ-layers

frog

bream

dog

needs water to live

offspring
suckles its

Fig. 3.18. Diagram of the concept ‘Living Beings and Water’.

The automatic drawing of concept lattices is seemingly still a great chal-
lenge, as formal criteria like edge crossing minimization usually do not exhibit
the lattice structure sufficiently. According to Stumme and Wille (1995), best
results have been achieved by an interactive drawing method using geomet-
rical heuristics and a lot of experience. Empirically it has been proved useful
to develop the diagram from the top downwards (or vice versa) using lists
of upper (lower) covers for the elements of the lattice. They also proposed
two heuristics, the parallelogram rule and the straight line rule. The parallel-
ogram rule recommends to place a new element such that, together with the
introduced lines, it completes a parallelogram with three previously drawn
elements. The straight line rule simply tries to place a new element such that
the induced line segments extend pre-existing ones.

Nested Diagrams. Even a context of moderate size may have a concept lat-
tice with many covering pairs which makes the diagram hard to read. Nested
diagrams have been introduced to reduce the number of lines to be drawn,
see Figure 3.19. The idea of nested diagrams is to factor out parts of the
lattice into “blocks” (enclosed by rectangular boxes) with the understanding
that a single line connecting two such blocks corresponds to parallel lines
between identical pairs of the two blocks, whereas a double line means that
all maximal elements of the lower block are pairwise covered by the minimal
elements of the upper block.

We can obtain a nested line diagram from a formal context by first split-
ting the set of attributes into two parts, that is M =M1 ∪M2. The subsets
M1,M2 are not necessarily disjoint but they should bear a certain meaning
to allow an insightful interpretation. In a second step, the line diagrams are
drawn for the two contexts Ci = (G,Mi, R ∩ (G×Mi)), for i = 1, 2. Finally,

70 Matthias Müller-Hannemann

one takes one of the two line diagrams as the outer structure, enlarges the
representation of each of its elements to a rectangular box, and inserts the
other line diagram into each of the enlarged boxes. This way, one gets a rep-
resentation of the direct product of the concept lattices of the contexts Ci,
and the concept lattice of the original context can be embedded into this
direct product.

The drawing tool TOSCANA of Vogt (1996), for example, makes extensive
use of nested diagrams.

Fig. 3.19. Nested diagram of a lattice.

4. Drawing on Physical Analogies

Ulrik Brandes

Graph layout methods described in previous chapters were based on struc-
tural characteristics of the graph, or a preprocessed version of the graph.
Often, such knowledge is not provided. In this chapter, we take a look at
a class of methods applicable to general graphs, without prior knowledge of
any structural properties. Their common denominator is that they liken the
graph to a system of interacting physical objects, the underlying assump-
tion being that relaxed (energy-minimal) states of suitably defined systems
correspond to readable and informative layouts.

Methods based on physical analogies are quite popular, mainly for three
reasons. First of all, they are very intuitive, because layout is related to
the everyday experience of the surrounding physical world. Secondly, their
basic instances are comparatively easy to understand and to program. The
threshold to get started is thus very low. And finally, they often yield fairly
satisfactory results on medium-sized graphs up to around 50 vertices. In
general, these methods consist of two components,

– a model consisting of physical objects (representing the elements of the
graph) and interactions between these objects, and

– an algorithm that (approximately) computes an equilibrium configuration
of the system.

The specifications of a model fully represent the intuition behind what is
considered a good layout, ideally depending on the specific context of the
graph. Its associated algorithm merely serves as an optimization routine for
the objective function explicated in the model.

First we introduce the fundamental concept behind physical modeling,
that is the basis for all methods presented in this chapter. Then we describe a
number of models and associated algorithms in Sections 4.2 and 4.3. An asset
of physical modeling that is often overlooked is its inherent flexibility. For this
reason, we conclude this chapter by listing examples of model specifications
tailored to specific layout objectives.

4.1 The Springs

Given a connected undirected graph with no particular background informa-
tion, the following two criteria of readable layout seem to be generally agreed
upon for the conventional two-dimensional straight-line representation.

1. Vertices should spread well on the page.
2. Adjacent vertices should be close.

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 71-86, 2001.
 Springer-Verlag Berlin Heidelberg 2001

72 Ulrik Brandes

Only intuitive explanations can be offered. While uniform vertex distribu-
tion reduces clutter, the implied uniform edge lengths leave an undistorted
impression of the graph. Since “clutter” and “distortion” already have phys-
ical connotations, it seems fairly natural to start thinking of a more specific
physical analogy.

We are used to observing even spacing between repelling objects. This
makes it natural to imagine vertices behaving like charged balls to satisfy
the first criterion. A physical analogy for the second criterion is also easy
to find, since it states that we should not allow adjacent balls to drift too
far apart. Springs replacing edges will do the job. Springs are better suited
than, for example, sticks or ropes, because they can be both extended and
compressed to allow moderate distortion, but exert increasingly strong forces
when deviating further from their natural length. Moderate distortion may
be inevitable, since it is impossible to represent every graph with straight
edges of equal length. Note that it is NP-hard to decide whether an arbitrary
graph has a straight-line embedding with equal edge lengths in any number of
dimensions (Johnson, 1982) or just any planar straight-line embedding (Eades
and Wormald, 1990).

Figure 4.1 illustrates the imaginary substitution of vertices and edges with
charged balls and connecting springs, respectively. If the system is let go, it
attains an equilibrium state in which all forces cancel each other, and the
substitution can be reversed to obtain a straight-line drawing that satifies
the criteria from above at least approximately.

Formally, such a model can be expressed either in terms of forces acting on
the physical objects, or in terms of a potential energy reflecting the internal
stress of the system and thus describing how well a configuration matches the
design goals modeled in the system. Algorithms to simulate a system’s relax-
ation typically try to move the objects iteratively into stable states in which
all forces cancel each other, or to minimize the energy directly. Prominent
examples from each kind of formalization are described in the following two
sections. In Section 4.4, we give examples for creative use of these analogies
in more advanced layout models that include various criteria for good layout.

4.2 Force-Directed Placement

The seminal paper for physical modeling in graph drawing is a short text
of Eades (1984), though closely related methods had already been described
in the context of VLSI design (Fisk et al., 1967; Quinn and Breuer, 1979).
Given a connected undirected graph G = (V,E), let p = (pv)v∈V be a vector
of vertex positions pv = (xv , yv) in the plane. We denote by ‖pv − pu‖ the
length of the difference vector pv−pu, which is the Euclidean distance between
positions pu and pv. Furthermore, we denote by −−→pupv the unit length vector

pv−pu

‖pv−pu‖ pointing from pu to pv. The model of Eades (1984), now known as the

4. Drawing on Physical Analogies 73

→

↓ “let go”

←

Fig. 4.1. The spring analogy.

spring embedder , implements the analogy described in the previous section.
It is defined using repelling forces

frep(pu, pv) =
c�

‖pv − pu‖2 ·
−−→pupv

between every pair of non-adjacent vertices u, v ∈ V , where c� is a repulsion
constant. Complementary spring forces between adjacent vertices u, v ∈ V
shall keep these sufficiently apart, yet close to each other. However, instead
of more realistic forces according to Hooke’s law, (imaginary) logarithmic
springs which exert weaker forces on far apart vertices are employed. They
yield forces

fspring(pu, pv) = cσ · log
‖pu − pv‖

l
· −−→pvpu,

so that the direction depends on whether the actual distance is less or greater
than a natural length l of the spring. Constant cσ is a parameter controlling
the strength of the spring. Figure 4.2 gives a qualitative impression of the
forces a vertex u exerts on vertex v, depending on the distance between the

74 Ulrik Brandes

two. The solid line shows the force in case u is adjacent to v (fspring), while the
dotted line indicates the force in case u is not adjacent to v (frep). Positive
values signify a force dragging v towards u, whereas negative values signify a
force repelling v from u.

l

fspring

−frep

Fig. 4.2. Magnitude of spring embedder forces.

Next we address the question of how to obtain an equilibrium configu-
ration. Vertex positions not corresponding to a system at equilibrium imply
positive internal stress. To relax a stressed system, vertices are iteratively
moved, at time t, according to a net force vector Fv(t), which is the sum of all
repulsion and spring forces acting on v. After computing Fv(t) for all v ∈ V ,
each vertex is moved a constant δ times this vector. This constant is used
to prevent excessive movement due to synchronous update. By iteratively
computing the forces on all vertices and updating positions accordingly, the
system approaches a stable state, in which no local improvement is possible.
See Algorithm 6 for a concise description.

Algorithm 6: Spring embedder
Input: connected undirected graph G = (V, E)

initial placement p = (pv)v∈V

Output: placement p with low internal stress

for t← 1 to ITERATIONS do
for v ∈ V do

Fv(t)← P

u : {u,v}�∈E

frep(pu, pv) +
P

u : {u,v}∈E

fspring(pu, pv)

for v ∈ V do pv ← pv + δ · Fv(t)

4. Drawing on Physical Analogies 75

Despite its simplicity, the spring embedder produces satisfactory output
in many cases. To even out some shortcomings of the method, several refine-
ments have been developed. These refinements mainly aim at faster compu-
tation, but sometimes also at improved quality of the layout.

A number of heuristics is used by Fruchterman and Reingold (1991) to
speed up many aspects of layout computation. Firstly, the forces are modified
to allow faster evaluation. Repelling forces

frep(pu, pv) =
l2

‖pu − pv‖ ·
−−→pupv

are used between every pair of vertices, and additional attracting forces

fattr(pu, pv) =
‖pu − pv‖2

l
· −−→pvpu

are used between adjacent vertices. The combination of attraction and re-
pulsion between adjacent vertices yields a spring-like force fspring(pu, pv) =
fattr(pu, pv) + frep(pu, pv), similar in effect to the force used by Eades (1984).
Since its magnitude increases more than proportionally with the distance (see
Figure 4.3 for a comparison), one may also hope for faster convergence.

l

fattr

−frep

fspring = fattr − frep

Fig. 4.3. Modified forces by Fruchterman and Reingold (1991).

A second heuristic to speed up computation does not change the objec-
tive function, but the precision of evaluation. Since repulsion from far away
vertices does not contribute much to the displacement vector, such irrelevant
vertices are omitted in the sum of repulsive forces using a grid technique.
Only vertices lying in grid cells close to the cell of v are considered, and only

76 Ulrik Brandes

if their distance is below a fixed threshold, a repulsive force is calculated and
included in the sum of forces. See Figure 4.4(a).

Two other modifications with respect to Algorithm 6 are concerned with
the displacement vector. Instead of applying a constant damping factor δ
to the net force vector, the net force vector is clipped at a time-dependent
maximum displacement δ(t) to prevent excessive changes, especially in later
stages of the iteration when the placement is close to a stable state. The sec-
ond modification to the displacement ensures that the graph is laid out inside
of a given rectangular area, like a screen or a sheet of paper. If the displace-
ment would position a vertex beyond a fixed boundary, the corresponding
coordinate of the displacement vector is clipped.

v

(a) neglecting weak repulsive forces (b) coordinate clipping

Fig. 4.4. Spring embedder modifications of Fruchterman and Reingold (1991).

Another notable refinement of the basic spring embedder is described
in Frick et al. (1995). Again, both forces and iteration scheme are modified
to speed up the algorithm and to improve layout quality (under the same
criteria). Repulsive and attractive forces are defined so that no square root
has to be taken,

frep(pu, pv) =
l2

‖pu − pv‖2 · (pu − pv),

fattr(pu, pv) =
‖pu − pv‖2
l2 · Φ(v)

· (pv − pu),

and all computations are performed using integer arithmetic. The denomina-
tor in the attractive force is defined as Φ(v) = 1 + dG(v)

2 and effectively slows
down high-degree vertices. However, a new gravitational force is introduced,
dragging each vertex towards the barycenter ζ =

∑

w∈V

pw of all vertices by

fgrav(pu, pv) = Φ(v) · γ ·
(

ζ

|V | − pv

)
,

4. Drawing on Physical Analogies 77

which is stronger for high degree vertices. The contribution of this force is
controlled via a gravitational constant γ. Similar to layout area restriction,
gravitational forces prevent components of a disconnected graph from drifting
arbitrarily far apart. In addition to the above forces, a small random force
is added to the net force to make the algorithm more robust against poor
equilibrium states.

To reduce the number of iterations, the net force vector of each vertex
during the previous iteration, Fv(t−1), is stored and compared to the current
one. Each vertex has its own adaptive absolute displacement distance δv(t)
that is modified according to the angular difference α = \ (Fv(t− 1), Fv(t))
of the current and the previous net force vector. If a vertex is to be moved
into roughly the same direction as before (sinα ≈ 1), δv(t) is chosen larger, if
it is to be moved in the opposite direction (oscillation: sinα ≈ −1), δv(t) is
chosen smaller. Like oscillation, rotation is an indicator of ineffective move-
ment of a vertex. A skew gauge is updated, if the current and the previous
displacement vector are almost perpendicular (cosα ≈ 1), and δv(t) is low-
ered, if a large skew suggests that a vertex rotates around some position.
During each iteration, vertices are visited in random order, and each position
is updated immediately by pv ← pv + max{δmax, δv(t)} · Fv(t)

‖Fv(t)‖ , where δmax

is a fixed maximum displacement. Our own experience confirms that these
heuristics substantially reduce the number of iterations needed to reach a
stable state.

Fv(t)

Fv(t − 1)

α

sin α ≈ 1

sin α ≈ −1

cos α ≈ 1 cos α ≈ −1

Fig. 4.5. Detection of oscillation and rotation (Frick et al., 1995).

The modifications of Fruchterman and Reingold (1991) and Frick et al.
(1995) demonstrate that the spring embedder can be varied in many ways
without changing its principle behavior. Clearly, many other heuristics are
conceivable, but the two examples presented seem to cover sufficiently many
aspects relevant to faster computation, faster convergence, and robust results.

In the next section, we turn to methods that try to satisfy the same cri-
teria, but take a formally different approach by defining an explicit objective
function.

78 Ulrik Brandes

4.3 Energy-Based Placement

Forces defined in the spring embedder variants described above indicate in
which direction a vertex can be moved to reduce the forces acting on it, and
thus an implicit internal energy of the physical system. Instead of displacing
vertices according to these forces, one might as well attempt to minimize this
energy directly. A spring of natural length l and of strength cσ with actual
length d (assumed to be within reasonable limits) has a potential energy of

Uspring(d) = cσ · (d− l)2,

Kamada and Kawai (1989) avoid a second potential for repulsion by using
springs of different length and strength between every pair of vertices. Their
specific choice of springs is governed by the assumption that the ideal distance
between two vertices is the length of a shortest path between them, multiplied
by the ideal length of a single edge, i.e. every path in the graph is best
represented by a straight line. The natural length of the spring connecting
vertices u, v ∈ V is therefore chosen proportional to dG(u, v), which denotes
the length of a shortest path between them. Clearly, perfect relaxation of all
springs is impossible for most graphs, so local distances are rendered more
important by using springs of strength inverse to their length. The resulting
objective function is the sum over the potential energies of all n · (n − 1)/2
springs,

UKK(p) =
∑

u,v∈V

c

dG(pu, pv)2
· (‖pu − pv‖ − l · dG(u, v))2 ,

where c is a scaling constant, and l is the ideal length of a single edge.
To obtain a local minimum of this objective function, a modified Newton-

Raphson method is applied. In a local minimum, all partial derivatives of UKK

are zero. This condition can be expressed in a system of dependent non-linear
equations. Similar to Quinn and Breuer (1979), the Newton-Raphson method
is modified in that the coordinates of a single vertex are updated while all
others are fixed. In each iteration, the vertex with the longest gradient is
picked and moved several times until its gradient falls below a given threshold.

It is interesting to note that the physically inspired objective function
UKK is closely related to the objective function

UMDS(p) =
1

∑

u,v∈V

dG(u, v)2
·

∑

u,v∈V

(‖pu − pv‖ − l · dG(u, v))2

of multidimensional scaling defined in (Kruskal and Wish, 1978). The family

Sk(p) =
1

∑

u,v∈V

l2−k
u,v

·
∑

u,v∈V

1
lku,v

· (‖pu − pv‖ − lu,v)2

4. Drawing on Physical Analogies 79

of objective functions, where lu,v is the desired distance between vertices
u and v, and k ∈ {0, 1, 2}, is discussed by Cohen (1997). While S0 cor-
responds to multidimensional scaling, S2 corresponds to the above layout
objective function. As early as in the 1960s, multidimensional scaling was
the first technique for automatic layout of social networks,1 and it is still in
use (Krackhardt et al., 1994). It seems, though, that the bias of UKK towards
exact representation of short distances, due to stronger short springs, results
in layouts that display less clutter and have fewer small angles.

While the optimization method used by Kamada and Kawai (1989) does
not differ notably from the ones in the previous section, the following sim-
plification of the objective function admits exact optimization in time that
is polynomial in the number of vertices. Instead of springs of some varying
length, Tutte (1963) uses springs of ideal length zero. Setting the partial
derivatives of the resulting objective function

Ucenter(p) =
∑

{u,v}∈E

‖pu − pv‖2

equal to zero yields two independent systems of linear equations (one for
each coordinate), as opposed to the one non-linear system obtained from
UKK. These linear systems of equations can conveniently be written in the
form

(D −A) · x = 0,

(D −A) · y = 0,

where A is the adjacency matrix of G, D is the diagonal matrix of vertex
degrees, and x and y are the vectors of x- and y-coordinates. The famous
Matrix Tree Theorem (Kirchhoff, 1847) then states that the determinant of
any submatrix obtained from D − A by deleting a positive number of rows
and their corresponding columns equals the number of spanning trees of the
graph obtained from G by contracting the vertices corresponding to these
rows into a new one. See Chaiken and Kleitman (1978) for several variants
of this theorem. Since this number clearly is positive for connected graphs,
so is the determinant, which implies that there is a unique layout minimizing
Ucenter, if only the position of at least one vertex in each connected component
of the input graph is fixed. This optimal layout can be computed by solving
the smaller system of linear equations obtained by adjusting the right hand
sides using the coordinates of fixed vertices.

Optimal layouts with respect to Ucenter are called barycentric, because the
optimality conditions imply that every vertex not fixed in advance is placed
in the barycenter of its neighbors. The main theorem of Tutte (1963) assures
even more: barycentric layouts of 3-connected planar graphs are planar with
1 Charles Kadushin, personal communication (1999).

80 Ulrik Brandes

all internal faces convex, if the vertices of a single face in the unique pla-
nar embedding are fixed to lie on a convex polygon (in appropriate order).
Since the adjacency matrices of planar graphs are sparse, such layouts can
be obtained in time O(n logn) (Lipton et al., 1979). See Figure 4.6 for an
example.

Fig. 4.6. Barycentric layout (darker vertices have been fixed in advance).

Davidson and Harel (1996) deviate even further from models of physical
reality. They define attraction and repulsion potentials

Uattr(pu, pv) = cattr · ‖pu − pv‖2
Urep(pu, pv) =

crep

‖pu − pv‖2

that are similar to the respective forces of Fruchterman and Reingold (1991).
Note that the attraction potential is a scaled version of the zero-length spring
potential of Tutte (1963). Combining attraction and repulsion yields a spring
potential Uspring(pu, pv) = Uattr(pu, pv) + Urep(pu, pv) that is again computed
for pairs of adjacent vertices. Note that this definition results in an ideal edge
length of 4

√
crep/cattr. Generalizing the repulsion analogy, they also define

potentials penalizing vertices that lie close to the boundary of the layout
area, and potentials penalizing short distances between a vertex and an edge.

A distinct ingredient of the objective function used in Davidson and Harel
(1996) is a potential weighting of the number of crossings in the current lay-
out. Crossings tend to be displeasing and hindering to a viewer (Purchase
et al., 1997), and their minization is thus a reasonable criterion for good lay-
out. However, counting crossings leads to a discrete objective function that
can no longer be treated by an algorithm based on gradient methods. More-
over, minimizing the number of crossings is also an NP-hard problem (Garey

4. Drawing on Physical Analogies 81

and Johnson, 1983). To obtain at least a local minimum of UDH, simulated
annealing (see Reeves 1995 for a more recent textbook), a general method
for minimizing objective functions of combinatorial problems, is used. It is
only by coincidence that this method also has a physical analogy. Given a
candidate solution, a new solution is proposed by slightly modifying the cur-
rent one. If the new solution reduces the value of the objective function, it
becomes the new candidate solution. Otherwise, it becomes the new candi-
date solution only with probability e

−∆U
T , where ∆U is the increase of the

objective function, and T > 0 is the temperature parameter controlling the
algorithms ability to climb up hills in the energy landscape. Convergence is
enforced by slowly lowering T to zero. A more precise description of a typical
simulated annealing algorithm used for graph layout is given in Algorithm 7.

Algorithm 7: Simulated annealing
Input: graph G = (V, E)

initial placement p = (pv)v∈V

Output: placement p with locally optimal value U(p)

while T > THRESHOLD do
for v ∈ V do

pold ← p
pv ← pv + ∆random

if U(pold) < U(p) then

with probability 1− e
U(pold)−U(p)

T reset p← pold

reduce T

A number of heuristics to speed up layout computation with the notori-
ously slow simulated annealing is introduced by Tunkelang (1994). Most no-
tably, there is no initial placement, but vertices are introduced in a breadth-
first-search order starting in the graph-theoretic center, and positions are
restricted to a coarse grid with only few types of displacements allowed. A
parallel implementation is described in Monien et al. (1996).

An experimental comparison (Brandenburg et al., 1996) of (sequential)
implementations revealed that the approaches presented in these last two
sections (excluding the barycentric model) yield comparable layouts. As a
very general rule-of-thumb, energy-based placement approaches tend to pro-
duce better results for small to medium-sized graphs (around 30 vertices),
while force-directed placement approaches are considerably faster (experi-
ence suggest that they need only one tenth of the number of iterations).

Besides gradient methods and simulated annealing, genetic algorithms
have been applied to physically motivated objective functions (Kosak et al.,
1994; Masui, 1992). Branke et al. (1997) use force-directed methods as a local
fine-tuning step of their genetic algorithm.

82 Ulrik Brandes

4.4 Modeling with Forces and Energies

Forces and potential energies have been found to model elementary criteria for
readable layouts of straight-line representations of graphs. While the results
are usually satisfactory with respect to the two criteria mentioned in the
introductory section of this chapter (uniform vertex distribution, uniform
edge lengths, and, as a consequence, symmetry), such drawings may not be
useful for graphs representing specific structural information.

An important aspect that has not been covered yet is the immense ex-
pressive power of force-directed or energy-based placement for formulating
layout design goals. This section contains a number of examples, showing
how forces can be used to formulate criteria for good layout far beyond ver-
tex distribution and edge length.

The following paragraphs sketch modeling ideas from the literature, com-
prising a toolbox for the adjustment of force-directed or energy-based layout
methods to account for a fairly broad range of requirements.

3D Layouts. For some purposes it may be necessary or desirable to rep-
resent a graph in three-dimensional space. In combination with interactive
(preferably fly-through) browsers, these appear to be particularly useful for
exploring large graphs. The methods outlined so far make no particular as-
sumptions on the number of dimensions and are easily modified to produce
three-dimensional (or one-dimensional, for that matter) layouts. For exam-
ple, a straightforward generalization of the method by Frick et al. (1995) is
given in Bruß and Frick (1996). The approach of Davidson and Harel (1996)
is adjusted by Cruz and Twarog (1996), where the crossing count, superfluous
in three dimensions, is substituted with edge-edge repulsion. See Chapter 7
for more on three-dimensional graph layout.

Clustering. Important information may be represented by intrinsic or ex-
trinsic clusterings of vertices. Since experimental work suggests that users
tend to group geometrically close vertices (McGrath et al., 1996), it seems
desirable to keep vertices of the same cluster close to each other, while those
in different clusters should be further apart.

By their very nature, spring-type methods geometrically cluster dense
subgraphs. While this is not at all true for other definitions of clusters, these
can be reduced to dense subgraphs by introducing dummy vertices that rep-
resent the clusters, and connecting them appropriately (Eades et al., 1997a;
Huang and Eades, 1998a). For each cluster, a new vertex is introduced, at-
tracting its contained vertices, while repelling vertices of other clusters. To
achieve larger distances between clusters, additional repelling forces are in-
troduced between dummy vertices and all other vertices not contained in
their respective cluster. Figure 4.8(a) gives a small example.

Instead of introducing dummy vertices to represent cluster centroids, a
meta-graph representing connections between clusters is introduced by Wang
and Miyamoto (1996). It consists of a vertex for each cluster, and has an

4. Drawing on Physical Analogies 83

Fig. 4.7. 3D layout of travel distances between 31 U.S. cities (Bruß and Frick,
1996).

edge between each pair of distinct meta-vertices containing adjacent vertices
of the original graph. To provide the necessary area for clusters, meta-vertices
are not assumed to have point size, but to occupy rectangular areas. Conse-
quently, first a technique is introduced that accounts for the fact that actual
edge lengths depend on the relative positions of rectangularly shaped ver-
tices. In the placement iteration, contribution weights are used to gradually
shift from an emphasis of forces in the meta-graph (for cluster spacing) to
forces in the input graph. More detail on force-directed methods to represent
clusters is provided in Chapter 8.

Directed Edges. For directed graphs such as data-flow or time-dependency
graphs, it is often desirable to have the directed edges point into roughly the
same direction. Using forces exerted on edges by external fields of a chosen
orientation, edges can be pushed to point in any given direction (Sugiyama
and Misue, 1995). Let θ be the angle between an edge’s prescribed direction
and its current direction, and let −−→pupv

⊥ be the unit length vector perpendic-
ular to −−→pupv and pointing towards a decrease of θ, then rotative forces

frot(pu, pv) = b · ‖pu − pv‖c1 · θc2 · −−→pupv
⊥

can be added to the net force vector, thus pressing the edge to reduce θ (see
Figure 4.9). While b is a constant that controls the strength of the magnetic
field acting on an edge between u and v with respect to the other forces, c1
and c2 are parameters that control the relative dependency of rotative forces
on vertex distance and angle deviation, respectively.

84 Ulrik Brandes

(a) Dummy vertices represent
the centroids of clusters (Eades
et al., 1997a; Huang and Eades,
1998a).

(b) A clustering with its cor-
responding meta-graph (Wang
and Miyamoto, 1996).

Fig. 4.8. Force-directed models for clusters.

teta

Fig. 4.9. Magnetic springs represent directed edges subject to an arbitrary force
field (Sugiyama and Misue, 1995).

Curved Edges. So far, all representations considered here use straight lines
to depict edges. It is shown in Brandes and Wagner (1998b) how the layout
of curved line representations can be reduced to the straight-line case by
placing control points instead of vertices. More precisely, edges that are to be
depicted by Bézier curves are replaced with vertices representing their control
points. Then an auxiliary graph is constructed by introducing a dummy edge
of appropriate desired length for each control segment, and additional attrac-
tive and repulsive forces to ensure certain properties of the resulting layout.
Figure 4.10 shows a graph of train connections with curved representation of
edges that are classified as “transitive” (top left), the auxiliary graph con-
structed for this instance (bottom left), and a larger example (right). The
same technique obviously works for polyline representations.

Dynamic Layout. When users look at the drawing of a graph, they famil-
iarize themselves with this drawing by building a cognitive representation
called the mental map. Dynamic graph layout is concerned with the trade-off
between static layout quality and the user’s mental map.

A framework to extend static graph layout methods to dynamic ones by
incorporating a difference metric into the objective function is advocated

4. Drawing on Physical Analogies 85

Allensbach

Radolfzell

Konstanz

Venezia S. Lucia

Fig. 4.10. Curved edge layout using an auxiliary graph (Brandes and Wagner,
1998b).

in Brandes and Wagner (1997). For energy-based methods, the difference
metric summing over the Euclidean distances of vertex positions translates
nicely into an attraction potential for imaginary springs of natural length
zero, which can be used in force-directed approaches as well. An overview
of approaches for drawing dynamic and interactive graphs is provided in
Chapter 9.

Constraints. Constraints can be integrated into force-directed or energy-
based placement methods in several ways, depending on the type of con-
straint. Unary constraints, i.e., restrictions on the admissible positions of
single vertices, are easily satisfied if feasible positions form a connected region
in the layout area or space (see Figure 4.11). In this case, every configuration
remains reachable, and position updates can be modified to ensure that each
vertex is at a feasible position at all times.

Fig. 4.11. Unary constraints. In this drawing of a social network, each vertex is
restricted to lie on the circumference of a circle, signifying its centrality (Brandes,
1999).

86 Ulrik Brandes

A second way to satisfy unary constraints that also handles disconnected
feasible regions is to allow vertices to temporarily occupy infeasible positions,
but to use additional forces tht drag vertices to feasible positions or penal-
ties pushing them away from infeasible positions, respectively. The penalty
approach is easily extended to arbitrary constraints, but rarely guarantees
satisfaction of all constraints in practice.

To satisfy pairwise linear (in)equalities, the placement iteration is inter-
leaved with conflict detection in Wang and Miyamoto (1996). Every pair of
vertices that would not satisfy a constraint if a displacement is carried out, is
joined by a “rigid stick” that forces them to move together while maintaining
the constraint. Note that criteria corresponding to weak linear pairwise con-
straints can be modeled using the magnetic springs of Sugiyama and Misue
(1995).

Arbitrary constraints can be incorporated in methods based on physical
analogies by applying more elaborate constraint satisfaction techniques, as
in He and Marriott (1998). A survey of the use of constraints in graph layout
is given by Tamassia (1998)

From a more general point of view, the above modeling techniques can
be seen as instances of a generic framework for layout models, in which ar-
bitrary layout variables are assigned values subject to some constraints and
criteria that describe feasible and desirable configurations. Graph layout is
thus cast as a general constraint optimization problem, for which objective
functions can be devised by combining criteria for small configurations like
pairs of adjacent or non-adjacent vertices, triples of connected vertices, pairs
of edges, and so on. Force-directed and energy-based methods fit well into
this framework, because they are intuitive and incorporate an implicit notion
of compromise between the various criteria.

5. Layered Drawings of Digraphs

Oliver Bastert∗ and Christian Matuszewski∗∗

5.1 Introduction

In this chapter, we present the standard criterea and techniques for drawing
directed graphs1. The resulting drawings are called layered drawings of the
given graphs.

(a) an example graph (b) and a possible layered drawing

Fig. 5.1. Two different drawings of a graph.

The development of algorithms for computing layered drawings has started
in the seventies. The first ideas were given in articles by Warfield (1977)
and Carpano (1980b). The most popular method was introduced in 1981 by
Sugiyama et al. and extended in the survey article by Eades and Sugiyama
(1990). The method has attracted a lot of attention and an implementation
of this approach can be found in many graph drawing tools.

Throughout this chapter, it is assumed that the graphs have an overall
flow or direction. This will be emphasized by drawing most of the edges in
∗ Supported by the Deutsche Forschungsgemeinschaft (DFG), graduate program
Angewandte Algorithmische Mathematik, Technische Universität München.

∗∗ Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Mo645/5,
Martin-Luther-Universität Halle-Wittenberg

1 In this chapter, we only consider loopless directed graphs.

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 87-120, 2001.
 Springer-Verlag Berlin Heidelberg 2001

88 Oliver Bastert and Christian Matuszewski

one specific direction. We will assume that the preferred direction is top to
bottom. Moreover, the drawing should meet some aesthetic and readability
criteria which can be summarized as follows.

1. Edges pointing upward should be avoided.
2a. Nodes should be evenly distributed.
2b. Long edges should be avoided.
3. There should be as few edge crossings as possible.
4. Edges should be as straight/vertical as possible.

Figure 5.1(b) depicts a layered drawing of an example graph. Throughout
this section, we show drawings of the same graph produced by several graph
drawing tools.

Fig. 5.2. The example graph drawn with the VCG tool.

Optimizing all of the above objectives is in general impossible, since some
of them contradict each other, e.g., see Figure 5.20 on page 120. Furthermore,
it is even hard, in the complexity theoretical sense, to compute drawings
satisfying only some of the aesthetic criteria. To handle these problems, the
approach described in this chapter is usually divided into the following four
steps, each addressing one of the above optimization criteria:

1. Cycle Removal As few edges as possible are reversed to make the graph
acyclic. This allows to draw all edges in one direction which is important
for the next step. At the end of the algorithm, the reversed edges are
reversed agian to obtain their initial orientation.

2. Layer Assignment A layering will be computed, i.e., an assignment of the
vertices to layers such that all edges point downward. As we will see,
for many algorithms which solve the succeeding step, a proper layering
is needed. A layering is called proper if edges occur between adjacent
layers only. To achieve the latter, dummy vertices are introduced along
the edges.

5. Layered Drawings of Digraphs 89

3. Crossing Reduction For each layer, an ordering of the vertices is com-
puted. The ordering should be computed in such a way that the number
of edge crossings is kept small. This is usually done by examining adja-
cent layers and the edges between them.

4. X-coordinate assignment of vertices and placing the edges
The requirements on the horizontal positions of the vertices are that the
vertices do not overlap and that, preferably, no vertices lie on the straight
lines between two adjacent vertices. Finally, the edges have to be placed
either as polylines or as curves.

da
V

in
ci

V
2.

1

Node 15

Node 14Node 13Node 12

Node 11Node 10Node 9Node 8

Node 7Node 6Node 5

Node 4Node 3Node 2Node 1

Fig. 5.3. The example graph drawn with daVinci.

Besides the mentioned articles, our presentation is mainly based on works
of Gansner et al. (1993), Sander (1996b) and Di Battista et al. (1999). Fur-
thermore, we describe the work of Berger and Shor (1990) in some detail. For
further reference, see the articles of Messinger et al. (1991), Paulish (1993),
Di Battista et al. (1994), or the manuals of software packages discussed in
the appendix.

The organization of this chapter follows the above steps. Our aim is to
present the state of the art of both, exact algorithms and heuristic approaches,
to the single steps. Finally, we briefly present some related approaches.

It is not always necessary to perform all steps of the algorithm. In some
cases, a layering is given together with the graph, e.g., the graph represents
events on a timeline like a pedigree. Then only the last two steps have to be
performed.

5.2 Cycle Removal

In this section, we will address solution methods for the maximum acyclic
subgraph problem: find a maximum set Ea ⊂ E such that the graph (V,Ea)

90 Oliver Bastert and Christian Matuszewski

1

5

98

2

10

14

3

6

7

11

1512 13

4

Fig. 5.4. The example graph drawn with dot (part of GraViz).

contains no cycles. The problem is often stated as the feedback arc set prob-
lem: find a minimum set Ef ⊂ E such that the graph (V,E \ Ef) contains
no cycles.

Since we do not want to loose the information whether two vertices are
adjacent or not, the edges in E \Ea will be reversed. It is an easy exercise to
show that the resulting graph is acyclic.

Fig. 5.5. The example graph made acyclic by reversing two edges.

Unfortunately, the maximum acyclic subgraph problem is NP-hard (Karp,
1972; Garey and Johnson, 1991).

To simplify the analysis of the forthcoming heuristics, we assume that
the graph does not contain two-cycles. A two-cycle consists of two antipodal
edges (u, v) and (v, u). Otherwise, we delete both edges of the two-cycle,
apply an algorithm or heuristic for finding a maximum acyclic subgraph and
insert two edges pointing in the same direction into the graph. The direction

5. Layered Drawings of Digraphs 91

should be chosen in such a way that no cycles are generated by the insertion.
Obviously, such a direction always exists (Berger and Shor, 1990).

We first present some fast heuristics in Section 5.2.1. Afterwards in Sec-
tion 5.2.2, we give an overview over several variants of a frequently used
greedy heuristic. Although these algorithms give very good results in prac-
tice, the best performance guarantee can be proven for another algorithm
which will be presented in Section 5.2.3. Finally, we discuss an exact ap-
proach to the maximum acyclic subgraph problem.

5.2.1 Fast Heuristics

Observe that the maximum acyclic subgraph problem is equivalent to the
unweighted linear ordering problem: find an ordering of the vertices of G,
i.e., find a mapping o : V → {1, 2, . . . , |V |} such that the number of edges
(u, v) ∈ E : o(u) > o(v) is minimized.

Thus, the easiest heuristic for the maximum acyclic subgraph problem is
to take an arbitrary ordering of the graph and delete the edges (u, v) with
o(u) > o(v). We might use a given ordering or, e.g., use an ordering computed
by applying breadth first search or depth first search (see Section 5.3.1) to
the graph. These heuristics are fast but do not allow to give any quality
guarantees.

Next, we present a heuristic which guarantees an acyclic set of size at least
1
2 |E|. The idea is to delete for every vertex either the incoming or outgoing
edges. We define δ+(v) = {(v, u) | (v, u) ∈ E}, the set of the outgoing edges
of v, δ−(v) = {(u, v) | (u, v) ∈ E}, the set of the ingoing edges into v, and
δ(v) = δ+(v) ∪ δ−(v), the set of edges incident to v, v ∈ V . |δ+(v)| (|δ−(v)|)
is called the outdegree (indegree) of v.

Algorithm 8: A Greedy Algorithm
Ea = ∅;
foreach v ∈ V do

if |δ+(v)| ≥ |δ−(v)| then
append δ+(v) to Ea;

else
append δ−(v) to Ea;

delete δ(v) from G;

Trivially, Algorithm 8 computes an acyclic set Ea with size |Ea| ≥ 1
2 |E|

and runs in linear time2 (Berger and Shor, 1990).

2 As usual, we define the input size of a graph by n +m and hence, linear time
means O(n+m) time.

92 Oliver Bastert and Christian Matuszewski

5.2.2 An Enhanced Greedy Heuristic

A closer look at the problem shows that sources and sinks (which may arise
during the algorithm) play a special role: edges incident to sources or sinks
cannot be part of a cycle. This observation is used in the following algo-
rithm (Eades et al., 1993):

Algorithm 9: An Enhanced Greedy Heuristic
Ea = ∅;
while G is not empty do

1 while G contains a sink v do
add δ−(v) to Ea and delete v and δ−(v) from G;

2 delete all isolated vertices from G;
3 while G contains a source v do

add δ+(v) to Ea and delete v and δ+(v) from G;

4 if G is not empty then
let v be a vertex in G with maximum value |δ+(v)| − |δ−(v)|;
add δ+(v) to Ea and delete v and δ(v) from G;

The only difference between Algorithm 8 and Algorithm 9 is that the
latter one processes the vertices in a special order. Hence, the output of
Algorithm 9 is acyclic as well.

Theorem 5.1 (Eades et al. 1993). Let G = (V,E) be a connected digraph
with no two-cycles. Then Algorithm 9 computes an acyclic edge set Ea with

|Ea| ≥ |E|2 +
|V |
6
.

Proof. The vertex set V can be partitioned into five sets Vsink, Viso, Vsource,
V= and V<. Vsink consists of the non-isolated sink vertices removed from G
in Step 1, Viso consists of the isolated vertices removed from G in Step 2,
Vsource consists of the non-isolated source vertices removed from G in Step 3,
V= consists of the vertices whose indegree equals its outdegree, removed from
G in Step 4 and V< consists of the vertices whose indegree is less than its
outdegree, removed from G in Step 4. Note that these sets form a partition
of V .

Denote by mi the number of edges removed from G as the result of the
removal of the vertices in Vi, i ∈ {sink, iso, source,=, <} =: I, and by ni the
cardinality of Vi. Clearly,

|V | =
∑

i∈I
ni , |E| =

∑

i∈I
mi, and miso = 0

holds.

5. Layered Drawings of Digraphs 93

Since the input graph is connected, isolated vertices can only be created
in Step 1 and hence, niso ≤ msink.

It is not hard to see that after the removal of a vertex from V=, at least
one vertex whose indegree is not equal to its outdegree exists. Since the
resulting graph contains no isolated vertices, the next deleted vertex will be
in Vsink ∪ Vsource ∪ V<. Hence, we get n= ≤ nsink + nsource + n<. This can
be used to find an estimation of n by substituting n=:

n ≤ 2nsink + niso + 2nsource + 2n<.

This can be relaxed to

n ≤ 2nsink + niso + 3nsource + 3n<.

Using the facts niso ≤ msink and nsink ≤ msink we get

n ≤ 3(msink + nsource + n<). (5.1)

Observe that the only step where edges from E are thrown away and not
inserted in Ea is Step 4. Suppose v ∈ V=, then the number of thrown away
edges is exactly |δ(v)|

2 . Otherwise, if v ∈ V<, this number is bounded from
above by |δ(v)|−1

2 . Thus, the number of thrown away edges is at most

|E| − |Ea| ≤ m=

2
+
m< − n<

2

=
m

2
− msink +msource + n<

2

≤ m

2
− msink + nsource + n<

2
,

where the last inequality is true since nsource ≤ msource.

By applying (5.1), we obtain

|E| − |Ea| ≤ m

2
− n

6
.

This completes the proof.

The algorithm can be implemented in linear time and space (Eades et al.,
1993). In addition, it can easily be shown that Algorithm 9 computes a set Ea

with size at least 2
3 |E| on graphs with ∆(G) ≤ 3. ∆(G) denotes the maximum

degree of a vertex in G.
Sander (1996b) suggests a more elaborated version of Step 4. A graph is

called strongly-connected if

94 Oliver Bastert and Christian Matuszewski

Algorithm 10: A Variant of Step 4

. . .
4 if G is not empty then

compute the strongly-connected components (scc) of G;
add all edges not contained in a scc to Ea and delete them from G;
foreach scc Gscc of G with |Gscc| > 1 do

W = {v ∈ Gscc | ∀u ∈ V : |δ−(v)| ≤ δ−(u)|};
choose v ∈W that maximizes |δ+(v)|+ P

u:N+(u)={v}
|δ−(u)|;

add δ+(v) and δ−(v) \ δ−(v) to Ea and
delete v and δ(v) from G;

foreach u with N+(u) = {v} do
add δ−(u) to Ea and delete u and δ(u) from G;

. . .

∀u, v ∈ V ∃ paths from u to v and from v to u.

A strongly-connected component of a graph is a maximal strongly-connected
subgraph of the graph. The set of strongly-connected components forms a
node partition. Let N+(u) = {v ∈ V |∃(u, v) ∈ E}.

Sander reports very promising practical results but no better theoretical
bounds are known so far. Observe that the strongly connected components
in each iteration of the algorithm are subdivisions of the components of the
previous iteration and thus, the sizes of the components decrease quickly.
Since computing the strongly-connected components of a graph takes linear
time (Mehlhorn, 1984) and by using suitable data structures, Algorithm 10
can be implemented in O(mn) time. The idea of the choice of v in the above
algorithm is that the edges in δ+(v) ∪⋃

u:N+(u)={v} δ
−(u) are not contained

in any cycle after the removal of δ−(v).
Eades and Lin (1995) give a generalization of the ideas of Sander. Their

idea is based on the observation that on induced paths at most one edge has
to be deleted. They shrink long induced paths in the graph, which enables
them to guarantee an acyclic subgraph with |Ea| ≥ 3

4 |E| for cubic graphs.

5.2.3 A Randomized Algorithm

The results presented in this section are due to Berger and Shor (1990).
To achieve a better performance guarantee as given in the previous sec-

tions, consider the following algorithm.

Algorithm 8’: A Randomized Variant of Algorithm 8

order the vertices randomly at the beginning;
process them in this order in Algorithm 8;

5. Layered Drawings of Digraphs 95

The following bound can be proven:

Theorem 5.2 (Berger and Shor 1990). The expected size E8′(|Ea|) of Ea

computed by Algorithm 8’ is bounded from below by

(
1
2
+Ω(

1
√
∆(G)

))|E|.

Berger and Shor also give a deterministic algorithm and are able to prove
that the expectation value from Theorem 5.2 is valid as worst case bound
on |Ea| for their deterministic algorithm. Let processed(v1, v2, . . . , vi) mean
that the vertices in v1, v2, . . . , vi have been processed in the order in which
they are listed.

Algorithm 11: A Deterministic Variant of Algorithm 8’
for i = 1 to |V | do

choose v ∈ V \ {v1, v2, . . . , vi−1} for which
E1(|Ea| | processed(v1, v2, . . . , vi−1, v)) is maximized;

define vi = v;

Theorem 5.3. Algorithm 11 returns an Ea with size greater or equal to

(
1
2
+Ω(

1
√
∆(G)

))|E|.

Proof. The expectation value for the size of Ea for the randomized algorithm
in iteration i is E8′(|Ea| | processed(v1, v2, . . . , vi−1)) which equals

1
|V | − (i− 1)

∑

v∈V \{v1,v2,...,vi−1}
E8′(|Ea| | processed(v1, v2, . . . , vi−1, v)).

Since Algorithm 11 chooses

max
v∈V \{v1,v2,...,vi−1}

E8(|Ea| | processed(v1, v2, . . . , vi−1, v)),

in each iteration E11(|Ea|) of Algorithm 11 is at least as large as E8′(|Ea|).
Thus, by Theorem 5.2, the algorithm has the claimed performance guarantee.

For graphs with small maximum degree, Berger and Shor give more precise
bounds on |Ea|/|E|.

∆(G) |Ea|/|E| ≥
2 2

3

3 13
18

4, 5 19
30

96 Oliver Bastert and Christian Matuszewski

It is also shown that the above algorithm can be implemented in time O(mn).
The crucial point is that the expectation values can be computed quickly.
Furthermore, they prove that the bound given in Theorem 5.3 is tight.

5.2.4 An Exact Algorithm

Let S(G) be the set of all incidence vectors of acyclic subgraphs of G =
(V, {e1, e2, . . . , em}), i.e.,

S(G) = {x ∈ {0, 1}|E| | ∃Ea ⊆ E,Ea acyclic : xi = 1 iff ei ∈ Ea}.

Denote by conv(S) the convex hull of a set S and by 1 the |E|−dimensional
all-one vector. Now, ASP (G) = conv(S(G)) defines a polytope in R|E|, and
maximizing 1tx over ASP (G) yields a maximum acyclic set.

An extensive study of the facial structure of the acyclic subgraph polytope
and the more general linear ordering polytope can be found in (Grötschel
et al., 1985; Reinelt, 1985). The results given there can be used to solve the
maximum acyclic subgraph problem by a branch and cut approach.

5.3 Layer Assignment

After introducing the necessary definitions, we discuss the objectives a layer-
ing should reach. Afterwards, we present algorithms for the different objec-
tives.

Let L be a partition of V , i.e., L = {L1, L2, . . . , Lh}, ∪h
i=1Li = V . y :

V → {1, 2, . . . , h} denotes the characteristic function of this partition, i.e.,
y(u) = i iff u ∈ Li. L is called a layering if ∀(u, v) ∈ E : y(u) > y(v) holds.

L1

L2

L3

L4

Fig. 5.6. A layering of the example graph.

5. Layered Drawings of Digraphs 97

The height of a layering is the number of layers h, the width of a layering
is the number of vertices in the largest layer and the span of an edge (u, v)
is defined as y(u) − y(v). A layering is called proper if no edge has a span
greater than one.

Sometimes it is not important to stress the general direction of the edges
and in some cases such a direction does not exist. In these cases the algorithms
presented in Section 5.3.1 can be applied without making the graph acyclic
at first. In the other sections of this chapter, we assume that the graphs are
acyclic. This guarantees the existance of a layering. Besides, there are some
objectives a layering should fulfill. It should be compact. This means that
the height and the width of the layering should be small. A simple algorithm
to compute a layering with minimum height is given in Section 5.3.2. Unfor-
tunately, minimizing the height with respect to a given width is NP -hard.
In Section 5.3.3, we will present a heuristic to tackle this problem.
Most of the algorithms used in the subsequent steps need to have proper
layerings. This can be easily achieved by introducing dummy vertices along
edges (u, v) with span k > 1 into the layering. We replace (u, v) with a path
(u = v1, v2, . . . , vk = v) of length k. In each layer between y(u) and y(v), one
dummy vertex will be placed (see Figure 5.7)

Fig. 5.7. Introducing dummy vertices into the example graph.

In addition, the number of dummy vertices should be small. There are
three aspects why this should be. The running time of the following steps
depends on the sum of the number of vertices and the number of dummy
vertices. Bends in the drawing will only occur at dummy vertices and thus a
small number of dummy vertices will increase the readability of the drawing.
Furthermore, the edges will become long if many dummy vertices occur. We
will present an algorithm for minimizing the number of dummy vertices in
Section 5.3.4.

98 Oliver Bastert and Christian Matuszewski

5.3.1 Layerings for General Graphs

Sander (1996b) summarizes some algorithms for general graphs, i.e., graphs
do not need to be acyclic before applying these layering heuristics: edges
which point upward are just reversed.

1. Calculate y by a depth first search or breadth first search. This generates
an arbitrary partitioning in linear time.

2. Calculate the minimum cost spanning trees on the undirected instance
of the graph. This is useful if edges e have weights ω(e). The cost will be

1
ω(e) . The edges with high priority will have small spans.

3. Apply a spring embedder. It is sufficient to take only frep and fatt (see
Section 4.2) into account. Calculate only the one-dimensional coordinate
y. This computes a layering where edges tend to have the same length.

5.3.2 Minimizing the Height

From now on, we assume that the graphs are acyclic. The following algorithm
computes layerings of minimum height. Each sink is placed in layer L1. For
the remaining vertices the layer will be recursively defined by

y(u) := max{i | v ∈ N+(u) and y(v) = i}+ 1

and N+(u) := {v ∈ V | ∃(u, v) ∈ E}.
This produces a layering where many vertices will stay close to the bottom.

The algorithm can be implemented in linear time by using a topological
ordering of the vertices (Mehlhorn, 1984).

5.3.3 Layerings with Given Width

Given a fixed width greater or equal to three, the problem of finding a layering
with minimum height is NP-complete. The precedence-constrained multipro-
cessor scheduling problem can easily be reduced to it (Karp, 1972; Garey and
Johnson, 1991).

In the following, we will present the Coffman-Graham-Algorithm (Coff-
man and Graham, 1972). It computes a layering with width at most w and
tries to minimize the height. The Coffman-Graham-Algorithm takes as input
a reduced digraph, i.e., no transitive edges are present in the graph, and a
width w. An edge (u, v) is called transitive if a path (u = v1, v2, . . . , vk = v)
exists in the graph. Observe that the absence of transitive edges does not
affect the width of the layering significantly and that transitive edges can be
found in linear time (Mehlhorn, 1984).

The weakness of a simple greedy heuristic is illustrated in Figure 5.8. w
is assumed to be 2. The example graph consists of n

2 , n mod 4 = 0, isolated
vertices and a directed path of n

2 vertices (Figure 5.8(a)). The greedy heuris-
tic would probably assign the isolated vertices to the n

4 first layers. This

5. Layered Drawings of Digraphs 99

would result in a layering of height 3n
4 (Figure 5.8(b)). An optimal solution

is depicted in Figure 5.8(c).

...

...

(a) example graph

...
...

(b) greedy solution

...

(c) optimal solution

Fig. 5.8. The worst and the best layering for the given graph.

The greedy solution is far from optimal since it does not consider the long
path in the graph. This is exactly what the Coffman-Graham-Algorithm tries
to avoid. It proceeds in two phases. The first orders the vertices mainly by
their distance from the source vertices of the graph, the second assigns the
vertices to the layers. Vertices with large distances from the sources will be
assigned to layers as close to the bottom as possible.

We need a special lexicographical ordering on finite integer sets to describe
the algorithm in more detail:
S ≺ T if either

1. S = ∅ and T �= ∅, or
2. S �= ∅, T �= ∅ and max(S) < max(T), or
3. S �= ∅, T �= ∅, max(S) = max(T) and S \ {max(S)} ≺ T \ {max(T)}.
We are now able to state the algorithm (Algorithm 12).
Lam and Sethi (1977) have shown that the height h of the computed

layering with width w is bounded with respect to height of an optimal layering
hopt:

h ≤ (2 − 2
w
)hopt.

Thus, the Coffman-Graham-Algorithm is an exact algorithm for w ≤ 2.

5.3.4 Minimizing the Total Edge Span

The objective to minimize the total edge span (or edge length) is equivalent to
minimizing the number of dummy vertices. As seen before this is a reasonable

100 Oliver Bastert and Christian Matuszewski

Algorithm 12: Coffman-Graham-Algorithm
foreach v ∈ V do π(v) := n+ 1;
for i = 1 to |V | do

choose a vertex v with π(v) = n+ 1
and minimum set {π(u) | (u, v) ∈ E} with respect to ≺;

π(v) := i;

k := 1; L1 := ∅; U := V ;
while U = ∅ do

choose u ∈ U such that every vertex in {v | (u, v) ∈ E} is in V \ U
and π(u) is maximized;

if |Lk| < w and N+(u) ⊆ L1 ∪ L2 ∪ . . . Lk−1 then
add u to Lk;

else
k := k + 1; Lk := {u};

delete u from U ;

objective. It can be shown that minimizing the number of dummy vertices
guarantees minimum height (Eades and Sugiyama, 1990).

To solve this problem we formulate it as an integer program. The prop-
erties of a layering can be stated as follows.

y(u)− y(v) ≥ 1 for all (u, v) ∈ E (5.2)

y(v) ∈ Z+ for all v ∈ V (5.3)

Thus minimizing over
∑

(u,v)∈E

(y(u) − y(v)) minimizes the total span of

the edges and thus the number of dummy vertices. Frick (1997) presents a
detailed study on the number of dummy vertices.

It is sometimes useful to introduce weights or priorities ω on the edges
to keep certain edges short. Furthermore, sometimes it is intended that an
edge has a length of at least λ. Plugging this into the above linear program
we obtain

min
∑

(u,v)∈E

ω(u, v)(y(u)− y(v)) (5.4)

y(u)− y(v) ≥ λ(u, v) for all (u, v) ∈ E (5.5)

y(v) ∈ Z+ for all v ∈ V (5.6)

This problem can be easily solved by linear programming since the con-
straint matrix is totally unimodular and so standard linear programming
will find an optimal integer solution. As an alternative, the network sim-
plex algorithm might be used as described in (Gansner et al., 1993). For
further reference on total unimodularity see (Schrijver, 1986), and for details

5. Layered Drawings of Digraphs 101

concerning the network simplex algorithm see (Cunningham, 1976; Chvátal,
1983a). Observe that although the network simplex method like the simplex
method itself does not guarantee a polynomial running time, it proves to be
very efficient in practice.

5.4 Crossing Reduction

The aim of this part of the algorithm is to reduce the crossings between edges
to improve the readability of the drawing. We assume that the layering was
made proper in the previous layer assignment step.

A first observation to make is that the number of edge crossings does
not depend on the exact positions of the vertices but only on the relative
positions, i.e., the ordering of the vertices. This makes the problem some-
what easier to understand because we do not have to deal with the exact
x-coordinates of the vertices. But, unfortunately, the problem of finding ver-
tex orderings which minimize the crossings in a layered graph is NP-hard
even if we restrict the problem to bipartite (two-layered) graphs (Garey and
Johnson, 1983). The problem remains NP-hard if the ordering of the ver-
tices in one layer of the bipartite graph is fixed (Eades and Whitesides, 1994;
Eades and Wormald, 1994).

Many methods have been developed to reduce edge crossings but only a
few work globally, i.e., minimize the crossings in the whole graph at once.
Most algorithms use the layer-by-layer sweep described in the next section.

5.4.1 The Layer-by-Layer Sweep

This technique works as follows: First, a vertex ordering of the layers is
chosen. An initial ordering of the layers that avoids crossings if the graph
is a tree is given in the paper of Gansner et al. (1993): Do a depth first
search or a breadth first search starting with the vertices in the layer with
the minimum rank. The vertices get their positions in left-to-right order as
the search progresses.

In the next step of the layer-by-layer sweep, a layer with a precomputed
ordering, e.g., layer V1, is chosen and for i = 2, 3, . . . , h, the vertex ordering
of layer Vi−1 is held fixed while the vertices in Vi are reordered to reduce
the crossings between layer Vi−1 and Vi. After that, we can sweep back from
layer Vh to layer V1 and repeat these two steps until no further reduction of
crossings can be achieved. Other ways of sweeping are possible, for instance
we can hold a layer in the middle fixed and sweep from here to the bottom-
and to the top-layer. However, the key problem of the layer-by-layer sweep is
to reduce the crossings between two layers with the permutation of one side
fixed. This problem is called the one sided crossing minimization problem
and will be deeply treated in the next section.

102 Oliver Bastert and Christian Matuszewski

Experiments by Jünger and Mutzel (1997) for the 2-layer crossing min-
imization problem show that the results of the layer-by-layer sweep are far
from optimum. One can expect better results from considering all layers si-
multaneously, but k-layer crossing minimization is a very hard problem. A
quick help is to start the layer-by-layer sweep several times with randomly
permuted layers. This approach can tremendously improve the results (Jünger
and Mutzel, 1997).

5.4.2 One Sided Crossing Minimization

To state the problem of the one sided crossing minimization precisely, we
need some definitions and notations.

A bipartite graph is an undirected graph G = (V,E) in which V can be
partitioned into two sets V1 and V2 such that {u, v} ∈ E implies either u ∈ V1

and v ∈ V2 or u ∈ V2 and v ∈ V1.
An ordering of layer Vi is specified by a permutation πi of Vi. We express

the ordering of V1 by the permutation π1 and the ordering of V2 by π2. Note,
that we do not distinguish between permutations of vertices and permutations
of positions since every vertex is clearly associated with its position and it
will be always clear form the context what is meant. Let cross(G, π1, π2) be
the number of edge crossings in a straight-line drawing of G given by π1 and
π2. If we fix the permutation of V1, the minimum number of edge crossings we
can achieve by reordering the vertices in V2 is denoted by opt(G, π1). Thus

opt(G, π1) = min
π2

cross(G, π1, π2).

We can now formulate the one sided crossing minimization problem as follows.

Given a bipartite Graph G = (V1, V2, E) and a permutation π1 of V1.
Find a permutation π2 of V2 that minimizes the edge crossings in the
drawing of G, i.e., cross(G, π1, π2) = opt(G, π1).

The notion of the crossing number (Eades and Kelly, 1986) is important
for many heuristics. Assume the permutation π1 of V1 is fixed. We define
for each pair of vertices u, v ∈ V2 the crossing number cuv as the number of
crossings between edges incident on u and edges incident on v, when π2(u) <
π2(v). Furthermore, we define cuu = 0 for all u ∈ V2. Observe, that the
number of crossings between edges incident on u and edges incident on v
depends only on the relative positions of u and v but not on the positions
of the other vertices. To give an example, Figure 5.9 shows a drawing of a
2-layered graph. The corresponding crossing number matrix is depicted in
Table 5.1.

We can use the crossing numbers to compute cross(G, π1, π2):

cross(G, π1, π2) =
∑

π2(u)<π2(v)

cuv =
n2−1∑

i=1

n2∑

j=i+1

cij

5. Layered Drawings of Digraphs 103

a b c d• • • •

• • •
e f g

Fig. 5.9. A 2-layered graph.

Table 5.1. Crossing number matrix for the graph in Figure 5.9.

C e f g

e 0 2 1
f 1 0 2
g 0 3 0

Sander (1994) presents a sweep line algorithm which computes the crossing
numbers in time O(|V1|+ |V2|+ |E|+ c) where c is the number of crossings.

The crossing numbers are helpful to give a lower bound on the number of
crossings:

L =
∑

π2(u)<π2(v)

min{cuv, cvu}

As experiments show (Jünger and Mutzel, 1997), this simple lower bound is
very tight to the optimum.

We will now consider the most interesting heuristics in more detail and
shortly describe the others.

Barycenter Heuristic. The barycenter heuristic (Sugiyama et al., 1981),
which is also called averaging, is based on the intuition that in a drawing with
few crossings, each node should be close to its adjacent nodes. The barycenter
method is very popular because it is easy to implement, runs fast, and gives
good results.

In this heuristic, we choose the position of a vertex as the barycenter
(average) of the x-coordinates of its neighbours N(u), where N(u) := {v :
{u, v} ∈ E}. In order to do this, we compute

bary(u) =
1

deg(u)

∑

v∈N(u)

π1(v)

for every u ∈ V2. If two values are equal we separate them arbitrarily by a
small amount. Then we sort the vertices by their values. Because the ver-
tices are likely to be presorted after some previous steps in the layer-by-layer
sweep, Sander (1994) suggests to use a randomized quicksort (see for in-
stance (Cormen et al., 1990)).

It is interesting, that the barycenter method gives a drawing without
crossings if one is possible. Since the running time for computing bary(u) is

104 Oliver Bastert and Christian Matuszewski

proportional to the degree of u, the barycenters of all vertices can be found
in linear time. Thus, with the subsequent sorting, the time complexity is
O(|V2| log |V2|). Note, that the crossing number matrix has not to be precom-
puted as in several other heuristics.

Median Heuristic. In the median heuristic (Eades and Wormald, 1994),
the x-coordinate of each vertex u is given by the median of the x-coordinates
of the neighbours of u. Here, the median is defined as follows: Suppose the
neighbours of u are v1, v2, . . . , vj with π1(v1) < π1(v2) < . . . < π1(vj), then
med(u) = π1(v	j/2
). This definition differs from the classical notion of the
median since there are actually two medians at j

2 and j
2 +1 if j is even. Here,

we take always the left median. Furthermore, if u has no neighbours, we set
med(u) = 0.

As with the barycenter heuristic we have to sort V2 according to med(u).
If two vertices have the same median they are separated by a small amount,
with the restriction that if one vertex has odd degree and the other vertex
has even degree, then the odd degree vertex is placed on the left of the vertex
with even degree. If the degrees of the vertices have same parity, we can
choose their order arbitrarily. This tie breaking method is necessary to prove
the following performance guarantee, where the number of crossings in the
output of the median heuristic is denoted by med(G, π1).

Theorem 5.4. For all bipartite graphs G = (V1, V2, E) and all permutations
π1 of V1, med(G, x1) ≤ 3 opt(G, x1).

The proof of this theorem can be found in (Eades and Wormald, 1994)
and (Di Battista et al., 1999). Like barycenter, the median method produces
an output with zero crossings if possible. For each u, the median can be
determined in O(|N(u)|) (see for instance (Cormen et al., 1990)), so we get
the same running time as for the barycenter heuristic.

The following two variants of the median method were defined by Mäkinen
(1990). The average median assigns the arithmetic mean of the two medians
if u has even degree, whereas in the semi median heuristic, we set smed(u) =
bary(u) if the degree of u is even. Both variants return the value of med(u)
if the degree of u is odd. As tests show, both heuristics improve the results
of the original algorithm.

Gansner et al. (1993) refine the average median heuristic even further. If
a vertex u has odd degree, the weighted median is defined by wmed(u) =
med(u). If deg(u) = 2 then wmed(u) is the arithmetic mean of the positions
of the two neighbours. The difference to the average method occurs when
deg(u) is even and deg(u) > 2. In this case, the weighted median is defined
as

wmed(u) =
π1(vj/2) · right+ π1(vj/2+1) · left

left+ right

where left = π1(vj/2)−π1(v1) and right = π1(vj)−π1(vj/2+1). This strategy
puts the vertex toward the side where the neighbours are more closely packed.

5. Layered Drawings of Digraphs 105

Greedy Switch Heuristic. The greedy switching heuristic (Algorithm 13),
also called adjacent-exchange, works in a way similar to bubble-sort. If u and
v are two consecutive vertices in V2, then switching their positions changes
the total number of crossings by exactly cvu − cuv. The algorithm scans all
consecutive pairs and switches them if this reduces the number of crossings.
This process is repeated until no further switching occurs, i.e., for all con-
secutive pairs (u, v) the inequality cuv ≤ cvu holds. Such a vertex ordering is
called stable.

Algorithm 13: greedy switch
repeat

for u := 1 to |V2| − 1 do
if cu(u+1) > c(u+1)u then

switch vertices at positions u and u+ 1;

until the number of crossings was not reduced ;

Since one scan of the vertices can be implemented in O(|V2|) and there
are at most |V2| scans, the time complexity of the greedy switching heuristic
is O(|V2|2).

As suggested by Mäkinen (1990) and Gansner et al. (1993), the greedy
switch heuristic is preferable as a post processing step in combination with
other heuristics such as barycenter or median. This is because greedy switch-
ing does not recompute the ordering completely but makes changes only when
it improves the result.

Split Heuristic. The split heuristic (Eades and Kelly, 1986) gives better
results than the median or barycenter heuristics at the expense of longer
running times. The algorithm is comparable with quicksort. First, a “pivot”-
vertex p is chosen. This can be done by arbitrarily selecting the leftmost
vertex. A more sophisticated method would choose the pivot vertex randomly.
In the next step of the algorithm, every other vertex v is placed to the left
or to the right of p according to whether cvp < cpv or cpv ≤ cvp. After
this partition, the algorithm is applied recursively to the left set and to the
right set until both sets are ordered and can be concatenated. We start the
Algorithm 14 by calling split(1, |V2|).

The split heuristic has a worst case running time of O(|V2|2) but in prac-
tice it runs in time O(|V2| log |V2|) if we do not consider the computation of
the crossing number matrix.

Sifting. The sifting algorithm was introduced by Rudell (1993) to reduce the
number of nodes in reduced ordered binary decision diagrams (ROBDDS).
An ROBDD is a graph which represents a boolean function and is primarily
used in logic synthesis and verification. It is possible to adapt the sifting
algorithm for the crossing minimization problem (Matuszewski et al., 1999).

106 Oliver Bastert and Christian Matuszewski

Algorithm 14: split (i, j : 1, . . . , |V2|)
if j > i then

pivot := low := i; high := j;
for k := i+ 1 to j do

if ck pivot < cpivot k then
π(k) := low; low := low + 1;

else
π(k) := high; high := high− 1;

/* low == high */
π(pivot) := low;
copy π(i . . . j) into π2(i . . . j);
split (i, low − 1);
split (high+ 1, j);

Sifting yields very good results especially for sparse graphs but again this is
paid with longer running times.

The algorithm determines the optimal position for every vertex u under
the condition that the positions of the other vertices remain fixed (Algo-
rithm 15).

Algorithm 15: sifting
foreach u ∈ V2 do

move u to the leftmost position;
crossings :=

P
π2(u)<π2(v) cuv;

min crossings := crossings;
for p := 1 to |V2| − 1 do

crossings := crossings− cp(p+1) + c(p+1)p;
switch vertices at positions p and p+ 1;
if crossings < min crossings then

min crossings := crossings;
best position := p;

move u to position best position;

Since every vertex has to be set on every position, the time complexity is
O(|V2|2).
Other Heuristics. The greedy insertion algorithm (Eades and Kelly, 1986)
proceeds by successively choosing the next vertex u to be the one which
minimizes the number of crossings that edges adjacent to u make with edges
adjacent to vertices to the right of u (if we start from left). The running time
is in O(|V2|2).

The stochastic heuristic (Dresbach, 1995) was originally designed to
change the ordering of both layers but can be adapted to compute a so-
lution if one layer is fixed. The algorithm greedily puts the vertices of V1 and

5. Layered Drawings of Digraphs 107

V2 to open positions according to assessment numbers. These numbers are
derived from the frequency numbers that estimate the probability for an edge
to cause a crossing in the drawing of the graph. The frequency number of
an edge is the number of edges that cross that edge if the complete bipartite
graph is drawn.

The assignment heuristic (Catarci, 1995) finds the linear assignment (see
for instance (Lengauer, 1990)) for a simplified crossing minimization problem.
We define dij as an upper bound on the number of edge crossings that are
caused by edges incident on vertex i if we place i to position j. Such a number
is easy to get. First we place vertex i on position j. Then we make the rest
of the graph complete, i.e., every vertex in V2 except vertex i is connected to
every vertex in V1. At last we count the number of edge crossings caused by
edges incident on i. If all dij are computed we solve the assignment problem
for matrix D = ((dij)), i.e., we choose n2 elements from D such that each
row and each column is covered and the sum of the elements is minimized.

Several meta heuristics were used to solve the one sided crossing minimiza-
tion problem. A genetic algorithm is given by Mäkinen and Sieranta (1994)
and the results are compared with the barycenter heuristic. The genetic algo-
rithm is better with the expense of long computation times. Similarly, the tabu
search by Laguna et al. (1997) gives high quality results but is usable only
when fast computation is not necessary. The GRASP (greedy randomized
adaptive search procedure) by Laguna and Mart́ı (1999) gives good results
especially for sparse graphs and has moderate computation times.

Optimal Crossing Minimization. The computation of exact solutions is
very desirable to estimate the quality of the results produced by the heuris-
tics. The branch-and-cut algorithm by Jünger and Mutzel (1997) does the
computation of exact solutions in surprisingly short time. To name it, for in-
stances with up to 60 vertices in the permutable layer the best permutation
can be found faster or as fast as every other heuristic, except the barycenter
and the median heuristic.

Let us state the one sided crossing minimization problem as an integer
program. For each layer i we define δi

kl = 1 if πi(k) < πi(l), otherwise δi
kl = 0.

Thus, we can characterize πi by the vector δi ∈ {0, 1}(ni
2) and compute the

number of crossings with

cross(π2) = cross(δ2) =
n2−1∑

i=1

n2∑

j=i+1

∑

k∈N(i)

∑

l∈N(j)

δ1kl · δ2ji + δ1lk · δ2ij .

The crossing numbers can be computed with

cij =
∑

k∈N(i)

∑

l∈N(j)

δ1lk.

108 Oliver Bastert and Christian Matuszewski

Then

cross(δ2) =
n2−1∑

i=1

n2∑

j=i+1

cijδ
2
ij + cji(1− δ2ij)

=
n2−1∑

i=1

n2∑

j=i+1

(cij − cji)δ2ij +
n2−1∑

i=1

n2∑

j=i+1

cji

With n = n2, xij = δ2ij and aij = cij − cji we have to solve the linear
ordering problem

(LO) minimize
∑n−1

i=1

∑n
j=i+1 aijxij (5.7)

subject to 0 ≤ xij + xjk − xik ≤ 1 for 1 ≤ i < j < k ≤ n (5.8)
0 ≤ xij ≤ 1 for 1 ≤ i < j ≤ n (5.9)
xij ∈ Z for 1 ≤ i < j ≤ n. (5.10)

To get the minimum number of crossings we have to add
∑n−1

i=1

∑n
j=i+1 cji

to the optimum value of (LO). The “3-cycle-constraints” (inequalities (5.8))
ensure that the vector x indeed defines a permutation π2 of V2. To solve the
linear ordering problem, a branch-and-cut approach is used.

First, a relaxation of (LO) is defined by dropping the integrality condi-
tions. Since the space required for writing down all 3-cycle inequalities is in
O(|V2|3), solving the corresponding linear program is impractical. Therefore
a cutting plane approach is used. The algorithm starts using only the hy-
percube inequalities (constraints (5.9)) and iteratively adds violated 3-cycle
constraints and deletes non binding 3-cycle constraints until the relaxation
is solved. If an integral solution is found, the algorithm stops. Otherwise,
a fractional xij is chosen and the algorithm is applied recursively to two
subproblems, one with xij = 0 and one with xij = 1.

Planarization. An alternative method to crossing reduction is given by
Mutzel (1997). The idea is to remove a minimal set of edges such that the
remaining k-layer graph can be drawn without edge crossings. In the final
drawing, the removed edges are reinserted which, however, may produce much
crossings. Let us for example consider the drawing of a graph from (Mutzel,
1997) obtained by 2-layer planarization in Figure 5.10 which has 34 cross-
ings. The same graph with the minimum of 24 edge crossings is shown in
Figure 5.11.

It is not quite clear whether the drawing with fewer crossings is more
readable. On the contrary, in Figure 5.10 the four removed and reinserted
edges stand out clearly and all edges can be easily followed by the eye. Still
another motivation for studying the k-layer planarization problem is that it
might be easier to attack than the k-layer crossing minimization problem.

5. Layered Drawings of Digraphs 109

4 6 8 7 5 15 14 3 2 13 12 9 1 11
• • • • • • • • • • • • • •

• • • • • • • • • • •
21 23 29 28 25 26 27 20 22 17 30

Fig. 5.10. Graph drawn using planarization.

4 6 3 7 5 8 14 2 12 15 9 13 1 11
• • • • • • • • • • • • • •

• • • • • • • • • • •
21 23 29 28 26 25 27 20 22 17 30

Fig. 5.11. Graph drawn with the minimal number of crossings.

However, even the 2-layer planarization problem is NP-hard. To solve the
problem, a formulation as an integer program and studies on the associated
polytope are given by Mutzel (1997). The results are used in an efficient
branch-and-cut algorithm and a heuristic is derived by setting a time limit
of five minutes for the program. The results are close to the upper bound
determined by the optimal solution of the linear programming relaxation.

5.4.3 K-layer Crossing Minimization

Tutte’s Algorithm. The results of Tutte’s Algorithm (Eades and Sugiyama,
1990) are similar to barycenter. First, the positions of the vertices in the first
and in the last layer are fixed. In each other layer the x-coordinate of a vertex
u is chosen as a weighted average of the x-coordinates of its neighbours:

x(u) =
1

2 outdeg(u)

∑

v∈N+(u)

x(v) +
1

2 indeg(u)

∑

w∈N−in(u)

x(w)

Now we have to solve a system of sparse linear equations to compute the
value x(u) for each vertex u. In the last step the vertices of each layer are
sorted by x.

Optimum Crossing Minimization. Jünger and Mutzel (1997) and Lino
et al. (1996) give branch-and-bound algorithms for the (two sided) 2-layer
crossing minimization problem. In the approach of Jünger and Mutzel (1997),

110 Oliver Bastert and Christian Matuszewski

all permutations of the smaller layer are enumerated and the lower bound L
is employed to make the search tree smaller. The branch-and-cut algorithm
for the one sided crossing minimization is applied to obtain complete permu-
tations of the larger layer.

To solve the 2-layer crossing minimization problem directly, an integer
linear program and studies on the associated polytope are given by Jünger
et al. (1997). Furthermore, they generalize the formulation to solve the k-
layer problem. Note, that all cutting planes arising from the bipartite graphs
are valid cutting planes for the combined k-layer graph. For both, 2-layer and
k-layer problems, branch-and-cut algorithms were implemented and tested on
2-layer and 3-layer instances. The results indicate that the branch-and-cut
approach may only be practicable, if deeper polyhedral studies are conducted.

5.4.4 Dense Graphs and Edge Concentration

The density of a graph is defined as the ratio of the number of edges of the
graph to the number of edges of the corresponding complete graph. Thus,
every complete bipartite graph has density 1. It can be proven, that for
dense graphs the number of crossings is close to the optimum for every vertex
ordering (Di Battista et al., 1999). The basic intuition is that if two vertices
u and v have many common neighbours, then cuv and cvu are both large.
More precisely, if χuv is the number of common neighbours of u and v, then

cuv ≥
(
χuv

2

)
and cvu ≥

(
χuv

2

)
.

One consequence is that any crossing minimization heuristic will perform
“better” if graphs become denser. The other is that large and dense graphs
are hardly readable, even after the best crossing reduction, because every edge
is hidden in a confusing mass of crossings. Two examples for such graphs are
call graphs and graphs depicting relations between include files and source
files of a system.

One way out of this dilemma is edge concentration (Paulish, 1993). This
technique identifies complete bipartite subgraphs of a bipartite graph and
replaces them with an equivalent tripartite graph as described next.

If a complete bipartite graph G = (V1, V2, E) is given, the equivalent
tripartite graph G∗ = (V1, EC, V2, E

∗) is constructed by inserting a level
with a single node, the edge concentration node, between the two levels. The
edges in E are replaced by E∗ = (V1 × EC) ∪ (EC × V2). We call the set of
edges in the complete bipartite graph an edge concentration and the resulting
tripartite graph is said to be concentrated.

Consider the complete bipartite graph in Figure 5.12(a). All edges are
concentrated to a single node as shown in Figure 5.12(b). The resulting tri-
partite graph has fewer edges and no edge crossing. Note that after edge
concentration edge labels are lost and an additional level is inserted.

5. Layered Drawings of Digraphs 111

mom

susi

dad

janahans

(a)

susi janahans

C

mom dad

(b)

Fig. 5.12. A complete bipartite graph and the equivalent tripartite graph.

Since the concentration of a complete bipartite subgraph is easy, the main
problem is to identify such subgraphs in an arbitrary bipartite graph. We
state the edge concentration problem as follows.

Given a bipartite graph G = (V1, V2, E). Find a set of (possibly
overlapping) complete bipartite subgraphs G1, G2, . . . , Gs of G that
cover all edges of G and minimize the number of all edges in the
equivalent, tripartite representations G∗

i of Gi.

It is an open question whether the edge concentration problem is NP-
hard or not. There is a similar and somewhat simpler problem, the covering by
complete bipartite subgraphs problem, which is known to be NP-hard (Garey
and Johnson, 1991) and can be stated as follows:

Given a bipartite graph G = (V1, V2, E). Find the smallest set of
(possibly overlapping) complete bipartite subgraphs G1, G2, . . . , Gs

of G that cover all edges in G.

The edge concentration problem seems to be at least as hard as this problem,
although no reduction has yet been found.

In the book of Paulish (1993) a heuristical algorithm for the edge concen-
tration problem is given. First, potential edge concentrations are identified
by considering the complete bipartite subgraph formed by each pair of source
nodes and their common successors. Such a subgraph is called an intersection.
For example, let us consider the graph in Figure 5.13. The intersection formed
by the source nodes 1 and 2 and their commom successors has the node set
{1, 2, A,B,C}. The node sets of the other two intersections are {1, 3, B, C}
and {2, 3, B, C,D}.

After determining all intersections, the algorithm tries to find good edge
concentrations. If the target nodes of an intersection are a subset of the target
nodes of a previously determined intersection, then the set of target nodes

112 Oliver Bastert and Christian Matuszewski

C DBA

321

Fig. 5.13. A bipartite graph.

is partitioned into two sets. The first contains the target nodes which are in
both intersections while the second contains the remaining target nodes. This
partitioning of the target nodes helps to avoid overlap between concentrations
which would lead to additional edges and crossings.

5.5 Horizontal Coordinates

The computation of the horizontal coordinates has mainly two different objec-
tives. The layout should have as few bends as possible. As mentioned before,
bends only occur at dummy vertices. This is true unless the expansion of the
vertices is very large. For details concerning this particular problem, see for
example (Sander, 1996b). In some applications not only straight edges but
also vertical edges are preferred.

We will present exact approaches to this problem and afterwards introduce
a heuristic.

5.5.1 Exact Algorithms

The problem of finding a layout with as straight edges as possible can be
formulated as follows. Consider a directed path p = (v1, v2, . . . , vk) where
v2, v3, . . . , vk−1 are dummy vertices. We call this an edge-path. If the edge-
path would be drawn straight, the dummy vertices would satisfy

x(vi)− x(v1) = i− 1
k − 1

(x(vk)− x(v1))

for all 1 < i < k. Observe that this formula is only valid for equidistant layers,
but it is straight forward to adjust this formula for unequal layer distances.

To be able to state the objective function more compact, we introduce the
term x(vi) := i−1

k−1 (x(vk)−x(v1))+x(v1) which would be the the x-coordinate
of vi if it would lie on the straight line between x(v1) and x(vk). We can now
formulate a measure for the deviation of the path from a straight line

dev(p) =
k−1∑

i=2

(x(vi)− x(vi))2

5. Layered Drawings of Digraphs 113

To make the edges as straight as possible, we minimize the sum

∑

p is edge-path
dev(p)

subject to the constraints

x(w) − x(v) ≥ ρ(w, v)

for all pairs w, v of vertices in the same layer with w to the right of v.
The constraints ensure that the ordering within each layer computed by

the crossing reduction step is preserved and that the horizontal distance
ρ(w, v) between the vertices is observed. The value ρ(w, v) usually is calcu-
lated from the size of the vertices and the requested minimum horizontal
distance between two succeeding vertices.

An optimal solution to this optimization problem may result in expo-
nential width of the drawing and thus, if the width should be kept small
further inequalities would have to be added. The main disadvantage is that
since this problem has a quadratic objective function, it can only be solved
to optimality for small instances.

Another objective is to draw the lines as close to vertical lines as possible.
In this case the objective function can be stated as (Gansner et al., 1993)

∑

(u,v)∈E

Ω(u, v)ω(u, v)|x(u) − x(v)|,

where ω is a measure for the importance of an edge and Ω denotes an
internal weight for straightening long edges. Therefore, the authors suggest
higher priorities for edges between dummy vertices than between the other
vertices (Ω(e) = 8 if both endvertices are dummy vertices,Ω(e) = 2 if exactly
one endvertex is a dummy vertex and Ω(e) = 1 otherwise). Of course, the
introduction of a weight function may improve the layouts computed by the
preceding model as well.

A new idea to solve this problem efficiently was introduced in (Gansner
et al., 1993). Gansner et al. construct an auxiliary graph on which this prob-
lem transforms to a layering problem introduced in Section 5.3.4 which can
be solved easily. The x-coordinates correspond to the layers and vice versa.

The auxiliary graph Ga = (Va, Ea) contains as vertices all vertices of G
plus a vertex for each edge in G. Hence, Va = V ∪ {[uv] | (u, v) ∈ E}. We
introduce two kinds of edges inGa. The first class of edges encodes the original
edges and is needed to eliminate the absolute values in the objective function.
For every edge (u, v) ∈ E, we introduce two edges ([uv], u) and ([uv], v) in
Ga. We define ωa([uv], u) = ωa([uv], v) = Ω(u, v)ω(u, v) and λa([uv], v) =
λa([uv], v) = 0. The second class of edges separates the vertices with the

114 Oliver Bastert and Christian Matuszewski

[]uv

wv

u

(u
, v
)

Fig. 5.14. Introducing auxiliary variables.

same rank. If v is a left neighbor of w in G, we insert an edge (v, w) in Ea

and define ωa(v, w) = 0 and λa(v, w) = ρ(v, w).
In the following, we will describe how a solution of the layering on Ga

corresponds to a solution of the positioning problem on G and that both
have the same cost. Let a solution of the positioning problem on G be given.
Assign [uv] to the layer min{x(u), x(v)}. Conversely, in an optimal layer
assignment in Ga, the vertex [uv] lies in either the layer of u or the layer of
v. Thus, one of the edges ([uv], u), ([uv], v) has length 0 and the other has
length |x(u) − x(v)|. Hence, optimality in Ga implies optimality in G and a
layering for Ga gives a solution for G.

5.5.2 A Heuristic

Another possibility is to obtain the x-coordinates by an improvement heuris-
tic which can roughly be stated like the following:

initial coordinates;
while some condition do

positioning;
straightening;
packing;

One possibility for computing an initial solution is to position the vertices
with minimal distance from left to right in the order given by the crossing
minimization.

In the positioning phase essentially the ideas used in the previous section
for crossing reduction between two layers might be applied, like the median
or barycenter heuristic. Another idea is to think of the vertices as balls and
the edges as strings of a pendulum (Sander, 1996b).

Since these strategies compute layouts with many bends, in the straight-
ening phase one tries to assign paths of dummy vertices to the same x-
coordinate. The edges can be seen as rubber bends with vertices at both
ends and the dummy vertices in between. This enlarges the drawing in x-
direction of course. Hence, the drawing is compressed by moving the vertices

5. Layered Drawings of Digraphs 115

closer together again without introducing new bends. These steps might be
iterated to obtain a satisfying solution.

5.6 Positioning of Edges

Drawing of edges is easy if all nodes have the same size and shape. We simply
draw arcs with span one as straight lines and longer arcs as polygons using
the dummy nodes as intermediate points. If the gap between two nodes is
wide enough, there will be no intersection between nodes and edges.

But if the nodes differ in size and shape, the problem to draw the edges
such that no visible node is intersected is much more complex (see Fig-
ure 5.15(a)). A possible solution is to draw the edges orthogonal (in Man-
hattan layout) as shown in Figure 5.15(b). An algorithm for doing this was
described by Sander (1996a).

(a) (b)

Fig. 5.15. Problem of node intersection and solution with orthogonal edges.

Another approach is to bend the edges at two points. An easy way to do
this is to set the length of the vertical segments of all edges to the size of the
largest node in the layer. Thus, all nonvertical segments between layer Vi and
layer Vi+1 start at the same y-coordinate and end at the same y-coordinate.
Figure 5.16(a) shows the result.

Clearly, no edge can go through a node or can cross the vertical segment
of another edge. The disadvantage is that too many bendings are produced.
One can get better-looking graphs by bending edges only if necessary (see
Figure 5.16(b)). But now, bent edges may cross neighboured edges. This
can be avoided by also bending an edge which crosses a vertical segment of
an already bent edge. The iterative Algorithm 16 implemented in the VCG-
tool (Sander, 1994) starts with unbent edges and introduces vertical segments
or enlarges them until no overlapping or additional edge crossing remains.

116 Oliver Bastert and Christian Matuszewski

(a) (b)

Fig. 5.16. Solutions with bending of edges.

Algorithm 16: bend edges
while ∃e ∈ E that overlaps a node or crosses a vertical segment of an edge
e′ do

enlarge the vertical segments of e;

We can get even nicer drawings if we draw the edges as curves instead of
straight lines and polygons. Among the different methods to interpolate and
approximate points, Bézier curves have properties which make them suitable
to represent edges between nodes. We will shortly describe this kind of curves
next; for a deeper view see for instance (Foley et al., 1990).

Bézier curves are specified by the control points b0, . . . , bn. The points
b0 and bn are the interpolated end points of the curve, all other control
points are approximated. The gradients in b0 and bn are given by the gradient
of the straight line segment between b0 and b1 and between bn and bn−1,
respectively. Figure 5.17 shows a Bézier curve with three control points and
the associated polygon. Note that the entire curve is completely enclosed by
the convex hull of the control points.

b0

b1

b2

Fig. 5.17. A Bézier curve.

5. Layered Drawings of Digraphs 117

The Bézier curves used in the VCG-tool also have three control points
which are determined by finding appropriate triangles at the bendpoints of
the polygons. Thereby, the middle control point is set to the bendpoint itself
and we try to find good positions for the two end points on the adjacent
polygon segments. In order to do this, the end points are set on the adjacent
segments such that an isoscele triangle is produced (see Figure 5.18(a)). Then
the size of the triangle is reduced until all nodes and bendpoints are outside
the channel (Figure 5.18(b)). Finally, the curve is drawn inside the triangle
as shown in Figure 5.18(c).

(a) (b) (c)

Fig. 5.18. Calculation of the curve.

A sophisticated method to find the smoothest curve between two points
is given in the article of Gansner et al. (1993). First, a region where the curve
may be drawn is determined. This space is represented by a set of boxes
parallel to the coordinate axes. Then, the best curve within the region is
drawn as a piecewise Bézier curve which is done in the following way. First,
a polygon is generated which lies entirely inside the region. The endpoints
and intermediate points are used as hints for the control points of the Bézier
curves. The actual Bézier curve is determined in an iterative process that
perturbs the control points until the curve fits in the region.

118 Oliver Bastert and Christian Matuszewski

5.7 Related Approaches

5.7.1 Upward Planarity

A directed graph is upward planar if it can be drawn in a way such that
no two edges intersect and every edge is monotonically nondecreasing in the
vertical direction (see Chapter 2 for an introduction to planar graphs). So, two
of the aesthetic criteria mentioned in Section 5.1 can be optimally satisfied.
Unfortunately, although testing whether a digraph admits a planar drawing
or an upward drawing can be done in linear time, upward planarity testing
is NP-complete (Garg and Tamassia, 1995a). Nevertheless, there are many
special classes of directed graphs for which upward planarity testing can be
done in polynomial time (Garg and Tamassia (1995b) give a survey of testing
algorithms).

Note, that ordered sets and upward planar digraphs are closely related.
Ordered sets with a special treatment of lattices are covered in Section 3.3
in this book.

We will now mention some classes of digraphs for which efficient upward
planarity testing and drawing methods exist.

(s,t)-digraphs. An (s,t)-digraph is an acyclic digraph with exactly one source
s, exactly on sink t, and the edge (s, t). A planar (s,t)-graphs is always up-
ward planar. More general, a digraph is upward planar if and only if it is a
subgraph of a planar (s,t)-digraph (Garg and Tamassia, 1995b). Garg and
Tamassia (1993) describe an efficient algorithm for drawing a planar (s,t)-
digraph. Since every upward planar digraph can be easily extended to an
planar (s,t)-digraph, we can draw every upward planar digraph efficiently.

Embedded digraphs. An embedding of a graph associates to each vertex v a
circular clockwise ordering of the incidence list of v. An embedded graph is a
graph with a given embedding. Bertolazzi et al. (1994b) give an polynomial-
time algorithm for testing if an embedded digraph has a upward planar draw-
ing. If such a drawing exist the algorithm allows to construct one easily.

Single source digraphs. Hutton and Lubiw (1991) give an O(n2) time algo-
rithm for testing if a single source graph is upward planar where n is the
number of vertices in the graph. Improvements made by Bertolazzi et al.
(1993) yield an O(n) time algorithm.

Embedded single source digraphs. Hutton and Lubiw (1991) and Bertolazzi
et al. (1993) give an O(n2) time resp. O(n) time algorithm for testing if
whether an embedded single source digraph has an upward drawing which
preserves the embedding.

Planar bipartite digraphs. Planar bipartite digraphs are always upward pla-
nar. We refer to the paper of Di Battista et al. (1990).

Series-Parallel digraphs. Series-parallel digraphs are always upward planar
and covered in Section 3.2 in this book.

5. Layered Drawings of Digraphs 119

Trees and Forests. Directed graphs whose underlying undirected graph is a
forest are always upward planar. See Section 3.1 for more information about
trees.
Triconnected digraphs. A graph G is triconnected if it is biconnected and has
no separation pair which is a pair of vertices whose removal increases the
number of connected components. Since a triconnected digraph has a unique
embedding we can use the algorithm of Bertolazzi et al. (1994b) for testing
upward planarity.
Outerplanar digraphs. Outerplanar graphs are planar graphs which admit
an embedding such that all the vertices are on the same face. Testing if an
embedded outerplanar digraph with n vertices is upward planar can be done
in time O(n) while testing if an outerplanar digraph is upward planar can be
done in time O(n2) (Papakostas, 1995).

5.7.2 Clustered Graphs and Hierarchical Graphs

Sometimes some grouping of the vertices (clustering) is given together with
the graph. These graphs and more general graphs will be treated in Chapter 8.
Another possibility is to compute a grouping, draw the groups and then
combine the partial drawings to complete the drawing. This leads to a divide
and conquer approach. Concerning the computation of layered drawings this
strategy is discussed in (Messinger et al., 1991). See Chapter 8 as well.

5.7.3 Recurrent Hierarchy

Sugiyama et al. (1981) suggest another hierarchy, called recurrent hierarchy.
Edges are allowed between consecutive layers and between the last and the
first. This might be useful to illustrate graphs with large feedback arc sets.
Unfortunately, this problem is still not well studied.

L1

L2

L3

L4

L5

L6

L7

L8

Fig. 5.19. A recurrent hierarchy and a ring diagram.

120 Oliver Bastert and Christian Matuszewski

5.7.4 Ring Diagram

Another idea is to display the flow radial where the layers lie on concentric
circles and the arcs are pointing outward (Reggiani and Marchetti, 1988).
This is very similar to the three-dimensional case of layered drawings, see
Section 7.3 for details on this.

5.7.5 Combining the Steps

Usually the single steps are performed independently. Specially the layering
step and crossing minimization step are strongly related and it seems to
be reasonable to solve them together in one step. A convincing example is
depicted in Figure 5.20. A first attempt using an evolutionary algorithm is
presented in Utech et al. (1998).

Fig. 5.20. A graph which be drawn either in two layers but with crossings or in
at least three layers without crossings but with long edges.

6. Orthogonal Graph Drawing

Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

6.1 Introduction

There are various criteria to judge the quality of a drawing of a graph. From
a human point of view, one of the most important issues is the readability of
a drawing: ideally, it should be easy to understand the structure of a graph
with just a few glances, and the chance of confusion over connections between
different vertices should be small. From an algorithmic point of view, it is
necessary to capture this quality by means of an objective function. Various
objective functions have been studied, with a great deal of effort put into
their optimization by means of combinatorial algorithms.

An undesired property of a drawing that may impede its legibility is the
presence of edges that are too close together. Keeping different edges apart
may be particularly difficult in the vicinity of vertices, where several adjacent
edges have to meet. Clearly, there is some correlation between the involved
angles and the optical distinctiveness of the drawn edges. This motivates
a particular objective function that is considered at the beginning of this
chapter: find a drawing of a graph such that the minimum angle between
adjacent edges is maximized. The first section discusses upper and lower
bounds on angles in straight-line drawings.

There is a particularly nice way to guarantee maximal distinctiveness
of adjacent edges in a drawing: when forcing all angles between adjacent
edges to be multiples of π2 , edges will correspond to axis-parallel paths. The
price we may have to pay for this type of clarity is to admit bends in the
path representing an edge. In order to avoid confusion by too complicated
paths, it is desirable to minimize the number of these bends. This setup
has given rise to the area of orthogonal graph drawing – probably one of
the most prolific in all of graph drawing, with scores of methods, heuristics,
and sophisticated algorithms like Kandinsky, others extending to mainly
theoretical research areas like three-dimensional drawings. Over the years,
orthogonal graph drawing has become far more important than the issues of
angles in drawings, but both types of problems have their own motivation
and have been studied independently.

It is the main objective of this chapter to combine a description of the
key ideas (like the flow methods in the landmark paper of Tamassia 1987)
with an overview of some of the main consequences and applications.

This chapter is organized as follows: after discussing angles in drawings
in Section 6.2, Section 6.3 characterizes the correspondence between orthog-
onal drawings and combinatorial descriptions: how can we give a compact

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 121-171, 2001.
 Springer-Verlag Berlin Heidelberg 2001

122 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

combinatorial encoding of the orthogonal shape of a drawing (called an “or-
thogonal representation” in the literature), and how can we realize a given
combinatorial encoding as an orthogonal drawing?

Section 6.4 describes a number of heuristics that have been developed for
finding a good orthogonal drawing without employing orthogonal represen-
tations.

When trying to find orthogonal drawings with few bends, we concentrate
on the space of orthogonal representations. Optimizing over this space is the
subject of Section 6.5, where we describe an efficient combinatorial algorithm
for this task. Extensions to planar graphs of possibly high degree are sketched.

The final Sections 6.6 and 6.7 deal with improving orthogonal drawings.
In many cases, the output of orthogonal drawing algorithms can be com-
pacted further by assigning different – but still consistent – lengths to the
edge segments. Section 6.6 gives an overview of compaction techniques, rang-
ing from efficient heuristics to optimal techniques. The following Section 6.7
presents some efficient postprocessing methods that operate directly on the
orthogonal drawings and try to improve aesthetic criteria like the number of
bends or the number of crossings. We conclude with Section 6.8 and present
some open problems in orthogonal graph drawing.

In many algorithms presented in this chapter, flow algorithms play the
key role. Many problems can be reduced to a maximum or minimum cost
flow problem. A good overview of network flow problems, modeling, and
algorithms can be found in Ahuja et al. (1993) or in Bertsekas (1998).

6.2 Angles in Drawings

As described above, the following optimization problem comes up naturally
when trying to create drawings with high resolution:

Problem 6.1 (Angular Resolution). Given a graph G = (V,E) with n
vertices and m edges, how can we draw the vertices as points in the plane,
and the edges as straight lines between adjacent vertices, such that the an-
gular resolution, i.e., the smallest angle between adjacent edges, is as large
as possible?

Over the years, a number of researchers have given various kinds of an-
swers to this question. One type of result is to establish the complexity of
Angular Resolution. It was shown by Formann et al. (1990) that it is
NP-hard to check whether a planar graph with maximum degree 4 can be
drawn with angular resolution at least π2 . Before discussing how to relax the
requirements on drawings, such that a drawing with resolution π

2 is always
possible, we describe some lower and upper bounds for straight-line drawings.

If d is the maximum degree of a vertex in G, it is clear that the angular
resolution cannot exceed 2π

d . It was shown in (Formann et al., 1990) that

6. Orthogonal Graph Drawing 123

for planar graphs, a resolution of Ω(1
d) can indeed be achieved. For general

graphs, a resolution of Ω(1
d2) can be guaranteed. The key is to use a coloring

of G2 = (V,E2) of G. (Recall that two vertices in V are adjacent in G2 if
and only if they have distance at most 2 in G.) It can be shown that there is
a coloring of G with O(d) colors for planar graphs G and with O(d2) colors
for general graphs G. Then points of a color class are drawn as a cluster of
points on a unit circle, with different clusters distributed at equal distance
around the circle. This guarantees that any angle between adjacent edges
in G involves points from three different color classes of G2, implying the
claimed bounds.

The method by Formann et al. suffers from a very serious drawback for
practical purposes. The number of crossings in the straight-line drawing may
be much higher than necessary. In particular, the resulting drawing of a planar
graph may not be free of edge crossings. Thus, it remained open whether the
resolution of a planar drawing of a planar graph could be bounded from below
in a satisfactory manner.

A first partial answer to this problem was given by Malitz and Papakostas
(1992, 1994) who described a method to guarantee a lower bound of 1

7d

for planar straight-line drawings of planar graphs. Their approach relies on
so-called “disc-packings” or “coin graph representations” of a planar graph
G = (V,E), where vertices v ∈ V are represented by disjoint discs, and two
vertices v1, v2 ∈ V are adjacent if and only if the discs corresponding to v1

and v2 touch. The existence of this type of representation has been proved
independently by a number of researchers, including Koebe (1936), Andreev
(1970a,b), Colin de Verdière (1989), and Thurston (unpublished). The lower
bound arises from the fact that in certain subsets of adjacent discs, the radii
can vary by at most a factor of 1

7 . Malitz and Papakostas also conjectured
that a lower bound of Ω(1

d) for the angular resolution of planar straight-line
drawings of planar graphs might be achievable. As partial evidence for this
conjecture, they showed that a particular relaxation of the problemAngular
Resolution has an optimum of O(1

d):

Any set of angles in a feasible drawing has to satisfy a set of linear equal-
ities – see Figure 6.1. Around every vertex v, the sum of the angles Φ(v) at
v must be 2π; for every interior cycle the sum of the angles Φ(f) must be
(|Φ(f)| − 2)π, and (|Φ(f0)|+ 2)π for the exterior cycle f0:

∑

φi∈Φ(v)

φi = 2π for all v ∈ V. (6.1)

∑

φi∈Φ(f)

φi = π(|Φ(f)| − 2) for all f ∈ F \ {f0}. (6.2)

∑

φi∈Φ(f0)

φi = π(|Φ(f0)|+ 2). (6.3)

124 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

If we only impose these necessary conditions while maximizing the mini-
mum angle, we get a linear program that can be solved efficiently. By using
linear programming duality, it can be shown that there is always an optimum
of value Ω(1

d).

Fig. 6.1. Angles in a drawing must satisfy certain conditions.

18
π

φ=

2φ

3φ 3φ

4φ

12φ

12φ 12φ

31φ

3φ

3φ

29φ

30φ

Fig. 6.2. A solution to the linear system that does not correspond to a feasible
drawing.

It can be seen from Figure 6.2 that not every solution to the linear pro-
gramming relaxation corresponds to a set of angles that allow a drawing.
After drawing the bottom triangle with the given angles, the three edges
incident to the top vertex cannot intersect in one point. It was shown by
Di Battista and Vismara (1993, 1996) that for triangulated triconnected pla-
nar graphs with a designated external face f0, the conditions on angle sums
can be amended by the following requirement to get a set of necessary and
sufficient conditions – see Figure 6.3:

Around each vertex v of degree d(v), we have angles γi, i = 1, . . . ,deg(v).
Each γi lies in the same triangle as the angles αi and βi, as shown in the
figure. In any feasible drawing, the angles αi, βi satisfy

6. Orthogonal Graph Drawing 125

γ

β

4
6

5

3
2

α

β

β
α

β
α

β
γ γ

γγ

γ

α

2

1

α
β

α

6
1

1
2

6

3

3

4

45

5

Fig. 6.3. Angles around a vertex in a drawing.

d(v)∏

i=1

sinαi
sinβi

= 1.

The necessity of these conditions is a consequence of planar trigonometry;
conversely, it can be shown that this additional condition suffices to get a
feasible drawing for each “wheel”, as shown in Figure 6.3, since any triple of
edges that are incident to the same vertex will indeed meet at a single point.
By induction, it follows that we get a feasible drawing for the full graph.
Adding these conditions results in a nonlinear program for optimizing the
angular resolution.

Garg and Tamassia (1994) managed to disprove the conjecture of Malitz
and Papakostas (1994) by giving a family of graphs with an upper bound
of O(

√
log d/d3). See Figure 6.4. In the same paper, they showed that good

angular resolution may come at the expense of high numerical resolution,
i.e., large angles require high precision in the coordinates. In other terms,
they showed that there is a family of graphs, such that if all n vertices are
drawn at integer coordinates, a drawing of angular resolution ρ requires area
Ω(cρn). See Figure 6.5.

0
G

G
k

k-1

k-1

G
k-1

G

G

Fig. 6.4. A family of graphs with small angular resolution.

126 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

G
0 G

k-1

k
G

Fig. 6.5. A family of graphs with tradeoff between angular resolution and area of
a drawing.

6.3 Orthogonal Drawings and Their Encoding

6.3.1 Why Orthogonal Drawings?

When trying to come up with a drawing of a graph that makes it easy to
distinguish different edges, there is an alternative to using straight edges at
arbitrary angles: if edges are allowed to be drawn as a path consisting of
several line segments, it is possible to let all edges be represented by axis-
parallel paths, called an orthogonal drawing. The price we may have to pay
is the introduction of additional nodes where changes in direction occur in a
path, i.e., a number of bends of the edges.

See Figure 6.6 for an example. A formal definition of an orthogonal draw-
ing can be given as follows:

Definition 6.2. An orthogonal grid embedding Γ of a graph G = (V,E) is a
mapping into the plane, which maps vertices v ∈ V to integer grid points Γ (v)
and edges in (v, w) ∈ E to non-overlapping paths in the grid such that the
images of their endpoints Γ (v) and Γ (w) are connected. A grid embedding is
simple if its number of bends is zero. A simple embedding induces a partition
of the edge set E into a horizontal set Eh and a vertical set Ev. For simplicity,
we assume that edges in Eh are directed from left to right and edges in Ev
from bottom to top.

Another issue is the numerical resolution, i.e., the difference of the in-
volved coordinates for a drawing of given size. If we scale the final drawing
such that all coordinates are integers, this translates to trying to find a draw-
ing that uses small area.

The arrangement of edges in an orthogonal drawing is well-structured
(there are only two classes of line segments, and the segments for each indi-
vidual edge interchange between horizontal and vertical), so it is conceivable
that drawings with good visual and structural properties are possible. More-
over, there is a close relationship to problems of VLSI layout. The components

6. Orthogonal Graph Drawing 127

Fig. 6.6. An orthogonal grid embedding (left) and its simple counterpart (right).

in a chip layout correspond to the vertices, their connecting wires to the edges
of a graph. This allows it to make use of existing methods; see Sections 6.4
and 6.6. In VLSI, however, research has concentrated on very efficient meth-
ods due to the large sizes of the instances. Often, superlinear running time
is too slow for practical application, whereas in the area of graph drawing
higher running time is tolerated to get better drawings1. However, the pres-
ence of crossing edges is highly undesirable in well-structured drawings of a
graph as well as in routing wires of a chip; thus, planar orthogonal graph
drawing deals almost exclusively with plane drawings of planar graphs. Since
it is impossible to avoid overlap between edges if a graph has degree more
than 4, we start by focusing on planar graphs with maximum degree 4 –
so-called 4-planar graphs . It will be discussed later how to deal with planar
graphs of higher degree.

6.3.2 Encoding Planarity

Before dealing with heuristic and exact algorithms for orthogonal drawings
and their optimization in the following sections, we now describe a way to
encode a graph and a drawing of a graph, such that we can use these encodings
for input and output of our algorithms. A graph G = (V,E) can be simply
described as a list of vertices V , and the edges E connecting them. A plane
drawing of a planar graph contains additional topological information: if the
edges of a graph are represented by a set of curves, the plane is subdivided
into a number of open regions. These regions are called faces . For a given
embedding, the structure of these faces is characterized by the cycles of edges
surrounding them, so that it is also legitimate to speak of these cycles as faces.
1 Another difference (at least compared to problems within the topology-shape-
metrics paradigm that will be discussed in Section 6.3.4) is that the order of
wires connected to a component is not necessarily fixed – this corresponds to a
scenario with an arbitrary embedding.

128 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

It is not hard to see that faces and their adjacencies are determined by the
circular order of edges around each vertex. Thus, we can describe a particular
(topological) embedding of a planar graph by a list of its vertices V , a list
of its edges E, a list of faces F , and a list P (f) of edges for each face f . See
Figure 6.7 for an example; the corresponding list of faces and list of edges
around each face is as follows:

F = {f1, . . . , f5}
P (f1) = (e1, e3, e5, e9, e10, e4, e3, e2)
P (f2) = (e2, e1)
P (f3) = (e5, e6, e8)
P (f4) = (e6, e4, e7)
P (f5) = (e8, e7, e10, e9).

f
2

f1

f5f
3

v
4

v
7

v
6

v
5

v
3

v2

v
1

e
1

f4
3

9

7

8

6
e

4

e
2

e

e

e
5 e

e

e
10e

Fig. 6.7. A plane drawing of a graph G.

6.3.3 Encoding Orthogonality

When considering an orthogonal drawing of a planar graph, we need to pro-
vide even more information – in particular, we need to describe the bends
along an edge, and the type of turn that an edge takes at a bend. This can
be done as follows: for each edge in the edge list of a face, we describe the
sequence of bends encountered while traveling along the edge by a 0-1 string.
A “1” in the string indicates a left-hand turn taken at the bend, while a right-
hand turn is indicated by a “0”. If an edge has no bends, this is indicated by
the empty string ε. Finally, each edge is assigned an angle (as a multiple of
π
2) that is enclosed by its last line segment and the first line segment of the
next edge. See Figure 6.8 for an example with the following encoding of the
edges:

6. Orthogonal Graph Drawing 129

H(f1) = ((e1, ε, 3), (e5, 11, 1), (e4, ε, 3), (e2, 1011, 1)),
H(f2) = ((e1, ε, 1), (e6, ε, 2), (e5, 00, 1)),
H(f3) = ((e2, 0010, 1), (e4, ε, 1), (e6, ε, 1), (e3, 0, 4), (e3, 1, 1)).

v
4

f1

f
2

f
3

e
4

e
3

e
2

e
6

e
5

e
1

Fig. 6.8. An orthogonal drawing of a graph G.

This type of encoding of the orthogonal shape of a drawing has been called
an orthogonal representation of the drawing; for historical reasons, we will
use this term, even though it can be argued that in the true meaning of the
word, the orthogonal drawing itself is a representation of the graph. (Strictly
speaking, the code should be called an “encoding of the representation”.)

The orthogonal representation carries only the combinatorial and some
of the geometric information of the drawing; in particular, there is no infor-
mation about the edge lengths. As described above, there is a well-defined
orthogonal representation for each drawing of a graph, and it is not hard to
see that there are a number of necessary conditions on an orthogonal repre-
sentation:

1. There is a 4-planar graph corresponding to the lists for V and E.
2. Each edge is encoded twice, once for each of the two faces it bounds.

Both these encodings must be consistent.
3. The sum of angles along the perimeter of a face fi described by H(fi)

must be consistent with the fact that fi is a simple rectilinear polygon.
4. For each vertex v, the sum of angles between consecutive edges around

v must sum to 4.

All four of these conditions are easy to check. As it turns out, they are
also sufficient. We describe in the next section how to find an orthogonal
drawing that realizes a given orthogonal representation.

6.3.4 Getting a First Drawing

We now discuss how to assign consistent integer lengths to the edge segments
that are contained in an orthogonal representation. This task is also referred

130 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

to as the third phase in the topology-shape-metrics approach as presented
in (Di Battista et al., 1999). The first phase deals with fixing the topology
of the eventual drawing by determining a combinatorial embedding and an
outer face of the planar input graph. In the second phase the shape of the
orthogonal drawing is fixed. Its output is an orthogonal representation H as
described in Section 6.3.2. The best-known member of this class of algorithms
is the bend-minimization algorithm by Tamassia (1987). Section 6.5 describes
these flow-based algorithms. For now, we concentrate on the third task: fixing
the metrics of the drawing resulting in an orthogonal grid embedding.

We present an algorithm which first finds an orthogonal grid embedding
forH by describing a simplified variant of the approach presented in Tamassia
(1987). This grid embedding can be further improved by applying compaction
and postprocessing algorithms described in Section 6.6.

The idea of this method is to add artificial vertices and edges to H so that
it is easy to find a drawing Γ ′ for the resulting orthogonal representation
H ′. Note that the insertion of artificial objects still happens on the level
of the orthogonal representation and does not involve geometric operations.
The removal of the artificial vertices and edges leads to an orthogonal grid
embedding Γ for the original representation H . The algorithm presented in
this section runs in time O((n+ b)7/4

√
log(n+ b)) and guarantees a drawing

of O((n+ b)2) area, where b is the number of bends.
In a first step, each bend in H is replaced by a virtual vertex, resulting

in a simple orthogonal representation with n+ b vertices. Consider for every
face f in H the circular bit string S(f) that is built by traversing the edges
of f in clockwise order as follows. Depending on the angle a(e) (expressed in
multiples of π2) that an edge e forms with its succeeding edge, we add a “0” (if
a(e) = 1), a “1” (if a(e) = 3) or a “11” (if a(e) = 4) to the bit string. Angles
of 2 do not contribute to S(f), since they correspond to two collinear line
segments that do not form a bend. The resulting string describes the shape
of face f as in Figure 6.9 (a). Now the algorithm looks for occurrences of the
substring “100” in S(f), which corresponds to a rectangular “ear”. Whenever
such a string is found, the corresponding part of the face is removed and “100”
is replaced by “0” (see Figure 6.9 (b)). Clearly, this operation affects only
the shape of face f , other faces remain untouched. The procedure finds all
such substrings in time O(|S(f)|) for each face f by a circular traversal of
S(f) and stacking the encountered “1”s. The bit string of a face f in the
resulting orthogonal representation H ′ is either S(f) =”0000” – in this case
f is an internal face – or it does not contain two consecutive zeros – then we
are dealing with the external face. (See Figures 6.9 (c) and (d). The example
will be continued in Section 6.6.)

An orthogonal grid embedding for H ′ is found by assigning the same
length to opposite sides in the rectangular faces. This can be done optimally
by the following algorithm; its key step is the computation of two minimum
cost flows. Build two networks Nh and Nv-one for each direction, as in Fig-

6. Orthogonal Graph Drawing 131

(a)

(c) (d)

(b)

0

0 1

0 0

1 0

01

01

00

11

0

0 0

01

00

0 1

1 0

1 1

0 1

10

11

00

11

0 0

1
0

Fig. 6.9. (a) A sketch of an orthogonal representation H with bit strings S(f) for
each face f . (b) Substring “100” and the corresponding cut. (c) A sketch of the
dissected representation H ′. (d) Deleting the artificial objects in a drawing for H ′

yields a drawing for H .

ure 6.10. The union of Nh and Nv is the dual graph of H ′, the arcs in Nh
are directed from bottom to top, those in Nv from left to right. Each arc a
corresponds to an edge e in H ′, and the flow through a is interpreted as the
length of e. Intuitively, this implies a lower bound of one and unit cost for the
flow through a. Flow conservation ensures that opposite sides are of equal
length. The cost of the flows add up to the total edge length, and – since they
are minimized – lead to an optimal drawing for H ′. Note however, that the
artificially introduced vertices and edges have to be removed from the draw-
ing in order to get an orthogonal grid embedding for H . As Figure 6.9(d)
shows, the initial solution is not optimal for the original input.

An optimal flow can be computed in time O(n7/4
√
logn) with the algo-

rithm described in Garg and Tamassia (1996b). This corresponds to a drawing
forH ′ with minimum total edge length, width, height, and area. The networks
are similar to the ones used for optimal one-dimensional compaction, which
are introduced in Section 6.6.2. Furthermore, there is a linear-time method for

132 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

(b)(a)

Fig. 6.10. The two networks Nh and Nv serve to construct a first drawing for an
orthogonal representation.

computing a feasible flow in the networks. This method for finding a drawing
for H ′ is optimal with respect to width, height and area, but not necessarily
to total edge length. It is based on finding a topological numbering of special
directed acyclic graphs and will be explained in Section 6.6.2, because it can
also be used as a heuristic for compaction.

6.4 Heuristics

We have seen in the last two sections that there is a close connection between
orthogonal drawings of planar graphs and a certain type of combinatorial
description. Before we proceed to describe a combinatorial algorithm that
uses a network flow approach based on this characterization to optimize the
number of bends for a fixed embedding, we discuss a number of heuristic
methods that construct good layouts. A main advantage of these methods is
their fast running time: typically, it is linear. This makes them more suitable
for large problems than the network flow approach, which produces almost
quadratic running time. Furthermore, they provide easy procedures for local
improvements of a drawing, yielding worst-case bounds for the number of
bends and the area, depending on the size of the graph. A final advantage of
the heuristic approaches is the fact that some of them work on non-planar
graphs.

Typically, the methods work best on 2-connected graphs. A graph is called
2-connected if removing any vertex and its incident edges leaves a connected
graph. The 2-connected components (or blocks) of a connected graph are (a)
its maximal 2-connected subgraphs, and (b) its bridges together with their
endpoints. If removing {v1, v2} disconnects the graph we call {v1, v2} a cutting
pair of G.

6. Orthogonal Graph Drawing 133

The following result is folklore, see the textbook Sedgewick (1988) for
details:

Lemma 6.3. Testing 2-connectivity and finding all cutting pairs can be done
in linear time.

A natural approach to drawing a graph is to proceed by adding one vertex
at a time to an existing drawing. To make sure that any new vertex has the
necessary space, a special type of order is chosen:

Definition 6.4. Let G be a graph. An st-order of G is an ordering {v1, v2, . . .,
vn} of the vertices of G such that every vj (2 ≤ j ≤ n− 1) has at least one
“predecessor” vi and at least one “successor” vk that are neighbors of vk with
i < j < k. The edges from vi to its predecessors (successors) are called incom-
ing (outgoing) edges of vi. Their number is the in-degree indeg(vi) (out-degree
outdeg(vi)) of vi.

If the graph is not 2-connected, there may not be an st-order; otherwise,
the following theorem holds:

Theorem 6.5 (Lempel et al. 1967, Even and Tarjan 1976).
Let G be a 2-connected graph and s, t ∈ V . Then there exists an st-order

such that s is the first and t is the last vertex. It can be computed in O(m)
time.

6.4.1 Visibility Representations

A visibility representation (Rosenstiehl and Tarjan, 1986) Γ for a graph G
maps every vertex v of G to a horizontal segment Γ (v) (called vertex seg-
ment), and each edge (u, v) of G to a vertical segment Γ (u, v) (called edge
segment), such that for each edge (u, v), the edge segment Γ (u, v) has its
endpoints on the vertex segments Γ (u) and Γ (v), and does not intersect any
other vertex segment. A vertex segment Γ (s) is called source, if all of its
incident edges are above Γ (s). A vertex segment Γ (t) is called a sink, if all
its incident edge segments are below Γ (t). Figure 6.11 shows a visibility rep-
resentation of a graph. Visibility representations were introduced by Otten
and van Wijk (1978) and are often used as a starting point for drawing a
planar graph. The following lemma was proven independently by Rosenstiehl
and Tarjan (1986), and Tamassia and Tollis (1986):

Lemma 6.6. Let G be a 2-connected planar graph with n vertices. Then
for any two vertices s and t on the same face of G, there is a visibility
representation Γ for G such that:

(a) Γ has exactly one source, Γ (s), and exactly one sink, Γ (t).
(b) all the remaining vertex segments Γ (v), v �= s, t, have two edge segments
incident to Γ (v) at its left endpoint (one from below and one from above).

A representation with these properties can be constructed in O(n) time.

134 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

(a) (b)
Fig. 6.11. A graph G and a visibility representation for G.

6.4.2 The Algorithm by Tamassia and Tollis

The following algorithm constructs an orthogonal grid embedding as de-
scribed in Definition 6.2 for a 4-planar graph G. It is due to Tamassia and
Tollis (1989) and has linear running time; it produces drawings with at most
2.4n + 2 bends, and no edge has more than four bends. The length of each
edge is O(n), and the total area of the orthogonal grid embedding is O(n2). If
G is 2-connected, we get even better bounds: the number of bends is bounded
by 2n+ 4, and only two edges have more than two bends.

The algorithm has four phases. In the first phase, a visibility represen-
tation of the graph is constructed. In the second phase, this is transformed
into an orthogonal grid embedding. In the third phase, a number of modifi-
cations are applied to the orthogonal representation of the grid embedding in
order to reduce the number of bends. The last phase computes an orthogonal
grid embedding for the orthogonal representation. We start by presenting the
individual phases, then summarize the overall algorithm.

Visibility Representation. In Section 6.4.1 it was stated that for each pla-
nar 2-connected graph a visibility representation with one source and one sink
can be computed in linear time. For planar graphs that are not 2-connected,
it cannot be guaranteed that there exists a visibility representation with ex-
actly one source and exactly one sink. However, the number and the degree
of the sources and sinks of the visibility representation are crucial for the
quality of the drawings produced by the algorithm.

Therefore, the algorithm constructs a visibility representation of a con-
nected graph G with only one source and a low number of sinks. This is done
by decomposing the graph into 2-connected blocks that are separated by cut
vertices. For each of these blocks a visibility representation is computed ac-
cording to Lemma 6.6. A cut vertex is chosen as the source, and if possible
a cut vertex is chosen as a sink. The visibility representations of the distinct
blocks can then be merged, such that one visibility representation for the
entire graph is created. For details see Tamassia and Tollis (1989).

Lemma 6.7. Let G = (V,E) be a connected planar 4-graph. Then a visibility
representation Γ for G can be constructed in O(n) time, such that:

6. Orthogonal Graph Drawing 135

(a) Γ has exactly one source
(b) all the non-source and non-sink vertex segments Γ (v) have two edge
segments incident to Γ (v) at its left endpoint (one from below and one
from above).

Creating an Orthogonal Embedding. In the second phase, the trans-
formation of the visibility representation into an orthogonal embedding is
performed. This is done by substituting every vertex segment Γ (v) of Γ by
a structure consisting of a single vertex v and some vertical and horizontal
segments. Figure 6.12 shows the corresponding structure for every possible
shape of v. Symmetric cases are omitted. It is not hard to see that this can
be done in O(n) time, and only a constant number of bends is inserted per
edge, for a total of O(n) bends.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 6.12. Substitutions of vertex segments with structures.

Bend-Stretching Transformations. Because only one vertex at a time is
treated during the substitution process, the embedding may contain a con-
siderable number of artificial bends. During the third phase we try to remove
these bends by performing a series of bend-stretching transformations, which
are local optimization steps. There are three types of bend stretching transfor-
mations, each working on the orthogonal representation H of the embedding.
H can be obtained from the orthogonal embedding that is computed in the
second phase. A bend on an edge is called convex if it forms an angle of π2
and concave if it forms an angle of 3π

2 . The transformations are as follows –
see Figure 6.13:

Transformation T1. If an edge (u, v) has both convex and concave bends,
remove one bend of each type until the edge has only bends of one type.

Transformation T2. If all edges around a vertex have bends of the same type,
these bends can be removed.

Transformation T3. If two edges e1, e2, following each other in the clockwise
order around a vertex v, form an angle of π, and e2 has a convex bend
with respect to v, then the bend can be removed.

136 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

(T1) (T2) (T3)

Fig. 6.13. Examples of bend-stretching transformations T1, T2, and T3.

The above transformations generate a new orthogonal representation H ′

with fewer bends than H . In particular, any transformation of type T1 re-
duces the number of bends by at least 2, while transformations of type T2
and T3 reduce it by at least 1. Each transformation can be executed in con-
stant time. Since each bend-stretching transformation removes at least one
bend, and in the previous step only O(n) bends are introduced, performing
these transformations takes only time O(n).

Construction of a Grid Embedding. In the last phase, an orthogonal
grid embedding is computed from the orthogonal representation. Details are
as described in Section 6.3. Here we only note that for an orthogonal repre-
sentation with O(n) bends, the drawing can be computed in O(n) time, and
the area is O(n2).

Algorithm 17: Visibility-Grid-Embedding
Input: a 1-connected planar 4-graph G

Output: an orthogonal planar grid embedding of G

construct a visibility representation Γ of G using algorithm Visibility;

create an orthogonal embedding Ĝ of G by substituting each vertex-segment
of Γ with the appropriate structure listed in Figure 6.12;
calculate the orthogonal shape H of Ĝ;
apply T1 on every edge of H (if possible);
apply T2 on every vertex of H(if possible);
apply T3 on every vertex of H with degree ≤ 3 while possible;
use H to construct an orthogonal planar grid embedding of G;

Analysis of the Algorithm.

Lemma 6.8. If the visibility representation constructed in Step 1 of algo-
rithm Visibility Grid Embedding has one source, ti sinks, and ni non-source
vertex segments of degree i, i = 2, 3, 4, then the number of bends is at most
n3 + 2n4 + t2 + t3 + 2t4 + δ, where δ = 0, 1, 2, 4, depending on whether the
source has degree 1, 2, 3, or 4.

Proof. Let n′
4 be the number of vertices resulting from the substitutions

of Figure 6.12 (g), (h), and let n′′
4 (i) be the number of vertices resulting

from substitutions of type (i). Notice that n′
4 + n′′

4 ≤ n4 + t4. From the
substitutions of Figure 6.4.2, the number of bends after Step 2 is given by

6. Orthogonal Graph Drawing 137

(b)(a) (c)

Fig. 6.14. (a) shows the graph of Figure 6.11 (b) after Step 2 of the Algorithm
Visibility Grid Embedding, (b) after Step 6, and (c) after Step 7.

n3 + 4n′
4 + 6n′′

4 + t2 + t3 +4t4 + δ. In Step 4, transformation T1 is applied at
least once for each vertex in case of Figure 6.12 (g), (h), and at least twice for
each vertex in the case of Figure 6.12 (i). This means that in Step 4 at least
2n′

4 + 4n′′
4 bends are eliminated. Thus, the above equation yields a number

of bends of n3 + 2n′
4 + 2n′′

4 + t2 + t3 + 4t4 + δ ≤ n3 + 2n4 + t2 + t3 + 2t4 + δ.
During steps 5 and 6, this number may only improve.

Theorem 6.9. Let G be a connected 4-graph with n vertices. Then algorithm
Visibility Grid Embedding produces a grid embedding of G with at most 2n+4
bends if G is 2-connected, and 2.4n+2 bends if G is connected. The running
time is O(n).

Sketch of Proof. For the case of a 2-connected graph, the visibility represen-
tation computed by algorithm Visibility has only one sink, and the bound
follows immediately from Lemma 6.8. For other connected graphs, it can be
shown that the bound t3 + 2t4 ≤ m/5 holds, unless the graphs belong to a
certain family of graphs. With the help of this bound, Lemma 6.8 implies
the claim. For the exceptions to this bound it is possible to use their special
structure for showing that algorithm Visibility Grid Embedding needs not
more than 2.4n + 2 bends to draw them. The linear running time follows
directly from the above discussion. See Tamassia and Tollis (1989) for the
complete proof.

6.4.3 The Algorithm by Biedl and Kant

The algorithm by Tamassia and Tollis relies on the planarity of the graph. It
is natural to investigate heuristics that also work for non-planar graphs. Biedl
and Kant (1994) have designed an algorithm for constructing an orthogonal
grid-embedding of a 2-connected 4-graph G. It starts by computing an st-
order of the input graph (as defined in Definition 6.4), and then embeds the
vertices consecutively in the grid, according to their order in the st-order. For
each vertex a new row is added to the layout. For each uncompleted edge,

138 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

i.e., an edge with exactly one endpoint embedded in the grid, a column on
the left or right boundary of the existing layout is added.

Fig. 6.15. Embedding of the first two vertices and the layout at a later stage.

Algorithm 18: Grid-Embedding
Input: a 2-connected 4-graph G

Output: an orthogonal grid-embedding of G

obtain an st-order {v1, v2, . . . , vn} for G;
place vertices v1 and v2 on the grid and connect them;
allocate one column in the grid for each edge of v1 and v2, except for the
edge connecting v1 and v2;
for 3 ≤ i ≤ n do

place vi on a new row;
place vi on a column that is allocated to an incoming edge of vi; if pos-
sible, do not take the leftmost or rightmost column;
draw all its incoming edges using the columns allocated to it;
allocate columns to the outgoing edges of vi on the left or right bound-
ary.

Lemma 6.10. The grid size is at most (m− n+ 1)× n.

Proof. Observe that the height of the constructed layout is one less than the
number of rows, and the width is one less than the number of columns. In
order to embed vertices v1 and v2, two rows are used as shown in Figure 6.15.
Every following vertex increases the height by one, the last vertex by at most
two. Thus, the height is bounded by n. When embedding v1 and v2, we use
a width of outdeg(v1) + outdeg(v2) − 2. Every following vertex v increases
the width by outdeg(v)− 1, except for the last vertex, which increases it by
0 = outdeg(vn)−1+1. Thus, the width is

∑
v∈V (outdeg(v)−1)+1 = m−n+1.

Lemma 6.11. At most one edge has three bends, all other edges have at most
two bends. Overall, there are at most 2m− 2n+ 4 bends in the drawing.

Proof. Every edge (vi, vj), i < j, bends at most once when vi is embed-
ded. Completing the edge needs at most one additional bend if vj �= vn.

6. Orthogonal Graph Drawing 139

Embedding vn bends one edge twice, all others at most once, thus only
this edge can have three bends. With the embedding of v /∈ {v1, v2, vn},
there are indeg(v) − 1 and outdeg(v) − 1 new bends, hence deg(v) − 2 new
bends. Embedding v1 and v2 gives outdeg(v1) + outdeg(v2) − 1 bends, and
vn requires indeg(vn) bends if indeg(vn) = 4, and indeg(vn) − 1 bends oth-
erwise. As indeg(v0) = 0, indeg(v1) = 1, and outdeg(vn) = 0, we have∑
v∈V (deg(v)− 2) + 4 = 2m− 2n+ 4 bends if deg(vn) = 4 and 2m− 2n+ 3

bends otherwise.

In (Biedl and Kant, 1994) it is shown that edges with three bends can be
avoided unless G is the octahedron, i.e., the unique planar 4-regular graph
with six vertices. The area bound proven in Lemma 6.10 can be improved
even further. The authors show that if G has at most one vertex of degree
two, one column and two bends can be saved. This is done by using a special
st-order. For m ≥ 2n − 1, there is at most one vertex of degree two. So we
have a width of at most n if m = 2n, and a height of n − 1 if m = 2n− 1.
If in addition G is not 4-regular, a row can be saved by choosing a vertex of
degree less than four as vn. This leads to the following theorem:

Theorem 6.12. Let G = (V,E) be a 2-connected 4-graph. Then G can be
embedded in an n× n grid with at most 2n+ 2 bends. If G is not 4-regular,
an (n− 1)× (n− 1) grid and 2n− 1 bends suffice. Each edge is bent at most
twice, unless G is the octahedron.

There is also a variant of the algorithm that produces planar orthogonal
drawings of planar graphs with the same bounds on area and number of
bends. The above algorithm works only for 2-connected graphs, but it can be
extended to connected graphs as follows. Break the graph into its blocks and
compute the block cut vertex tree of G. The block cut vertex tree of a graph G
has a B-node for each block of G and a C-node for each cut vertex of G. Edges
in the block cut vertex tree connect each B-node to the C-nodes associated
with the cut vertices of the block. Now the graph is drawn inductively: in the
base case, execute the algorithm for a 2-connected graph. In the induction
step, consider a subtree of the block cut vertex tree of G and split the subtree
into a block G0 (i.e., the root of the subtree) and the connected subgraphs
G1, G2, . . . , Gq. By induction hypothesis, each Gi already has a drawing.
Hence, the process of drawing G reduces to drawing G0 and merging each Gi
appropriately. The merging process can be done such that the area bounds
for the 2-connected case hold also for connected graphs. For details see Biedl
and Kant (1994).

6.4.4 Pairing Technique

The algorithm in the previous section made generous use of new columns
and rows for additional vertices and edges. The following algorithm tries to
reuse as many rows and columns as possible for placing new vertices. In this

140 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

way, a better area bound is achieved. The algorithm requires 2-connectivity
of the input graph. Its authors Papakostas and Tollis (1997d) show that the
algorithm can be extended to the simply connected case in a way similar
to the algorithm by Biedl and Kant, though, unlike the latter, it does not
necessarily produce planar drawings of planar graphs.

The central idea of the algorithm is to form pairs of vertices. There are
two different kinds of pairs:

Row pairs. The two vertices of a pair are placed in a way that reuses a row
in the final drawing of G, i.e., at least two vertices are placed in the same
row.

Column pairs. The two vertices of a pair are placed in a way that reuses a
column in the final drawing of G, i.e., at least two vertices are placed in
the same column.

In order to obtain the pairs, an st-order of G is computed. As a next step,
each vertex is assigned a type. A vertex with a incoming edges and b outgoing
edges is called a vertex of type a-b, or an a-b vertex (1 ≤ a, b ≤ 4). If there
are 1-1 vertices whose outgoing edges are entering a 1-2 or a 1-3 vertex, we
remove these 1-1 vertices and create a new edge between its predecessor and
its successor. These removed vertices can be inserted in the drawing at the
end of the algorithm without affecting the bounds for area and the number
of bends. The graph obtained by removing these vertices is called the reduced
graph G′, and the number of its vertices is denoted by n′. For forming the
pairs, the vertices are considered in reverse order of the st-order. If a vertex
of type 1-2 or 1-3 is encountered, it is paired with its immediate predecessor
in the st-order. If a vertex of type 2-2 is encountered, the vertex is paired
with the next vertex in the st-order that is not a 1-1, 2-1, or 3-1 vertex, or
a predecessor of the 2-2 vertex. After this step, all 1-2, 1-3, and 2-2 vertices
vi for 3 ≤ i ≤ n are paired. Paired vertices are called assigned, vertices not
belonging to a pair are unassigned. After the pairs are computed, the vertices
are embedded into the grid according to the st-order. Consider a vertex v
that has not yet been embedded. If v is not paired, it is embedded in the grid
like in the algorithm by Biedl and Kant. If v is paired, it is embedded together
with the second vertex in the pair either as a column pair or as a row pair.
The concrete embedding of the pairs is rather technical, for a description see
Papakostas and Tollis (1997d). Algorithm 19 summarizes the above steps.

An analysis of the algorithm shows that only for unpaired vertices of type
4-0, 0-4, and 3-1 both a new column and a new row must be allocated when
these vertices are embedded. For vertices that do not fulfill these conditions
either a new row or a new column must be added to the drawing, but not
both. By solving a system of linear equations it can be shown that there can
be at most �n+2

2 � unpaired vertices of type 4-0, 0-4, and 3-1. This leads us
to the following theorem:

6. Orthogonal Graph Drawing 141

Algorithm 19: Pair-Orthogonal
Input: a 2-connected 4-graph G

Output: an orthogonal grid drawing of G

compute an st-order of G;
construct the reduced graph G′ from G;
obtain a pairing for G′;
place v1 and v2 on the grid;
i := 3;
while i < n′ do

if vi has not already been placed then
if vertex vi is unassigned then

place vertex vi in a new row;
connect vi with the incoming edges;
allocate columns for the outgoing edges of vi;

else
place vertex vi along with the other vertex in the pair, following
the placement rules described above for the specific type of pair;

i := i+ 1;

Theorem 6.13. Let G be a 2-connected 4-graph with n vertices. Algorithm
Pair-Orthogonal constructs an orthogonal grid drawing of G in O(n) time
with area 0.77n2. The total number of bends of the drawing is at most 2n+4,
and no edge has more than two bends.

Proof. Let k1 and k2 denote the number of vertices that do not allocate a new
row or column when they are embedded. It follows from our above discussion
that there are at most �n−2

2 � vertices contributing neither to k1 nor to k2.
Thus, k1 + k2 ≥ �n−2

4 �. The area is maximized when k1 = k2 = n−2
8 . The

claim is now verified by simple calculation. The analysis of bend costs is
similar to Lemma 6.11; in addition, the construction allows it to avoid edges
with three bends. Using the data structure by Dietz and Sleator (1987), the
algorithm can be implemented in O(n) time.

6.4.5 Algorithms for Drawing High-Degree Graphs

So far we have only considered graphs with maximum degree 4, i.e., 4-graphs.
When considering graphs of higher degree, we cannot avoid overlap of edges
if we continue to draw vertices as points, so it makes sense to draw vertices
as boxes with a sufficient number of grid lines for adjacent edges. In order to
use the existing machinery, a straightforward approach is to split high-degree
vertices into chains or cycles of vertices before applying an algorithm for 4-
graphs like the algorithm by Tamassia (1987) or the algorithm by Biedl and
Kant (1994). From this layout, the boxes for the vertices are created. The
GIOTTO system (Tamassia et al., 1988) and the quasi-orthogonal drawing al-
gorithm by Klau and Mutzel (1998) follow this approach. Unfortunately, this

142 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

concept allows no control over the box size of the vertices, so the generated
layouts may contain vertices of unrestricted size. Other examples are algo-
rithms for visibility representations (Rosenstiehl and Tarjan, 1986; Tamassia
and Tollis, 1986).

A different approach is the Kandinsky framework, where each vertex is
represented by a square. As shown in Figure 6.21, these squares are aligned
in a square grid, and edges are routed along an edge grid. Section 6.5.4 will
sketch this approach; it extends the network flow technique by Tamassia
(1987) for 4-planar graphs that is described in Sections 6.5.2 and 6.5.3.

Papakostas and Tollis (1997c) present an algorithm where the size of any
box for a vertex is less than twice the degree of the vertex. Their approach
is a generalization of the pairing algorithm presented in the previous section,
with boxes instead of vertices being placed on the grid. Outgoing edges leave
a box on the top side, incoming edges enter a box on the left or right side.
No edges are leaving or entering at the bottom side. Each edge has exactly
one bend and the area bound for the algorithm is m× m

2 .
In the context of this section, we concentrate on a general framework for

generating orthogonal drawings for graphs of high degree that was presented
in Biedl et al. (1997a) and Biedl (1997). This three-phase method distin-
guishes the phases vertex placement, edge routing, and port assignment; in
addition, there are preprocessing and postprocessing steps. In the preprocess-
ing step, the graph is transformed into a normalized graph, i.e., a connected
graph without reflex edges and without vertices of degree one. If the input
graph is not connected, the connected components are drawn separately. In
the first phase, vertices are represented as points and are placed on grid po-
sitions. In the second phase, edges are routed between vertices. The drawing
obtained after these two phases is called a sketch; at this stage, it is not a
valid drawing because the edges are routed with overlaps. From this sketch a
drawing is produced by adding rows and columns to the drawing, such that
vertices are enlarged to boxes. Furthermore, each edge is assigned a port
at its vertices such that there is no intersection between any two edges on
the same side. Since reflex edges and vertices of degree one were removed
in the preprocessing step, they are reinserted in a postprocessing step. As a
last step, drawings of the connected components are combined. It should be
noted that this framework allows it to handle various kinds of constraints,
like constraints on the position of vertices.

An example for this approach is the following algorithm for directed
graphs: Place the n vertices of the input graph in general position on an
n × n grid, i.e., no two vertices are placed on the same grid line. Edges are
routed such that they always leave a vertex on the left or right side, and that
they always enter a vertex at its top or bottom. Since the vertices are in gen-
eral position, exactly one bend is needed to draw any edge. So if e = (vi, vj)
is an edge directed from vi to vj , then we place a temporary bend in the
row of vi and the column of vj . Next, generate the boxes for the vertices and

6. Orthogonal Graph Drawing 143

consider a row r. This row contains one vertex v, and some number of bends.
Let l(v) denote the number of edges emerging from the left side of v, and
r(v) the number of edges emerging from the right side of v. Analogously, let
b(v) and t(v) denote the number of edges leaving the bottom or top side of v.
We add max{r(v), l(v), 1} − 1 bends above the row of v. We distribute these
bends among these rows such that no two edges on one side cross as shown
in Figure 6.16. It is clear that the drawings generated by this algorithm have
height and width at most m, leading to an area bound of m×m.

Fig. 6.16. An example for port assignment.

The worst case for the above area bound arises when all edges of the
given graph leave the vertex on the same side. The algorithm by Biedl and
Kaufmann (1997) achieves a better area bound by balancing the edges across
the sides of a vertex box. This can be done by an appropriate placement in
the initial phase of placing vertices. For a description, we use the following
notation:

Definition 6.14. Let G be a directed graph and let {v1, . . . , vn} be an arbi-
trary vertex order. An edge directed from vi to vj is called good if i < j and
bad otherwise. A predecessor (successor) vi of vj is good if the edge connect-
ing vi and vj is good. We denote by indeggood(vj) and indegbad(vj) the num-
ber of good and bad incoming edges of vj. Similarly, we define outdeggood(vj)
and outdegbad(vj).

Now the rows for the vertices are computed in ascending vertex order. If
a vertex v has no good predecessor, then we create a new row at an arbitrary
place. Otherwise, we add a row close to the median of the good predecessor
rows. Vertex v is placed in this new row. Similarly, a column for each vertex
is computed, proceeding in reverse order, and considering good successors
instead of good predecessors.

The following lemma shows how vertex order and edge orientation affect
the number of edges connected to each side.

Lemma 6.15. For each vertex, we have the bounds �outdeg(v)/2� ≤ r(v),
l(v) ≤ �outdeggood(v)/2� + outdegbad(v) and �indeg(v)/2� ≤ t(v), b(v) ≤
�indeggood(v)/2�+ indegbad(v).

144 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

Proof. Consider b(v). By the placement of bends, any bend at the top of v
belongs to an incoming edge of v. By the placement of vertices, at most half
(rounded up) and at least half (rounded down) of the good predecessors are
below v. Nothing can be said about the place of the bad predecessors. The
result follows for b(v). The proofs for the other three sides are similar.

It follows from the above lemma that the number of bad predecessors and
successors of a vertex v should be minimized in order to reduce the size of
a vertex box. The next lemma shows that there always exists a vertex order
and an edge orientation such that there is a low number of bad predecessors
and successors.

Definition 6.16. A vertex order together with an edge orientation is called
polar-free almost acyclic, if
(a) indeg(v) ≥ 1 and outdeg(v) ≥ 1 for all v ∈ V , and
(b) indegbad(v) ≤ 1, if indeggood(v) ≥ 0 then indegbad(v) = 0, and
(c) outdegbad(v) ≤ 1, if outdeggood(v) ≥ 0 then outdegbad(v) = 0.

Lemma 6.17. Let G be a simple graph without vertices of degree zero or
one. Then G has a polar-free almost acyclic order and orientation. It can be
found in O(m) time.

For a proof of this lemma see Biedl and Kaufmann (1997).

4 5 6321

1

3

4

6

5

2

5 4 2 1 3 6

Fig. 6.17. Example of a run of the algorithm with polar-free almost acyclic order
and orientation of the input graph.

Theorem 6.18 (Biedl and Kaufmann 1997). Let G be a simple and
connected graph. Then G has an orthogonal drawing in an n+m

2 × n+m
2 -grid

with one bend per edge. The drawing can be found in O(m) time.

6. Orthogonal Graph Drawing 145

Proof. We only show the claim for the height, the claim for the width is simi-
lar. Suppose that G has no vertices of degree one. After the vertex placement,
we have n rows. For each vertex v, we add max{r(v), l(v), 1}− 1 rows. Thus,
the height is

∑
v∈V max{1, r(v), l(v)}. By Lemma 6.15 and the conditions on

the polar-free almost acyclic order, we have r(v), l(v) ≤ � outdeg(v)2 �. Thus,
∑
v∈V max{1, r(v), l(v)} ≤∑

v∈V
outdeg(v)

2 + 1 = m+n
2 .

It remains to be shown that vertices of degree one can be inserted in the
drawing without violating the area bound. Consider a vertex v of degree 1 in
the postprocessing phase. First, one row is added above the top side of the
neighbor vertex of v. Then a new column is generated, such that the width of
the neighbor vertex increases by one and no adjacent edges of the neighbor
vertex cross this new column. Then v is placed in the new row and column.
No bend is needed to connect this vertex to its neighbor.

The vertex order and edge orientation can be found inO(m) time as shown
in Lemma 6.17. By using the data structure of Dietz and Sleator (1987), the
algorithm can be implemented in O(m) time. Thus, the overall complexity
of the algorithm is O(m).

An interactive version of the algorithm can be found in Biedl and Kauf-
mann (1997). A version of this algorithm that considers constraints can be
found in Wiese and Kaufmann (1998).

6.4.6 A Divide-and-Conquer Approach

Now we describe a divide-and-conquer approach that originates from VLSI
design. We already noted in Section 6.3 that there is a close relationship
between graph drawing and VLSI design. While the first considers vertices
and edges, the latter deals with transistors and wires. Clearly, there is a
correspondence between the respective objects, but it is not without any
problems, as wires and transistors need a certain amount of area. Thus, an
important parameter for VLSI design is the minimum feature size λ, which
is the width of the narrowest wire that can be manufactured. The smallest
transistor that can be manufactured is a square with edge length λ and area
λ2. Further difficulties may arise from the fact that a general graph may
have arbitrary degree, whereas a transistor can only have a limited number
of connections. We resolve these difficulties by restricting us to graphs with
vertices of a degree bounded by a constant, and by further assuming that
vertices occupy only a constant area of silicon.

The VLSI model used here is similar to that of Thompson (1980), where
wires have unit width and only two wires may cross at a point. Vertices are
represented by little boxes that are placed on a rectangular grid, so that each
box lies within a grid square. Edges run horizontally and vertically, one per
grid square, except that an edge running horizontally may cross one running
vertically. See Figure 6.18 for an example.

146 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

Layouts in this model are sliceable. That is, a horizontal or vertical line
can be used to bisect the layout, the pieces can be moved apart, and the
severed wires can be reconnected to realize the original graph connections.
Slicing can be used to introduce a new edge in an existing layout as follows:
perform two vertical and two horizontal cuts through the layout to separate
the vertices. Separate the pieces by a grid unit, and reconnect the severed
edges across the gaps in order to connect the vertices. If the length of the
original layout was L and the width W , the new layout has length at most
L+ 2 and width at most W + 2.

Fig. 6.18. An example for slicing and edge routing.

This property can be exploited to generate layouts for graphs in a divide-
and-conquer approach. First, the graph is divided into unconnected compo-
nents by removing edges. Then these components are laid out separately and
the removed edges are inserted by slicing. Note that there may be crossings
inserted in the slicing process, which implies that the produced drawing may
be non-planar.

The quality of the layout produced by this approach depends on how
many edges have to be removed to obtain unconnected components that
differ in size by only a constant. In the worst case we have to remove O(n)
edges to obtain two unconnected components with this property, but there
exist classes of graphs that can be separated by removing fewer edges. These
classes of graphs are characterized by separator theorems . It is crucial that
the classes are closed under the subgraph relation, i.e., each subgraph of a
graph in such a class is again in the class. An example is the class of planar
graphs, as it is closed under taking subgraphs. On the other hand, the class
of trees is not closed under the subgraph relation.

Definition 6.19 (f(n)-separator). Let S be a class of graphs that is closed
under the subgraph relation. An f(n)-separator Theorem for S is a theorem
of the following form: There exist constants αs and cs where 0 < αs ≤ 1

2 and
cs > 0, such that if G is a graph with n vertices in S, then by removing at
most csf(n) edges, G can be partitioned into disjoint subgraphs G1 and G2

6. Orthogonal Graph Drawing 147

having αn and (1−α)n vertices respectively, where αs ≤ α ≤ 1−αs. The set
of removed edges is called the cut set of the bisection.

Lipton and Tarjan (1970) showed that any planar graph with n vertices
can be divided into two subgraphs of approximately the same size by removing
O(
√
n) vertices in O(n) time. When removing k nodes to split a graph with

maximum degree d, at most d ·k edges are removed from it. Since we are only
considering graphs with bounded degree, and planar graphs are closed under
the subgraph relation, this means that planar graphs have a

√
n-separator

theorem. It is easy to see that forests have a 1-separator, see Valiant (1981)
for a proof.

The analysis of the algorithm is quite complicated and results in solving
recurrence equations. Leiserson (1980) and Valiant (1981) showed indepen-
dently that graphs belonging to a graph class with a

√
n-separator can be

drawn using O(n log2 n) area and that graphs belonging to a graph class with
a 1-separator can be drawn using O(n) area.

Corollary 6.20. Let G be a planar graph with n vertices and bounded degree.
There is a layout of G, such that the area occupied by G is O(n log2 n).

For trees with maximum degree 4 one can use a method that is different
from slicing for edge routing, which avoids crossings, but guarantees the same
area bound (Valiant, 1981).

Corollary 6.21. Let T be a tree with n vertices and bounded degree. There
is a layout of T , such that the area occupied by T is O(n). If T has maximum
degree less than or equal to 4, there exists a planar layout with the same area
bound.

6.5 Flow-Based Methods

6.5.1 Drawing Graphs with Few Bends

We have seen in the preceding sections that over the years, orthogonal draw-
ings of graphs have received a large amount of attention: there have been
many different approaches to finding such drawings with desirable proper-
ties, like a small number of bends in the rectilinear paths representing edges.
Unfortunately, one of the results by Formann et al. (1990) shows that it is
NP-complete to decide whether a planar graph with maximum degree 4 (a
“4-planar graph”) has an orthogonal drawing without any bends. The crux
of the reduction is the fact that finding the right order of edges around each
vertex in a drawing is difficult.

This difficulty arises when we are only given the information provided
by vertices and edges, but have to find an optimal embedding – as in the
hardness proof by Formann et al. It should be noted that for the special

148 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

case of 3-planar graphs, it was shown by Di Battista et al. (1998a) that it is
possible to optimize the number of bends in a drawing in polynomial time.
This implies that it is the existence of degree 4 vertices in a graph that makes
the problem difficult. As it was shown by Didimo and Liotta (1998), there
are algorithms with polynomial complexity if the number of these vertices is
bounded; the running time is exponential in the number of degree 4 vertices.

For many graphs that need to be drawn, the embedding is fixed, so the
NP-hardness result does not apply. In fact, it was shown by Tamassia (1987)
that for a fixed embedding of a 4-planar graph, there is a nice combinatorial
algorithm that computes a drawing with the smallest possible number of
bends. We spend the rest of this section describing the idea of Tamassia’s
algorithm, and sketch some implications and extensions. For simplicity of
notation, we do not distinguish between combinatorial objects (e.g., edges in
a graph) and the geometric objects representing them (e.g., edge segments in
a drawing).

6.5.2 A Network for Angles

Suppose we are given a planar graph G = (V,E), and a fixed embedding of
G, described by a clockwise order 〈e1, . . . , ed(v)〉 of edges around any vertex
v ∈ V . Let F be the set of faces in this fixed embedding, with f0 being the
exterior face. In any orthogonal drawing of G, the angles φ(e1, e2) between
adjacent edge segments e1 and e2 are multiples of π2 . We use the notation
ψ(e1, e2) = 2φ(e1, e2)/π, write E(v) for the (ordered) set of edge segments
adjacent to a vertex v ∈ V , and Ψ(f) for the set of angles in a face f . Then
we can write the following conditions on these angles:

∑

ei∈E(v)

ψ(ei, ei+1) = 4 for all v ∈ V. (6.4)

∑

p(ei,ei+1)∈Ψ(f)

ψ(ei, ei+1) = 2|Ψ(f)| − 4 for all f ∈ F \ {f0}. (6.5)

∑

p(ei,ei+1)∈Ψ(f0)

ψ(ei, ei+1) = 2|Ψ(f0)|+ 4. (6.6)

ψ(ei, ei+1) ≥ 1. (6.7)

Note the correspondence of these conditions to the linear relaxation de-
scribed in Section 6.2.

Each angle pi occurs exactly twice in this system of conditions, once at
a vertex or bend in an edge, and once as an angle of a face. If we think of
the size of these angles as amount of flow of some entity, we can introduce a
network as follows:

6. Orthogonal Graph Drawing 149

1. There is a “source” node nv for each vertex v ∈ V .
2. There is a “sink” node nf for each face f ∈ F .
3. There is an arc av,f from node nv to node nf if vertex v is incident to

face f .
4. There is a source s, connected to all nodes nv, and a sink t, connected

from all nodes nf .
5. For any two adjacent faces f1, f2 ∈ F , there are two arcs af1,f2 and af2,f1 .

Flow among these arcs has the following significance:
The sink node allocates angles to the vertices; as described, any vertex has

a total sum of angles summing up to 4, so we fix the flow xs,v to this amount.
A flow of xi ≥ 1 units on arc av,f indicates that the angle pi incident to vertex
v and face f has size xi. By requiring flow conservation at each node nv, we
make sure that condition (6.4) is valid. The lower bound (6.7) guarantees
that each angle is positive. An example is shown in Figure 6.19.

v
1

f
1

1

2

2

4

1

v v

v
4

2 3

f

f
2

0

1

4

2

2

2

11

12 t

3

1
4

1

1

s

3

1 1

4

Fig. 6.19. An orthogonal drawing of a graph (top); flows in the corresponding net-
work, with the amount of flow for each arc indicated by numbers and arc thickness
(bottom). At the bottom, original edges are grey, and only arcs with positive flow
are shown.

Furthermore, a flow of xi units on arc av,f indicates that the angle pi
incident to vertex v and face f has size xi. A bend in an edge between two
faces f1 and f2 creates a “reflex” angle of 3 on one side, and a “convex” angle
of 1 on the other. In conditions (6.5) and (6.6), any angle in P (f) contributes
an angle of 2 to the face balance. The difference is accounted for by a flow
of one unit from the face with the reflex angle to the face with the convex
angle. This leaves a total amount of 2|V (f)| − 4 for the angles at the set of

150 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

vertices V (f) incident to faces f ∈ F \ {f0}, and 2|V (f0)| − 4 for the set of
angles V (f0) incident to the exterior face f0. By requiring this flow on the
arcs afi,t, and requiring flow conservation, conditions (6.5) and (6.6) are kept
valid.

In addition to the above nodes and arcs, the following capacities and costs
are defined:

1. Any arc av,f from node nv to node nf gets capacity 4, and cost 0.
2. Any arcs af1,f2 gets unbounded capacity, and cost 1 per unit of flow.

These capacities arise from the fact that no angle is larger than 4, but any
edge can have an unbounded number of bends. Since our objective function
is the total number of bends, and any unit of flow in an arc af1,f2 corresponds
to one bend, the cost function is chosen this way.

6.5.3 Optimal Flow in the Network and Implications

It is clear from our above discussion that any feasible drawing of G corre-
sponds to a feasible flow in the network. Furthermore, if there is a feasible
flow, the integrality of the arc capacities implies that there is a feasible solu-
tion where the flow on each arc is integral. Using the methods described in
Section 6.3, it is straightforward to derive a feasible orthogonal representa-
tion for this flow. We have shown in Section 6.3 that any feasible orthogonal
representation can be used to construct a feasible drawing in linear time.
This leaves it to find a minimum cost feasible flow in the network, a classical
problem of combinatorial optimization. See the book by Ahuja et al. (1993)
for an overview over the basic algorithmic approaches. We summarize:

Theorem 6.22 (Tamassia 1987). For a fixed embedding of a planar graph
G with n vertices, an orthogonal drawing with a minimum number of bends
can be found in time that is required for finding a minimum cost flow on a
network with O(n) arcs and O(n) vertices.

In 1987, the resulting complexity was O(n2 logn). Currently, the best
running time is O(n

7
4
√
logn), using an improved network flow algorithm by

Garg and Tamassia (1997).
There are a number of consequences and extensions. Any modification of

a feasible flow that leads to a flow of reduced cost can be interpreted as a
local improvement of a drawing. See Figure 6.20 for a number of examples,
where the improvement of the flow is performed by identifying a cycle of
negative cost in a reduced cost network. (Considering these types of local
improvements in flow networks is a standard approach.) Any unit of flow
along an arc in a negative cycle implies that we should increase an angle by
a single multiple of π2 at the expense of another. In the figure, such flow is
indicated by the places where the cycle crosses an edge, a vertex, or a bend
in the drawing. Performing these changes along the full cycle reduces the

6. Orthogonal Graph Drawing 151

total number of bends along the encountered places, while all parts inside
and outside of the cycle keep the same angles. As shown in the figure, this
corresponds to a “rotation” of the inside against the outside.

2
3

4

4

1

3

1

2

21

2

1

Fig. 6.20. Four examples: orthogonal drawings with an improving cycle in the
corresponding flow (left); improved drawings (right).

Furthermore, it is straightforward to extend the ideas of Tamassia to flow
networks for other types of grids. One example is the treatment of drawings
in a hexagonal grid, where angles are multiples of π3 . However, these type of
drawings allow angles of size π

3 or 2π
3 at a bend; in order to use the network

flow approach, angles of the first type have to be considered to carry twice
the cost of angles of the latter type. Another issue is the question of finding
a feasible drawing for a given flow (treated in Section 6.3 for the orthogonal
case), which is unresolved, as the number of degrees of freedom in a hexagonal
grid is different from the geometric dimension. See the paper by Tamassia
(1987).

152 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

6.5.4 Kandinsky

If we need to draw planar graphs with maximum degree beyond 4, drawing
vertices as points must create overlap, as the degree of a vertex exceeds the
number of different orthogonal directions. As we described in Section 6.4.5,
one possible remedy is to draw nodes not as points, but as boxes. A variant
that allows it to make use of flow optimization techniques is given by the
Kandinsky model, which was first introduced by Fößmeier and Kaufmann
(1995). Here, all vertices are given as identical k × k squares, with the size k
determined appropriately. These squares are aligned on a square grid of size
(2k− 1)× (2k− 1), and edges are routed as axis-parallel paths along the grid
lines running through boxes. See Figure 6.21 for an illustration.

}
k}

k}
k-1

Fig. 6.21. The basic layout of vertices and edges in the Kandinsky model.

Obviously, there are a number of technical issues that have to be taken
care of, among them the choice of grid size, and more generally compaction
methods that are modified from the steps described in Section 6.3. Details
can be found in the original paper by (Fößmeier and Kaufmann, 1995), and
in the thesis (Fößmeier, 1997b). Here we concentrate on the modifications of
the flow network that have to be performed.

The key modification of the flow network for bend minimization arises
from the fact that for a vertex of degree larger than four, there have to be
edges leaving in the same direction. Clearly, neighboring edges of this type
enclose an interior angle of 0; for the network described above, only positive
angles are feasible. This can be fixed by allowing a flow of -1 to represent a
zero angle, which can be interpreted as a flow in the opposite direction.

While this fix takes care of the angles, it creates another problem: since
these flows do not incur any cost, it is possible to shift flow until the overall
cost is zero. Thus, a minimum cost flow does not correspond to a feasible
drawing.

However, if we exclude parallel edges (which can be done in a prepro-
cessing step), any pair of edges enclosing an angle of 0 at one vertex must
connect this vertex to two different vertices. This means that at some point,
the two edges cannot continue to run in parallel. Because of the underlying

6. Orthogonal Graph Drawing 153

grid in the Kandinsky model, this can only occur when one of the two edges
bends. Thus, an angle of 0 forces a bend in one of the enclosing edges. We
can charge this forced bend for the zero angle to the vertex – see Figure 6.22.
If f is the face with the zero angle at vertex v, with neighboring faces g and
h, then the forced bend can be interpreted as a unit of flow from g or h to v,
at a cost of 1.

f

e

e

g

h
2

1

v

Fig. 6.22. Auxiliary arcs at a vertex.

After this modification, there are new issues that need to be taken care
of: we only want to charge the cost for a zero angle once, and if we charge
the arc from g to v, we must not charge the arc from h to v. This can be
resolved by using the modified network for the flow between v, f , g, and h as
shown in Figure 6.23, using additional edges with cost 2c+ 1 and −c. (Note
that for clarity in Figure 6.23, the reference to vertex v in the labeling of
the auxiliary nodes H is omitted.) In particular, the arc from a face f to an
incident vertex v with edges ei and ej is represented by a path formed by the
following arcs:

– Arcs with capacity 1 and cost 2c + 1 from f to an auxiliary node Hv,fg
i

and Hv,fh
j . Here, g and h are the faces separated from f by ei and ej .

– Arcs with capacity 1 and cost −c from Hv,fg
i to Hv,gf

i , and vice versa.
– Arcs with capacity 1 and cost 0 from Hv,fg

i to an auxiliary node Hv
g .

– Arcs with capacity 1 and cost 0 from Hv
g if v lies on the boundary of g.

This introduces cycles with negative cost into the network, while a flow
that is feasible for a drawing must be decomposable into partial flows from s
to t. Thus, we are no longer dealing with a classical minimum cost flow prob-
lem. However, using minimum cost flow algorithms based on augmentations
along shortest paths from s to t still yields the desired result that an optimal
flow corresponds to a feasible drawing with a minimum number of bends.

6.5.5 Constraints and Extensions

There are many algorithms that arise from the basic ideas described in the
previous section. Some of them are able to consider a variety of constraints
by using integer programming methods. See (Eiglsperger et al., 2000) for a
description.

154 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

gH
h

H
2

f

H

hg gh
3

H Hfh
2Hgf

1
H

fg
31 H

g

g h
hf

f
2e1e

2e

-c -c

h

H
f

-c

2c+1

-c

-c

2c+1

2c+1
2c+1

2c+1
2c+1

-c

v

v

Fig. 6.23. The neighborhood of a graph (left); the auxiliary nodes and arcs in the
flow network (right).

There are other graph drawing problems where the objective is closely
related to what we described in the previous sections, but may yet have some
differences. We give a few pointers to and descriptions of these issues.

While flow models minimize the total number of bends, it may very well be
that the objective is to minimize the maximum number of bends in any edge.
As Fößmeier et al. (1996) demonstrated, it is possible to construct a drawing
of a planar graph in the Kandinsky-model, such that no edge has more than
one bend. This allows it to minimize the total number of bends under this
restriction: the constraint can be enforced by imposing an upper limit of 1
on the capacities of the face-to-face arcs in the flow network. Similarly, other
upper bounds on the number of bends for individual edges can be handled.

There have been efforts to use flow models for bend minimization if the
embedding is not fixed. Clearly, serious difficulties are to be expected, as we
pointed out at the beginning of this section: since the problem for a non-
fixed embedding is NP-hard, such approaches can only be expected to lead
to heuristics, or we may have to accept a worst-case running time that is not
polynomial. As we already mentioned above, there is an algorithm by Didimo
and Liotta (1998) for finding a drawing with a minimum number of bends
for non-fixed embedding that is only exponential in the number of degree
four nodes. Extending earlier work by Bertolazzi et al. (1997), the algorithm
proceeds by a branch-and-bound search. Branching steps correspond to local
modifications of the current graph embedding; the full set of possible embed-
dings is maintained by using a special data structure called an SPQ∗R-tree.
The four different types of tree nodes (S, P, Q∗, and R) correspond to dif-
ferent types of triconnected components that allow a limited number of local
modifications. The flow method by Tamassia is used as a subroutine. Experi-

6. Orthogonal Graph Drawing 155

ments seem to indicate that the algorithm may be practical for test graphs of
up to 200 nodes, since the distribution of degree four nodes in the test graphs
tends to keep running times significantly below the worst case estimates.

It has been attempted to use flow techniques even for nonplanar graphs,
by making use of sufficient a priori knowledge of the location of edge crossing.
Details are quite tricky and technical; see the thesis (Fößmeier, 1997b).

6.6 Compaction

Compaction is the process of changing a given orthogonal layout, so that
either the area, the total edge length, or the maximum edge length decreases.
In this section, we will focus on compaction techniques that maintain the
topology and shape properties of the input.

Most of the algorithms described in this section have their roots in VLSI
design, but have been adapted to solve the compaction problems in graph
drawing. In addition, we present two recent developments originating in the
area of graph drawing. An overview of the techniques in VLSI layout is given
in Lengauer (1990, Chap. 10) and in LaPaugh (1998, Sect. 23.3). Before
describing the compaction techniques we state the underlying compaction
problems in a formal way, and we discuss their complexity in Section 6.6.1.
One-dimensional algorithms attack the problems by dividing them into two
separate subproblems for the horizontal and vertical direction. They are cov-
ered in Section 6.6.2: we focus on the compression-ridge technique and the
graph-based compaction strategies. Finally, Section 6.6.3 is dedicated to op-
timal methods.

6.6.1 Problems and Their Complexity

Depending on the various aesthetic criteria we want to optimize, there are
several versions of compaction problems originating in the topology-shape-
metrics approach. The input of the third phase within this paradigm is an
orthogonal representation H . Such a representation may have been produced
by the flow-based methods of Section 6.5. By introducing auxiliary vertices,
we may assume that H is simple. The task is to find an orthogonal grid
embedding respecting the shape of H with either minimum total edge length,
minimum area, or minimum length of the longest edge. We will refer to
these problems as COMPsum, COMPA, and COMPmax, respectively. It is
also possible to state the problems for existing orthogonal grid embeddings,
especially as a postprocessing step for drawings as produced in Section 6.3.
In this case the task is to change the coordinates of vertices and bends,
but not the angles formed by the edge segments. These formulations may
seem somewhat restrictive in the case of existing drawings (in a more general
scenario, it may be possible to introduce or remove bends), but even then,
they may serve as a local improvement step.

156 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

Almost all variants of the two-dimensional compaction problem in VLSI
design are NP-hard. In most cases, the corresponding proofs are reductions
of the problem 3Partition (see Garey and Johnson (1991)). They exploit
the fact that in VLSI problem formulations, wires may be allowed to swap
their connection points at components. Such a swap corresponds to a change
of the embedding and is not allowed in graph drawing problem formulations.
These changes are crucial for the reductions and cannot be used in a setting
with fixed topology.

For a long time it was conjectured that the compaction problems (i.e.,
COMPsum, COMPA, and COMPmax) for a fixed embedding are also NP-
hard. Recently this was proven by Patrignani (1999a). His proof for COMPA
is based on a reduction of the satisfiability problem SAT (see Garey and
Johnson (1991)). Given a formula φ, there is an orthogonal representation
HA(φ) with nA vertices and mA edges, and area at most (9nA+2)(9mA+7),
if and only if φ is satisfiable. The reductions for COMPsum and COMPmax

are similar.

6.6.2 One-Dimensional Compaction Methods

Due to the large sizes of instances, research in VLSI design has focused on
one-dimensional methods. Only one dimension may be changed at a time;
the other dimension is fixed. We will refer to the restricted, one-dimensional
compaction problems as COMP1

sum, COMP1
A, and COMP1

max, respectively.
After a compaction step, the layout is changed: alternating the direction

and performing another step results in an iterative process. However, at each
step the decisions are purely local, and compaction in one direction may
prevent greater progress in the other direction. Furthermore, the layout may
be blocked in both dimensions, but still be far away from an optimal solution
(see Figure 6.24 for an example).

(a) (b)

︸ ︷︷ ︸
k edges

Fig. 6.24. (a) Both directions are blocked, the total edge length is 2k + 5. (b) An
optimal layout with edge length k + 6.

Originating in VLSI design, the compression-ridge method searches the
layout for cuts that divide it into two parts and pass through regions of empty
space. For fixed embedding the “empty space” corresponds to edges that are
longer than the minimum length of one unit. If such a cut has been found, its

6. Orthogonal Graph Drawing 157

edges can be shortened by at least one unit and the resulting grid embedding
is still feasible.

We sketch the method from (Dai and Kuh, 1987), adapted to different
scenarios in the area of graph drawing. All cuts are found as an interpreta-
tion of a maximum flow in a network N that depends on the initial drawing.
A compaction step in x-direction for the example introduced in Section 6.3
(page 130) is shown in Figure 6.25. Compaction in y-direction can be ex-
plained similarly. First the layout is dissected into horizontal stripes. This
corresponds to the dissection process described in Section 6.3 with the re-
striction that only artificial edges of horizontal direction are allowed. A mod-
ification of the dissection method still runs in linear time; the result is a
drawing with internal faces of rectangular shape. Now the network N can be
constructed as follows: each rectangular face f corresponds to a node n(f)
in N . In addition, there are two nodes s and t for the outer face; s at the
top of the drawing, t at the bottom. Arcs are directed downwards: for each
horizontal edge e separating an upper face f from a lower face g, there is an
arc a+

e = (n(f), n(g)) and an arc a−e = (n(g), n(f)). The capacity of a+
e is

the length of e minus one. This corresponds to the maximal possible short-
ening of e. A capacity of∞ is assigned to the opposite arc a−e , accounting for
possible elongations of e. The maximum flow from s to t in this network cor-
responds to the shortening that can be applied to obtain a minimum width
drawing; thus, we get a layout of optimal horizontal width. Each compaction
step has running time O(n logn), the bottleneck being the computation of a
maximum flow problem in N . (By construction, the network N is planar and
linear in size of the original graph.)

(a) (b) (c)

s

t

1

1 1

1

1

1

1

1

1
1

1

1

1
2

3

1

2

2

2

4
1

∞

∞

∞

∞
∞

∞

s

t

Fig. 6.25. The compression-ridge method in graph drawing: (a) the network N
for x-compaction of Figure 6.9 (d) (only some of the unbounded upward arcs are
shown); (b) the maximum flow inN ; (c) the drawing after the horizontal compaction
step.

158 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

So-called graph-based compaction methods represent a different and more
efficient approach: Two layout graphs – one for each direction of the compac-
tion – encode the visibility properties between maximally connected vertical
and horizontal paths in the given grid embedding. These paths are also re-
ferred to as bars in Di Battista et al. (1999), maximal chains in Bridgeman
et al. (1999), or segments in Klau and Mutzel (1999b).

Definition 6.23. A horizontal segment is a maximally connected component
in (V,Eh), the subgraph of G containing only the horizontal edges. Similarly,
we define vertical segments in (V,Ev). The sets Sh and Sv refer to the hori-
zontal and vertical segments, and the set S = Sh ∪ Sv refers to all segments.
A vertex v lies on the two unique segments hor(v) ∈ Sh and ver(v) ∈ Sv.

The directed layout graphs Dx = (Vx, Ax) and Dy = (Vy, Ay) are built as
follows: the node set Vx of the horizontal graph Dx corresponds to the set of
vertical segments Sv. A similar construction applies to Dy, here Vy = Sh.

For an arc set A let trans(A) be the transitive hull of A. Geometric re-
lations between the segments define the arc sets in the digraphs: whenever
a horizontal segment si is to the left of another horizontal segment sj , we
want to find a directed path between si and sj . We characterize the vertical
relationships analogously. More formally, we want to have

trans(Ax) = {(si, sj) | si is to the left of sj} and (6.8)
trans(Ay) = {(si, sj) | si is below sj} . (6.9)

Any sets with properties (6.8) and (6.9) can be used as the arc sets of the
layout graphs. Figure 6.26 shows two layout graphs for the running example
in this section with arc sets produced by a sweep-line method.

s1

s2 s3

s4

s5
s6

s7

s8 s9

s10

Fig. 6.26. The directed layout graphs Dx (left) and Dy (right).

Each arc corresponds to a distance constraint for a pair of segments. Since
the visibility properties must be maintained in one-dimensional compaction
(recall that the coordinates of the other direction are fixed) an arc (si, sj)

6. Orthogonal Graph Drawing 159

describes the fact that all the vertices of sj must be assigned a greater co-
ordinate than the one for vertices of si. Hence, the task of one-dimensional
compaction in x-direction reduces to computing a topological numbering for
the nodes in Dx. Similarly, a vertical compaction step corresponds to a topo-
logical numbering in Dy. Since the layout graphs are acyclic by construction,
such an order Φ can be computed in time O(|Vx| + |Ax|) or O(|Vy | + |Ay |),
e.g., with the longest path method. It is easy to show that Dx and Dy are
planar; thus, |Vx|, |Vy|, |Ax|, and |Ay| are in O(n). Therefore, the running
time for computing the topological numbering Φ is linear in the size of the
original graph.

We illustrate the method by performing vertical compaction on the ex-
ample graph. Consider Dy in Figure 6.26. The longest path method results
in the following topological numbering Φ : Sh → Z.

Φ(s1) = 0 Φ(s2) = 1 Φ(s3) = 1 Φ(s4) = 2 Φ(s5) = 2
Φ(s6) = 3 Φ(s7) = 2 Φ(s8) = 3 Φ(s9) = 3 Φ(s10) = 4 .

The new vertical coordinate of a vertex v is just the topological number
of hor(v). Setting all y-coordinates in this manner results in the compacted
drawing with minimum possible height in a one-dimensional setting, as shown
in Figure 6.27 (a).

Note, however, that this method tends to push vertices as far to the
bottom as possible (or to the left when performing a horizontal compaction
step). Each segment gets its minimum topological number. For segments
lying on the longest path tree, this is the optimal assignment; other segments
should rather be placed closer to their neighbors than to the bottom or left
margin. In Figure 6.27 (a) this has no negative influence on the aesthetics,
but Figure 6.27 (b) shows an example where this is the case. Though the
drawing has minimum width and height, the bottom edge is drawn longer
than its one-dimensional minimum length of one grid unit. In addition to the
unpleasant drawing, these edges might prevent the following compaction step
in the other direction from a better performance.

Minimizing the total one-dimensional edge length corresponds to mini-
mizing the difference between the topological numbers. In the area of VLSI
this problem is known as wire balancing . For vertical compaction, the corre-
sponding optimization problem is

min
∑

(v,w)∈Ev

Φ(hor(w)) − Φ(hor(v)) (6.10)

s.t. Φ(sj)− Φ(si) ≥ 1 for all (si, sj) ∈ Ay .

Note that (6.10) is the same problem as the layer assignment for layered
drawings of graphs (see Section 5.3). The optimization problem can be seen
as the dual of a flow problem, as shown by the following steps. Let ∆ver(s)
denote the vertical degree of a horizontal segment s ∈ Sh, defined as

160 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

(a) (b)

Fig. 6.27. The graph-based compaction method with longest-path computations:
(a) the example from Figure 6.9 after a vertical compaction step; (b) the method
does not lead to optimal layouts with respect to the one-dimensional compaction
problem COMP1

sum.

∆ver(s) = |{(v, w) ∈ Ev | hor(v) = s}| − |{(u, v) ∈ Ev | hor(v) = s}|. (6.11)

Then
∑
s∈Sh

∆ver(s) = 0, and the optimization problem (6.10) becomes

min
∑

s∈Sh

∆ver(s)Φ(s) (6.12)

s.t. Φ(sj)− Φ(si) ≥ 1 for all (si, sj) ∈ Ay.

The dual of (6.12) is

max
∑

a∈Ay

Ψ(a) (6.13)

s.t.
∑

a=(s,t)

Ψ(a)−
∑

a=(r,s)

Ψ(a) = ∆ver(s) for all s ∈ Sh,

Ψ(a) ≥ 0 for all a ∈ Ay.

The objective function of this problem can be written as

min
∑

a∈Ay

−Ψ(a),

leading to the standard form of a minimum cost flow problem. This implies
that there is a polynomial-time method for finding an optimal solution for
the one-dimensional compaction problems COMP1

A and COMP1
sum.

6.6.3 Optimal Compaction Methods

There are several methods for finding an optimal solution for two-dimensional
compaction problems of the types COMPsum, COMPA, and COMPmax that
we have introduced in Section 6.1. Both the algorithms by Kedem and Watan-
abe (1984); Watanabe (1984), and by Schlag et al. (1983) are based on a

6. Orthogonal Graph Drawing 161

branch-and-bound approach and originate in VLSI design. Recently, there
have been developments in the area of graph drawing: Bridgeman et al. (1999)
specify a class of orthogonal representations for which optimal drawings with
respect to area and total edge length can be found employing the methods
from Section 6.3. Klau andMutzel (1999b) present an optimal branch-and-cut
approach for minimizing the total edge length for a given orthogonal repre-
sentation; they also characterize classes of representations for which their
algorithm runs in polynomial time.

The algorithm by Kedem andWatanabe (1984); Watanabe (1984) is based
on a translation of the two-dimensional compaction problem COMPA into a
nonlinear mixed integer programming formulation that is solved by a branch-
and-bound algorithm. They express the problem as minimizing the nonlinear
area function under a set of linear and nonlinear constraints. Their formu-
lation, however, sacrifices the general statement of COMPA as defined in
Section 6.1 and considers only a subset of the feasible solutions in order to
achieve a better running time. In the following we sketch the branch-and-
bound algorithm.

A vector of decision variables d determines the interaction of components
(remember that components correspond to vertices of a graph drawing in-
stance). In the given formulation, only two positions are possible for a pair
of components, coded as an entry in the 0/1-vector d. Each combination cor-
responds to a different relative placement of the component pair – either a
horizontal or a vertical constraint is active. The entries in d correspond to
arcs in the layout graphs, i.e., a fixed d specifies two (possibly infeasible)
one-dimensional compaction problems. This formulation has the drawback of
being able to handle only two-way choices instead of four possible relative
placements. Though the area of the computed layout is optimal for a given
partial order, it may not be optimal for an instance of COMPA as formulated
in Section 6.1. The authors propose a postprocessing step to determine where
the partial order of elements has to be swapped, but they do not present a
method that guarantees an overall optimal solution.

A fixed set of relative positioning decisions – corresponding to a node
in the branch-and-bound tree – results in two one-dimensional problems.
They are solved using the graph–based longest path method described in
Section 6.6.2. If the subproblem is infeasible, the tree of problems can be cut
at this node. If the node is a leaf and a feasible solution is found that is better
than the previous global upper bound, the bound is updated. Otherwise, a
solution may cause an update of the local lower bound. If the latter becomes
greater than the global upper bound, an optimal solution cannot be found
below the current node, and again the tree is cut at this point.

In general, an optimal solution for the restricted problem can be found
in short time by using this method. However, the proof of optimality may be
very time-consuming.

162 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

A different branch-and-bound approach was proposed by Schlag et al.
(1983). They give a characterization of feasible layouts in terms of satisfia-
bility of a special Boolean expression.

If the distance constraints between two components i and j in the lay-
out process are not fulfilled, the pair is called a violation. Four constraints
c1ij , c

2
ij , c

3
ij , and c4ij define the relative placement of elements i and j. A vio-

lation can be seen as the nonemptiness of the intersection between the two
rectangles Rij and j, shown in Figure 6.28. The rectangle Rij contains ele-
ment i; at each of the four sides it is enlarged by the appropriate minimum
distance to element j.

i

d3
ij

d1
ij

d4
ij

d2
ij

j

Rij

Fig. 6.28. A violation formed by elements i and j.

With each constraint c ∈ ∪1≤i<j≤n{c1ij , c2ij , c3ij , c4ij} and each layout P ,
we also associate a logical variable. The variable is “true” if the constraint
is fulfilled in P and “false” otherwise. Then a legal layout, i.e., a feasible
orthogonal grid embedding, is characterized by the following properties:

– It satisfies the base constraints determining the sizes of the elements.
– For every c the formula F is “true”, where

F =
∧

i,j

(
c1ij ∨ c2ij ∨ c3ij ∨ c4ij

)
. (6.14)

For a practical application, the size of set F is too big. The basic idea
of the two-dimensional compaction algorithm is to start with F = {}, and
to obtain a so-called smashing by solving the system of inequalities with
the longest path method from Section 6.6.2. A smashing is a possibly illegal
layout that respects only the set of constraints in the current set F . Then
the algorithm determines a violation (i, j) in the smashing by means of a
rectangle intersection algorithm, searching for situations like in Figure 6.28.
Once such a pair (i, j) is found, a branching step is performed: in each of the

6. Orthogonal Graph Drawing 163

four subproblems, a different constraint ckij (k ∈ {1, . . . , 4}) is added to the
set of active constraints F . Then the algorithm calls the procedure recursively
with each of the four different sets F + {c1ij}, . . . , F + {c4ij}.

An optimal solution is obtained like in the algorithm by Kedem and Wata-
nabe. If the subproblem is a leaf, the generated constraints are either inconsis-
tent, or the layout is legal and may become the new upper bound. Computa-
tions at inner nodes in the branch-and-bound tree have the following effects:
illegal subproblems and problems exceeding the global upper bound cause
the algorithm to cut the tree at the current node; otherwise, the objective
value of the smashing becomes the new local lower bound.

This concludes the overview of optimal VLSI methods for two-dimensional
compaction problems. Though not applicable to the typically huge instances
of VLSI problems, the algorithms can be useful for the compaction of or-
thogonal grid embeddings. The rest of this section is dedicated to recent
developments in the area of orthogonal graph drawing.

As seen in Section 6.3, there is a class of orthogonal representations where
the two-dimensional compaction problems can be solved to optimality–these
are representations with faces not containing forbidden sub-shapes, resulting
in inner faces of rectangular shape. The work by Bridgeman et al. (1999)
studies the class of orthogonal representations and introduces so-called turn-
regular orthogonal representations to devise polynomial-time heuristics for
the compaction problems in graph drawing.

An orthogonal representation H is turn-regular, if it does not contain
opposite angles inside of a face. A pair of angles is in opposition, if it forms
one of the 18 configurations shown in Figure 6.29.

v w

v

v
v

v

v v

v

v

w

w w

w

w
w

w

w

Fig. 6.29. Nine configurations for a pair of opposite angles inside of a face. The
other nine can be obtained by 90◦ rotation.

Turn-regularity of an orthogonal representation can be tested in linear
time. The authors show that the relative position of every pair of vertices
is defined, if and only if the underlying orthogonal representation is turn-

164 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

regular. This implies that a drawing that respects all the relative positions is
a feasible orthogonal grid embedding.

For a turn-regular representation, the networks introduced in Section 6.3
can be used in order to obtain a minimum area drawing in linear time. Fur-
thermore, the O(n7/4

√
logn) time algorithm introduced in Garg and Tamas-

sia (1995a) can compute the drawing with minimum total edge length within
this optimal area.

Based on this theoretical background, the following compaction heuristic
can be applied to any orthogonal representation H : First, H is tested for
turn-regularity with a linear-time algorithm. If the test is positive, an optimal
drawing can be computed in polynomial time. Otherwise, the heuristic turns
the non-regular faces into regular ones. Techniques similar to the dissection
method presented in Section 6.3 can be used for this purpose, e.g., it is
possible to insert straight artificial edges between pairs of opposite vertices.
In general, the drawings resulting from this dissection method are better than
the ones from Section 6.3, but are still far away from an optimal solution.
Figure 6.30 shows a drawing for the example from Section 6.3, constructed
with this heuristic method.

(a) (b)

horiz.

horiz.

vert.

Fig. 6.30. The heuristic based on turn-regularity applied to the example from
Figure 6.9: (a) pairs of opposite angles have been linked by either horizontal or ver-
tical artificial edges. The resulting representation is turn-regular and compactable
in polynomial time.

The method by Klau and Mutzel (1999b) solves the problem of minimiz-
ing the total or maximal edge length for a given orthogonal representation. It
makes use of a necessary and sufficient condition for all feasible solutions of a
given instance of the compaction problem. This condition is based on existing
paths in so-called constraint graphs. This pair of graphs is similar to the lay-
out graphs defined in Section 6.6.2. As in one-dimensional graph-based com-
paction, nodes in these graphs represent the segments (see Definition 6.23),
and arcs characterize relative positioning relations.

6. Orthogonal Graph Drawing 165

Figure 6.31 shows an example of a pair of constraint graphs. The arcs
specify exactly the relative relationships known from the given simple or-
thogonal representation H . Each edge in H determines the relative position
of two segments in every feasible orthogonal grid embedding for H . Pairs of
constraint graphs whose arc sets consist of all such arcs are also called shape
descriptions .

s1

s2

s3

s4 s5

s6

s7

s8

s9

Fig. 6.31. A pair of constraint graphs that is a shape description. Each segment
is limited by two horizontal and two vertical segments. The left limit of segment s3

is l(s3) = s8, its right limit is r(s3) = s9. The bottom and top limits of s3 are the
segment itself, i.e., b(s3) = t(s3) = s3.

The optimal compaction method is based on the following observations:

– The arcs of a shape description are contained in the layout graphs of every
drawing that reflects the given shape.

– Most frequently, the information in a shape description σ is not enough to
produce a feasible orthogonal grid embedding. Respecting only the relative
positioning constraints encoded in σ may lead to crossings and overlapping
edges. If this is not the case, however, we call such a pair of constraint
graphs complete.

– In general, there are many possibilities for extending a shape description
to a complete pair of constraint graphs.

Let u
∗−→ v denote the existence of a directed path from u to v. The

following is a precise characterization of complete pairs of constraint graphs
in terms of paths that must be contained in the arc sets: a pair of graphs is
complete if and only if both arc sets are acyclic and for every pair of segments
(si, sj) ∈ S × S, one of the following four conditions holds:

1. r(si)
∗−→ l(sj), 3. t(sj)

∗−→ b(si), (6.15)

2. r(sj)
∗−→ l(si), 4. t(si)

∗−→ b(sj).

166 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

In this definition, l(s), r(s), b(s), and t(s) denote the limits of a segment s as
introduced in Figure 6.31. If one of the conditions applies we also call the
pair of segments separated.

We can now express a one-to-one correspondence between these complete
extensions and feasible orthogonal grid embeddings. For each simple orthog-
onal drawing with shape description σ, there exists a complete extension τ
of σ and vice versa: every complete extension τ of a shape description σ
corresponds to a simple orthogonal drawing with shape description σ.

Hence, the compaction task can be seen as the search for a complete ex-
tension of the given shape description leading to minimum total edge length
(or minimum maximal edge length). One way to characterize the set of com-
plete extensions is by means of an integer linear program (ILP). We introduce
a binary variable xij for each arc (si, sj) that may be part of some extension
of the given shape description σ = 〈(Sv, Ah), (Sh, Av)〉. If (si, sj) is contained
in the extension, the corresponding variable xij is one; otherwise, it is zero.
We refer to the set of arcs in σ by A = Ah ∪ Av and to the set of potential
additional arcs by A+. In addition, there is a variable cs ∈ Z for each segment
s ∈ S denoting the coordinate of s. This yields the following ILP:

min
∑

e∈Eh

cr(e) − cl(e) +
∑

e∈Ev

ct(e) − cb(e) (6.16)

subject to
xri,lj + xrj ,li + xtj ,bi + xti,bj ≥ 1 ∀(si, sj) ∈ S × S (6.16.1)

cj − ci ≥ 1 ∀(si, sj) ∈ A (6.16.2)

cj − ci − (M + 1)xij ≥ −M ∀(i, j) ∈ A+ (6.16.3)

xij ∈ {0, 1} ∀(i, j) ∈ A+ (6.16.4)

Inequalities (6.16.1) model the characterization of separation, i.e., the
existence of necessary paths in an extension as required by conditions (6.15).
In this formulation, ri is short for the segment r(si); the same abbreviation
applies to all other limits. Inequalities (6.16.2) force the coordinates to obey
the distance rules coded by the arcs in the underlying shape description. The
same must hold true for the potential additional arcs: whenever a variable xij
has value 1, we want an inequality of type (6.16.2); otherwise, there should
be no restriction on the coordinate variables. This situation is modeled by
inequalities (6.16.3) with the help of a big constant M . The authors show
that in a feasible solution, the corresponding arc sets are acyclic and the
entries of the coordinate vector c integral.

Like the one-to-one correspondence between complete extensions and fea-
sible orthogonal grid embeddings, there is a one-to-one correspondence be-
tween feasible solutions of the ILP and complete extensions of the given shape
description.

6. Orthogonal Graph Drawing 167

To formulate COMPmax, i.e., the minimization of the longest edge, the
ILP has to be slightly modified. Only a linear number of inequalities have to
be added and the objective function must be changed for that purpose.

For the class of turn-regular orthogonal representations defined in Bridge-
man et al. (1999), there is only one complete extension of the corresponding
shape description. In a preprocessing phase, the algorithm extends the given
shape description as far as possible by adding arcs when there is only one
possibility of meeting the four conditions (6.15). In case of complete con-
straint graphs, the integer linear program decomposes into two separate one-
dimensional compaction problems that can be solved with the algorithm from
Section 6.6.2, which is optimal in the one-dimensional case. Figure 6.32 shows
a drawing for the example graph that is optimal with respect to total edge
length, constructed with the branch-and-cut algorithm. It should be noted
that the algorithm performs quite well on medium-sized instances, despite of
its exponential worst-case time complexity.

Fig. 6.32. An optimal solution of the two-dimensional compaction problem pro-
duced by the branch-and-cut algorithm (example from Figure 6.9).

To conclude this section, observe that the aesthetic criteria “area” and
“edge length” may contradict each other, even when the corresponding or-
thogonal representation is turn-regular and the underlying shape description
is complete. Unlike the rectangular case, optimality of the two criteria does
not always coincide (see Figure 6.33).

6.7 Improving Other Aesthetic Criteria

In this section we present efficient postprocessing routines for improving other
aesthetic criteria. Here the focus is on efficiency rather than optimality. In
addition to decreasing area and edge length, these techniques aim at reduc-
ing the number of bends, the number of crossings, and the sizes of vertices.

168 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

Fig. 6.33. Underlying shape description and orthogonal representation are com-
plete and turn-regular, respectively. Nevertheless, minimum area (left) and mini-
mum total edge length (right) exclude each other. (The example is taken from Pa-
trignani (1999a).)

Few efforts have been made in this direction. The bend-stretching transfor-
mations by Tamassia and Tollis (1989) as presented in Section 6.4 fall in this
category. They may reduce the number of bends in an orthogonal drawing.
The refinement algorithm by Six et al. (1998) provides an additional set of
elementary transformations to reduce the number of crossings. A more com-
plicated and less efficient approach is given by Fößmeier et al. (1998). They
also consider changing the sizes of vertices in order to get smaller drawings
and fewer bends.

The goal of the algorithm by Six et al. (1998) is to find an efficient way
for obtaining a better drawing in terms of area, number of bends, number
of crossings, and total edge length. To improve area and edge length, they
use the linear-time one-dimensional compaction method described in Sec-
tion 6.6.2. The number of bends is reduced by using the bend-stretching
transformations introduced by Tamassia and Tollis (1989) that are described
in Section 6.4.2.

In addition, Six et al. (1998) consider the following configurations that
can be removed in order to increase readability of the orthogonal drawing.

1. U-Turns are three consecutive edge segments forming two 90◦ angles (as
shown in Figure 6.34 (a)).

2. Poorly placed degree two vertices are those which are neither on a bend
nor distributed evenly in the drawing (Figure 6.34 (b)).

3. Self-crossings occur between two edges that are incident to the same
vertex. The authors distinguish between near and far self-crossings (Fig-
ure 6.34 (c)).

4. A stranded vertex has only one neighbor that is placed far away (as
shown in Figure 6.34 (d)).

A preprocessing phase constructs a so-called abstracted graph G′ by delet-
ing vertices with degree at most two. In some cases, the following simple pro-
cedures can repair the configurations of Figure 6.34: if a U-turn is found, the
algorithm checks whether the middle segment can be moved towards the ends
of the “U”. If the necessary space is available, this operation can save cross-

6. Orthogonal Graph Drawing 169

(a) (b)

(c) (d)

Fig. 6.34. The four additional configurations considered in Six et al. (1998): (a) a
U-turn; (b) poorly placed degree two vertices; (c) self-crossings (near and far); (d)
a stranded vertex.

ings and reduce total edge length. The bends on edges e that represent chains
of degree two vertices are redistributed, so that either they lie on bends of
e, or they are in the middle of an edge segment. Another operation removes
near self-crossings by swapping the affected edges. For far self-crossings, the
procedure tries to reroute the edges. Finally, stranded nodes are placed as
close as possible to their neighbors. The authors give an O(n+m) time bound
for their refinement algorithm.

Another approach to postprocessing is the 4M-algorithm by Fößmeier
et al. (1998). It consists of the four operations moving, matching, morphing,
and merging.

The moving operation is a one-dimensional compaction method similar
to the compression ridge method presented in Section 6.6.2. The authors
introduce a moving line (corresponding to an s-t flow) to cut the drawing into
two parts. They propose a depth-first search to find this line more efficiently.
Moving is shown in Figure 6.35 (a).

Matching resembles the third bend-stretching transformation in Tamas-
sia and Tollis (1989). The aim is to save bends by moving vertices to the
geometric places of bends. The technique, however, is different. Analogous to
the moving line in the preceding operation, a matching line is used for finding
these configurations. A theoretical characterization of matching lines can be
found in Tamassia (1987) and in Di Battista et al. (1999). Figure 6.35 (b)
illustrates the matching operation.

The morphing procedure saves bends by changing the size of a vertex v,
drawn as a box. This operation is the inverse to shrinking vertices by intro-
ducing bends, which is used to get an orthogonal drawing from a visibility
representation, described in Section 6.4.2. The basic idea of morphing is to
expand v in direction of a close bend b so that the geometric representation
of v covers b. Then the operation changes the box of v to its smallest possible

170 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau

size. Figure 6.35 (c) demonstrates an application of a morphing step. There
are many cases, however, where this operation is not applicable: vertices may
grow too big or overlap other parts of the drawing. Again, a morphing line
is used for finding configurations where the operation can be performed suc-
cessfully.

The last operation in the 4M-algorithm is merging. This operation aims
at reducing the sizes of vertices drawn as a box and is illustrated in Fig-
ure 6.35 (d). Merging is a combination of inverse morphing and matching.
First it introduces a bend b by resizing a vertex v in order to place a neigh-
bor w of v on the position of b. As a result, either the width or the height of
vertex v decreases by one grid unit.

(a) (b)

(c) (d)

Fig. 6.35. The 4M-algorithm: (a) moving; (b) matching; (c) morphing; (d) merging.

Different variants of the 4M-algorithm run in O(n2) or O(n log n) time.

6.8 Conclusions and Open Problems

We have described a number of models and methods for orthogonal drawings
of graphs. As we saw in the beginning, these problems are somewhat related
to the issue of angles in drawings.

Drawing edges as axis-parallel paths makes it relatively easy to give com-
binatorial descriptions of these drawings. This allows it to use combinatorial
arguments for getting a first drawing, as well as methods from mathematical
programming for improving it. This basic approach of discretization can also
be applied by using other grids; however, the resulting combinatorial issues
may be harder to resolve.

6. Orthogonal Graph Drawing 171

Many of the performance guarantees of the presented heuristics still leave
a gap between the number of bends in a drawing that can be achieved and
the number of bends that may be necessary. It is conceivable that some of
these gaps will be narrowed or closed.

Another elegant application of methods from mathematical programming
is given by the polynomial flow-based algorithms for bend minimization. Like
in some other cases, an immediate application is restricted to the relatively
small class of planar graphs with maximum degree 4, but there are some
extensions to cope with other models of orthogonality. A possible approach
is to draw vertices as boxes; doing this in a specific manner leads to the
Kandinsky model, but others are possible.

The same applies to local improvement of the metric quality of a drawing,
i.e., compaction. If we are dealing with a graph that has vertices of degrees
exceeding 4, it easy to perform graph-based compaction on orthogonal draw-
ings where vertices of high degree are represented as boxes. Crossings can be
modeled as virtual vertices of degree four. The algorithms can be changed so
that they can also process input drawings in Kandinsky-style, i.e., drawings
with different grids for vertices and edges. There are many more variations
of the problems that can be formulated elegantly so that a solution is found
using the methods presented in this chapter.

We conclude by listing some of the open problems concerning the quality
of orthogonal drawings:

– Can we give good approximation algorithms for drawing a 4-planar graph
with few bends if the embedding is not fixed?

– Can we extend these approximation algorithms to general planar graphs?
– Are there approximation algorithms for classes of non-planar graphs?
– Are there more classes of orthogonal representations for which appropriate
compaction algorithms find the optimal drawings in polynomial time?

– Several algorithms in this chapter operate in a fixed embedding or fixed
shape setting. How do the optimal drawings with respect to the aesthetic
criteria change if the embedding and/or the shape may be changed?

– To date, no approximation algorithms exist for the compaction problems.
It would be very interesting to have efficient heuristics with a good perfor-
mance guarantee.

– Can some of the ideas for planar drawings be extended to three dimensions?

Some aspects of the last question are discussed in Chapter 7.

7. 3D Graph Drawing

Britta Landgraf

7.1 Introduction

There is a large number of effective methodologies and algorithms for the
creation of aesthetically pleasing graph drawings in two dimensions. However,
representing graphs in three dimensions offers various benefits. The extra
dimension gives greater flexibility for placing the vertices and edges of a graph
and crossings can be always avoided. On the other hand new challenges arise:
current output media have a two-dimensional nature and can only provide
a limited resolution and display area. Thus, the resulting drawings become
complex and difficult to survey. These disadvantages can be weakened by the
use of navigational operations such as rotation, shifting and zooming. These
operations enable an effective use of screen space and allow users to resolve
ambiguities in large graphs while maintaining their overall mental map. The
possibility of changing the viewpoint in 3D will also diminish the relevance
of edge crossing in the (two-dimensional) screen representation of the graph.
The most commonly implemented 2D algorithms can be grouped into

the following three categories: physical simulations, layering, and orthogonal
graph drawing. Examples for physical-based methods for drawing undirected
graphs are force-directed algorithms. The main idea of layering-based meth-
ods is to partition the nodes into layers and order the nodes within the layers,
such that edge crossings are reduced. These algorithms are particularly well
suited to draw directed acyclic graphs. An orthogonal graph drawing places
all vertices at grid points, i.e., at points whose coordinates are all integer.
The edges are represented by sequences of contiguous segments of grid lines,
i.e., axis-parallel line segments determined by the grid points. Edge routes are
allowed to contain bends, but are not allowed to cross or to overlap. Whereas
the first two methods can be extended naturally to 3D (Ostry, 1996), or-
thogonal graph drawing in three dimensions requires mostly new algorithms.
Therefore, the focus of this paper is on 3D orthogonal graph drawing.
This chapter is organized as follows. Section 7.2 describes the special

aspects that are to be considered for physical-based methods in 3D. In Sec-
tion 7.3 the extension of the layering approach to 3D is briefly described.
Section 7.4 presents some orthogonal graph drawing algorithms for graphs
of maximum degree six. Section 7.5 summarizes the results for 3D orthogo-
nal graph drawing of high-degree graphs. Finally, Section 7.6 addresses the
problem of finding good viewpoints for 3D straight-line graph drawings.

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 172-192, 2001.
 Springer-Verlag Berlin Heidelberg 2001

7. 3D Graph Drawing 173

7.2 Physical Simulation

Spring embedder (Kumar and Fowler, 1994; Sim, 1996) is a heuristic algo-
rithm based on a physical model. As described in Section 4.2, a spring em-
bedder works by replacing nodes by mutually repulsive charges and the edges
by springs that attract connected nodes. The idea is that a minimum energy
state of the system should correspond to a good layout.
The extension of the spring embedder from two to three dimensions is

straightforward, because the algorithm make no particular assumption on the
number of dimensions: one adds simply the third coordinate in the calculation
of the forces. Figure 7.1 shows a three-dimensional spring embedding of the
complete graph K6.

Fig. 7.1. 3D spring embedding of K6.

Many refinements and extensions of the basic algorithm have been sug-
gested. However, all these and the basic algorithm have the disadvantage that
they frequently get stuck in local minima, i.e., states where the energy is lo-
cally minimal but not globally minimal. Another problem with this method
is the difficulty of adding more sophisticated forces like ones that can deal
with edge-densities or edge-crossings.
The simulated annealing (Davidson and Harel, 1996; Sim, 1996; Monien

et al., 1995) algorithm uses randomness to overcome the problem of ending up
in local minima. A detailed description of simulated annealing can be found in
Section 4.3. Most of the extensions of the simulated annealing algorithm from
2D to 3D are straightforward, e.g., perturbing a point within a sphere instead
of a circle. However, the choice of components for the energy function that
reflect the desired aesthetics of the final graph differs significantly, because the

174 Britta Landgraf

aesthetic criteria themselves differ. For instance, the possibility of changing
the viewpoint in 3D diminishes the relevance of edge crossings.
Simulated annealing tends to be very flexible but has the disadvantage

that the cooling must be very slow to enforce uniform and symmetric layouts.
It needs about 10 times as many iterations as normal spring embedders.
Experiments have shown that the combination of both spring embedding
and simulated annealing can be useful: one moves the nodes in direction of
the forces, but adds a small random force. With a certain probability, moves
are accepted that would increase the global energy.
An algorithm that is based on such a combination of the spring-embedder

and the simulated annealing approach is GEM (graph embedder) (Frick et al.,
1995). It contains several heuristics to speed up convergence, including local
temperatures, the attraction of vertices towards the barycenter of their neigh-
bors, and the detection of oscillations and rotations.
GEM-3D (Bruß and Frick, 1996) is the three-dimensional version of GEM.

Since GEM contains nothing that is inherently two-dimensional, the exten-
sion requires essentially only an adaptation to 3D geometry, e.g., the notion
of opening angles is extended to opening cones. The most difficult part is
the detection of a rotation, as there are infinitely many planes of rotations.
GEM-3D considers three alternatives to detect rotations:

1. Consider only rotations in the projections of the last and current move-
ment vector onto the coordinate planes.

2. Count the number of 90◦ angles.
3. Use a global cooling schedule instead of rotation detection.

Unfortunately, the paper by Bruß and Frick (1996) contains no comparison
of the quality of the produced drawings for these three alternatives.

7.3 Layering

Sugiyama et al. (1981) introduced an effective layer-based method for 2D
drawings of directed graphs. The algorithm proceeds in four stages:

1. Make the graph acyclic.
2. Assign vertices to layers, i.e., partition the vertices of the directed graph
into an ordered sequence of subsets in such a way that the edges have
directions consistent with the subset ordering. Introduce dummy vertices
to avoid “long edges”, i.e., edges which traverse one or more layers.

3. Permute the vertices within the layers to reduce the number of crossings.
4. Reduce the number of bends by readjusting the position of vertices on
each layer.

For a detailed description of the algorithm the reader is referred to Chapter 5.
Most of these stages for the 2D algorithm can be applied identically to 3D

drawing: the graph must be made acyclic and the vertices must be assigned

7. 3D Graph Drawing 175

to layers. The barycenter heuristic is applicable to 3D by computing the
average positions for both coordinates of the planes defining the layers. As
in the 2D case, collisions can occur if two or more vertices in a layer have
the same set of adjacent vertices. Resolving these collisions by separating
the vertices to a predescribed distance or by altering the vertex positions in
the primary layer is more difficult in 3D than in 2D, because the direction
of separation must be defined as well as the separation distance to avoid
introducing further collisions. A simpler method for this stage of the layout
algorithm is to start with a barycentric heuristic layout, and then to refine
by applying a constrained spring algorithm (Ostry, 1996).
Ostry (1996) also describes a 3D extension of layering which reduces the

perceptual problems caused by apparent edge and vertex overlap. This ap-
proach satisfies the additional 3D aesthetic constraint that vertices should be
placed on simple surfaces. The most appropriate surfaces for layered draw-
ings are the cone and the cylinder. Then the vertices in a layer lie on a circle.
Basically, the drawing has the overall form of a 2D layered drawing wrapped
around a cone or a cylinder.
Another common approach for visualizing hierarchical structures is a cone

tree (Robertson et al., 1993). In a cone tree, each subtree is associated with
a cone, such that the vertex at the root of the subtree is placed at the apex
of the cone, and its children are circularly arranged around the base of the
cone. The cone tree can be oriented top-bottom or left-right. In the latter case
the tree is also called a cam tree. Usually the cone structure is transparently
shaded to allow visualization of all nodes, even those that would normally
be blocked by other cones or nodes. In addition, permanent rotation can be
helpful to enable a view of all nodes. A user can select a node by clicking on
it. When a new node has been selected, the node and its parent path to the
root are brought into focus by rotating the tree.
A third technique for 3D hierarchical graph drawing combines 2D draw-

ings with a lifting transformation, i.e., first a 2D non-upward representation
of a directed acyclic graph is created, and then the vertices are lifted along
a third dimension. The lifting height of the vertices reflects the hierarchy.
This method is used in GIOTTO3D (Garg and Tamassia, 1996a), which con-
structs the 3D drawing of a directed acyclic graph G in three phases. In the
first phase, GIOTTO3D constructs a 2D non-upward drawing of G in the
XY -plane. For this a variation of GIOTTO is used. GIOTTO transforms a
graph into a planar graph by replacing each crossing with a fictitious vertex
and then constructs an orthogonal drawing, using flow networks to minimize
the number of edge bends and the total area of the graph. In the second phase
Z-coordinates are assigned to the vertices and to the bends of the edges, such
that their placement reflects the hierarchy. The purpose of the third phase is
to increase the visual appeal of the drawing by drawing vertices as spheres
and edges as Bezier tubes. In addition, a footprint of the 3D drawing, i.e., a

176 Britta Landgraf

projection of the graph to the XY -plane, assists the user in understanding
the hierarchy-independent connectivity information of the graph.

7.4 3D Orthogonal Drawings of Graphs of Maximum
Degree Six

An 3D orthogonal graph drawing places all vertices at grid points, i.e., at
points whose coordinates are all integers. The edges are represented by se-
quences of contiguous segments of grid lines, i.e., axis-parallel line segments
determined by the grid points. Edge routes are allowed to contain bends, but
are not allowed to cross or to overlap. Because each grid point lies at the in-
tersection of three grid lines, any graph that admits an 3D orthogonal graph
drawing has vertex degree at most 6. By representing vertices by boxes it is
possible to construct 3D orthogonal drawings for graphs of arbitrary degree
(see Section 7.5).
The most common proposed measures for determining the quality of an or-

thogonal drawing are the bounding box volume, i.e., the volume of the small-
est grid-box containing the drawing, and the maximum number of bends per
edge. Using straightforward extensions of the corresponding 2-dimensional
NP-hardness results, optimizing any of these criteria is NP-hard (Eades et al.,
1996).
Optimizing both the volume and the number of bends per edge are con-

flicting goals. Minimizing the number of bends in a graph drawing often
increases the bounding box volume. Table 7.1 shows this trade-off for the 3D
orthogonal drawing algorithms for graphs of maximum degree six, presented
in this section.
The compact drawing algorithm of Eades et al. (1996b) requires the

least volume at the expense of more bends per edge. This volume bound is
tight. Kolmogorov and Bardzin (1967) showed that no algorithm can produce
asymptotically more compact drawings.
The 3-bends algorithm of Eades et al. (1996b) and the incremental

algorithm of Papakostas and Tollis (1997a,b) establish an upper bound of 3
for the number of bends per edge route.
It is unknown if the upper bound of 3 for the maximum number of bends

per edge route is tight. In fact, Wood (1998a,b) showed that for every maxi-
mum degree five graph a 3D orthogonal drawing having at most 2 bends per
edge route exists.
Figure 7.2 shows some 3D orthogonal graph drawings of K6, the complete

graph on 6 vertices.
Often it is much easier for a human to recognize the structure of a graph

in a spring embedding than in a 3D orthogonal drawing, although the former
is not crossing-free. The main reason for this seems that bend minimiza-
tion is the most important aesthetic criterion for diagram readability. For an

7. 3D Graph Drawing 177

Table 7.1. Upper bounds for 3D orthogonal drawing algorithms for n-vertex graphs
of maximum degree six.

Algorithm Volume Max
Bends

Compact drawing algorithm of Eades, Symvonis O(n3/2) 7
and Whitesides (Eades et al., 1996b) and its O(n2) 6

refinements (Eades et al., 2000) O(n5/2) 5

algorithm of D. R. Wood for maximum degree six 2.37n3 4
graphs (Wood, 1998a)

3-bends algorithm of Eades, Symvonis and Whitesides 27n3 3
and its refinements(Eades et al., 1996b; Wood, 2000) 8n3 3

n3 + o(n3) 3

incremental algorithm of Papakostas and Tollis 4.66n3 3
Papakostas and Tollis (1997a,b)

2-bend algorithm of D. R. Wood for maximum degree n3 2
five graphs (Wood, 1998b)

example compare the drawings of K6 in Figure 7.2 with the spring embed-
ding of K6 in Figure 7.1. Only the reduce forks algorithm (Patrignani and
Vargiu, 1997) produces a drawing which can be recognized just as easily. Fur-
thermore, the reduce forks algorithm seems to produce the most compact
drawing. Unfortunately, there are no proven bounds for the reduce forks
algorithm. In experimental tests (Patrignani and Vargiu, 1997) the reduce
forks algorithm produced drawings with an average of less than 2.5 bends
per edge route and with bounding box volume 0.6n3. These tests involved
only graphs with average degree 4. Wood (1998a) showed, that, even for the
12-vertex graph K6,6, the reduce forks algorthm introduces a 9-bend edge
and has more volume that the Papakostas and Tollis algorithm. In the ex-
perimental study of Di Battista et al. (1998b) the reduce forks algorithm
only produces drawings with the least volume for graphs with approximately
< 35 vertices. For larger graphs the compact drawing algorithm of Eades
et al. (1996b) performs better.
In summary the existing 3D orthogonal graph drawing algorithms, when

applied to large graphs, do not produce drawings appropriate for visualisa-
tion purposes. So the value of orthogonal graph drawing – apart from special
applications like VLSI design – lies at present mainly in the theoretical anal-
ysis of 3D graph drawing algorithms, whereas spring embedding, simulated
annealing, and hierarchical approach are more applicable in practice.

178 Britta Landgraf

(a) The Papakostas and Tollis algo-
rithm. Bounding box: 7 × 8× 7

(b) compact algorithm. Bounding
box: 11× 15× 18

(c) 3-bends algorithm. Bounding
box: 16× 15× 16

(d) reduce forks algorithm.
Bounding box: 2× 3× 2

Fig. 7.2. 3DCube’s (Patrignani and Vargiu, 1997) Snapshots of K6.

7.4.1 Approaches to 3D Orthogonal {Point}-Drawing
In the following, all algorithms take an input graph G = (V,E) of maximum
degree at most 6 and |V | = n.
Compact Drawing Algorithm. This section briefly describes the com-
pact drawing algorithm of Eades et al. (1996b), which produces a grid draw-
ing having at most 7 bends per edge, maximum edge length 16

√
n − 7, and

bounding box dimensions (3�√n �+ 2)× 5�√n � × (8�√n � − 6).

7. 3D Graph Drawing 179

The compact drawing algorithm is based on a preprocessing step us-
ing basic graph theory to construct a directed graph G′ whose underlying
undirected graph contains G. Then the preprocessing algorithm computes a
partition of the arcs of G′ into three arc-disjoint cycle covers, denoted Cred,
Cblue and Cgreen. A cycle cover of a directed graph is a spanning subgraph
that consists of directed cycles.
Each of these cycle covers is arranged within different areas of the draw-

ing, so that no differently colored arcs can cross. To obtain a drawing for
G, the algorithm routes the undirected edges of G according to the routes
for the corresponding directed arcs of G′. Arcs which were inserted for the
construction of G′, but do not arise from edges of G, are simply not drawn.
All vertices of G are placed in an array of 5 × 5 squares in the plane

Z = 0. The vertices of each directed cycle of Cred are placed successively in
a snake-like fashion by following the cycle. Then the arcs of these cycles are
routed completely in the plane Z = 0 using at most 6 bends per route.
The blue colored arcs are routed above the plane Z = 0 . The route for an

arbitrary arc (v, w) of Cblue consists of 8 segments, as shown in Figure 7.3.

Z
Y

X

w

v
1

2

3 5

6

7

8
4

Fig. 7.3. The 7-bend route of arc (v, w) (Eades et al., 1996b).

The segments of type 1,3,5 and 7 have length 1. These unit length seg-
ments, the arrangement of the vertices in the square array, and a suitable
selection of the Z-coordinate of segments of type 4 and 6 ensure that no
segments of different routes can overlap or cross.
The arcs of Cgreen are routed like the arcs of Cblue, but on the other side

of the plane Z = 0.
Eades et al. (2000) refine the compact drawing algorithm to explore the

trade-offs between the number of bends per edge and the dimension of the
bounding box of the drawing. For this purpose they eliminate successively
the unit-lengths segments from the routes of the arcs in Cgreen and Cblue.

180 Britta Landgraf

For each eliminated segment the maximum number of bends per edge reduces
by one while the lengths of the bounding box side parallel to this segment
increases by a factor of O(

√
n), see Table 7.1.

A detailed discussion of the trade-offs and the refinements of the compact
drawing algorithm can be found in Eades et al. (2000). Furthermore, the
authors present an algorithm which draws a maximum degree 4 graph in a
O(n) ×O(n)×O(1) bounding box with at most 3 bends per edge.
3-Bends Algorithm. The 3-bends algorithm of Eades et al. (1996b) con-
structs an 3D orthogonal drawing with at most 3 bends per edge, maximum
edge length 9(n− 1)+ 2, and bounding box dimensions (3n− 2)× (3n− 3)×
(3n − 2). It is based on the same preprocessing algorithm as the compact
drawing algorithm described in Section 7.4.1 to obtain a directed graph G′

together with three arc-disjoint color classes. It places the vertices of G on the
diagonal of a 3n×3n×3n cube according to an arbitrary ordering. Each pair
a, b of vertices in G′ determines a cube C(a, b) with pa = (3a, 3a, 3a) and
pb = (3b, 3b, 3b) at opposite corners. The colored arc (a, b) is routed along
the edges of this cube or with an offset of one unit near the path of cube
edges; the particular choice depends on the color of the arc and on whether
the predecessor and successor of b corresponding to that color are positioned
both on the same side of b on the diagonal. See Figure 7.4.

(a) (b)

pa = (3a, 3a, 3a)

blue

pb pa

X

Y
Z pb = (3b, 3b, 3b)

red

pa pb

green

Fig. 7.4. 3-bends routing along (a) or near (b) the path of cube edges.

Colored paths of cube edges on the same cube get close to one another
only in the vicinity of the ends of the paths. Routing one unit near the path
of cube edges enables the use of all six directions in the endpoints without
conflicts. Therefore there are obviously no illegal intersections of routes.
By deleting empty grid-planes in drawings produced by the 3-bends al-

gorithm the volume can be improved from 27n3 to 8n3.

Incremental Orthogonal Graph Drawing Algorithm of Papakostas
and Tollis. The incremental algorithm of Papakostas and Tollis (1997a,b)

7. 3D Graph Drawing 181

produces a 3D orthogonal drawing with volume at most 4.66n3, and at most
3 bends per edge in linear time. This slighthly outperforms the 3-bends
algorithm of Eades et al. (1996b) with regard to the volume of the drawing
and with same run time (Eades et al., 2000). As opposed to this algorithm,
which places all vertices before the routing, the algorithm of Papakostas and
Tollis operates interactively, i.e., vertices arrive and enter the drawing on-line.
Thus, the bounds of the representation must be increased only if necessary.
The decision about where a new vertex will be routed depends entirely on
the free directions around the adjacent vertices. Placing a new vertex and
routing its incident edges has several cases. The advantage of the algorithm
of Papakostas and Tollis is the incremental mode of operation, whereas the
3-bends algorithm is superior in the elegance and the ease of implementation.

2-Bends Drawing of Maximum Degree Five Graphs. For an n-vertex
m-edge graph with maximum degree 6 the algorithm of Wood (1998a) pro-
duces drawings with bounding box volume at most 2.37n3 and with a total
of 7m/3 bends, using no more than 4 bends per edge route. The resulting
drawing is in general position model, i.e., no grid plane intersects any two
vertices.
For maximum degree five graphs the bounding box has volume n3 and

each edge route has two bends. Furthermore Wood has given 2-bend 3D
orhtogonal drawings of the 6-regular multi-partite graphs (Wood, 1998b).
This raises the problem whether there is a 2-bend orthogonal drawing for
every maximum degree six graph, which is still open at present.
Due to space limitations only an outline of the algorithm for maximum

degree five graphs without a proof of correctness is given here.
The 3-bends algorithm of Eades et al. (1996b) positions the vertices

along the diagonal of a cube according to an arbitrary ordering. Wood uses
an approximately balanced ordering to place the vertices along the diagonal of
a cube. The use of an approximately balanced ordering essentially guarantees
that the number of predecessors and successors for each vertex in the graph
are distributed more evenly. Wood uses also a 3-coloring of the arcs of the
directed graph G′ to move the vertices and to route the edges according
to their color class. For routing an edge {v, w} with two bends the color
I ∈ {X,Y, Z} of the arc (v, w) is interpreted as direction for the start segment
and the color of its reversal arc (w, v) as direction of the end segment. From
the diagonal each vertex is moved in up to two dimensions dependent on
its number of predecessors and successors and its color. A balanced vertex
v remains unmoved and the positive (respectively negative) directions are
assigned to the successor (predecessor) arcs of v. At an unbalanced vertex
v, say with more successors than predecessors, the positive directions can be
assigned to at most three successor arcs of v. The remaining successor arcs
(v, w) must be assigned a negative direction. To do so v is moved past w in
the relative I-ordering if (v, w) has the color I ∈ {X,Y, Z}.

182 Britta Landgraf

Edge crossings are resolved by swapping the directions of the starting
segments of the crossing edges. A swapping operation may create new edge
crossings. However it reduces the sum of the lengths of the middle segments of
the two edge routes involved. This sum is bounded below, so a finite number
of swaps suffice to create a crossing-free 3D orthogonal drawing. An example
for re-routing intersecting edges is shown in Figure 7.5.

w
v

u

w
v

u

swap

Fig. 7.5. Re-routing intersecting edges Wood (1998a).

7.5 3D Orthogonal Drawings of Graphs of Arbitrary
Degree

Representing vertices as points enables only crossing-free 3D orthogonal
drawings for graphs of maximum degree six. As in the two-dimensional case
(see Section 6.4.5) it is possible to construct valid 3D orthogonal drawings for
graphs of higher degree by representing vertices as three-dimensional boxes.
Currently there are only few results for 3D orthogonal {box}-drawings.

Papakostas and Tollis (1997a,b) present an algorithm to embed any graph
in a 3D grid of volume O(m3) with at most 2 bends per edge. Biedl (1998)
presents three approaches for creating 3D drawings. Biedl et al. (1997b, 1999)
study 3D orthogonal drawings of the complete graph Kn, and hence for any
simple graph, established lower bounds. Wood (1999a) presents an algorithm
for producing orthogonal drawings in any number of dimensions. Further-
more Wood (1999b) introduces an algorithm for 3D orthogonal drawings of
arbitrary degree n-vertex-m-edge multigraphs with O(m2/

√
n) bounding box

volume and 6 bends per edge route. In this paper Wood also discuss many
open problems in 3D orthogonal graph drawing.
The results of these papers suggest a trade-off between cube-like appear-

ance of the vertex boxes and bounding box volume. For instance the improved
version of the first approach of Biedl (1998), edge-lifting, yields drawings with
a bounding box volume that asymptotically matches the lower bound, but
the vertex boxes are 1×1× 4

3n
1.5-boxes and therefore may be disproportion-

ally large. In the second approach, called half-edge-lifting, the surface area
of each vertex box is proportional to the degree of the vertex, but the boxes

7. 3D Graph Drawing 183

are also highly degenerate. With a slight modification of this approach, the
boxes become cubes at the cost of an increase in volume. Edge-lifting as well
as half-edge-lifting are essentially two-dimensional, because they are created
by starting with a 2D orthogonal drawing and lifting it into 3D. Hence one
sees the 2D input drawing when looking at the final 3D drawing from the
top. The third approach, called the three phase method , and the algorithm
of Papakostas and Tollis have a more natural 3D appearance, but result in
drawings with higher bounding box volume.
From a truly three-dimensional drawing one expects that their vertices

should be displayed more or less as cubes. For this purpose Biedl has intro-
duced three models which describe the restriction of the size of vertex boxes.
The unlimited growth model imposes no restrictions on the dimension of the
vertices. In the degree-restricted model the surface area of each vertex v is
proportional to its degree v, but there is no restriction on the shape of a
vertex. In the cube model the box of v must be a cube whose surface area is
proportional to the degree of v.
The main disadvantage of the unlimited growth model is that vertices are

not recognized as points. The main advantages of this model are that bends
can often be saved by stretching a vertex to cover a bend, and that it yields
very small volumes. Hence the use of this method is of a theoretical nature
to explore worst-case upper bounds.
Table 7.2 summarizes the above results and shows the trade-off between

the shape of a vertex and the bounding box volume. In this table ∆ denotes
the maximum degree of a graph.

7.5.1 Bounds for 3D Orthogonal {Box}-Drawings
Biedl et al. (1997b) have established lower bounds for the volume and the
number of bends of 3D orthogonal graph drawings. Their focus has been
on the complete graph Kn since any simple graph G with n vertices is a
subgraph of Kn. Therefore, upper bounds for Kn yield upper bounds for all
other simple graphs on n vertices, and no simple graph on n vertices can yield
larger lower bounds than Kn. For drawings of Kn, they prove a lower bound
of Ω(n2.5) on the volume and a lower bound of Ω(n2) on the total number
of bends.
A Lower Bound on the Volume: To show that the minimum possible
volume for a 3D orthogonal drawing ofKn is Ω(n2.5) one considers a drawing
of Kn in a X × Y × Z-grid and distinguishes three cases that describe the
distribution of the vertices in the space: in case 1 one assumes that there
exists a line l that intersects many vertices. Case 2 assumes that no such line
exists, but a plane that intersects many vertices. Case 3 treats the remaining
situation that no plane intersects many vertices. As an example we sketch
the treatment of case 2.

Case 2: Assume that no grid-line intersects as many as 1
16n vertices, but

there exists a plane pz that is parallel to the XY -plane and intersects at

184 Britta Landgraf

Table 7.2. Upper bounds for 3D orthogonal drawing algorithms for graphs of
arbitrary degree.

Algorithm Volume Max Model
Bends

incremental algorithm O(m3) 2 degree-restricted
(Papakostas and Tollis, 1997a,b)

edge-lifting (Biedl, 1998) O(n3) 1 unlimited growth

modified edge-lifting O(n5/2) 3 unlimited growth
(Biedl, 1998)

half-edge-lifting (Biedl, 1998) O(n3) 2 degree-restricted

improved half-edge-lifting O(nm
√

∆) 2 cube-model
(Biedl, 1998)

three-phase-method (Biedl, 1998) O(n2m) 2 degree-restricted

modified three-phase-method O((nm)3/2) 2 cube-model
(Biedl, 1998)

least 1
4n vertices. Let px be a plane that is parallel to the Y Z-plane and

intersects the X-axis at the point (x, 0, 0). By assumption, each px intersects
pz in a line that intersects fewer than 1

16n vertices. x = x0 is now selected
in such a way that it is the largest integer value, such that fewer than 1

16n
vertices intersect pz to the left of px0 , i.e., they have X-coordinates less
then x0. Thus the number of vertices that intersect pz and that lie to the
right of px0+1 is at least 1

16n. Since in Kn all nodes are connected, there
are at least

(
1
16n

)2 edges between the vertices on the left and the vertices
on the right of px0 , so Y Z ≥

(
1
16n

)2. If one applies the same argument to
the y-direction and considers that by assumption XY ≥ 1

4n, it follows that
XY Z =

√
Y Z ·XZ ·XY ≥ n5/2

512 .
For all sufficiently large n, the bound given by case 2 is the smallest of

the three. Hence any drawing of Kn has volume Ω(n2.5).

A Lower Bound on the Bends: It was shown by Fekete and Meijer (1999)
that Kn has no bend-free drawing for n > 183. This can be used to prove
that any drawing of Kn has a total number of bends Ω(n2):
Let c be an integer such that any 3D orthogonal drawing of Kc has a

bend. For n > c the graph contains
(
n
c

)
copies of a Kc. Each of these copies

must have a bend. Any edge belongs to exactly
(
n−2
c−2

)
of these copies of Kc.

7. 3D Graph Drawing 185

Hence the number of edges with a bend must be at least
(
n
c

)
/
(
n−2
c−2

) ≥ n2

c2 for
n ≥ c.

7.5.2 Approaches to 3D Orthogonal {Box}-Drawings
Incremental Orthogonal Graph Drawing Algorithm of Papakostas
and Tollis. Papakostas and Tollis (1997a,b) present an incremental orthog-
onal drawing algorithm for graphs of arbitrary degree. They map vertices
to grid boxes with surfaces proportional to their degrees, i.e., they consider
the degree-restricted model. New vertices are placed outside of the current
drawing, such that the general position property is kept, i.e., there is no plane
parallel to one of the three base planes containing grid points of two different
boxes in the current drawing. This rule enables the crossing-free edge routing
with two bends. Edges that are adjacent to a vertex are attached to the sur-
face of its box at grid points. As a result of edge routing, edges may require
attachment to specific sides of incident boxes. If there are no available grid
points on that side, the box must be increased. Since the box of every vertex
may grow in various different ways in the course of the drawing process, the
resulting drawing follows the degree-restricted model and cannot follow the
cube model. In addition, with each enlargement of a box new planes in the
current 3D drawing are inserted to accommodate the size of the box. This
affects the coordinates of some ports and bends which shift by one unit along
the X-, Y - or Z-axes, but the general shape of the drawing remains the same.
The produced drawing has two bends per edge and a bounding box volume
of O(m3).
Figure 7.6 shows a sample 3D orthogonal drawing of K5 produced by this

algorithm. The box numbers denote the vertex insertion order.

Lifting-Based Approaches. Biedl (1998) presents two lifting-based ap-
proaches to create an 3D orthogonal drawing. Edge lifting and half-edge lift-
ing start with a semi-valid 2D orthogonal drawing, i.e., no vertices overlap
and no edge crosses a vertex, but edges may overlap each other. Then this
drawing is split into valid orthogonal drawings. These crossing-free drawings
are placed into different Z-planes. The difference between both methods lies
in the splitting technique. In edge lifting, an arbitrary partition can be used,
whereas half-edge lifting first splits the 2D drawing into two drawings, where
one drawing contains all horizontal edge segments and the other drawing con-
tains all vertical edge-segments. In edge lifting every vertex must be extended
to all Z-planes to get a drawing of the underlying graph. In half-edge lifting
every vertex is extended only to those Z-planes that contain an incident edge.
In addition, at every bend of an edge in the original 2D drawing a Z-segment
is added to connect the two endpoints of the horizontal and the vertical seg-
ment incident to this bend. Consequently, the vertices in drawings produced
by edge lifting follow the unlimited growth model, whereas half-edge lifting
yields drawings in the degree-restricted model.

186 Britta Landgraf

1

5

2

3

4

Fig. 7.6. 3D orthogonal drawing using boxes to represent vertices (Papakostas and
Tollis, 1997a).

The edge lifting method is used in Biedl et al. (1997b, 1999) to get con-
structions that achieve lower bounds for the volume of the bounding box
and the total number of bends under the restriction that the drawing has at
most k bends per edge route. For k = 1 or k = 2 the constructions produce
drawings for Kn in O(n3) volume. For k ≥ 3 an unconstrained construction
is given that asymptotically yields the optimum volume. For k = 1 and k = 2
it is an open problem whether the lower bound for the volume is attainable.
All constructions match the lower bound on the number of bends.
In order to achieve a volume as small as possible, the vertices and edges

must be placed skillfully and one needs an efficient splitting into crossing-free
drawings. The more bends per edge are admissible the more space-saving the
edges can be nested into one another. For k = 1 Biedl et al. (1997b, 1999)
use nested triangular edges, for k = 2 nested rectangular edges, and for
k = 3 L-shaped or Γ -shaped edges that are diagonally arranged. Figure 7.7
shows examples for these edge sets after splitting into crossing-free draw-
ings and Figure 7.8 shows the 3D orthogonal graph drawing of K6 produced
by these constructions. The pictures in the latter figure was created with
OrthoPak (Closson et al., 1998).
For k = 1 and k = 2 the constructions can still be improved with respect

to the volume by a skillful combination of two drawings of Kn
2
. However, in

both cases the achieved volume O(n3) does not match the lower bound. For
k = 3 the construction asymptotically yields the optimum volume O(n2.5).
Since this construction generates at most 3 bends on any edge, it is valid for
each k ≥ 3.

7. 3D Graph Drawing 187

k=2 k=3k=1
Fig. 7.7. Edge set examples (Biedl et al., 1997b, 1999).

As already mentioned in the introduction to this section, the half-edge
lifting approach is in the degree-restricted model like the algorithm of Pa-
pakostas and Tollis, but it yields better results regarding the bounding box
volume. On the other hand, the drawings created with this approach are
essentially two-dimensional.

Three-Phase Method. Creating truly 3D drawings is straightforward us-
ing the three-phase method (Biedl, 1998) which is an extension of the corre-
sponding method in 2D (see Chapter 6).
In the first phase, vertex placement, vertices are drawn as points, not as

boxes. They are placed in 3D arbitrarily in XY -general position, i.e., every
X-plane and every Y -plane intersects at most one vertex. This condition is
weaker than the general position property used in the algorithm of Papakostas
and Tollis described in Section 7.5.2, since several vertices may be placed in
the same Z-plane.
In the second phase the edge routing with 2 bends is done using directed Z-

routes. Directed Z-routes are those cube routes, i.e., routes along the edges of
a cube, for which the middle segment is parallel to the Z-axis. Biedl indicates
two further subclasses of cube routes that can be used in order to produce a
crossing-free drawing: the colored cube routes from the 3-bends algorithm of
Eades et al. (1996b), compare Section 7.4.1, and the shortest-middle routes .
An edge is said to be routed using shortest-middle routes, where the middle
segment is the shortest segment. However, the last two types of routes require
that the vertices are placed in general position, i.e., every grid-plane intersects
at most one vertex, so that compared to the incremental algorithm of
Papakostas and Tollis, no substantial improvement of the volume is to be
expected.

188 Britta Landgraf

(a) 1-bend layout (b) 2-bend layout

(c) 3-bend layout

Fig. 7.8. OrthoPak’s Snapshots of K6.

In the third phase, port assignment , each grid plane is replaced by suffi-
ciently many grid planes. Each vertex is replaced by a grid box that is the
intersection of the planes inserted for the respective vertex. The edges are
re-assigned to ports of the vertex boxes, such that all overlaps and crossings
are removed. For this purpose the edges attached to one side are split into
four groups, depending on their direction of continuation. Then one assigns
sufficiently many ports to each group, such that no edges of two different
groups could possibly cross. Next the edges in each group are sorted by the
coordinates of the next bend and assigned to a port of their group. By this
sorting the attached segments are arranged in such a way that they pass one

7. 3D Graph Drawing 189

above the other, as is shown in Figure 7.9 for edges attached to a Y -side of
a vertex-box.

Fig. 7.9. Three-phase method: Edge assignment to ports.

With a suitable vertex placement one can draw every normalized graph,
i.e., graphs that are simple, connected and have no nodes of degree 1, with
the three-phase method so that the resulting drawing has 2 bends per edge,
and either

– lies in an n×n×m-grid box with vertex contained in a 1×1×(dG(v)/2+1)-
grid box, i.e., the drawing is in the degree-restricted model,
or

– lies in an grid box of side length n+2
√
nm and each vertex is contained in

a cube of side-length 2�√dG(v)/2 �, i.e., the drawing is in the cube model.
Multi-dimensional Orthogonal Graph Drawing. Wood (1999a) inves-
tigate the general position model for D-dimensional (D ≥ 2) orthogonal
drawing of arbitrary degree graphs. Some of the ideas of his algorithm for 3D
orthogonal {point}-drawing, described in section 7.4.1, can be transferred to
D dimensions: representing vertices by D-dimensional hyperboxes instead of
using points, using a multi-dimensional balanced vertex layout to determine
a layout in general position, and using a D-coloring for routing edges. Edge
crossings can be eliminated again by swapping the direction of the starting
segments of the crossing edges. New for hyperbox-drawings in contrast to
{point}-drawings is the problem how to assign ports for each edge route so
that no two edges routed on the same face can intersect. This is done by an
algorithm similar to the port assignment in the three-phase method in Biedl
(1998). The edges of a face are arranged in groups according to their direc-
tion of continuation and within a group the edges are assigned to ports in
increasing order of the length of the first segment of the route. For a detailed
description of this layout-based algorithm and a routing-based algorithm the
reader is referred to Wood (1999a).

190 Britta Landgraf

7.6 Viewpoints

Because of the two-dimensional nature of current output media, a 3D graph
drawing must be transformed by projection into a 2D image that can be
rendered on a computer screen or paper. In order to keep the loss of infor-
mation as small as possible, a projection should be used that shows as much
as possible of the 3D image. The most important parameter of a projection
is the viewpoint, i.e., an observer position together with a direction of view.
A starting point for the definition of good viewpoints is the preservation of
the abstract graph of a drawing under projection. For instance, Kamada and
Kawai (1988) consider viewpoints as good that preserve the shape informa-
tion of a wire-frame drawing, and exclude viewpoints for which edges appear
collinear. Bose et al. (1996) presented several models to describe the qual-
ity of a viewpoint. In one model they define good viewpoints as those from
which the image of a 3D drawing appears monotonic. These viewpoints are
particularly important for viewing hierarchical graphs. They also propose a
model that relates the quality of a viewpoint to the number of edge crossings
in the 2D projection of a 3D wire-frame drawing. The third model of Bose
et al. (1996) preserves the depth-order of a wire-frame drawing, permitting
only viewpoints that yield regular projections, i.e., projections under which
no three 3D points map to the same 2D point. The end-points of edges count
as two points.
Webber (1997, 1998) extend some of these models and define a good

viewpoint as one that yields a projection in which no item hides another one
and no false incidences are suggested. One distinguishes between four types
of such occlusions , see Figure 7.10:

vertex-vertex: A pair of vertices from the 3D graph drawing map to a single
vertex in the 2D image.

vertex-edge: A vertex of the 3D graph drawing maps to an internal point of
an edge in the 2D image.

edge-vertex: Similar to vertex-edge occlusions: the edge appears in front of
the vertex.

edge-edge: There are two cases of edge-edge occlusions. A crossing occlusion
occurs when a pair of 3D edges map to a pair of 2D edges that cross at
a single internal point. It is insignificant, since the relational information
is not effected by projection. On the other hand, a significant edge-edge
occlusion occurs when two 3D edges map to a pair of 2D edges that
share a continuous sequence of points. The line segment shared by the
occluding edges is not to be detected in the projection. Therefore some
relational information is lost.

An occlusion point is a viewpoint that generates an occlusion.
Webber (1997, 1998) presents two measures for the quality of a viewpoint

under orthographic parallel projection and develops algorithms to find best
viewpoints under these models. In the rotational separation measure, the

7. 3D Graph Drawing 191

(a) (b) (c)

Fig. 7.10. Occlusions: (a) vertex-vertex (b) vertex-edge/edge-vertex (c) edge-edge.

quality of a viewpoint is defined to be the angle measured between viewpoint
directions to the nearest occlusion point. The best viewpoints under this
model are those for which this angle is maximized. When interactively viewing
a 3D graph, this means that the angle by which the user can rotate the
drawing without causing an occlusion is maximized. For an example of a
best viewpoint for two occlusions see Figure 7.11 (a).
In the observed separation measure, the quality of a viewpoint is defined

to be the shortest Euclidean distance between the projections of two elements
that cause an occlusion for an arbitrary viewpoint. The best viewpoints under
this measure are those for which the Euclidean distance is maximized between
the closest pair of points in the resulting image. This implies that the level
of detail required to allow discrimination between elements in the image is
minimized, see Figure 7.11 (b).
The rotation separation measure is more suitable for the interactive dis-

play of 3D graph drawings, while the observed separation measure is more
suitable for static displays. However, the complexity of the algorithms based
on the above measures is too high to be useful in interactive applications. For
instance, to determine the rotational separation diagram, which is needed to
determine the quality of a given viewpoint, can require O(|G|4 log |G|) time
(in terms of the size of the graph G, i.e., |G| = |V | + |E|) in the worst-case.
Webber (1997, 1998) developed two classes of faster algorithms that find ap-
proximative good viewpoints, using two distinct heuristic approaches. The
first class of algorithms tests trial viewpoints until a given termination crite-
rion is reached. Various methods can be used to choose a trial viewpoint, for
example, random selection within a circle, centered at the initial viewpoint.
Similarly one has different possibilities for the selection of the termination
criterion. Ideally, a new viewpoint should be found in no more time than it
takes to render the 3D graph drawing. Thus it is reasonable to terminate

192 Britta Landgraf

(a) (b)

best viewpoint direction

resulting 2D projection resulting 2D projection

best viewpoint direction

vk

vj
vi vl vl

vk

vj
vi

vi vj vk vl vk vlvi vj

α
d

Fig. 7.11. Example of a best viewpoint for two occlusions under: (a) rotation
separation measure (b) observed separation measure.

the calculation after this time. Alternatively, one can choose the maximal
time that a user is willing to wait for a new viewpoint. By animating this
algorithm, the time can be extended. The second class of algorithms is based
on the force-directed approach (see Section 7.2). Roughly spoken, the force
applied on the current viewpoint depends on the occlusion points.
Experimental results show that both the iterative improvement and force-

directed approaches result in useful algorithms for finding reasonably good
viewpoints.

8. Drawing Clusters and Hierarchies

Ralf Brockenauer and Sabine Cornelsen

Large graphs such as WWW connection graphs or VLSI schematics cannot
be drawn in a readable way by traditional graph drawing techniques. An
approach to solve this problem is, for example, fish-eye representation, which
allows one to display a small part of the graph enlarged while the graph
is shown completely (see e.g. Formella and Keller (1995)). Another way is
drawing only a part of the graph. The method presented here is clustering,
that is grouping the vertex set.

Apart from the use of clustering to draw large graphs, already clustered
graphs occur in applications such as statistics (see e.g. Godehardt (1988)),
linguistics (see e.g. Batagelj et al. (1992)) or divide and conquer approaches.
To visualize these structures it is also important to find a method of drawing
clustered graphs in an understandable way.

In this chapter, Section 8.1 gives an overview of several terms occurring in
connection with clustering in the literature. Section 8.2 presents a few main
methods of finding good clusters. The following three sections introduce some
graph drawing algorithms for clustered graphs. Beginning with the special
case of planar drawing methods in Section 8.3, Section 8.4 works on general
graphs with a hierarchical structure, called compound graphs, and Section 8.5
deals with arbitrarily clustered graphs using force-directed methods. Finally,
Section 8.6 shows a case study for drawing partially known huge graphs.

8.1 Definitions

The usage of the term clustering is not determined uniquely in the literature.
In this chapter several terms concerning clustering are defined to give an
overview. We only consider vertex clustering, but it is worth mentioning that
clustering with respect to edges can be of interest as well. A method to do
this can be found in Paulish (1993, Chapter 5).

Clustering of graphs means grouping of vertices into components called
clusters. Thus, clustering is related to partitioning the vertex set.

Definition 8.1 (Partition). A (k-way) partition of a set C is a family of
subsets (C1, . . . , Ck) with

–
⋃k

i=1 Ci = C and
– Ci ∩ Cj = ∅ for i �= j.
The Ci are called parts. We refer to a 2-way partition as a bipartition.

Now, we can define one of the most basic definitions of clustered graphs.

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 193-227, 2001.
 Springer-Verlag Berlin Heidelberg 2001

194 Ralf Brockenauer and Sabine Cornelsen

Definition 8.2 (Clustered Graph). A clustered graph is a graph with a
partition (C1, . . . , Ck) on the vertex set. The Ci are called cluster.

a) b)

Fig. 8.1. a) A clustered graph. Clusters are framed with rectangles. b) Quotient
graph of the clustered graph in a).

Sometimes (e.g. Alpert and Kahng (1995)) the term clustering is only used
for large k ∈ θ(n) where n is the number of vertices. The expression clustered
graph is also used to denote the quotient graph defined by the partition.

Definition 8.3 (Quotient Graph). For a partition (C1, . . . , Ck) on the
vertex set of a graph G = (V,E), the quotient graph G = (V , E) is defined by
shrinking each part into a single node, i.e.

– V = {C1, . . . , Ck} and
– (Ci, Cj) ∈ E ⇐⇒ i �= j and ∃v ∈ Ci, w ∈ Cj (v, w) ∈ E.

The elements of V are called nodes.

The quotient graph of the clustered graph in Figure 8.1 a) is shown in Fig-
ure 8.1 b). A drawing of the quotient graph is also called a black-box drawing
(Paulish, 1993) of the corresponding clustered graph. Another way of shrink-
ing subgraphs into a single node is proposed by Lengauer (1990). He calls the
construction hierarchical graph. Lengauer used this structure to find faster al-
gorithms, e.g., for planarity testing (Lengauer, 1989) or connectivity testing,
for large graphs.

Definition 8.4 (Hierarchical Graph). A hierarchical graph is a finite
sequence Γ = (G1, . . . , Gk) of graphs Gi called cells. The vertex set of the
cells is divided into pins and inner vertices. The set of inner vertices, again,
is divided into terminals and non-terminals. Each non-terminal has a type.
The type of a non-terminal in Gi is a cell Gj with j < i. The degree of a
non-terminal v is the number of pins of its type G and the neighbors of v are
bijectively associated with the pins of G.

8. Drawing Clusters and Hierarchies 195

G1: G1G1G2: G1G2G3:

Fig. 8.2. Example for a hierarchical graph. Pins are drawn as rectangles, inner
vertices as circles and non-terminals are shaded grey. The bijection between the
neighbors of a non-terminal and the associated pins is given via the position in the
figure.

An example for a hierarchical graph is shown in Figure 8.2. Note, that the cells
need not to be connected. A hierarchical graph represents a graph which is
obtained by expansion. It is a substitution mechanism that glues pins of a cell
to neighbors of non-terminals the type of which is this cell. Note that if Γ =
(G1, . . . , Gk) is a hierarchical graph, so is any prefix Γi = (G1, . . . , Gi), 1 ≤
i ≤ k.
Definition 8.5 (Expansion). The expansion G(Γ) of a hierarchical graph
Γ = (G1, . . . , Gk) is obtained recursively as follows:

k = 1: G(Γ) = G1

k > 1: For each non-terminal v of Gk, let v be of type Gj. Delete v and its
incident edges and insert a copy of G(Γj) by identifying pins of G(Γj)
with their associated vertex in Gk.

Thus, a hierarchical graph is a clustering of the expansion graph and clusters
can include other clusters. This can be illustrated as a tree – the hierar-
chy tree. The expansion and the hierarchy tree of the hierarchical graph in
Figure 8.2 are shown in Figure 8.3.

a)

G1

G1G1

G2

G3
b)

Fig. 8.3. Example for the a) expansion and b) inclusion tree of the hierarchical
graph in Figure 8.2.

A quite similar concept introduced by Feng et al. (1995) are hierarchical
clustered graphs.

Definition 8.6 (Hierarchical Clustered Graphs). Hierarchical clus-
tered graphs C = (G, T) consist of a graph G = (V,E) and a rooted tree

196 Ralf Brockenauer and Sabine Cornelsen

T such that the leaves of T are exactly V . Vertices of T are called nodes.
Each node ν of T represents the cluster V (ν) of leaves in the subtree of T
rooted at ν. T is called the inclusion tree of C. An edge e is said to be incident
to a cluster V (ν), if |e ∩ V (ν)| = 1.
An example of a hierarchical clustered graph is shown in Figure 8.4 a). Al-
gorithms for drawing planar hierarchical clustered graphs are presented in
Section 8.3. A way of generalization is to allow clusters to intersect. Com-
bined with a hierarchical structure this leads to compound graphs presented
by Sugiyama and Misue (1991).

Definition 8.7 (Compound Graphs). A compound (directed) graph is
a triple D = (V,E, I) such that Da = (V,E) is a (directed) graph and Dc =
(V, I) is a directed graph. The elements of E are called adjacency edges, those
of I inclusion edges.

Thus, (v, w) ∈ I means that v includes w. Of course, this interpretation only
makes sense if the directed graph Dc is acyclic. An example of a compound
graph is shown in Figure 8.4 b). In Section 8.4 a drawing algorithm for
compound graphs is given in the special case where Dc is a rooted tree and
Da is a directed graph, such that no vertex is adjacent to an ancestor. A
hierarchical clustered graph can be seen as a compound graph where Dc is a
rooted tree and adjacency edges are only incident to leaves. Note the different
meaning of V .

(a) (b)

Fig. 8.4. a) A hierarchical clustered graph. The inclusion tree is drawn by the inclu-
sion representation. b) A compound graph. Inclusion edges are drawn as including
rectangles.

8. Drawing Clusters and Hierarchies 197

8.2 Clustering Methods

There is a large number of clustering approaches. This section will only men-
tion some of them to give an idea of the main methods. A good overview is
given in Alpert and Kahng (1995) or Jain and Dubes (1988). The approaches
introduced in this section that are not cited separately can be found there
as well. Some partitioning methods concerning VLSI are also summarized in
Lengauer (1990).

Clustering is a type of classification. This classification can be extrinsic
or intrinsic. Extrinsic classification uses category labels on the objects and
clusters are defined by these categories. For example, take trade relation
between world wide spread companies and countries as clusters. On the other
hand intrinsic classification is only based on the structure of the graph. In
the following discussion, we consider intrinsic classification.

There are two main goals in clustering graphs. The first, which has ap-
plications, for example, in VLSI, parallel computing and divide-and-conquer
algorithms, is to partition a graph into clusters of about the same size and
with as few edges connecting the clusters as possible. The second one, which
is a method used in statistical applications, is to explore the structure of the
data. Thus, the number of clusters is not fixed.

8.2.1 k-Way Partition

The first goal can be formalized as the Min-Cut k-Way Partition (cf.
Lengauer (1990) p. 253). In the course of the following passage, let G = (V,E)
be a graph with vertex-weight c : V → N and edge-weight w : E → N.

Definition 8.8 (Min-Cut k-Way Partition). Given a fixed k ∈ N and
b(i), B(i) ∈ N for i = 1, . . . , k, find among all k-way-partitions (C1, . . . , Ck)
of V which satisfy b(i) ≤ c(Ci) ≤ B(i) for all i = 1, . . . , k one that minimizes
the weight of the partition

w(C1, . . . , Ck) =
1
2

k∑

i=1

∑

e∈E
|e∩Ci|=1

w(e) .

Exact cluster size balance is achieved by setting b(i) = c(V)/k − ε and
B(i) = c(V)/k + ε, where ε > 0 may be necessary to obtain a solution
at all.

Move-Based Approaches. Unfortunately, the multiway partition problem
is NP-complete even in the special case of bipartition. A classical good graph
bipartitioning heuristic was introduced by Kernighan and Lin (1970). A nat-
ural local search method for solving this problem is to start with an initial
bipartition and to exchange pairs of vertices across the cut, if doing so im-
proves the cut-size. To reduce the danger of being trapped in local minima,
Kerninghan and Lin modified the search, proceeding in a series of passes.

198 Ralf Brockenauer and Sabine Cornelsen

During each pass of the algorithm, every vertex moves exactly once. At the
beginning of a pass each vertex is unlocked. Iteratively the pair of unlocked
vertices with the highest gain is swapped, where the gain of vertices v1 ∈
C1, v2 ∈ C2 is defined by

w(C1, C2)− w((C1 ∪ {v2}) \ {v1}, (C2 ∪ {v1}) \ {v2})
that is the decrease in cut-weight that results from the pair swap. Then,
both swapped vertices are locked. The swapping process is iterated until all
vertices become locked. The bipartition with the lowest cut-weight observed
during the pass is the initial bipartition for the next pass. The algorithm
terminates when a pass fails to find a solution with lower weight than its
initial bipartition.

Maintaining a sorted list of gains, the complexity of this algorithm is in
O(n2 logn). Fiduccia and Mattheyses modified the algorithm of Kerninghan
and Lin to permit an O(|E|) implementation. The main difference is that
a new bipartition is derived by moving a single vertex either from C1 to
C2 or from C2 to C1 instead of exchanging two of them. Therefore, the
algorithm must violate the exact cluster size balance constraint. The solution
is permitted to deviate from an exact bipartition by the size of the largest
vertex. The algorithm of Fiduccia and Mattheyses can also be extended to
k > 2.

There are several functions combining cluster size balance and minimiza-
tion of cut weights within a single objective. One of them is the Ratio Cut
Partition proposed by Wei and Cheng (1991) for k = 2. Their approach has
several generalizations for arbitrary k. One of them is presented by Roxbor-
ough and Sen (1997).

Definition 8.9 (Ratio Cut Partition). Find among all k-way-partitions
(C1, . . . , Ck) of V one that minimizes

R(C1, . . . , Ck) =
w(C1, . . . , Ck)
c(C1) · . . . · c(Ck)

.

Finding a ratio cut partition is also NP-complete. In Wei and Cheng (1991)
a heuristic based on the algorithm of Fiduccia and Mattheyses is proposed to
find good bipartitions. In Figure 8.5 an example is shown where the ratio cut
partition is a much more intuitive one than the exact cluster size balanced
min-cut bipartition.
Spectral Methods. For a graph G = ({v1, . . . , vn}, E) with enumerated
vertex set, a partitioning solution can be represented in terms of vectors and
matrices.

Definition 8.10 (Characteristic Vector). For a graph G with a given a
k-way partition (C1, . . . , Ck) the characteristic vector for cluster Ch is the
n-dimensional vector xh = (x1h, . . . , xnh) ∈ {0, 1}n with xih = 1 if and only
if vi ∈ Ch. The n× k matrix X with column h equal to xh is the assignment
matrix of the partition.

8. Drawing Clusters and Hierarchies 199

101010

101010

a) 101010

101010

b)

Fig. 8.5. a) Exact cluster size balanced min-cut bipartition and b) ratio cut bipar-
tition.

Let A = (aij) be the adjacency matrix of an undirected graph G and D =
(dij) the degree matrix, that is dij = deg(vi) for i = j and zero otherwise.
The Laplacian matrix of G is defined as L = D −A. Since L is a symmetric
matrix

– all eigenvalues of L are real and
– there is a basis of the n-dimensional space of mutually orthogonal eigen-
vectors of L.

Since xTLx = 1
2

∑ ∑
aij(xi − xj)2 ≥ 0 for all x ∈ Rn, matrix L is positive

semi-definite and thus, all eigenvalues are non-negative. Furthermore, the
columns of L add to zero and we get

– the smallest eigenvalue of L is 0 with corresponding eigenvector (1, . . . , 1).
(The multiplicity of 0 as an eigenvalue of L is equal to the number of
connected components of G.)

Now, let x denote the characteristic vector for one part of a given bipartition
(C1, C2) in a connected undirected graph, then we can express the value of
the cut defined by the bipartition by

w(C1, C2) =
1
2

n∑

i=1

n∑

j=1

aij(xi − xj)2 = xTLx .

Allowing non-discrete solutions, a normalized eigenvector µ to the smallest
positive eigenvalue minimizes xTLx among all normalized x. Although a non-
discrete solution for x is meaningless, this result suggests heuristically finding
the discrete solution closest to µ. Given cluster size constraints |C1| = m1

and |C2| = m2, the closest discrete solution is obtained by placing the m1

vertices with the highest coordinates of µ in C1 and the rest in C2 or vice
versa.

This approach is known as spectral bipartitioning. Unfortunately, it can
be arbitrarily worse than optimal, as illustrated by the following example: Let
G be the graph shown in Figure 8.6 in which two n/4-cliques are connected,
each by a single edge, to an n/2-clique. Spectral bipartition will cut Kn/2

into equal halves, cutting (n/4)2 edges. But the optimal cluster size balanced
bipartition has weight 2.

200 Ralf Brockenauer and Sabine Cornelsen

Kn/2Kn/4 Kn/4

Fig. 8.6. Example of bad spectral bipartition.

To improve the result, Frankle and Karp proposed to find an characteristic
vector that is close to a linear combination of the eigenvectors of the d smallest
eigenvalues. A summary of spectral clustering including an extension to k > 2
is given in Alpert and Kahng (1995) Section 4.

8.2.2 Structural Clustering

We now turn to the second goal of graph clustering which tries to identify
certain intuitive properties ρ such as cliques or connectivity. In contrary to
the last section, the number of clusters is not given. One important algorithm
used to solve this problem is agglomerative clustering, which starts with the
n-way partition and constructs iteratively a k-way partition from the k + 1-
way partition.

For a complete graph G = (V,E) with edge weight w : E → R and no two
edges having the same weight, the iterative step is defined in more detail, for
example, by Hubert (see Jain and Dubes (1988) p. 63). For a given threshold
d let Gd = (V, {e ∈ E;w(e) ≤ d}). For a pair of clusters (Cr, Cs) in the
k + 1-way partition, define

Qρ(Cr, Cs) = min{d; the subgraph induced by Cr ∪ Cs in Gd

is either complete or has property ρ} .
Merge cluster Cp and Cq if

Qρ(Cp, Cq) = min
r,s
Qρ(Cr, Cs) .

Each specification of property ρ defines a new clustering method. Every clus-
ter must at least be connected. Some suitable graph properties ρ(k) with
integer parameter k are listed below:

k-edge-connectivity: All pairs of vertices are joined by at least k edge dis-
joined paths. 1-edge-connectivity is also called single-link property and
n-edge-connectivity is called complete-link property.

k-vertex-connectivity: All pairs of vertices are joined by at least k vertex
disjoined paths.

vertex degree k: A connected graph such that each vertex has at least degree
k.

diameter k: All pairs of vertices are joined by a path of length at most k.

8. Drawing Clusters and Hierarchies 201

An agglomerative algorithm constructs a hierarchical clustering. The above
mentioned algorithm is serial. To minimize the height of the inclusion tree,
an alternative strategy is to find many good clusters to merge, then perform
all merges simultaneously.

A special drawing of the inclusion tree of a hierarchical clustered graph,
that reveals the order in which clusters are merged, is called dendrogram.
Cutting a dendrogram horizontally creates a partition of the vertex set. Fig-
ure 8.7 gives two examples on a weighted K5, one for single- and the other
for complete-link property.

1

2

3

4

5

6
78

9 10

a b

c

d

e

a) a b c d e b) a b c d e

Fig. 8.7. Two dendrograms on a weighted K5. a) single link, b) complete link.

8.2.3 Other Approaches

There are several other methods for clustering graphs. Duncan et al. (1998)
presented a method to partition an already laid out graph along horizontal,
vertical and diagonal lines. The approach of Sablowski and Frick (1996) is
based on the successive identification of patterns in the graph. Other ap-
proaches consider constraints, e.g., some vertices should belong to different
clusters. Nakano et al. (1997) presented a work on this topic.

Most of the clustering methods presented so far produce connected clus-
ters. But it is important to know, that unconnected clusters might occur in
practice. This can be seen immediately by considering extrinsic clustering,
because it can be defined arbitrarily. But there are also some intrinsic clas-
sifications which produce unconnected components. They are, for example,
used in social network analysis. The following two classifications presented
by Wasserman and Faust (1994) are of this type.

Definition 8.11 (Structural Equivalence). Two vertices v, w of a graph
(V,E) are structural equivalent if and only if they have the same neighbor-
hood, that is if and only if for all u ∈ V holds

(v, u) ∈ E ⇐⇒ (w, u) ∈ E
(u, v) ∈ E ⇐⇒ (u,w) ∈ E.

Thus, two vertices are structural equivalent if their rows and columns in the
adjacency matrix are identical.

202 Ralf Brockenauer and Sabine Cornelsen

Definition 8.12 (Regular Equivalence). Two vertices v and w of a graph
(V,E) are regular equivalent (v ∼= w) only if they have equivalent neighbor-
hoods, that is only if for all u ∈ V holds

(v, u) ∈ E =⇒ ∃u′ ∈ V u′ ∼= u ∧ (w, u′) ∈ E
(u, v) ∈ E =⇒ ∃u′ ∈ V u′ ∼= u ∧ (u′, w) ∈ E.

Structural equivalence is a special case of regular equivalence. Regular equiv-
alence partitioning is not uniquely determined. The partition with the fewest
equivalence classes that is consistent with the definition of regular equiva-
lence is called the maximal regular equivalence. For example, in a tree where
all leaves have the same height, taking the levels as equivalence classes yields
the maximal regular equivalence on that tree.

8.3 Planar Drawings of Hierarchical Clustered Graphs

In her PhD thesis, Feng (1997) presented a characterization for planar con-
nected hierarchical clustered graphs and introduced some algorithms for
drawing them.

Definition 8.13 (Connected Hierarchical Clustered Graphs). A hi-
erarchical clustered graph C = (G, T) is connected, if each cluster induces a
connected subgraph of G.

Definition 8.14 (Drawing of Hierarchical Clustered Graph). A draw-
ing D of a hierarchical clustered graph C = (G, T) includes the drawing of
the underlying graph G and of the inclusion tree T in the plane. Each vertex
of G is represented as a point and each edge {v, w} as a simple curve between
D(v) and D(w). Each non-leaf node ν of T is drawn as a simple closed region
D(ν) bounded by a simple closed curve such that

– D(µ) ⊂ D(ν) for all descendents µ of ν.
– D(µ) ∩ D(ν) = φ if µ is neither a descendent nor an ancestor of ν.
– D(e) ⊂ D(ν) for all edges e of G with e ⊂ V (ν).
– D(e) ∩ D(ν) is one point if |e ∩ V (ν)| = 1.
The drawing of an edge e and a region D(ν) have an edge-region-crossing, if
e ∩ V (ν) = φ but D(e) ∩D(ν) �= φ. Drawings where this occurs, are allowed,
but they are not c-planar.

Definition 8.15 (c-Planar). A drawing of a hierarchical clustered graph
is c-planar (compound planar), if there are no crossing edges and no edge-
region-crossings.

For example, the drawing of the graph shown in Figure 8.4 on page 196 is
c-planar.

8. Drawing Clusters and Hierarchies 203

Theorem 8.16 (Characterization of c-Planar Graphs). A connected
hierarchical clustered graph C = (G, T) is c-planar if and only if there exists
a planar drawing of G, such that for each node ν of T all vertices of V −V (ν)
are in the outer face of the drawing of G(ν).

Proof. Consider a clustered graph C = (G, T) with a c-planar drawing D.
Suppose there is a node ν of T and a vertex v ∈ V −V (ν) which is not drawn
in the outer face of D(G(ν)). Hence, any simple region that contains D(G(ν))
must also contain v, contradicting the c-planarity properties.

Consider now a planar drawing of G, such that for each node ν in T ,
G−G(ν) is drawn in the outer face of the drawing of G(ν). It remains to add
cluster boundaries. Since G(ν) is connected for each ν in T , the outer face is
bounded by a – not necessarily simple – cycle. Thus, cluster boundaries are
constructed recursively, following T from bottom to top, along their external
facial cycle.

Based on Theorem 8.16, Feng et al. (1995) developed an algorithm which
constructs a c-planar embedding of a hierarchical clustered graph, that is
a circular ordering of the incident edges ordered around each cluster. The
algorithm applies the PQ-tree technique presented by Booth and Lueker
(1976) and modified by Chiba et al. (1985) and takes time O(n2) under the
additional condition, that each non-leaf node of T has at least two children.

It tries to embed the subgraph G(ν) induced by each cluster V (ν) recur-
sively, following T from bottom to top. To guarantee the conditions in Theo-
rem 8.16 for each virtual edge e ∈ E, that is an edge such that e∩V (ν) = {ve}
has cardinality one, an additional vertex we and an edge {ve, we} is added
to G(ν). Further one of the additional vertices is connected to all other ad-
ditional vertices (see Figure 8.8).

G(ν) G(ν)

a) b) c)

Fig. 8.8. a) Graph G(ν) with virtual edges is transformed into graph b). Additional
vertices are shaded light grey. c) A wheel graph with 6 vertices on the rim.

To determine whether the embeddings of the children of a cluster ν can
be combined to an embedding of G(ν), the graph G(µ) for each child µ of
ν is replaced by a representative graph which is more or less constructed by

204 Ralf Brockenauer and Sabine Cornelsen

replacing 2-connected components in G(µ) by wheel graphs. A wheel graph
consists of a vertex called hub and a simple cycle called rim, such that the hub
is connected to every vertex on the rim (see Figure 8.8 c)). They showed that
a representative graph with given ordering of the virtual edges can always be
embedded in such a way that the rims are in the outer face without changing
the ordering of the virtual edges.

8.3.1 Straight-Line Drawings with Convex Clusters

For a given c-planar embedding of a connected hierarchical clustered graph
C = (G, T), Eades et al. (1996a) gave an algorithm to construct a drawing
of C such that the edges of G are drawn as straight lines and the regions
are convex. This drawing of C can be constructed in time O(n2 logn) which
is dominated by the time needed for constructing the convex hull of the
clusters.1

The algorithm works as follows. First, graph G is triangulated. Then an
st-numbering2 of the vertices of G is computed such that vertices in the
same cluster are numbered consecutively. Such a numbering is called c-st-
numbering. These numbers are now used as a layer assignment – thus, there
is one vertex per layer – and an algorithm for constructing planar straight-line
drawings of layered graphs, which is also presented by Eades et al. (1996a),
is applied to draw the graph. Since each cluster has consecutive layers, the
convex hull of its vertices satisfies all conditions of a region in a c-planar
drawing.

Apart from the construction of a planar straight-line drawing of lay-
ered graphs, the critical part of this method is the construction of the c-
st-numbering. To ensure that the vertices of the same cluster are numbered
consecutively, Eades, Feng and Lin used a top-down approach, ordering the
children of the root of T first and thus having a lexicographical numbering on
the clusters. To compute an order of the child cluster of ν, an auxiliary graph
F (ν) is computed from G(ν) by shrinking each child cluster to a vertex. If
ν is the root of T , an edge {s, t} not belonging to any child cluster of T is
chosen and an st-numbering is computed.

If ν is not the root, vertices σ and τ are added to the auxiliary graph
F (ν). For a virtual edge {v, w} with v ∈ V (ν), let µ be the lowest ancestor of
ν with w ∈ V (µ) and k the number of the child cluster of µ which w belongs
to. If g(ν) < k then edge {v, τ} is added to F (ν). Otherwise, edge {σ, v} is
added. In case s ∈ V (ν), the vertex representing the cluster containing s is
set to be σ; similarly for t and τ . Now a στ -numbering is computed.

The only thing missing now is that the auxiliary graphs are 2-connected.
This is a consequence of the following lemma.
1 In Eades et al. (1998), the time complexity is improved to O(n2).
2 For the definition of st-numbering see Definition 2.9 on page 27.

8. Drawing Clusters and Hierarchies 205

Lemma 8.17. For every non-root node ν of the inclusion tree of a connected
c-planar hierarchical graph C = (G, T) with triangulated G, the subgraph of
G induced by V \ V (ν) is connected.

Proof. Suppose that the subgraph of G induced by V \ V (ν) has k ≥ 2
components denoted by F1, . . . , Fk. Since G is triangulated, it has a unique
planar embedding. By Theorem 8.16, all vertices of G − G(ν) are in the
same face of G(ν). Since G is connected, there is a face f of G such that
its boundary contains an edge connecting G(ν) and Fi and also an edge
connecting G(ν) and Fj for a j �= i. Because G is triangulated, f also contains
an edge connecting Fi and Fj , a contradiction.

Unfortunately, there are hierarchical clustered graphs such that any c-planar
straight-line convex drawing strategy results in poor area requirement and
angular resolution. Eades, Feng and Lin gave a family Cn = (Gn, Tn) of clus-
tered graphs which require area Ω(2n) and have angles between two edges
incident to a vertex in O(1/n). A sketch of the recursive construction of the
underlying graphs Gn can be seen in Figure 8.9. The root of Tn is adja-
cent to two nodes A and B, which have children a1, . . . , an and b1, . . . , bn,
respectively.

a0

a1

b0

b1

G1:

an−2

an−1

an

bn−2

bn−1

bn

Gn:

Gn−1

Fig. 8.9. Example for poor vertex and angular resolution.

8.3.2 Orthogonal Drawings with Rectangular Clusters

Eades and Feng (1997) gave an algorithm to construct a drawing of a hi-
erarchical clustered graph C = (G, T) with fixed embedding and degree at
most 4 such that G is drawn orthogonal and the regions are rectangles. Using
the constrained visibility representation, the algorithm takes time O(n2), the
drawing space O(n2), and each edge has at most 3 bends.3

The algorithm works as follows: First triangulate G and compute a c-st-
numbering as constructed in the previous section. Orient the edges from lower
3 In Eades et al. (1999), the time complexity is improved to O(n).

206 Ralf Brockenauer and Sabine Cornelsen

to higher numbers. Construct a directed graph G′ from the oriented triangu-
lation of G by adding four additional dummy vertices and replacing virtual
edges for each cluster to ensure rectangular regions. Construct a constraint
visibility representation of G′ for a suitable set of non-intersecting paths.
Construct an orthogonal drawing of G from the visibility representation of
G′ and finally reduce some bends.

How to construct a planar orthogonal drawing from a constraint visibility
representation for non-clustered graphs is, for example, explained in Di Bat-
tista et al. (1999) Section 4.9 on page 130. A short introduction to this topic
is also given in Section 6.4.2. So it remains to give the construction of G′ and
the additional constraints. Proceeding from the leaves to the root of T , for

G(ν) =⇒
G(ν)

b(ν)

t(ν)

r(ν)l(ν)

Fig. 8.10. Virtual edges are bunched together.

each non-leaf node ν of T add four dummy vertices denoted by b(ν) (bottom),
t(ν) (top), l(ν) (left), and r(ν) (right) to G(ν) and split virtual edges (v, w)
of G(ν) by a dummy vertex in the following way (illustrated in Figure 8.10):

– If v ∈ V (ν) replace (v, w) by (v, t(ν)) and (t(ν), w).
– If w ∈ V (ν) replace (v, w) by (v, b(ν)) and (b(ν), w).
Add edges (b(ν), r(ν)), (r(ν), t(ν)), (b(ν), l(ν)) and (l(ν), t(ν)) to G(ν).

For a node ν �= s on the way from s to the root of T , let µ be the child
of ν on this way. If µ �= s, add edge (b(ν), b(µ)), else add (b(ν), s). Similarly,
for a node ν �= t on the way from t to the root of T , let µ be the child of ν
on this way. Add edge (t(µ), t(ν)) respectively (t, t(ν)). By this construction,
G′ is a planar st-graph with O(n) vertices and O(n2) edges.

Now, the alignment requirements in G′ for the visibility representation,
which is a set of paths φ, is specified. For each non-leaf node of T , the set
φ contains the paths (b(ν), l(ν), t(ν)) and (b(ν), r(ν), t(ν)). Intercluster edges
in G are replaced by paths in G′. These paths are also added to φ. Finally,

8. Drawing Clusters and Hierarchies 207

some paths containing edges incident to vertices of G are added to φ to
avoid unnecessary bends like in the non-clustered version. Thus, φ is a set of
non-intersecting paths in the sense defined below and a constraint visibility
representation can be computed.

Definition 8.18 (Set of Non-Intersecting Paths). Two paths p1 and p2
of a planar graph G with given embedding are said to be non-intersecting if
they are edge disjoint and there is no vertex v of G with edges e1, e2, e3, and
e4 incident to v in this clockwise order around v, such that e1 and e3 are in
p1 and e2 and e4 are in p2. A set of pairwise non-intersecting paths of G is
called a set of non-intersecting paths.

For each non-leaf node ν, the rectangle bounded by the drawing of the corre-
sponding vertices b(ν) and t(ν) and the drawing of the paths (b(ν), r(ν), t(ν))
and (b(ν), l(ν), t(ν)) is defined to be D(ν).

Having at most three bends per edge is as good as it gets: Eades and Feng
gave a family Cn = (Gn, Tn) of examples for hierarchical clustered graphs
such that in every c-planar orthogonal drawing with rectangular clusters,
there are at least O(n) edges that bent more than twice. Gn is a sequence

a1 a2 a3 a4 a5 a6 a7

b1 b2 b3 b4

Fig. 8.11. Example for a lot of bends.

of n copies of the graph H shown in Figure 8.11 such that vertex a7 of a
previous copy of H serves as vertex a1 of the next copy. It is partitioned into
two clusters. Cluster A containing the a-vertices and cluster B containing the
b-vertices. The embedding is as sketched in the figure. Each copy of H has at
least one edge with more than two bends: At least one of the edges {a4, b1}
and {a4, b4} has two or more bends in the cluster region of A. Suppose it’s
{a4, b1}. Then at least one of the edges {a4, b1} and {a1, b1} has three or
more bends. Thus Gn has at least n such edges, but 10n+ 1 vertices.

8.3.3 Multilevel Visualization of Clustered Graphs

Eades and Feng (1996) show a way to represent both the adjacency and in-
clusion relations of a clustered graph in the same drawing. Here, the inclusion

208 Ralf Brockenauer and Sabine Cornelsen

relation is not only just drawn as simple regions containing the drawing of
their corresponding vertices, but as a tree structure that also geometrically vi-
sualizes this relation. As graphs get larger and larger it is a common strategy
to visualize them at multiple abstraction levels. If the graph has a recursive
clustering it is a natural approach to take the clustering of the graph as ab-
straction levels, which provides the possibility to zoom in and out within the
clustered structure of the graph. The method presented in Eades and Feng
(1996) is a three dimensional representation of the clustered graph with each
cluster level drawn at a different z-coordinate, and with the inclusion relation
drawn as a tree in three dimensions. This kind of representation also keeps
track of the abstractions from one level to the next.
Teminology. The height of a cluster v, denoted by height (v), is defined as
the depth of the subtree of T rooted at v.

For a clustered graph, its view at level i is a graph Gi = (Vi, Ei) where Vi

consists of the set of nodes of height i in T . There is an edge (µ, ν) in Ei if
there exists an edge (u, v) ∈ E where u belongs to cluster µ and v belongs to
cluster ν; in other words, edge (µ, ν) is an abstraction of all edges between
cluster µ and ν.

In a plane drawing of a clustered graph, the vertices are drawn as points
and edges as curves in the plane as usual. Each cluster ν ∈ T is drawn as a
simple closed regionR that contains the drawing ofG(ν), as defined in Defini-
tion 8.14. If a clustered graph has a c-planar representation (Definition 8.15),
then it is c-planar (Figure 8.12).

Fig. 8.12. A plane drawing of a clustered graph; the graph shown here is c-planar.

Multilevel Drawings. A multilevel drawing (Fig. 8.13) of a clustered graph
C = (G, T) consists of:

– a sequence of plane drawings of representations from the leaf level (level
0) to the root level of T , where the view of level i is drawn on the plane
z = i.

– A three dimensional representation of T , with each node ν ∈ T of height
i drawn as a point on the plane z = i, and within the region of ν in the
drawing of a view of that level.

8. Drawing Clusters and Hierarchies 209

Fig. 8.13. Multilevel drawing.

For the plane drawing of a clustered graph several already presented au-
tomatic drawing algorithms can be used, such as the straight-line convex or
orthogonal rectangular drawing methods (Section 8.3.1 and Section 8.3.2, see
also Feng (1997)).

Here, the focus is only on the construction of the multilevel drawing which
consists of two steps, the construction of view drawings for each level i, i =
0, . . . , height (root of T), and the drawing of the inclusion tree T .

1. View drawing for each level:

1. For each level i, i = 0, . . . , height (root of T), construct a plane drawing
and translate it to the plane z = i, starting at the leaf level.

2. An edge (µ, ν) in level i+1 is an abstraction for all edges between cluster
µ and ν in level i. Choose one of these edges (u, v) between cluster µ and
ν as a representative edge, and derive the drawing of edge (µ, ν) in the
view of level i + 1 from the drawing of edge (u, v) in the view of level
i. In the two dimensional plane, cluster µ and ν are drawn as simple
closed regions R(µ) and R(ν); the drawing of edge (u, v) intersects the
boundaries of these regions at points x and y (Figure 8.14). To construct
the drawing of edge (µ, ν) in the view of level i + 1, use the segment
between x and y and translate it to the plane z = i+ 1.

i

i+1
µ η

u vy

y

x

x

Fig. 8.14. Deriving a drawing for abstraction edges.

210 Ralf Brockenauer and Sabine Cornelsen

2. 3D drawing of the inclusion tree T :
General results on 3D drawings can be found in Chapter 7. To find a three
dimensional drawing of the inclusion tree, every node µ ∈ T with height i
has to be placed on the plane z = i and it also must be positioned in the
corresponding region R(µ). This is achieved as follows:

1. Compute the position of the nodes of the inclusion tree recursively:
Level i = 0: (leaf level)
Take the positions as computed in the plane drawing of level 0;

Level i > 0:
Let the position for node µ ∈ T be the average of all xy-coordinates
of its children from level i− 1;

2. Route the inclusion edges as straight line segments between the corre-
sponding nodes.

8.4 Hierarchical Representation of Compound Graphs

Sugiyama and Misue (1991) introduce an extension to the class of clustered
graphs, the class of compound digraphs , and they also present an algorithm to
produce an automatic hierarchical representation of compound digraphs. The
main difference between these two graph classes is the use of the inclusion
relation. A clustered graph is a graph with a partition of its vertex set into
clusters. In the representation of a clustered graph, the cluster regions are
drawn as simple closed regions that contain the drawing of all the vertices
belonging to that cluster; the inclusion relation is restricted to these cluster
regions, and there are no edges connecting them. In a compound digraph, the
inclusion relation as well as the adjacency relation is defined on the same set
of vertices.

Definition 8.19 (Compound Graph). An inclusion digraph is a pair
Dc = (V,E) where E is a finite set of inclusion edges whose element
(u, v) ∈ E means that u includes v

(
Figure 8.15 (a)

)
.

An adjacency digraph is a pair Da = (V, I) where F is a finite set of
adjacency edges whose element (u, v) ∈ E means that u is adjacent to v(
Figure 8.15 (b)

)
.

A compound digraph is defined as a triple D = (V,E, I) obtained by
compounding these two digraphs

(
Figure 8.15 (c)

)
.

In Sugiyama and Misue (1991), the inclusion digraph Dc is required to
be a rooted tree and is also called the inclusion tree of D. The depth of a
vertex v ∈ V is the number of vertices on the path between v and the root
of Dc and is denoted by depth (v), with depth (root) = 1, where root denotes
the root of Dc. The parent of a vertex v ∈ Dc is denoted by Parent (v).

8. Drawing Clusters and Hierarchies 211

a

b c

d e f hg i

j k l m n

a

b c

d e f hg i

j k l m n

a d

e

f

b

c

g

i

j k

l

h

m

n

(a) (b) (c)

Fig. 8.15. (a) Inclusion tree Dc (b) Adjacency graph Da (c) The compound
digraph D obtained from (a) and (b).

Figure 8.16 shows a representation of the compound digraph and its com-
pund levels of Figure 8.15 (c). The adjacency edges drawn with solid lines
have downward orientation and edges drawn with broken lines upward. The
vertices of the compound digraph are drawn as rectangles. The inclusion rela-
tion (u, v) ∈ E is realized as the rectangle representing vertex u is inside the
rectangle representing vertex v. The conventions for the drawing of compound
digraphs are specified more precisely below.

a

d

j

h

f e
k

l

c

g

i

b

n

m

(1)
(1,1)

(1,1,1)

(1,1,2)

(1,1,2,1)

(1,1,2,2)

(1,2)

(1,2,1)

(1,2,2)

(1,2,2,1)

(1,2,2,2)

(1,2,3)

Fig. 8.16. The representation of a compound digraph from Figure 8.15 (c) and its
compound levels.

212 Ralf Brockenauer and Sabine Cornelsen

8.4.1 Conventions

Drawing Conventions.

C1 : Vertex Shape:
A vertex is drawn as a rectangle with horizontal and vertical sides.

C2 : Inclusion:
An inclusion edge (u, v) is drawn in such a way that the rectangle corre-
sponding to u includes geometrically the rectangle corresponding to v.

C3 : Hierarchy:
Vertices are laid out hierarchically in terms of both inclusive and ad-
jacent relations on parallel-nested horizontal bands, called compound
levels.

C4 : Down-Arrow:
An adjacency edge (u, v) is drawn as a downward arrow with possible
bends, originating from the bottom side of the rectangle corresponding
to u and terminating on the top side of the rectangle corresponding to v.

Drawing Rules. To enhance the readability and the aesthetic of the draw-
ing, the following objectives should be satisfied as much as possible.

R1 : Closeness:
Connected vertices are laid out as close as possible to each other.

R2 : Edge Crossings:
The number of crossings between adjacency edges is reduced as much
as possible.

R3 : Edge-Rectangle Crossings:
The number of crossings between adjacency edges and the vertex rect-
angles is reduced as much as possible.

R4 : Line-Straightness:
One-span adjacency edges, i.e., edges between adjacent levels, are drawn
as straight lines, whereas long span adjacency edges are drawn as poly-
gonal lines with as few bends as possible.

R5 : Balancing:
Edges originating from and ending at a vertex rectangle are laid out in
a balanced form.

The above rules specify topological and metrical layout properties; their
priority is top-down.

8.4.2 The Layout Algorithm

The algorithm consists of the following four steps that are similar to those of
an algorithm by Sugiyama et al. (1981) and Sugiyama (1987) for the layered
representation of a general digraph. Due to the complex structure of a com-
pound digraph, these steps must be modified and extended, in particular to

8. Drawing Clusters and Hierarchies 213

display the inclusion relations. A brief description of the four steps follows,
but the focus will be mainly on the ideas and the modifications that have
to be done to the original Sugiyama algorithm (see Chapter 5). A detailed
description of this algorithm is given in Sugiyama and Misue (1991).

Step 1: Hierarchization
Due to the two kinds of relations existing in a compound graph, this step is
different to the one in Sugiyama’s original algorithm for general graphs, so it
will be explained in more detail.

A. Compound Level Assignment
In this step, the vertices of the compound digraph are assigned to compound
levels to satisfy the drawing conventions. This level assignment places the
vertices on parallel-nested horizontal bands. As shown in Figure 8.16, the
compound levels can be expressed by the assignment of a sequence of positive
integers to every vertex v ∈ V .

Let Σ = 1, 2, 3, . . . and Σ+ = Σ1 ∪ Σ2 ∪ Σ3 ∪ . . . , and suppose that
a lexicographical ordering is introduced for elements of Σ+, e.g., (1, 1, 2) <
(1, 2) < (1, 2, 1) < (1, 2, 2). Then the problem of assigning compound levels
to the vertices of D is to find a mapping c-level : V → Σ+ satisfying the
Inclusion and Down-Arrow conventions (C2, C4).

The Inclusion convention (C2) can be expressed as follows:

I1 : ∀ v ∈ V : c-level (v) ∈ Σdepth (v)

I2 : For any inclusion edge (v, w) ∈ E : c-level (w) = append (c-level (v), s);
s ∈ Σ and append is a function that appends a component to a sequence.

The Down-Arrow convention (C4) is more complicated: For any adjacency
edge (v, w) ∈ F there is a unique path P from v to w in the inclusion tree
Dc:

P : (v = pm, pm−1, . . . , p1, t, q1, q2, · · · , qn−1, qn = w),

where t is the top vertex, i.e., t has minimal depth. P originates from
the rectangle of v, goes out across pm−1, . . . , p1, passes t, goes in across
q1, q2, · · · , qn−1, and terminates on w. To formulate the Down-Arrow con-
vention, the order among each pair (pi, qi) of vertices that have the same
depth for any adjacency edge (v, w) ∈ F must be specified as follows:
D1 : if depth (v) > depth (w) (or m > n),

(a) c-level (pi) ≤ c-level (qi), i = 1, . . . , n− 1
(b) c-level (pn) < c-level (w)

D2 : if depth (v) ≤ depth (w) (or m ≤ n),
(a) c-level (pi) ≤ c-level (qi), i = 1, . . . ,m− 1
(b) c-level (v) < c-level (qm).

For example, in Figure 8.15, the path corresponding to adjacency edge (j, l)
is j, e, b, f, l where b is the top vertex. Since depth (j) = depth (l), we have
c-level (e) ≤ c-level (f) and c-level (j) < c-level (l) from D2.

214 Ralf Brockenauer and Sabine Cornelsen

A compound digraph has a compound level assignment if and only if there
exists a mapping c-level : V → Σ+ satisfying I1, I2, D1, and D2.

B. Hierarchization Algorithm
A hierarchical map of the graph can not always be determined because the
digraph might be cyclic. If there are cycles in D, some of the adjacency edges
need to be reversed in order to obtain a hierarchization. Because the prob-
lem of finding this minimum set of feedback adjacency edges is NP-complete
(Garey and Johnson, 1991; Lempel and Cederbaum, 1966), heuristics are
introduced for determining the edges that have to be reversed (see also Sec-
tion 5.2).

In order to meet the requirements D1 and D2, every adjacency edge of D
is replaced with one of the two following types of adjacency edges,→ and⇒,
which represent the relations < and ≤, respectively, in D1 and D2. If edges
between the same pair of vertices are duplicated during the replacement,
reducing rules such as → = → + →, ⇒ = ⇒ + ⇒, and → = → + ⇒
are applied to determine the resulting edge type. The graph derived by this
edge replacement is called the derived graph of D. An adjacency edge in the
derived graph is called an original edge, if e ∈ F , derived edge otherwise
(Figure 8.17). Note that in the derived graph of D, every adjacency edge
connects two vertices with identical depth. The derived graph ofD = (V,E, I)
is denoted by DD = (V,E, ID, type), where ID is the derived set of adjacency
edges and type : ID→ {→,⇒}.

(a) (b)

(1)
a

b c

d e f hg i

j k l m n

(1,2)

(1,2,1)

(1,2,3)

(1,2,2)

(1,1,2)

(1,1,2,2)

(1,1,2,1)

(1,1)

(1,1,1)

(1,1,2)

(1,2,2,1) (1,2,2,2)
(1,1,2,1)

a

b c

d e f hg i

j k l m n

*

*

*
*

*

Fig. 8.17. The derived graph (a) and the assigned compound digraph (b) obtained
from the compound graph of Figure 8.15 (c); edges in (a) marked with asterisk (�)
are derived edges.

Now, the Down-Arrow convention is established and the compound levels
can be assigned to the vertices. If DD is not cycle-free, the cycles have to be
resolved. To do this, the strongly connected components of DD are investi-
gated, and the cycles are destroyed by either contracting strongly connected
components into a so-called proxy vertex or by deleting some of the adjacency
edges. This procedure leads to a cycle-free, hierarchical graph to which one
finally can assign the compound levels. Of course, the deleted edges have to

8. Drawing Clusters and Hierarchies 215

be put back in again, as well as the proxy vertices must be replaced again
later on. All vertices of the component of DD, which have been contracted
to a proxy vertex, are assigned the same compound level. Each adjacency
edge (v, w) of the compound digraph D = (V,E, I) is now checked, whether
c-level (v) < c-level (w). If this does not hold, the direction of that edge is
reversed. The result is an assigned compound digraph DA = (V,E, IA, c-level)(
Figure 8.17 (b)

)
.

Step 2: Normalization
In an assigned compound digraph DA, an adjacency edge (v, w) ∈ IA is
said to be proper if and only if c-level (Parent (v)) = c-level (Parent (w)) and
tail (c-level (v)) = tail (c-level (w)) − 1, where tail is a function, that returns
the last number of the c-level-string as an integer. The assigned compound
digraph DA is now transformed into a proper compound digraph by replacing
every non-proper adjacency edge with appropriate dummy vertices, dummy
inclusion edges and dummy proper adjacency edges (cf. Sugiyama and Misue
(1991) for more detail).

Step 3: Vertex Ordering
The idea of this step is similar as in Sugiyama’s original algorithm for gen-
eral graphs. The horizontal order of the vertices per level is determined by
permuting their order on each level in such a way that the drawing rules
Closeness, Edge Crossings, and Edge-Rectangle Crossings (R1 – R3) are sat-
isfied as much as possible. The problem of minimizing edge crossings is NP-
complete even for only two levels (Garey and Johnson, 1991). Minimizing
of edge-rectangle crossings, which is equivalent to the linear arrangement
problem, is also NP-complete (Garey and Johnson, 1991). Hence, heuristics,
i.e., barycentric ordering as in Sugiyama’s algorithm, are used to accomplish
these tasks. In a compound digraph there exist also local hierarchies due to
the inclusion relation, so vertex ordering must also be applied to these lo-
cal hierarchies, i.e., subtrees of Dc. This step leads to an ordered compound
digraph.

Step 4: Metrical Layout
In this last step, the positions of vertices (i.e., horizontal and vertical po-
sitions, widths and heights of rectangles) are determined by attaining the
Closeness, Line-Straightness, and Balancing rules (R1, R4, R5) as much as
possible. This problem can be expressed as a quadratic programming prob-
lem; a heuristic called the priority layout method is also developed to solve the
problem. Once the vertex positions are determined, a routing for the edges
can easily be achieved. The orientation of the reversed edges is changed back
again, and all inserted dummy vertices and dummy edges are deleted and
their corresponding originals are rearranged. This step finally leads to an
automatic drawing of the original compound digraph.

216 Ralf Brockenauer and Sabine Cornelsen

8.5 Force-Directed Methods for Clustered Graphs

Force-directed graph drawing methods (cf. Chapter 4) can also be adopted to
support and show the structure of a clustered graph. In the following sections
we will see different ways of adaptation with different design goals.

One possibility to receive a more structured layout for clustered graphs is
to decide between different spring forces. In Sections 8.5.2 and 8.5.3 we show
two different approaches for an expanded force model for clustered graphs.

8.5.1 Inserting Dummy Vertices

The easiest way to achieve clustering is to insert dummy vertices as follows
(Figure 8.18):

Fig. 8.18. Realizing clustering constraints in a force-directed approach by inserting
dummy attractors (shaded vertices) in each cluster.

1. LetG = (V,E) be a graph with a partition (C1, C2, . . . , Ck) on the vertex
set V . For each Ci, 1 ≤ i ≤ k, add a dummy attractor vertex ci to the
graph.

2. Add attractive forces between an attractor ci and each vertex of the
corresponding cluster Ci.

3. Add repulsive forces between pairs of attractors and between attractors
and vertices not belonging to any cluster (i.e., if

⋃k
i=1 Ci ⊂ V).

In this approach, no new forces have to be added. After inserting these
attractors the vertices within a cluster will be closer to each other than before,
and the distance between the clusters will grow.

8.5.2 Interactive Clustering

Huang and Eades (1998a) describe an animated interactive system for clus-
tering and navigating huge graphs, called DA-TU, where they use the following
expanded force model consisting of three different spring forces (Figure 8.19):

8. Drawing Clusters and Hierarchies 217

– internal-spring
A spring force between a pair of vertices that belong to the same cluster.

– external-spring
A spring force between a pair of vertices that belong to different clusters.

– virtual-spring
In each cluster there is a virtual vertex (black vertices in Figure 8.19) that
is connected to all vertices belonging to the same cluster by virtual edges;
this is a similar approach to the concept of attractors described above. A
virtual spring force exists between a vertex and a virtual vertex along a
virtual edge.

internal external virtual

Fig. 8.19. Expanded spring model.

Additionally there is a gravitational repulsion force between each pair of
vertices. All forces are applied additively to each vertex.

Some of the features of the DA-TU system are worth to be mentioned here
because they show a possible application for clustering:

– The user can interactively change the graph.
– The user can interactively change the clustering of the graph.
– All transitions from one state of the graph to another are animated.
– Clusters can be interactively contracted and expanded, respectively. This is
in particular useful for large graphs that do not fit on the screen or are too
large to comprehend, so the clustered structure is used to navigate through
the graph. If some of the clusters are contracted, DA-TU draws a so-called
abridgement of the given graph.

Definition 8.20 (Abridgement, Ancestor Tree). A clustered graph C′ =
(G′, T ′) is an abridgement of the clustered graph C = (G, T) if T ′ is an
ancestor tree of T with respect to a set U of nodes of T and there is an edge
between two distinct nodes u and v of G′ if and only if there is an edge in G
between a descendant of u and a descendant of v.

218 Ralf Brockenauer and Sabine Cornelsen

In other words, the ancestor tree T ′ is a subtree of T consisting of all nodes
and edges on paths between elements of U and the root. Figure 8.20 shows
such an ancestor tree for the set U of black nodes as the shaded area of the
original inclusion tree.

Fig. 8.20. The shaded area is the ancestor tree of the set of black nodes.

8.5.3 Meta Layouts

A similar approach is taken by Wang and Miyamoto (1995). They also use
three forces but in a slightly different way. Instead of inserting virtual vertices
as attractors in each cluster they use the concept of a meta-graph.

First, the edge set of the given graph is divided into intra-edges, i.e.,
edges between vertices belonging to the same cluster, and inter-edges, i.e.,
edges between vertices belonging to different clusters.

The forces in the force-directed placement are also divided into two cate-
gories:

– intra-force
A spring force between a pair of vertices that belong to the same cluster.

– inter-force
A spring force between a pair of vertices that belong to different clusters.

A force-directed placement is constructed by applying the intra- and inter-
forces. An undirected graph Gmeta is then constructed by collapsing the
clusters of G into meta-vertices and transforming inter-edges of G existing
between a pair of clusters into one meta-edge each. This sounds similar to
the concept of a quotient graph (Definition 8.3), but goes further than that.
A layout for Gmeta is called meta-layout of G and can be obtained from the

8. Drawing Clusters and Hierarchies 219

force-directed placement where the dimensions and center of each meta-vertex
are set to the dimensions and center of the underlying subgraph, respectively
(Figure 8.21). To calculate the forces between the meta-vertices, an improved
force-directed placement is used that takes the different vertex-sizes into ac-
count (Wang and Miyamoto, 1995). The net force on a meta-vertex is defined
as the meta-force on all vertices contained in the cluster represented by that
meta-vertex.

a b

c

d

f g

h

i

j

S1

S2

S3

Fig. 8.21. Meta-graph and meta-layout.

In Figure 8.21 a force-directed layout and a partition are given on the left
side, the corresponding meta-layout is shown on the right. The forces that
are applied to vertex c are:

– The intra-force on c is the sum of forces between c, a and c, b
– The inter-force on c is the sum of forces between c and the vertices of
subgraphs S2 and S3

– The meta-force on c is the net force on meta-vertex S1 in the meta layout.

To finally compute a drawing of the clustered graph, Wang and Miyamoto
(1995) propose a divide-and-conquer approach.

Divide-and-Conquer Drawing Approach. A divide-and-conquer draw-
ing algorithm would draw a clustered graph in the following three steps:

1. divide the graph into subgraphs (cluster);
2. draw the subgraphs;
3. compose the subgraph layouts together to form the resulting layout.

The problem with this approach is that inter-edges are not taken into account
which may result in a drawing with many crossings between inter-edges or
long inter-edges.

220 Ralf Brockenauer and Sabine Cornelsen

In Wang and Miyamoto (1995), the last two steps of this divide-and-
conquer approach are combined within one force-directed placement algo-
rithm by using the following composite force Fcomp to position a vertex:

Fcomp = Fintra + S(t)Finter +
(
1− S(t))Fmeta

where Fintra , Finter , Fmeta are the intra-, inter- and meta-force on a vertex,
respectively, and S(t) ∈ [0, 1] is a function of layout time t such that S(t)
decreases as t increases after a threshold t′ and reaches 0 at another threshold
t′′ > t′.

By applying this composite force, the force-directed placement can be
divided into three phases:

1. Between time 0 and time t′: S(t) = 1 =⇒ Fcomp = Fintra + Finter.
The force-directed placement leads to a layout with uniform edge lengths
and a small number of edge crossings, as shown in Figure 8.22 (a).

2. Between time t′ and time t′′: S(t) decreases:
The strength of the inter-forces is reduced while the strength of the meta-
forces is increased at the same time.

3. at time t′′: S(t) = 0 =⇒ Fcomp = Fintra + Fmeta.
Inter-forces do not count anymore; the intra-forces keep the vertices con-
tained in the same cluster close together while the meta-forces fix the
final positions of the clusters and eliminate possible overlaps between
clusters. The resulting structured layout is shown in Figure 8.22 (b).

Fig. 8.22. Layout created at time t′ (left) and resulting layout (right).

Wang and Miyamoto (1995) also present a way to add layout constraints
to their force-directed placement algorithm by integrating a constraint solver.

8. Drawing Clusters and Hierarchies 221

Integration of a Constraint Solver. Layout constraints of the three fol-
lowing types can occur:

– absolute constraints , to fix an absolute vertex position
– relative constraints , to constrain the position of a vertex in relation to other
vertices

– cluster constraints, to cluster several vertices into a subgraph that can be
processed as a whole.

While trying to solve given constraints, some vertices may block others
from reaching their optimal positions calculated by the force-directed place-
ment algorithm. This may lead to a poor layout.

A

B

A.x = B.x

B A

A.x > B.xA.x < B.x

BA

Fig. 8.23. Examples for constraints that become barriers.

If a constraint for two vertices A and B is given that prevents vertex A
from reaching its optimal position, then vertex B is called a barrier for vertex
A. Figure 8.23 shows several examples of barriers; the arrows indicate the
direction and the strength of the forces calculated by the layout algorithm, the
corresponding constraint shown below would be violated if these movements
would be performed. In Figure 8.23 (a) no movement of either vertex is
possible without violating the corresponding constraint. In the other two
examples, the vertices could at least be partially moved until one of the
vertices becomes a barrier for the other.

To avoid barriers while at the same time improving the layout, the vertices
could be moved together without changing their relative positions. This is
done by introducing rigid sticks to represent constraints in the force-directed
placement. If vertex v1 becomes a barrier for vertex v2, a rigid stick is in-
troduced between them so that they have to move like one rigid object. The
movements of v1 and v2 are determined by the weighted average of the forces
that are working on them:

f =
w1f1 + w2f2
w1 + w2

where f is the new resulting force on v1 and v2, f1 and f2 are the old forces on
v1 and v2, respectively, and w1 and w2 are weights of v1 and v2, respectively.

The layout algorithm and the solver cooperate to solve the given con-
straints as much as possible while at the same time keeping a good layout
resolution. This cooperation works in an iteration of the following four steps:

222 Ralf Brockenauer and Sabine Cornelsen

Step 1 : Calculate forces ;
Step 2 : Introduce sticks and distribute forces ;
Step 3 : Calculate new positions ;
Step 4 : Satisfy constraints .

Steps 1 and 3 are performed by the layout algorithm, whereas the other
two steps are performed by the solver. Figure 8.24 shows an example of
applying constraints to the graph of Figure 8.22.

d3.y = d5.y

abs(a4.x - a2.x) <= 120
abs(a1.x - a5.x) <= 70
a5.y = a1.y = a2.y - 64
a4.y = a3.y = a2.y

c2.y = c5.y = c4.y = c1.y

d

a

b

c

3 5

3

1 5

4 2

2 5 4 1

Fig. 8.24. Resulting layout of the graph of Figure 8.22 after adding the constraints
on the left side.

8.6 Online Graph Drawing of Huge Graphs
– A Case Study

Traditional graph drawing algorithms assume that the given graph can be laid
out in a readable and understandable way on the screen or on paper. But
there are important situations where this assumption does not hold. Suppose
for example the graph displaying parts of the WWW or graphs arising in
information retrieval. These graphs can be very large and there is no way to
fit them in a readable way on a display medium.

Most graph drawing systems approach the layout of huge graphs in the
following way:

8. Drawing Clusters and Hierarchies 223

1. Layout the graph on a virtual and very large page.
2. Provide a smaller window with scroll bars to show the part of interest,
and to allow the user to navigate through the graph.

However, some problems are involved in this approach:

– The whole graph may not be known, e.g., in distributed systems, where a
local vertex only knows part of the graph.

– To explore the graph, the user can only move geometrically through the
graph by the means of the scroll bars. But the user might want to explore
the graph in a logical way, in particular, if the graph contains relational
data or hyperlinks. Moreover, long edges that do not fit on the screen are
hard to follow. A more user-oriented approach would be better; the user
should be able to control the logical content of the display.

– There is no mental map (Eades et al., 1991) that helps the user to keep
track of his exploration so far. Even worse, the user can not see the whole
graph and might get lost in empty areas.

– Besides that, it costs a lot of memory to store and display the large virtual
screen.

To deal with these problems, several techniques have been proposed (see
Sarkar and Brown (1994); Eades et al. (1991); Nielsen (1990); Mukherjea
et al. (1994); Robertson et al. (1993)). For example, in Sarkar and Brown
(1994) the fish-eye view technique is described where a detailed picture of a
subgraph is shown along with the so called context of that subgraph. This
kind of view provides the user with more information about the position of the
subgraph within the whole graph. Another approach are three-dimensional
methods, such as cone trees (Robertson et al., 1993) which lead to an increase
in density of information on the screen.

These techniques work effectively for graphs of moderately large size, but
they can not be applied when the graph is not completely known. Moreover,
they still predefine the geometry of the graph.

The aim of Online Graph Drawing is the visualization of huge graphs
which may be partially unknown. At any time, a tiny but non-empty subgraph
called the logical frame is known and displayed on the screen. The user can
explore the huge graph by changing the logical frame.

The layout of such a logical frame has to satisfy the usual aesthetic criteria
for drawing graphs, e.g., minimization of edge crossings and uniform vertex
distribution. Additionally, the transition from one picture of a logical frame
to the next should preserve the user’s mental map (Eades et al., 1991), i.e.,
successive drawings should not differ much, so that the user can easily follow
the change in the drawing and does not loose orientation in a completely
different layout when changing the focus.

Eades et al. (1997b) describe a model of Online Graph Drawing as well
as an instantiation of that model in a system for Online Force-Directed An-

224 Ralf Brockenauer and Sabine Cornelsen

imated Visualization (OFDAV) for assisting web navigation (see also Eades
et al. (1997a)). An interesting part of that model is a new force-directed
drawing algorithm, that can be used to produce a continuous sequence of
layouts according to the above mentioned criteria.

In OFDAV, the view of the user is focused on a small subgraph, the logical
frame, that is defined by a focus vertex v. A force-directed graph drawing al-
gorithm is used to draw this subgraph as well as its logical neighborhood. The
user can change focus by selecting another vertex within the displayed frame
which then becomes the new focus node, and the view changes according to
this selection. Multiple animation steps are used to guide the user through
the change of view and to preserve the mental map. A linear history is also
kept by lining up a certain number of previously visited focus vertices.

The focus vertices together with their neighborhoods form a clustering of
the graph.

The Online Graph Model. To explore a huge, partially unknown graph
G = (V,E), a sequence of logical frames F1 = (G1, Q1), F2 = (G2, Q2), . . . is
used (Figure 8.25):

F
F

F

F
F

F
F

1

2

3

i-2

i-1

i+1

i

G

Fig. 8.25. The path of exploration of a huge graph G by a sequence of logical
frames.

Each logical frame Fi = (Gi, Qi) consists of a connected subgraph Gi =
(Vi, Ei) of G and a queue Qi of focus vertices. Successive frames differ only
by a few vertices. The sequence of logical frames represents the sequence
of subgraphs that are viewed by the user of the system and is determined
by the interaction of the user who can change the focus and thereby decides
which new logical frame has to be displayed. To define the logical frame more
precisely, we need to explain the concept of neighborhood.

Suppose that G = (V,E) is a graph, v ∈ V , and d is a non-negative
integer. Then, the distance-d neighborhood Nd(v) of v is the subgraph of G
induced by the set of vertices whose graph-theoretic distance from v is at
most d; note that v ∈ Nd(v). In OFDAV only distance-1 neighborhoods are

8. Drawing Clusters and Hierarchies 225

used, so we write N(v) instead of N1(v) in the following, and call it the
neighborhood of v.

Definition 8.21 (Logical Frame, Focus Vertex). Given a queue Q =
(v1, v2, . . . , vs) of vertices of graph G = (V,E), the subgraph of G induced by
the union of N(v1), N(v2), . . . , N(vs) is called a logical frame F = (G′, Q)
(Figure 8.26 (a)), with G′ = (V ′, E′) and

V ′ =
s⋃

i=1

N(vi) E′ = {(u, v) ∈ E |u, v ∈ V ′} .

The vertices of the queue Q are the focus vertices of the logical frame F .

Clustering. Suppose that Q = (v1, v2, . . . , vs) is the queue of focus vertices
in G. Each neighborhood N(v), for v ∈ Q, can be divided into two parts, the
common part C(v), and the local part P (v), defined as follows:

– C(v) is the part of the neighborhood N(v) that also occurs in the neigh-
borhood of other focus vertices v′ �= v, that is:

C(vj) =
s⋃

i=1,i�=j

N(vj) ∩N(vi) .

– P (v) is the part of the neighborhood N(v) that does not occur in the
neighborhood of any other focus vertex v′ �= v (Figure 8.26 (b)), that is:

P (vj) = N(vj)−
s⋃

i=1,i�=j

N(vi) .

P (v)i+2

P (v)i+1

P (v)i+3
vi+2

vi

vi+1

vi+3

N (v)i+2

N (v)i+1

N (v)i+3

N (v)i

vi+2

vi

vi+1

vi+3

Fig. 8.26. Neighborhood of the focus vertices (left) local part neighborhood
(right).

The user can explore the graph by changing the focus vertex, and this
exploration is visualized by a sequence of logical frames. In practice, only a

226 Ralf Brockenauer and Sabine Cornelsen

small number of vertices can be displayed on the screen at a time, in particular
if the vertices are labeled, e.g., by the names of the html-pages as in OFDAV.
Here, a global constant B is introduced as an upper bound for the length
of the focus queue Q. For www-graphs, small values of B between 7 and 10
ensure that there are about 20 to 60 vertices on the screen at a time.

The transition from one logical frame to the next is obtained by adding the
new focus vertex with its local neighborhood. If the length of Q was already
B before, then the least recently used focus vertex and its local neighborhood
are deleted (FIFO policy).

The local neighborhoods of the focus vertices in each frame can be viewed
as the clusters of this frame. This will become clearer in the next section
where the force model is explained.

The Force Model. The force model is based on Eades (1984) and con-
sists of a combination of Hooke’s law springs and Newtonian gravitational
forces. In order to address the specific criteria of this online drawing ap-
proach, extra Newtonian gravitational forces among the neighborhoods,
N(vi), N(vi+1), . . . , N(vi+B), of the focus vertices are added. These forces
are used to separate the neighborhoods so that the user can visually identify
the changes induced by changing the focus. This leads to a clustering of the
displayed subgraph.

The total force applied to a vertex v of a logical frame Fi = (Gi, Qi), with
Gi = (Vi, Ei) is

f =
∑

u∈N(v)

fuv +
∑

u∈Vi

guv +
∑

u∈Qi

huv

where fuv is the force exerted on v by the spring between u and v, and guv

and huv are the gravitational repulsions exerted on v by one of the other
vertices u in Fi (Figure 8.27).

v1

v 4 v 2

v 3

v

fuv

guv

huv

Fig. 8.27. The modified force model applied to the logical frame Fi.

8. Drawing Clusters and Hierarchies 227

The details of the modified force-directed drawing algorithm are given in
Eades et al. (1997b). Here, we will only explain the idea of this approach.

The modified force model aims to satisfy the following four aesthetic cri-
teria:

1. The spring force fuv between adjacent vertices is aimed to ensure that
the distance between vertices u and v is approximately equal to the zero
energy spring length.

2. The gravitational force guv ensures that the vertices are not too close
together and distributed evenly.

3. The extra gravitational force huv aims to minimize the overlaps among
the (local) neighborhoods within a logical frame. This also ensures that
the next vertices that have to disappear are placed close together which
makes the identifying of the deleted objects easier for the user.

4. huv also aims to keep the layout of the queue of focus vertices close to
a straight line; new vertices appear in one end of that line while old
vertices disappear at the other end. This helps the user in understanding
the direction of exploration of the huge graph.

8.7 Summary

For a graph that does not have a natural cluster-structure it is not at first
glance clear what a good clustering strategy is. Often, the vertices are gath-
ered together with respect to graph connectivity. Two main heuristics to do
this are introduced in Section 8.2. One is to integrate cut size and cluster size
balance within a single objective function, like the ratio cut partition, and
to optimize them with a suitable procedure. Another one makes use of the
eigenvalues of the Laplacian matrix of the graph. Besides connectivity, other
graph properties like similarity of neighborhoods can also be of interest.

Once a graph has a cluster-structure, the question arises, how to make
this structure visible. If we want to draw a really large graph, it seems to
be a good method to draw only the quotient graph. But sometimes one is
interested to also see what happens within a cluster. In Section 8.3 and
Section 8.4 two methods are presented that draw clusters as shapes which
include the corresponding vertices. Additionally, crossings between edges and
borders of shapes are avoided. Especially in the planar case in Section 8.3,
such a crossing is only allowed if one endpoint of the edge is within the
corresponding cluster and the other one is outside of it.

Another way to show the cluster-structure is to draw vertices that belong
to the same cluster closer together than such that are in different clusters.
Using force-directed methods, one can achieve this by adding a dummy vertex
to each cluster or by regarding clusters as big vertices. In this case the force-
function must respect the different size of the vertices.

9. Dynamic Graph Drawing

Jürgen Branke

9.1 Introduction

Many graph drawing (GD) scenarios are dynamic inasmuch as they involve
a repeated redrawing of the graph after frequently occurring changes to the
graph structure and/or some layout properties.

For example, an interactive system might allow the user to manually edit
the graph by inserting or deleting vertices and edges, or by setting additional
layout constraints (e.g. vertex vi should be placed above vertex vj). If the
graph is large, it might be necessary to scale parts of the layout, or the
user might be allowed to expand or collapse subgraphs by clicking on them.
Finally, the represented graph structure may be dynamic, for example the
web-sites on a server and their interconnectivity might change over time, and
so will a corresponding graphical diagram.

The easiest solution to the above mentioned dynamics would be to con-
sider the drawing of the graph, after each modification, as a completely inde-
pendent problem, and apply an existing, static GD algorithm from scratch at
every step. However, this straightforward approach has two drawbacks: first,
it may be inefficient. Since the graph has been modified only slightly, much
of the old drawing might be reused to save computation time. Second, and
even more important, if the user already familiarized with the drawing, it may
mean a significant effort for the user to re-familiarize with the drawing after it
changed. The user has build up a so-called “mental map” (Eades et al., 1991)
that should be preserved when possible. In other words, in addition to the
usual optimization criteria for graph layout, dynamic graph drawing should
try to maintain the users mental map, and has to find a good compromise
between these two goals.

A number of authors have addressed these problems and devised dynamic
GD algorithms that provide special treatment of layout adjustment after a
graph has changed (as opposed to static approaches which assume that the
whole graph, and all layout constraints, are known in advance and do not
change over time). Depending on the application, dynamic GD algorithms
are able to handle the addition/deletion of (groups of) vertices/edges, to
accommodate additional layout constraints, or to scale parts of the graph.

This chapter explains the special aspects that should be considered when
dealing with dynamic graph drawing, provides a survey of the relevant liter-
ature, and suggests new avenues for future research.

The chapter’s outline is as follows: Section 9.2 first tries to elucidate the
concept of the mental map and surveys different approaches that authors

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 228-246, 2001.
 Springer-Verlag Berlin Heidelberg 2001

9. Dynamic Graph Drawing 229

have suggested to capture it. Then, in Section 9.3, a number of frameworks
and algorithms proposed in the literature for dynamic graph drawing are
presented.

The chapter concludes with a summary and some remarks on possible
future work.

9.2 Maintaining the Mental Map – What Does It Mean?

When a user looks at a drawing, he or she will learn about the drawing’s
structure, will learn to navigate in the drawing and try to understand its
meaning. This effort to become familiar with a drawing has been termed
“building a mental map” (Eades et al., 1991). In the case of dynamic graph
drawing problems, when the layout changes over time, the user has to re-
peatedly adjust his/her mental map. Clearly, it would be advantageous to
minimize this effort for the user. An example is given in Figure 9.1. If the
diagram depicted in (a) is the current layout, and the user adds a new edge
from vertex 28 to vertex 22, then rerunning the layout algorithm from scratch
might result in (b), which looks, at first glance, quite different from (a).

(a) (b) (c)

Fig. 9.1. (a) Current layout, (b) New layout after inserting edge 28-22 and re-
running static layout algorithm, (c) New layout with preservation of the mental
map.

There have been two suggested solutions to this problem:

1. Support the user by animating and highlighting the changes so that the
changes can be easily recognized and the transitions are smooth.

230 Jürgen Branke

2. Minimize the changes such that the effort to regain familiarity is mini-
mized. For the example in Figure 9.1, drawing (c) keeps the position of
all vertices of (a), and the graph is immediately recognized as almost the
same graph as in (a). Of course this aim is often in conflict with tra-
ditional aesthetic criteria (like e.g. minimization of edge crossings, even
distribution of vertices on the page etc.), thus a compromise needs to be
found.

Obviously, animation and minimization of changes are complementary
and can be applied simultaneously for best results, i.e. first a new layout is
computed that minimizes the changes to the current drawing, and then the
transition from the old to the new layout is animated.

Animation seems to be relatively straightforward and will not be discussed
here in more detail. Instead, the focus of this chapter is put on the second
issue, change minimization.

This requires to clarify the intuitive but rather fuzzy meaning of “min-
imizing changes to a layout” in a way that the “mental map” is preserved,
an effort that has also been termed “maintaining dynamic stability”. So far,
numerous models have been suggested in the literature to capture the notion
of the “mental map” or “dynamic stability”. They basically can be grouped
into two categories: either the allowed changes are restricted to a subset of
the vertices, or a distance metric is used to measure the change, which al-
lows to trade-off aesthetics with change. These two general approaches will
be treated in more detail in the following subsections.

Which of the many suggested models is the most appropriate for which
application is still an open issue. Bridgeman and Tamassia (1998) system-
atically examine and compare a number of difference metrics for orthogonal
layouts (most of them can be applied to other layout paradigms as well). They
conclude that most metrics behave well in the sense that their result increases
as the number of vertices allowed to be moved by a layout adjustment al-
gorithm is increased, at least as long as the changes to the graph structure
are not too large. Nevertheless, more extensive comparisons and user studies
are needed, maybe similar to Purchase et al. (1996) and Purchase (1997), in
which the relevance of aesthetic criteria has been examined.

9.2.1 Restricting Adjustments to Parts of the Layout

A rather stringent concept of preserving the mental map is to not allow any
changes to the current drawing i.e. to the current placement of vertices and
edges that are not directly affected by a change. Then, the layout algorithm’s
only decision variables are the placement of new vertices and the routing of
new edges, which is done in a way to minimize common static aesthetic
criteria. Of course, this approach perfectly maintains the mental map. But
under such stringent restrictions, not even consistency, i.e. adherence to the
fundamental layout style rules like tree structure or orthogonality (North,

9. Dynamic Graph Drawing 231

1996), may always be guaranteed, and often the resulting layout will be quite
bad according to other aesthetic criteria, because e.g. many edge crossings are
usually unavoidable. Algorithms for orthogonal graphs of maximum degree 4
that allow the insertion of new vertices without changing the placement of the
other vertices may be found in Fößmeier (1997a) and Papakostas and Tollis
(1998). Also, Miriyala et al. (1993) suggest a heuristic to route additional
edges in an otherwise fixed orthogonal layout.

The no-change restriction may be weakened by allowing adjustment of
vertices in the “vicinity” of a change. In Böhringer and Paulisch (1990), the
vicinity of a change has been defined as all vertices directly affected by the
change as well as vertices with a distance smaller than a certain edge length
(a parameter to be specified). This reflects the idea that a user may tolerate
changes in a small portion of the layout around the area where the graph
structure changed, but would prefer the remainder of the layout to stay fixed.

Restricting the set of vertices that may be adjusted after a change is
particularly useful for large graphs, because it also restricts the time for
running the heuristic and for re-drawing the layout.

9.2.2 Distance Metrics

Instead of trying to categorically fix portions of the graph, other authors try
to define some measure of similarity (or rather dissimilarity) between layouts
in order to capture the effort to rebuilt the mental map after a change. The
goal is to measure as precisely as possible how much the look of a drawing
changes when certain adjustment operations are performed. An algorithm
could then aim to construct a new layout which is a good compromise between
aesthetic criteria and similarity to the current layout.

This approach has the advantage that it allows arbitrary changes to the
current layout if that were necessary e.g. in order to adhere to the basic
layout style rules. On the other hand it may be difficult to find a good trade-
off between traditional aesthetic criteria and dynamic stability. Also, it does
not yet seem to be clear how to actually measure similarity with respect to
the mental map.

In the following subsections, the suggested metrics have been grouped
along the general idea they rely on.

Absolute Vertex Positions. A more or less straightforward way to mea-
sure similarity is the sum of Euclidean distances each point has moved from
one drawing to the next (e.g. Bridgeman and Tamassia 1998; Lyons et al.
1998).

An alternative measure would be the Hausdorff distance, a standard met-
ric for determining the distance between two point sets (Bridgeman and
Tamassia, 1998). It measures the largest distance between a point in the
old drawing and its nearest neighbor in the new drawing. But since it does
not distinguish between vertices (it doesn’t matter which vertex is the closest

232 Jürgen Branke

one), the application to graphs may be questionable. A random shuffle of the
vertex positions for example would not be considered harmful (there is still
a vertex at every previous vertex position).

A general problem with difference metrics relying on point coordinates
is that operations like translation, rotation or scaling will clearly yield large
dissimilarity values and indicate a large change in the layout, while the user
would easily recognize the old drawing. To alleviate this problem to some
extent, in Bridgeman and Tamassia (1998), before computing the metrics,
the drawings are first aligned by applying a point set matching algorithm
taking into account scaling, translation, and rotation.

Also, most measures consider the vertices as single points without physical
extension, i.e. the vertex size and shape is totally ignored. As Bridgeman
and Tamassia (1998) argue however, distinctive vertices could serve as a
landmark, thus their size does matter. Therefore, when the size of the vertex
may be altered by a change, the authors suggest to look at all four corners
of a rectangular vertex when computing distance measures.

Orthogonal Ordering / Relative Vertex Positions. One can argue that
preserving the relative ordering of vertices is more important than preserving
their absolute positions. In Eades et al. (1991) it is suggested that the or-
thogonal ordering, i.e. the ordering of vertices projected on each dimension,
has an important influence on preserving the mental map and should thus be
maintained. Inspired by that idea, the authors in Bridgeman and Tamassia
(1998) suggest to compare the angles between straight lines between all pairs
of vertices in the old and new drawing. Comparing angles is a more gradual
measure than to just consider the ordering, and it additionally reflects the
intuition that vertices that are further apart can be allowed larger absolute
movements relative to each other (which will still result in the same angular
move). Additionally, the paper suggests that a change of the angle is more
severe for a user’s mental map if the relative positioning is more or less di-
agonal rather than if the two vertices are on the same level or on top of each
other (see Figure 9.2). Thus, as further refinement of the above measure, a
weighted version is suggested which takes this into account (for details see
Bridgeman and Tamassia (1998)). Astonishingly this is contrary to the or-
thogonal ordering argument, because changes that influence the orthogonal
ordering are considered less severe.

The λ-Matrix Model proposed in Lyons et al. (1998) is yet another
metric based on relative positions. If the graph has n vertices, a n×n matrix
M is computed that at each entry (i, j) contains the number of points left
to the directed line from vertex i to vertex j. The derived difference metric
then is the sum of the differences in entries of M before and after a change.

Note that neither the metric based on angles nor the λ-Matrix Model
captures e.g. a turn of the complete layout.

Proximity. Clusters are another layout property considered important for
the user’s mental map. Simply put, items that are close in the old layout,

9. Dynamic Graph Drawing 233

(a) (b) (c)

Fig. 9.2. As Bridgeman and Tamassia (1998) argue, the change from (a) to (b)
is less severe for the mental map than the change from (b) to (c), although the
angular change is the same. Note that from an orthogonal ordering point of view,
the change from (a) to (b) would be considered more severe, since it changes the
ordering projected to the vertical axis.

should also be close in the new layout. The advantage of measures maintaining
clusters is that they capture the intuition that if a subgraph moves (but there
are no changes within either subgraph), the distance should be less than if
each point in one of the subgraphs moves in a different direction.

Basically all of the many known methods to capture the clustering of
a graph might be used to form a metric. The general idea is to use some
proximity relation and compare the relationship between the set of vertices
of the current graph before and after the layout change.

In the following, let pi be the position of vertex vi in the current drawing
D, and p′i be the position of that vertex in the altered drawing D′. Further-
more, let vN(i) be the nearest neighbor to vi in the old drawing.

Then, the nearest neighbor metric determines for how many vertices their
nearest neighbor changes, i.e.

distance(D, D′) =
n∑

i=1

closer(p′i, p′N(i))

with

closer(p′i, p′j) =
{

0 : d(p′i, p′j) ≤ d(p′i, p′k), ∀k �= i

1 : otherwise

For a weighted variant (proposed in Bridgeman and Tamassia 1998), the
number of points closer to p′i than p′N(i) is considered by using the following
alternative interpretation of closer:

closer(p′i, p′j) =
∣
∣{k|d(p′i, p′k) ≤ d(p′i, p′j)}∣∣

For some other metrics, two temporary graphs H and H ′ are constructed,
whose vertices are those of the current graph G and whose edges correspond

234 Jürgen Branke

to relations defined by a proximity relation on D resp. D′. Then, H and H ′

can be compared by comparing their edge sets (see below).
In particular, the following proximity relations have beens suggested:

– ε-Clustering (Eades et al., 1991; Bridgeman and Tamassia, 1998): this
graph has an edge between every two vertices vi, vj with d(pi, pj) < ε for
some distance measure. As suitable distance, Eades et al. (1991) suggests
ε = max

pi

min
pj �=pi

d(pi, pj).

– sphere of influence graph (Eades et al., 1991): this graph has an edge be-
tween vi and vj whenever

d(pi, pj) < min
k=1,...i−1,i+1,...n

d(pi, pk) + min
l=1...j−1,j+1,...n

d(pj , pl)

i.e. whenever the distance between pi and pj is smaller than pi’s distance
to its nearest neighbor plus pj’s distance to its nearest neighbor.

– Delaunay triangulation (Misue et al., 1995; Lyons, 1992).

If EH and EH′ are the edge sets of graphs H resp. H ′, then in Bridgeman
and Tamassia (1998) the following distance measure is used:

distance(D, D′) = 1− |EH ∩ EH′ |
|EH |

But since this only measures the removed edges, neglecting the added edges,
maybe the following measure would be more appropriate:

distance(D, D′) =
|EH ∪ EH′ | − |EH ∩ EH′ |

|EH ∪ EH′ |
In any case, if the relations/edges between all vertices remain the same,

this distance equals zero, if the two graphs have no common edges, distance
is one.

Nearest Neighbor Between is yet another metric that has been proposed
in Bridgeman and Tamassia (1998). It compares each vertex position with
its original position and assumes that a vertex should remain closer to its
original position than any other vertex. Then,

distance(D, D′) =
n∑

i=1

closer(pi, p′i)

with

closer(pi, p′i) =
{

0 : d(pi, p′i) ≤ d(pi, p′k)
1 : otherwise

9. Dynamic Graph Drawing 235

A weighted variant has also been suggested using the following alternative
interpretation of closer:

closer(pi, p′i) = |{k|d(pi, p′k) ≤ d(pi, p′i)}|

Note that all of those proximity concepts are based on vertex positions
only, edges are not considered.

Edge Routing. North (1996) argues that the position of vertices is more
important than the routing of the edges because vertices are remembered as
locations, while edges are traced “on the fly” to discover connections.

Nevertheless, for the case of orthogonal graph drawing, edge routing has
also been used as distance metric: The shape metric in Bridgeman and Tamas-
sia (1998) compares the sequence of directions for each edge and measures
the number of edit operations (insert, delete or replace) to transform the
old sequence of directions into the new one. Also, in Brandes and Wagner
(1998a), a distance metric considering the changes of angles at vertices as
well as the number of additions and deletions of bends has been used.

Other Suggestions. Further suggestions to capture the notion of the men-
tal map include to maintain congruence (Eades et al., 1991) which only allows
the operations reflection, rotation, translation and scaling, or to maintain
topology, i.e. the dual graph of a layout (Misue et al., 1995).

9.2.3 Further Comments

In order to facilitate comparisons of an algorithm on several drawings, Bridge-
man and Tamassia (1998) and Lyons et al. (1998) normalize their measures
by dividing by the maximum possible value, or the lowest known upper bound
if the maximum value is not known, such that all values are between 0 and
1.

So far, the metrics always look at two graphs, and try to minimize change
for an isolated, single transition. However, often a sequence of changes are
performed, i.e. a history is available. For this case it is argued in North (1996)
that a vertex which has recently been moved may be a better candidate for
a new move than a vertex that has been at the same location for a long
time, i.e. the “age” of a vertex at a certain position should be taken into
account when deciding which vertices to move. A similar idea for the relative
positioning of vertices has been used in an approach by Brandes and Wagner
(1997) and is briefly described in Section 9.3.4.

Sometimes, several changes are known even in advance, e.g. when an
animation is built off-line. In those cases, it might be beneficial to minimize
the impact on the mental map over the whole sequence of layout changes,
rather than considering each change independently.

236 Jürgen Branke

9.3 Coping with the Dynamics

This section presents the basic ideas of a number of dynamic GD algorithms
that can be found in the literature. The approaches have been categorized
according to the kind of layout they produce.

9.3.1 General Frameworks

Some papers suggest a general framework on how to treat the dynamics
rather than suggesting and examining a specific algorithm for a specific type
of application or drawing style.

Among those are the papers by Brandes and Wagner (Brandes and Wag-
ner, 1998a, 1997) who suggest to use a Bayesian perspective to formulate a
cost model that represents the trade-off between the usual (static) optimiza-
tion criteria and the minimization of changes. The main advantage lies in the
possibility to formulate the compromise in a generic framework.

With X being the new layout, and Y representing the previous layout,
the aim is to search for a new layout X that maximizes

P (X = x|Y = y) =
P (Y = y|X = x) · P (X = x)

P (Y = y)

where P (X = x) basically is the static cost function for the new layout,
and P (Y = y|X = x) represents the cost for the difference between the old
and the new layout.

The framework is independent of a specific algorithmic approach and also
of the distance metric used. However, as the authors demonstrate for the
case of the spring embedder algorithm (Brandes and Wagner, 1997) and for
Tamassia’s grid embedding algorithm (Brandes and Wagner, 1998a), it is
often possible to adapt an existing algorithm to reflect the new optimiza-
tion criterion, at least with respect to specific distance metrics (see also Sec-
tion 9.3.2 resp. 9.3.4). In any case, a major practical problem might be to
set the parameters that adjust the weighting between dynamic stability and
conventional layout criteria.

In the paper by Böhringer and Paulisch (1990) the GD problem (all aes-
thetic criteria as well as criteria preserving the mental map) is transferred
into a set of linear constraints which is then solved by constraint propagation.
The constraints may be assigned priorities which are used to resolve inconsis-
tencies. Note that this approach has the additional advantage that many user
constraints (like vertex A should be above vertex B) can also be formulated
as linear constraints and thus easily be integrated. Different dimensions are
treated independently. The authors suggest that numerous static layout algo-
rithms could be integrated into their approach by formulating them in terms
of constraints. In particular, the paper describes integration of the Sugiyama
heuristic for directed, acyclic graphs (see Section 9.3.5).

9. Dynamic Graph Drawing 237

9.3.2 Orthogonal Drawings in 2D

For the case of simply adding edges to an orthogonal drawing, Miriyala et al.
(1993) suggest a heuristic to route additional edges without modifying the
existing layout. The heuristic separates the drawing area into regions and then
uses a variant of Dijkstra’s algorithm to determine the sequence of regions
through which the edge should be routed to achieve minimal cost in terms of
edge length, crossings, and bends.

Papakostas and Tollis (1998) propose two algorithms for orthogonal pla-
nar graphs of maximum degree 4 (i.e. at most one edge at each side of a
vertex) for two different scenarios. In both cases, it is tried to minimize the
number of bends in the drawing, other common criteria like the area or the
number of edge crossings are not optimized directly. The placement of a new
vertex is explicitly specified for each combination of their adjacent vertices’
free directions (i.e. the directions in which they do not yet have a incident
edge).

In the no-change scenario, the current drawing may not be modified when
adding new vertices with adjacent edges. The basic approach here is to start
with an empty drawing (no vertices or edges) and to add vertices sequentially
one by one. New vertices are placed always outside the current drawing area
and such that a set of layout properties (invariants) is maintained. It is shown
by means of total enumeration of all possible new vertex/edges combinations
that these properties can always be maintained.

In the relative coordinates scenario, the existing layout may be modified
by introducing a limited number of new rows and/or columns anywhere in
the current drawing which, implicitly, maintains the drawing’s orthogonal
ordering, all bends, and the embedding. Again, the algorithm specifies the
placement of new vertices depending on the number of existing neighboring
vertices and their free directions. However, since the model does not use any
invariants for every step, it can also be used to insert vertices into any existing
drawing, produced by any other algorithm.

The derivation of the upper bound on the number of bends when the
graph is constructed by introducing vertices one by one according to the sug-
gested algorithms is rather neat and shall be presented here in more detail:
Denote by ni the number of vertices inserted with local degree i, i.e. i con-
nected neighbors at the time of insertion. From the algorithm it follows that
the insertion of a vertex with local degree 1 does not introduce any bends,
while vertices with local degree 2 (3, 4) introduce at most 3 (5, 8) bends.
Clearly, the number of bends is 3n2 + 5n3 + 8n4, which has to be maximized
subject to the following constraints in order to derive an upper bound:

n1 + n2 + n3 + n4 = n− 1
n1 + 2n2 + 3n3 + 4n4 ≤ 2n

238 Jürgen Branke

n1 ≥ 1
ni ≥ 0, i = 2 . . . 4

The first constraint ensures that the number of inserted vertices equals n,
the second reflects the fact that each edge has to connect to two vertices, thus
the number of edges has to be less or equal to 2n. The above maximization
problem can be solved as a linear program and yields the non-integer solution
3n + 3

2 , which happens when n1 = 1, n2 = n − 7
2 , n3 = 0, and n4 = 3

2 . For
the integer solution n1 = n4 = 1, n3 = 0, and n2 = n − 3, the upper bound
on the number of bends is 3n− 1.

In a similar way, the upper bound on the required area (9
4n2), and for

the no-change scenario the number of bends (8
3n + 2) and the required area

((4
3n)2) are derived.

Note that according to these theoretical results, the no-change scenario
has better worst-case bounds than the relative change scenario. However, an
empirical comparison of the two suggested algorithms reported in Papakostas
et al. (1996) indicates that the relative-coordinates scenario always outper-
forms the no-change scenario in practice (i.e. the average case), not only
in terms of required area and number of bends, but also in terms of edge
crossings, aspect ratio, average edge length, and maximum edge length.

The no-change approach has been further explored by Fößmeier (1997a).
First of all, by slightly modifying the algorithm and by refining the linear
program, Fößmeier was able to prove a bound of at most 2.5n bends, com-
pared to about 2.66n by Papakostas and Tollis. As a further improvement,
it is noted that many bends are required in particular when a vertex is in-
serted which has neighbors with their free direction at opposite sides. The
suggested strategy following this observation is to attempt to produce ver-
tices with similar free directions. The algorithm does so by preferring vertices
with free directions to the bottom, the top and the right (in this order). With
this modification and a further refinement of the corresponding LP (now us-
ing 3073 variables), the bound on the number of bends can be lowered to
about 2.24n. If vertices with local degree 0 are allowed (i.e. the graph is tem-
porarily unconnected), the obtained bound is about 2.77n bends. Another

u1

u2 v

u1

u2

v

Fig. 9.3. Placing a new vertex v inside the bounding box of the current drawing
saves bends and area.

9. Dynamic Graph Drawing 239

improvement can be obtained when the placement of new vertices inside the
current drawing’s bounding box is allowed. Fößmeier suggests to allow in-
sertions of vertices with two neighbors at the intersection of free lines of its
neighbors (cf. Figure 9.3) which saves not only bends but also area. Whenever
one neighbor has free directions to the left and to the right, and the other
neighbor has its free directions to the top and to the bottom, there definitely
exists such an intersection. Thus, as opposed to the previous approach, now
the algorithm should favor semi-critical vertices (vertices with only two free
directions) having their free directions at opposite sides whenever possible.
The number of bends created by that approach is bounded by approximately
2.22n, the upper bound on the area needed is 0.937n2.

The author tested this algorithm not only against the no-change scenario
but also the relative change scenario by Papakostas and Tollis and claims
that on the tested examples it worked better in terms of required area and
number of bends than any of the two other algorithms. If confirmed on a
more extensive test-bed, and for other aesthectic criteria like edge crossings
and edge length, this would be remarkable, since as an algorithm under the
no-change scenario it perfectly preserves the mental map.

Table 9.1 compares the approaches by Papakostas/Tollis and Fößmeier.
The computation time to insert one vertex is constant for all algorithms.

Table 9.1. Upper bounds on no. of bends and area for different approaches.

Bends Area

Papakostas/Tollis relative change 3n 2.25n
Papakostas/Tollis no-change 2.66n 1.77n
Fößmeier basic no change 2.5n 1.44n
Fößmeier improved 2.24n 0.937n
Fößmeier improved, possibly disconnected 2.77n 1.057n
Fößmeier inside bounding box 2.22n 0.937n

Brandes and Wagner (1998a) demonstrate how the minimum cost flow
approach suggested in Tamassia (1987) (cf. Chapter 6) can be extended to
account for their Bayesian framework (cf. Section 9.3.1) and to minimize
the changes of angles at vertices as well as of bends in the edges. The basic
idea of that approach is to modify the flow network of the old drawing by
adding some “residual arcs” in opposite direction to the current flows and
by changing the cost and capacity constraints of these arcs to reflect the
additional cost of changing a flow. Note that since this approach relies on
Tamassia’s algorithm, it assumes the embedding to be given and fixed.

The Three-Phase method (Biedl et al., 1997a; Biedl and Kaufmann, 1997)
uses a slightly different orthogonal drawing convention that is not restricted
to a maximum degree 4 but instead uses “stretched” vertices that may have
more than one edge incident at each side (for an example, see Figure 9.4). In

240 Jürgen Branke

such a setting, it is possible (and done in Biedl and Kaufmann (1997)) to draw
the graph with exactly one bend in every edge. In the first phase, vertices are
considered as points (not boxes) and are placed in the drawing such that no
two vertices share the same row or column. Now, edges can be routed with
exactly one bend per edge. To obtain a feasible drawing, one finally has to
decide on the port assignment (i.e. the place where an edge connects to a
vertex) and to adjust the dimensions of the vertices accordingly.

In the dynamic scenario described in Biedl and Kaufmann (1997), the
vertices are added sequentially one at a time starting form an empty drawing,
and the only modifications allowed to the current drawing is the insertion of
a limited number of rows and columns which again preserves the orthogonal
ordering. Although in general, the algorithm would allow new vertices to be
placed in the middle of the new drawing, in the version described in the paper
a vertex is simply placed at the median of rows of the already placed vertices
connected to it, and at the extreme right or left of the drawing depending on a
greedy heuristic trying to balance the number of edges to the right and to the
left at every vertex. The algorithm uses an area of at most (m

2 +n)×(2
3m+n).

The variant described in Biedl et al. (1997a) only achieves an upper bound
on the area of (m + n)× (m + n), but it allows user-specified placements of
the vertices, and also moving a vertex from one place to another.

Fig. 9.4. An example for an orthogonal graph with “stretched” vertices.

InteractiveGiotto (Bridgeman et al., 1997) is an interactive variant of
the Giotto tool for producing orthogonal drawings. It requires the user to
specify the placement of new vertices and to indicate the desired routing. The
tool then transforms the current layout into a planar one by replacing each
bend and each crossing with a dummy vertex. The embedding and the edge
crossings are preserved in this step. The resulting graph is then optimized
by a variant of Tamassia’s minimum cost flow approach (cf. Chapter 6). The
edge bends, the type of the 90◦ bends and the number of corners are preserved
by setting a target value for the flow in some arcs of the network. Note that
new bends may be introduced by the algorithm, if needed.

9. Dynamic Graph Drawing 241

9.3.3 Orthogonal Drawings in 3D

There have also been two algorithms suggested for orthogonal graph draw-
ing in three dimensions (Papakostas and Tollis, 1997a,b). Similar to the two-
dimensional relative-coordinates approach from Papakostas and Tollis (1998),
the first algorithm assumes graphs of maximum degree six (i.e. at most one in-
cident edge at each side of a vertex), restricts changes to the current drawing
to the insertion of a limited number of planes, and bases the decision about
where a new vertex will be placed and how its incident edges will be routed
entirely on the free directions around the adjacent vertices. The insertion of a
vertex needs constant time and the volume of the drawing is at most 4.66n3

as has been shown by solving an LP in a similar way as described above. The
second algorithm assumes a setting similar to that in Biedl and Kaufmann
(1997) described above, i.e. vertices are represented using 3-dimensional boxes
with volume of at least one cubic unit, which can be stretched in each dimen-
sion to accommodate an arbitrary number of incident edges at each side. Just
as in Biedl and Kaufmann (1997), the algorithm maintains the property that
no two vertices have overlapping x-, y- or z-coordinates, and produces draw-
ings without any crossings and exactly two bends per edge. The basic idea is
to route all new edges from old vertices to the new vertex straight to a plane
outside the current drawing where they are going to have their first bend.
By this, the problem has been converted to a two-dimensional one, and the
new vertex can be inserted by an algorithm similar but different to Biedl and
Kaufmann (1997), introducing exactly one additional bend per edge without
producing any crossings. A more detailed description of these two algorithms
for 3-dimensional orthogonal drawings can be found in Chapter 7.

9.3.4 Force-Directed Methods

Many popular methods for drawing general undirected graphs are some kind
of force-based spring model (cf. Chapter 4) with attracting forces between
connected vertices and repelling forces between all pairs of vertices. A proper
layout according to that model corresponds to an equilibrium of the forces.
The model lends itself to dynamic graph drawing, since one might simply
make the changes to the graph structure, and let the forces act to find a new
equilibrium. The movement of the vertices according to the forces can be
easily animated to make the changes more gradual (see for example Eades
et al. (1997a)). However, even a small change to the graph may lead to a
quite different equilibrium state and may thus destroy the mental map.

Brandes and Wagner (1997) present two ways to adapt the force-directed
model to adhere to stability criteria, using their Bayesian framework from
Section 9.3.1. In one of them, the change of absolute vertex positions is con-
sidered as distance criterion between drawings, which translates nicely into
introducing additional forces keeping the vertices at their previous location

242 Jürgen Branke

(springs with natural length zero). In the other approach, the stability cri-
terion is the relative rather than the absolute vertex positions. This is taken
into account basically by emphasizing the forces between vertices that are
present in the old as well as the new layout. In other words, the unchanged
parts of the graph are connected by a stiffer structure than new or altered
ones. As the authors note, this approach may also take into account that for
consecutive changes, the history plays a role. By cumulating the stiffening
effect, the longer a relation existed, the less will it be changed.

9.3.5 Layered Graphs

For acyclic, layered digraphs, the Sugiyama heuristic (cf. Chapter 5) or a
variant thereof is quite popular. Böhringer and Paulisch (1990) demonstrate
in their paper how this heuristic may be modeled in terms of constraints, and
how it can then be transformed to preserve dynamic stability. In the layering
step, for each edge (i, j) a constraint is introduced saying that vertex i should
be placed above vertex j, and the layering is decided. Then, the barycenter
ordering is used to derive constraints determining whether one vertex should
be left or right of another vertex.

When the graph is modified, stability constraints are derived from the old
layout determining:

1. the ordering of the vertices in each layer
2. that vertices which have been on the same layer in the old layout should

also be on the same layer in the next layout.

Only vertices close to the change in the graph (i.e. vertices in the vicinity of
the change, see Section 9.2) are exempt from these constraints and allowed to
move freely. By setting the size of the vicinity, the user may influence the em-
phasis on dynamic stability. Given the total set of constraints (Sugiyama plus
stability constraints), constraint propagation is used to find a feasible layout.
Inconsistencies are resolved by dropping some of the constraints, depending
on priorities assigned to them.

The DynaDAG system (North, 1996) is another adaption of the Sugiyama
heuristic that allows interactive changes to the graph structure. DynaDAG
allows to insert, optimize or delete single vertex or edges. Vertices are orig-
inally placed on the highest possible layer and may be moved down when
this becomes necessary by an insertion of another vertex or edge. Vertices
are moved down layer by layer, shifted in each layer to its median position
(w.r.t. its adjacent vertices). When the vertices are in their final position, the
adjacent edges are adjusted (shrunk, moved, or stretched). New edges are
routed heuristically. The final vertex coordinates are calculated by a linear
program, with a linear penalty for moving a vertex from its old assignment.
A nice feature is that for positioning a new vertex, the placement by the user
is taken into account.

9. Dynamic Graph Drawing 243

9.3.6 Trees, Series-Parallel Digraphs, and ST-Digraphs

For the special case of drawing trees, Moen (1990) suggests a dynamic GD
method based on merging contours of subgraphs. First, an outline is cal-
culated for each vertex in the tree. The algorithm operates by recursively
calculating an outline around each subtree from the leaves to the root of the
tree. As the algorithm moves toward the root, the contours of the vertex’
children are placed as close together as possible, then the children’s and the
parent vertex contours are joined into one large polygon. When the graph
is changed, the contour is disassembled again as necessary and the changed
parts are merged anew.

Besides drawing trees, Cohen et al. (1995, 1992) additionally consider
series-parallel digraphs, and planar ST-digraphs, and suggest a set of repre-
sentations and operations that allow an efficient handling of update opera-
tions guaranteeing that unaffected components (e.g. subtrees) change only
by a translation. This approach belongs more to the area of dynamic data
structures and shall thus not be treated here in more detail.

9.3.7 Separating Overlapping Vertices

All of the models described so far assume some sort of incremental scenario,
where repeatedly vertices and edges are added to the graph.

A slightly different perspective has been taken on in the approaches de-
scribed in this section. Basically the graph is considered static, but somehow
the layout has overlapping vertices that should be distributed more evenly
over the page. This might be the case for example after new vertices have
been inserted into the drawing, after a vertex has been expanded into a sub-
graph, or after some area of the drawing has been expanded to take a closer
look at the details. In neither of the approaches described below, the edge
routing is considered explicitly.

In Lyons (1992) this problem of dissolving clusters of vertices has also
been termed “cluster busting”. Four heuristics are presented in that paper to
distribute vertices more evenly while retaining similarity to the old drawing.
Two of the approaches have been described in more detail in Lyons et al.
(1998). The key idea there is to restrict the movement of each vertex to
their Voronoi region i.e. the set of all points in the plane that are closer
to the specific vertex than to any other vertex of the diagram. Clearly, this
guarantees that for every vertex, its new position is closer to its old position
than to the old position of any other vertex, which somehow corresponds
to the “nearest-neighbor-between” criterion from Section 9.2. However, since
often the Voronoi regions are too small to allow the desired adjustments,
the authors suggest to iterate the process of determining the Voronoi regions
and moving the vertices within these regions. The two heuristics they suggest
differ in the way the vertices are moved: the first one, called Voronoi Diagram
Cluster Buster Algorithm (VDCB), moves each vertex to the centroid of

244 Jürgen Branke

its Voronoi region. The GeoForce algorithm has been based on the idea of
the well known spring algorithm, with repelling forces between vertices and
attracting forces between each vertex and its previous position. The vertexes
maximum step size is limited to a fraction of its distance to its Voronoi edges.
From the results reported in that paper, it does not seem entirely clear which
approach is superior.

Eades et al. (1991) and Misue et al. (1995) suggest to use the “push force-
scan algorithm” (PFS) for cluster busting which pushes overlapping vertices
apart by calculating desired repelling forces fij between the midpoints of ev-
ery pair of vertices (i, j) (cf. Figure 9.5), decomposing these forces into their
portions parallel to the x- resp. y-coordinate (denoted fx

ij and fy
ij), and using

these to shift vertices first along one, then along the other coordinate. The
horizontal and vertical scan work analogous, therefore only the horizontal
scan is described here: Assume that x1 ≤ x2 ≤ · · · ≤ xn, then the algo-
rithm fixes x-coordinates in the order v1, · · · , vn by moving in the ith step
vi+1, · · · , vn by maxi<j≤n fx

ij (vertices with the same initial x-coordinate are
decided at the same time). Clearly, the algorithm runs in O(n2) and preserves
the orthogonal ordering.

Fig. 9.5. Two overlapping vertices and the shift vector as used by the force scan
algorithm.

As has been shown by Hayashi et al. (1998), finding a minimum area lay-
out of a given set of rectangles on a plane, preserving the orthogonal ordering,
is NP-complete. As heuristic, the authors suggest to use an improved version
of the PFS algorithm which usually results in a smaller total area than stan-
dard PFS. Instead of moving all subsequent vertices based on the maximum
force between vertex i and all subsequent vertices, the improved PFS moves
each vertex i depending on the placement of all vertices v1, . . . , vi−1 that
have already been decided on (except for a special case that will not be dis-
cussed here). Again, only the horizontal scan is described in more detail: Let
γj be the distance by which vertex j has been moved in x-direction. Then,
for i = 1 . . . n vertex vi will be shifted by max1≤j<i(γj + fx

ji).
In Misue et al. (1995) a variant of the force scan algorithm is suggested

that additionally allows contraction operations. However this variant does
not guarantee disjoint vertices.

9. Dynamic Graph Drawing 245

9.3.8 Nonlinear Magnification

For large graphs, it is usually impossible to display the whole drawing on the
screen in reasonable resolution. But if only a part of the drawing is displayed,
the overall structure of the graph is hidden, which makes it much harder for
the user to build up and maintain a mental map, and to navigate in the
drawing.

One suggested solution to that problem is to magnify some important
parts of the drawing, while demagnifying the other parts correspondingly.
This allows for enhanced resolution in some areas of interest, without sacri-
ficing the global view of the entire graph. In an interactive setting, the user
may be allowed to select the areas for magnification, while the global context
of the surrounding structures is maintained.

There are many variants of nonlinear magnification. Since a detailed anal-
ysis lies outside the scope of this paper, the interested reader is referred to
e.g. Misue et al. (1995) or Keahey and Robertson (1996).

9.3.9 Deleting Vertices and Edges

Many of the above described approaches mainly address the insertion of
vertices. Some argue that deleting vertices or edges while maintaining the
mental map is much easier than inserting vertices or edges - simply remove
them without changing anything else - and from time to time a compaction
algorithm could be run to reduce the empty space created by deletions (Pa-
pakostas and Tollis, 1998). But each deletion may open some new ways to
improve the aesthetics of the drawing by rearrangement. For the case of a
larger number of deletions, the fortified chances to improve the aesthetics
by an adjustment after a deletion accumulate. The resulting drawing may
then be quite far from the optimum in terms of aesthetic criteria. In such
cases, an approach using a cost model, like in the Bayesian framework (cf.
Section 9.3.1), might be advantageous since it can be applied after insertions
and deletions alike.

9.4 Conclusion and Future Work

Dynamic and interactive graph drawing has many applications but only re-
cently got into the focus of researchers and is thus still in a very early stage.

The basic difference between static and dynamic graph drawing algo-
rithms is that in the dynamic case, in addition to producing an aesthetic
layout, the algorithm has to minimize changes to the user’s mental map.
So far, this has been tried in a variety of ways, basically by restricting the
changes allowed to the layout, or by defining a cost function reflecting the
severity of changes and then trying to find a good trade-off between aesthetic
criteria and dynamic stability. The field however, still seems to lack a basic

246 Jürgen Branke

understanding as to what actually influences the mental map. Because of this,
and because there are so many different GD applications, almost all papers
published so far are more or less unique and difficult to compare.

There are many areas for future work. First and foremost, it seems to be
important to get a clearer concept of how changes in the drawing influence
a user’s mental map. This should be examined e.g. by user studies to learn
about the importance of the many different criteria suggested in the literature
so far. Then, the aspect of deleting vertices seems to deserve more attention.
Optimizing the layout adjustment for a sequence of graph changes, e.g. for
an off-line animation, is still an open yet very challenging area of research.
Besides, there is a wealth of static layout algorithms (Di Battista et al., 1999),
and for most of them it would be worthwhile to develop a dynamic version.

10. Map Labeling with Application to Graph

Drawing

Gabriele Neyer∗

When visualizing information, it is often essential to display data with a
graphical object. This means that text labels have to be associated with
graphical features. Until now, the placement of labels is primarily performed
manually, particularly in map production. For example, in the area of Car-
tography, Geographic Information Systems (GIS), and Graph Drawing map
labeling usually has to be performed efficiently. Therefore, it is highly de-
sirable to use automatic map labeling algorithms. The ACM Computational
Geometry Task Force Force (1996) has identified label placement as an im-
portant area of research.

MutzelKlau,

Verweij, Aardal

Mirzaian,
, ,

Wagner

Wolff

Strijkvan Kreveld

Formann

SuriAgarwal,

Poon Chin,

Zhu

Moret
MaratheDoddi

Kakoulis Tollis

1991
1995a; 1995b
1997; 1998

1998

1998; 1999

1998

1998 1996; 1997; 1998a; 1998b

1998

1997; 1999

1999

1999a

Fig. 10.1. Labeled graph of some map labelers and their articles discussed in this
survey.

Often, the solution to a graph labeling problem involves drawing and la-
beling the graph. However, almost all known algorithms for graph labeling
start from a given graph drawing. Thus, the graph labeling problem is ar-
tificially subdivided into two problems. This can have disadvantages in case
that the drawn graph is too dense to label. Due to the fact that there is only
one algorithm published so far that simultaneously draws and labels a graph,
we mainly describe labeling algorithms that start at a drawn graph. There-
fore, this chapter is a survey on map labeling algorithms. Nonetheless, since
we also survey graph labeling algorithms and most map labeling algorithms
∗ This work was partially supported by grants from the Swiss Federal Office for Ed-

ucation and Science (Projects ESPRIT IV LTR No. 21957 CGAL and No. 28155
GALIA), and by the Swiss National Science Foundation (grant “Combinatorics
and Geometry”).

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 247-273, 2001.
 Springer-Verlag Berlin Heidelberg 2001

248 Gabriele Neyer

also apply to graph labeling (without drawing), this chapter is also a survey
on graph labeling algorithms. For simplicity, we will call an algorithm that
labels a drawn graph a graph labeling algorithm. In case that an algorithm
draws and labels a graph, we point that out explicitly.

10.1 Formal Background

We distinguish between three kinds of graphical features according to their
dimension.

Point Features. Cities, summits, area features on small scale maps, and
vertices of graphs or diagrams.

Line Features. Rivers, boarders, streets, straight edges, polygonal lines,
and edges or arcs of graphs or diagrams.

Area Features. Mountains, islands, countries, and lakes.

Point and line feature labels are arranged next to the object and area
feature labels are usually placed within the boundary of the feature to be
labeled.

In the last ten years, the amount of research in automatic map making
has increased significantly, as the number of published articles illustrates1.
A detailed and up-to-date map labeling bibliography can be found at http:
//www.inf.fu-berlin.de/map-labeling/bibliography/.

Although most variants of map labeling are NP-complete, many good la-
beling approximations and heuristics, especially for point labeling, have been
suggested. In this article we want to give an overview of the most important
map labeling algorithms that apply to graph labeling. See Figure 10.1 as an
example of a labeled graph. The majority of map labeling algorithms is easily
applicable for graph labeling. A point labeling algorithm can be applied for
the labeling of the nodes of a graph. If the point labels have to be placed
without overlaps with other graphical features, e.g. edges, the number of
applicable algorithms decreases. This case is barely considered in literature.
We discuss the applicability of the point labeling algorithms for labeling the
point feature of a graph in the respective sections. A line feature labeling
algorithm can be used for labeling edges of a graph and a general graphical
feature labeling algorithm can be applied to labeling nodes, edges, and faces
of a graph.

We give a survey of labeling algorithms that are intended to label graphs,
and of the most important map labeling algorithms that were intended to
label geographical maps. Our intention is to keep the description of the al-
gorithms as general as possible. We do not present algorithms that label line
features with curved labels, since they are usually not applied to graph la-
beling. For the latter problem see (Edmondson et al., 1997; Knipping, 1998;
Wolff et al., 1999).
1 http://liinwww.ira.uka.de/bibliography/Theory/map.labeling.html

10. Map Labeling with Application to Graph Drawing 249

Extensive effort has been spent by cartographers like Imhof (1962, 1975)
and Yoeli (1972) to devise rules that measure the semantic clarity of a labeling
assignment. We state three concepts that are widely accepted as the basic
rules for accurate map labeling.

Readability. The labels are of legible size.
Unambiguity. Each label can be easily identified with exactly one graphical

feature of the layout.
Avoidance of Overlaps. Labels should not overlap with other labels or

other graphical features of the layout.

We denote the possible label positions of a feature as its label candidates.
Sometimes, a cost is assigned to an individual label candidate which reflects
the quality of this label in terms of unambiguity, overlap with graphical fea-
tures, and preferences between the label candidates.

How features are labeled depends on the specific labeling model. The most
important models are:

Fixed Position Model. Each feature has a finite set of label candidates.
For point labeling, typical examples are the 2- or 4-position model as
shown in Figure 10.2(a).

Fixed Position Model with Scalable Labels. Each feature has a finite
set of label candidates, where the size of all labels can be scaled.

Slider Model. Each feature has a fixed label that can be placed at any
position that touches the feature. Figure 10.2(b) shows the 1-, 2-, and
4-slider model for point features, where the labels can be shifted continu-
ously as indicated by the arrows. Figure 10.2(c) shows the point-adjacent
slider model, where the label is adjacent to its point feature but can be
arbitrarily rotated.

�� �
�
�
�

�
�
�
�

4-position

2-position1-position

(a) Fixed position models

�� ��������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

����

����

��

��1-slider

2-slider 4-slider

(b) Slider models

�
�
�
�
�
�
�
�

(c) Point-adjacent
labels

Fig. 10.2. Labeling models.

Subject to these basic constraints, the most common problems are:

Decision Problem. Does there exist a label assignment, such that each
feature is labeled with a label of its candidate set, and no two labels
overlap?

250 Gabriele Neyer

Label Problem. In case the Decision Problem yields a yes answer – Find
a label assignment, such that each feature is labeled with a label of its
candidate set, and no two labels overlap.

Number Maximization Problem. Assign as many labels as possible, such
that each feature is labeled with at most one label of its candidate set,
and no two labels overlap.

Size Maximization Problem. Find a maximum scaling factor s and a cor-
responding label assignment, such that each feature is labeled with a label
of its candidate set, scaled with s, and no two labels overlap.

Note that the Label Problem is of prime importance for graph labeling:
Often, the coordinates in a graph are adapted until a graph labeling exists.

Let P be a label problem and A be an algorithm for P . Then it is clear
that a binary search on all label sizes combined with algorithm A solves
the size maximization problem. Similarly, an algorithm that solves the size
maximization problem also solves the label problem and the decision problem.
Thus, the label problem and the size maximization problem are in the same
complexity class and at least as hard as the decision problem.

Furthermore, an optimal algorithm for the number maximization problem
solves the label problem. Thus, the number maximization problem is at least
as hard as the label problem.

Since the point feature label problem or the line feature label problem
are special cases of the graphical feature label problem it is clear that the
graphical feature label problem is at least as hard as the point or line feature
label problem.

For convenience, we recall the definitions of some complexity terms used in
this chapter in Section 10.1.1. In Section 10.2 we give three tables that give an
overview about the label problems discussed in this chapter, with their com-
plexity. We divide the label problems into point feature label placement, line
feature label placement, and graphical feature label placement. Consequently,
point labeling is discussed in Section 10.3, line labeling in Section 10.4 and
graphical feature labeling in Section 10.5. We discuss the graphical feature
labeling approach more detailed in Section 10.5.2, as the tutorial example. In
Section 10.6 we shortly present general optimization strategies such as sim-
ulated annealing, gradient descent, and zero-one integer programming that
are widely used to solve map labeling problems. The only known graph la-
beling algorithm that simultaneously draws and labels a graph so far is the
combined labeling and compaction approach from Klau and Mutzel (1999a).
For a given orthogonal representation, an orthogonal labeled graph draw-
ing with small total edge length is computed. This algorithm is presented in
Section 10.3.5.

10.1.1 Complexity Dictionary

Many map labeling problems are NP-hard. That means not only that there
is no known efficient (polynomial time) algorithm for solving the problem,

10. Map Labeling with Application to Graph Drawing 251

but also that it is quite unlikely that one exists. If the optimal solution is
unattainable we settle for feasible approximative solutions that are “close”
to the optimum. In order to evaluate the limits of approximability we give
the following short dictionary, partly taken from Garey and Johnson (1991)
and Hochbaum (1995):

δ-approximation. A polynomial algorithm is said to be a δ-approximation
algorithm (δ ≥ 1) for a minimization problem P , if for every problem
instance I with an optimal solution value OPT (I), it delivers a solution
that is at most δ times the optimum. Similarly, for maximization prob-
lems a δ-approximation algorithm (δ ≤ 1) delivers for every instance I a
solution that is at least δ times the optimum.

Best achievable performance ratio. An optimization problem P has best
achievable performance ratio α if there exists an α-approximation for
P and no δ-approximation algorithm for P exceeding α exists (unless
P=NP).

PAS. A family of approximation algorithms for a problem P , {Aε}ε, is called
a polynomial approximation scheme or PAS if algorithm Aε is a (1 + ε)-
approximation algorithm and its running time is polynomial in the size
of the input for a fixed ε.

10.2 Contents and Complexity Overview

Tables 10.1, 10.2, and 10.3 give an overview about the different label problems
discussed in this chapter. The currently best known complexity results are
given. The tables also serve as an index to this chapter.

10.3 Point Feature Label Placement

10.3.1 Map Labeling Related to SAT

Formann and Wagner (1991) have studied the point labeling problem in the
4-position model (see Figure 10.2(a)). More precisely, for a given set of points
in the plane the aim is to label each point with an axis parallel rectangle such
that every point coincides with one of the four corners of its label and no two
rectangles overlap. The restriction that each point coincides with a corner of
its label rectangle implies that each rectangular label can be placed in exactly
four positions.

Formann and Wagner (1991) have proved that it isNP-complete to decide
this problem, even if all labels are equally sized squares. Independently, Kato
and Imai (1988) and Marks and Shieber (1991) also have proved the NP-
completeness of this label problem. For brevity, we only sketch the idea of the
NP-completeness proof of Formann and Wagner. In their proof an instance

252 Gabriele Neyer

Table 10.1. Complexity results for map labeling decision problems.

Labeling Model Decision
Problem

References

4-position model NP-complete Section 10.3.1, Formann
and Wagner (1991)

2-position model ∈P Section 10.3.1, Formann
and Wagner (1991)

finite candidate set NP-complete follows from Formann
and Wagner (1991)

1-, 2-, 4-slider model NP-complete Section 10.3.3, Iturriaga
and Lubiw (1997)p

o
in

t

fe
a
tu

re
s

point-adjacent model NP-complete follows from Iturriaga
and Lubiw (1997)

finite candidate set NP-complete Section 10.4.2, Kakoulis
and Tollis (1996)

ed
g
e

fe
a
tu

re
s

3-position model ∈P Section 10.4.1, Doddi
et al. (1997); Poon et al.
(1998); Strijk and van
Kreveld (1999)

finite candidate set NP-complete follows from Formann
and Wagner (1991)

g
ra

p
h
ic
a
l

fe
a
tu

re
s

slider model NP-complete followrs from Iturriaga
and Lubiw (1997);
Kakoulis and Tollis
(1996)

of 3SAT is reduced to this point labeling problem. Gadgets for variables and
clauses are constructed consisting of overlapping label candidates of point
features. The variable gadgets are connected with clause gadgets according
to the 3SAT formula by pipe gadgets that conserve encoded variable settings.
The resulting map labeling problem has an overlap free solution if and only
if the 3SAT formula is satisfiable.

Furthermore they have shown that the decision problem for the 2-position
model (see Figure 10.2(a)) can be solved in time O(n log2 n) time by reduction
to a 2SAT problem (Imai and Asano, 1986). Any point in the labeling in-
stance is identified with a Boolean variable. The two label positions of the ith
point are denominated with the variable setting xi and xi. Let the two label
candidates xi and xj overlap. Then xi and xj can not simultaneously appear
in a solution, which is ensured by a clause of the form: (xi ∧ xj) = (xi ∨ xj).
A satisfying truth assignment for the set of clauses yields a solution to the
point labeling problem. If no such assignment exists it follows there is no
overlap free solution to the point labeling problem.

Based on the solution method of the 2-position model they have further
investigated the problem of finding a labeling for the 4-position model in
which the labels have maximum size. The NP-completeness proof implies
that no polynomial approximation algorithm with an approximation factor

10. Map Labeling with Application to Graph Drawing 253

Table 10.2. Complexity results for map labeling number maximization problems.

Labeling Model Number
Maximization

References

2-position model unknown
complexity

finite candidate set (1/log n)-
approximation
algorithm, PAS

Section 10.3.2, Agarwal
et al. (1998)

1-, 2-, 4-slider model (1/2)-
approximation
algorithm, PAS

Section 10.3.3, van
Kreveld et al. (1998)

p
o
in

t

fe
a
tu

re
s

point-adjacent model polynomial
approximation
algorithm that
places at least
(1− ε)n squares
of size at least

1
1+ε

OPT

Section 10.3.4, Doddi
et al. (1997)

finite candidate set heuristics Section 10.4.2, Kakoulis
and Tollis (1996, 1997)

ed
g
e

fe
a
tu

re
s

3-position model unknown
complexity

finite candidate set heuristics Section 10.5.1, 10.5.2,
Kakoulis and Tollis
(1998a,b); Wagner and
Wolff (1998)

g
ra

p
h
ic
a
l

fe
a
tu

re
s

slider model heuristics Section 10.6, Christensen
et al. (1993, 1995);
Edmondson et al. (1997);
Zoraster (1986, 1990)

Table 10.3. Complexity results for map labeling size maximization problems.

Labeling Model Size
Maximization

References

4-position model best achievable
performance
ratio 1

2
,

1
2
-approximation

algorithm

Section 10.3.1, Formann
and Wagner (1991);
Wagner (1994); Wagner
and Wolff (1995a,b,
1997)

p
o
in

t

fe
a
tu

re
s

point-adjacent model sin(π/10)

8
√

2
-

approximation
algorithm

Section 10.3.4, Doddi
et al. (1997)

ed
g
e

fe
a
t.

3-position model exact algorithm Section 10.4.1, Doddi
et al. (1997); Poon et al.
(1998); Strijk and van
Kreveld (1999)

254 Gabriele Neyer

exceeding 1
2 exists, unless P=NP. Furthermore, Wagner has proved that an

approximation algorithm that achieves this bound must take Ω(n logn) time
(for a detailed proof see (Wagner, 1994)). Formann and Wagner have intro-
duced a 1

2 -approximation algorithm that increases stepwise the size of the
squares. In each step label candidates are deleted permanently and then two
label candidates are chosen for each point. For these candidates the algo-
rithm for the 2-position model is applied. This procedure is repeated until
there is no solution to the corresponding 2SAT problem. The resulting algo-
rithm achieves the 1

2 -approximation bound and the time bound O(n logn).
Although optimal in a theoretical sense, this result is not useful for practical
purposes because the solutions are usually too far off the optimal size. This
approximation algorithm only works for equal sized square labels and not for
arbitrary rectangles.

Because of this lack of practical results, Wagner and Wolff (1997, 1995a,b)
have spent more time on the problem and published several papers that are
based on the initial approach of Formann and Wagner discussed above. In
their approaches, the important sizes of the labels, where conflicts are ap-
pearing, are computed. The maximum label size is determined with binary
search on the list of important label sizes. Furthermore, label candidates are
eliminated only temporarily for the current size of the binary search and then
the 2SAT problem is used to decide solvability. All algorithms have the 1

2 -
approximation bound and O(n log n) runtime. To test their algorithms, Wag-
ner and Wolff have implemented an example generator that creates random
examples under several distributions. Christensen et al. (1997) have tested
the latest algorithm of Wagner and Wolff (1997) against simulated annealing.
Both algorithms have had about the same performance but the algorithm of
Wagner and Wolff has been about three times faster.

Since each point feature has only four label candidates, we mention that
these algorithms are best applicable to label problems where the labels are
restricted to the four positions of the 4-position model. When labeling the
nodes of a graph that contains other graphical features like edges, these algo-
rithms have to be modified not to place labels that overlap them. It appears
that overlaps with other graphical features can be avoided by simultane-
ously conserving the 1

2 -approximation bound. Nevertheless, the time needed
to compute intersections of labels with other graphical features influences the
running time of the algorithm.

10.3.2 Label Placement by Maximum Independent Set in
Rectangles

Agarwal, van Kreveld, and Suri (1998) have formulated the point labeling
problem as a maximum independent set problem in rectangles. The aim here
is to label a maximum number of point features. For each point feature pi

a label ri is given, that is, an axis-parallel rectangle of fixed size and a set
of label positions such that each label position coincides with pi. A feasible

10. Map Labeling with Application to Graph Drawing 255

labeling is a subset of all label positions R such that the labels are pairwise
disjoint and each point feature is labeled at most once. The labeling problem
is to find the largest feasible labeling. Since all label candidates of a point
pi overlap at point pi, it follows that at most one label candidate of a point
is chosen. Thus, the labeling problem corresponds to finding a largest subset
of pairwise disjoint rectangles in R. This corresponds to finding a maximum
independent set of rectangles in R.

Since the computation of a maximum independent set of rectangles is
known to beNP-hard (Fowler et al., 1981; Imai and Asano, 1983), the authors
have presented a (1

log n)-approximation algorithm based on the divide and
conquer paradigm, that runs in polynomial time. The rectangles are divided
according to the median x-coordinate of all rectangles into three sets: the
rectangles that lie left of the median, lie right of the median, and intersect
the median. They have computed the maximum independent set of the set of
rectangles that intersect the median and recursively compute the approximate
maximum independent set of the two other sets. In the merge step of the
algorithm they choose the set with maximum cardinality of the following two
sets: (1) the union of the approximative independent set of the rectangles left
of the median and right of the median and (2) the maximum independent set
of the rectangles that intersect the median.

For the case that all rectangles in R have unit height, an (1− 1
k+1)-appro-

ximation algorithm is described that runs in O(n logn+n2k−1) time, for any
k ≥ 1. The algorithm uses dynamic programming combined with the shifting
technique of Hochbaum and Maass (1985). The rectangles are partitioned by
a set of horizontal lines l1, . . . , lm such that the separation between two lines
is strictly more than one, each line intersects at least one rectangle, and each
rectangle is intersected by exactly one line. Let Ri be the set of rectangles in
R that intersect li. They have defined subgroups Rk

i =
⋃k−1

j=0 Ri+j and sets
Gj =

⋃
i≥0 R

k
i(k+1)+j = R\

⋃
i≥0Ri(k+1)+j (see Figure 10.3). Gj is obtained

from R by deleting the rectangles that intersect every (k+1)st line, starting
with the jth line. Note that two subsets Rk

i1(k+1)+j+1 and R
k
i2(k+1)+j+1 of

Gj are disjoint if i1 �= i2. For example, line l(i)(k+1)+j and line l(i+1)(k+1)+j

separates Rk
i(k+1)+j+1 from the other subsets. The union of the independent

sets of the subsets of a set Gj yields an independent set for all rectangles in
Gj .

The rectangles in R\Gj are intersected by at most m/(k + 1)� lines.
Therefore, computing a maximum independent set for each Gj and choosing
the largest one yields a (1− 1

k+1)-approximation. The maximum independent
set of a subgroup of Gj is computed by dynamic programming by means of
a 2-dimensional invariant. One step in the dynamic program takes O(n2k−1)
time. The runtime of O(n logn) can only be achieved for the special case
k ≤ 2.

This approach works only for labels with unit height, but varying widths,
and the authors leave the solution for arbitrary rectangles with a constant

256 Gabriele Neyer

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l11

)
R3

2

)
R3

6

Fig. 10.3. The set G1 for k = 3.

factor approximation scheme as an open problem. The label candidate set for
any point may be arbitrarily large, as long as all label candidates coincide
with their point feature. This algorithm can be easily modified to label the
nodes of a graph overlap free with other graphical features. One simply has to
eliminate those label candidates that overlap graphical features. The bounds
stay valid in respect to the reduced label candidate set.

10.3.3 Point Set Labeling with Sliding Labels

Van Kreveld, Strijk, and Wolff (1998) have discussed algorithms that aim
at labeling a maximum number of point features, where the label positions
are not restricted to a finite number of positions. They have defined three
models, the 1-slider, 2-slider, and 4-slider model, in which the labels can move
continuously (see Figure 10.2(b)). Iturriaga and Lubiw (1997) have shown
that the decision problem whether a solution to a point labeling problem in
the 1-slider model exists is NP-complete.

Before providing a 1
2 -approximation algorithm for the three slider models,

van Kreveld et al. have compared the three slider models with the fixed
position models that are shown in Figure 10.2(a). They have been concerned
with the question: “How many more points can be labeled in one model
than another, in any point set?”. In order to quantify this question they have
introduced the ratio of two models. Let P be a set of n points in the plane. Let
M1 and M2 be two models for labeling P , and let optM1(P) and optM2(P)
be the maximum number of points of P that receive a label in the modelsM1

10. Map Labeling with Application to Graph Drawing 257

and M2, respectively. The ratio of the models M1 and M2 is the supremum
of the ratio optM1(P)/optM2(P) for n → ∞ and maximized over all point
sets P with n points.

�
�
�
�

����

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��

��
��
��
��

����

��

��

/14[2 ,3]

�
�
�
�

��
��
��
��

2

2

2

[2,3]

[2,4]

[2,3]

[2,3]

2

[2,3]

4

[2,3]

Fig. 10.4. Upper and lower bounds for the ratios of two models.

They have shown lower and upper bounds for the ratios of all pairs of
models. These ratios are depicted in Figure 10.4. For example the maximum
number of points labeled in the 2-position model can be at most twice the
maximum number in the 1-position model. Thus, the lower bound and upper
bound for the ratio of the 2-position and the 1-position model is 2. The arcs
indicate the partial order on the models.

Furthermore the authors have provided a 1
2 -approximation algorithm for

the 4-slider model that runs in O(n log n) time. The algorithm can be applied
with minor changes to the 2-slider and 1-slider model. Given a set of points,
a set of labels that have already been placed, and a set of points that are
unlabeled, the leftmost label is defined to be the label whose right edge is
leftmost among all possible labels of unlabeled points. A label is possible if
it does not overlap any placed label. The algorithm is a greedy strategy that
repeatedly chooses the leftmost label. It labels at least half the number of
points labeled in an optimal solution. In order to compute the leftmost label
efficiently, the right envelope of all placed labels li and their copies l′i, precisely
one unit below li is stored. The right envelope is a function in y, where
f(y) = max{max{x|(x, y) is occupied by li or l′i},−∞} (see Figure 10.5). A
reference point of a label is its lower left vertex. Therefore, the right envelope

258 Gabriele Neyer

Fig. 10.5. Right envelope.

Hint

Hright

Hint,right

Fig. 10.6. The heaps storing the reference
segments.

incloses exactly all reference point positions that are impossible. Observe
that the union of the reference points of all possible label positions for one
point is the boundary of the lower left label position (see Figure 10.6). These
reference points are subdivided into the two horizontal segments and the two
vertical segments. These segments are stored in three different heaps: Hright

contains all horizontal segments that lie right of the envelope, Hright contains
all horizontal segments that intersect the envelope and Vint,right contains all
segments that intersect or lie right of the envelope. These heaps allow to
query for the leftmost possible label. By applying common geometric data
structures the authors avoided using a brute force method and thus reduced
the runtime of the algorithm.

The 1
2 -approximation algorithm is only valid for rectangles with equal

height but variable width. The algorithm is applicable for arbitrary rectangles
but the authors cannot guarantee the approximation factor any more. In their
experiments on real world data the 4-slider model performs 10-15% better
than the 4-position model.

Furthermore, they have shown that for each of the slider models and for
any constant ε > 0, there is a polynomial time algorithm that labels at least
1− ε times the maximum number of points that can be labeled. The concept
of the approximation algorithm is similar to the (1 − 1

k+1)-approximation
algorithm of Agarwal et al. (1998) described in Section 10.3.2. Due to the
higher running time of O(n log n+n2k−1) time, the algorithm is primarily of
theoretical interest.

Strijk and van Kreveld have suggested a modification of the 1
2 -approx-

imation algorithm for the 4-slider model, when other line segments are in the
scene which may not be intersected.2 This could be of interest for labeling
graphs.
2 Marc van Kreveld, personal communication (1999).

10. Map Labeling with Application to Graph Drawing 259

10.3.4 Label Placement with Point-Adjacent Labels

Doddi, Marathe, Mirzaian, Moret, and Zhu 1999 have studied the point la-
beling problem for a set of n points S such that all labels are squares of the
same size, the feature may lie anywhere on the boundary of its label region
and the label size is maximized. Differently to all other approaches the labels
are allowed to rotate around their labeling point (see Figure 10.2(c)).

They have given a sin(π/10)

8
√

2
-approximation algorithm for this problem

that runs in O(n logn) time. In order to achieve this factor, they have de-
rived an upper bound for the maximum size of the labels by means of the
well studied minimum k-diameter theory (Datta et al., 1993; Eppstein and
Erickson, 1994). The diameter of a set S is the maximum distance between
any two points in the set. The minimum k-diameter of S, denoted Dk(S),
is the smallest diameter among all subsets of S of size k. It is easy to see
that a circle of radius Dk(S)

2 centered at a point pi ∈ S contains at most
k − 1 points. This led to an upper bound for the maximum label size of at
most D5(S)

sin(π/10) . The
sin(π/10)

8
√

2
-approximation algorithm labels each point with

a square of size at least D5(S)

8
√

2
. The algorithm randomly selects a point pi and

labels this and all points that have distance at most D5(S)
sin(π/10) to pi according

to a case distinction of their number (which is at most 4) and their positions.
This procedure is repeated recursively until every point is labeled. The cal-
culation of the minimum 5-diameter dominates the runtime with O(n logn)
time. The labeling process can be done in O(n) time.

In case the point features are to be labeled with circles of maximum
radius the authors can apply their techniques for regular squares and achieve
the following results: Firstly, the labeling circles have radius at most (4 +
2
√
3)D3(S). Secondly, there exists a 1

8(2+
√

3)
-approximation algorithm that

runs in O(n logn) time, for the same reasons as in the squared case. This
approximation factor has recently been improved by Strijk and Wolf (1999).

Furthermore, they have given a bicriteria approximation algorithm for the
variant of the problem in which some point features are allowed to remain
unlabeled and each square must be placed adjacent to its point feature such
that its sides are parallel to the axes. (This complies to the 4-slider model).
For any ε > 0 their approximation algorithm finds a placement for at least
(1− ε)n squares of size at least 1

1+ε OPT, where OPT denotes the size of the
squares in an optimal solution. It needs O(n logD5(S)) time. The algorithm
can be modified such that it applies to other regular label shapes like regular
polygons.

The disadvantages of these approaches are obvious. They only work for
equal sized and regular shapes of labels. The approximation guarantee for the
first two algorithms is very small and far off the optimal size of a labeling.
Furthermore, the point-adjacent label model seems to be only of theoretical
interest and the algorithm can not be modified easily to label point features

260 Gabriele Neyer

of a graph. The algorithms do not provide the possibility of excluding label
positions that overlap other graphical features. Note that the proceedings
version (Doddi et al., 1997) contains errors.

10.3.5 Combining Graph Labeling with Compaction

In this section we investigate in the Compaction and Labeling (COLA) prob-
lem which is an orthogonal graph drawing and labeling problem in which
the graph drawing and labeling is solved simultaneously (Klau and Mutzel,
1999a). A graph drawing is called orthogonal, when each edge segment is ei-
ther horizontal or vertical. See Chapter 6 for a summary on orthogonal graph
drawing.

In the COLA problem we are given an orthogonal representation of the
graph. This orthogonal representation is a description of a planar and orthog-
onal embedding of the graph. Additionally to the planar topology it describes
the shape of the drawing, i.e., for each edge the order of the bends and the
angle formed with the following edge in the appropriate face are given. In
order to draw the graph, coordinates have to be assigned to the vertices.

For each vertex we are given a set of labels, each of which is fixed in
size. The authors extend the compaction techniques known from orthogonal
graph drawing (see Chapter 6) to include conditions on the labels and their
positions. Analogously to the usual compaction problem, necessary conditions
for an orthogonal graph drawing of minimum total edge length are encoded in
a special pair of graphs, the so called shape graphs. These conditions mainly
are relative positioning constraints and minimum distance relations between
graph components. The pair of shape graphs is extended with label related
conditions. These conditions are that a label has to touch its vertex and that
a label may not overlap other labels or objects. Thus, the labeling model is
the slider model. After that, an integer linear program (ILP) is constructed
from the pair of labeled shape graphs. The authors implemented a branch and
cut algorithm which solves this kind of ILPs. The solution gives an orthogonal
labeled drawing of the graph with small total edge length. We now describe
these steps more in detail, starting with the construction of the pair of shape
graphs.

The construction of an orthogonal embedding of a graph from its orthog-
onal representations was shown to be NP-hard (Patrignani, 1999b). For the
construction of the pair of shape graphs, Klau and Mutzel transform the or-
thogonal representation in a simple orthogonal representation by replacing
each bend with a vertex. The simple orthogonal representation partitions
the set of edges in a set of horizontal edges Eh and a set of vertical edges
Ev. A horizontal (resp. vertical) subsegment in the simple orthogonal repre-
sentation is a connected component in (V,Eh) (resp. (V,Ev)). A maximally
connected component is a maximal set of consecutive edges of one direction
and is called a segment. Furthermore, each edge is a subsegment and each
vertex v is incident to exactly one horizontal and one vertical segment which

10. Map Labeling with Application to Graph Drawing 261

are denoted by vert(v) and hor(v). Let vl, vr, vt, and vb be the leftmost, right-
most, topmost, and bottommost vertex on a segment s. Then, the left, right,
top, and bottom limits of s are l(s) = ver(vl), r(s) = ver(vr), t(s) = hor(vt),
and b(s) = hor(vb).

A pair of shape graphs 〈(Sv, Ah), (Sh, Av)〉 is defined as follows. Each
horizontal (resp. vertical) segment is represented by a vertex in the set Sh

(resp. Sv). Weighted arcs between the segments characterize relative position-
ing relations between the segments. All arcs (si, sj) in a shape description
have weight 1, indicating that the coordinate difference of segments si and
sj must be at least 1. Arcs between horizontal segments are in set Av and
arcs between vertical segments are in set Ah. For a detailed description of
the construction and properties of the pair of shape graphs see (Klau and
Mutzel, 1999a). The compaction problem is discussed in more detail in the
Chapter 6.

The resulting pair of shape graphs is extended with a description of the
constraints on the labels. Each label is modeled by a rectangle bounded by
the segments lλ, rλ, tλ, and bλ (see Figure 10.7). For the segments lλ and rλ
a vertex is added to Sv, and for the segments tλ and bλ a vertex is added to
Sh. The set of arcs Ah is enlarged by arcs of the type (lλ, rλ) of weight w(λ)
which corresponds to the width of label λ. Analogously, the set of arcs Av is
enlarged by arcs of the type (lλ, rλ) of weight h(λ) which corresponds to the
height of label λ. Let v = a(λ) be the vertex label λ is associated with. In case
that a vertex is represented by a box, the vertex is bounded by the segments
lv, rv, tv, and bv as illustrated in Figure 10.8, otherwise lv = rv = ver(v) and
bv = tv = hor(v). A feasible position of a label λ relative to it vertex a(λ) is
given if and only if:

1. The left side of λ does not lie to the right side of a(λ).
2. The right side of λ does not lie to the left side of a(λ).
3. The bottom side of λ does not lie above the top side of a(λ).
4. The top side of λ does not lie below the bottom side of a(λ).

These conditions are realized in the pair of shape graphs by adding
the arcs (lλ, ra(λ)) and (la(λ), rλ) to Ah and adding the arcs (bλ, ta(λ)) and
(ba(λ), tλ) to Av for each label λ. These arcs have weight 0. For an illustration
see Figure 10.8.

A complete pair of labeled or unlabeled shape graphs defines a unique
labeled or unlabeled orthogonal drawing of the graph. A pair of labeled shape
graphs is complete, if and only if both arc sets do not contain non negative
cycles and for every pair of segments (si, sj) ∈ (Sv ∪ Sh) × (Sv ∪ Sh) one of
the four conditions holds:

(1) r(si)
+−→ l(sj) (3) t(sj)

+−→ b(si)
(2) r(sj)

+−→ l(si) (4) t(si)
+−→ b(sj),

262 Gabriele Neyer

bλ

λlλ

tλ

rλ

Fig. 10.7. Four segments

λlλ rλ

tλ

bλ
rv

bv

lv

tv

v

Fig. 10.8. Illustration of the arcs between a ver-
tex and its label.

where si
+−→ sj denotes the existence of a path of non negative weight

between si and sj . Usually a pair of labeled shape graphs is not complete
and there are many possibilities for extending the labeled shape graphs to a
complete pair of labeled shape graphs. Klau and Mutzel showed that there
exists a simple labeled orthogonal drawing for a pair of labeled shape graphs
σL if and only if there exists a complete labeled extension τL of σL. Thus, the
problem is to find a suitable extension of the pair of labeled shape graphs.
Therefore, the pair of labeled shape graphs is transformed into an ILP.

For the description of the ILP we have to define a set O which denotes
the set of objects that should be compacted. It consists of the segments
corresponding to consecutive edges, labels, and vertices whose images are
boxes of non zero size.

Starting at a given labeled pair of shape graphs σL = 〈(Sv, Ah), (Sh, Av)〉
the authors formulate an ILP to solve the COLA problem. For each potential
additional arc (si, sj) which might be in some complete extension, they in-
troduce a variable xij which is one if arc (si, sj) is contained in the extension,
otherwise zero. We refer by X to the set of binary variables. Additionally,
for each segment s ∈ σL they introduce a variable cs ∈ Q denoting the
coordinates of s. The ILP is defined as follows:

min
∑

e∈Eh

cr(e) − cl(e) +
∑

e∈Ev

ct(e) − cb(e) subject to (10.1)

xro,lp + xrp,lo + xto,bp + xtp,bo ≥ 1 ∀(o, p) ∈ O ×O, o �= p (10.2)
cj − ci ≥ wij ∀(si, sj) ∈ Ah ∪Av (10.3)

cj − ci − (M + wij)xij ≥ −M ∀xi,j ∈ X (10.4)
xij ∈ {0, 1} ∀xij ∈ X (10.5)

Inequalities 10.2 model the characterization of separation, i.e., the exis-
tence of necessary paths between distinct objects in an extension. Inequali-

10. Map Labeling with Application to Graph Drawing 263

ties 10.3 force the coordinates to obey the distance rules. The coordinates of
two segments si and sj that are connected by an arc of weight wij are forced
to have distance at least wij . Inequalities 10.4 force the segments of potential
additional arcs to have distance at least wij in help of a big constant.

A solution of the ILP can be computed with a branch and bound algo-
rithm. Klau and Mutzel showed that each feasible solution of the ILP defines
a labeled orthogonal embedding with appropriate shape.

10.3.6 Optimization Algorithm for Point Set Labeling

Verweij and Aardal (1999) have given an optimization algorithm for point
set labeling in the 4-position model in which the number of labels is to be
maximized. They have formulated the labeling problem as an 0-1 integer
linear program. In contrast to several other approaches using mathematical
programming methods, they have used optimization methods that are specific
for point labeling problems. For an introduction to linear programming we
recommend (Chvátal, 1983a), for an overview of mathematical programming
methods used for map labeling see (Zoraster, 1986, 1990).

The authors make use of the observation that the four label candidates
of a point pi overlap at pi. This implies that at most one label candidate of
each point can be in a maximum set of non overlapping label rectangles (see
Section 10.3.2). Thus, the label problem corresponds to finding a maximum
independent set of label rectangles.

The algorithm is a specialized branch-and-cut algorithm for finding a
maximum independent set of rectangles. It can be used to find provably
optimal solutions for map labeling instances up to 950 cities within modest
computation time.

For a fixed label size σ the authors have formulated the maximum in-
dependent set of rectangles problem as an integer linear program with 0/1
variables Π . Kucera et al. (1993) have shown that there are only O(n2) sizes
the optimal label size can take, where n is the number of label candidates.
Optimizing over those can be done by solving O(logn) maximum indepen-
dent set of rectangle problems.

The integer linear program has the following form: For each label rectangle
a 0/1 variable xi is defined. The objective function is to maximize the sum
over all xi. Additionally, there is an inequality xi+xj ≤ 1 if the label rectangle
of xi overlaps the label rectangle of xj .

A branch-and-cut algorithm is a branch-and-bound algorithm where cut-
ting planes might be added to the set of restrictions. The root of the branch-
and-bound search tree consists of the LP relaxation Π of Π . At level k of
the tree we have a collection of problems Π

k

1 , . . . , Π
k

l such that all integral
solutions of Π are integral solutions of Π

k

1 ∪ · · · ∪Π
k

l .
The branch-and-cut algorithm maintains the best known value of an in-

teger solution (which also is a lower bound) as well as the best upper bound

264 Gabriele Neyer

for an integral solution. At iteration i an open problem Π
i

j is selected and

solved. If Π
i

j is infeasible, then Π
i

j is removed from the list of open problems
and the algorithm proceeds with the next iteration. Otherwise, if the optimal
solution xi to Π

i

j is integral, Π
i

j is removed from the list of open problems
and the best known value is updated if xi is greater than the best known
value. Otherwise, a component r of the solution vector that is not integral is
chosen and Π

i

j is substituted by two new open problems that are formulated
by adding the constraint xr = 0 or xr = 1, respectively. Since it is desir-
able to restrict the number of open problems, Verweij and Aardal have first
invoked cutting plane algorithms and variable setting algorithms before the
generation of the new open problems.

The generation of good lower and upper bounds is crucial for pruning the
search tree. In order to obtain good upper bounds the LP-relaxation Π can
be strengthened by adding valid inequalities. The goal of these inequations
is to cut off the current non-integral optimal solution of a polyhedra Π

k

j .
Therefore, before involving the variable setting algorithms two families of
valid inequalities are used: clique inequalities and odd hole inequalities. For
the clique inequalities refer to (Verweij and Aardal, 1999; Nemhauser and
Sigismondi, 1992). The idea of the odd hole inequalities is as follows. The
conflict graph of the set of rectangles consists of a vertex for each rectangle
and an edge for each pair of vertices where the corresponding rectangles of
the vertices overlap. In case that this conflict graph contains an odd circle
of length l, it follows that at most l−1

2 rectangles out of the rectangles cor-
responding to the vertices in the circle can be placed. These circles lead to
inequalities that can be used as cutting planes.

Verweij and Aardal have used three algorithms to reduce the number of
new open problems. The first algorithm is called variable setting by reduced
costs. If for some index v of the solution vector xi we have that xi

v = 0 (or
xi

v = 1) and if the reduced costs of v are smaller than the gap between the
best lower bound and xi, then we can set xj

v = 0 (or xj
v = 1) for all j in the

subtree of the tree rooted at i.
The second algorithm is called logical implication algorithm. It makes use

of the following observation: Let xi
v = 1, then it follows that xi

w = 0 if the
corresponding rectangles of v and w overlap. This situation is searched in the
logical implication algorithm.

The third method is the variable setting by recursion and substitution. It
is based on the following observation: Let G1 and G2 be a partition of the
label rectangles where the rectangles of G1 do not overlap the label rectangles
of G2. We say G1 and G2 are independent. Then, the maximum independent
set of rectangles of G1 ∪G2 is the maximum independent set of rectangles of
G1 unified with the the maximum independent set of rectangles of G2. Focus
on a node i in the branch-and-cut tree. We call all variables that are not set
to 1 or 0 free. In the third variable setting algorithm they exploit the fact that

10. Map Labeling with Application to Graph Drawing 265

finding a maximum independent set of a small component is easy. Therefore,
they search for independent partitions of rectangles corresponding to free
variables. Then, they determine the maximum independent set of rectangles
for these partitions and substitute the partial solutions back.

By incorporating a local search algorithm feasible solutions can be found
and thereby lower bounds for the optimal value. The local search algorithm
consists of the generation of an integral solution through rounding and several
local optimization steps.

10.4 Line Feature Label Placement

10.4.1 Labeling a Rectilinear Map

A rectilinear map consists of n disjoint horizontal and vertical line segments.
The problem is to label each line segment with a rectangle of height B and
length the same as the segment. The three positions that are allowed for the
label are depicted in Figure 10.9(a). The corresponding decision problem is
called Three Position Rectilinear Segment Labeling (3RSL) problem. This
problem can be solved in polynomial time. It has been first studied by Doddi
et al. (1997) and then by Poon et al. (1998). Recently, Strijk and van Kreveld
(1999) improved the solution of Doddi et al. and Poon et al..

In Figure 10.9(b) the rectilinear area around each line segment i is divided
into four regions. A label on the line segment will occupy region ri2 and r′i1.
We introduce two boolean variables xi1 and xi2 with values 0 or 1. xi1 = 1
means that ri1 is part of the label placement and r′i1 is not. Analogously,
xi2 = 1 means that ri2 is part of the label placement and r′i2 is not. The
expression (xi1 ∨ xi2) encodes that setting xi1 implies the setting of xi2 (also
denoted as (xi1 ⇒ xi2)). Thus, n clauses are needed to force the corresponding
behavior for all segments. For two overlapping regions, e.g. ri1 and r′j2 the
clause (xi1 ∧ xj2) = (xi1 ∨ xj2) enforces that at most one of these regions is
labeled.

Poon et al. as well as Strijk and van Kreveld have shown how to find
all pairwise intersections of label regions in O(n logn) time by computing
the horizontal and vertical decomposition and using a sweep line algorithm.
In contrast to Poon et al., Strijk and van Kreveld have calculated the in-
tersections implicitly only when needed. This reduces the number of clauses
for 2SAT and thus the runtime. The resulting 2SAT instance is solved by a
combination of a graph algorithm of Masuda et al. (1983) and the rectilinear
segment algorithm of Imai and Asano (1986).

In total they have improved the running time for the 3RSL problem for
n line segments from O(n2) (Poon et al., 1998) to O(n logn) time. Doddi
et al. (1997) have shown that there exists a lower bound of Ω(n logn) for

266 Gabriele Neyer

B
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(a) 3-position model
for line segments

r’i1

ri2

r’i2

ri1 B
�
�
�
�

�
�
�
�

(b) 3-position model for
segments

r

...

...

ri1
ri2

r’k-1

r’i1
r’i2

k-1

B
�
�
�
�

��
��
��
��

(c) k-position model
for segments

Fig. 10.9. Position models.

the runtime of this problem. The version of Strijk and van Kreveld holds this
lower bound.

Given the rectilinear line segments, the maximum height rectilinear seg-
ment labeling problem is to find the maximum B such that there exists a
placement for n non-overlapping rectangular labels, each attached to a dis-
tinct line segment, of height B and of length equal to the segment length.
Strijk and van Kreveld have solved this problem by performing a binary
search on a list of possible values of maximum label height. Strijk and
van Kreveld have computed this list only implicitly and therefore improved
the running time of this problem from O(n2 logn) (Poon et al., 1998) to
O(n log2 n) time.

In case the axis parallel constraint on the segments is dropped, the compu-
tation of the pairwise intersection of labeling regions has to be adapted. This
is done using the partition/cutting tree data structure for segment/segment
intersection searching of Agarwal and Erickson (1997), which leads to an
O(n4/3polylog(n)) time algorithm for the corresponding decision problem.

Note that the 3RSL can be generalized to the k-position rectilinear seg-
ment labeling problem as shown in Figure 10.9(c).

10.4.2 On the Edge Label Placement Problem

Kakoulis and Tollis (1996, 1997) have written several papers on the edge
labeling problem with extensions to graphical features. They have defined
the edge labeling problem as an integer linear program: Each label position
is associated with a cost that reflects the ranking of that label in terms of
unambiguity and the number of overlaps with other graphical features and
labels. The objective function is the sum of the costs of all assigned labels. The
constraints of the integer program guarantee that any edge will have exactly
one label assigned to it. They have shown that the edge labeling problem is
NP-complete and remains NP-complete even when the label candidates of

10. Map Labeling with Application to Graph Drawing 267

each edge are restricted to have the same size and do not overlap (Kakoulis
and Tollis, 1996). Similarly to Formann and Wagner (1991) they have reduced
from 3SAT.

One of their approaches of labeling edges of graph drawings is restricted
to unit height, axis-parallel rectangular labels (Kakoulis and Tollis, 1997).
They divide the input drawing of the given graph G into consecutive hori-
zontal strips of equal height. The height of each strip is equal to the height
of the labels. Then, the label candidates are determined for each edge in-
side the strips. Since a label must lie entirely in a horizontal strip and since
labels that overlap a vertex or an edge are not considered, each label posi-
tion overlaps at most one other label position. If two label positions overlap,
they are grouped together. A bipartite matching graph Gm = (Ve, Vg, Em)
is defined where each edge in G corresponds to a node in Ve and each label
group corresponds to a node in Vg. An edge (e, g) in Em connects a node
e in Ve with a node g in Vg if edge e in G has a label position in group g.
Furthermore, each edge (e, g) in Em is assigned a cost corresponding to the
cost of labeling edge e with a label position in g. A maximum cardinality
minimum weight matching of the matching graph Gm produces a solution
to the edge labeling problem of this restricted model. Since the best known
algorithm for the computation of a maximum cardinality minimum weight
matching takes more than quadratic time with respect to the size of the
matching graph (Goldberg and Kennedy, 1995; Tarjan, 1983) the authors
have presented an algorithm that solves the maximum cardinality matching
problem for their special version of a matching graph in linear time. They
have suggested using this algorithm as a fast heuristic for the computation
of a maximum cardinality minimum weight matching. Note that the running
time of this algorithm is independent of the size of the graph; it depends on
the chosen graph drawing, the height, and the number of strips.

The restriction that the label candidates have to lie entirely in horizontal
strips is a weakness of this algorithm which causes problems with horizontal
edges. The horizontal edges have to be located on the boundary of the strips,
otherwise no label candidates would be assigned to such edges. In the given
form this approach is not applicable for orthogonal drawings. Furthermore,
edges with a small slope generate very few label candidates. Although the
maximum cardinality minimum weight matching is solved optimally, nothing
can be said about the quality of the labeling with respect to an optimal
labeling in a model that allows more label candidates especially for near
horizontal edges.

268 Gabriele Neyer

10.5 Graphical Feature Label Placement

10.5.1 Map Labeling Reduced to Graph Problems

Kakoulis and Tollis (1998b) have suggested a unified approach to labeling
graphical features that is suitable for labeling all kinds of graphical features
with axis parallel rectangular labels of variable size. In particular, their unified
approach is also suitable for labeling orthogonal drawings of graphs. Recall
that a drawing is called orthogonal if each line segment is either vertical or
horizontal. Their approach basically consists of three steps.

Firstly, a large set of label candidates is generated for each graphical
feature. Other than in the previous section, the label candidates are no longer
restricted to lie in strips. Each label candidate is assigned a cost that reflects
the ranking of that label.

Secondly, a graph GR = (Vl, El) is created, where every node l in Vl corre-
sponds to a label candidate. An edge (l1, l2) in El connects two nodes in Vl, if
the corresponding label candidates overlap. Nodes are heuristically removed
from GR until each connected component of GR is a clique. In a clique, each
node is adjacent to all other nodes. Since each node in GR corresponds to a
label candidate it follows that the set of label candidates is subdivided into
subsets (the cliques) where each label candidate intersectd any other label
candidate of that subset. Clearly, at most one label candidate of a clique can
be positioned in an overlap-free labeling.

Thirdly, a bipartite matching graph is defined Gm = (Vf , Vc, Em), where
every graphical feature corresponds to a node in Vf and every clique of label
candidates corresponds to a node in Vc. An edge (f, c) in Em connects a node
f in Vf with a node c in Vc if feature f has a label candidate in clique c.
The edge is associated with the cost of labeling feature f with its label can-
didate in c. A maximum cardinality minimum weight matching in Gm yields
an optimal label assignment with no overlaps with respect to the reduced
label set. The overall running time is dominated by the running time of the
maximum cardinality minimum weight matching algorithm that is applied.
(See Goldberg and Kennedy (1995); Tarjan (1983) for efficient algorithms).

They have further suggested a postprocessing based on local and exhaus-
tive search by exploring the solution space in three ways. They have locally
shifted assigned labels to create space for new labels. They have searched the
solution space to find if there is enough space to assign a label after reposition-
ing already assigned labels and they have searched the solution space after
relaxing the restrictions on the quality of the label assignment by allowing
labels to overlap their associated graphical features and/or other labels.

Since the nodes from GR are removed heuristically until each connected
component is a clique, nothing can be said about the quality of the algorithm.
Kakoulis and Tollis have not commented on the runtime of their approaches.
However, the time required by the matching algorithm of O(n2.5) is certainly
a good lower bound. Due to the exponential behavior of their postprocessing

10. Map Labeling with Application to Graph Drawing 269

steps they allow only a few steps of backtracking in order to keep polynomial
runtime of their algorithm.

For the graphical feature labeling problem where each graphical feature
can receive more than one label, say k, Kakoulis and Tollis (1998a) have
suggested two algorithms. One consists of a loop that executes an extension
of (Kakoulis and Tollis, 1997, 1998b) k times. The other reduces the matching
graph to a network flow problem, where the capacities are adjusted according
to the number of labels per feature.

All their approaches are part of the Graph Layout Toolkit, a Tom Sawyer
Software product3 which is a graph layout and editor toolkit. Several test
results are given in their articles, but none of their tests compares their
approaches with other edge labeling or general labeling algorithms.

10.5.2 A Combinatorial Framework for Map Labeling

Given is a set of graphical features and a finite set of label candidates for each
feature of arbitrary shape. Wagner and Wolff (1998) have designed an algo-
rithm for label number maximization that transforms the label problem into
a combinatorial problem that is related to a concept suggested in the artificial
intelligence community under the name constraint satisfaction (Mackworth
and Freuder, 1985; Knuth and Raghunathan, 1992; Freuder and Wallace,
1992).

We chose this approach to be discussed more in detail since all kinds of
graphical features and all kinds of label shapes are allowed and since we are
convinced, that this approach allows to be extended, improved, or adapted
to special cases.

The transformation of the label problem into a constraint satisfaction
problem (CSP) is defined as follows: For each graphical feature to be labeled
the authors define a variable vi and a domain Di and associate the variable
with its domain. Each variable can be assigned certain values. Each value
corresponds to a label candidate of the graphical feature corresponding to
the variable. The set of constraints are binary constraints excluding pairs of
variable values, namely those where the corresponding labels intersect.

Other than in the artificial intelligence community, Wagner and Wolff
have defined an optimal solution to be a violation free assignment of values
to the variables for as many variables as possible. Anm-consistency algorithm
removes all inconsistencies among m of the given n variables.

They have presented rules which, applied exhaustively to a CSP, achieve a
weak form of local consistency. They have referred to them as weak since they
only prove applying these rules does not destroy an optimal solution. They
have not proved that the set of rules they suggest is in any sense complete.

We now give their CSP rules together with a graphical illustration of
them. Figures 10.10(a), 10.10(b) and 10.10(c) show typical situations before

3 http://www.tomsawyer.com/

270 Gabriele Neyer

1w1 2w w

v v

(a) G1

w

w’

v’

v

w

w’

v’

v

(b) G2

ww

v v

(c) G3

p

q
q

q

p

p
k

j

l

i

(d) candidate
elimination

Fig. 10.10. Consistency rules and candidate elimination.

and after the application of a rule. The domain of a variable is represented
by a rectangular shaded area, the values of a variable are squares, and two
values are connected by a line segment if their corresponding labels overlap.
Bold lines mean that the corresponding constraints are responsible for the
application of the depicted rule. Gray lines not ending in a box indicate that
the value from which they are emanating might constrain further variables.

G1. If a variable v has two values w1 and w2, and all values constrained by w1

are also constrained by w2, then set Dv = Dv−{w2}, see Figure 10.10(a).
Special case: If a variable v has a value w without constraints, then set
Dv = {w}.

G2. If there is a subset V of variables v1, . . . , vl, each with a value wi such
that wi only constrains variables in V but does not exclude any wj for
i �= j, then set Dvi = {wi} for i = 1, . . . , l.
Special case: If a variable v has a value w that only constraints a variable
v′, and v′ has a value w′ which constrains only v and does not exclude
w, then set Dv = {w} and Dv′ = {w′}, see Figure 10.10(b).

G3. If the domain Dv of a variable v consists only of one value w, and the
values w1,. . ., wl excluded by w belong to different variables v1,. . ., vl
and pairwise exclude each other (i.e., if the corresponding labels of
w,w1, . . . , wl pairwise overlap), then setDvi = Dvi−{wi} for i = 1, . . . , l,
see Figure 10.10(c).

10. Map Labeling with Application to Graph Drawing 271

The application of the rules G1, G2, and G3 does not destroy an optimal
solution. Since it isNP-hard to decide whether there is a solution that assigns
values to all variables, one cannot expect that even an exhaustive application
of the above rules immediately gives rise to a solution (which then would
be optimal). However, this approach is an effective preprocessing step for
heuristics or backtracking, since the search space for an optimal solution can
be reduced considerably.

This general concept is then applied to labeling points with axis parallel
rectangles. Wagner and Wolff’s algorithm consists of two phases. The rules
applied in the first phase are restrictions to the more general rules G1, G2,
and G3, therefore it is clear that they do not destroy an optimal solution.

In the first phase of the algorithm, the following three constraint satisfac-
tion rules are iteratively applied:

– If p has a candidate pi without any conflict, then pi is declared to be part
of the solution and all other candidate labels of p are eliminated.

– Let p have a candidate pi which is only in conflict with some qk. Let q have
a candidate qj (j �= k), which is only overlapped by pl (l �= i). Then, add
pi and qj to the solution and eliminate all other candidates of p and q, see
Figure 10.10(d).

– Let p be a feature that has only one label candidate pi. Let pi overlap
k other label candidates that overlap each other (i.e., they form a clique
in the candidate conflict graph). Then, p is labeled with pi and all labels
overlapping pi are eliminated.

Phase II heuristically eliminates label candidates similar to a part of the
heuristics in former papers of Wagner and Wolff (1997, 1995b,a). More pre-
cisely, for all label features that have a maximum number of candidates they
delete the candidate with the maximum number of conflicts among the can-
didates of that feature. They repeat this process until each feature has at
most one candidate left.

The construction of the conflict graph needs O(n logn) worst case time
in case of n axis parallel rectangular labels. Phase I and Phase II of the
algorithm need together at most O(n + k2) time, where k is the number of
pairs of intersecting label candidates. For very dense problems, i.e., many
features are positioned in a small area with respect to the size of the labels,
k could be very large and it could dominate the runtime.

Wagner and Wolff have compared the performance of their algorithm in
respect to percentage of labeled sites and runtime with a greedy algorithm,
similar to the one of van Kreveld et al. (1998) introduced in Section 10.2(b),
and an implementation of simulated annealing according to Christensen et al.
(1995). Recapitulating their test results, the simulated annealing has outper-
formed the algorithm of Wagner and Wolff in some example classes by one
or two percents, but simulated annealing has needed much longer to achieve
a good labeling. For examples with a possible complete labeling their algo-
rithm does not leave more than five percent unlabeled. On the other hand

272 Gabriele Neyer

no statement could be made about a constant factor approximation behavior
of the algorithm. Additionally, the algorithm is restricted to a finite set of
label candidates for one feature, but no longer to only four candidates. As a
positive aspect we mention that their algorithm works with arbitrary label
shapes.

Recently, Wolff (1999) has been doing research in a new form of local
consistency named r-irreducibility with application to map labeling. A CSP
is r-irreducible if for each variable subset w of cardinality r no value x for
a variable vi exists, such that setting vi = x reduces the size of an optimal
solution for w. He has given an algorithm for 2-irreducibility where the rules
are very similar to the rules of the algorithm we described here. He further
has shown that an n-irreducible instance gives an optimal solution. Thus,
irreducibility introduces a new scale between an unreduced instance and its
solution. Due to the hardness of the problem, one cannot expect to find an n-
irreducibility algorithm, but applying his 2-irreducibility algorithm to point
labeling, Wolff has managed to improve previous results in practice.

10.6 General Optimization Strategies Applied to Map
Labeling

Many researchers have attempted to solve map labeling problems using pow-
erful optimization strategies that have their origin in mathematical program-
ming, scientific programming, physical programming, artificial intelligence,
etc. To name only the most prominent methods:

Gradient descent. A randomly generated labeling is scored and then im-
proved monotonically by considering all alternative positions for each
label (chosen from a discrete set) and making the single label move to
the position that most improves the quality of the whole labeling. Since
only changes that improve the quality of the labeling are allowed, it is
easy to see that this technique gets easily stuck in local optima (Chris-
tensen et al., 1993).

Simulated annealing. Simulated annealing is a generalization of gradient
descent in which moves that worsen the quality of the labeling are oc-
casionally allowed to avoid getting stuck in local minima (Christensen
et al., 1993, 1995; Edmondson et al., 1997).

For a survey on these optimization methods see (Christensen et al., 1995;
Edmondson et al., 1997). These methods have the advantage that they are
applicable to a wide variety of problems including map labeling. They are easy
to implement and at least the simulated annealing approach yields good test
results (Christensen et al., 1997, 1995; Edmondson et al., 1997; Wagner and
Wolff, 1998). Except for some zero-one integer programming based heuristics,
the disadvantages of these methods are the long running time and the lack of

10. Map Labeling with Application to Graph Drawing 273

quality guarantees. In addition, most general optimization methods do not
take advantage of the geometric properties of a map labeling instance.

Acknowledgement. We would like to thank Holger Hennes, Gunnar Klau,
Britta Landgraf, Arne Storjohann, and Alexander Wolff for reading this chap-
ter and giving valuable comments.

A. Software Packages

Thomas Willhalm

The theoretical foundations of graph drawing, presented throughout this
book, are interesting, if not absorbing. It is, however, even more interest-
ing with the ability to actually draw some graphs. In this appendix, we list
some software packages that should enable the reader to try out many of the
algorithms that have been presented. In view of the number of the ever grow-
ing number of available programs, we are aware that this list is incomplete
and will soon be outdated. Research driven software can evolve rapidly, or
be abandoned overnight. The list is intended to support first practical steps
in graph drawing.

Graph Drawing Server

The Graph Drawing Server is an Internet service, that returns drawings of
graphs, where graphs can be uploaded using either a Java graph editor applet
or a Java client program.

Platforms The required software runs on every platform, for which a Java
virtual machine exists.

M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 274-281, 2001.
 Springer-Verlag Berlin Heidelberg 2001

A. Software Packages 275

Availability The Web pages at http://loki.cs.brown.edu:8081/graph-
server/make it easy to access the server. However, bandwidth problems
can make this service difficult to use from outside of North America.

Algorithms Currently, most of the algorithms are for orthogonal drawing.
Different types of graphs varying from trees to multi-graphs are sup-
ported. Furthermore, algorithms for layered graphs are included.

Documentation The Web pages contain explanations for the algorithms
and references to publications.

AGD – Algorithms for Graph Drawing

AGD is an object-oriented C++ library of algorithms for handling and draw-
ing graphs.

Platforms AGD has been tested on SunOS (GNU- and SunPro CC com-
piler), Linux (GNU compiler) and Windows NT (Visual C++ 5.0). For
linking, LEDA has to be installed, whereas the use of ABACUS is op-
tional.

Availability For non-commercial purposes, precompiled binaries are avail-
able free of charge from http://www.mpi-sb.mpg.de/AGD/. Commer-
cial licenses are distributed by Algorithmic-Solutions GmbH, contact
agd@algorithmic-solutions.com.

Algorithms The library offers a great variety of algorithms for graphical
layout of graphs in two dimensions, e.g. methods for drawing planar
graphs, hierarchical graphs, or orthogonal graphs. In addition AGD offers
planarization methods and other utilities to handle typical subtasks of
graph drawing approaches.

276 Thomas Willhalm

Documentation The package includes man page for Unix systems and
LATEX sources for the manual. The Web page also has an online man-
ual.

Graphlet

Graphlet is a toolkit for graph editors and graph algorithms, in particular
graph drawing algorithms.

Platforms Precompiled binaries are available for Sun Solaris, Linux, and
Windows 95/98/NT. The tool is based on GraphScript, an extension of
Tcl/Tk with support for graph operations. Algorithms are implemented
in C++ and GraphScript.

Availability Graphlet is free for non-commercial use. Binaries are available
from http://www.fmi.uni-passau.de/Graphlet/, source code upon re-
quest.

Algorithms Several variants of the spring embedder, algorithms for layered
drawings graphs, and of tree drawing algorithms (among those one for
radial layouts).

Documentation No user manual is provided. However, there is a manual
for GraphScript, the C++ interface, and sample code showing how to
write new algorithms.

A. Software Packages 277

GDToolkit – Graph Drawing Toolkit

GDToolkit is an object-oriented C++ library for handling and drawing
graphs. It includes a graph editor that can be used to call several drawing
algorithms and a batch layout generator.

Platforms GDToolkit has been tested on Sun Solaris (GNU compiler), PC
Linux (GNU compiler), and Windows 95/98/NT (Borland compiler).

Availability For non-commercial purposes, precompiled binaries are avail-
able free of charge from http://www.dia.uniroma3.it/~gdt/. For link-
ing, LEDA has to be installed. Commercial licenses are distributed by
INTEGRA Sistemi S.r.l. (Italy); contact Leonforte@Integra- Sistemi.
com.

Algorithms The library offers data structures for several types of graphs
such as trees, flow networks, planar graphs, upward planar graphs,
and SPQR-trees. It features algorithms for orthogonal drawings, layered
drawings, upward planar drawings, and visibility drawings. There are no
force-directed or 3D layout algorithms.

Documentation The documentation consists of some online tutorials and
the annotated header files.

278 Thomas Willhalm

yFiles

The yFiles are Java packages that form a framework for the development of
applications that need to visualize graphs. Included are diverse graph layout
and labeling algorithms, graph viewer/editor components (2D and 3D) and
demo applications.

Platforms All Java 2 platforms, currently including Linux, Solaris, HPUX,
Windows, and probably others.

Availability The library can be used free of charge for non-commercial pur-
poses. Java class files are available from http://www-pr.informatik.
uni-tuebingen.de/yfiles/.

Algorithms Customizable algorithms for layered drawings, force directed
drawings, tree drawings, and orthogonal drawings are provided.

Documentation API documentation (javadoc) available.

Other Packages

In addition to the above, some more specialized packages are available for ex-
perimentation. They are grouped into categories, but since they often com-
bine several aspects, interesting packages may appear in unexpected cate-
gories.

Larger Packages

Pajek http://vlado.fmf.uni-lj.si/pub/networks/pajek/
A package for the analysis of large networks for Windows. It supports

A. Software Packages 279

hierarchical and clustered graphs, e.g. an interface for genealogy. Several
variations of 2D and 3D layout algorithms based on physical models,
eigenvalues, and layers are included. Furthermore, various tools for par-
titioning, numbering, etc. are provided.

daVinci http://www.tzi.de/~davinci/
A graph editor and layout engine for directed graphs. It supports dynamic
drawings. An API for the graph editor is provided. The graphs are stored
in a term representation and can be output in PostScript. Binaries are
available for different flavors of Unix. A documentation and a tutorial in
HTML are included.

GraphViz http://www.research.att.com/sw/tools/graphviz/
A set of graph drawing tools for Unix or MS-Windows (win32). Its use
is free of charge for non-commercial purposes, including source code. It
supports hierarchical layouts, a spring embedder, and a graph editor.
Apart from the Sugiyama algorithm, its speciality is the sophisticated
curve drawing procedure which yields smooth edges. Output formats are
(among others) PostScript, HPGL, and GIF.

VCG http://www.cs.uni-sb.de/RW/users/sander/html/gsvcg1.html
A tool to produce layered drawings of directed graphs. Various Unix
platforms are supported and there exists also a Windows 3.1 port. The
source code is available (GNU General Public License). The main design
goal has been speed. It can be used interactively or as a command line
tool.

Commercial Packages

GLT/GET http://www.tomsawyer.com/
Two commercial libraries of graph layout algorithms and a graph editor.
Universities can participate in a program to obtain the software at a dis-
count rate. There are Java and C++ versions of GLT/GET for Windows
and various Unixes.
The GLT offers four different algorithms: circular layout, hierarchical lay-
out (Sugiyama implementation), symmetrical layout (spring embedder
implementation), and orthogonal layout (implementation of the 3-phase
method).

DataViews http://www.dvcorp.com/welcome.html
Commercial tools for data visualization with a C API for Windows
and Unix and a C++ API for Windows. Furthermore, Plug-Ins for Web
browsers and ActiveX components are supported.

GraphVisualizer3D http://www.omg.unb.ca/hci/projects/gv3d/
Visualization of object-oriented code (files, classes, and variables) in three
dimensions. Currently, Silicon Graphics and Sun workstations are sup-
ported. The upcoming commercial version (http://www.nvss.nb.ca/)
will also support Linux and Windows.

280 Thomas Willhalm

3D Packages

OrthoPak http://www.cs.uleth.ac/~wismath/packages/
Tool for displaying graphs orthogonally in three dimensions. For non-
commercial use, binaries and source code are freely available for Solaris
and Linux. The C++ code is based on LEDA and outputs VRML files.

3DCube http://www.dia.uniroma3.it/~patrigna/3dcube/
A package of recent 3D orthogonal graph drawing algorithms. It is de-
veloped in C++ under Unix. VRML and GML output is available and
OpenGL output under development. Currently, the program can only be
used through a CGI interface.

GEM3Dhttp://i44s11.info.uni-karlsruhe.de/~frick/gd/gem3Ddraw
Prototype implementation of Gem3D (spring embedder variant for large
data structures in 3D). The program is available for SGI and DEC, fur-
ther platforms on request. It uses OpenGL.

Java

VGJ http://www.eng.auburn.edu/department/cse/research/graph_-
drawing/graph_drawing.html
Visualizing Graphs with Java. Currently, there is mainly the graph editor
distributed under the GNU general public license. The data format is
GML. Some basic algorithms for trees as well as a spring embedder are
included.

Interactive Graph Drawing
http://www.cs.rpi.edu/projects/pb/graphdraw/index.html
A Java applet that provides a graph editor and some drawing algorithms
(force directed, hierarchical, circular). Source code is available.

JIGGLE http://www.cs.cmu.edu/~quixote
JIGGLE is a Java-based platform for experimenting with numerical op-
timization approaches to general graph layout. Its features include an
implementation of the Barnes-Hut tree code and an optimization proce-
dure on the conjugate gradient method.

GRAPPA http://www.research.att.com/sw/tools/graphviz/pack-
ages/grappa.html
A GRAPh PAckage written in Java. It provides an application program-
ming interface (API).

LayoutShow http://www.cs.yorku.ca/~lila/work.html
LayoutShow is a Java-based multi-threaded application for experimen-
tation with force-directed algorithms and layouts based on eigenvectors.
Input and output format is GML.

Other Languages

ffGraph http://www.fmi.uni-passau.de/~friedric/
C++ class library to create and display directed graphs. Tcl/tk is used

A. Software Packages 281

to display 2 or 3 dimensional drawings for X11 systems. Currently, a 3d
spring embedder and a Sugiyama layout algorithm are included, as well
as a graph editor.

GraphPlace ftp://ftp.dcs.warwick.ac.uk/people/Martyn.Amos/
packages/graphplace/
Filter program written in ANSI C that takes a list of nodes and edges
and produces a list of coordinates or a PostScript file.

tkgcv http://www.informatik.uni-stuttgart.de/ipvr/swlab/sopra/
tkgcv/tkgcv.html
Tcl/Tk extension for graph drawing. It requires a C compiler (source
code is available). The module has been tested under Linux and HP-
Unix. Currently, four algorithms are included.

Mathematica

NetGraph http://eclectic.ss.uci.edu/linkages/programs/net-
graph/netgraph.html
Visualization packages for Mathematica. It uses symbolic hypotheses to
draw graphs.

External Binaries

xdrawgraph http://rocana.aist-nara.ac.jp/~hayashi/E/graph-
tool.html
A Unix package to edit and draw graphs. The graph drawing algorithms
are implemented as external programs.

Graph Editors

angela! http://www.mpi-sb.mpg.de/~pabst/angela/
Angela! is a Natural Graph Editor with Layouting Algorithms for Unix.
It is written in C and uses Tcl/Tk and Tix.

Ginger http://www.cs.auc.dk/~normark/Ginger/ginger.html
Graph editor for Unix. It uses XPM and Elk (optionally).

GraphPanel http://binger.centre.edu/GraphPanel/
A simple graph editor written in Java under GNU public license. It can
export the graphs to PostScript files.

Bibliography

Abbott, K. R., and Sarin, S. K. (1994). Experiences with workflow manage-
ment: Issues for the next generation. In Proceedings of ACM Conference on
Computer-Supported Cooperative Work, Workflow and Information Shar-
ing (CSCW’94), pages 113–120.

Agarwal, P. K., and Erickson, J. (1997). Geometric range searching and its
relatives. Technical Report CS 1997-11, Department of Computer Science,
Duke.

Agarwal, P. K., van Kreveld, M., and Suri, S. (1998). Label placement by
maximum independent set in rectangles. Computational Geometry: Theory
and Applications, 11(3-4):209–218.

Aho, A., Hopcroft, J., and Ullman, J. (1974). The Design and Analysis of
Computer Algorithms. Addison-Wesley.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows:
Theory, Algorithms, and Applications. Prentice Hall.

Alpert, C. J., and Kahng, A. B. (1995). Recent directions in netlist parti-
tioning: a survey. INTEGRATION, the VLSI Journal, 19:1–81.

Amtrup, H. H. J., and Jost, U. (1996). What’s in a word graph? Evaluation
and enhancement of word lattices. Technical Report Verbmobil-Report
186, University Hamburg, Germany.

Andreev, E. M. (1970a). On convex polyhedra in Lobacevskii spaces. Math.
USSR-Sb., 10:413–440.

Andreev, E. M. (1970b). On convex polyhedra of finite volume in Lobacevskii
space. Math. USSR-Sb., 12:255–259.

Auslander, L., and Parter, S. V. (1961). On imbedding graphs in the plane.
Journal of Mathematics and Mechanics, 10(3):517–523.

Baker, K. A., Fishburn, P. C., and Roberts, F. S. (1971). Partial orders of
dimension 2. Networks, 2:11–28.

Batagelj, V., Kerzic, D., and Pisanski, T. (1992). Automatic clustering of
languages. Computational Linguistics, 18(3):339–352.

Berge, C. (1993). Graphs. North Holland, Amsterdam, 3rd edition.
Berger, B., and Shor, P. (1990). Approximation algorithms for the maximum

acyclic subgraph problem. In Proceedings of the 1st ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA’90), pages 236–243.

284 Bibliography

Bertolazzi, P., Cohen, R. F., Di Battista, G., Tamassia, R., and Tollis, I. G.
(1994a). How to draw a series-parallel digraph. International Journal of
Computational Geometry and Applications, 4:385–402.

Bertolazzi, P., Di Battista, G., and Didimo, W. (1997). Computing orthog-
onal drawings with the minimum number of bends. In Proceedings of the
5th Workshop on Algorithms and Data Structures (WADS’97), Spinger
LNCS 1272, pages 331–344.

Bertolazzi, P., Di Battista, G., Liotta, G., and Mannino, C. (1994b). Upward
drawings of triconnected digraphs. Algorithmica, 6(12):476–497.

Bertolazzi, P., Di Battista, G., Mannino, C., and Tamassia, R. (1993). Opti-
mal upward planarity testing of single-source digraphs. In Proceedings of
the 1st European Symposium on Algorithms (ESA’93), Springer LNCS 726,
pages 37–48.

Bertsekas, D. P. (1998). Network Optimization: Continuous and Discrete
Models. Athena Scientific.

Biedl, T., Shermer, T., Whitesides, S., and Wismath, S. (1999). Bounds for
orthogonal 3D graph drawing. Journal of Graph Algorithms and Applica-
tions, 3(4):63–79.

Biedl, T. C. (1997). Orthogonal Graph Visualization: The Three-Phase
Method with Applications. PhD thesis, Rutgers University.

Biedl, T. C. (1998). Three approaches to 3D-orthogonal box-drawings.
In Proceedings of the 6th International Symposium on Graph Drawing
(GD’98). Springer LNCS 1547, pages 30–43.

Biedl, T. C., and Kant, G. (1994). A better heuristic for orthogonal graph
drawing. In Proceedings of the 2nd European Symposium on Algorithms
(ESA’94), Springer LNCS 855, pages 24–35.

Biedl, T. C., and Kaufmann, M. (1997). Area-efficient static and incremen-
tal graph drawings. In Proceedings of the 5th European Symposium on
Algorithms (ESA’97), Springer LNCS 1284, pages 37–52.

Biedl, T. C., Madden, B. P., and Tollis, I. G. (1997a). The three-phase
method: A unified approach to orthogonal graph drawing. In Proceedings
of the 5th International Symposium on Graph Drawing (GD’97). Springer
LNCS 1353, pages 391–402.

Biedl, T. C., Shermer, T., Whitesides, S., and Wismath, S. (1997b). Orthog-
onal 3D graph drawing. In Proceedings of the 5th International Symposium
on Graph Drawing (GD’97). Springer LNCS 1353, pages 76–86.

Blythe, J., McGrath, C., and Krackhardt, D. (1996). The effect of graph
layout on inference from social network data. In Proceedings of the 3rd In-
ternational Symposiom on Graph Drawing (GD’95). Springer LNCS 1027,
pages 40–51.

Böhringer, K.-F., and Paulisch, F. N. (1990). Using constraints to achieve
stability in automatic graph layout algorithms. In Proceedings of the ACM
Human Factors in Computing Systems Conference (CHI’90), pages 43–51.

Bibliography 285

Booth, K. S., and Lueker, G. S. (1976). Testing for the consecutive ones
property, interval graphs and graph planarity using PQ-tree algorithms.
Journal of Computer and System Sciences, 13:335–379.

Borgida, A., Brachman, R., McGuinness, D., and Resnick, L. (1989). CLAS-
SIC: A structural data model for objects. In Proceedings of the 1989 ACM-
SIGMOD International Conference on Management of Data, pages 59–67.

Bose, P., Gomez, F., Ramos, P., and Toussaint, G. (1996). Drawings nice
projections of objects in space. In Proceedings of the 3rd International
Symposium on Graph Drawing (GD’95), Springer LNCS 1027, pages 52–
63.

Brandenburg, F. J., Himsolt, M., and Rohrer, C. (1996). An experimental
comparison of force-directed and randomized graph drawing algorithms.
In Proceedings of the 3rd International Symposium on Graph Drawing
(GD’95), Springer LNCS 1027, pages 76–87.

Brandes, U. (1999). Layout of Graph Visualizations. PhD thesis, University of
Konstanz. http://www.ub.uni-konstanz/kops/volltexte/1999/255/.

Brandes, U., Kenis, P., Raab, J., Schneider, V., and Wagner, D. (1999). Ex-
plorations into the visualization of policy networks. Journal of Theoretical
Politics, 11(1):75–106.

Brandes, U., and Wagner, D. (1997). A Bayesian paradigm for dynamic
graph layout. In Proceedings of the 5th International Symposium on Graph
Drawing (GD’97), Springer LNCS 1353, pages 236–247.

Brandes, U., and Wagner, D. (1998a). Dynamic grid embedding with few
bends and changes. In Proceedings of the 9th Annual International Sympo-
sium on Algorithms and Computation (ISAAC’98), Springer LNCS 1533,
pages 89–98.

Brandes, U., and Wagner, D. (1998b). Using graph layout to visualize train
interconnection data. In Proceedings of the 6th International Symposium
on Graph Drawing (GD’98), Springer LNCS 1547, pages 44–56.

Branke, J., Bucher, F., and Schmeck, H. (1997). A genetic algorithm for
drawing undirected graphs. In Proceedings of the 3rd Nordic Workshop on
Genetic Algorithms and their Applications, pages 193–206.

Bridgeman, S., Di Battista, G., Didimo, W., Liotta, G., Tamassia, R., and
Vismara, L. (2000). Turn-regularity and optimal area drawings for orthog-
onal representations. Computational Geometry: Theory and Applications,
16(1):53–93.

Bridgeman, S., Fanto, J., Garg, A., Tamassia, R., and Vismara, L. (1997). In-
teractiveGiotto: An algorithm for interactive orthogonal graph draw-
ing. In Proceedings of the 5th International Symposium on Graph Drawing
(GD’97), Springer LNCS 1353, pages 303–308.

Bridgeman, S., and Tamassia, R. (1998). Difference metrics for interactive or-
thogonal graph drawing algorithms. In Proceedings of the 6th International
Symposium on Graph Drawing (GD’98), Springer LNCS 1457, pages 57–71.

286 Bibliography

Bruß, I., and Frick, A. (1996). Fast interactive 3-D graph visualization.
In Proceedings of the 3rd International Symposium on Graph Drawing
(GD’95), Springer LNCS 1027, pages 99–110.

Cai, J., Han, X., and Tarjan, R. E. (1993). An O(m logn)-time algorithm
for the maximal planar subgraph problem. SIAM Journal on Computing,
22:1142–1162.

Carpano, M. J. (1980b). Automatic display of hierarchized graphs for com-
puter aided decision analysis. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-10(11):705–715.

Catarci, T. (1995). The assignment heuristic for crossing reduction. IEEE
Trans. Syst. Man Cybern., 25(3):515–521.

Chaiken, S., and Kleitman, D. J. (1978). Matrix tree theorems. Journal of
Combinatorial Theory, Series A, 24:377–381.

Chan, T., Goodrich, M. T., Kosaraju, S. R., and Tamassia, R. (1996). Opti-
mizing area and aspect ration in straight-line orthogonal tree drawings.
In Proceedings of the 4th International Symposium on Graph Drawing
(GD’96). Springer LNCS 1190, pages 63–75.

Chan, T. M. (1999). A near-linear area bound for drawing binary trees. In
Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms
(SODA’99), pages 161–168.

Chiba, N., Nishizeki, T., Abe, S., and Ozawa, T. (1985). A linear time algo-
rithm for embedding planar graphs using PQ-trees. Journal of Computer
and System Sciences, 30:54–76.

Christensen, J., Friedman, S., Marks, J., and Shieber, S. (1997). Empirical
testing of algorithms for variable-sized label placement. In Proceedings of
the 13th Annual ACM Symposium on Computational Geometry, pages 415–
417.

Christensen, J., Marks, J., and Shieber, S. (1993). Algorithms for carto-
graphic label placement. In Proceedings of the American Congress on Sur-
veying and Mapping 1, pages 75–89.

Christensen, J., Marks, J., and Shieber, S. (1995). An empirical study of algo-
rithms for point-feature label placement. ACM Transactions on Graphics,
14(3):203–232.

Chrobak, M., and Kant, G. (1997). Convex grid drawings of 3-connected
planar graphs. International Journal of Computational Geometry and Ap-
plications, 7(3):211–224.

Chvátal, V. (1983a). Linear Programming. W. H. Freeman.
Closson, M., Everett, H., Gartshore, S., and Wismath, S. (1998). Arrangepak,

orthopak and vispak 2.0. Technical Report TR-CS-98, University of Leth-
bridge.

Coffman, E. G., and Graham, R. L. (1972). Optimal scheduling for two
processor systems. Acta Informatica, 1:200–213.

Bibliography 287

Cohen, J. D. (1997). Drawing graphs to convey proximity: An incremental ar-
rangement method. ACM Transactions on Computer-Human Interaction,
4(3):197–229.

Cohen, R. F., Di Battista, G., Tamassia, R., and Tollis, I. G. (1995). Dynamic
graph drawings: Trees, series-parallel digraphs, and planar st-digraphs.
SIAM Journal on Computing, 24(5):970–1001.

Cohen, R. F., Di Battista, G., Tamassia, R., Tollis, I. G., and Bertolazzi,
P. (1992). A framework for dynamic graph drawing. In Proceedings of
the 8th ACM Annual Symposium on Computational Geometry (SCG’92),
pages 261–270.

Colin de Verdière, Y. (1989). Empilements de cercles: convergence d’une
methode de point fixe. Forum Mathematicum, 1:395–402.

Cormen, T., Leiserson, C., and Rivest, R. (1990). Introduction to Algorithms.
The MIT Electrical Engineering and Computer Science Series. The MIT
Press and McGraw-Hill Book Company.

Crescenzi, P., Di Battista, G., and Piperno, A. (1992). A note on optimal area
algorithms for upward drawings of binary trees. Computational Geometry:
Theory and Applications, 2:187–200.

Crescenzi, P., and Piperno, A. (1995). Optimal-area upward drawings of AVL-
trees. In Proceedings of the DIMACS International Workshop on Graph
Drawing (GD’94). Springer LNCS 894, pages 307–317.

Cruz, I. F., and Twarog, J. P. (1996). 3D graph drawing with simulated
annealing. In Proceedings of the 3rd International Symposium on Graph
Drawing (GD’95), Springer LNCS 1027, pages 162–165.

Cunningham, W. H. (1976). A network simplex method. Mathematical Pro-
gramming, 11:105–116.

Czyzowicz, J. (1991). Lattice diagrams with few slopes. Journal of Combi-
natorial Theory, Series A, 56:96–108.

Czyzowicz, J., Pelc, A., and Rival, I. (1990). Drawing orders with few slopes.
Discrete Mathematics, 82:233–250.

Dai, W. W.-M., and Kuh, E. S. (1987). Global spacing of building-block
layout. In Proceedings of the IFIP International Conference on Very Large
Scale Integration (VLSI’87), pages 193–205.

Datta, A., Lenhof, H.-P., Schwarz, C., and Smid, M. H. M. (1993). Static and
dynamic algorithms for k-point clustering problems. In Proceedings of the
3rd Workshop on Algorithms and Data Structures (WADS’93), Springer
LNCS 709, pages 265–276.

Davidson, R., and Harel, D. (1996). Drawing graphs nicely using simulated
annealing. ACM Transactions on Graphics, 15(4):301–331.

de Fraysseix, H., Pach, J., and Pollack, R. (1990). How to draw a planar
graph on a grid. Combinatorica, 10:41–51.

Di Battista, G., Eades, P., Tamassia, R., and Tollis, I. G. (1994). Algorithms
for drawing graphs: An annotated bibliography. Computational Geometry,
4:235–282.

288 Bibliography

Di Battista, G., Eades, P., Tamassia, R., and Tollis, I. G. (1999). Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice Hall.

Di Battista, G., Liotta, G., and Vargiu, F. (1998a). Spirality and optimal
orthogonal drawings. SIAM Journal on Computing, 27(6):1764–1811.

Di Battista, G., Liu, W. P., and Rival, I. (1990). Bipartite graphs, upward
drawings, and planarity. Information Processing Letters, 36(6):317–322.

Di Battista, G., Patrignani, M., and Vargiu, F. (1998b). A split & push ap-
proach to 3-D orthogonal drawing. In Proceedings of the 6th International
Symposium on Graph Drawing (GD’98). Springer LNCS 1547, pages 87–
101.

Di Battista, G., and Tamassia, R. (1988). Algorithms for plane representa-
tions of acyclic digraphs. Theoretical Computer Science, 61(2-3):175–198.

Di Battista, G., and Tamassia, R. (1989). Incremental planarity testing.
In Proceedings of the 30th Symposium on the Foundations of Computer
Science (FOCS’89), pages 436–441.

Di Battista, G., and Tamassia, R. (1990). On-line graph algorithms with
SPQR-trees. In Proceedings of the 17th International Colloqium on Au-
tomata, Languages and Programming (ICALP’90), Springer LNCS 443,
pages 598–611.

Di Battista, G., and Tamassia, R. (1996). On-line planarity testing. SIAM
Journal on Computing, 25(5):956–997.

Di Battista, G., and Vismara, L. (1993). Angles of planar triangulated graphs.
In Proceedings of the 25th Annual ACM Symposium on the Theory of Com-
puting (STOC’93), pages 431–437.

Di Battista, G., and Vismara, L. (1996). Angles of planar triangulated graphs.
SIAM Journal on Discrete Mathematics, 9(3):349–359.

Didimo, W., and Liotta, G. (1998). Computing orthogonal drawings in a
variable embedding setting. In Proceedings of the 9th Annual Interna-
tional Symposium on Algorithms and Computation (ISAAC’98), Springer
LNCS 1533, pages 79–88.

Dietz, P. F., and Sleator, D. D. (1987). Two algorithms for maintaining order
in a list. In Proceedings of the 19th Annual ACM Symposium of Theory of
Computing (STOC’87), pages 365–372.

Djidjev, H. N. (1995). A linear algorithm for the maximal planar subgraph
problem. In Proceedings of the 4th Workshop on Algorithms and Data
Structures (WADS’95). Springer LNCS 955, pages 369–380.

Doddi, S., Mararthe, M. V., Mirzaian, A., Moret, B. M. E., and Zhu, B.
(1999). Map labeling and its generalizations. Technical Report LA-UR-
96-2411, Los Alamos National Labatory.

Doddi, S., Marathe, M. V., Mirzaian, A., Moret, B. M. E., and Zhu, B. (1997).
Map labeling and its generalizations. In Proceedings of the 8th ACM-SIAM
Symposium on Discrete Algorithms (SODA’97), pages 148–157.

Dresbach, S. (1995). A new heuristic layout algorithm for directed acyclic
graphs. In Operations Research Proceedings 1994, pages 121–126.

Bibliography 289

Duncan, C. A., Goodrich, M. T., and Kobourov, S. G. (1998). Balanced as-
pect ratio trees and their use for drawing very large graphs. In Proceedings
of the 6th International Symposium on Graph Drawing (GD’98). Springer
LNCS 1547, pages 111–124.

Eades, P. (1984). A heuristic for graph drawing. Congressus Numerantium,
42:149–160.

Eades, P., Cohen, R. F., and Huang, M. L. (1997a). Online animated graph
drawing for Web navigation. In Proceedings of the 5th International Sym-
posium on Graph Drawing (GD’97), Springer LNCS 1353, pages 330–335.

Eades, P., and Feng, Q. W. (1996). Multilevel visualization of clustered
graphs. In Proceedings of the 4th International Symposium on Graph Draw-
ing (GD’96). Springer LNCS 1190, pages 101–112.

Eades, P., and Feng, Q. W. (1997). Drawing clustered graphs on an orthog-
onal grid. In Proceedings of the 5th International Symposium on Graph
Drawing (GD’97). Springer LNCS 1353, pages 146–157.

Eades, P., Feng, Q. W., and Lin, X. (1996a). Straight-line drawing algorithms
for hierarchical graphs and clustered graphs. In Proceedings of the 4th In-
ternational Symposium on Graph Drawing (GD’96). Springer LNCS 1190,
pages 113–128.

Eades, P., Feng, Q., and Nagamochi, H. (1999). Drawing clustered graphs
on an orthogonal grid. Journal on Graph Algorithms and Applications,
3(4):3–29.

Eades, P., Huang, M. L., and Wang, J. (1997b). Online animated graph
drawing using a modified spring algorithm. Technical Report 97–05, De-
partment of Computer Science and Software Engineering, University of
Newcastle.

Eades, P., and Kelly, D. (1986). Heuristics for reducing crossings in 2-layered
networks. Ars Combinatorica, 21.A:89–98.

Eades, P., Lai, W., Misue, K., and Sugiyama, K. (1991). Preserving the
mental map of a diagram. In Proceedings of Compugraphics ’91, pages 24–
33.

Eades, P., and Lin, X. (1995). A new heuristic for the feedback arc set
problem. Australian Journal of Combinatorics, 12:15–26.

Eades, P., Lin, X., and Smyth, W. F. (1993). A fast and effective heuristic for
the feedback arc set problem. Information Processing Letters, 47:319–323.

Eades, P., and Marks, J. (1995). Graph drawing contest report. In Proceed-
ings of the DIMACS International Workshop on Graph Drawing (GD’94),
Springer LNCS 894, pages 143–146.

Eades, P., and Marks, J. (1996). Graph-drawing contest report. In Pro-
ceedings of the 3rd International Symposium on Graph Drawing (GD’95),
Springer LNCS 1027, pages 224–233.

Eades, P., Marks, J., and North, S. C. (1996). Graph-drawing contest re-
port. In Proceedings of the 4th International Symposium on Graph Drawing
(GD’96), Springer LNCS 1190, pages 129–138.

290 Bibliography

Eades, P., Marks, J., and North, S. C. (1997c). Graph-drawing contest re-
port. In Proceedings of the 5th International Symposium on Graph Drawing
(GD’97), Springer LNCS 1353, pages 438–445.

Eades, P., Marks, J., Mutzel, P., and North, S. C. (1998). Graph drawing con-
test report. In Proceedings of the 6th International Symposium on Graph
Drawing (GD’98), Springer LNCS 1547, pages 423–435.

Eades, P., Nagamochi, H., and Feng, Q. (1998). Straight-line drawing al-
gorithms for hierarchical graphs and clustered graphs. Technical Report
98-03, Department of Computer Science and Software Engineering, Uni-
versity of Newcastle, Australia. Available at ftp://ftp.cs.newcastle.
edu.au/pub/techreports/tr98-03.ps.Z.

Eades, P., Stirk, C., and Whitesides, S. (1996). The techniques of Kolmogorov
and Bardzin for three-dimensional orthogonal graph drawing. Information
Processing Letters, 60(2):97–103. University.

Eades, P., and Sugiyama, K. (1990). How to draw a directed graph. Journal
of Information Processing, 13:424–437.

Eades, P., Symvonis, A., and Whitesides, S. (1996b). Two algorithms for
three dimensional orthogonal graph drawing. In Proceedings of the 4th In-
ternational Symposium on Graph Drawing (GD’96). Springer LNCS 1190,
pages 139–154.

Eades, P., Symvonis, A., and Whitesides, S. (2000). Three-dimensional or-
thogonal graph drawing. Discrete Applied Mathematics, 103(1-3):55–87.

Eades, P., and Whitesides, S. (1994). Drawing graphs in two layers. Theo-
retical Computer Science, 131(2):361–374.

Eades, P., and Wormald, N. C. (1990). Fixed edge-length graph drawing is
NP-hard. Discrete Applied Mathematics, 28:111–134.

Eades, P., and Wormald, N. C. (1994). Edge crossings in drawings of bipartite
graphs. Algorithmica, 11(4):379–403.

Edmondson, S., Christensen, J., Marks, J., and Shieber, S. (1997). A general
cartographic labeling algorithm. Cartographica, 33(4):13–23.

Eiglsperger, M., Fößmeier, U., and Kaufmann, M. (2000). Orthogonal graph
drawing with constraints. In Proceedings of the 11th ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2000), pages 3–11.

Eppstein, D., and Erickson, J. (1994). Iterated nearest neighbors and finding
minimal polytopes. Discrete Computational Geometry, 11:321–350.

Even, S. (1979). Graph Algorithms. Pitman.
Even, S., and Tarjan, R. E. (1976). Computing an st-numbering. Theoretical
Computer Science, 2:436–441.

Faria, L., De Figueiredo, C. M. H., and Mendonca, C. F. X. (1998). Splitting
number is NP-complete. Proceedings of the 24th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG’98), Springer
LNCS 1517, pages 285–297.

Bibliography 291

Fekete, S. P., and Meijer, H. (1999). Rectangle and box visibility graphs in
3D. International Journal of Computational Geometry and Applications,
9(1):1–27.

Feng, Q. (1997). Algorithms for Drawing Clustered Graphs. PhD thesis, Uni-
versity of Newcastle. http://www.cs.newcastle.edu.au/Dept/theses.
html.

Feng, Q.-W., Cohen, R. F., and Eades, P. (1995). Planarity for clustered
graphs. In Proceedings of the 3rd European Symposium on Algorithms
(ESA’95). Springer LNCS 979, pages 213–226.

Fialko, S., and Mutzel, P. (1998). A new approximation algorithm for the
planar augmentation problem. In Proceedings of the 9th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’98), pages 260–269.

Fisk, C. J., Caskey, D. L., and West, L. E. (1967). ACCEL: Automated
circuit card etching layout. Proceedings of the IEEE, 55(11):1971–1982.

Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. (1990). Computer
Graphics, 2nd edition. Addison-Wesley.

Force, A. C. G. I. T. (1996). Application challenges to computational geom-
etry. Technical Report TR-521-96, Princeton University.

Formann, M., Hagerup, T., Haralambides, J., Kaufmann, M., Leighton, F. T.,
Simvonis, A., Welzl, E., and Woeginger, G. (1990). Drawing graphs in the
plane with high resolution. In Proceedings of the 31st Symposium on the
Foundations of Computer Science (FOCS’90), pages 86–95.

Formann, M., and Wagner, F. (1991). A packing problem with applications
to lettering of maps. In Proceedings of the 7th Annual Symposium on
Computational Geometry (SCG ’91), pages 281–288.

Formella, A., and Keller, J. (1995). Generalized fisheye views of graphs.
In Proceedings of the 3rd International Symposium on Graph Drawing
(GD’95). Springer LNCS 1027, pages 242–253.

Fößmeier, U. (1997a). Interactive orthogonal graph drawing: Algorithms
and bounds. In Proceedings of the 5th International Symposium on Graph
Drawing (GD’97). Springer LNCS 1353, pages 111–123.

Fößmeier, U. (1997b). Orthogonale Visualisierungstechniken für Graphen.
PhD thesis, Eberhard-Karls-Universität zu Tübingen.

Fößmeier, U., Heß, C., and Kaufmann, M. (1998). On improving orthogonal
drawings: The 4M-algorithm. In Proceedings of the 6th International Sym-
posium on Graph Drawing (GD’98). Springer LNCS 1547, pages 125–137.

Fößmeier, U., Kant, G., and Kaufmann, M. (1996). 2-visibility drawings
of planar graphs. In Proceedings of the 4th International Symposium on
Graph Drawing (GD’96). Springer LNCS 1190, pages 155–168.

Fößmeier, U., and Kaufmann, M. (1995). Drawing high degree graphs with
low bend numbers. In Proceedings of the 3rd International Symposium on
Graph Drawing (GD’95). Springer LNCS 1027, pages 254–266.

292 Bibliography

Foulds, L. R., Gibbons, P. B., and Giffin, J. W. (1985). Facilities layout adja-
cency determination: An experimental comparison of three graph theoretic
heuristics Operations Research, 33:1091–1106.

Foulds, L. R., and Robinson, D. F. (1978). Graph theoretic heuristics for
the plant layout problem. International Journal of Production Research,
16:27–37.

Fowler, R. J., Paterson, M. S., and Tanimoto, S. L. (1981). Optimal pack-
ing and covering in the plane are NP-complete. Information Processing
Letters, 12(3):133–137.

Freeman, L. C. (1999a). The social network graphics source. School of Social
Science, University of California Irvine. http://eclectic.ss.uci.edu/
~lin/gallery.html.

Freeman, L. C. (1999b). Using molecular modeling software in social network
analysis: A practicum. School of Social Science, University of California
Irvine. http://eclectic.ss.uci.edu/~lin/chem.html.

Freuder, E. C., and Wallace, R. J. (1992). Partial constraint satisfaction.
Artificial Intelligence, 58(1-3):21–70.

Frick, A. (1997). Upper bounds on the number of hidden nodes in Sugiyama’s
algorithm. In Proceedings of the 4th International Symposium on Graph
Drawing (GD’96). Springer LNCS 1190, pages 169–183.

Frick, A., Ludwig, A., and Mehldau, H. (1995). A fast adaptive layout algo-
rithm for undirected graphs. In Proceedings of the DIMACS International
Workshop on Graph Drawing (GD’94). Springer LNCS 894, pages 388–403.

Fruchterman, T. M. J., and Reingold, E. M. (1991). Graph-drawing by force-
directed placement. Software — Practice and Experience, 21(11):1129–
1164.

Gansner, E. R., Koutsofios, E., North, S. C., and Vo, K.-P. (1993). A tech-
nique for drawing directed graphs. IEEE Transactions on Software Engi-
neering, 19(3):214–230.

Ganter, B., and Wille, R. (1999). Formal Concept Analysis — Mathematical
Foundations. Springer.

Garey, M. R., and Johnson, D. S. (1983). Crossing number is NP-complete.
SIAM Journal on Algebraic and Discrete Methods, 4(3):312–316.

Garey, M. R., and Johnson, D. S. (1991). Computers and Intractability: A
Guide to the Theory of NP–Completeness. W.H. Freeman & Co.

Garg, A., Goodrich, M. T., and Tamassia, R. (1996). Planar upward tree
drawings with optimal area. International Journal Computational Geom-
etry and Applications, 6:333–356.

Garg, A., and Tamassia, R. (1993). Efficient computation of planar straight-
line upward drawings. In Graph Drawing ’93 (Proc. ALCOM Workshop
on Graph Drawing).

Garg, A., and Tamassia, R. (1994). Planar drawings and angular resolution:
Algorithms and bounds. In Proceedings of the 2nd European Symposium
on Algorithms (ESA’94). Springer LNCS 855, pages 12–23.

Bibliography 293

Garg, A., and Tamassia, R. (1995a). On the computational complexity of
upward and rectilinear planarity testing. In Proceedings of the DIMACS
International Workshop on Graph Drawing (GD’94). Springer LNCS 894,
pages 286–297.

Garg, A., and Tamassia, R. (1995b). Upward planarity testing. Order,
12:109–133.

Garg, A., and Tamassia, R. (1996a). GIOTTO3D: A system for visualizing
hierarchical structures in 3D. In Proceedings of the 4th International Sym-
posium on Graph Drawing (GD’96). Springer LNCS 1190, pages 193–200.

Garg, A., and Tamassia, R. (1996b). A new minimum cost flow algorithm
with applications to graph drawing. In Proceedings of the 4th International
Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 201–
216.

Garg, A., and Tamassia, R. (1997). A new minimum cost flow algorithm
with applications to graph drawing. In Proceedings of the 4th International
Symposium on Graph Drawing (GD’96). Springer LNCS 1190, pages 201–
216.

Georgakopoulos, D., Hornick, M., and Sheth, A. (1995). An overview of
workflow management: From process modeling to workflow automation
infrastructure. Distributed and Parallel Databases, 3(2):119–153.

German Research Center for Artificial Intelligence GmbH (1999). The Verb-
mobil project. http://www.dfki.de/verbmobil.

Godehardt, E. (1988). Graphs as Structural Models, Advances in System
Analysis 4. Vieweg.

Goldberg, A. V., and Kennedy, R. (1995). An efficient cost scaling algorithm
for the assignment problem. Mathematical Programming, 71:153–178.

Goldstein, A. J. (1963). An efficient and constructive algorithm for testing
whether a graph can be embedded in a plane. In Graph and Combinatorics
Conference, Contract No. NONR 1858-(21). Princeton University.

Grötschel, M., Jünger, M., and Reinelt, G. (1985). On the acyclic subgraph
polytope. Mathematical Programming, 33(1):28–42.

Gutwenger, C., and Mutzel, P. (1998). Planar polyline drawings with good
angular resolution. In Proceedings of the 6th International Symposium on
Graph Drawing (GD’98). Springer LNCS 1547, pages 167–182.

Hayashi, K., Inoue, M., Masuzawa, T., and Fujiwara, H. (1998). A layout
adjustment problem for disjoint rectangles preserving orthogonal order. In
Proceedings of the 6th International Symposium on Graph Drawing, num-
ber 1547 in LNCS, pages 183–197.

He, W., and Marriott, K. (1998). Constrained graph layout. Constraints,
3(4):289–314.

Herdeg, W., editor (1981). Diagrams. Graphis Press Corporation.
Hermansson, K., and Ojamae, L. (1994). MOVIEMOL — An easy-to-use

molecular display and animation program. Technical Report UUIC-B19-
500, Institute of Chemistry, University of Uppsala.

294 Bibliography

Hochbaum, D. S. (1995). Approximation Algorithms for NP-hard Problems.
PWS Publishing Company, Boston.

Hochbaum, D. S., and Maass, W. (1985). Approximation schemes for covering
and packing problems in image processing and VLSI. Journal of the ACM,
32(1):130–136.

Hong, S.-H., Eades, P., Quigley, A., and Lee, S.-H. (1998). Drawing algo-
rithms for series-parallel digraphs in two and three dimensions. In Pro-
ceedings of the 6th International Symposium on Graph Drawing (GD’98).
Springer LNCS 1547, pages 198–209.

Hong, S.-H., Eades, P., Quigley, A., and Lee, S.-H. (1999a). Drawing series-
parallel digraphs symmetrically. To appear in International Journal of
Computational Geometry and Applications.

Hong, S.-H., Eades, P., Quigley, A., and Lee, S.-H. (1999b). A three dimen-
sional drawing algorithm for series-parallel graphs. Manuscript.

Hopcroft, J., and Tarjan, R. E. (1974). Efficient planarity testing. Journal
of the ACM, 21:549–568.

Hopcroft, J. E., and Tarjan, R. E. (1973). Dividing a graph into triconnected
components. SIAM Journal on Computing, 2(3):135–158.

Hsu, W.-L. (1995). A linear time algorithm for finding maximal planar sub-
graphs. In Proceedings of the 6th International Symposium on Algorithms
and Computation (ISAAC’95). Springer LNCS 1004, pages 352–361.

Huang, M. L., and Eades, P. (1998a). A fully animated interactive system
for clustering and navigating huge graphs. In Proceedings of the 6th In-
ternational Symposium on Graph Drawing (GD’98), Springer LNCS 1547,
pages 374–383.

Hughes, J. G. (1993). Object-Oriented Databases. International Series in
Computer Science. Prentice-Hall.

Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD — Visual molecular
dynamics. Journal of Molecular Graphics, 14(1):33–38.

Hutton, M. D., and Lubiw, A. (1991). Upward planar drawing of single
source acyclic digraphs. In Proceedings of the 2nd ACM-SIAM Symposium
on Discrete Algorithms (SODA’91), pages 203–211.

Imai, H., and Asano, T. (1983). Finding the connected components and a
maximum clique of an intersection graph of rectangles in the plane. Journal
of Algorithms, 4:310–323.

Imai, H., and Asano, T. (1986). Efficient algorithms for geometric graph
search problems. SIAM Journal on Computing, 15(2):478–494.

Imhof, E. (1962). Die Anordnung der Namen in der Karte. International
Yearbook of Cartography, 2:93–129.

Imhof, E. (1975). Positioning names on maps. The American Cartographer,
2(2):128–144.

Indermark, K., Thomas, W., Huch, F., Leucker, M., and Noll, T. (1999).
Various texts about the TRUTH system for modelling concurrent systems,

Bibliography 295

Lehrstuhl für Informatik II, RWTH Aachen. http://www-i2.informatik.
rwth-aachen.de/Forschung/MCS/.

Isoda, S., Shimomura, T., and Ono, Y. (1987). VIPS: A visual debugger.
IEEE Software, 4(3):8–19.

Iturriaga, C., and Lubiw, A. (1997). NP-hardness of some map labeling
problems. Technical Report CS-97-18, University of Waterloo.

Jain, A. K., and Dubes, R. C. (1988). Algorithms for Clustering Data. Pren-
tice Hall.

Johnson, D. S. (1982). The NP-completeness column: An ongoing guide.
Journal of Algorithms, 3:89–99.

Jünger, M., Lee, E. K., Mutzel, P., and Odenthal, T. (1997). A polyhedral
approach to the multi-layer crossing minimization problem. In Proceedings
of the 5th International Symposium on Graph Drawing (GD’97). Springer
LNCS 1353, pages 13–24.

Jünger, M., and Mutzel, P. (1996). Maximum planar subgraphs and nice
embeddings: Practical layout tools. Algorithmica, 16:33–59.

Jünger, M., and Mutzel, P. (1997). 2-Layer straightline crossing minimiza-
tion: Performance of exact and heuristic algorithms. Journal on Graph
Algorithms and Applications, 1(1):1–25.

Kakoulis, K. G., and Tollis, I. G. (1996). On the edge label placement prob-
lem. In Proceedings of the 4th International Symposium on Graph Drawing
(GD’96). Springer LNCS 1190, pages 241–256.

Kakoulis, K. G., and Tollis, I. G. (1997). An algorithm for labeling edges of
hierarchical drawings. In Proceedings of the 5th International Symposium
on Graph Drawing (GD’97). Springer LNCS 1353, pages 169–180.

Kakoulis, K. G., and Tollis, I. G. (1998a). On the multiple label placement
problem. In Proceedings of the 10th Canadian Conference on Computa-
tional Geometry (CCCG’98), pages 66–67.

Kakoulis, K. G., and Tollis, I. G. (1998b). A unified approach to labeling
graphical features. In Proceedings of the 14th Annual ACM Symposium on
Computional Geometry (SCG’98), pages 347–356.

Kamada, T., and Kawai, S. (1988). A simple method for computing gen-
eral positions in displaying three-dimensional objects. Computer Vision,
Graphics and Image Processing, 41:43–56.

Kamada, T., and Kawai, S. (1989). An algorithm for drawing general undi-
rected graphs. Information Processing Letters, 31:7–15.

Kant, G. (1996). Drawing planar graphs using the canonical ordering. Algo-
rithmica, 16:4–32.

Kant, G., and Bodlaender, H. L. (1991). Planar graph augmentation prob-
lems. In Proceedings of the 2nd Workshop on Algorithms and Data Struc-
tures (WADS’91), Springer LNCS 519, pages 286–298.

Karp, R. (1972). Reducibility among combinatorical problems. In Complexity
of Computer Computations, pages 85–103. Plenum Press.

296 Bibliography

Kato, T., and Imai, H. (1988). The NP-completeness of the character place-
ment problem of 2 or 3 degrees of freedom. In Record of Joint Conference
of Electrical and Electronic Engineers in Kyushu, page 1138.

Keahey, T. A., and Robertson, E. (1996). Techniques for non-linear magini-
faction transformations. In Proceedings of the IEEE Symposium on Infor-
mation Visualization (InfoVis’96), pages 38–45.

Kedem, G., and Watanabe, H. (1984). Graph optimization techniques for
IC-layout and compaction. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, CAD-3(1):12–20.

Kelly, D., and Rival, I. (1975). Planar lattices. Canadian Journal of Mathe-
matics, 27:636–665.

Kenis, P. (1999). Analysing social network data by means of visualisation
techniques. Paper presented at the 19th International Conference on Social
Network Analysis (Sunbelt XIX), Charleston.

Kernighan, B. W., and Lin, S. (1970). An efficient heuristic procedure for
partitioning graphs. The Bell System Technical Journal, 49(2):291–307.

Kirchhoff, G. R. (1847). Über die Auflösung der Gleichungen, auf welche man
bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt
wird. Annalen der Physik und Chemie, 72:497–508.

Klau, G. W., and Mutzel, P. (1998). Quasi-orthogonal drawing of planar
graphs. Technical Report 98-1-013, Max-Planck-Institut für Informatik,
Saarbrücken.

Klau, G. W., and Mutzel, P. (1999a). Combining graph labeling and com-
paction. In Proceedings of the 7th International Symposium on Graph
Drawing (GD’99). Springer LNCS 1731, pages 27–37.

Klau, G. W., and Mutzel, P. (1999b). Optimal compaction of orthogonal
grid drawings. In Integer Programming and Combinatorial Optimization
(IPCO’99). Springer LNCS 1610, pages 304–319.

Knipping, L. (1998). Beschriftung von Linienzügen. Diplomarbeit, Fachbere-
ich Mathematik und Informatik, Freie Universität Berlin.

Knuth, D. E., and Raghunathan, A. (1992). The problem of compatible
representatives. SIAM Journal on Discrete Mathematics, 5(3):422–427.

Koebe, P. (1936). Kontaktprobleme auf der konformen Abbildung. Berichte
über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu
Leipzig, Mathematisch-Physikalische Klasse, 88:141–164.

Kolmogorov, A. N., and Bardzin, Y. M. (1967). About realization of sets in
3-dimensional space. Problems in Cybernetics, pages 261–268.

Kosak, C., Marks, J., and Shieber, S. (1994). Automating the layout of
network diagrams with specified visual organization. IEEE Transactions
on Systems, Man and Cybernetics, 24(3):440–454.

Krackhardt, D., Blythe, J., and McGrath, C. (1994). KrackPlot 3.0: An
improved network drawing program. Connections, 17(2):53–55.

Bibliography 297

Kruskal, J. B., and Wish, M. (1978). Multidimensional Scaling. Sage Uni-
versity Paper Series on Quantitative Applications in the Social Sciences
07-011.

Kucera, L., Mehlhorn, K., Preis, B., and Schwarzenecker, E. (1993). Ex-
act algorithms for a geometric packing problem. Proceedings of the 10th
Symposium on the Theoretical Aspects of Computer Science (STACS’93).
Springer LNCS 665, pages 317–322.

Kumar, A., and Fowler, R. H. (1994). A spring modelling algorithm to posi-
tion nodes of an undirected graph in three dimensions. Technical report,
Department of Computer Science, University of Texas.

Laguna, M., and Mart́ı, R. (1999). Grasp and path relinking for 2-layer
straight line crossing minimization. INFORMS Journal on Computing,
11(1):44–52.

Laguna, M., Mart́ı, R., and Valls, V. (1997). Arc crossing minimization in hi-
erarchical digraphs with tabu search. Computers and Operations Research,
24(12):1175–1186.

Lam, S., and Sethi, R. (1977). Worst case analysis of two scheduling problems.
SIAM Journal on Computing, 6:518–536.

LaPaugh, A. S. (1998). VLSI Layout Algorithms. In Algorithms and Theory
of Computation Handbook. CRC Press.

Leiserson, C. E. (1980). Area-efficient graph layouts (for VLSI). In Proceed-
ings of the 21st Annual IEEE Symposium on Foundations of Computer
Science (FOCS’80), pages 270–281.

Lempel, A., and Cederbaum, I. (1966). Minimum feedback arc and vertex sets
of a directed graph. IEEE Transactions on Circuit Theory, CT–13(4):339–
403.

Lempel, A., Even, S., and Cederbaum, I. (1967). An algorithm for planarity
testing of graphs. In Theory of Graphs: International Symposium (Rome
1966), pages 215–232. Gordon and Breach.

Lengauer, T. (1989). Hierarchical planarity testing algorithms. Journal of
the ACM, 36:474–509.

Lengauer, T. (1990). Combinatorial Algorithms for Integrated Circuit Layout.
Applicable Theory in Computer Science. B. G. Teubner and John Wiley
& Sons.

Leung, J. (1992). A new graph-theoretic heuristic for facility layout. Man-
agement Science, 38(4):594–605.

Lewis, J. M., and Yannakakis, M. (1980). The node-deletion problem for
hereditary properties is NP-complete. Journal of Computer and System
Sciences, 20(2):219–230.

Liebers, A. (1996). Methods for planarizing graphs - A survey and annotated
bibliography. Technical Report Konstanzer Schriften in Mathematik und
Informatik Nr. 12, Fakultät für Mathematik und Informatik, Universität
Konstanz. ISSN 1430-3558. To appear in Journal on Graph Algorithms
and Applications.

298 Bibliography

Lin, X. (1992). Analysis of Algorithms for Drawing Graphs. PhD thesis,
University of Queensland.

Lino, P., Mart́ı, R., and Valls, V. (1996). A branch and bound algorithm
for minimizing the number of crossing arcs in bipartite graphs. Journal of
Operational Research, 90:303–319.

Lipton, R. J., Rose, D. J., and Tarjan, R. E. (1979). Generalized nested
dissection. SIAM Journal on Numerical Analysis, 16:346–358.

Lipton, R. J., and Tarjan, R. E. (1970). A seperator theorem for planar
graphs. In Proceedings of the Conference on Theoretical Computer Science,
pages 1–10.

Liu, P. C., and Geldmacher, R. C. (1977). On the deletion of nonplanar
edges of a graph. In Proceedings of the 10th Southeastern Conference on
Combinatorics, Graph Theory, and Computing, pages 727–738.

Lyons, K. A. (1992). Cluster busting in anchored graph drawing. In Proceed-
ings of the ’92 CAS Conference (CASCON’92), pages 7–17.

Lyons, K. A., Meijer, H., and Rappaport, D. (1998). Algorithms for cluster
busting in anchored graph drawing. Journal on Graph Algorithms and
Applications, 2(1):1–24.

Mackworth, A. K., and Freuder, E. C. (1985). The complexity of some poly-
nomial network consistency algorithms for constraint satisfaction problem.
Artificial Intelligence, 25(1):65–74.

Mäkinen, E. (1990). Experiments on drawing 2-level hierarchical graphs.
International Journal of Computer and Mathematics, 36:175–181.

Mäkinen, E., and Sieranta, M. (1994). Genetic algorithms for drawing bipar-
tite graphs. Internatonal Journal of Computer Mathematics, 53:157–166.

Malitz, S., and Papakostas, A. (1992). On the angular resolution of planar
graphs. In Proceedings of the 24th Annual ACM Symposium on the Theory
of Computing (STOC’92), pages 527–538.

Malitz, S., and Papakostas, A. (1994). On the angular resolution of planar
graphs. SIAM Journal on Discrete Mathematics, 7(2):172–183.

Manning, J. (1990). Geometric Symmetry in Graphs. PhD thesis, Purdue
University.

Marks, J., and Shieber, S. (1991). The computational complexity of carto-
graphic label placement. Technical Report TR-05-91, Harvard University
Computer Science.

Masuda, S., Kimura, S., Kashiwabara, T., and Fujisawa, T. (1983). On the
Manhattan wiring problem. Technical Report CAS 83-20, Institute of Elec-
tronics and Communication Engineers of Japan.

Masui, T. (1992). Graphic object layout with interactive genetic algorithms.
In Proceedings of the 1992 IEEE Workshop on Visual Languages (VL’92),
pages 74–87.

Matuszewski, C., Schönfeld, R., and Molitor, P. (1999). Using sifting for k-
layer straightline crossing minimization. Proceedings of the 7th Symposium
on Graph Drawing (GD’99). Springer LNCS 1731, pages 217–224.

Bibliography 299

McGrath, C., Blythe, J., and Krackhardt, D. (1996). Seeing groups in graph
layouts. Connections, 19(2):22–29.

McGrath, C., and Borgatti, S. P. (1999). The International Network for So-
cial Network Analysis Homepage. http://www.heinz.cmu.edu/project/
INSNA/.

Mehlhorn, K. (1984). Data Structures and Algorithms. Volume 2: Graph
Algorithms and NP-Completeness. EATCS Monographs on Theoretical
Computer Science. Springer.

Mehlhorn, K., and Näher, S. (1999). The Leda Platform of Combinatorial
and Geometric Computing. Cambridge University Press. Project home
page at http://www.mpi-sb.mpg.de/LEDA/.

Messinger, E. B., Rowe, L. A., and Henry, R. H. (1991). A divide-and-
conquer algorithm for the automatic layout of large directed graphs. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-21(1):1–12.

Miriyala, K., Hornik, S. W., and Tamassia, R. (1993). An incremental
approach to aesthetic graph layout. In Proceedings of the 6th Interna-
tional Workshop on Computer-Aided Software Engineering (CASE’93),
pages 297–308.

Misue, K., Eades, P., Lai, W., and Sugiyama, K. (1995). Layout adjustment
and the mental map. Journal of Visual Languages and Computing, 6:183–
210.

Moen, S. (1990). Drawing dynamic trees. IEEE Software, 7:21–28.
Monien, B., Ramme, F., and Salmen, H. (1995). A parallel simulated an-

nealing algorithm for generating 3D layouts of undirected graphs. In Pro-
ceedings of the 3rd International Symposium on Graph Drawing (GD’95).
Springer LNCS 1027, pages 396–408.

Monien, B., Ramme, F., and Salmen, H. (1996). A parallel simulated anneal-
ing algorithm for generating 3d layouts of undirected graphs. In Proceedings
of the 3rd International Symposium on Graph Drawing (GD’95). Springer
LNCS 1027, pages 396–408.

MTA (1999). MTA New York City subway map. http://www.mta.nyc.
ny.us/nyct/images/sub1a.gif and http://www.mta.nyc.ny.us/nyct/
images/sub2a.gif.

Mukherjea, S., Foley, J., and Hudson, S. (1994). Interactive clustering for
navigating in hypermedia systems. In Proceedings of the ACM European
Conference on Hypermedia Tehcnologie.

Mutzel, P. (1994). The Maximum Planar Subgraph Problem. PhD thesis,
Universität zu Köln.

Mutzel, P. (1995). A polyhedral approach to planar augmentation and related
problems. In Proceedings of the 3rd European Symposium on Algorithms
(ESA’95). Springer LNCS 979, pages 494–507.

Mutzel, P. (1997). An alternative method to crossing minimization on hi-
erarchical graphs. In Proceedings of the 4th International Symposium on
Graph Drawing (GD’96). Springer LNCS 1190, pages 318–333.

300 Bibliography

Nakano, S., Rahman, M. S., and Nishizeki, T. (1997). A linear-time algo-
rithm for four-partitioning four-connected planar graphs. In Proceedings
of the 5th International Symposium on Graph Drawing (GD’97). Springer
LNCS 1353, pages 334 – 344.

Nemhauser, G. L., and Sigismondi, G. (1992). A strong cutting plane/branch-
and-bound algorithm for node packing. Journal of the Operational Research
Society, 43:443–457.

Nielsen, J. (1990). The art of navigating throuh hypertext. Communications
of the ACM, 33(3):296–310.

Nishizeki, T., and Chiba, N. (1988). Planar Graphs: Theory and Algorithms.
North-Holland Mathematics Studies 140/32.

North, S. C. (1996). Incremental layout with DynaDag. In Proceedings of
the 3rd International Symposium on Graph Drawing (GD’95). Springer
LNCS 1027, pages 409–418.

Oerder, M., and Ney, H. (1993). Word graphs: An efficient interface between
continuous-speech recognition and language understanding. In Proceedings
of the International Conference on Acoustics, Speech and Signal Processing
(ICASSP’93), volume II, pages 119–122.

Ostry, D. (1996). Some three-dimensional graph drawing algorithms. Master’s
thesis, University of Newcastle.

Otten, R. H. J. M., and van Wijk, J. G. (1978). Graph representation in inter-
active layout design. In Proceedings of the IEEE International Symposium
on Circuits and Systems, pages 914–918.

Papakostas, A. (1995). Upward planarity testing of outerplanar dags. In
Proceedings of the DIMACS International Workshop on Graph Drawing
(GD’94). Springer LNCS 894, pages 298–306.

Papakostas, A., Six, J. M., and Tollis, I. G. (1996). Experimental and the-
oretical results in interactive orthogonal graph drawing. In Proceedings
of the 4th International Symposium on Graph Drawing (GD’96). Springer
LNCS 1190, pages 371–386.

Papakostas, A., and Tollis, I. G. (1997a). Incremental orthogonal graph draw-
ing in three dimensions. In Proceedings of the 5th International Symposium
on Graph Drawing (GD’97). Springer LNCS 1353, pages 52–63.

Papakostas, A., and Tollis, I. G. (1997b). Incremental orthogonal graph
drawing in three-dimensions. Technical Report UTDCS-02-97, Dept. of
Computer Sciencs, University of Texas at Dallas.

Papakostas, A., and Tollis, I. G. (1997c). Orthogonal drawing of high degree
graphs with small area and few bends. In Proceedings of the 5th Work-
shop on Algorithms and Data Structures (WADS’97). Springer LNCS 1272,
pages 354–367.

Papakostas, A., and Tollis, I. G. (1997d). A pairing technique for area-efficient
orthogonal drawings. In Proceedings of the 4th International Symposium
on Graph Drawing (GD’96). Springer LNCS 1190, pages 354–370.

Bibliography 301

Papakostas, A., and Tollis, I. G. (1998). Interactive orthogonal graph draw-
ing. IEEE Transactions on Computers, 47(11):1297–1309.

Patrignani, M. (1999a). On the complexity of orthogonal compaction. Tech-
nical Report RT–DIA–39–99, Dipartimento di Informatica e Automazione,
Università degli Studi di Roma Tre.

Patrignani, M. (1999b). On the complexity of orthogonal compaction.
Proceedings of the 6th Workshop on Algorithms and Data Structures
(WADS’99). Springer LNCS 1663, pages 56–61.

Patrignani, M., and Vargiu, F. (1997). 3DCube: A tool for the three dimen-
sional graph drawing. In Proceedings of the 5th International Symposium
on Graph Drawing (GD’97). Springer LNCS 1353, pages 284–290.

Paulish, F. N. (1993). The Design of an Extendible Graph Editor. Springer
LNCS 704.

Platt, C. (1976). Planar lattices and planar graphs. Journal of Combinatorial
Theory, Series B, 21:30–39.

Poon, C. K., Zhu, B., and Chin, F. (1998). A polynomial time solution for
labeling a rectilinear map. Information Processing Letters, 65:201–207.

Poutré, J. A. L. (1994). Alpha-algorithms for incremental planarity test-
ing. In Proceedings of the 26th Annual ACM Symposium on the Theory of
Computation (STOC’94), pages 706–715.

Purchase, H. C. (1997). Which aesthetic has the greatest effect on human un-
derstanding? In Proceedings of the 5th International Symposium on Graph
Drawing (GD’97). Springer LNCS 1353, pages 248–261.

Purchase, H. C., Cohen, R. F., and James, M. (1996). Validating graph
drawing aesthetics. In Proceedings of the 3rd International Symposium on
Graph Drawing (GD’95). Springer LNCS 1027, pages 435–446.

Purchase, H. C., Cohen, R. F., and James, M. (1997). An experimental study
of the basis for graph drawing algorithms. ACM Journal of Experimental
Algorithmics, 2(4).

Quinn, N. R., and Breuer, M. A. (1979). A force directed component place-
ment procedure for printed circuit boards. IEEE Transactions on Circuits
and Systems, 26(6):377–388.

Reeves, C. M. (1995). Modern Heuristic Techniques for Combinatorial Prob-
lems. McGraw-Hill.

Reggiani, M. G., and Marchetti, F. E. (1988). A proposed method for repre-
senting hierarchies. IEEE Transactions on Systems, Man, and Cybernetics,
18(1):2–8.

Reinelt, G. (1985). The linear ordering problem: algorithms and applications.
Research and Exposition in Mathematics 8, Heldermann.

Reingold, E. M., and Tilford, J. S. (1981). Tidier drawings of trees. IEEE
Transactions on Software Engineering, 7(2):223–228.

Rival, I. (1985). The diagram. In Graphs and Order, NATO ASI Series,
pages 103–133. Reidel Publishing.

302 Bibliography

Robertson, G. G., Mackinlay, J. D., and Card, S. K. (1993). Cone trees:
Animated 3d visualizations of hierarchical information. In Proceedings of
the ACM Conference on Human Factors in Computing Systems, pages 189–
193.

Rosenstiehl, P., and Tarjan, R. E. (1986). Rectilinear planar layouts of pla-
nar graphs and bipolar orientations. Discrete & Computational Geometry,
1(4):342–351.

Roxborough, T., and Sen, A. (1997). Graph clustering using multiway ratio
cut. In Proceedings of the 5th International Symposium on Graph Drawing
(GD’97). Springer LNCS 1353, pages 291–296.

Rudell, R. (1993). Dynamic variable ordering for ordered binary decision
diagrams. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD’93), pages 42–47.

Sablowski, R., and Frick, A. (1996). Automatic graph clustering. In Pro-
ceedings of the 4th International Symposium on Graph Drawing (GD’96).
Springer LNCS 1190, pages 395–400.

Sander, G. (1994). Graph layout through the VCG tool. Technical Report
A03/94, Universität des Saarlandes.

Sander, G. (1996a). A fast heuristic for hierarchical Manhattan layout.
In Proceedings of the 3rd International Symposium on Graph Drawing
(GD’95). Springer LNCS 1027, pages 447–458.

Sander, G. (1996b). Graph layout for applications in compiler construction.
Technical Report A/01/96, FB 14 Informatik, Universität des Saarlandes.

Sarkar, M., and Brown, M. H. (1994). Graphical fisheye views. Communica-
tions of the ACM, 37(12):73–84.

Schlag, M., Liao, Y.-Z., and Wong, C. K. (1983). An algorithm for opti-
mal two-dimensional compaction of VLSI layouts. Integration, the VLSI
Journal, 1:179–209.

Schnyder, W. (1990). Embedding planar graphs on the grid. In Proceed-
ings of the 1st ACM-SIAM Symposium on Discrete Algorithms (SODA’90),
pages 138–148.

Schrijver, A. (1986). Theory of Linear and Integer Programming. Wiley-
Interscience.

Sedgewick, R. (1988). Algorithms, pages 438–441. Addison–Wesley, 2nd
edition.

Shiloach, Y. (1976). Arrangements of planar graphs on the planar lattice.
PhD thesis, Weizmann Institute of Science.

Sim, S. (1996). Automatic graph drawing algorithms. Manuscript, available
at http://www.cs.toronto.edu/~simsuz/papers/grafdraw.ps.gz.

Six, J. M., Kakoulis, K. G., and Tollis, I. G. (1998). Refinement of orthogonal
graph drawings. In Proceedings of the 6th International Symposium on
Graph Drawing (GD’98). Springer LNCS 1547, pages 302–315.

Strijk, T., and van Kreveld, M. (1999). Labeling a rectilinear map more
efficiently. Information Processing Letters, 69(1):25–30.

Bibliography 303

Strijk, T., and Wolf, A. (1999). Labeling points with circles. Technical Report
TR-99-08, Institut für Informatik, Freie Universität Berlin.

Stumme, G., and Wille, R. (1995). A geometrical heuristic for drawing con-
cept lattices. In Proceedings of the DIMACS International Workshop on
Graph Drawing (GD’94). Springer LNCS 894, pages 452–460.

Sugiyama, K. (1987). A cognitive approach for graph drawing. Cybernetic
Systems, 18(6):447–488.

Sugiyama, K., and Misue, K. (1991). Visualisation of structural information:
Automatic drawing of compound digraphs. IEEE Transactions on Systems,
Man, and Cybernetics, 21(4):876–892.

Sugiyama, K., and Misue, K. (1995). A simple and unified method for draw-
ing graphs: Magnetic-spring algorithm. In Proceedings of the DIMACS
International Workshop on Graph Drawing (GD’94). Springer LNCS 894,
pages 364–375.

Sugiyama, K., Tagawa, S., and Toda, M. (1981). Methods for visual under-
standing of hierarchical system structures. IEEE Transactions on Systems,
Man, and Cybernetics, 11(2):109–125.

Supowit, K. J., and Reingold, E. M. (1983). The complexity of drawing trees
nicely. Acta Informatica, 18:377–392.

Tamassia, R. (1987). On embedding a graph in the grid with the minimum
number of bends. SIAM Journal on Computing, 16(3):421–444.

Tamassia, R. (1998). Constraints in graph drawing algorithms. Constraints,
3(1):87–120.

Tamassia, R., Di Battista, G., and Batini, C. (1988). Automatic graph draw-
ing and readability of diagrams. IEEE Transactions on Systems, Man, and
Cybernetics, 18(1):61–79.

Tamassia, R., and Tollis, I. G. (1986). A unified approach to visibility
representations of planar graphs. Discrete & Computational Geometry,
1(4):321–341.

Tamassia, R., and Tollis, I. G. (1989). Planar grid embedding in linear time.
IEEE Transactions on Circuits and Systems, 36(9):1230–1234.

Tamassia, R., Tollis, I. G., and Vitter, J. S. (1991). Lower bounds for planar
orthogonal drawings of graphs. Information Processing Letters, 39(1):35–
40.

Tanenbaum, A. S. (1995). Distributed Operating Systems. Prentice Hall.
Tarjan, R. E. (1983). Data structures and network algorithms CBMS-NSF

Regional Conference Series in Applied Mathematics 44, SIAM.
Thomassen, C. (1980). Planarity and duality of finite and infinite planar

graphs. Journal of Combinatorial Theory, Series B, 29:244–271.
Thompson, C. D. (1980). A Complexity Theory for VLSI. PhD thesis,

Carnegie Mellon University.
Tunkelang, D. (1994). A practical approach to drawing undirected graphs.

Technical Report CMU-CS-94-161, School of Computer Science, Carnegie
Mellon University.

304 Bibliography

Tutte, W. T. (1960). Convex representations of graphs. Proceedings of the
London Mathematical Society, Third Series, 10:304–320.

Tutte, W. T. (1963). How to draw a graph. Proceedings of the London
Mathematical Society, Third Series, 13:743–768.

Ullman, J. (1989). Principles of Database and Knowledgebase Systems, vol-
ume 1. Computer Science Press.

Utech, J., Branke, J., Schmeck, H., and Eades, P. (1998). An evolutionary
algorithm for drawing directed graphs. In Proceedings of the International
Conference on Imaging Science, Systems, and Technology, pages 154–160.

Valdes, J., Tarjan, R. E., and Lawler, E. L. (1982). The recognition of series
parallel digraphs. SIAM Journal on Computing, 11:298–313.

Valiant, L. (1981). Universality considerations in VLSI circuits. IEEE Trans-
actions on Computers, C-30(2):135–140.

van Kreveld, M., Strijk, T., and Wolff, A. (1998). Point set labeling with
sliding labels. In Proceedings of the 14th Annual ACM Symposium on
Computational Geometry (SCG’98), pages 337–346.

Verweij, B., and Aardal, K. (1999). An optimisation algorithm for maximum
independent set with applications in map labelling. In Proceedings of the
7th European Symposium on Algorithms (ESA’99). Springer LNCS 1643,
pages 426–437.

Vogt, F. (1996). Formale Begriffsanalyse mit C++: Datenstrukturen und
Algorithmen. Springer.

Vogt, F., and Wille, R. (1995). TOSCANA — a graphical tool for analyzing
and exploring data. In Proceedings of the DIMACS International Workshop
on Graph Drawing (GD’94). Springer LNCS 894, pages 226–233.

Vossen, G. (1991). Datenbankmodelle, Datenbanksprachen und Datenbank-
management-Systeme. Addison-Wesley.

Wagner, F. (1994). Approximate map labeling is in Ω(n log n). Information
Processing Letters, 52(3):161–165.

Wagner, F., and Wolff, A. (1995a). An efficient and effective approximation
algorithm for the map labeling problem. In Proceedings of the 3rd European
Symposium on Algorithms (ESA’95). Springer LNCS 979, pages 420–433.

Wagner, F., and Wolff, A. (1995b). Map labeling heuristics: Provably good
and practically useful. In Proceedings of the 11th Annual ACM Symposium
on Computational Geometry (SCG’95), pages 109–118.

Wagner, F., and Wolff, A. (1997). A practical map labeling algorithm. Com-
putational Geometry: Theory and Applications, 7:387–404.

Wagner, F., and Wolff, A. (1998). A combinatorial framework for map label-
ing. In Proceedings of the 6th International Symposium on Graph Drawing
(GD’98). Springer LNCS 1547, pages 316–331.

Wang, X., and Miyamoto, I. (1995). Generating cunstomized layouts. In Pro-
ceedings of the 3rd International Symposium on Graph Drawing (GD’95).
Springer LNCS 1027, pages 504–515.

Bibliography 305

Wang, X., and Miyamoto, I. (1996). Generating customized layouts. In Pro-
ceedings of the 3rd International Symposium on Graph Drawing (GD’95).
Springer LNCS 1027, pages 504–515.

Warfield, J. (1977). Crossing theory and hierarchy mapping. IEEE Transac-
tions on Systems, Man, and Cybernetics, SMC-7(7):502–523.

Warnke, V., Kompe, R., Niemann, H., and Nöth, E. (1997). Integrated dialog
act segmentation and classification using prosodic features and language
models. Technical Report Verbmobil-Report 218, Lehrstuhl für Muster-
erkennung 5, Universität Erlangen-Nürnberg.

Wasserman, S., and Faust, K. (1994). Social Network Analysis: Methods and
Applications. Cambridge University Press.

Watanabe, H. (1984). IC Layout Generation and Compaction Using Mathe-
matical Optimization. PhD thesis, University of Rochester.

Watanabe, T., Ae, T., and Nakamura, A. (1983). On the NP-hardness of
edge-deletion and -contraction problems. Discrete Applied Mathematics,
6:63–78.

Webber, R. (1997). Finding the best viewpoints for three-dimensional graph
drawings. In Proceedings of the 5th International Symposium on Graph
Drawing (GD’97). Springer LNCS 1353, pages 87–98.

Webber, R. (1998). Finding the Best Viewpoint for Three-Dimensional Graph
Drawings. PhD thesis, University of Newcastle. http://www.cs.mu.oz.
au/~rwebber/research/thesis/.

Wei, Y.-C., and Cheng, C.-K. (1991). Ratio cut partitioning for hierarchical
designs. IEEE Transactions on Computer-Aided Design, 10(7):911–921.

West, D. (1996). Introduction to Graph Theory. Prentice Hall.
White, D. (1999). Pgraph of Canaan genealogy made by Pajek pro-

gram. Manuscript. http://eclectic.ss.uci.edu/~drwhite/pgraph/
p-graphs.html.

Wiese, R., and Kaufmann, M. (1998). Adding constraints to an algorithm for
orthogonal graph drawing. In Proceedings of the 6th International Sympo-
sium on Graph Drawing (GD’98). Springer LNCS 1547, pages 462–463.

Wille, R. (1989). Lattices in data analysis: How to draw them with a com-
puter. In Algorithms and Order, NATO ASI Series, pages 33–58. Kluwer
Academic Publishers.

Wille, R. (1997). Introduction to formal concept analysis. In Modelli e
modellizzazione. Models and modelling. Consiglio Nazionale delle Ricerche,
Instituto di Studi sulli Ricerca e Documentazione Scientifica, Roma, pages
39–51.

Winter, A., and Schürr, A. (1997). Modules and updatable graph views
for programmed graph rewriting systems. Technical Report AIB 97-3,
Lehrstuhl für Informatik III, RWTH Aachen.

Wolff, A. (1999). Map Labeling in Theory and Practice. PhD thesis, Freie
Universität Berlin.

306 Bibliography

Wolff, A., Knipping, L., van Kreveld, M., Strijk, T., and Agarwal, P. K.
(1999). A simple and efficient algorithm for high-quality line labeling. In
Proceedings of GISRUK’99.

Wood, D. (1998a). An algorithm for three-dimensional orthogonal graph
drawing. In Proceedings of the 6th International Symposium on Graph
Drawing (GD’98). Springer LNCS 1547, pages 332–346.

Wood, D. (1998b). Two-bend three-dimensional orthogonal grid drawing of
maximum degree five graphs. Technical Report 98/03, Monash University.

Wood, D. R. (1999a). Multi-dimensional orthogonal graph drawing in the
general position model. Technical Report 99/38, Monash University.

Wood, D. R. (1999b). A new algorithm and open problems in three-dimen-
sional orthogonal graph drawing. In Proceedings of the 10th Australasian
Workshop on Combinatorical Algorithms (AWOCA’99), pages 157–167.

Wood, D. R. (2000). Three-Dimensional Orthogonal Graph Drawing. PhD
thesis, Monash University.

Yannakakis, M. (1978). Node- and edge-deletion NP-complete problems. In
Proceedings 10th Annual ACM Symposium on the Theory of Computing
(STOC’78), pages 253–264.

Yoeli, P. (1972). The logic of automated map lettering. The Cartographic
Journal, 9:99–108.

Zeller, A., and Lütkehaus, D. (1996). DDD — A free graphical front-end for
UNIX debuggers. ACM SIGPLAN Notices, 31(1):22–27.

Zoraster, S. (1986). Integer programming applied to the map label placement
problem. Cartographica, 23(3):16–27.

Zoraster, S. (1990). The solution of large 0-1 integer programming problems
encountered in automated cartography. Operations Research, 38(5):752–
759.

Index

1-separator, 147
2-connectivity, 26
2-dimensional compaction, 161
3-dimensional boxes, 182
3-dimensional drawings, 18, 62
3-dimensional layouts, 82
3D graph drawing, 172
3D orthogonal point-drawing, 178
3DCube, 280

abridgement, 217
acyclic subgraph polytope, 96
aesthetics criteria, 19
AGD, 275
agglomerative clustering, 200
algorithm, 71
– 3-Bends, 180
– 4M-algorithm, 169
– Berger and Shor, 91
– Biedl and Kant, 137
– Chan, 50
– Coffman and Graham, 100
– convex-draw, 34
– De Fraysseix, Pach and Pollack,
38

– greedy switch heuristic, 105
– Hong et al., 58
– Hopcroft and Tarjan, 25
– Kant, 41
– Lempel, Even and Cederbaum,
27

– Papakostas and Tollis, 141, 177,
180

– reduce forks, 177
– refinement algorithm, 168
– Sander, 116
– Schnyder, 39
– sifting, 106
– simulated annealing, 81
– split heuristic, 106

– spring embedder, 74
– Tamassia and Tollis, 134
ancestor tree, 217
angela, 281
angle maximization, 19
angular resolution, 122
animations, 16
approximation, 32, 251
arc-discjoint cycle covers, 179
area bounds, 47
area features, 248
area minimization, 19
attractor, 216
augmentation, 31
automorphism, 57
auxiliary graph, 113

Bézier curves, 116
barrier, 221
barycenter, 79
barycenter heuristic, 103
bayesian perspective, 236
bend minimization, 19
bend-minimization algorithm, 130
bend-stretching, 168
bend-stretching transformations,
135

binary decomposition tree, 54
binary tree drawing, 49
black-box drawing, 194
block cut vertex tree, 139
blocks, 132
branch-and-bound, 154, 161
branch-and-cut, 107
bus-orthogonal drawings, 61
bush form, 27

c-st-numbering, 204
c-planar, 202
c-planar embedding, 203

308 Index

canonical decomposition tree, 55
canonical ordering, 37
characteristic vector, 198
circular bit string, 130
classification
– extrinsic, 197
– intrinsic, 197
clique inequalities, 264
cluster busting, 243
clustering, 20, 82, 119, 216
– inserting dummy vertices, 216
cluvex clusters, 204
column pairs, 140
compact drawing algorithm, 178
compaction, 155
compaction and labeling, 260
compound graph, 210
compound level, 211, 213
compound level assignment, 213
concept lattices, 67
cone tree, 175
conflict graph, 271
constraint graphs, 165
constraint satisfaction, 269
constraints, 85, 113, 153, 221
– absolute constraints, 221
– cluster constraints, 221
– relative constraints, 221
convex representation, 33
crossing minimization, 19
crossing number, 102
crossing reduction, 89, 101
curved edges, 84
cycle removal, 88

D-dimensional hyperboxes, 189
DA-TU, 216
data modeling, 11
data structures, 16
DataViews, 279
daVinci, 279
debuggers, 16
Delaunay triangulation, 234
dendrogram, 201
depth-order, 190

diameter, 200
difference metrics, 230
disc-packing, 123
distance metrics, 231
distributed system, 6
divide-and-conquer, 145, 219
drawing conventions, 212
drawing rules, 212
DynaDAG, 242
dynamic graph drawing, 228
dynamic layout, 84
dynamic stability, 230

ε-clustering, 234
edge crossings, 6
edge label, 266
edge-lifting, 182
edges, 1
eigenvalue, 199
embedding, 118
encoding orthogonality, 128
encoding planarity, 127
energy-based placement, 78
entity-relationship diagrams, 11
equilibrium state, 72
equivalence
– regular, 202
– structural, 201
Euclidean distance, 231
expansion, 195
external-spring, 217

face, 127
face cycle, 34
feedback arc set problem, 90
fish-eye representation, 193
fish-eye view, 223
flow, 10
f(n)-separator, 146
focus vertex, 225
footprint, 62

GDToolkit, 277
GEM-3D, 174, 280
genealogy, 1

Index 309

Ginger, 281
GIOTTO, 141
GIOTTO3D, 175
GLT/GET, 279
gradient descent, 272
graph, 1
– 2-connected graphs, 132
– 4-planar graphs, 42, 127
– arbitrary degree, 182
– clustered graph, 194
– compound graph, 196, 210
– embedded single source digraphs,
118

– hierarchical clustered graphs, 195,
202

– hierarchical graph, 194
– high-degree graphs, 141
– hypergraph, 1
– inclusion digraph, 210
– interlace graph, 27
– lattices, 46
– layered graph, 4
– maximum degree five, 181
– maximum degree six, 176
– outerplanar digraphs, 119
– planar bipartite digraphs, 118
– planar graphs, 17, 23
– quotient graph, 194, 218
– representative graph, 203
– series-parallel digraph, 46
– series-parallel digraphs, 52, 118
– single source digraphs, 118
– sphere of influence graph, 234
– st-digraphs, 118
– tree, 46
– trees, 119
– triconnected digraphs, 119
– upward planar, 24
graph drawing, 1, 2
graph properties, 200
graph representation, 17
graphical feature label, 268
Graphlet, 276
GraphPanel, 281

GraphPlace, 281
GraphVisualizer3D, 279
GraphViz, 279
GRAPPA, 280

half-edge-lefting, 182
Hasse diagram, 64
Hausdorff distance, 231
height of cluster, 208
heuristics
– Fiduccia and Mattheyses, 198
– Kerninghan and Lin, 197
hexagonal grid, 151
hierarchical model, 12
hierarchization, 213
hierarchy tree, 195
high numerical resolution, 125

inclusion tree, 202, 210
integer linear program, 166
inter-force, 218
interactive drawings, 21
InteractiveGiotto, 240
internal-spring, 217
intro-force, 218

JIGGLE, 280

k-edge-connectivity, 200
K-layer crossing minimization, 109
Kandinsky, 142
knowledge representation, 12

label, 6
labeled line diagram, 68
labeling, 21
– map labeling, 247
Laplacian matrix, 199
lattices, 63
layer assignment, 88, 96
layer-by-layer sweep, 101
layered drawing, 20, 47, 87
layering, 174
layout, 18
layout graphs, 158
LayoutShow, 280

310 Index

leftmost canonical ordering, 42
length minimization, 20
lifting transformation, 175
line feature label, 265
line features, 248
linear programming duality, 124
logical frame, 224
lower bounds, 183

matching operation, 169
maximum acyclic subgraph, 89
maximum independent set, 254
maximum planar subgraph , 30
median heuristic, 104
mental map, 8, 223, 229
merging operation, 169
meta-graph, 82, 218
methods
– flows, 21, 147
– force-directed, 20, 216
– integer programming, 153
– Klau and Mutzel, 164
– one-dimensional compaction, 156
– optimal compaction, 160
– planarization, 20
– spectral method, 198
– Sugiyama-like methods, 21
– sweep-line method, 158
– three-phase, 142, 183
– three-phase method, 239
min-cut k-way partition, 197
minimum angle, 121
minimum area, 155
minimum cost flow, 150
minimum length of the longest edge,
155

minimum total edge length, 131,
155

model, 71
– λ-matrix model, 232
-position model, 251
– cube model, 183
– degree-restricted model, 183
– fixed position, 249
– Kandinsky, 152

– mixed model, 43
– slider model, 249
– unlimited growth model, 183
morphing operation, 169
move-based approach, 197
moving operation, 169
multi-dimensional drawing, 189
multigraph, 1
multilevel drawing, 207, 208
multilevel visualization, 207
multiple edges, 1
√
n-separator, 147

nearest neighbor between, 234
nearest neighbor metric, 233
nested diagram, 69
net force vector, 74
NetGraph, 281
network, 150
network flow algorithm, 150
nodes, 1
nonlinear magnification, 245
nonlinear mixed integer
programming, 161

object oriented database, 12
objects, 1
occlusion, 190
odd hole inequalities, 264
one sided crossing minimization,
102

online force-directed animated
visualization, 224

online planarity testing, 31
optimal crossing minimization,
107

optimization, 250, 263
ordered sets, 63
orthogonal drawings, 18
orthogonal graph drawing, 121
orthogonal grid embedding, 126
orthogonal rectangular drawing,
209

orthogonal representation, 42,
129

Index 311

OrthoPak, 186, 280
outer face, 24

pair in opposition, 163
pairing technique, 139
Pajek, 278
parallel composition, 53
parallel edges, 1
partially ordered set, 64
partition, 193
pendulum, 114
planar embedding, 24
planar lattices, 66
planar representation, 23
planarity testing, 25
planarization, 108
point features, 248
point-adjacent labels, 259
polar-free almost acyclic, 144
polygonal representation, 34
port assignment, 188
positioning of edges, 115
positioning problem, 114
positive semi-definite, 199
PQ-tree, 29
process graph, 10
proximity, 232
proximity relation, 234
proxy vertex, 214
push force-scan algorithm, 244

quasi-orthogonal drawing, 141

r-irreducibility, 272
radial drawing, 47
ratio cut partition, 198
readability, 121
rectangular clusters, 205
recurrent hierarchy, 119
relation
– adjacency relations, 207
– inclusion relations, 207
relational database, 11
repelling forces, 73
rigid sticks, 221

ring diagram, 120
rotational separation, 190
row pairs, 140

scenario
– dynamic, 240
– no-change, 237
– relative coordinates, 237
scheduling problem, 98
selfloop, 1
separation pairs, 35
separator theorems, 146
series composition, 53
shape description, 165
shortest-middle routes, 187
simulated annealing, 81, 174, 272
sliceable, 146
sliding labels, 256
smoothest curve, 117
social networks, 14, 79, 85, 201
specification, 6
spectral bipartitioning, 199
speech recognition, 4
spine cycle, 26
split-components, 27
SPQ∗R-tree, 154
SPQR-tree, 31
spring embedder, 73, 173
springs, 71
st-numbering, 27
st-order, 133
straight-line convex drawing, 209
strongly order-reserving drawings,
47

subdivision, 24
subgraph relation, 146
Sugiyama, 87
symmetries, 20, 57

tkgcv, 281
topology-shape-metrics, 130
TOSCANA, 70
transition system, 6
tree, 18
– depth first search tree, 26

312 Index

– inclusion tree, 210
– rooted tree, 8
turn-regular orthogonal
representation, 163

(strictly) upward drawings, 47
upward planarity, 118
upward planarity testing, 118
upward representation, 24

VCG, 279
vertex splitting, 29
VGJ, 280
view at level, 208
viewpoints, 190
virtual-spring, 217
visibility drawings, 61
visibility representation, 133
VLSI layout, 126

wire balancing, 159
Word-Graphs, 4
workflow, 9

X-coordinate assignment, 89, 112
xdrawgraph, 281

yFiles, 278

zoom in and out, 208

	front-matter
	Drawing Graphs
	Preface
	Table of Contents
	List of Contributors

	fulltext
	1.1 Introduction
	1.2 Some Application
	1.2.1 Word-Graphs
	1.2.2 Specification and Verification
	1.2.3 Workflow
	1.2.4 Data Modeling
	1.2.5 Social Networks
	1.2.6 Data Structures

	1.3 How to Draw a Graph
	1.3.1 Graph Representations
	1.3.2 Aesthetics Criteria

	1.4 Algorithmic Approaches to Graph Drawing
	1.5 Conclusion

	fulltext2
	2.1 Introduction
	2.2 What Is a Planar Graph?
	2.3 Planarity Testing
	2.3.1 The Algorithm of Hopcroft and Tarjan
	2.3.2 The Algorithm of Lempel, Even, and Cederbaum

	2.4 How to Make a Graph Planar
	2.4.1 Inserting Vertices
	2.4.2 Deleting Edges

	2.5 How to Make a Planar Graph 2-Connected Planar
	2.6 Convex Representations
	2.7 Methods Based on Canonical Orderings
	2.7.1 The Algorithm of De Fraysseix, Pach, and Pollack
	2.7.2 The Barycentric Algorithm of Schnyder
	2.7.3 The Straight-Line Algorithm of Kant
	2.7.4 The Orthogonal Algorithms of Kant
	2.7.5 The Mixed Model

	fulltext3
	3. Drawing Trees, Series-Parallel Digraphs, and Lattices
	3.1 Trees
	3.1.1 Rooted Trees
	3.1.2 Area Bounds

	3.2 Series-Parallel Digraphs
	3.2.1 Terminology and Basic Facts
	3.2.2 Upward Straight-Line Drawings
	3.2.3 Display of Symmetries
	3.2.4 Three-Dimensional Drawings

	3.3 Lattices
	3.3.1 Order Diagrams
	3.3.2 Planar Lattices
	3.3.3 Concept Lattices

	fulltext4
	4.1 The Springs
	4.2 Force-Directed Placement
	4.3 Energy-Based Placement
	4.4 Modeling with Forces and Energies

	fulltext5
	5. Layered Drawings of Digraphs
	5.1 Introduction
	5.2 Cycle Removal
	5.2.1 Fast Heuristics
	5.2.2 An Enhanced Greedy Heuristic
	5.2.3 A Randomized Algorithm
	5.2.4 An Exact Algorithm

	5.3 Layer Assignment
	5.3.1 Layerings for General Graphs
	5.3.2 Minimizing the Height
	5.3.3 Layerings with Given Width
	5.3.4 Minimizing the Total Edge Span

	5.4 Crossing Reduction
	5.4.1 The Layer-by-Layer Sweep
	5.4.2 One Sided Crossing Minimization
	5.4.3 K-layer Crossing Minimization
	5.4.4 Dense Graphs and Edge Concentration

	5.5 Horizontal Coordinates
	5.5.1 Exact Algorithms
	5.5.2 A Heuristic

	5.6 Positioning of Edges
	5.7 Related Approaches
	5.7.1 Upward Planarity
	5.7.2 Clustered Graphs and Hierarchical Graphs
	5.7.3 Recurrent Hierarchy
	5.7.4 Ring Diagram
	5.7.5 Combining the Steps

	fulltext6
	6. Orthogonal Graph Drawing
	6.1 Introduction
	6.2 Angles in Drawings
	6.3 Orthogonal Drawings and Their Encoding
	6.3.1 Why Orthogonal Drawings?
	6.3.2 Encoding Planarity
	6.3.3 Encoding Orthogonality
	6.3.4 Getting a First Drawing

	6.4 Heuristics
	6.4.1 Visibility Representations
	6.4.2 The Algorithm by Tamassia and Tollis
	6.4.3 The Algorithm by Biedl and Kant
	6.4.4 Pairing Technique
	6.4.5 Algorithms for Drawing High-Degree Graphs
	6.4.6 A Divide-and-Computer Approach

	6.5 Flow-Based Methods
	6.5.1 Drawing Graphs with Few Bends
	6.5.2 A Network for Angles
	6.5.3 Optimal Flow in the Network
	6.5.4 Kandinsky
	6.5.5 Constraints and Extensions

	6.6 Compaction
	6.6.1 Problems and Their Complexity
	6.6.2 One-Dimensional Compaction Methods
	6.6.3 Optimal Compaction Methods

	6.7 Improving Other Aesthetic Criteria
	6.8 Conclusions and Open Problems

	fulltext7
	3D Graph Drawing
	7.1 Introduction
	7.2 Physical Simulation
	7.3 Layering
	7.4 3D Orthogonal Drawings of Graphs of Maximum Degree Six
	7.4.1 Approaches to 3D Orthogonal {Point}-Drawing

	7.5 3D Orthogonal Drawings of Graphs of Arbitrary Degree
	7.5.1 Bounds for 3D Orthogonal {Box}-Drawings
	7.5.2 Approaches to 3D Orthogonal {Box}-Drawings

	7.6 Viewpoints

	fulltext8
	8. Drawing Clusters and Hierarchies
	8.1 Defintions
	8.2 Clustering Methods
	8.2.1 k-Way Partition
	8.2.2 Structural Clustering
	8.2.3 Other Approaches

	8.3 Planar Drawings of Hierarchical Clustered Graphs
	8.3.1 Straight-Line Drawings with Covex Clusters
	8.3.2 Orthogonal Drawings with Rectangular Clusters
	8.3.3 Multilevel Visualization of Clustered Graphs

	8.4 Hierarchical Representation of Compound Graphs
	8.4.1 Conventions
	8.4.2 The Layout Algorithm

	8.5 Force-Directed Methods for Clustered Graphs
	8.5.1 Inserting Dummy Vertices
	8.5.2 Interactive Clustering
	8.5.3 Meta Layouts

	8.6 Online Graph Drawing of Huge Graphs - A Case Study
	8.7 Summary

	fulltext9
	9. Dynamic Graph Drawing
	9.1 Introduction
	9.2 Maintaining the Mental Map - What Does It Mean?
	9.2.1 Restricting Adjustments to Parts of the Layout
	9.2.2 Distance Metrics
	9.2.3 Further Comments

	9.3 Coping with the Dynamics
	9.3.1 General Frameworks
	9.3.2 Orthogonal Drawings in 2D
	9.3.3 Orthogonal Drawings in 3D
	9.3.4 Force-Directed Methods
	9.3.5 Layered Graphs
	9.3.6 Trees, Series-Parallel Digraphs, and ST-Diagraphs
	9.3.7 Separating Overlapping Vertices
	9.3.8 Nonlinear Magnification
	9.3.9 Deleting Vertices and Edges

	9.4 Conclusion and Future Work

	fulltext10
	10. Map Labeling with Application to Graph Drawing
	10.1 Formal Background
	10.1.1 Complexity Dictionary

	10.2 Contents and Complexity Overview
	10.3 Point Feature Label Placement
	10.3.1 Map Labeling Related to SAT
	10.3.2 Label Placement by Maximum Independent Set in Rectangles
	10.3.3 Point Set Labeling with Sliding Labels
	10.3.4 Label Placement with Point-Adjacent Labels
	10.3.5 Combining Graph Labeling with Compaction
	10.3.6 Optimization Algorithm for Point Set Labeling

	10.4 Line Feature Label Placement
	10.4.1 Labeling a Rectilinear Map
	10.4.2 On the Edge Label Problem

	10.5 Graphical Feature Label Placement
	10.5.1 Map Labeling Reduced to Graph Problems
	10.5.2 A Combinatorial Framework for Map Labeling

	10.6 General Optimization Strategies Applied to Map Labeling

	fulltext11
	A. Software Packages
	Graph Drawing Server
	Graphlet
	AGD -Algorithms for Graph Drawing
	GDToolkit - Graph Drawing Toolkit
	yFiles
	Other Packages
	Larger Packages
	Commercial Packages
	3D Packages
	Java
	Other Languages
	Mathematica
	External Binaries
	Graph Editors

	back-matter
	Bibliography
	Index

