

Algorithms Unlocked

Algorithms Unlocked

Thomas H. Cormen

The MIT Press

Cambridge, Massachusetts London, England

c 2013 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any

form by any electronic or mechanical means (including photocopying,

recording, or information storage and retrieval) without permission in

writing from the publisher.

MIT Press books may be purchased at special quantity discounts for

business or sales promotional use. For information, please email

special sales@mitpress.mit.edu or write to Special Sales Department,

The MIT Press, 55 Hayward Street, Cambridge, MA 02142.

This book was set in Times Roman and Mathtime Pro 2 by the author

and was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Cormen, Thomas H.

Algorithms Unlocked / Thomas H. Cormen.

p. cm

Includes bibliographical references and index.

ISBN 978-0-262-51880-2 (pbk. : alk. paper)

1. Computer algorithms. I. Title.

QA76.9.A43C685 2013

005.1—dc23

2012036810

10 9 8 7 6 5 4 3 2 1

Contents

Preface ix

1 What Are Algorithms and Why Should You Care? 1

Correctness 2

Resource usage 4

Computer algorithms for non-computer people 6

Computer algorithms for computer people 6

Further reading 8

2 How to Describe and Evaluate Computer Algorithms 10

How to describe computer algorithms 10

How to characterize running times 17

Loop invariants 21

Recursion 22

Further reading 24

3 Algorithms for Sorting and Searching 25

Binary search 28

Selection sort 32

Insertion sort 35

Merge sort 40

Quicksort 49

Recap 57

Further reading 59

4 A Lower Bound for Sorting and How to Beat It 60

Rules for sorting 60

The lower bound on comparison sorting 61

Beating the lower bound with counting sort 62

Radix sort 68

Further reading 70

vi Contents

5 Directed Acyclic Graphs 71

Directed acyclic graphs 74

Topological sorting 75

How to represent a directed graph 78

Running time of topological sorting 80

Critical path in a PERT chart 80

Shortest path in a directed acyclic graph 85

Further reading 89

6 Shortest Paths 90

Dijkstra’s algorithm 92

The Bellman-Ford algorithm 101

The Floyd-Warshall algorithm 106

Further reading 114

7 Algorithms on Strings 115

Longest common subsequence 115

Transforming one string to another 121

String matching 129

Further reading 136

8 Foundations of Cryptography 138

Simple substitution ciphers 139

Symmetric-key cryptography 140

Public-key cryptography 144

The RSA cryptosystem 146

Hybrid cryptosystems 155

Computing random numbers 156

Further reading 157

9 Data Compression 158

Huffman codes 160

Fax machines 167

LZW compression 168

Further reading 178

Contents vii

10 Hard? Problems 179

Brown trucks 179

The classes P and NP and NP-completeness 183

Decision problems and reductions 185

A Mother Problem 188

A sampler of NP-complete problems 190

General strategies 205

Perspective 208

Undecidable problems 210

Wrap-up 211

Further reading 212

Bibliography 213

Index 215

In loving memory of my mother, Renee Cormen.

Preface

How do computers solve problems? How can your little GPS find, out of

the gazillions of possible routes, the fastest way to your destination, and

do so in mere seconds? When you purchase something on the Internet,

how is your credit-card number protected from someone who intercepts

it? The answer to these, and a ton of other questions, is algorithms. I

wrote this book to unlock the mystery of algorithms for you.

I coauthored the textbook Introduction to Algorithms. It’s a wonder-

ful book (of course, I’m biased), but it gets pretty technical in spots.

This book is not Introduction to Algorithms. It’s not even a textbook.

It goes neither broadly nor deeply into the field of computer algorithms,

it doesn’t prescriptively teach techniques for designing computer algo-

rithms, and it contains nary a problem or exercise for the reader to solve.

So just what is this book? It’s a place for you to start, if

� you’re interested in how computers solve problems,

� you want to know how to evaluate the quality of these solutions,

� you’d like to see how problems in computing and approaches to solv-

ing them relate to the non-computer world,

� you can handle a little mathematics, and

� you have not necessarily ever written a computer program (though it

doesn’t hurt to have programmed).

Some books about computer algorithms are conceptual, with little

technical detail. Some are chock full of technical precision. Some are

in between. Each type of book has its place. I’d place this book in the

in-between category. Yes, it has some math, and it gets rather precise in

some places, but I’ve avoided getting deep into details (except perhaps

toward the end of the book, where I just couldn’t control myself).

I think of this book as a bit like an antipasto. Suppose you go to

an Italian restaurant and order an antipasto, holding off on deciding

whether to order the rest of the meal until you’ve had the antipasto.

It arrives, and you eat it. Maybe you don’t like the antipasto, and you

decide to not order anything else. Maybe you like it, but it fills you up,

x Preface

so that you don’t need to order anything else. Or maybe you like the

antipasto, it does not fill you up, and you’re looking forward to the rest

of the meal. Thinking of this book as the antipasto, I’m hoping for one

of the latter two outcomes: either you read this book, you’re satisfied,

and you feel no need to delve deeper into the world of algorithms; or

you like what you read here so much that you want to learn more. Each

chapter ends with a section titled “Further reading,” which will guide

you to books and articles that go deeper into the topics.

What will you learn from this book?

I can’t tell you what you will learn from this book. Here’s what I intend

for you to learn from this book:

� What computer algorithms are, one way to describe them, and how

to evaluate them.

� Simple ways to search for information in a computer.

� Methods to rearrange information in a computer so that it’s in a pre-

scribed order. (We call this task “sorting.”)

� How to solve basic problems that we can model in a computer with

a mathematical structure known as a “graph.” Among many applica-

tions, graphs are great for modeling road networks (which intersec-

tions have direct roads to which other intersections, and how long are

these roads?), dependencies among tasks (which task must precede

which other tasks?), financial relationships (what are the exchange

rates among all world currencies?), or interactions among people

(who knows whom? who hates whom? which actor appeared in a

movie with which other actor?).

� How to solve problems that ask questions about strings of textual

characters. Some of these problems have applications in areas such

as biology, where the characters represent base molecules and the

strings of characters represent DNA structure.

� The basic principles behind cryptography. Even if you have never

encrypted a message yourself, your computer probably has (such as

when you purchase goods online).

� Fundamental ideas of data compression, going well beyond “f u cn

rd ths u cn gt a gd jb n gd pay.”

Preface xi

� That some problems are hard to solve on a computer in any reason-

able amount of time, or at least that nobody has ever figured out how

to do so.

What do you already need to know to understand the material in

this book?

As I said earlier, there’s some math in this book. If math scares you,

then you can try skipping over it, or you can try a less technical book.

But I’ve done my best to make the math accessible.

I don’t assume that you’ve ever written or even read a computer pro-

gram. If you can follow instructions in outline format, you should be

able to understand how I express the steps that, together, form an al-

gorithm. If you get the following joke, you’re already part of the way

there:

Did you hear about the computer scientist who got stuck in the

shower? He1 was washing his hair and following the instructions

on the shampoo bottle. They read “Lather. Rinse. Repeat.”

I’ve used a fairly informal writing style in this book, hoping that a

personal approach will help make the material accessible. Some chap-

ters depend on material in previous chapters, but such dependencies are

few. Some chapters start off in a nontechnical manner and become pro-

gressively more technical. Even if you find that you’re getting in over

your head in one chapter, you can probably benefit from reading at least

the beginning of the next chapter.

Reporting errors

If you find an error in this book, please let me know about it by sending

email to unlocked@mit.edu.

Acknowledgments

Much of the material in this book draws from Introduction to Algo-

rithms, and so I owe a great deal to my coauthors on that book, Charles

Leiserson, Ron Rivest, and Cliff Stein. You’ll find that throughout this

1Or she. Given the unfortunate gender ratio in computer science, chances are it was he.

xii Preface

book, I shamelessly refer to (read: plug) Introduction to Algorithms,

known far and wide by the initials CLRS of the four authors. Writing

this book on my own makes me realize how much I miss collaborat-

ing with Charles, Ron, and Cliff. I also transitively thank everyone we

thanked in the preface of CLRS.

I also drew on material from courses that I’ve taught at Dartmouth,

especially Computer Science 1, 5, and 25. Thanks to my students for

letting me know, by their insightful questions, which pedagogical ap-

proaches worked and, by their stony silence, which did not.

This book came to be at the suggestion of Ada Brunstein, who was

our editor at the MIT Press when we prepared the third edition of CLRS.

Ada has since moved on, and Jim DeWolf took her place. Originally,

this book was slated to be part of the MIT Press “Essential Knowledge”

series, but the MIT Press deemed it too technical for the series. (Imagine

that—I wrote a book too technical for MIT!) Jim handled this poten-

tially awkward situation smoothly, allowing me to write the book that

I wanted to write rather than the book that the MIT Press originally

thought I was writing. I also appreciate the support of Ellen Faran and

Gita Devi Manaktala of the MIT Press.

Julie Sussman, P.P.A., was our technical copyeditor for the second

and third editions of CLRS, and I am once again thrilled to have her

copyedit this book. Best. Technical. Copyeditor. Ever. She let me get

away with nothing. Here’s evidence, in the form of part of an email that

Julie sent me about an early draft of Chapter 5:

Dear Mr. Cormen,

Authorities have apprehended an escaped chapter, which has

been found hiding in your book. We are unable to determine

what book it has escaped from, but we cannot imagine how it

could have been lodging in your book for these many months

without your knowledge, so we have no option but to hold you

responsible. We hope that you will take on the task of reforming

this chapter and will give it an opportunity to become a produc-

tive citizen of your book. A report from the arresting officer,

Julie Sussman, is appended.

In case you’re wondering what “P.P.A.” stands for, the first two letters

are for “Professional Pain.” You can probably guess what the “A” stands

for, but I want to point out that Julie takes pride in this title, and rightly

so. Thanks a googol, Julie!

Preface xiii

I am no cryptographer, and the chapter on principles of cryptogra-

phy benefited tremendously from comments and suggestions by Ron

Rivest, Sean Smith, Rachel Miller, and Huijia Rachel Lin. That chapter

has a footnote on baseball signs, and I thank Bob Whalen, the base-

ball coach at Dartmouth, for patiently explaining to me some of the

signing systems in baseball. Ilana Arbisser verified that computational

biologists align DNA sequences in the way that I explain in Chapter 7.

Jim DeWolf and I went through several iterations of titles for this book,

but it was an undergraduate student at Dartmouth, Chander Ramesh,

who came up with Algorithms Unlocked.

The Dartmouth College Department of Computer Science is an awe-

some place to work. My colleagues are brilliant and collegial, and our

professional staff is second to none. If you’re looking for a computer

science program at the undergraduate or graduate level, or if you seek a

faculty position in computer science, I encourage you to apply to Dart-

mouth.

Finally, I thank my wife, Nicole Cormen; my parents, Renee and

Perry Cormen; my sister, Jane Maslin; and Nicole’s parents, Colette

and Paul Sage, for their love and support. My father is sure that the

figure on page 2 is a 5, not an S.

TOM CORMEN Hanover, New Hampshire

November 2012

1 What Are Algorithms and Why

Should You Care?

Let’s start with the question that I’m often asked: “What is an algo-

rithm?”1

A broad answer would be “a set of steps to accomplish a task.” You

have algorithms that you run in your everyday life. You have an al-

gorithm to brush your teeth: open the toothpaste tube, pick up your

toothbrush, squeeze toothpaste onto the brush until you have applied

enough to the brush, close the tube, put the brush into one quadrant of

your mouth, move the brush up and down for N seconds, etc. If you

have to commute to a job, you have an algorithm for your commute.

And so on.

But this book is about algorithms that run on computers or, more

generally, computational devices. Just as algorithms that you run af-

fect your everyday life, so do algorithms that run on computers. Do

you use your GPS to find a route to travel? It runs what we call a

“shortest-path” algorithm to find the route. Do you buy products on

the Internet? Then you use (or should be using) a secure website that

runs an encryption algorithm. When you buy products on the Internet,

are they delivered by a private delivery service? It uses algorithms to

assign packages to individual trucks and then to determine the order in

which each driver should deliver packages. Algorithms run on comput-

ers all over the place—on your laptop, on servers, on your smartphone,

on embedded systems (such as in your car, your microwave oven, or

climate-control systems)—everywhere!

What distinguishes an algorithm that runs on a computer from an

algorithm that you run? You might be able to tolerate it when an algo-

rithm is imprecisely described, but a computer cannot. For example, if

you drive to work, your drive-to-work algorithm might say “if traffic is

bad, take an alternate route.” Although you might know what you mean

by “bad traffic,” a computer does not.

So a computer algorithm is a set of steps to accomplish a task that

is described precisely enough that a computer can run it. If you have

1Or, as a fellow with whom I used to play hockey would ask, “What’s a nalgorithm?”

2 Chapter 1: What Are Algorithms and Why Should You Care?

done even a little computer programming in Java, C, C++, Python, For-

tran, Matlab, or the like, then you have some idea of what that level of

precision means. If you have never written a computer program, then

perhaps you will get a feel for that level of precision from seeing how I

describe algorithms in this book.

Let’s go to the next question: “What do we want from a computer algo-

rithm?”

Computer algorithms solve computational problems. We want two

things from a computer algorithm: given an input to a problem, it should

always produce a correct solution to the problem, and it should use com-

putational resources efficiently while doing so. Let’s examine these two

desiderata in turn.

Correctness

What does it mean to produce a correct solution to a problem? We can

usually specify precisely what a correct solution would entail. For ex-

ample, if your GPS produces a correct solution to finding the best route

to travel, it might be the route, out of all possible routes from where

you are to your desired destination, that will get you there soonest. Or

perhaps the route that has the shortest possible distance. Or the route

that will get you there soonest but also avoids tolls. Of course, the in-

formation that your GPS uses to determine a route might not match re-

ality. Unless your GPS can access real-time traffic information, it might

assume that the time to traverse a road equals the road’s distance di-

vided by the road’s speed limit. If the road is congested, however, the

GPS might give you bad advice if you’re looking for the fastest route.

We can still say that the routing algorithm that the GPS runs is correct,

however, even if the input to the algorithm is not; for the input given to

the routing algorithm, the algorithm produces the fastest route.

Now, for some problems, it might be difficult or even impossible to

say whether an algorithm produces a correct solution. Take optical char-

acter recognition for example. Is this 11 � 6 pixel image a 5 or an S?

Some people might call it a 5, whereas others might call it an S, so how

could we declare that a computer’s decision is either correct or incor-

Chapter 1: What Are Algorithms and Why Should You Care? 3

rect? We won’t. In this book, we will focus on computer algorithms

that have knowable solutions.

Sometimes, however, we can accept that a computer algorithm might

produce an incorrect answer, as long as we can control how often

it does so. Encryption provides a good example. The commonly

used RSA cryptosystem relies on determining whether large num-

bers—really large, as in hundreds of digits long—are prime. If you

have ever written a computer program, you could probably write one

that determines whether a number n is prime. It would test all candidate

divisors from 2 through n � 1, and if any of these candidates is indeed

a divisor of n, then n is composite. If no number between 2 and n � 1

is a divisor of n, then n is prime. But if n is hundreds of digits long,

that’s a lot of candidate divisors, more than even a really fast computer

could check in any reasonable amount of time. Of course, you could

make some optimizations, such as eliminating all even candidates once

you find that 2 is not a divisor, or stopping once you get to
p

n (since if

d is greater than
p

n and d is a divisor of n, then n=d is less than
p

n

and is also a divisor of n; therefore, if n has a divisor, you will find

it by the time you get to
p

n). If n is hundreds of digits long, then

although
p

n has only about half as many digits as n does, it’s still a

really large number. The good news is that we know of an algorithm

that tests quickly whether a number is prime. The bad news is that it

can make errors. In particular, if it declares that n is composite, then

n is definitely composite, but if it declares that n is prime, then there’s

a chance that n is actually composite. But the bad news is not all that

bad: we can control the error rate to be really low, such as one error in

every 250 times. That’s rare enough—one error in about every million

billion times—for most of us to be comfortable with using this method

to determine whether a number is prime for RSA.

Correctness is a tricky issue with another class of algorithms, called

approximation algorithms. Approximation algorithms apply to opti-

mization problems, in which we want to find the best solution according

to some quantitative measure. Finding the fastest route, as a GPS does,

is one example, where the quantitative measure is travel time. For some

problems, we have no algorithm that finds an optimal solution in any

reasonable amount of time, but we know of an approximation algorithm

that, in a reasonable amount of time, can find a solution that is almost

optimal. By “almost optimal,” we typically mean that the quantitative

measure of the solution found by the approximation algorithm is within

4 Chapter 1: What Are Algorithms and Why Should You Care?

some known factor of the optimal solution’s quantitative measure. As

long as we specify what the desired factor is, we can say that a correct

solution from an approximation algorithm is any solution that is within

that factor of the optimal solution.

Resource usage

What does it mean for an algorithm to use computational resources ef-

ficiently? We alluded to one measure of efficiency in the discussion

of approximation algorithms: time. An algorithm that gives a correct

solution but takes a long time to produce that correct solution might

be of little or no value. If your GPS took an hour to determine which

driving route it recommends, would you even bother to turn it on? In-

deed, time is the primary measure of efficiency that we use to evalu-

ate an algorithm, once we have shown that the algorithm gives a cor-

rect solution. But it is not the only measure. We might be concerned

with how much computer memory the algorithm requires (its “memory

footprint”), since an algorithm has to run within the available memory.

Other possible resources that an algorithm might use: network commu-

nication, random bits (because algorithms that make random choices

need a source of random numbers), or disk operations (for algorithms

that are designed to work with disk-resident data).

In this book, as in most of the algorithms literature, we will focus

on just one resource: time. How do we judge the time required by an

algorithm? Unlike correctness, which does not depend on the particular

computer that the algorithm runs on, the actual running time of an al-

gorithm depends on several factors extrinsic to the algorithm itself: the

speed of the computer, the programming language in which the algo-

rithm is implemented, the compiler or interpreter that translates the pro-

gram into code that runs on the computer, the skill of the programmer

who writes the program, and other activity taking place on the computer

concurrently with the running program. And that all assumes that the

algorithm runs on just one computer with all its data in memory.

If we were to evaluate the speed of an algorithm by implementing it in

a real programming language, running it on a particular computer with

a given input, and measuring the time the algorithm takes, we would

know nothing about how fast the algorithm ran on an input of a different

size, or possibly even on a different input of the same size. And if we

wanted to compare the relative speed of the algorithm with some other

algorithm for the same problem, we would have to implement them both

Chapter 1: What Are Algorithms and Why Should You Care? 5

and run both of them on various inputs of various sizes. How, then, can

we evaluate an algorithm’s speed?

The answer is that we do so by a combination of two ideas. First,

we determine how long the algorithm takes as a function of the size

of its input. In our route-finding example, the input would be some

representation of a roadmap, and its size would depend on the number

of intersections and the number of roads connecting intersections in the

map. (The physical size of the road network would not matter, since we

can characterize all distances by numbers and all numbers occupy the

same size in the input; the length of a road has no bearing on the input

size.) In a simpler example, searching a given list of items to determine

whether a particular item is present in the list, the size of the input would

be the number of items in the list.

Second, we focus on how fast the function that characterizes the run-

ning time grows with the input size—the rate of growth of the running

time. In Chapter 2, we’ll see the notations that we use to characterize

an algorithm’s running time, but what’s most interesting about our ap-

proach is that we look at only the dominant term in the running time,

and we don’t consider coefficients. That is, we focus on the order of

growth of the running time. For example, suppose we could determine

that a specific implementation of a particular algorithm to search a list

of n items takes 50n C 125 machine cycles. The 50n term dominates

the 125 term once n gets large enough, starting at n � 3 and increas-

ing in dominance for even larger list sizes. Thus, we don’t consider

the low-order term 125 when we describe the running time of this hy-

pothetical algorithm. What might surprise you is that we also drop the

coefficient 50, thereby characterizing the running time as growing lin-

early with the input size n. As another example, if an algorithm took

20n3 C 100n2 C 300n C 200 machine cycles, we would say that its

running time grows as n3. Again, the low-order terms—100n2, 300n,

and 200—become less and less significant as the input size n increases.

In practice, the coefficients that we ignore do matter. But they de-

pend so heavily on the extrinsic factors that it’s entirely possible that if

we were comparing two algorithms, A and B, that have the same order

of growth and are run on the same input, then A might run faster than B

with a particular combination of machine, programming language, com-

piler/interpreter, and programmer, while B runs faster than A with some

other combination. Of course, if algorithms A and B both produce cor-

rect solutions and A always runs twice as fast as B, then, all other things

6 Chapter 1: What Are Algorithms and Why Should You Care?

being equal, we prefer to always run A instead of B. From the point of

view of comparing algorithms in the abstract, however, we focus on the

order of growth, unadorned by coefficients or low-order terms.

The final question that we ask in this chapter: “Why should I care about

computer algorithms?” The answer to this question depends on who

you are.

Computer algorithms for non-computer people

Even if you don’t consider yourself a computer insider, computer algo-

rithms matter to you. After all, unless you’re on a wilderness expedition

without a GPS, you probably use them every day. Did you search for

something on the Internet today? The search engine you used—whether

it was Google, Bing, or any other search engine—employed sophis-

ticated algorithms to search the Web and to decide in which order to

present its results. Did you drive your car today? Unless you’re driving

a classic vehicle, its on-board computers made millions of decisions, all

based on algorithms, during your trip. I could go on and on.

As an end user of algorithms, you owe it to yourself to learn a little bit

about how we design, characterize, and evaluate algorithms. I assume

that you have at least a mild interest, since you have picked up this book

and read this far. Good for you! Let’s see if we can get you up to speed

so that you can hold your own at your next cocktail party in which the

subject of algorithms comes up.2

Computer algorithms for computer people

If you’re a computer person, then you had better care about computer

algorithms! Not only are they at the heart of, well, everything that goes

on inside your computer, but algorithms are just as much a technology

as everything else that goes on inside your computer. You can pay a

premium for a computer with the latest and greatest processor, but you

2Yes, I realize that unless you live in Silicon Valley, the subject of algorithms rarely

comes up at cocktail parties that you attend, but for some reason, we computer science

professors think it important that our students not embarrass us at cocktail parties with

their lack of knowledge in particular areas of computer science.

Chapter 1: What Are Algorithms and Why Should You Care? 7

need to run implementations of good algorithms on that computer in

order for your money to be well spent.

Here’s an example that illustrates how algorithms are indeed a tech-

nology. In Chapter 3, we are going to see a few different algorithms

that sort a list of n values into ascending order. Some of these algo-

rithms will have running times that grow like n2, but some will have

running times that grow like only n lg n. What is lg n? It is the base-2

logarithm of n, or log2 n. Computer scientists use base-2 logarithms

so frequently that just like mathematicians and scientists who use the

shorthand ln n for the natural logarithm—loge n—computer scientists

use their own shorthand for base-2 logarithms. Now, because the func-

tion lg n is the inverse of an exponential function, it grows very slowly

with n. If n D 2x , then x D lg n. For example, 210 D 1024, and there-

fore lg 1024 is only 10; similarly 220 D 1,048,576 and so lg 1,048,576

is only 20; and 230 D 1,073,741,824 means that lg 1,073,741,824 is

only 30. So a growth of n lg n vs. n2 trades a factor of n for a factor of

only lg n, and that’s a deal you should take any day.

Let’s make this example more concrete by pitting a faster computer

(computer A) running a sorting algorithm whose running time on n val-

ues grows like n2 against a slower computer (computer B) running a

sorting algorithm whose running time grows like n lg n. They each

must sort an array of 10 million numbers. (Although 10 million num-

bers might seem like a lot, if the numbers are eight-byte integers, then

the input occupies about 80 megabytes, which fits in the memory of

even an inexpensive laptop computer many times over.) Suppose that

computer A executes 10 billion instructions per second (faster than any

single sequential computer at the time of this writing) and computer B

executes only 10 million instructions per second, so that computer A is

1000 times faster than computer B in raw computing power. To make

the difference even more dramatic, suppose that the world’s craftiest

programmer codes in machine language for computer A, and the result-

ing code requires 2n2 instructions to sort n numbers. Suppose further

that just an average programmer writes for computer B, using a high-

level language with an inefficient compiler, with the resulting code tak-

ing 50n lg n instructions. To sort 10 million numbers, computer A takes

2 � .107/2 instructions

1010 instructions/second
D 20,000 seconds ;

which is more than 5.5 hours, while computer B takes

8 Chapter 1: What Are Algorithms and Why Should You Care?

50 � 107 lg 107 instructions

107 instructions/second
� 1163 seconds ;

which is under 20 minutes. By using an algorithm whose running time

grows more slowly, even with a poor compiler, computer B runs more

than 17 times faster than computer A! The advantage of the n lg n al-

gorithm is even more pronounced when we sort 100 million numbers:

where the n2 algorithm on computer A takes more than 23 days, the

n lg n algorithm on computer B takes under four hours. In general, as

the problem size increases, so does the relative advantage of the n lg n

algorithm.

Even with the impressive advances we continually see in computer

hardware, total system performance depends on choosing efficient al-

gorithms as much as on choosing fast hardware or efficient operating

systems. Just as rapid advances are being made in other computer tech-

nologies, they are being made in algorithms as well.

Further reading

In my highly biased opinion, the clearest and most useful source on

computer algorithms is Introduction to Algorithms [CLRS09] by four

devilishly handsome fellows. The book is commonly called “CLRS,”

after the initials of the authors. I’ve drawn on it for much of the mate-

rial in this book. It’s far more complete than this book, but it assumes

that you’ve done at least a little computer programming, and it pulls no

punches on the math. If you find that you’re comfortable with the level

of mathematics in this book, and you’re ready to go deeper into the sub-

ject, then you can’t do better than CLRS. (In my humble opinion, of

course.)

John MacCormick’s book Nine Algorithms That Changed the Future

[Mac12] describes several algorithms and related aspects of computing

that affect our everyday lives. MacCormick’s treatment is less technical

than this book. If you find that my approach in this book is too math-

ematical, then I recommend that you try reading MacCormick’s book.

You should be able to follow much of it even if you have a meager

mathematical background.

In the unlikely event that you find CLRS too watered down, you can

try Donald Knuth’s multi-volume set The Art of Computer Program-

ming [Knu97, Knu98a, Knu98b, Knu11]. Although the title of the series

makes it sound like it might focus on details of writing code, these books

Chapter 1: What Are Algorithms and Why Should You Care? 9

contain brilliant, in-depth analyses of algorithms. Be warned, however:

the material in TAOCP is intense. By the way, if you’re wondering

where the word “algorithm” comes from, Knuth says that it derives from

the name “al-Khowârizmı̂,” a ninth-century Persian mathematician.

In addition to CLRS, several other excellent texts on computer al-

gorithms have been published over the years. The chapter notes for

Chapter 1 of CLRS list many such texts. Rather than replicate that list

here, I refer you to CLRS.

2 How to Describe and Evaluate

Computer Algorithms

In the previous chapter, you got a taste of how we couch the running

time of a computer algorithm: by focusing on the running time as a

function of the input size, and specifically on the order of growth of the

running time. In this chapter, we’ll back up a bit and see how we de-

scribe computer algorithms. Then we’ll see the notations that we use to

characterize the running times of algorithms. We’ll wrap up this chap-

ter by examining some techniques that we use to design and understand

algorithms.

How to describe computer algorithms

We always have the option of describing a computer algorithm as a

runnable program in a commonly used programming language, such as

Java, C, C++, Python, or Fortran. Indeed, several algorithms textbooks

do just that. The problem with using real programming languages to

specify algorithms is that you can get bogged down in the details of the

language, obscuring the ideas behind the algorithms. Another approach,

which we took in Introduction to Algorithms, uses “pseudocode,” which

looks like a mashup of various programming languages with English

mixed in. If you’ve ever used a real programming language, you can

figure out pseudocode easily. But if you have not ever programmed,

then pseudocode might seem a bit mysterious.

The approach I’m taking in this book is that I’m not trying to de-

scribe algorithms to software or hardware, but to “wetware”: the gray

matter between your ears. I am also going to assume that you have

never written a computer program, and so I won’t express algorithms

using any real programming language or even pseudocode. Instead, I’ll

describe them in English, using analogies to real-world scenarios when-

ever I can. In order to indicate what happens when (what we call “flow

of control” in programming), I’ll use lists and lists within lists. If you

want to implement an algorithm in a real programming language, I’ll

give you credit for being able to translate my description into runnable

code.

Chapter 2: How to Describe and Evaluate Computer Algorithms 11

Although I will try to keep descriptions as nontechnical as possi-

ble, this book is about algorithms for computers, and so I will have to

use computing terminology. For example, computer programs contain

procedures (also known as functions or methods in real programming

languages), which specify how to do something. In order to actually

get the procedure to do what it’s supposed to do, we call it. When

we call a procedure, we supply it with inputs (usually at least one, but

some procedures take no inputs). We specify the inputs as parameters

within parentheses after the name of the procedure. For example, to

compute the square root of a number, we might define a procedure

SQUARE-ROOT.x/; here, the input to the procedure is referred to by

the parameter x. The call of a procedure may or may not produce out-

put, depending on how we specified the procedure. If the procedure

produces output, we usually consider the output to be something passed

back to its caller. In computing parlance we say that the procedure

returns a value.

Many programs and algorithms work with arrays of data. An array

aggregates data of the same type into one entity. You can think of an

array as being like a table, where given the index of an entry, we can

talk about the array element at that index. For example, here is a table

of the first five U.S. presidents:

Index President

1 George Washington

2 John Adams

3 Thomas Jefferson

4 James Madison

5 James Monroe

For example, the element at index 4 in this table is James Madison. We

think of this table not as five separate entities, but as one table with five

entries. An array is similar. The indices into an array are consecutive

numbers that can start anywhere, but we will usually start them at 1.1

Given the name of an array and an index into the array, we combine

them with square brackets to indicate a particular array element. For

example, we denote the i th element of an array A by AŒi�.

1If you program in Java, C, or C++, you are used to arrays that start at 0. Starting arrays

at 0 is nice for computers, but for wetware it’s often more intuitive to start at 1.

12 Chapter 2: How to Describe and Evaluate Computer Algorithms

Arrays in computers have one other important characteristic: it takes

equally long to access any element of an array. Once you give the com-

puter an index i into an array, it can access the i th element as quickly

as it can access the first element, regardless of the value of i .

Let’s see our first algorithm: searching an array for a particular value.

That is, we are given an array, and we want to know which entry in

the array, if any, holds a given value. To see how we can search an

array, let’s think of the array as a long bookshelf full of books, and

suppose that you want to know where on the shelf you can find a book by

Jonathan Swift. Now, the books on the shelf might be organized in some

way, perhaps alphabetically by author, alphabetically by title, or, in a

library, by call number. Or perhaps the bookshelf is like my bookshelf

at home, where I have not organized my books in any particular way.

If you couldn’t assume that the books were organized on the shelf,

how would you find a book by Jonathan Swift? Here’s the algorithm I

would follow. I would start at the left end of the shelf and look at the

leftmost book. If it’s by Swift, I have located the book. Otherwise, I

would look at the next book to the right, and if that book is by Swift, I

have located the book. If not, I would keep going to the right, examining

book after book, until either I find a book by Swift or I run off the right-

hand end of the shelf, in which case I can conclude that the bookshelf

does not contain any book by Jonathan Swift. (In Chapter 3, we’ll see

how to search for a book when the books are organized on the shelf.)

Here is how we can describe this searching problem in terms of com-

puting. Let’s think of the books on the bookshelf as an array of books.

The leftmost book is in position 1, the next book to its right is in posi-

tion 2, and so on. If we have n books on the shelf, then the rightmost

book is in position n. We want to find the position number on the shelf

of any book by Jonathan Swift.

As a general computing problem, we are given an array A (the en-

tire shelf full of books to search through) of n elements (the individual

books), and we want to find whether a value x (a book by Jonathan

Swift) is present in the array A. If it is, then we want to determine an in-

dex i such that AŒi� D x (the i th position on the shelf contains a book by

Jonathan Swift). We also need some way to indicate that array A does

not contain x (the bookshelf contains no books by Jonathan Swift). We

do not assume that x appears at most once in the array (perhaps you

have multiple copies of some book), and so if x is present in array A,

it may appear multiple times. All we want from a searching algorithm

Chapter 2: How to Describe and Evaluate Computer Algorithms 13

is any index at which we’ll find x in the array. We’ll assume that the

indices of this array start at 1, so that its elements are AŒ1� through AŒn�.

If we search for a book by Jonathan Swift by starting at the left end of

the shelf, checking book by book as we move to the right, we call that

technique linear search. In terms of an array in a computer, we start

at the beginning of the array, examine each array element in turn (AŒ1�,

then AŒ2�, then AŒ3�, and so on, up through AŒn�) and record where we

find x, if we find it at all.

The following procedure, LINEAR-SEARCH, takes three parameters,

which we separate by commas in the specification.

Procedure LINEAR-SEARCH.A; n; x/

Inputs:
� A: an array.
� n: the number of elements in A to search through.
� x: the value being searched for.

Output: Either an index i for which AŒi� D x, or the special value

NOT-FOUND, which could be any invalid index into the array, such as

0 or any negative integer.

1. Set answer to NOT-FOUND.

2. For each index i , going from 1 to n, in order:

A. If AŒi� D x, then set answer to the value of i .

3. Return the value of answer as the output.

In addition to the parameters A, n, and x, the LINEAR-SEARCH pro-

cedure uses a variable named answer. The procedure assigns an initial

value of NOT-FOUND to answer in step 1. Step 2 checks each array en-

try AŒ1� through AŒn� to see if the entry contains the value x. Whenever

entry AŒi� equals x, step 2A assigns the current value of i to answer.

If x appears in the array, then the output value returned in step 3 is the

last index in which x appeared. If x does not appear in the array, then

the equality test in step 2A never evaluates to true, and the output value

returned is NOT-FOUND, as assigned to answer back in step 1.

Before we continue discussing linear search, a word about how to

specify repeated actions, such as in step 2. It is quite common in al-

gorithms to perform some action for a variable taking values in some

range. When we perform repeated actions, we call that a loop, and we

call each time through the loop an iteration of the loop. For the loop of

14 Chapter 2: How to Describe and Evaluate Computer Algorithms

step 2, I wrote “For each index i , going from 1 to n, in order.” Instead,

from now on, I’ll write “For i D 1 to n,” which is shorter, yet conveys

the same structure. Notice that when I write a loop in this way, we have

to give the loop variable (here, i) an initial value (here, 1), and in each

iteration of the loop, we have to test the current value of the loop vari-

able against a limit (here, n). If the current value of the loop variable is

less than or equal to the limit, then we do everything in the loop’s body

(here, step 2A). After an iteration executes the loop body, we increment

the loop variable—adding 1 to it—and go back and compare the loop

variable, now with its new value, with the limit. We repeatedly test the

loop variable against the limit, execute the loop body, and increment

the loop variable, until the loop variable exceeds the limit. Execution

then continues from the step immediately following the loop body (here,

step 3). A loop of the form “For i D 1 to n” performs n iterations and

n C 1 tests against the limit (because the loop variable exceeds the limit

in the .n C 1/st test).

I hope that you find it obvious that the LINEAR-SEARCH procedure

always returns a correct answer. You might have noticed, however, that

this procedure is inefficient: it continues to search the array even after

it has found an index i for which AŒi� D x. Normally, you wouldn’t

continue searching for a book once you have found it on your bookshelf,

would you? Instead, we can design our linear search procedure to stop

searching once it finds the value x in the array. We assume that when

we say to return a value, the procedure immediately returns the value to

its caller, which then takes control.

Procedure BETTER-LINEAR-SEARCH.A; n; x/

Inputs and Output: Same as LINEAR-SEARCH.

1. For i D 1 to n:

A. If AŒi� D x, then return the value of i as the output.

2. Return NOT-FOUND as the output.

Believe it or not, we can make linear search even more efficient. Ob-

serve that each time through the loop of step 1, the BETTER-LINEAR-

SEARCH procedure makes two tests: a test in step 1 to determine

whether i � n (and if so, perform another iteration of the loop) and the

equality test in step 1A. In terms of searching a bookshelf, these tests

correspond to you having to check two things for each book: have you

Chapter 2: How to Describe and Evaluate Computer Algorithms 15

gone past the end of the shelf and, if not, is the next book by Jonathan

Swift? Of course, you don’t incur much of a penalty for going past the

end of the shelf (unless you keep your face really close to the books as

you examine them, there’s a wall at the end of the shelf, and you smack

your face into the wall), but in a computer program it’s usually very bad

to try to access array elements past the end of the array. Your program

could crash, or it could corrupt data.

You can make it so that you have to perform only one check for ev-

ery book you examine. What if you knew for sure that your bookshelf

contained a book by Jonathan Swift? Then you’d be assured of finding

it, and so you’d never have to check for running off the end of the shelf.

You could just check each book in turn to see whether it’s by Swift.

But perhaps you lent out all your books by Jonathan Swift, or maybe

you thought you had books by him but you never did, so you might not

be sure that your bookshelf contains any books by him. Here’s what

you can do. Take an empty box the size of a book and write on its

narrow side (where the spine of a book would be) “Gulliver’s Travels

by Jonathan Swift.” Replace the rightmost book with this box. Then, as

you search from left to right along the bookshelf, you need to check only

whether you’re looking at something that is by Swift; you can forget

about having to check whether you’re going past the end of the book-

shelf because you know that you’ll find something by Swift. The only

question is whether you really found a book by Swift, or did you find the

empty box that you had labeled as though it were by him? If you found

the empty box, then you didn’t really have a book by Swift. That’s easy

to check, however, and you need to do that only once, at the end of your

search, rather than once for every book on the shelf.

There’s one more detail you have to be aware of: what if the only

book by Jonathan Swift that you had on your bookshelf was the right-

most book? If you replace it by the empty box, your search will termi-

nate at the empty box, and you might conclude that you didn’t have the

book. So you have to perform one more check for that possibility, but

it’s just one check, rather than one check for every book on the shelf.

In terms of a computer algorithm, we’ll put the value x that we’re

searching for into the last position, AŒn�, after saving the contents of

AŒn� into another variable. Once we find x, we test to see whether we

really found it. We call the value that we put into the array a sentinel,

but you can think of it as the empty box.

16 Chapter 2: How to Describe and Evaluate Computer Algorithms

Procedure SENTINEL-LINEAR-SEARCH.A; n; x/

Inputs and Output: Same as LINEAR-SEARCH.

1. Save AŒn� into last and then put x into AŒn�.

2. Set i to 1.

3. While AŒi� ¤ x, do the following:

A. Increment i .

4. Restore AŒn� from last.

5. If i < n or AŒn� D x, then return the value of i as the output.

6. Otherwise, return NOT-FOUND as the output.

Step 3 is a loop, but not one that counts through some loop variable.

Instead, the loop iterates as long as a condition holds; here, the condition

is that AŒi� ¤ x. The way to interpret such a loop is to perform the test

(here, AŒi� ¤ x), and if the test is true, then do everything in the loop’s

body (here, step 3A, which increments i). Then go back and perform the

test, and if the test is true, execute the body. Keep going, performing the

test then executing the body, until the test comes up false. Then continue

from the next step after the loop body (here, continue from step 4).

The SENTINEL-LINEAR-SEARCH procedure is a bit more compli-

cated than the first two linear search procedures. Because it places x

into AŒn� in step 1, we are guaranteed that AŒi� will equal x for some

test in step 3. Once that happens, we drop out of the step-3 loop, and

the index i won’t change thereafter. Before we do anything else, step 4

restores the original value in AŒn�. (My mother taught me to put things

back when I was done with them.) Then we have to determine whether

we really found x in the array. Because we put x into the last element,

AŒn�, we know that if we found x in AŒi� where i < n, then we re-

ally did find x and we want to return the index i . What if we found x

in AŒn�? That means we didn’t find x before AŒn�, and so we need to

determine whether AŒn� equals x. If it does, then we want to return the

index n, which equals i at this point, but if it does not, we want to return

NOT-FOUND. Step 5 does these tests and returns the correct index if x

was originally in the array. If x was found only because step 1 put it

into the array, then step 6 returns NOT-FOUND. Although SENTINEL-

LINEAR-SEARCH has to perform two tests after its loop terminates, it

performs only one test in each loop iteration, thereby making it more

efficient than either LINEAR-SEARCH or BETTER-LINEAR-SEARCH.

Chapter 2: How to Describe and Evaluate Computer Algorithms 17

How to characterize running times

Let’s return to the LINEAR-SEARCH procedure from page 13 and under-

stand its running time. Recall that we want to characterize the running

time as a function of the input size. Here, our input is an array A of n

elements, along with the number n and the value x that we’re searching

for. The sizes of n and x are insignificant as the array gets large—after

all, n is just a single integer and x is only as large as one of the n ar-

ray elements—and so we’ll say that the input size is n, the number of

elements in A.

We have to make some simple assumptions about how long things

take. We will assume that each individual operation—whether it’s an

arithmetic operation (such as addition, subtraction, multiplication, or

division), a comparison, assigning to a variable, indexing into an array,

or calling or returning from a procedure—takes some fixed amount of

time that is independent of the input size.2 The time might vary from

operation to operation, so that division might take longer than addition,

but when a step comprises just simple operations, each individual ex-

ecution of that step takes some constant amount of time. Because the

operations executed differ from step to step, and because of the extrinsic

factors listed back on page 4, the time to execute a step might vary from

step to step. Let’s say that each execution of step i takes ti time, where

ti is some constant that does not depend on n.

Of course, we have to take into account that some steps execute mul-

tiple times. Steps 1 and 3 execute just once, but what about step 2? We

have to test i against n a total of n C 1 times: n times in which i � n,

and once when i equals n C 1 so that we drop out of the loop. Step 2A

executes exactly n times, once for each value of i from 1 to n. We don’t

know in advance how many times we set answer to the value of i ; it

could be anywhere from 0 times (if x is not present in the array) to n

times (if every value in the array equals x). If we’re going to be precise

in our accounting—and we won’t normally be this precise—we need to

2If you know a bit about actual computer architecture, you might know that the time

to access a given variable or array element is not necessarily fixed, for it could depend

on whether the variable or array element is in the cache, in main memory, or out on

disk in a virtual-memory system. Some sophisticated models of computers take these

issues into account, but it’s often good enough to just assume that all variables and array

entries are in main memory and that they all take the same amount of time to access.

18 Chapter 2: How to Describe and Evaluate Computer Algorithms

recognize that step 2 does two different things that execute a different

number of times: the test of i against n happens n C 1 times, but in-

crementing i happens only n times. Let’s separate the time for line 2

into t 0

2 for the test and t 00

2 for incrementing. Similarly, we’ll separate

the time for step 2A into t 0

2A for testing whether AŒi� D x and t 00

2A for

setting answer to i . Therefore, the running time of LINEAR-SEARCH is

somewhere between

t1 C t 0

2 � .n C 1/ C t 00

2 � n C t 0

2A � n C t 00

2A � 0 C t3

and

t1 C t 0

2 � .n C 1/ C t 00

2 � n C t 0

2A � n C t 00

2A � n C t3 :

Now we rewrite these bounds, collecting terms that multiply by n to-

gether, and collecting the rest of the terms, and we see that the running

time is somewhere between the lower bound

.t 0

2 C t 00

2 C t 0

2A/ � n C .t1 C t 0

2 C t3/

and the upper bound

.t 0

2 C t 00

2 C t 0

2A C t 00

2A/ � n C .t1 C t 0

2 C t3/ :

Notice that both of these bounds are of the form c �nCd , where c and d

are constants that do not depend on n. That is, they are both linear

functions of n. The running time of LINEAR-SEARCH is bounded from

below by a linear function of n, and it is bounded from above by a linear

function of n.

We use a special notation to indicate that a running time is bounded

from above by some linear function of n and from below by some (pos-

sibly different) linear function of n. We write that the running time

is ‚.n/. That’s the Greek letter theta, and we say “theta of n” or just

“theta n.” As promised in Chapter 1, this notation discards the low-

order term (t1 C t 0

2 C t3) and the coefficients of n (t 0

2 C t 00

2 C t 0

2A for the

lower bound and t 0

2 C t 00

2 C t 0

2A C t 00

2A for the upper bound). Although we

lose precision by characterizing the running time as ‚.n/, we gain the

advantages of highlighting the order of growth of the running time and

suppressing tedious detail.

This ‚-notation applies to functions in general, not just those that de-

scribe running times of algorithms, and it applies to functions other than

linear ones. The idea is that if we have two functions, f .n/ and g.n/,

we say that f .n/ is ‚.g.n// if f .n/ is within a constant factor of g.n/

Chapter 2: How to Describe and Evaluate Computer Algorithms 19

for sufficiently large n. So we can say that the running time of LINEAR-

SEARCH is within a constant factor of n once n gets large enough.

There’s an intimidating technical definition of ‚-notation, but for-

tunately we rarely have to resort to it in order to use ‚-notation. We

simply focus on the dominant term, dropping low-order terms and con-

stant factors. For example, the function n2=4 C 100n C 50 is ‚.n2/;

here we drop the low-order terms 100n and 50, and we drop the constant

factor 1=4. Although the low-order terms will dominate n2=4 for small

values of n, once n goes above 400, the n2=4 term exceeds 100n C 50.

When n D 1000, the dominant term n2=4 equals 250,000, while the

low-order terms 100n C 50 amount to only 100,050; for n D 2000 the

difference becomes 1,000,000 vs. 200,050. In the world of algorithms,

we abuse notation a little bit and write f .n/ D ‚.g.n//, so that we can

write n2=4 C 100n C 50 D ‚.n2/.

Now let’s look at the running time of BETTER-LINEAR-SEARCH

from page 14. This one is a little trickier than LINEAR-SEARCH be-

cause we don’t know in advance how many times the loop will iterate.

If AŒ1� equals x, then it will iterate just once. If x is not present in the

array, then the loop will iterate all n times, which is the maximum possi-

ble. Each loop iteration takes some constant amount of time, and so we

can say that in the worst case, BETTER-LINEAR-SEARCH takes ‚.n/

time to search an array of n elements. Why “worst case”? Because we

want algorithms to have low running times, the worst case occurs when

an algorithm takes the maximum time over any possible input.

In the best case, when AŒ1� equals x, BETTER-LINEAR-SEARCH

takes just a constant amount of time: it sets i to 1, checks that i � n, the

test AŒi� D x comes up true, and the procedure returns the value of i ,

which is 1. This amount of time does not depend on n. We write that

the best-case running time of BETTER-LINEAR-SEARCH is ‚.1/, be-

cause in the best case, its running time is within a constant factor of 1.

In other words, the best-case running time is a constant that does not

depend on n.

So we see that we cannot use ‚-notation for a blanket statement that

covers all cases of the running time of BETTER-LINEAR-SEARCH. We

cannot say that the running time is always ‚.n/, because in the best

case it’s ‚.1/. And we cannot say that the running time is always ‚.1/,

because in the worst case it’s ‚.n/. We can say that a linear function

of n is an upper bound in all cases, however, and we have a notation for

that: O.n/. When we speak this notation, we say “big-oh of n” or just

20 Chapter 2: How to Describe and Evaluate Computer Algorithms

“oh of n.” A function f .n/ is O.g.n// if, once n becomes sufficiently

large, f .n/ is bounded from above by some constant times g.n/. Again,

we abuse notation a little and write f .n/ D O.g.n//. For BETTER-

LINEAR-SEARCH, we can make the blanket statement that its running

time in all cases is O.n/; although the running time might be better than

a linear function of n, it’s never worse.

We use O-notation to indicate that a running time is never worse

than a constant times some function of n, but how about indicating

that a running time is never better than a constant times some func-

tion of n? That’s a lower bound, and we use �-notation, which mirrors

O-notation: a function f .n/ is �.g.n// if, once n becomes sufficiently

large, f .n/ is bounded from below by some constant times g.n/. We

say that “f .n/ is big-omega of g.n/” or just “f .n/ is omega of g.n/,”

and we can write f .n/ D �.g.n//. Since O-notation gives an upper

bound, �-notation gives a lower bound, and ‚-notation gives both up-

per and lower bounds, we can conclude that a function f .n/ is ‚.g.n//

if and only if f .n/ is both O.g.n// and �.g.n//.

We can make a blanket statement about a lower bound for the running

time of BETTER-LINEAR-SEARCH: in all cases it’s �.1/. Of course,

that’s a pathetically weak statement, since we’d expect any algorithm on

any input to take at least constant time. We won’t use �-notation much,

but it will occasionally come in handy.

The catch-all term for ‚-notation, O-notation, and �-notation is

asymptotic notation. That’s because these notations capture the growth

of a function as its argument asymptotically approaches infinity. All

of these asymptotic notations give us the luxury of dropping low-order

terms and constant factors so that we can ignore tedious details and fo-

cus on what’s important: how the function grows with n.

Now let’s turn to SENTINEL-LINEAR-SEARCH from page 16. Just

like BETTER-LINEAR-SEARCH, each iteration of its loop takes a con-

stant amount of time, and there may be anywhere from 1 to n itera-

tions. The key difference between SENTINEL-LINEAR-SEARCH and

BETTER-LINEAR-SEARCH is that the time per iteration of SENTINEL-

LINEAR-SEARCH is less than the time per iteration of BETTER-

LINEAR-SEARCH. Both take a linear amount of time in the worst case,

but the constant factor for SENTINEL-LINEAR-SEARCH is better. Al-

though we’d expect SENTINEL-LINEAR-SEARCH to be faster in prac-

tice, it would be by only a constant factor. When we express the running

times of BETTER-LINEAR-SEARCH and SENTINEL-LINEAR-SEARCH

Chapter 2: How to Describe and Evaluate Computer Algorithms 21

using asymptotic notation, they are equivalent: ‚.n/ in the worst case,

‚.1/ in the best case, and O.n/ in all cases.

Loop invariants

For our three flavors of linear search, it was easy to see that each one

gives a correct answer. Sometimes it’s a bit harder. There’s a wide range

of techniques, more than I can cover here.

One common method of showing correctness uses a loop invariant:

an assertion that we demonstrate to be true each time we start a loop

iteration. For a loop invariant to help us argue correctness, we have to

show three things about it:

Initialization: It is true before the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true

before the next iteration.

Termination: The loop terminates, and when it does, the loop invari-

ant, along with the reason that the loop terminated, gives us a useful

property.

As an example, here’s a loop invariant for BETTER-LINEAR-SEARCH:

At the start of each iteration of step 1, if x is present in the ar-

ray A, then it is present in the subarray (a contiguous portion of

an array) from AŒi� through AŒn�.

We don’t even need this loop invariant to show that if the procedure

returns an index other than NOT-FOUND, then the index returned is cor-

rect: the only way that the procedure can return an index i in step 1A

is because x equals AŒi�. Instead, we will use this loop invariant to

show that if the procedure returns NOT-FOUND in step 2, then x is not

anywhere in the array:

Initialization: Initially, i D 1 so that the subarray in the loop invariant

is AŒ1� through AŒn�, which is the entire array.

Maintenance: Assume that at the start of an iteration for a value of i ,

if x is present in the array A, then it is present in the subarray from

AŒi� through AŒn�. If we get through this iteration without returning,

we know what AŒi� ¤ x, and therefore we can safely say that if x is

present in the array A, then it is present in the subarray from AŒi C1�

through AŒn�. Because i is incremented before the next iteration, the

loop invariant will hold before the next iteration.

22 Chapter 2: How to Describe and Evaluate Computer Algorithms

Termination: This loop must terminate, either because the procedure

returns in step 1A or because i > n. We have already handled

the case where the loop terminates because the procedure returns

in step 1A.

To handle the case where the loop terminates because i > n, we rely

on the contrapositive of the loop invariant. The contrapositive of the

statement “if A then B” is “if not B then not A.” The contrapositive

of a statement is true if and only if the statement is true. The con-

trapositive of the loop invariant is “if x is not present in the subarray

from AŒi� through AŒn�, then it is not present in the array A.”

Now, when i > n, the subarray from AŒi� through AŒn� is empty,

and so this subarray cannot hold x. By the contrapositive of the loop

invariant, therefore, x is not present anywhere in the array A, and so

it is appropriate to return NOT-FOUND in step 2.

Wow, that’s a lot of reasoning for what’s really just a simple loop!

Do we have to go through all that every time we write a loop? I don’t,

but there are a few computer scientists who insist on such rigorous rea-

soning for every single loop. When I’m writing real code, I find that

most of the time that I write a loop, I have a loop invariant somewhere

in the back of my mind. It might be so far back in my mind that I don’t

even realize that I have it, but I could state it if I had to. Although most

of us would agree that a loop invariant is overkill for understanding the

simple loop in BETTER-LINEAR-SEARCH, loop invariants can be quite

handy when we want to understand why more complex loops do the

right thing.

Recursion

With the technique of recursion, we solve a problem by solving smaller

instances of the same problem. Here’s my favorite canonical example

of recursion: computing nŠ (“n-factorial”), which is defined for nonneg-

ative values of n as nŠ D 1 if n D 0, and

nŠ D n � .n � 1/ � .n � 2/ � .n � 3/ � � � 3 � 2 � 1

if n � 1. For example, 5Š D 5 � 4 � 3 � 2 � 1 D 120. Observe that

.n � 1/Š D .n � 1/ � .n � 2/ � .n � 3/ � � � 3 � 2 � 1 ;

and so

Chapter 2: How to Describe and Evaluate Computer Algorithms 23

nŠ D n � .n � 1/Š

for n � 1. We have defined nŠ in terms of a “smaller” problem, namely

.n�1/Š. We could write a recursive procedure to compute nŠ as follows:

Procedure FACTORIAL.n/

Input: An integer n � 0.

Output: The value of nŠ.

1. If n D 0, then return 1 as the output.

2. Otherwise, return n times the value returned by recursively calling

FACTORIAL.n � 1/.

The way I wrote step 2 is pretty cumbersome. I could instead just write

“Otherwise, return n � FACTORIAL.n � 1/,” using the recursive call’s

return value within a larger arithmetic expression.

For recursion to work, two properties must hold. First, there must

be one or more base cases, where we compute the solution directly

without recursion. Second, each recursive call of the procedure must be

on a smaller instance of the same problem that will eventually reach a

base case. For the FACTORIAL procedure, the base case occurs when

n equals 0, and each recursive call is on an instance in which the value

of n is reduced by 1. As long as the original value of n is nonnegative,

the recursive calls will eventually get down to the base case.

Arguing that a recursive algorithm works might feel overly simple at

first. The key is to believe that each recursive call produces the correct

result. As long as we are willing to believe that recursive calls do the

right thing, arguing correctness is often easy. Here is how we could ar-

gue that the FACTORIAL procedure returns the correct answer. Clearly,

when n D 0, the value returned, 1, equals nŠ. We assume that when

n � 1, the recursive call FACTORIAL.n � 1/ does the right thing: it

returns the value of .n � 1/Š. The procedure then multiplies this value

by n, thereby computing the value of nŠ, which it returns.

Here’s an example where the recursive calls are not on smaller in-

stances of the same problem, even though the mathematics is correct.

It is indeed true that if n � 0, then nŠ D .n C 1/Š=.n C 1/. But the

following recursive procedure, which takes advantage of this formula,

would fail to ever give an answer when n � 1:

24 Chapter 2: How to Describe and Evaluate Computer Algorithms

Procedure BAD-FACTORIAL.n/

Input and Output: Same as FACTORIAL.

1. If n D 0, then return 1 as the output.

2. Otherwise, return BAD-FACTORIAL.n C 1/=.n C 1/.

If we were to call BAD-FACTORIAL.1/, it would generate a recursive

call of BAD-FACTORIAL.2/, which would generate a recursive call of

BAD-FACTORIAL.3/, and so on, never getting down to the base case

when n equals 0. If you were to implement this procedure in a real

programming language and run it on an actual computer, you would

quickly see something like a “stack overflow error.”

We can often rewrite algorithms that use a loop in a recursive style.

Here is linear search, without a sentinel, written recursively:

Procedure RECURSIVE-LINEAR-SEARCH.A; n; i; x/

Inputs: Same as LINEAR-SEARCH, but with an added parameter i .

Output: The index of an element equaling x in the subarray from AŒi�

through AŒn�, or NOT-FOUND if x does not appear in this subarray.

1. If i > n, then return NOT-FOUND.

2. Otherwise (i � n), if AŒi� D x, then return i .

3. Otherwise (i � n and AŒi� ¤ x), return

RECURSIVE-LINEAR-SEARCH.A; n; i C 1; x/.

Here, the subproblem is to search for x in the subarray going from AŒi�

through AŒn�. The base case occurs in step 1 when this subarray is

empty, that is, when i > n. Because the value of i increases in each of

step 3’s recursive calls, if no recursive call ever returns a value of i in

step 2, then eventually i becomes greater than n and we reach the base

case.

Further reading

Chapters 2 and 3 of CLRS [CLRS09] cover much of the material in

this chapter. An early algorithms textbook by Aho, Hopcroft, and Ull-

man [AHU74] influenced the field to use asymptotic notation to analyze

algorithms. There has been quite a bit of work in proving programs cor-

rect; if you would like to delve into this area, try the books by Gries

[Gri81] and Mitchell [Mit96].

3 Algorithms for Sorting and

Searching

In Chapter 2, we saw three variations on linear search of an array. Can

we do any better? The answer: it depends. If we know nothing about the

order of the elements in the array, then no, we cannot do better. In the

worst case, we have to look through all n elements because if we don’t

find the value we’re looking for in the first n � 1 elements, it might be

in that last, nth, element. Therefore, we cannot achieve a better worst-

case running time than ‚.n/ if we know nothing about the order of the

elements in the array.

Suppose, however, that the array is sorted into nondecreasing order:

each element is less than or equal to its successor in the array, according

to some definition of “less than.” In this chapter, we shall see that if

an array is sorted, then we can use a simple technique known as binary

search to search an n-element array in only O.lg n/ time. As we saw in

Chapter 1, the value of lg n grows very slowly compared with n, and so

binary search beats linear search in the worst case.1

What does it mean for one element to be less than another? When the

elements are numbers, it’s obvious. When the elements are strings of

text characters, we can think of a lexicographic ordering: one element

is less than another if it would come before the other element in a dic-

tionary. When elements are some other form of data, then we have to

define what “less than” means. As long as we have some clear notion

of “less than,” we can determine whether an array is sorted.

Recalling the example of books on a bookshelf from Chapter 2, we

could sort the books alphabetically by author, alphabetically by title, or,

if in a library, by call number. In this chapter, we’ll say that the books

are sorted on the shelf if they appear in alphabetical order by author,

reading from left to right. The bookshelf might contain more than one

book by the same author, however; perhaps you have several works by

William Shakespeare. If we want to search for not just any book by

1If you are a non-computer person who skipped the section “Computer algorithms for

computer people” in Chapter 1, you ought to read the material about logarithms on

page 7.

26 Chapter 3: Algorithms for Sorting and Searching

Shakespeare, but a specific book by Shakespeare, then we would say

that if two books have the same author, then the one whose title is first

alphabetically should go on the left. Alternatively, we could say that all

we care about is the author’s name, so that when we search, anything

by Shakespeare will do. We call the information that we are matching

on the key. In our bookshelf example, the key is just the author’s name,

rather than a combination based first on the author’s name and then the

title in case of two works by the same author.

How, then, do we get the array to be sorted in the first place? In this

chapter, we’ll see four algorithms—selection sort, insertion sort, merge

sort, and quicksort—to sort an array, applying each of these algorithms

to our bookshelf example. Each sorting algorithm will have its advan-

tages and its disadvantages, and at the end of the chapter we’ll review

and compare these sorting algorithms. All of the sorting algorithms that

we’ll see in this chapter take either ‚.n2/ or ‚.n lg n/ time in the worst

case. Therefore, if you were going to perform only a few searches,

you’d be better off just running linear search. But if you were going to

search many times, you might be better off first sorting the array and

then searching by running binary search.

Sorting is an important problem in its own right, not just as a pre-

processing step for binary search. Think of all the data that must be

sorted, such as entries in a phone book, by name; checks in a monthly

bank statement, by check numbers and/or the dates that the checks were

processed by the bank; or even results from a Web-search engine, by rel-

evance to the query. Furthermore, sorting is often a step in some other

algorithm. For example, in computer graphics, objects are often layered

on top of each other. A program that renders objects on the screen might

have to sort the objects according to an “above” relation so that it can

draw these objects from bottom to top.

Before we proceed, a word about what it is that we sort. In addition

to the key (which we’ll call a sort key when we’re sorting), the ele-

ments that we sort usually include as well what we call satellite data.

Although satellite data could come from a satellite, it usually does not.

Satellite data is the information that is associated with the sort key and

should travel with it when elements are moved around. In our bookshelf

example, the sort key is the author’s name and the satellite data is the

book itself.

I explain satellite data to my students in a way that they are sure to

understand. I keep a spreadsheet with student grades, with rows sorted

Chapter 3: Algorithms for Sorting and Searching 27

alphabetically by student name. To determine final course grades at the

end of the term, I sort the rows, with the sort key being the column

containing the percentage of points obtained in the course, and the rest

of the columns, including the student names, as the satellite data. I sort

into decreasing order by percentage, so that rows at the top correspond

to A’s and rows at the bottom to D’s and E’s.2 Suppose that I were

to rearrange only the column containing the percentages and not move

the entire row containing the percentage. That would leave the student

names in alphabetical order regardless of percentages. Then the students

whose names appear early in the alphabet would be happy while the

students with names at the end of the alphabet—not so much.

Here are some other examples of sort keys and satellite data. In a

phone book, the sort key would be the name and the satellite data would

be the address and phone number. In a bank statement, the sort key

would be the check number and the satellite data would include the

amount of the check and the date it cleared. In a search engine, the sort

key would be the measure of relevance to the query and the satellite data

would be the URL of the Web page, plus whatever other data the search

engine stores about the page.

When we work with arrays in this chapter, we will act as though each

element contains only a sort key. If you were implementing any of the

sorting algorithms here, you would have to make sure that you move the

satellite data associated with each element, or at least a pointer to the

satellite data, whenever you move the sort key.

In order for the bookshelf analogy to apply to arrays in a computer,

we need to assume that the bookshelf and its books have two additional

features, which I admit are not terribly realistic. First, all books on

the bookshelf are the same size, because in a computer array, all array

entries are the same size. Second, we can number the positions of the

books on the bookshelf from 1 to n, and we will call each position a

slot. Slot 1 is the leftmost slot, and slot n is the rightmost. As you have

probably guessed, each slot on the bookshelf corresponds to an array

entry.

I also want to address the word “sorting.” In common speech, sort-

ing can mean something different from how we use it in computing.

2Dartmouth uses E, not F, to indicate a failing grade. I don’t know why for sure, but

I would guess that it simplified the computer program that converts letter grades to

numeric grades on a 4.0 scale.

28 Chapter 3: Algorithms for Sorting and Searching

My Mac’s online dictionary defines “sort” by “arrange systematically in

groups; separate according to type, class, etc.”: the way that you might

“sort” clothing for example, with shirts in one place, pants in another

place, and so on. In the world of computer algorithms, sorting means

to put into some well-defined order, and “arranging systematically in

groups” is called “bucketing,” “bucketizing,” or “binning.”

Binary search

Before we see some sorting algorithms, let’s visit binary search, which

requires the array being searched to be already sorted. Binary search

has the advantage that it takes only O.lg n/ time to search an n-element

array.

In our bookshelf example, we start with the books already sorted by

author name, left to right on the shelf. We’ll use the author name as the

key, and let’s search for any book by Jonathan Swift. Now, you might

figure that because the author’s last name starts with “S,” which is the

19th letter of the alphabet, you could go about three-quarters of the way

over on the shelf (since 19=26 is close to 3=4) and look in the slot there.

But if you have all of Shakespeare’s works, then you have several books

by an author whose last name comes before Swift, which could push

books by Swift farther to the right than you expected.

Instead, here’s how you could apply binary search to finding a book

by Jonathan Swift. Go to the slot exactly halfway over on the shelf, find

the book there, and examine the author’s name. Let’s say that you’ve

found a book by Jack London. Not only is that not the book you’re

searching for, but because you know that the books are sorted alpha-

betically by author, you know that all books to the left of the book by

London can’t be what you’re searching for. By looking at just one book,

you have eliminated half of the books on the shelf from consideration!

Any books by Swift must be on the right-hand half of the shelf. So

now you find the slot at the halfway point of just the right-hand half and

look at the book there. Suppose that it’s by Leo Tolstoy. Again, that’s

not the book you’re searching for, but you know that you can eliminate

all books to the right of this one: half of the books that remained as

possibilities. At this point, you know that if your bookshelf contains

any books by Swift, then they are in the quarter of the books that are to

the right of the book by London and to the left of the book by Tolstoy.

Next, you find the book in the slot at the midpoint within this quarter

under consideration. If it’s by Swift, you are done. Otherwise, you can

Chapter 3: Algorithms for Sorting and Searching 29

again eliminate half of the remaining books. Eventually, you either find

a book by Swift or you get to the point at which no slots remain as pos-

sibilities. In the latter case, you conclude that the bookshelf contains no

books by Jonathan Swift.

In a computer, we perform binary search on an array. At any point, we

are considering only a subarray, that is, the portion of the array between

and including two indices; let’s call them p and r . Initially, p D 1 and

r D n, so that the subarray starts out as the entire array. We repeatedly

halve the size of the subarray that we are considering until one of two

things happens: we either find the value that we’re searching for or the

subarray is empty (that is, p becomes greater than r). The repeated

halving of the subarray size is what gives rise to the O.lg n/ running

time.

In a little more detail, here’s how binary search works. Let’s say that

we’re searching for the value x in array A. In each step, we are con-

sidering only the subarray starting at AŒp� and ending at AŒr�. Because

we will be working with subarrays quite a bit, let’s denote this subarray

by AŒp : : r�. At each step, we compute the midpoint q of the subarray

under consideration by taking the average of p and r and then dropping

the fractional part, if any: q D b.p C r/=2c. (Here, we use the “floor”

operation, b c, to drop the fractional part. If you were implementing

this operation in a language such as Java, C, or C++, you could just use

integer division to drop the fractional part.) We check to see whether

AŒq� equals x; if it does, we are done, because we can just return q as

an index where array A contains x.

If instead, we find that AŒq� ¤ x, then we take advantage of the

assumption that array A is already sorted. Since AŒq� ¤ x, there are

two possibilities: either AŒq� > x or AŒq� < x. We first handle the case

where AŒq� > x. Because the array is sorted, we know that not only is

AŒq� greater than x, but also—thinking of the array as laid out from left

to right—that every array element to the right of AŒq� is greater than x.

Therefore, we can eliminate from consideration all elements at or to the

right of AŒq�. We will start our next step with p unchanged, but with r

set to q � 1:

A

p q r

q–1
⇓

… …>x >x >x >x >x >x

new r

30 Chapter 3: Algorithms for Sorting and Searching

If instead we find that AŒq� < x, we know that every array element at or

to the left of AŒq� is less than x, and so we can eliminate these elements

from consideration. We will start our next step with r unchanged, but

with p set to q C 1:

A

p q r

q+1
⇓

… …<x<x<x<x<x<x

new p

Here is the exact procedure for binary search:

Procedure BINARY-SEARCH.A; n; x/

Inputs and Output: Same as LINEAR-SEARCH.

1. Set p to 1, and set r to n.

2. While p � r , do the following:

A. Set q to b.p C r/=2c.

B. If AŒq� D x, then return q.

C. Otherwise (AŒq� ¤ x), if AŒq� > x, then set r to q � 1.

D. Otherwise (AŒq� < x), set p to q C 1.

3. Return NOT-FOUND.

The loop in step 2 does not necessarily terminate because p becomes

greater than r . It can terminate in step 2B because it finds that AŒq�

equals x and returns q as an index in A where x occurs.

In order to show that the BINARY-SEARCH procedure works cor-

rectly, we just need to show that x is not present anywhere in the array if

BINARY-SEARCH returns NOT-FOUND in step 3. We use the following

loop invariant:

At the start of each iteration of the loop of step 2, if x is anywhere

in the array A, then it is somewhere in the subarray AŒp : : r�.

And a brief argument using the loop invariant:

Initialization: Step 1 initializes the indices p and r to 1 and n, re-

spectively, and so the loop invariant is true when the procedure first

enters the loop.

Maintenance: We argued above that steps 2C and 2D adjust either p

or r correctly.

Chapter 3: Algorithms for Sorting and Searching 31

Termination: If x is not in the array, then eventually the procedure gets

to the point where p and r are equal. When that happens, step 2A

computes q to be the same as p and r . If step 2C sets r to q � 1,

then at the start of the next iteration, r will equal p � 1, so that p

will be greater than r . If step 2D sets p to q C 1, then at the start

of the next iteration, p will equal r C 1, and again p will be greater

than r . Either way, the loop test in step 2 will come up false, and

the loop will terminate. Because p > r , the subarray AŒp : : r� will

be empty, and so the value x cannot be present in it. Taking the

contrapositive of the loop invariant (see page 22) gives us that if x is

not present in the subarray AŒp : : r�, then it is not present anywhere

in array A. Therefore, the procedure is correct in returning NOT-

FOUND in step 3.

We can also write binary search as a recursive procedure:

Procedure RECURSIVE-BINARY-SEARCH.A; p; r; x/

Inputs and Output: Inputs A and x are the same as LINEAR-SEARCH,

as is the output. The inputs p and r delineate the subarray AŒp : : r�

under consideration.

1. If p > r , then return NOT-FOUND.

2. Otherwise (p � r), do the following:

A. Set q to b.p C r/=2c.

B. If AŒq� D x, then return q.

C. Otherwise (AŒq� ¤ x), if AŒq� > x, then return

RECURSIVE-BINARY-SEARCH.A; p; q � 1; x/.

D. Otherwise (AŒq� < x), return

RECURSIVE-BINARY-SEARCH.A; q C 1; r; x/.

The initial call is RECURSIVE-BINARY-SEARCH.A; 1; n; x/.

Now let’s see how it is that binary search takes O.lg n/ time on an

n-element array. The key observation is that the size r � p C 1 of the

subarray under consideration is approximately halved in each iteration

of the loop (or in each recursive call of the recursive version, but let’s

focus on the iterative version in BINARY-SEARCH). If you try all the

cases, you’ll find that if an iteration starts with a subarray of s elements,

the next iteration will have either bs=2c or s=2 � 1 elements, depending

on whether s is even or odd and whether AŒq� is greater than or less

than x. We have already seen that once the subarray size gets down to 1,

32 Chapter 3: Algorithms for Sorting and Searching

the procedure will finish by the next iteration. So we can ask, how many

iterations of the loop do we need to repeatedly halve a subarray from its

original size n down to a size of 1? That would be the same as the

number of times that, starting with a subarray of size 1, we would need

to double its size to reach a size of n. But that’s just exponentiation:

repeatedly multiplying by 2. In other words, for what value of x does

2x reach n? If n were an exact power of 2, then we’ve already seen

on page 7 that the answer is lg n. Of course, n might not be an exact

power of 2, in which case the answer will be within 1 of lg n. Finally,

we note that each iteration of the loop takes a constant amount of time,

that is, the time for a single iteration does not depend on the size n of the

original array or on the size of the subarray under consideration. Let’s

use asymptotic notation to suppress the constant factors and low-order

term. (Is the number of loop iterations lg n or blg nc C 1? Who cares?)

We get that the running time of binary search is O.lg n/.

I used O-notation here because I wanted to make a blanket statement

that covers all cases. In the worst case, when the value x is not present

in the array, we halved and halved and halved until the subarray under

consideration was empty, yielding a running time of ‚.lg n/. In the best

case, when x is found in the first iteration of the loop, the running time

is ‚.1/. No ‚-notation covers all cases, but a running time of O.lg n/ is

always correct for binary search—as long as the array is already sorted.

It is possible to beat ‚.lg n/ worst-case time for searching, but only if

we organize data in more elaborate ways and make certain assumptions

about the keys.

Selection sort

We now turn our attention to sorting: rearranging the elements of the

array—also known as permuting the array—so that each element is less

than or equal to its successor. The first sorting algorithm we’ll see,

selection sort, is the one I consider the simplest, because it’s the one I

came up with when I first needed to design a sorting algorithm. It is far

from the fastest.

Here is how selection sort would work for sorting books on a book-

shelf according to author names. Go through the entire shelf and find

the book whose author’s name comes earliest in the alphabet. Let’s say

that it’s by Louisa May Alcott. (If the shelf contains two or more books

by this author, choose any one of them.) Swap the location of this book

with the book in slot 1. The book in slot 1 is now a book by an author

Chapter 3: Algorithms for Sorting and Searching 33

whose name comes first alphabetically. Now go through the bookshelf,

left to right, starting with the book in slot 2 to find the book in slots 2

through n whose author name comes earliest in the alphabet. Suppose

that it’s by Jane Austen. Swap the location of this book with the book

in slot 2, so that now slots 1 and 2 have the first and second books in the

overall alphabetical ordering. Then do the same for slot 3, and so on.

Once we have put the correct book into slot n � 1 (perhaps it’s by H. G.

Wells), we are done, because there’s only one book left (say, a book by

Oscar Wilde), and it’s in slot n where it belongs.

To turn this approach into a computer algorithm, change the book-

shelf to an array and the books to array elements. Here’s the result:

Procedure SELECTION-SORT.A; n/

Inputs:
� A: an array.
� n: the number of elements in A to sort.

Result: The elements of A are sorted into nondecreasing order.

1. For i D 1 to n � 1:

A. Set smallest to the index of the smallest element in the

subarray AŒi : : n�.

B. Swap AŒi� with AŒsmallest�.

Finding the smallest element in AŒi : : n� is a variant on linear search.

First declare AŒi� to be the smallest element seen in the subarray so far,

and then go through the rest of the subarray, updating the index of the

smallest element every time we find an element less than the current

smallest. Here’s the refined procedure:

Procedure SELECTION-SORT.A; n/

Inputs and Result: Same as before.

1. For i D 1 to n � 1:

A. Set smallest to i .

B. For j D i C 1 to n:

i. If AŒj � < AŒsmallest�, then set smallest to j .

C. Swap AŒi� with AŒsmallest�.

34 Chapter 3: Algorithms for Sorting and Searching

This procedure has “nested” loops, with the loop of step 1B nested

within the loop of step 1. The inner loop performs all of its iterations

for each individual iteration of the outer loop. Notice that the starting

value of j in the inner loop depends on the current value of i in the

outer loop. This illustration shows how selection sort works on an array

of six elements:

1 2 3 4 5 6

79 3 14 11

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

A A

A

A

A

12 3 9 12 14 117 3 1112 147 9

3 9 11147 12 3 9 11 147 12

1 2 3 4 5 6

A 3 9 11 147 12

The initial array appears in the upper left, and each step shows the array

after an iteration of the outer loop. The darker shaded elements hold the

subarray that is known to be sorted.

If you wanted to use a loop invariant to argue that the SELECTION-

SORT procedure sorts the array correctly, you would need one for each

of the loops. This procedure is simple enough that we won’t go through

the full loop-invariant arguments, but here are the loop invariants:

At the start of each iteration of the loop of step 1, the subarray

AŒ1 : : i�1� holds the i�1 smallest elements of the entire array A,

and they are in sorted order.

At the start of each iteration of the loop of step 1B, AŒsmallest�

is the smallest element in the subarray AŒi : : j � 1�.

What is the running time of SELECTION-SORT? We’ll show that it is

‚.n2/. The key is to analyze how many iterations the inner loop makes,

noting that each iteration takes ‚.1/ time. (Here, the constant factors in

the lower and upper bounds in the ‚-notation may differ, because the

assignment to smallest may or may not occur in a given iteration.) Let’s

count the number of iterations, based on the value of the loop variable i

in the outer loop. When i equals 1, the inner loop iterates for j running

from 2 to n, or n � 1 times. When i equals 2, the inner loop iterates

for j running from 3 to n, or n � 2 times. Each time the outer loop

increments i , the inner loop runs one time less. In general, the inner

loop runs n � i times. In the last iteration of the outer loop, when i

equals n � 1, the inner loop iterates just one time. Therefore, the total

number of inner-loop iterations is

.n � 1/ C .n � 2/ C .n � 3/ C � � � C 2 C 1 :

Chapter 3: Algorithms for Sorting and Searching 35

This summation is known as an arithmetic series, and here’s a basic fact

about arithmetic series: for any nonnegative integer k,

k C .k � 1/ C .k � 2/ C � � � C 2 C 1 D k.k C 1/

2
:

Substituting n � 1 for k, we see that the total number of inner-loop iter-

ations is .n � 1/n=2, or .n2 � n/=2. Let’s use asymptotic notation to get

rid of the low-order term (�n) and the constant factor (1=2). Then we

can say that the total number of inner-loop iterations is ‚.n2/. There-

fore, the running time of SELECTION-SORT is ‚.n2/. Notice that this

running time is a blanket statement that covers all cases. Regardless of

the actual element values, the inner loop runs ‚.n2/ times.

Here’s another way to see that the running time is ‚.n2/, without us-

ing the arithmetic series. We’ll show separately that the running time is

both O.n2/ and �.n2/; putting the asymptotic upper and lower bounds

together gives us ‚.n2/. To see that the running time is O.n2/, observe

that each iteration of the outer loop runs the inner loop at most n � 1

times, which is O.n/ because each iteration of the inner loop takes a

constant amount of time. Since the outer loop iterates n�1 times, which

is also O.n/, the total time spent in the inner loop is O.n/ times O.n/,

or O.n2/. To see that the running time is �.n2/, observe that in each of

the first n=2 iterations of the outer loop, we run the inner loop at least

n=2 times, for a total of at least n=2 times n=2, or n2=4 times. Since

each inner-loop iteration takes a constant amount of time, we see that

the running time is at least a constant times n2=4, or �.n2/.

Two final thoughts about selection sort. First, we’ll see that its asymp-

totic running time of ‚.n2/ is the worst of the sorting algorithms that

we’ll examine. Second, if you carefully examine how selection sort op-

erates, you’ll see that the ‚.n2/ running time comes from the compar-

isons in step 1Bi. But the number of times that it moves array elements

is only ‚.n/, because step 1C runs only n�1 times. If moving array el-

ements is particularly time-consuming—perhaps because they are large

or stored on a slow device such as a disk—then selection sort might be

a reasonable algorithm to use.

Insertion sort

Insertion sort differs a bit from selection sort, though it has a similar

flavor. In selection sort, when we decided which book to put into the i th

slot, the books in the first i slots were the first i books overall, sorted

36 Chapter 3: Algorithms for Sorting and Searching

alphabetically by author name. In insertion sort, the books in the first i

slots will be the same books that were originally in the first i slots, but

now sorted by author name.

For example, let’s suppose that the books in the first four slots are

already sorted by author name, and that, in order, they are books by

Charles Dickens, Herman Melville, Jonathan Swift, and Leo Tolstoy.

Let’s say that the book that starts in slot 5 is by Sir Walter Scott. With

insertion sort, we shift the books by Swift and Tolstoy by one slot to the

right, moving them from slots 3 and 4 to slots 4 and 5, and then we put

the book by Scott into the vacated slot 3. At the time that we work with

the book by Scott, we don’t care what books are to its right (the books

by Jack London and Gustave Flaubert in the figure below); we deal with

them later on.

1 2 3 4 5 6 7

C
h

a
rl

es
 D

ic
k

en
s

O
li

ve
r

T
w

is
t

H
er

m
a
n

 M
el

v
il

le
M

o
b
y

D
ic

k

J
o

n
a

th
a

n
 S

w
if

t
G

u
ll

iv
er

’s
 T

ra
ve

ls

L
eo

 T
o
ls

to
y

W
a
r

a
n

d
 P

ea
ce

S
ir

 W
a
lt

er
 S

co
tt

Iv
a
n

h
o
e

J
a
ck

 L
o
n

d
o
n

W
h

it
e

F
a
n

g

G
u

st
a

v
e

F
la

u
b

er
t

M
a
d
a
m

e
B

o
va

ry

1 2 3 4 5 6 7

C
h

a
rl

es
 D

ic
k

en
s

O
li

ve
r

T
w

is
t

H
er

m
a
n

 M
el

v
il

le
M

o
b
y

D
ic

k

S
ir

 W
a
lt

er
 S

co
tt

Iv
a
n

h
o
e

J
o

n
a

th
a

n
 S

w
if

t
G

u
ll

iv
er

’s
 T

ra
ve

ls

L
eo

 T
o
ls

to
y

W
a
r

a
n

d
 P

ea
ce

J
a
ck

 L
o
n

d
o
n

W
h

it
e

F
a
n

g

G
u

st
a

v
e

F
la

u
b

er
t

M
a
d
a
m

e
B

o
va

ry

To shift the books by Swift and Tolstoy, we first compare the author

name Tolstoy with Scott. Finding that Tolstoy comes after Scott, we

shift the book by Tolstoy one slot to the right, from slot 4 to slot 5.

Then we compare the author name Swift with Scott. Finding that Swift

comes after Scott, we shift the book by Swift one slot to the right, from

slot 3 to slot 4, which was vacated when we shifted the book by Tolstoy.

Next we compare the author name Herman Melville with Scott. This

time, we find that Melville does not come after Scott. At this point, we

stop comparing author names, because we have found that the book by

Scott should be to the right of the book by Melville and to the left of

the book by Swift. We can put the book by Scott into slot 3, which was

vacated when we shifted the book by Swift.

To translate this idea to sorting an array with insertion sort, the sub-

array AŒ1 : : i � 1� will hold only the elements originally in the first

i � 1 positions of the array, and they will be in sorted order. To deter-

mine where the element originally in AŒi� goes, insertion sort marches

Chapter 3: Algorithms for Sorting and Searching 37

through AŒ1 : : i �1�, starting at AŒi �1� and going toward the left, shift-

ing each element greater than this one by one position to the right. Once

we find an element that is not greater than AŒi� or we hit the left end of

the array, we drop the element originally in AŒi� into its new position in

the array.

Procedure INSERTION-SORT.A; n/

Inputs and Result: Same as SELECTION-SORT.

1. For i D 2 to n:

A. Set key to AŒi�, and set j to i � 1.

B. While j > 0 and AŒj � > key, do the following:

i. Set AŒj C 1� to AŒj �.

ii. Decrement j (i.e., set j to j � 1).

C. Set AŒj C 1� to key.

The test in step 1B relies on the “and” operator being short circuiting:

if the expression on the left, j > 0, is false, then it does not evaluate

the expression on the right, AŒj � > key. If it did attempt to access AŒj �

when j � 0, an array indexing error would occur.

Here is how insertion sort works on the same array as we saw on

page 34 for selection sort:

1 2 3 4 5 6

79 3 14 11

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

A A

A

A

A

12 9 12 3 14 117 3 1112 149 7

3 9 11147 12 3 9 11147 12

1 2 3 4 5 6

A 3 9 11 147 12

Once again, the initial array appears in the upper left, and each step

shows the array after an iteration of the outer loop of step 1. The darker

shaded elements hold the subarray that is known to be sorted. The loop

invariant for the outer loop (again, we won’t prove it) is the following:

At the start of each iteration of the loop of step 1, the subarray

AŒ1 : : i � 1� consists of the elements originally in AŒ1 : : i � 1�,

but in sorted order.

The next illustration demonstrates how the inner loop of step 1B

works in the above example when i equals 4. We assume that the sub-

array AŒ1 : : 3� contains the elements originally in the first three array

38 Chapter 3: Algorithms for Sorting and Searching

positions, but now they are sorted. To determine where to place the el-

ement originally in AŒ4�, we save it in a variable named key, and then

shift each element in AŒ1 : : 3� that is greater than key by one position to

the right:

1 2 3 4 5 6

3 9 12 7 14

key = 7

1 2 3 4 5 6

3 9 12 12 14

1 2 3 4 5 6

3 9 9 12 14

1 2 3 4 5 6

3 7 9 12 14

A

A

A

A

11 11

1111

The darker shaded positions show where elements move to. In the last

step shown, the value of AŒ1�, 3, is not greater than the value of key, 7,

and so the inner loop terminates. The value of key drops into the position

just to the right of AŒ1�, as the last step shows. Of course, we have to

save the value originally in AŒi� into key in step 1A, because the first

iteration of the inner loop overwrites AŒi�.

It is also possible that the inner loop terminates because the test j > 0

comes up false. This situation occurs if key is less than all the elements

in AŒ1 : : i � 1�. When j becomes 0, each element in AŒ1 : : i � 1� has

been shifted to the right, and so step 1C drops key into AŒ1�, right where

we want it.

When we analyze the running time of INSERTION-SORT, it becomes

a bit trickier than SELECTION-SORT. The number of times that the

inner loop iterates in the SELECTION-SORT procedure depends only on

the index i of the outer loop and not at all on the elements themselves.

For the INSERTION-SORT procedure, however, the number of times that

the inner loop iterates depends on both the index i of the outer loop and

the values in the array elements.

The best case of INSERTION-SORT occurs when the inner loop makes

zero iterations every time. For that to happen, the test AŒj � > key must

come up false the first time for each value of i . In other words, we

must have AŒi � 1� � AŒi� every time that step 1B executes. How can

this situation occur? Only if the array A is already sorted when the

procedure starts. In this case, the outer loop iterates n � 1 times, and

each iteration of the outer loop takes a constant amount of time, so that

INSERTION-SORT takes only ‚.n/ time.

The worst case occurs when the inner loop makes the maximum pos-

sible number of iterations every time. Now the test AŒj � > key must al-

ways come up true, and the loop must terminate because the test j > 0

comes up false. Each element AŒi� must travel all the way to the left

Chapter 3: Algorithms for Sorting and Searching 39

of the array. How can this situation happen? Only if the array A starts

in reverse sorted order, that is, sorted into nonincreasing order. In this

case, for each time the outer loop iterates, the inner loop iterates i � 1

times. Since the outer loop runs with i going from 2 up to n, the number

of inner-loop iterations forms an arithmetic series:

1 C 2 C 3 C � � � C .n � 2/ C .n � 1/ ;

which, as we saw for selection sort, is ‚.n2/. Since each inner-loop

iteration takes constant time, the worst-case running time of insertion

sort is ‚.n2/. In the worst case, therefore, selection sort and insertion

sort have running times that are asymptotically the same.

Would it make sense to try to understand what happens on average

with insertion sort? That depends on what an “average” input looks

like. If the ordering of elements in the input array were truly random, we

would expect each element to be larger than about half the elements pre-

ceding it and smaller than about half the elements preceding it, so that

each time the inner loop runs, it would make approximately .i � 1/=2

iterations. That would cut the running time in half, compared with the

worst case. But 1=2 is just a constant factor, and so, asymptotically, it

would be no different from the worst-case running time: still ‚.n2/.

Insertion sort is an excellent choice when the array starts out as “al-

most sorted.” Suppose that each array element starts out within k po-

sitions of where it ends up in the sorted array. Then the total number

of times that a given element is shifted, over all iterations of the inner

loop, is at most k. Therefore, the total number of times that all elements

are shifted, over all inner-loop iterations, is at most kn, which in turn

tells us that the total number of inner-loop iterations is at most kn (since

each inner-loop iteration shifts exactly one element by one position). If

k is a constant, then the total running time of insertion sort would be

only ‚.n/, because the ‚-notation subsumes the constant factor k. In

fact, we can even tolerate some elements moving a long distance in the

array, as long as there are not too many such elements. In particular, if l

elements can move anywhere in the array (so that each of these elements

can move by up to n � 1 positions), and the remaining n � l elements

can move at most k positions, then the total number of shifts is at most

l.n � 1/ C .n � l/k D .k C l/n � .k C 1/l , which is ‚.n/ if both k

and l are constants.

If we compare the asymptotic running times of insertion sort and se-

lection sort, we see that in the worst case, they are the same. Inser-

tion sort is better if the array is almost sorted. Selection sort has one

40 Chapter 3: Algorithms for Sorting and Searching

advantage over insertion sort, however: selection sort moves elements

‚.n/ times no matter what, but insertion sort could move elements up

to ‚.n2/ times, since each execution of step 1Bi of INSERTION-SORT

moves an element. As we noted on page 35 for selection sort, if mov-

ing an element is particularly time-consuming and you have no reason

to expect that insertion sort’s input approaches the best-case situation,

then you might be better off running selection sort instead of insertion

sort.

Merge sort

Our next sorting algorithm, merge sort, has a running time of only

‚.n lg n/ in all cases. When we compare its running time with the

‚.n2/ worst-case running times of selection sort and insertion sort, we

are trading a factor of n for a factor of only lg n. As we noted on page 7

back in Chapter 1, that’s a trade you should take any day.

Merge sort does have a couple of disadvantages compared with the

other two sorting algorithms we have seen. First, the constant factor

that we hide in the asymptotic notation is higher than for the other two

algorithms. Of course, once the array size n gets large enough, that

doesn’t really matter. Second, merge sort does not work in place: it has

to make complete copies of the entire input array. Contrast this feature

with selection sort and insertion sort, which at any time keep an extra

copy of only one array entry rather than copies of all the array entries.

If space is at a premium, you might not want to use merge sort.

We employ a common algorithmic paradigm known as divide-and-

conquer in merge sort. In divide-and-conquer, we break the problem

into subproblems that are similar to the original problem, solve the sub-

problems recursively, and then combine the solutions to the subprob-

lems to solve the original problem. Recall from Chapter 2 that in order

for recursion to work, each recursive call must be on a smaller instance

of the same problem that will eventually hit a base case. Here’s a gen-

eral outline of a divide-and-conquer algorithm:

1. Divide the problem into a number of subproblems that are smaller

instances of the same problem.

2. Conquer the subproblems by solving them recursively. If they are

small enough, solve the subproblems as base cases.

3. Combine the solutions to the subproblems into the solution for the

original problem.

Chapter 3: Algorithms for Sorting and Searching 41

When we sort the books on our bookshelf with merge sort, each sub-

problem consists of sorting the books in consecutive slots on the shelf.

Initially, we want to sort all n books, in slots 1 through n, but in a gen-

eral subproblem, we will want to sort all the books in slots p through r .

Here’s how we apply divide-and-conquer:

1. Divide by finding the number q of the slot midway between p and r .

We do so in the same way that we found the midpoint in binary

search: add p and q, divide by 2, and take the floor.

2. Conquer by recursively sorting the books in each of the two sub-

problems created by the divide step: recursively sort the books that

are in slots p through q, and recursively sort the books that are in

slots q C 1 through r .

3. Combine by merging the sorted books that are in slots p through q

and slots q C 1 through r , so that all the books in slots p through r

are sorted. We’ll see how to merge books in a moment.

The base case occurs when fewer than two books need to be sorted (that

is, when p � r), since a set of books with no books or one book is

already trivially sorted.

To convert this idea to sorting an array, the books in slots p through r

correspond to the subarray AŒp : : r�. Here is the merge sort proce-

dure, which calls a procedure MERGE.A; p; q; r/ to merge the sorted

subarrays AŒp : : q� and AŒq C 1 : : r� into the single sorted subarray

AŒp : : r�:

Procedure MERGE-SORT.A; p; r/

Inputs:
� A: an array.
� p; r : starting and ending indices of a subarray of A.

Result: The elements of the subarray AŒp : : r� are sorted into

nondecreasing order.

1. If p � r , then the subarray AŒp : : r� has at most one element, and

so it is already sorted. Just return without doing anything.

2. Otherwise, do the following:

A. Set q to b.p C r/=2c.

B. Recursively call MERGE-SORT.A; p; q/.

C. Recursively call MERGE-SORT.A; q C 1; r/.

D. Call MERGE.A; p; q; r/.

42 Chapter 3: Algorithms for Sorting and Searching

Although we have yet to see how the MERGE procedure works, we can

look at an example of how the MERGE-SORT procedure operates. Let’s

start with this array:

12 9 3 7 14 11 6 2 10 5

1 2 3 4 5 6 7 8 9 10

The initial call is MERGE-SORT.A; 1; 10/. Step 2A computes q to be 5,

so that the recursive calls in steps 2B and 2C are MERGE-SORT.A; 1; 5/

and MERGE-SORT.A; 6; 10/:

12 9 3 7 14 11 6 2 10 5

1 2 3 4 5 6 7 8 9 10

After the two recursive calls return, these two subarrays are sorted:

1293 7 14 1162 105

1 2 3 4 5 6 7 8 9 10

Finally, the call MERGE.A; 1; 5; 10/ in step 2D merges the two sorted

subarrays into a single sorted subarray, which is the entire array in this

case:

1293 7 141162 105

1 2 3 4 5 6 7 8 9 10

If we unfold the recursion, we get the figure on the next page. Diverg-

ing arrows indicate divide steps, and converging arrows indicate merge

steps. The variables p, q, and r appearing above each subarray are

located at the indices to which they correspond in each recursive call.

The italicized numbers give the order in which the procedure calls oc-

cur after the initial call MERGE-SORT.A; 1; 10/. For example, the call

MERGE.A; 1; 3; 5/ is the 13th procedure call after the initial call, and

the call MERGE-SORT.A; 6; 7/ is the 16th call.

The real work happens in the MERGE procedure. Therefore, not only

must the MERGE procedure work correctly, but it must also be fast. If

we are merging a total of n elements, the best we can hope for is ‚.n/

time, since each element has to be merged into its proper place, and

indeed we can achieve linear-time merging.

Chapter 3: Algorithms for Sorting and Searching 43

12 9 3 7 14 11 6 2 10 5

1 2 3 4 5 6 7 8 9 10

12 9 3 7 14 11 6 2 10 5

1 2 3 4 5 6 7 8 9 10

p q r

p q r p q r

12 9 3 7 14 11 6 2 10 5

1 2 3 4 5 6 7 8 9 10

p q r p,q r p q r p,q r

12 9 3 7 14 11 6 2 10 5

1 2 3 4 5 6 7 8 9 10

12 9 11 6

1 2 6 7

p,q r p,r p,q rp,r p,r p,r p,r p,r

p,r p,r p,r p,r

129 116

1 2 6 7

p,q r p,q r

1293 7 14 1162 105

1 2 3 4 5 6 7 8 9 10

p q r p,q r p q r p,q r

1293 7 14 1162 105

1 2 3 4 5 6 7 8 9 10

p q r p q r

32

1 2 3 4 5 6 7 8 9 10

p q r

5 7 9 10 116 12 14

divide

divide

divide

divide

merge

merge

merge

merge

1

2

3

4 5

6

9

7

8

10 11

12

13

14

15

16

17 18

19

22

20

21

23 24

25

26

27

44 Chapter 3: Algorithms for Sorting and Searching

Returning to our book example, let’s look at just the portion of the

bookshelf from slot 9 through slot 14. Suppose that we have sorted the

books in slots 9–11 and that we have sorted the books in slots 12–14:

9 10 11 12 13 14

sorted sorted

G
u

st
a

v
e

F
la

u
b

er
t

M
a
d
a
m

e
B

o
va

ry

J
o

n
a

th
a

n
 S

w
if

t
G

u
ll

iv
er

’s
 T

ra
ve

ls

L
eo

 T
o
ls

to
y

W
a
r

a
n

d
 P

ea
ce

C
h

a
rl

es
 D

ic
k

en
s

O
li

ve
r

T
w

is
t

J
a
ck

 L
o
n

d
o
n

W
h

it
e

F
a
n

g

S
ir

 W
a
lt

er
 S

co
tt

Iv
a
n

h
o
e

We pull out the books in slots 9–11 and make a pile of them, with the

book whose author is alphabetically first on top, and we do the same

with the books in slots 12–14, making a separate pile:

9 10 11 12 13 14

Leo Tolstoy
War and Peace

Gustave Flaubert
Madame Bovary

Jonathan Swift
Gulliver’s Travels

Jack London
White Fang

Sir Walter Scott
Ivanhoe

Charles Dickens
Oliver Twist

Because the two piles are already sorted, the book that should go back

into slot 9 must be one of the books atop its pile: either the book by

Gustave Flaubert or the book by Charles Dickens. Indeed, we see that

the book by Dickens comes before the book by Flaubert, and so we

move it into slot 9:

9 10 11 12 13 14

Leo Tolstoy
War and Peace

Gustave Flaubert
Madame Bovary

Jonathan Swift
Gulliver’s Travels

Jack London
White Fang

Sir Walter Scott
Ivanhoe

C
h

a
rl

es
 D

ic
k

en
s

O
li

ve
r

T
w

is
t

After we move the book by Dickens into slot 9, the book that should go

into slot 10 must be either the book still atop the first pile, by Flaubert,

or the book now atop the second pile, by Jack London. We move the

Flaubert book into slot 10:

Chapter 3: Algorithms for Sorting and Searching 45

9 10 11 12 13 14

Leo Tolstoy
War and Peace

Jonathan Swift
Gulliver’s Travels

Jack London
White Fang

Sir Walter Scott
Ivanhoe

C
h

a
rl

es
 D

ic
k

en
s

O
li

ve
r

T
w

is
t

G
u

st
a

v
e

F
la

u
b

er
t

M
a
d
a
m

e
B

o
va

ry

Next, we compare the books now atop their piles, which are by Jonathan

Swift and London, and we move the book by London into slot 11. That

leaves the book by Sir Walter Scott atop the right pile, and when we

compare it with the book by Swift, we move the book by Scott into

slot 12. At this point, the right pile is empty:

9 10 11 12 13 14

Leo Tolstoy
War and Peace

Jonathan Swift
Gulliver’s Travels

C
h

a
rl

es
 D

ic
k

en
s

O
li

ve
r

T
w

is
t

G
u

st
a

v
e

F
la

u
b

er
t

M
a
d
a
m

e
B

o
va

ry

J
a
ck

 L
o
n

d
o
n

W
h

it
e

F
a
n

g

S
ir

 W
a
lt

er
 S

co
tt

Iv
a
n

h
o
e

All that remains is to move the books in the left pile into the remaining

slots, in order. Now all books in slots 9–14 are sorted:

9 10 11 12 13 14

sorted

C
h

a
rl

es
 D

ic
k

en
s

O
li

ve
r

T
w

is
t

G
u

st
a

v
e

F
la

u
b

er
t

M
a

d
a

m
e

B
o

va
ry

J
a

ck
 L

o
n

d
o

n
W

h
it

e
F

a
n

g

S
ir

 W
a

lt
er

 S
co

tt
Iv

a
n

h
o

e

J
o

n
a

th
a

n
 S

w
if

t
G

u
ll

iv
er

’s
 T

ra
ve

ls

L
eo

 T
o

ls
to

y
W

a
r

a
n

d
 P

ea
ce

How efficient is this merge procedure? We move each book exactly

twice: once to pull it off the shelf and put it into a pile, and once to move

it from the top of a pile back onto the shelf. Furthermore, whenever we

are deciding which book to put back onto the shelf, we need to compare

only two books: those atop their piles. To merge n books, therefore, we

move books 2n times and compare pairs of books at most n times.

Why pull the books off the shelf? What if we had left the books on

the shelf and just kept track of which books we had put into their correct

46 Chapter 3: Algorithms for Sorting and Searching

slots on the shelf and which books we hadn’t? That could turn out to be

a lot more work. For example, suppose that every book in the right half

should come before every book in the left half. Before we could move

the first book from the right half into the first slot of the left half, we

would have to shift every book that started in the left half to the right by

one slot in order to make room. And then we’d have to do the same to

put the next book that started in the right half into the second slot of the

left half. And the same for all the other books that started in the right

half. We would have to shift half the books—all the books that started

in the left half—each time we wanted to put a book that started in the

right half into its correct slot.

That argument explains why we do not merge in place.3 Returning to

how we merge the sorted subarrays AŒp : : q� and AŒq C 1 : : r� into the

subarray AŒp : : r�, we start by copying the elements to be merged from

array A into temporary arrays and then merge them back into A. Let

n1 D q � p C 1 be the number of elements in AŒp : : q� and n2 D r � q

be the number of elements in AŒq C 1 : : r�. We create temporary arrays

B with n1 elements and C with n2 elements, and we copy the elements

in AŒp : : q�, in order, into B , and likewise the elements in AŒq C 1 : : r�,

in order, into C . Now we can merge these elements back into AŒp : : q�

without fear of overwriting our only copies of them.

We merge the array elements the same way we merge books. We

copy elements from the arrays B and C back into the subarray AŒp : : r�,

maintaining indices to keep track of the smallest element not yet copied

back in both B and C , and copying back the smaller of the two. In

constant time, we can determine which element is smaller, copy it back

into the correct position of AŒp : : r�, and update indices into the arrays.

Eventually, one of the two arrays will have all its elements copied

back to AŒp : : r�. This moment corresponds to the moment when only

one pile of books remains. But we use a trick to avoid having to check

each time whether one of the arrays has been exhausted: we place at the

right end of each of the arrays B and C an extra element that is greater

than any other element. Do you recall the sentinel trick that we used in

SENTINEL-LINEAR-SEARCH in Chapter 2? This idea is similar. Here,

we use 1 (infinity) as the sentinel’s sort key, so that whenever an ele-

3Actually, it is possible to merge in place in linear time, but the procedure to do so is

pretty complicated.

Chapter 3: Algorithms for Sorting and Searching 47

ment with a sort key of 1 is the smallest remaining element in its array,

it is guaranteed to “lose” the contest to see which array has the smaller

remaining element.4 Once all elements from both arrays B and C have

been copied back, both arrays have their sentinels as their smallest re-

maining element. But there’s no need to compare the sentinels at this

point, because by then we have copied all the “real” elements (the non-

sentinels) back to AŒp : : r�. Since we know in advance that we’ll be

copying elements back into AŒp� through AŒr�, we can stop once we

have copied an element back into AŒr�. We can just run a loop with an

index into A running from p to r .

Here is the MERGE procedure. It looks long, but it just follows the

method above.

Procedure MERGE.A; p; q; r/

Inputs:
� A: an array.
� p; q; r : indices into A. Each of the subarrays AŒp : : q� and

AŒq C 1 : : r� is assumed to be already sorted.

Result: The subarray AŒp : : r� contains the elements originally in

AŒp : : q� and AŒq C 1 : : r�, but now the entire subarray AŒp : : r� is

sorted.

1. Set n1 to q � p C 1, and set n2 to r � q.

2. Let BŒ1 : : n1 C 1� and C Œ1 : : n2 C 1� be new arrays.

3. Copy AŒp : : q� into BŒ1 : : n1�, and copy AŒq C 1 : : r� into

C Œ1 : : n2�.

4. Set both BŒn1 C 1� and C Œn2 C 1� to 1.

5. Set both i and j to 1.

6. For k D p to r :

A. If BŒi� � C Œj �, then set AŒk� to BŒi� and increment i .

B. Otherwise (BŒi� > C Œj �), set AŒk� to C Œj � and increment j .

After steps 1–4 allocate the arrays B and C , copy AŒp : : q� into B

and AŒq C 1 : : r� into C , and insert the sentinels into these arrays, each

4In practice, we represent 1 by a value that compares as greater than any sort key. For

example, if the sort keys are author names, 1 could be ZZZZ—assuming, of course,

that no real author has that name.

48 Chapter 3: Algorithms for Sorting and Searching

iteration of the main loop in step 6 copies back the smallest remaining

element to the next position in AŒp : : r�, terminating once it has copied

back all the elements in B and C . In this loop, i indexes the smallest

remaining element in B , j indexes the smallest remaining element in C ,

and k indexes the location in A where the element will be copied back

into.

If we are merging n elements altogether (so that n D n1 C n2), it

takes ‚.n/ time to copy the elements into arrays B and C , and constant

time per element to copy it back into AŒp : : r�, for a total merging time

of only ‚.n/.

We claimed earlier that the entire merge-sort algorithm takes time

‚.n lg n/. We will make the simplifying assumption that the array

size n is a power of 2, so that every time we divide the array, the sub-

array sizes are equal. (In general, n might not be a power of 2 and so the

subarray sizes might not be equal in a given recursive call. A rigorous

analysis can take care of this technicality, but let’s not concern ourselves

with it.)

Here is how we analyze merge sort. Let’s say that sorting a sub-

array of n elements takes time T .n/, which is a function that increases

with n (since, presumably, it takes longer to sort more elements). The

time T .n/ comes from the three components of the divide-and-conquer

paradigm, whose times we add together:

1. Dividing takes constant time, because it amounts to just computing

the index q.

2. Conquering consists of the two recursive calls on subarrays, each

with n=2 elements. By how we defined the time to sort a subarray,

each of the two recursive calls takes time T .n=2/.

3. Combining the results of the two recursive calls by merging the

sorted subarrays takes ‚.n/ time.

Because the constant time for dividing is a low-order term compared

with the ‚.n/ time for combining, we can absorb the dividing time into

the combining time and say that dividing and combining, together, take

‚.n/ time. The conquer step costs T .n=2/CT .n=2/, or 2T .n=2/. Now

we can write an equation for T .n/:

T .n/ D 2T .n=2/ C f .n/ ;

where f .n/ represents the time for dividing and combining which, as

we just noted, is ‚.n/. A common practice in the study of algorithms

Chapter 3: Algorithms for Sorting and Searching 49

is to just put the asymptotic notation right into the equation and let it

stand for some function that we don’t care to give a name to, and so we

rewrite this equation as

T .n/ D 2T .n=2/ C ‚.n/ :

Wait! There seems to be something amiss here. We have defined

the function T that describes the running time of merge sort in terms of

the very same function! We call such an equation a recurrence equa-

tion, or just a recurrence. The problem is that we want to express T .n/

in a non-recursive manner, that is, not in terms of itself. It can be a

real pain in the neck to convert a function expressed as a recurrence

into non-recursive form, but for a broad class of recurrence equations

we can apply a cookbook method known as the “master method.” The

master method applies to many (but not all) recurrences of the form

T .n/ D aT .n=b/ C f .n/, where a and b are positive integer constants.

Fortunately, it applies to our merge-sort recurrence, and it gives the re-

sult that T .n/ is ‚.n lg n/.

This ‚.n lg n/ running time applies to all cases of merge sort—best

case, worst case, and all cases in between. Each element is copied

‚.n lg n/ times. As you can see from examining the MERGE method,

when it is called with p D 1 and r D n, it makes copies of all n ele-

ments, and so merge sort definitely does not run in place.

Quicksort

Like merge sort, quicksort uses the divide-and-conquer paradigm (and

hence uses recursion). Quicksort uses divide-and-conquer in a slightly

different way than merge sort, however. It has a couple of other signifi-

cant differences from merge sort:

� Quicksort works in place.

� Quicksort’s asymptotic running time differs between the worst case

and the average case. In particular, quicksort’s worst-case running

time is ‚.n2/, but its average-case running time is better: ‚.n lg n/.

Quicksort also has good constant factors (better than merge sort’s), and

it is often a good sorting algorithm to use in practice.

Here is how quicksort uses divide-and-conquer. Again let us think

about sorting books on a bookshelf. As with merge sort, we initially

want to sort all n books in slots 1 through n, and we’ll consider the

general problem of sorting books in slots p through r .

50 Chapter 3: Algorithms for Sorting and Searching

1. Divide by first choosing any one book that is in slots p through r .

Call this book the pivot. Rearrange the books on the shelf so that all

other books with author names that come before the pivot’s author

or are written by the same author are to the left of the pivot, and all

books with author names that come after the pivot’s author are to the

right of the pivot.

In this example, we choose the rightmost book, by Jack London, as

the pivot when rearranging the books in slots 9 through 15:

9 10 11 12 13 14 15

S
ir

 W
a
lt

er
 S

co
tt

Iv
a
n

h
o
e

9 10 11 12 13 14

G
u

st
a

v
e

F
la

u
b

er
t

M
a
d
a
m

e
B

o
va

ry

C
h

a
rl

es
 D

ic
k

en
s

O
li

ve
r

T
w

is
t

15

J
a
ck

 L
o
n

d
o
n

W
h

it
e

F
a
n

g

H
er

m
a
n

 M
el

v
il

le
M

o
b
y

D
ic

k

J
o

n
a

th
a

n
 S

w
if

t
G

u
ll

iv
er

’s
 T

ra
ve

ls

G
u

st
a

v
e

F
la

u
b

er
t

M
a
d
a
m

e
B

o
va

ry

H
er

m
a
n

 M
el

v
il

le
M

o
b
y

D
ic

k

C
h

a
rl

es
 D

ic
k

en
s

O
li

ve
r

T
w

is
t

L
eo

 T
o
ls

to
y

W
a
r

a
n

d
 P

ea
ce

J
a
ck

 L
o
n

d
o
n

W
h

it
e

F
a
n

g

J
o

n
a

th
a

n
 S

w
if

t
G

u
ll

iv
er

’s
 T

ra
ve

ls

L
eo

 T
o
ls

to
y

W
a
r

a
n

d
 P

ea
ce

S
ir

 W
a
lt

er
 S

co
tt

Iv
a
n

h
o
e

After rearranging—which we call partitioning in quicksort—the

books by Flaubert and Dickens, who come before London alpha-

betically, are to the left of the book by London, and all other books,

by authors who come after London alphabetically, are to the right.

Notice that after partitioning, the books to the left of the book by

London are in no particular order, and the same is true for the books

to the right.

2. Conquer by recursively sorting the books to the left of the pivot and

to the right of the pivot. That is, if the divide step moves the pivot to

slot q (slot 11 in the above example), then recursively sort the books

in slots p through q � 1 and recursively sort the books in slots q C 1

through r .

3. Combine—by doing nothing! Once the conquer step recursively

sorts, we are done. Why? All the books to the left of the pivot

(in slots p through q � 1) come before the pivot or have the same

author as the pivot and are sorted, and all the books to the right of the

pivot (in slots q C 1 through r) come after the pivot and are sorted.

The books in slots p through r can’t help but be sorted!

If you change the bookshelf to the array and the books to array el-

ements, you have the strategy for quicksort. Like merge sort, the base

case occurs when the subarray to be sorted has fewer than two elements.

Chapter 3: Algorithms for Sorting and Searching 51

The procedure for quicksort assumes that we can call a procedure

PARTITION.A; p; r/ that partitions the subarray AŒp : : r�, returning the

index q where it has placed the pivot.

Procedure QUICKSORT.A; p; r/

Inputs and Result: Same as MERGE-SORT.

1. If p � r , then just return without doing anything.

2. Otherwise, do the following:

A. Call PARTITION.A; p; r/, and set q to its result.

B. Recursively call QUICKSORT.A; p; q � 1/.

C. Recursively call QUICKSORT.A; q C 1; r/.

The initial call is QUICKSORT.A; 1; n/, similar to the MERGE-SORT

procedure. Here’s an example of how the recursion unfolds, with the

indices p, q, and r shown for each subarray in which p � r :

9 7 5 11 12 2 14 3 10 6

1 2 3 4 5 6 7 8 9 10

2 3 9 10 11 14 12

1 2 6 7 8 9 10

p q r q r

7 9 12 14

5 6 9 10

p p,q r

7 9 14

5 6 10

5 2 3 6 12 7 14 9 10 11

1 2 3 4 5 6 7 8 9 10

p q r

7

5

5

3

10

7

p r

p

2

1

p,r

5

3

p,r q,r

p,r

7

5

p,r

p q,r

52 Chapter 3: Algorithms for Sorting and Searching

The bottommost value in each array position gives the final element

stored there. When you read the array from left to right, looking at

the bottommost value in each position, you see that the array is indeed

sorted.

The key to quicksort is partitioning. Just as we were able to merge

n elements in ‚.n/ time, we can partition n elements in ‚.n/ time.

Here’s how we’ll partition the books that are in slots p through r on the

shelf. We choose the rightmost book of the set—the book in slot r—as

the pivot. At any time, each book will be in exactly one of four groups,

and these groups will be in slots p through r , from left to right:

� group L (left group): books with authors known to come before the

pivot’s author alphabetically or written by the pivot’s author, fol-

lowed by

� group R (right group): books with authors known to come after the

pivot’s author alphabetically, followed by

� group U (unknown group): books that we have not yet examined, so

we don’t know how their authors compare with the pivot’s author,

followed by

� group P (pivot): just one book, the pivot.

We go through the books in group U from left to right, comparing each

with the pivot and moving it into either group L or group R, stopping

once we get to the pivot. The book we compare with the pivot is always

the leftmost book in group U.

� If the book’s author comes after the pivot’s author, then the book be-

comes the rightmost book in group R. Since the book was the left-

most book in group U, and group U immediately follows group R,

we just have to move the dividing line between groups R and U one

slot to the right, without moving any books:

9 10 11 12 13 14 15 9 10 11 12 13 14 15

G
u

st
a

v
e

F
la

u
b

er
t

M
a
d
a
m

e
B

o
va

ry

J
o

n
a

th
a

n
 S

w
if

t
G

u
ll

iv
er

’s
 T

ra
ve

ls

S
ir

 W
a
lt

er
 S

co
tt

Iv
a
n

h
o
e

H
er

m
a
n

 M
el

v
il

le
M

o
b
y

D
ic

k

C
h

a
rl

es
 D

ic
k

en
s

O
li

ve
r

T
w

is
t

L
eo

 T
o
ls

to
y

W
a
r

a
n

d
 P

ea
ce

J
a
ck

 L
o
n

d
o
n

W
h

it
e

F
a
n

g

L R U P

G
u

st
a

v
e

F
la

u
b

er
t

M
a
d
a
m

e
B

o
va

ry

J
o

n
a

th
a

n
 S

w
if

t
G

u
ll

iv
er

’s
 T

ra
ve

ls

S
ir

 W
a
lt

er
 S

co
tt

Iv
a
n

h
o
e

H
er

m
a
n

 M
el

v
il

le
M

o
b
y

D
ic

k

C
h

a
rl

es
 D

ic
k

en
s

O
li

ve
r

T
w

is
t

L
eo

 T
o
ls

to
y

W
a
r

a
n

d
 P

ea
ce

J
a
ck

 L
o
n

d
o
n

W
h

it
e

F
a
n

g

L R U P

Chapter 3: Algorithms for Sorting and Searching 53

� If the book’s author comes before the pivot’s author or is the pivot’s

author, then we will make this book the rightmost book in group L.

We swap it with the leftmost book in group R and move the dividing

lines between groups L and R and between groups R and U one slot

to the right:

9 10 11 12 13 14 15 9 10 11 12 13 14

G
u

st
a

v
e

F
la

u
b

er
t

M
a
d
a
m

e
B

o
va

ry

C
h

a
rl

es
 D

ic
k

en
s

O
li

ve
r

T
w

is
t

15

S
ir

 W
a
lt

er
 S

co
tt

Iv
a
n

h
o
e

H
er

m
a
n

 M
el

v
il

le
M

o
b
y

D
ic

k

J
o

n
a

th
a

n
 S

w
if

t
G

u
ll

iv
er

’s
 T

ra
ve

ls

G
u

st
a

v
e

F
la

u
b

er
t

M
a
d
a
m

e
B

o
va

ry

J
o

n
a

th
a

n
 S

w
if

t
G

u
ll

iv
er

’s
 T

ra
ve

ls

S
ir

 W
a
lt

er
 S

co
tt

Iv
a
n

h
o
e

H
er

m
a
n

 M
el

v
il

le
M

o
b
y

D
ic

k

C
h

a
rl

es
 D

ic
k

en
s

O
li

ve
r

T
w

is
t

L
eo

 T
o
ls

to
y

W
a
r

a
n

d
 P

ea
ce

J
a
ck

 L
o
n

d
o
n

W
h

it
e

F
a
n

g

L
eo

 T
o
ls

to
y

W
a
r

a
n

d
 P

ea
ce

J
a
ck

 L
o
n

d
o
n

W
h

it
e

F
a
n

g

L R U P L R U P

Once we get to the pivot, we swap it with the leftmost book in group R.

In our example, we end up with the arrangement of books shown on

page 50.

We compare each book with the pivot once, and each book whose

author comes before the pivot’s author or is the pivot’s author causes one

swap to occur. To partition n books, therefore, we make at most n � 1

comparisons (since we don’t have to compare the pivot with itself) and

at most n swaps. Notice that, unlike merging, we can partition the books

without removing them all from the shelf. That is, we can partition in

place.

To convert how we partition books to how we partition a subarray

AŒp : : r�, we first choose AŒr� (the rightmost element) as the pivot. Then

we go through the subarray from left to right, comparing each element

with the pivot. We maintain indices q and u into the subarray that divide

it up as follows:

� The subarray AŒp : : q � 1� corresponds to group L: each element is

less than or equal to the pivot.

� The subarray AŒq : : u � 1� corresponds to group R: each element is

greater than the pivot.

� The subarray AŒu : : r � 1� corresponds to group U: we don’t yet

know how they compare with the pivot.

� The element AŒr� corresponds to group P: it holds the pivot.

These divisions, in fact, are loop invariants. (But we won’t prove them.)

54 Chapter 3: Algorithms for Sorting and Searching

At each step, we compare AŒu�, the leftmost element in group U, with

the pivot. If AŒu� is greater than the pivot, then we increment u to move

the dividing line between groups R and U to the right. If instead AŒu� is

less than or equal to the pivot, then we swap the elements in AŒq� (the

leftmost element in group R) and AŒu� and then increment both q and u

to move the dividing lines between groups L and R and groups R and U

to the right. Here’s the PARTITION procedure:

Procedure PARTITION.A; p; r/

Inputs: Same as MERGE-SORT.

Result: Rearranges the elements of AŒp : : r� so that every element in

AŒp : : q � 1� is less than or equal to AŒq� and every element in

AŒq C 1 : : r� is greater than q. Returns the index q to the caller.

1. Set q to p.

2. For u D p to r � 1 do:

A. If AŒu� � AŒr�, then swap AŒq� with AŒu� and then

increment q.

3. Swap AŒq� with AŒr� and then return q.

By starting both of the indices q and u at p, groups L (AŒp : : q � 1�)

and R (AŒq : : u � 1�) are initially empty and group U (AŒu : : r � 1�)

contains every element except the pivot. In some instances, such as if

AŒp� � AŒr�, an element might be swapped with itself, resulting in no

change to the array. Step 3 finishes up by swapping the pivot element

with the leftmost element in group R, thereby moving the pivot into its

correct place in the partitioned array, and then returning the pivot’s new

index q.

Here is how the PARTITION procedure operates, step by step, on the

subarray AŒ5 : : 10� created by the first partitioning in the quicksort ex-

ample on page 52. Group U is shown in white, group L has light shad-

ing, group R has darker shading, and the darkest element is the pivot,

group P. The first part of the figure shows the initial array and indices,

the next five parts show the array and indices after each iteration of the

loop of step 2 (including incrementing index u at the end of each itera-

tion), and the last part shows the final partitioned array:

Chapter 3: Algorithms for Sorting and Searching 55

12 7 14 9 10 11

p,q,u r
5 6 7 8 9 10

12 7 14 9 10 11

p,q r
5 6 7 8 9 10

u

7 12 14 9 10 11

p r
5 6 7 8 9 10

u

7 12 14 9 10 11

r
5 6 7 8 9 10

u

7 9 14 12 10 11

p r
5 6 7 8 9 10

u

7 9 10 12 14 11

p u,r
5 6 7 8 9 10

q

7 9 10 11 14 12

p
5 6 7 8 9 10

return 8

q

p q q

rq

As when we partitioned books, we compare each element with the

pivot once and perform at most one swap for each element that we com-

pare with the pivot. Since each comparison takes constant time and each

swap takes constant time, the total time for PARTITION on an n-element

subarray is ‚.n/.

So how long does the QUICKSORT procedure take? As with merge

sort, let’s say that sorting a subarray of n elements takes time T .n/,

a function that increases with n. Dividing, done by the PARTITION

procedure, takes ‚.n/ time. But the time for QUICKSORT depends on

how even the partitioning turns out to be.

In the worst case, the partition sizes are really unbalanced. If ev-

ery element other than the pivot is less than it, then PARTITION ends

up leaving the pivot in AŒr� and returns the index r to QUICKSORT,

which QUICKSORT stores in the variable q. In this case, the partition

AŒq C 1 : : r� is empty and the partition AŒp : : q�1� is only one element

smaller than AŒp : : r�. The recursive call on the empty subarray takes

‚.1/ time (the time to make the call and determine that the subarray

is empty in step 1). We can just roll this ‚.1/ into the ‚.n/ time for

partitioning. But if AŒp : : r� has n elements, then AŒp : : q �1� has n�1

elements, and so the recursive call on AŒp : : q � 1� takes T .n � 1/ time.

We get the recurrence

T .n/ D T .n � 1/ C ‚.n/ :

We can’t solve this recurrence using the master method, but it has the

solution that T .n/ is ‚.n2/. That’s no better than selection sort! How

can we get such an uneven split? If every pivot is greater than all other

elements, then the array must have started out already sorted. It also

56 Chapter 3: Algorithms for Sorting and Searching

turns out that we get an uneven split every time if the array starts out in

reverse sorted order.

On the other hand, if we got an even split every time, each of the

subarrays would have at most n=2 elements. The recurrence would be

the same as the recurrence on page 49 for merge sort,

T .n/ D 2T .n=2/ C ‚.n/ ;

with the same solution, T .n/ is ‚.n lg n/. Of course, we’d have to be

really lucky, or the input array would have to be contrived, to get a

perfectly even split every time.

The usual case is somewhere between the best and worst cases. The

technical analysis is messy and I won’t put you through it, but if the

elements of the input array come in a random order, then on average we

get splits that are close enough to even that QUICKSORT takes ‚.n lg n/

time.

Now let’s get paranoid. Suppose that your worst enemy has given

you an array to sort, knowing that you always pick the last element in

each subarray as the pivot, and has arranged the array so that you always

get the worst-case split. How can you foil your enemy? You could first

check to see whether the array starts out sorted or reverse sorted, and

do something special in these cases. Then again, your enemy could

contrive the array so that the splits are always bad, but not maximally

bad. You wouldn’t want to check for every possible bad case.

Fortunately, there’s a much simpler solution: don’t always pick the

last element as the pivot. But then the lovely PARTITION procedure

won’t work, because the groups aren’t where they’re supposed to be.

That’s not a problem, either: before running the PARTITION procedure,

swap AŒr� with a randomly chosen element in AŒp : : r�. Now you’ve

chosen your pivot randomly and you can run the PARTITION procedure.

In fact, with a little more effort, you can improve your chance of

getting a split that’s close to even. Instead of choosing one element

in AŒp : : r� at random, choose three elements at random and swap the

median of the three with AŒr�. By the median of the three, we mean

the one whose value is between the other two. (If two or more of the

randomly chosen elements are equal, break ties arbitrarily.) Again, I

won’t make you endure the analysis, but you would have to be really

unlucky in how you chose the random elements each time in order for

QUICKSORT to take longer than ‚.n lg n/ time. Moreover, unless your

enemy had access to your random number generator, your enemy would

have no control over how even the splits turn out to be.

Chapter 3: Algorithms for Sorting and Searching 57

How many times does QUICKSORT swap elements? That depends

on whether you count “swapping” an element to the same position it

started in as a swap. You could certainly check to see whether this is

the case and avoid the swap if it is. So let’s call it a swap only when an

element really moves in the array as a result of swapping, that is, when

q ¤ u in step 2A or when q ¤ r in step 3 of PARTITION. The best

case for minimizing swaps is also one of the worst cases for asymptotic

running time: when the array is already sorted. Then no swaps occur.

The most swaps occur when n is even and the input array looks like

n; n � 2; n � 4; : : : ; 4; 2; 1; 3; 5; : : : ; n � 3; n � 1. Then n2=4 swaps

occur, and the asymptotic running time is still the worst case ‚.n2/.

Recap

In this chapter and the previous one, we have seen four algorithms for

searching and four for sorting. Let’s summarize their properties in a

couple of tables. Because the three searching algorithms from Chapter 2

were just variations on a theme, we can consider either BETTER-

LINEAR-SEARCH or SENTINEL-LINEAR-SEARCH as the representa-

tives for linear search.

Searching algorithms

Worst-case Best-case Requires
Algorithm running time running time sorted array?

Linear search ‚.n/ ‚.1/ no

Binary search ‚.lg n/ ‚.1/ yes

Sorting algorithms

Worst-case Best-case Worst-case
Algorithm running time running time swaps In-place?

Selection sort ‚.n2/ ‚.n2/ ‚.n/ yes

Insertion sort ‚.n2/ ‚.n/ ‚.n2/ yes

Merge sort ‚.n lg n/ ‚.n lg n/ ‚.n lg n/ no

Quicksort ‚.n2/ ‚.n lg n/ ‚.n2/ yes

These tables do not show average-case running times, because with

the notable exception of quicksort, they match the worst-case running

times. As we saw, quicksort’s average-case running time, assuming that

the array starts in a random order, is only ‚.n lg n/.

58 Chapter 3: Algorithms for Sorting and Searching

How do these sorting algorithms compare in practice? I coded them

up in C++ and ran them on arrays of 4-byte integers on two different ma-

chines: my MacBook Pro (on which I wrote this book), with a 2.4-GHz

Intel Core 2 Duo processor and 4 GB of RAM running Mac OS 10.6.8,

and a Dell PC (my website server) with a 3.2-GHz Intel Pentium 4 pro-

cessor and 1 GB of RAM running Linux version 2.6.22.14. I compiled

the code with g++ and optimization level -03. I ran each algorithm on

array sizes ranging up to 50,000, with each array initially in reverse

sorted order. I averaged the running times for 20 runs of each algorithm

on each array size.

By starting each array in reverse sorted order, I elicited the worst-case

asymptotic running times of both insertion sort and quicksort. There-

fore, I ran two versions of quicksort: “regular” quicksort, which always

chooses the pivot as the last element AŒr� of the subarray AŒp : : r� being

partitioned, and randomized quicksort, which swaps a randomly chosen

element in AŒp : : r� with AŒr� before partitioning. (I did not run the

median-of-three method.) The “regular” version of quicksort is also

known as deterministic because it does not randomize; everything it

does is predetermined once it’s given an input array to sort.

Randomized quicksort was the champion for n � 64 on both com-

puters. Here are the ratios of the running times of the other algorithms

to randomized quicksort’s running times on various input sizes.

MacBook Pro n

Algorithm 50 100 500 1000 5000 10,000 50,000

Selection sort 1.34 2.13 8.04 13.31 59.07 114.24 537.42

Insertion sort 1.08 2.02 6.15 11.35 51.86 100.38 474.29

Merge sort 7.58 7.64 6.93 6.87 6.35 6.20 6.27

Deterministic quicksort 1.02 1.63 6.09 11.51 52.02 100.57 475.34

Dell PC n

Algorithm 50 100 500 1000 5000 10,000 50,000

Selection sort 0.76 1.60 5.46 12.23 52.03 100.79 496.94

Insertion sort 1.01 1.66 7.68 13.90 68.34 136.20 626.44

Merge sort 3.21 3.38 3.57 3.33 3.36 3.37 3.15

Deterministic quicksort 1.12 1.37 6.52 9.30 47.60 97.45 466.83

Randomized quicksort looks pretty good, but we can beat it. Recall

that insertion sort works well when no element has to move very far in

the array. Well, once the subproblem sizes in the recursive algorithms

Chapter 3: Algorithms for Sorting and Searching 59

get down to some size k, no element has to move more than k � 1 po-

sitions. Instead of continuing to recursively call randomized quicksort

once the subproblem sizes become small, what happens if we instead

run insertion sort, suitably modified to sort a subarray rather than the

entire array? Indeed, with such a hybrid method, we can sort even

faster than randomized quicksort. I found that on my MacBook Pro,

a subarray size of 22 was the optimal crossover point, and a subarray

size of 17 was the optimal crossover point on my PC. Here are ratios of

running times of the hybrid algorithm to randomized quicksort on both

machines, for the same problem sizes:

n

Machine 50 100 500 1000 5000 10,000 50,000

MacBook Pro 0.55 0.56 0.60 0.60 0.62 0.63 0.66

PC 0.53 0.58 0.60 0.58 0.60 0.64 0.64

Is it possible to beat ‚.n lg n/ time for sorting? It depends. We’ll see

in Chapter 4 that if the only way that we can determine where to place

elements is by comparing elements, doing different things based on the

results of the comparisons, then no, we cannot beat ‚.n lg n/ time. If

we know something about the elements that we can take advantage of,

however, we can do better.

Further reading

CLRS [CLRS09] covers insertion sort, merge sort, and both determinis-

tic and randomized quicksort. But the granddaddy of books about sort-

ing and searching remains Volume 3 of Knuth’s The Art of Computer

Programming [Knu98b]; the advice from Chapter 1 applies—TAOCP

is deep and intense.

4 A Lower Bound for Sorting and How

to Beat It

In the previous chapter, we saw four algorithms for sorting n elements

in an array. Two of them, selection sort and insertion sort, have worst-

case running times of ‚.n2/, which is not very good. One of them,

quicksort, also has a worst-case running time of ‚.n2/, but takes only

‚.n lg n/ time on average. Merge sort takes ‚.n lg n/ time in all cases.

In practice, quicksort is the fastest of the four, but if you absolutely had

to guard against bad worst-case behavior, you would choose merge sort.

Is ‚.n lg n/ as good as it gets? Is it possible to devise a sorting algo-

rithm that beats ‚.n lg n/ time in the worst case? The answer depends

on the rules of the game: how is the sorting algorithm allowed to use

the sort keys when determining the sorted order?

In this chapter, we’ll see that under a certain set of rules, we cannot

beat ‚.n lg n/. Then we’ll see two sorting algorithms, counting sort

and radix sort, that bend the rules and in so doing manage to sort in

only ‚.n/ time.

Rules for sorting

If you examine how the four algorithms from the previous chapter use

the sort keys, you’ll see that they determine the sorted order based only

on comparing pairs of sort keys. All decisions they make are of the form

“if this element’s sort key is less than this other element’s sort key, then

do something, and otherwise either do something else or do nothing

else.” You might be thinking that a sorting algorithm could make only

decisions of this form; what other kinds of decisions could a sorting

algorithm possibly make?

To see what other kinds of decisions are possible, let’s take a really

simple situation. Suppose that we know two things about the elements

we are sorting: each sort key is either 1 or 2, and the elements consist of

only sort keys—no satellite data. In this simple situation, we can sort n

elements in only ‚.n/ time, beating the ‚.n lg n/ algorithms from the

previous chapter. How? First, go through every element and count how

many of them are 1s; let’s say that k elements have the value 1. Then we

Chapter 4: A Lower Bound for Sorting and How to Beat It 61

can go through the array, filling the value 1 into the first k positions and

then filling the value 2 into the last n � k positions. Here’s a procedure:

Procedure REALLY-SIMPLE-SORT.A; n/

Inputs:
� A: an array in which each element is either 1 or 2.
� n: the number of elements in A to sort.

Result: The elements of A are sorted into nondecreasing order.

1. Set k to 0.

2. For i D 1 to n:

A. If AŒi� D 1, then increment k.

3. For i D 1 to k:

A. Set AŒi� to 1.

4. For i D k C 1 to n:

A. Set AŒi� to 2.

Steps 1 and 2 count up the number of 1s, incrementing the count k for

every element AŒi� that equals 1. Step 3 fills AŒ1 : : k� with 1s, and step 4

fills the remaining positions, AŒk C 1 : : n�, with 2s. It’s pretty easy to

see that this procedure runs in ‚.n/ time: the first loop iterates n times,

the last two loops, together, iterate n times, and each iteration of each

loop takes constant time.

Notice that REALLY-SIMPLE-SORT never compares two array ele-

ments with each other. It compares each array element with the value 1,

but never with another array element. So you see that in this restricted

situation, we can sort without comparing pairs of sort keys.

The lower bound on comparison sorting

Now that you have some idea about how the rules of the game may vary,

let’s see a lower bound on how fast we can sort.

We define a comparison sort as any sorting algorithm that deter-

mines the sorted order only by comparing pairs of elements. The four

sorting algorithms from the previous chapter are comparison sorts, but

REALLY-SIMPLE-SORT is not.

62 Chapter 4: A Lower Bound for Sorting and How to Beat It

Here’s the lower bound:

In the worst case, any comparison sorting algorithm for n ele-

ments requires �.n lg n/ comparisons between pairs of elements.

Recall that �-notation gives a lower bound, so that what we’re saying

is “for sufficiently large n, any comparison sorting algorithm requires at

least cn lg n comparisons in the worst case, for some constant c.” Since

each comparison takes at least constant time, that gives us an �.n lg n/

lower bound on the time to sort n elements, assuming that we are using

a comparison sorting algorithm.

It’s important to understand a couple of things about this lower bound.

First, it’s saying something only about the worst case. You can always

make a sorting algorithm run in linear time in the best case: declare

that the best case is when the array is already sorted and just check

that each element (except for the last one) is less than or equal to its

successor in the array. That’s easy to do in ‚.n/ time, and if you find

that each element is less than or equal to its successor, then you’re done.

In the worst case, however, �.n lg n/ comparisons are necessary. We

call this lower bound an existential lower bound because it says that

there exists an input that requires �.n lg n/ comparisons. Another type

of lower bound is a universal lower bound, which applies to all inputs.

For sorting, the only universal lower bound we have is �.n/, since we

have to look at each element at least once. Note that in the previous

sentence, I didn’t say �.n/ what. Did I mean �.n/ comparisons or

�.n/ time? I meant �.n/ time, since it makes sense that we have to

examine each element, even if we’re not comparing pairs of elements.

The second important thing is truly remarkable: this lower bound

does not depend on the particular algorithm, as long as it’s a comparison

sorting algorithm. The lower bound applies to every comparison sorting

algorithm, no matter how simple or complex. The lower bound applies

to comparison sorting algorithms that have already been invented or

will be invented in the future. It even applies to comparison sorting

algorithms that will never be discovered by mankind!

Beating the lower bound with counting sort

We’ve already seen how to beat the lower bound in a highly restricted

setting: there are only two possible values for the sort keys, and each el-

ement consists of only a sort key, with no satellite data. In this restricted

Chapter 4: A Lower Bound for Sorting and How to Beat It 63

case, we can sort n elements in only ‚.n/ time without comparing pairs

of elements.

We can generalize the method of REALLY-SIMPLE-SORT to handle

m different possible values for the sort keys, as long as they are integers

in a range of m consecutive integers, say, 0 to m � 1, and we can also

allow the elements to have satellite data.

Here’s the idea. Suppose we know that the sort keys are integers in

the range 0 to m�1, and let’s suppose further that we know that exactly

three elements have sort keys equal to 5 and that exactly six elements

have sort keys less than 5 (that is, in the range 0 to 4). Then we know

that, in the sorted array, the elements with sort keys equal to 5 should

occupy positions 7, 8, and 9. Generalizing, if we know that k elements

have sort keys equal to x and that l elements have sort keys less than x,

then we know that the elements with sort keys equal to x should occupy

positions l C 1 through l C k in the sorted array. Therefore, we want

to compute, for each possible sort-key value, how many elements have

sort keys less than that value and how many elements have sort keys

equal to that value.

We can compute how many elements have sort keys less than each

possible sort-key value by first computing how many elements have sort

keys equal to that value, so let’s start with that:

Procedure COUNT-KEYS-EQUAL.A; n; m/

Inputs:
� A: an array of integers in the range 0 to m � 1.
� n: the number of elements in A.
� m: defines the range of the values in A.

Output: An array equalŒ0 : : m � 1� such that equalŒj � contains the

number of elements of A that equal j , for j D 0; 1; 2; : : : ; m � 1.

1. Let equalŒ0 : : m � 1� be a new array.

2. Set all values in equal to 0.

3. For i D 1 to n:

A. Set key to AŒi�.

B. Increment equalŒkey�.

4. Return the equal array.

Notice that COUNT-KEYS-EQUAL never compares sort keys with each

other. It uses sort keys only to index into the equal array. Since the first

64 Chapter 4: A Lower Bound for Sorting and How to Beat It

loop (implicit in step 2) makes m iterations, the second loop (step 3)

makes n iterations, and each iteration of each loop takes constant time,

COUNT-KEYS-EQUAL takes ‚.m C n/ time. If m is a constant, then

COUNT-KEYS-EQUAL takes ‚.n/ time.

Now we can use the equal array to compute a running sum to find out

how many elements have sort keys less than each value:

Procedure COUNT-KEYS-LESS.equal; m/

Inputs:
� equal: the array returned by COUNT-KEYS-EQUAL.
� m: defines the index range of equal: 0 to m � 1.

Output: An array lessŒ0 : : m � 1� such that for j D 0; 1; 2; : : : ; m � 1,

lessŒj � contains the sum equalŒ0� C equalŒ1� C � � � C equalŒj � 1�.

1. Let lessŒ0 : : m � 1� be a new array.

2. Set lessŒ0� to 0.

3. For j D 1 to m � 1:

A. Set lessŒj � to lessŒj � 1� C equalŒj � 1�.

4. Return the less array.

Assuming that the equalŒj � gives an accurate count of how many sort

keys equal j , for j D 0; 1; : : : ; m � 1, you could use the following loop

invariant to show that when COUNT-KEYS-LESS returns, lessŒj � says

how many sort keys are less than j :

At the start of each iteration of the loop of step 3, lessŒj � 1�

equals the number of sort keys less than j � 1.

I’ll leave it to you to fill in the initialization, maintenance, and termina-

tion parts. You can see easily that the COUNT-KEYS-LESS procedure

runs in ‚.m/ time. And it certainly doesn’t compare sort keys with each

other.

Let’s see an example. Suppose that m D 7, so that all sort keys are

integers in the range 0 to 6, and we have the following array A with

n D 10 elements: A D h4; 1; 5; 0; 1; 6; 5; 1; 5; 3i. Then equal D
h1; 3; 0; 1; 1; 3; 1i and less D h0; 1; 4; 4; 5; 6; 9i. Because lessŒ5� D 6

and equalŒ5� D 3 (remember that we index the arrays less and equal

starting from 0, not 1), when we are done sorting, positions 1 through 6

should contain key values less than 5, and positions 7, 8, and 9 should

contain the key value 5.

Chapter 4: A Lower Bound for Sorting and How to Beat It 65

Once we have the less array, we can create a sorted array, though not

in place:

Procedure REARRANGE.A; less; n; m/

Inputs:
� A: an array of integers in the range 0 to m � 1.
� less: the array returned by COUNT-KEYS-LESS.
� n: the number of elements in A.
� m: defines the range of the values in A.

Output: An array B containing the elements of A, sorted.

1. Let BŒ1 : : n� and nextŒ0 : : m � 1� be new arrays.

2. For j D 0 to m � 1:

A. Set nextŒj � to lessŒj � C 1.

3. For i D 1 to n:

A. Set key to AŒi�.

B. Set index to nextŒkey�.

C. Set BŒindex� to AŒi�.

D. Increment nextŒkey�.

4. Return the B array.

The figure on the next page illustrates how REARRANGE moves el-

ements from array A into array B so that they end up in sorted order

in B . The top part shows the arrays less, next, A, and B before the first

iteration of the loop of step 3, and each subsequent part shows next, A,

and B after each iteration. Elements in A are grayed as they are copied

into B .

The idea is that, as we go through the array A from start to end,

nextŒj � gives the index in the array B of where the next element of A

whose key is j should go. Recall from earlier that if l elements have sort

keys less than x, then the k elements whose sort keys equal x should

occupy positions l C 1 through l C k. The loop of step 2 sets up the

array next so that, at first, nextŒj � D l C 1, where l D lessŒj �. The loop

of step 3 goes through array A from start to end. For each element AŒi�,

step 3A stores AŒi� into key, step 3B computes index as the index in

array B where AŒi� should go, and step 3C moves AŒi� into this position

in B . Because the next element in array A that has the same sort key

as AŒi� (if there is one) should go into the next position of B , step 3D

increments nextŒkey�.

66 Chapter 4: A Lower Bound for Sorting and How to Beat It

less

0

0

1

1

2

4

3

4

4

5

5

6

6

9

next 1 2 5 5 6 7 10

A 4

1

1

2

5

3

0

4

1

5

6

6

5

B

8

1

9

5

10

3

7

next 1 2 5 5 7 7 10

A 4

1

1

2

5

3

0

4

1

5

6

6

5

B

8

1

9

5

10

3

7

4

next 1 3 5 5 7 7 10

A 4

1

1

2

5

3

0

4

1

5

6

6

5

B

8

1

9

5

10

3

7

41

next 1 3 5 5 7 8 10

A 4

1

1

2

5

3

0

4

1

5

6

6

5

B

8

1

9

5

10

3

7

41 5

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

next 2 3 5 5 7 8 10

A 4

1

1

2

5

3

0

4

1

5

6

6

5

B

8

1

9

5

10

3

7

41 5

0 1 2 3 4 5 6

0

next 2 4 5 5 7 8 10

A 4

1

1

2

5

3

0

4

1

5

6

6

5

B

8

1

9

5

10

3

7

41 5

0 1 2 3 4 5 6

0 1

next 2 4 5 5 7 8 11

A 4

1

1

2

5

3

0

4

1

5

6

6

5

B

8

1

9

5

10

3

7

41 5

0 1 2 3 4 5 6

0 1 6

next 2 4 5 5 7 9 11

A 4

1

1

2

5

3

0

4

1

5

6

6

5

B

8

1

9

5

10

3

7

41 5

0 1 2 3 4 5 6

0 1 65

next 2 5 5 5 7 9 11

A 4

1

1

2

5

3

0

4

1

5

6

6

5

B

8

1

9

5

10

3

7

41 5

0 1 2 3 4 5 6

0 1 651

next 2 5 5 5 7 10 11

A 4

1

1

2

5

3

0

4

1

5

6

6

5

B

8

1

9

5

10

3

7

41 5

0 1 2 3 4 5 6

0 1 651 5

next 2 5 5 6 7 10 11

A 4

1

1

2

5

3

0

4

1

5

6

6

5

B

8

1

9

5

10

3

7

41 5

0 1 2 3 4 5 6

0 1 651 53

Chapter 4: A Lower Bound for Sorting and How to Beat It 67

How long does REARRANGE take? The loop of step 2 runs in ‚.m/

time, and the loop of step 3 runs in ‚.n/ time. Like COUNT-KEYS-

EQUAL, therefore, REARRANGE runs in ‚.m C n/ time, which is ‚.n/

if m is a constant.

Now we can put the three procedures together to create counting sort:

Procedure COUNTING-SORT.A; n; m/

Inputs:
� A: an array of integers in the range 0 to m � 1.
� n: the number of elements in A.
� m: defines the range of the values in A.

Output: An array B containing the elements of A, sorted.

1. Call COUNT-KEYS-EQUAL.A; n; m/, and assign its result to

equal.

2. Call COUNT-KEYS-LESS.equal; m/ and assign its result to less.

3. Call REARRANGE.A; less; n; m/ and assign its result to B .

4. Return the B array.

From the running times of COUNT-KEYS-EQUAL (‚.mCn/), COUNT-

KEYS-LESS (‚.m/), and REARRANGE (‚.m C n/), you can see that

COUNTING-SORT runs in time ‚.mCn/, or ‚.n/ when m is a constant.

Counting sort beats the lower bound of �.n lg n/ for comparison sorting

because it never compares sort keys against each other. Instead, it uses

sort keys to index into arrays, which it can do because the sort keys are

small integers. If the sort keys were real numbers with fractional parts,

or they were character strings, then we could not use counting sort.

You might notice that the procedure assumes that the elements con-

tain only sort keys and not any satellite data. Yet, I promised that, unlike

REALLY-SIMPLE-SORT, COUNTING-SORT allows satellite data. And

it does, as long as you modify step 3C of REARRANGE to copy the

entire element, and not just the sort key.

You might also have noticed that the procedures I’ve provided are a

bit inefficient in how they use arrays. You can combine the equal, less,

and next arrays into one array, but I’ll leave that for you to pursue.

I keep mentioning that the running time is ‚.n/ if m is a constant.

When would m be a constant? One example would be if I were sorting

exams by grade. The grades range from 0 to 100, but the number of

students varies. I could use counting sort to sort the exams of n students

68 Chapter 4: A Lower Bound for Sorting and How to Beat It

in ‚.n/ time, since m D 101 (remember that the range being sorted is

0 to m � 1) is a constant.

In practice, however, counting sort turns out to be useful as part of

yet another sorting algorithm, radix sort. In addition to running in linear

time when m is a constant, counting sort has another important property:

it is stable. In a stable sort, elements with the same sort key appear in

the output array in the same order as they do in the input array. In other

words, a stable sort breaks ties between two elements with equal sort

keys by placing first in the output array whichever element appears first

in the input array. You can see why counting sort is stable by looking at

the loop of step 3 of REARRANGE. If two elements of A have the same

sort key, say key, then the procedure increases nextŒkey� immediately

after moving into B the element that occurs earlier in A; that way, by

the time it moves the element that occurs later in A, that element will

appear later in B .

Radix sort

Suppose that you had to sort strings of characters of some fixed length.

For example, I am writing this paragraph on an airplane, and when I

made my reservation, I was given the confirmation code XI7FS6. The

airline designs all confirmation codes as strings of six characters, where

each character is either a letter or a digit. Each character can take 36

values (26 letters plus 10 digits), and so there are 366 D 2,176,782,336

possible confirmation codes. Although that’s a constant, it’s a pretty

large constant, and so the airline would probably rather not rely on

counting sort to sort confirmation codes.

For the sake of being concrete, let’s say that we can translate each of

the 36 characters into a numeric code running from 0 to 35. The code

for a digit is the digit itself (so that the code for the digit 5 is 5), and the

codes for letters start at 10 for A and run through 35 for Z.

Now let’s make things a little simpler and suppose that each confir-

mation code comprises only two characters. (Not to worry: we’ll go

back to six characters soon.) Although we could run counting sort with

m D 362 D 1296, we’ll instead run it twice with m D 36. We run it the

first time using the rightmost character as the sort key. Then we take the

result of running counting sort the first time and run it a second time,

but now using the leftmost character as the sort key. We choose counting

sort because it works well when m is relatively small and because it is

stable.

Chapter 4: A Lower Bound for Sorting and How to Beat It 69

For example, suppose that we have the two-character confirmation

codes hF6; E5; R6; X6; X2; T5; F2; T3i. After running counting sort

on the rightmost character, we get the sorted order hX2; F2; T3; E5;

T5; F6; R6; X6i. Notice that because counting sort is stable and X2

comes before F2 in the original order, X2 comes before F2 after sorting

on just the rightmost character. Now we sort the result on the leftmost

character, again using counting sort, getting the desired result hE5; F2;

F6; R6; T3; T5; X2; X6i.

What would have happened if we had sorted on the leftmost character

first? After running counting sort on the leftmost character, we’d have

hE5; F6; F2; R6; T5; T3; X6; X2i, and then after running counting sort

on the rightmost character of the result, we’d get hF2; X2; T3; E5; T5;

F6; R6; X6i, which is incorrect.

Why does working from right to left give a correct result? Using

a stable sorting method is important; it could be counting sort or any

other stable sorting method. Let’s suppose that we’re working on the

i th character position, and assume that if we look at the rightmost i � 1

character positions, the array is sorted. Consider any two sort keys. If

they differ in the i th character position, then it doesn’t matter what’s in

the i � 1 positions to the right: the stable sorting algorithm that sorts

on the i th position will put them into the correct order. If, on the other

hand, they have the same character in the i th position, then the one that

comes first in the i � 1 rightmost character positions should come first,

and by using a stable sorting method, we guarantee that this is exactly

what happens.

So let’s return to 6-character confirmation codes, and we’ll see how

to sort confirmation codes that start out in the order hXI7FS6; PL4ZQ2;

JI8FR9; XL8FQ6; PY2ZR5; KV7WS9; JL2ZV3; KI4WR2i. Let’s num-

ber the characters from right to left as 1 to 6. Then here are the results

after running a stable sort on the i th character, working right to left:

i Resulting order

1 hPL4ZQ2, KI4WR2, JL2ZV3, PY2ZR5, XI7FS6, XL8FQ6, JI8FR9, KV7WS9i
2 hPL4ZQ2, XL8FQ6, KI4WR2, PY2ZR5, JI8FR9, XI7FS6, KV7WS9, JL2ZV3i
3 hXL8FQ6, JI8FR9, XI7FS6, KI4WR2, KV7WS9, PL4ZQ2, PY2ZR5, JL2ZV3i
4 hPY2ZR5, JL2ZV3, KI4WR2, PL4ZQ2, XI7FS6, KV7WS9, XL8FQ6, JI8FR9i
5 hKI4WR2, XI7FS6, JI8FR9, JL2ZV3, PL4ZQ2, XL8FQ6, KV7WS9, PY2ZR5i
6 hJI8FR9, JL2ZV3, KI4WR2, KV7WS9, PL4ZQ2, PY2ZR5, XI7FS6, XL8FQ6i

70 Chapter 4: A Lower Bound for Sorting and How to Beat It

To generalize, in the radix sort algorithm, we assume that we can

think of each sort key as a d -digit number, where each digit is in the

range 0 to m � 1. We run a stable sort on each digit, going from right

to left. If we use counting sort as the stable sort, then the time to sort on

one digit is ‚.m C n/, and the time to sort all d digits is ‚.d.m C n//.

If m is a constant (such as 36 in the confirmation code example), then

the time for radix sort is ‚.dn/. If d is also a constant (such as 6 for

confirmation codes), then the time for radix sort is only ‚.n/.

When radix sort uses counting sort to sort on each digit, it never com-

pares two sort keys against each other. It uses the individual digits to

index into arrays within counting sort. That is why radix sort, like count-

ing sort, beats the lower bound of �.n lg n/ for comparison sorting.

Further reading

Chapter 8 of CLRS [CLRS09] expands on all the material in this chap-

ter.

5 Directed Acyclic Graphs

Recall the footnote on page 1, where I revealed that I used to play

hockey. For several years, I was a goalie, but eventually my game de-

teriorated to the point that I couldn’t stand watching myself play. It

seemed as though every shot found its way to the back of the net. Then,

after a hiatus of over seven years, I got back between the pipes (that is,

I resumed playing goal) for a couple of games.

My biggest concern wasn’t whether I’d be any good—I knew I was

going to be terrible—but rather whether I’d remember how to put on

all the goalie equipment. In ice hockey, goalies wear a lot of gear (35

to 40 pounds of it), and when dressing for a game, I have to put it on in

the right order. For example, because I am right-handed, I wear on my

left hand an oversized mitt for catching pucks; it’s called a catch glove.

Once I’ve got the catch glove on, my left hand has no dexterity, and I

cannot get an upper-body garment of any sort over it.

When I was preparing to don the goalie gear, I made myself a diagram

showing which items had to be put on before other items. The diagram

appears on the next page. An arrow from item A to item B indicates a

constraint that A must be put on before B. For example, I have to put on

the chest pad before the sweater. Of course, the “must be put on before”

constraint is transitive: if item A must be put on before item B, and

item B must be put on before item C, then item A must be put on before

item C. Therefore, I must put on the chest pad before the sweater, mask,

catch glove, and blocker.

For some pairs of items, however, it doesn’t matter in which order I

put them on. I can put socks on either before or after the chest pad, for

example.

I needed to determine an order in which to get dressed. Once I had

my diagram, I had to come up with a list containing all the items I had

to don, in a single order that did not violate any of the “must be put

on before” constraints. I found that several orders worked; below the

diagram are three of them.

72 Chapter 5: Directed Acyclic Graphs

pants

T-shirt

leg pads

hose

socks

skates

chest pad

sweater

mask

catch glove

blocker

undershorts

compression shorts

cup

Order #1 Order #2 Order #3

undershorts undershorts socks

compression shorts T-shirt T-shirt

cup compression shorts undershorts

socks cup chest pad

hose chest pad compression shorts

pants socks hose

skates hose cup

leg pads pants pants

T-shirt sweater skates

chest pad mask leg pads

sweater skates sweater

mask leg pads mask

catch glove catch glove catch glove

blocker blocker blocker

How did I arrive at these orders? Here’s how I came up with order #2.

I looked for an item that had no incoming arrows, because such an item

need not be put on after any other item. I chose undershorts to be the

first item in the order, and then, having (conceptually) put on the under-

shorts, I removed them from the diagram, resulting in the diagram at the

top of the next page.

Chapter 5: Directed Acyclic Graphs 73

pants

T-shirt

leg pads

hose

socks

skates

chest pad

sweater

mask

catch glove

blocker

compression shorts

cup

Then, again, I chose an item with no incoming arrows, this time T-shirt.

I added it to the end of the order and removed it from the diagram,

resulting in this diagram:

pants

leg pads

hose

socks

skates

chest pad

sweater

mask

catch glove

blocker

compression shorts

cup

Once again, I chose an item with no incoming arrows—compression

shorts—and then I added it to the end of the order and removed it from

the diagram, resulting in the diagram at the top of the next page.

74 Chapter 5: Directed Acyclic Graphs

pants

leg pads

hose

socks

skates

chest pad

sweater

mask

catch glove

blocker

cup

Next, I chose cup:

pants

leg pads

hose

socks

skates

chest pad

sweater

mask

catch glove

blocker

I kept going in this way—choosing an item with no incoming arrows,

adding it to the end of the order, and removing the item from the di-

agram—until no items remained. The three orders shown on page 72

result from making various choices for the item with no incoming ar-

rows, starting from the diagram on page 72.

Directed acyclic graphs

These diagrams are specific examples of directed graphs, which are

made of vertices (singular: vertex), corresponding to the items of goalie

equipment, and directed edges, shown by arrows. Each directed edge is

an ordered pair of the form .u; v/, where u and v are vertices. For exam-

Chapter 5: Directed Acyclic Graphs 75

ple, the leftmost edge in the directed graph on page 72 is .socks; hose/.

When a directed graph contains a directed edge .u; v/, we say that v

is adjacent to u and that .u; v/ leaves u and enters v, so that the ver-

tex labeled hose is adjacent to the vertex labeled socks and the edge

.socks; hose/ leaves the vertex labeled socks and enters the vertex la-

beled hose.

The directed graphs that we have seen have another property: there

is no way to get from a vertex back to itself by following a sequence

of one or more edges. We call such a directed graph a directed acyclic

graph, or dag. It’s acyclic because there is no way to “cycle” from a

vertex back to itself. (We’ll see a more formal definition of a cycle later

in this chapter.)

Dags are great for modeling dependencies where one task must occur

before another. Another use for dags arises when planning projects,

such as building a house: for example, the framing must be in place

before the roof goes on. Or, in cooking, certain steps must occur in

certain orders, but for some steps it doesn’t matter in which order they

happen; we’ll see an example of a dag for cooking later in this chapter.

Topological sorting

When I needed to determine a single, linear order in which to put on the

goalie equipment, I needed to perform a “topological sort.” Put more

precisely, a topological sort of a dag produces a linear order such that

if .u; v/ is an edge in the dag, then u appears before v in the linear

order. Topological sorting differs from sorting in the sense that we used

in Chapters 3 and 4.

The linear order produced by a topological sort is not necessarily

unique. But you know that already, since each of the three orders for

donning goalie equipment on page 72 could be produced by a topologi-

cal sort.

Another use for topological sorting occurred at a programming job I

had a long time ago. We were creating computer-aided design systems,

and our systems could maintain a library of parts. Parts could contain

other parts, but no circular dependencies were allowed: a part could not

eventually contain itself. We needed to write out the part designs to tape

(I said that the job was a long time ago) so that each part preceded any

other parts that contained it. If each part is a vertex and an edge .u; v/

indicates that part v contains part u, then we needed to write the parts

according to a topologically sorted linear order.

76 Chapter 5: Directed Acyclic Graphs

What vertex would be a good candidate to be the first one in the linear

order? Any vertex with no entering edges would do. The number of

edges entering a vertex is the vertex’s in-degree, and so we could start

with any vertex whose in-degree is 0. Fortunately, every dag must have

at least one vertex with in-degree 0 and at least one vertex with out-

degree 0 (no edges leaving the vertex), for otherwise there would be a

cycle.

So suppose we choose any vertex with in-degree 0—let’s call it ver-

tex u—and put it at the beginning of the linear order. Because we have

taken care of vertex u first, all other vertices will be placed after u in

the linear order. In particular, any vertex v that is adjacent to u must

appear somewhere after u in the linear order. Therefore, we can safely

remove u and all edges leaving u from the dag, knowing that we’ve

taken care of the dependencies that these edges define. When we re-

move a vertex and the edges that leave it from a dag, what are we left

with? Another dag! After all, we cannot create a cycle by removing a

vertex and edges. And so we can repeat the process with the dag that

remains, finding some vertex with in-degree 0, placing it after vertex u

in the linear order, removing edges, and so on.

The procedure on the next page for topological sorting uses this idea,

but instead of actually removing vertices and edges from the dag, it just

keeps track of the in-degree of each vertex, decrementing the in-degree

for each entering edge that we conceptually remove. Since array indices

are integers, let’s assume that we identify each vertex by a unique inte-

ger in the range 1 to n. Because the procedure needs to quickly identify

some vertex with in-degree 0, it maintains the in-degree of each vertex

in an array in-degree indexed by the vertices, and it maintains a list next

of all the vertices with in-degree 0. Steps 1–3 initialize the in-degree

array, step 4 initializes next, and step 5 updates in-degree and next as

vertices and edges are conceptually removed. The procedure can choose

any vertex in next as the next one to put into the linear order.

Let’s see how the first few iterations of step 5 work on the dag for

putting on goalie equipment. In order to run the TOPOLOGICAL-SORT

procedure on this dag, we need to number the vertices, as shown on

page 78. Only vertices 1, 2, and 9 have in-degree 0, and so as we enter

the loop of step 5, the list next contains only these three vertices. To

get order #1 on page 72, the order of the vertices in next would be 1,

2, 9. Then, in the first iteration of step 5’s loop, we choose vertex 1

(undershorts) as vertex u, delete it from next, add this vertex to the

Chapter 5: Directed Acyclic Graphs 77

Procedure TOPOLOGICAL-SORT.G/

Input: G: a directed acyclic graph with vertices numbered 1 to n.

Output: A linear order of the vertices such that u appears before v in

the linear order if .u; v/ is an edge in the graph.

1. Let in-degreeŒ1 : : n� be a new array, and create an empty linear

order of vertices.

2. Set all values in in-degree to 0.

3. For each vertex u:

A. For each vertex v adjacent to u:

i. Increment in-degreeŒv�.

4. Make a list next consisting of all vertices u such that

in-degreeŒu� D 0.

5. While next is not empty, do the following:

A. Delete a vertex from next, and call it vertex u.

B. Add u to the end of the linear order.

C. For each vertex v adjacent to u:

i. Decrement in-degreeŒv�.

ii. If in-degreeŒv� D 0, then insert v into the next list.

6. Return the linear order.

end of the initially empty linear order, and then decrement in-degreeŒ3�

(compression shorts). Because that operation takes in-degreeŒ3� down

to 0, we insert vertex 3 into next. Let’s assume that when we insert

a vertex into next, we insert it as the first vertex on the list. Such a

list, where we always insert and delete at the same end, is known as

a stack, because it’s like a stack of plates, where you always take a

plate from the top and place a new plate at the top. (We call this order

last in, first out, or LIFO.) Under this assumption, next becomes 3,

2, 9 and in the next loop iteration, we choose vertex 3 as vertex u. We

delete it from next, add it to the end of the linear order, so that the linear

order now reads “undershorts, compression shorts,” and we decrement

in-degreeŒ4� (from 2 down to 1) and in-degreeŒ5� (from 1 down to 0).

We insert vertex 5 (cup) into next, resulting in next becoming 5, 2, 9. In

the next iteration, we choose vertex 5 as vertex u, delete it from next,

add it to the end of the linear order (now “undershorts, compression

78 Chapter 5: Directed Acyclic Graphs

pants

T-shirt

leg pads

hose

socks

skates

chest pad

sweater

mask

catch glove

blocker

undershorts

compression shorts

cup

2

1

3

4 5

6

7

8

9

10

11

12

13

14

shorts, cup”), and decrement in-degreeŒ6�, taking it down from 2 to 1.

No vertices are added to next this time, and so in the next iteration, we

choose vertex 2 as vertex u, and so on.

In order to analyze the TOPOLOGICAL-SORT procedure, we first have

to understand how to represent a directed graph and a list such as next.

When representing a graph, we won’t require it to be acyclic, because

the absence or presence of cycles has no effect on how we represent a

graph.

How to represent a directed graph

In a computer, we can represent a directed graph in a few ways. Our

convention will be that a graph has n vertices and m edges. We continue

to assume that each vertex has its own number from 1 to n, so that we

can use a vertex as an index into an array, or even as the row or column

number of a matrix.

For now, we just want to know which vertices and edges are present.

(Later on, we’ll also associate a numeric value with each edge.) We

could use an n�n adjacency matrix in which each row and each column

corresponds to one vertex, and the entry in the row for vertex u and

the column for vertex v is either 1 if the edge .u; v/ is present or 0

if the graph does not contain edge .u; v/. Since an adjacency matrix

has n2 entries, it must be true that m � n2. Alternatively, we could

just keep a list of all m edges in the graph in no particular order. As

Chapter 5: Directed Acyclic Graphs 79

a hybrid between an adjacency matrix and an unordered list, we have

the adjacency-list representation, with an n-element array indexed by

the vertices in which the array entry for each vertex u is a list of all the

vertices adjacent to u. Altogether, the lists have m vertices, since there’s

one list item for each of the m edges. Here are the adjacency-matrix and

adjacency-list representations for the directed graph on page 78:

Adjacency matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 0 0 0 0 0 0 0 0 0 0

3 0 0 0 1 1 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 1 0 0 0 0 0 0 0 0

5 0 0 0 0 0 1 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 1 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0 1 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 1 0

9 0 0 0 0 0 0 0 0 0 1 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 1 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 1 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Adjacency lists

1 3

2 4

3 4; 5

4 6

5 6

6 7; 11

7 8

8 13

9 10

10 11

11 12

12 13

13 14

14 (none)

The unordered list of edges and the adjacency-list representation lead

to the question of how to represent a list. The best way to represent a list

depends on what types of operations we need to perform on the list. For

unordered edge lists and adjacency lists, we know in advance how many

edges will be in each list, and the contents of the lists won’t change, and

so we can store each list in an array. We can also use an array to store a

list even if the list’s contents change over time, as long as we know the

maximum number of items that will ever be in the list at any one time.

If we don’t need to insert an item into the middle of the list or delete

an item from the middle of the list, representing a list by an array is as

efficient as any other means.

If we do need to insert into the middle of the list, then we can use a

linked list, in which each list item includes the location of its successor

item in the list, making it simple to splice in a new item after a given

item. If we also need to delete from the middle of the list, then each

item in the linked list should also include the location of its predecessor

item, so that we can quickly splice out an item. From now on, we will

assume that we can insert into or delete from a linked list in constant

80 Chapter 5: Directed Acyclic Graphs

time. A linked list that has only successor links is a singly linked list.

Adding predecessor links makes a doubly linked list.

Running time of topological sorting

If we assume that the dag uses the adjacency-list representation and the

next list is a linked list, then we can show that the TOPOLOGICAL-SORT

procedure takes ‚.nCm/ time. Since next is a linked list, we can insert

into it or delete from it in constant time. Step 1 takes constant time, and

because the in-degree array has n elements, step 2 initializes the array

to all 0s in ‚.n/ time. Step 3 takes ‚.n C m/ time. The ‚.n/ term in

step 3 arises because the outer loop examines each of the n vertices, and

the ‚.m/ term is because the inner loop of step 3A visits each of the

m edges exactly once over all iterations of the outer loop. Step 4 takes

O.n/ time, since the next list starts with at most n vertices. Most of the

work occurs in step 5. Because each vertex is inserted into next exactly

once, the main loop iterates n times. Steps 5A and 5B take constant

time in each iteration. Like step 3A, the loop of step 5C iterates m

times altogether, once per edge. Steps 5Ci and 5Cii take constant time

per iteration, so that all iterations together of step 5C take ‚.m/ time,

and therefore the loop of step 5 takes ‚.n C m/ time. Of course, step 6

takes constant time, and so when we add up the time for all the steps,

we get ‚.n C m/.

Critical path in a PERT chart

I like to relax after a day at work by cooking, and I always enjoy cook-

ing and eating kung pao chicken. I have to prepare the chicken, chop

vegetables, mix a marinade and cooking sauce, and cook the dish. Just

as when I put on goalie equipment, some steps must occur before oth-

ers, and so I can use a dag to model the procedure for cooking kung pao

chicken. The dag appears on the next page.

Next to each vertex in the dag appears a number, indicating how many

minutes I need to perform the task corresponding to the vertex. For

example, I take four minutes to chop the garlic (because I peel each

clove first, and I use a lot of garlic). If you add up the times for all the

tasks, you can see that if I were to perform them in sequence, it would

take me an hour to make kung pao chicken.

If I had help, however, we could perform several of the tasks simulta-

neously. For example, one person could mix the marinade while some-

Chapter 5: Directed Acyclic Graphs 81

mix marinade 6

marinate chicken 15

partially cook chicken 4

add garlic, ginger 1

finish cooking chicken 2

remove chicken 1

cook carrots, celery, peanuts 4

add back chicken 1

add cooking sauce 1

cook sauce until thick 3

remove completed dish 1

mix cooking sauce

3

rinse peanuts

2

chop celery

3

chop carrots

4

chop ginger

3

chop garlic

4

cut up chicken2

one else cut up the chicken. Given enough people helping, and sufficient

space, knives, cutting boards, and bowls, we could perform many of the

tasks simultaneously. If you look at any two tasks in the dag and find

that there is no way to follow arrows to get from one to the other, then I

could assign each of the tasks to a different person and have them done

simultaneously.

Given unlimited resources (people, space, cooking equipment) to per-

form tasks simultaneously, how quickly can we make kung pao chicken?

The dag is an example of a PERT chart, an acronym for “program eval-

uation and review technique.” The time to complete the entire job, even

with as many tasks performed simultaneously as possible, is given by

the “critical path” in the PERT chart. To understand what a critical path

is, we first have to understand what a path is, and then we can define a

critical path.

A path in a graph is a sequence of vertices and edges that allow you

to get from one vertex to another (or back to itself); we say that the path

82 Chapter 5: Directed Acyclic Graphs

contains both the vertices on it and the edges traversed. For example,

one path in the dag for kung pao chicken has, in order, the vertices

labeled “chop garlic,” “add garlic, ginger,” “finish cooking chicken,”

and “remove chicken,” along with the edges connecting these vertices.

A path from a vertex back to itself is a cycle, but of course dags do not

have cycles.

A critical path in a PERT chart is a path for which the sum of the

task times is maximum over all paths. The sum of the task times along a

critical path gives the minimum possible time for the entire job, no mat-

ter how many tasks are performed simultaneously. I shaded the critical

path in the PERT chart for cooking kung pao chicken. If you add up the

task times along the critical path, you’ll see that no matter how much

help I have, it takes me at least 39 minutes to make kung pao chicken.1

Assuming that all task times are positive, a critical path in a PERT

chart must start at some vertex with in-degree 0 and end at some vertex

with out-degree 0. Rather than checking paths between all pairs of ver-

tices in which one has in-degree 0 and one has out-degree 0, we can just

add two “dummy” vertices, “start” and “finish,” as in the figure on the

next page. Because these are dummy vertices, we give them task times

of 0. We add an edge from start to each vertex with in-degree 0 in the

PERT chart, and we add an edge from each vertex with out-degree 0 to

finish. Now the only vertex with in-degree 0 is start, and the only vertex

with out-degree 0 is finish. A path from start to finish with the maxi-

mum sum of task times on its vertices (shaded) gives a critical path in

the PERT chart—minus the dummy vertices start and finish, of course.

Once we have added the dummy vertices, we find a critical path by

finding a shortest path from start to finish, based on the task times. At

this point, you might think I made an error in the previous sentence,

because a critical path should correspond to a longest path, not a shortest

path. Indeed, it does, but because a PERT chart has no cycles, we can

alter the task times so that a shortest path gives us a critical path. In

particular, we negate each task time and find a path from start to finish

with the minimum sum of task times.

Why negate task times and find a path with the minimum sum of task

times? Because solving this problem is a special case of finding short-

1If you’re wondering why Chinese restaurants can turn out an order of kung pao chicken

in much less time, it’s because they prepare many of the ingredients in advance, and

their commercial stoves can cook faster than my residential-grade stove.

Chapter 5: Directed Acyclic Graphs 83

finish

mix marinade 6

marinate chicken 15

partially cook chicken 4

add garlic, ginger 1

finish cooking chicken 2

remove chicken 1

cook carrots, celery, peanuts 4

add back chicken 1

add cooking sauce 1

cook sauce until thick 3

remove completed dish 1

mix cooking sauce

3

rinse peanuts

2

chop celery

3

chop carrots

4

chop ginger

3

chop garlic

4

cut up chicken

2

start 0

0

est paths, and we have plenty of algorithms for finding shortest paths.

When we talk about shortest paths, however, the values that determine

path lengths are associated with edges, not with vertices. We call the

value that we associate with each edge its weight. A directed graph with

edge weights is a weighted directed graph. “Weight” is a generic term

for values associated with edges. If a weighted directed graph represents

a road network, each edge represents one direction of a road between

two intersections, and the weight of an edge could represent the road’s

length, the time required to travel the road, or the toll a vehicle pays to

use the road. The weight of a path is the sum of the weights of the edges

on the path, so that if edge weights represent road distances, the weight

of a path might indicate the total distance traveled along the roads on

84 Chapter 5: Directed Acyclic Graphs

the path. A shortest path from vertex u to vertex v is a path whose sum

of edge weights is minimum over all paths from u to v. Shortest paths

are not necessarily unique, as a directed graph from u to v could contain

multiple paths whose weights achieve the minimum.

To convert a PERT chart with negated task times into a weighted

directed graph, we push the negated task time for each vertex onto each

of its entering edges. That is, if vertex v has a (non-negated) task time

of t , we set the weight of each edge .u; v/ entering v to be �t . Here’s

the dag we get, with edge weights appearing next to their edges:

mix marinade

–6

marinate chicken

–15

partially cook chicken

–4

add garlic, ginger

–1

finish cooking chicken

–2

remove chicken

–1

cook carrots, celery, peanuts

–4

add back chicken

–1

add cooking sauce

–1

cook sauce until thick

–3

remove completed dish

–1

mix cooking sauce

–3

rinse peanuts

–2

chop celery

–3

chop carrots

–4 chop ginger

–3

chop garlic

–4

cut up chicken–2

–15

–1

–1

–4
–4

–4

–1

start

finish

0

Now we just have to find a shortest path (shaded) from start to finish

in this dag, based on these edge weights. A critical path in the original

Chapter 5: Directed Acyclic Graphs 85

PERT chart will correspond to the vertices on the shortest path we find,

minus start and finish. So let’s see how to find a shortest path in a dag.

Shortest path in a directed acyclic graph

There is another advantage to learning how to find a shortest path in

a dag: we’ll lay the foundations for finding shortest paths in arbitrary

directed graphs that may have cycles. We’ll examine this more general

problem in Chapter 6. As we did for topologically sorting a dag, we’ll

assume that the dag is stored with the adjacency-list representation, and

that with each edge .u; v/ we have also stored its weight as weight.u; v/.

In a dag that we derive from a PERT chart, we want a shortest path

from the source vertex, which we call “start,” to a specific target vertex,

“finish.” Here, we’ll solve the more general problem of finding single-

source shortest paths, where we find shortest paths from a source vertex

to all other vertices. By convention, we will name the source vertex s,

and we want to compute two things for each vertex v. First, the weight

of a shortest path from s to v, which we denote by sp.s; v/. Second,

the predecessor of v on a shortest path from s to v: a vertex u such

that a shortest path from s to v is a path from s to u and then a single

edge .u; v/. We will number the n vertices from 1 to n, so that our algo-

rithms for shortest paths here and in Chapter 6 can store these results in

arrays shortestŒ1 : : n� and predŒ1 : : n�, respectively. As the algorithms

unfold, the values in shortestŒv� and predŒv� might not be their correct

final values, but when the algorithms are done, they will be.

We need to handle a couple of cases that can arise. First, what if

there is no path at all from s to v? Then we define sp.s; v/ D 1, so

that shortestŒv� should come out to 1. Since v would have no prede-

cessor on a shortest path from s, we also say that predŒv� should be the

special value NULL. Moreover, all shortest paths from s start with s,

and so s has no predecessor, either; thus we say that predŒs� should also

be NULL. The other case arises only in graphs that have both cycles

and negative edge weights: what if the weight of a cycle is negative?

Then we could go around the cycle forever, decreasing the path weight

each time around. If we can get from s to a negative-weight cycle and

then to v, then sp.s; v/ is undefined. For now, however, we’re con-

cerned only with acyclic graphs, and so there are no cycles, much less

negative-weight cycles, to worry about.

To compute shortest paths from a source vertex s, we start off with

shortestŒs� D 0 (since we don’t have to go anywhere to get from a vertex

86 Chapter 5: Directed Acyclic Graphs

to itself), shortestŒv� D 1 for all other vertices v (since we don’t know

in advance which vertices can be reached from s), and predŒv� D NULL

for all vertices v. Then we apply a series of relaxation steps to the edges

of the graph:

Procedure RELAX.u; v/

Inputs: u, v: vertices such that there is an edge .u; v/.

Result: The value of shortestŒv� might decrease, and if it does, then

predŒv� becomes u.

1. If shortestŒu� C weight.u; v/ < shortestŒv�, then set shortestŒv� to

shortestŒu� C weight.u; v/ and set predŒv� to u.

When we call RELAX.u; v/, we are determining whether we can im-

prove upon the current shortest path from s to v by taking .u; v/ as the

last edge. We compare the weight of the current shortest path to u plus

the weight of edge .u; v/ with the weight of the current shortest path

to v. If it’s better to take edge .u; v/, then we update shortestŒv� to this

new weight and we set v’s predecessor on a shortest path to be u.

If we relax edges along a shortest path, in order, we get the right

results. You might wonder how we can be assured of relaxing the edges

in order along a shortest path when we don’t even know what the path

is—after all, that’s what we’re trying to find out—but it will turn out to

be easy for a dag. We’re going to relax all the edges in the dag, and

the edges of each shortest path will be interspersed, in order, as we go

through all the edges and relax each one.

Here’s a more precise statement of how relaxing edges along a short-

est path works, and it applies to any directed graph, with or without

cycles:

Start with shortestŒu� D 1 and predŒu� D NULL for all vertices,

except that shortestŒs� D 0 for the source vertex s.

Then relax the edges along a shortest path from s to any ver-

tex v, in order, starting from the edge leaving s and ending with

the edge entering v. Relaxations of other edges may be inter-

spersed freely with the relaxations along this shortest path, but

only relaxations may change any shortest or pred values.

After the edges have been relaxed, v’s shortest and pred values

are correct: shortestŒv� D sp.s; v/ and predŒv� is the vertex pre-

ceding v on some shortest path from s.

Chapter 5: Directed Acyclic Graphs 87

It’s pretty easy to see why relaxing the edges along a shortest path, in

order, works. Suppose that a shortest path from s to v visits the ver-

tices s; v1; v2; v3; : : : ; vk ; v, in that order. After edge .s; v1/ has been

relaxed, shortestŒv1� must have the correct shortest-path weight for v1,

and predŒv1� must be s. After .v1; v2/ has been relaxed, shortestŒv2� and

predŒv2� must be correct. And so on, up through relaxing .vk ; v/, after

which shortestŒv� and predŒv� have their correct values.

This is great news. In a dag, it’s really easy to relax each edge exactly

once yet relax the edges along every shortest path, in order. How? First,

topologically sort the dag. Then consider each vertex, taken in the topo-

logically sorted linear order, and relax all the edges leaving the vertex.

Since every edge must leave a vertex earlier in the linear order and enter

a vertex later in the order, every path in the dag must visit vertices in an

order consistent with the linear order.

Procedure DAG-SHORTEST-PATHS.G; s/

Inputs:
� G: a weighted directed acyclic graph containing a set V of n

vertices and a set E of m directed edges.
� s: a source vertex in V .

Result: For each non-source vertex v in V , shortestŒv� is the weight

sp.s; v/ of a shortest path from s to v and predŒv� is the vertex

preceding v on some shortest path. For the source vertex s,

shortestŒs� D 0 and predŒs� D NULL. If there is no path from s to v,

then shortestŒv� D 1 and predŒv� D NULL.

1. Call TOPOLOGICAL-SORT.G/ and set l to be the linear order of

vertices returned by the call.

2. Set shortestŒv� to 1 for each vertex v except s, set shortestŒs�

to 0, and set predŒv� to NULL for each vertex v.

3. For each vertex u, taken in the order given by l :

A. For each vertex v adjacent to u:

i. Call RELAX.u; v/.

The next page shows a dag with weights appearing next to the edges.

The shortest values from running DAG-SHORTEST-PATHS from source

vertex s appear inside the vertices, and shaded edges indicate the pred

values. The vertices are laid out left to right in the linear order returned

by the topological sort, so that all edges go from left to right. If an

88 Chapter 5: Directed Acyclic Graphs

25

16

3 4

7 –1 –2

2

xtsr y z

∞ 0 2 6 5 3

edge .u; v/ is shaded, then predŒv� is u and shortestŒv� D shortestŒu� C
weight.u; v/; for example, since .x; y/ is shaded, predŒy� D x and

shortestŒy� (which is 5) equals shortestŒx� (which is 6) + weight.x; y/

(which is �1). There is no path from s to r , and so shortestŒr� D 1
and predŒr� D NULL (no shaded edges enter r).

The first iteration of the loop of step 3 relaxes edges .r; s/ and .r; t/

leaving r , but because shortestŒr� D 1, these relaxations do not

change anything. The next iteration of the loop relaxes edges .s; t/

and .s; x/ leaving s, causing shortestŒt � to be set to 2, shortestŒx� to

be set to 6, and both predŒt � and predŒx� to be set to s. The follow-

ing iteration relaxes edges .t; x/, .t; y/, and .t; ´/ leaving t . The value

of shortestŒx� does not change, since shortestŒt � C weight.t; x/, which

is 2 C 7 D 9, is greater than shortestŒx�, which is 6; but shortestŒy�

becomes 6, shortestŒ´� becomes 4, and both predŒy� and predŒ´� are

set to t . The next iteration relaxes edges .x; y/ and .x; ´/ leaving x,

causing shortestŒy� to become 5 and predŒy� to be set to x; shortestŒ´�

and predŒ´� remain unchanged. The final iteration relaxes edge .y; ´/

leaving y, causing shortestŒ´� to become 3 and predŒ´� to be set to y.

You can easily see how DAG-SHORTEST-PATHS runs in ‚.n C m/

time. As we saw, step 1 takes ‚.n C m/ time, and of course step 2

initializes two values for each vertex and therefore takes ‚.n/ time.

As we’ve seen before, the outer loop of step 3 examines each vertex

exactly once, and the inner loop of step 3A examines each edge exactly

once over all iterations. Because each call of RELAX in step 3Ai takes

constant time, step 3 takes ‚.nCm/ time. Adding up the running times

for the steps gives us the ‚.n C m/ for the procedure.

Going back to PERT charts, it’s now easy to see that finding a critical

path takes ‚.n C m/ time, where the PERT chart has n vertices and m

edges. We add the two vertices, start and finish, and we add at most m

edges leaving start and at most m edges entering finish, for a total of at

most 3m edges in the dag. Negating the weights and pushing them from

the vertices to the edges takes ‚.m/ time, and then finding a shortest

path through the resulting dag takes ‚.n C m/ time.

Chapter 5: Directed Acyclic Graphs 89

Further reading

Chapter 22 of CLRS [CLRS09] presents a different algorithm for topo-

logically sorting a dag from the one in this chapter, which appears in

Volume 1 of Knuth’s The Art of Computer Programming [Knu97]. The

method in CLRS is a bit simpler on the surface, but it’s less intuitive

than the approach in this chapter, and it relies on a technique of visit-

ing vertices in a graph known as “depth-first search.” The algorithm for

finding single-source shortest paths in a dag appears in Chapter 24 of

CLRS.

You can read more about PERT charts, which have been in use since

the 1950s, in any one of a number of books about project management.

6 Shortest Paths

In Chapter 5, we saw how to find single-source shortest paths in a di-

rected acyclic graph. The algorithm to do so relied on the graph being

acyclic—no cycles—so that we could first topologically sort the graph’s

vertices.

Most graphs that model real-life situations have cycles, however. For

example, in a graph that models a road network, each vertex represents

an intersection and each directed edge represents a road that you can

travel in one direction between intersections. (Two-way roads would be

represented by two distinct edges, going in opposite directions.) Such

graphs must have cycles, for otherwise once you left an intersection,

you would have no way to return to it. Therefore, when your GPS is

calculating the shortest or fastest route to a destination, the graph it

works with has cycles, and plenty of them.

When your GPS finds the fastest route from your current location to a

specific destination, it is solving the single-pair shortest path problem.

To do so, it probably uses an algorithm that finds all shortest paths from

a single source, but the GPS pays attention only to the shortest path that

it finds to the specific destination.

Your GPS works with a weighted directed graph, where the edge

weights represent either distance or travel time. Because you can’t drive

a negative distance or arrive before you’ve departed, all edge weights in

your GPS’s graph are positive. I suppose that some of them could be 0

for some weird reason, so let’s say that the edge weights are nonnega-

tive. When all edge weights are nonnegative, we don’t have to worry

about negative-weight cycles, and all shortest paths are well defined.

For another example of single-source shortest paths, consider the “six

degrees of Kevin Bacon” game, in which players try to connect movie

actors to Kevin Bacon. In a graph, each vertex represents an actor, and

the graph contains edges .u; v/ and .v; u/ if the actors represented by

vertices u and v have ever appeared in the same film. Given some actor,

a player tries to find the shortest path from the vertex for that actor to

the vertex for Kevin Bacon. The number of edges in the shortest path

(in other words, the shortest-path weight when each edge weight is 1) is

the actor’s “Kevin Bacon number.” As an example, Renée Adorée was

Chapter 6: Shortest Paths 91

in a film with Bessie Love, who was in a movie with Eli Wallach, who

made a film with Kevin Bacon, and so Renée Adorée’s Kevin Bacon

number is 3. Mathematicians have a similar concept in the Erdős num-

ber, which gives the shortest path from the great Paul Erdős to any other

mathematician by a chain of coauthor relationships.1

What about graphs with negative-weight edges? How do they relate

to the real world? We’ll see that we can couch the problem of deter-

mining whether an arbitrage opportunity exists in currency trading as

determining whether a graph that may have negative-weight edges has

a negative-weight cycle.

In terms of algorithms, first we’ll explore Dijkstra’s algorithm for

finding shortest paths from a single source vertex to all other vertices.

Dijkstra’s algorithm works on graphs that have two important differ-

ences from the graphs we saw in Chapter 5: all edge weights must

be nonnegative, and the graph may contain cycles. It is at the core

of how your GPS finds routes. We’ll also examine some choices that

we can make when implementing Dijkstra’s algorithm. Then, we’ll

see the Bellman-Ford algorithm, a remarkably simple method for find-

ing single-source shortest paths even when negative-weight edges are

present. We can use the result of the Bellman-Ford algorithm to deter-

mine whether the graph contains a negative-weight cycle and, if it does,

to identify the vertices and edges on the cycle. Both Dijkstra’s algorithm

and the Bellman-Ford algorithm date back to the late 1950s, so they’ve

stood the test of time. We’ll wrap up with the Floyd-Warshall algorithm

for the all-pairs problem, where we want to find a shortest path between

every pair of vertices.

Just as we did in Chapter 5 for finding shortest paths in a dag, we’ll

assume that we are given a source vertex s and the weight weight.u; v/

of each edge .u; v/, and that we want to calculate, for each vertex v,

the shortest-path weight sp.s; v/ from s to v and the vertex preceding v

on some shortest path from s. We’ll store the results in shortestŒv� and

predŒv�, respectively.

1Believe it or not, there’s even such a thing as an Erdős-Bacon number, which is the

sum of the Erdős and Bacon numbers, and a handful of people have finite Erdős-Bacon

numbers, including Paul Erdős himself!

92 Chapter 6: Shortest Paths

Dijkstra’s algorithm

I like to think of Dijkstra’s algorithm2 as a simulation of sending out

runners over the graph.

Ideally, the simulation works as follows, though we’ll see that Dijk-

stra’s algorithm works slightly differently. It starts by sending out run-

ners from the source vertex to all adjacent vertices. The first time a run-

ner arrives at any vertex, runners immediately leave that vertex, headed

to all of its adjacent vertices. Look at part (a) of this figure:

0

0

(c)

4

0

4

0

5

4 7

0

5

4

8

7

542
9

7

s

t x

y z

(f)

(b)

542
9

7

s

t x

y z

(e)

542
9

7

s

t x

y z

3

3

6

4

(a)

5412
9

7

s

t x

y z

(d)

542
9

7

s

t x

y z

3

3

6

4

1

3

3

6

4

1

3

3

6

4

1

3

3

6

4

1

5

3

3

6

4

5412
9

7

s

t x

y z

It shows a directed graph with source vertex s and weights next to the

edges. Think of the weight of an edge as the number of minutes it would

take a runner to traverse the edge.

2Named after Edsger Dijkstra, who proposed the algorithm in 1959.

Chapter 6: Shortest Paths 93

Part (b) illustrates the start of the simulation, at time 0. At that time,

shown inside vertex s, runners leave s and head toward its two adjacent

vertices, t and y. The blackened vertex s indicates that we know that

shortestŒs� D 0.

Four minutes later, at time 4, the runner to vertex y arrives, shown

in part (c). Because this runner is the first to arrive at y, we know

that shortestŒy� D 4, and so y is blackened in the figure. The shaded

edge .s; y/ indicates that the first runner to arrive at vertex y came from

vertex s, so that predŒy� D s. At time 4, the runner from vertex s to

vertex t is still in transit, and runners leave vertex y at time 4, headed

toward vertices t , x, and ´.

The next event, displayed in part (d), occurs one minute later, at

time 5, when the runner from vertex y arrives at vertex t . The runner

from s to t has yet to arrive. Because the first runner to arrive at vertex t

arrived from vertex y at time 5, we set shortestŒt � to 5 and predŒt � to y

(indicated by the shaded edge .y; t/). Runners leave vertex t , headed

toward vertices x and y at this time.

The runner from vertex s finally arrives at vertex t at time 6, but the

runner from vertex y had already arrived there a minute earlier, and so

the effort of the runner from s to t went for naught.

At time 7, depicted in part (e), two runners arrive at their destinations.

The runner from vertex t to vertex y arrives, but the runner from s to y

had already arrived at time 4, and so the simulation forgets about the

runner from t to y. At the same time, the runner from y arrives at

vertex ´. We set shortestŒ´� to 7 and predŒ´� to y, and runners leave

vertex ´, headed toward vertices s and x.

The next event occurs at time 8, as shown in part (f), when the runner

from vertex t arrives at vertex x. We set shortestŒx� to 8 and predŒx�

to t , and a runner leaves vertex x, heading to vertex ´.

At this point, every vertex has had a runner arrive, and the simulation

can stop. All runners still in transit will arrive at their destination ver-

tices after some other runner had already arrived. Once every vertex has

had a runner arrive, the shortest value for each vertex equals the weight

of the shortest path from vertex s and the pred value for each vertex is

the predecessor on a shortest path from s.

That was how the simulation proceeds ideally. It relied on the time

for a runner to traverse an edge equaling the weight of the edge. Dijk-

stra’s algorithm works slightly differently. It treats all edges the same,

so that when it considers the edges leaving a vertex, it processes the ad-

94 Chapter 6: Shortest Paths

jacent vertices together, and in no particular order. For example, when

Dijkstra’s algorithm processes the edges leaving vertex s in the figure on

page 92, it declares that shortestŒy� D 4, shortestŒt � D 6, and predŒy�

and predŒt � are both s—so far. When Dijkstra’s algorithm later consid-

ers the edge .y; t/, it decreases the weight of the shortest path to vertex t

that it has found so far, so that shortestŒt � goes from 6 to 5 and predŒt �

switches from s to y.

Dijkstra’s algorithm works by calling the RELAX procedure from

page 86 once per edge. Relaxing an edge .u; v/ corresponds to a runner

from vertex u arriving at vertex v. The algorithm maintains a set Q of

vertices for which the final shortest and pred values are not yet known;

all vertices not in Q have their final shortest and pred values. After ini-

tializing shortestŒs� to 0 for the source vertex s, shortestŒv� to 1 for all

other vertices, and predŒv� to NULL for all vertices, it repeatedly finds

the vertex u in set Q with the lowest shortest value, removes that vertex

from Q, and relaxes all the edges leaving u. Here is the procedure:

Procedure DIJKSTRA.G; s/

Inputs:
� G: a directed graph containing a set V of n vertices and a set E of

m directed edges with nonnegative weights.
� s: a source vertex in V .

Result: For each non-source vertex v in V , shortestŒv� is the weight

sp.s; v/ of a shortest path from s to v and predŒv� is the vertex

preceding v on some shortest path. For the source vertex s,

shortestŒs� D 0 and predŒs� D NULL. If there is no path from s to v,

then shortestŒv� D 1 and predŒv� D NULL. (Same as

DAG-SHORTEST-PATHS on page 87.)

1. Set shortestŒv� to 1 for each vertex v except s, set shortestŒs�

to 0, and set predŒv� to NULL for each vertex v.

2. Set Q to contain all vertices.

3. While Q is not empty, do the following:

A. Find the vertex u in set Q with the lowest shortest value and

remove it from Q.

B. For each vertex v adjacent to u:

i. Call RELAX.u; v/.

Chapter 6: Shortest Paths 95

In the following figure, each part shows the shortest value (appearing

within each vertex), the pred value (indicated by shaded edges), and

the set Q (the vertices that are shaded, not blackened) just before each

iteration of the loop in step 3.

0

∞ ∞

∞ ∞

0

∞

∞

(c)

6

4

0

5

4

13

7

0

5

4

8

7

0

5

4

8

7

0

4

8

7

5

542
9

7

s

t x

y z

(f)

542
9

7

s

t x

y z

(b)

542
9

7

s

t x

y z

(e)

542
9

7

s

t x

y z

3

3

6

4

(a)

5412
9

7

s

t x

y z

(d)

542
9

7

s

t x

y z

3

3

6

4

1

3

3

6

4

1

3

3

6

4

1

3

3

6

4

1

3

3

6

4

1

The vertex that is newly blackened in each part of the figure is the vertex

chosen as vertex u in step 3A. In the simulation with runners, once a

vertex receives shortest and pred values, they cannot change, but here

a vertex could receive shortest and pred values from relaxing one edge,

and a later relaxation of some other edge could change these values.

For example, after edge .y; x/ is relaxed in part (c) of the figure, the

value of shortestŒx� decreases from 1 to 13, and predŒx� becomes y.

The next iteration of the loop in step 3 (part (d)) relaxes edge .t; x/, and

shortestŒx� decreases further, to 8, and predŒx� becomes t . In the next

iteration (part (e)), edge .´; x/ is relaxed, but this time shortestŒx� does

not change, because its value, 8, is less than shortestŒ´� C weight.´; x/,

which equals 12.

Dijkstra’s algorithm maintains the following loop invariant:

96 Chapter 6: Shortest Paths

At the start of each iteration of the loop in step 3, shortestŒv� D
sp.s; v/ for each vertex v not in the set Q. That is, for each

vertex v not in Q, the value of shortestŒv� is the weight of a

shortest path from s to v.

Here’s a simplified version of the reasoning behind this loop invari-

ant. (A formal proof is a bit more involved.) Initially, all vertices are

in set Q, and so the loop invariant applies to no vertices upon enter-

ing the first iteration of the loop in step 3. Assume that as we enter

an iteration of this loop, all vertices not in the set Q have their correct

shortest-path weights in their shortest values. Then every edge leaving

these vertices has been relaxed in some execution of step 3Bi. Consider

the vertex u in Q with the lowest shortest value. Its shortest value can

never again decrease. Why not? Because the only edges remaining to

be relaxed are edges leaving vertices in Q, and every vertex in Q has

a shortest value at least as large as shortestŒu�. Since all edge weights

are nonnegative, we must have shortestŒu� � shortestŒv� C weight.v; u/

for every vertex v in Q, and so no future relaxation step will decrease

shortestŒu�. Therefore, shortestŒu� is as low as it can go, and we can

remove vertex u from set Q and relax all edges leaving u. When the

loop of step 3 terminates, the set Q is empty, and so all vertices have

their correct shortest-path weights in their shortest values.

We can begin to analyze the running time of the DIJKSTRA proce-

dure, but to analyze it in full, we are going to have to first decide upon

some implementation details. Recall from Chapter 5 that we denote the

number of vertices by n and the number of edges by m, and m � n2.

We know that step 1 takes ‚.n/ time. We also know that the loop of

step 3 iterates exactly n times, because the set Q initially contains all n

vertices, each iteration of the loop removes one vertex from Q, and ver-

tices are never added back into Q. The loop of step 3A processes each

vertex and each edge exactly once over the course of the algorithm (we

saw the same idea in the TOPOLOGICAL-SORT and DAG-SHORTEST-

PATHS procedures in Chapter 5).

What’s left to analyze? We need to understand how long it takes to

put all n vertices into the set Q (step 2), how long it takes to determine

which vertex in Q has the lowest shortest value and remove this vertex

from Q (step 3A), and what bookkeeping adjustments we need to make,

if any, when a vertex’s shortest and pred values change due to calling

RELAX. Let’s name these operations:

Chapter 6: Shortest Paths 97

� INSERT.Q; v/ inserts vertex v into set Q. (Dijkstra’s algorithm calls

INSERT n times.)

� EXTRACT-MIN.Q/ removes the vertex in Q with the minimum

shortest value and returns this vertex to its caller. (Dijkstra’s al-

gorithm calls EXTRACT-MIN n times.)

� DECREASE-KEY.Q; v/ performs whatever bookkeeping is neces-

sary in Q to record that shortestŒv� was decreased by a call of RE-

LAX. (Dijkstra’s algorithm calls DECREASE-KEY up to m times.)

These three operations, taken together, define a priority queue.

The descriptions of the priority queue operations say just what the

operations do, and not how they do it. In software design, separating

what operations do from how they do it is known as abstraction. We

call the set of operations, specified by what they do but not how they do

it, an abstract data type, or ADT, so that a priority queue is an ADT.

We can implement the priority queue operations—the how—by any

one of several data structures. A data structure is a specific way to store

and access data in a computer—for example, an array. In the case of pri-

ority queues, we’ll see three different data structures that can implement

the operations. Software designers should be able to plug in any data

structure that implements the operations of an ADT. But it’s not quite

so simple when we think about algorithms. That’s because for different

data structures, the way they implement operations may take differing

amounts of time. Indeed, the three different data structures we’ll see for

implementing the priority queue ADT yield different running times for

Dijkstra’s algorithm.

A rewritten version of the DIJKSTRA procedure, explicitly calling the

priority queue operations, appears on the following page. Let’s examine

the three data structures to implement the priority queue operations and

see how they affect the running time of Dijkstra’s algorithm.

Simple array implementation

The simplest way to implement the priority queue operations is to store

the vertices in an array with n positions. If the priority queue currently

contains k vertices, then they are in the first k positions of the array, in

no particular order. Along with the array, we need to maintain a count

of how many vertices it currently contains. The INSERT operation is

easy: just add the vertex to the next unused position in the array and

increment the count. DECREASE-KEY is even easier: do nothing! Both

of these operations take constant time. The EXTRACT-MIN operation

98 Chapter 6: Shortest Paths

Procedure DIJKSTRA.G; s/

Inputs and Result: Same as before.

1. Set shortestŒv� to 1 for each vertex v except s, set shortestŒs�

to 0, and set predŒv� to NULL for each vertex v.

2. Make Q an empty priority-queue.

3. For each vertex v:

A. Call INSERT.Q; v/.

4. While Q is not empty, do the following:

A. Call EXTRACT-MIN.Q/ and set u to hold the returned vertex.

B. For each vertex v adjacent to u:

i. Call RELAX.u; v/.

ii. If the call to RELAX.u; v/ decreased the value of

shortestŒv�, then call DECREASE-KEY.Q; v/.

takes O.n/ time, however, since we have to look at all the vertices cur-

rently in the array to find the one with the lowest shortest value. Once

we identify this vertex, deleting it is easy: just move the vertex in the last

position into the position of the deleted vertex and then decrement the

count. The n EXTRACT-MIN calls take O.n2/ time. Although the calls

to RELAX take O.m/ time, recall that m � n2. With this implemen-

tation of the priority queue therefore, Dijkstra’s algorithm takes O.n2/

time, with the time dominated by the time spent in EXTRACT-MIN.

Binary heap implementation

A binary heap organizes data as a binary tree stored in an array. A

binary tree is a type of graph, but we refer to its vertices as nodes,

the edges are undirected, and each node has 0, 1, or 2 nodes below it,

which are its children. On the left side of the figure on the next page is

an example of a binary tree, with the nodes numbered. Nodes with no

children, such as nodes 6 through 10, are leaves.3

3Computer scientists find it easier to draw trees with the root at the top and branches

heading downward than to draw them like real trees, with the root at the bottom and

branches heading upward.

Chapter 6: Shortest Paths 99

2 4 14 10 8 1815 161117

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

2

4

810

11

1815

16

14

17

A binary heap is a binary tree with three additional properties. First,

the tree is completely filled on all levels, except possibly the lowest,

which is filled from the left up to a point. Second, each node contains

a key, shown inside each node in the figure. Third, the keys obey the

heap property: the key of each node is less than or equal to the keys of

its children. The binary tree in the figure is also a binary heap.

We can store a binary heap in an array, as shown on the right in the

figure. Because of the heap property, the node with the minimum key

must always be at position 1. The children of the node at position i are at

positions 2i and 2i C 1, and the node above the node at position i—its

parent—is at position bi=2c. It is easy to navigate up and down within

a binary heap when we store it in an array.

A binary heap has one other important characteristic: if it consists of

n nodes, then its height—the number of edges from the root down to

the farthest leaf—is only blg nc. Therefore, we can traverse a path from

the root down to a leaf, or from a leaf up to the root, in only O.lg n/

time.

Because binary heaps have height blg nc, we can perform the three

priority queue operations in O.lg n/ time each. For INSERT, add a new

leaf at the first available position. Then, as long as the key in the node

is greater than the key in its parent, exchange the contents4 of the node

with the contents of its parent, and move up one level toward the root.

In other words, “bubble up” the contents toward the root until the heap

property holds. Since the path to the root has at most blg nc edges, at

most blg nc � 1 exchanges occur, and so INSERT takes O.lg n/ time. To

perform DECREASE-KEY, use the same idea: decrease the key and then

4The contents of a node includes the key and any other information associated with the

key, such as which vertex is associated with this node.

100 Chapter 6: Shortest Paths

bubble up the contents toward the root until the heap property holds,

again taking O.lg n/ time. To perform EXTRACT-MIN, save the con-

tents of the root to return to the caller. Next, take the last leaf (the

highest-numbered node) and put its contents into the root position. Then

“bubble down” the contents of the root, exchanging the contents of the

node and the child whose key is smaller, until the heap property holds.

Finally, return the saved contents of the root. Again, because the path

from the root down to a leaf has at most blg nc edges, at most blg nc � 1

exchanges occur, and so EXTRACT-MIN takes O.lg n/ time.

When Dijkstra’s algorithm uses the binary-heap implementation of

a priority queue, it spends O.n lg n/ time inserting vertices, O.n lg n/

time in EXTRACT-MIN operations, and O.m lg n/ time in DECREASE-

KEY operations. (Actually, inserting the n vertices takes just ‚.n/

time, since initially just the source vertex s has a shortest value of 0

and all other vertices have shortest values of 1.) When the graph is

sparse—the number m of edges is much less than n2—implementing

the priority queue with a binary heap is more efficient than using a sim-

ple array. Graphs that model road networks are sparse, since the average

intersection has about four roads leaving it, and so m would be about 4n.

On the other hand, when the graph is dense—m is close to n2, so that

the graph contains many edges—the O.m lg n/ time that Dijkstra’s al-

gorithm spends in DECREASE-KEY calls can make it slower than using

a simple array for the priority queue.

One other thing about binary heaps: we can use them to sort in

O.n lg n/ time:

Procedure HEAPSORT.A; n/

Inputs:
� A: an array.
� n: the number of elements in A to sort.

Output: An array B containing the elements of A, sorted.

1. Build a binary heap Q from the elements of A.

2. Let BŒ1 : : n� be a new array.

3. For i D 1 to n:

A. Call EXTRACT-MIN.Q/ and set BŒi� to the value returned.

4. Return the B array.

Chapter 6: Shortest Paths 101

Step 1 converts the input array into a binary heap, which we can do in

one of two ways. One way is to start with an empty binary heap and

then insert each element of the array, taking O.n lg n/ time. The other

way builds the binary heap directly within the array, working from the

bottom up, taking only O.n/ time. It’s also possible to sort using a heap

in place, so that we don’t need the extra B array.

Fibonacci heap implementation

We can also implement a priority queue by a complicated data struc-

ture called a “Fibonacci heap,” or “F-heap.” With an F-heap, the n

INSERT and EXTRACT-MIN calls take a total of O.n lg n/ time, and the

m DECREASE-KEY calls take a total of ‚.m/ time, and so Dijkstra’s al-

gorithm takes only O.n lg n C m/ time. In practice, people do not often

use F-heaps, for a couple of reasons. One is that an individual operation

might take much longer than the average, although in total the opera-

tions take the times given above. The second reason is that F-heaps are

a bit complicated, and so the constant factors hidden in the asymptotic

notation are not as good as for binary heaps.

The Bellman-Ford algorithm

If some edge weights are negative, then Dijkstra’s algorithm could re-

turn incorrect results. The Bellman-Ford algorithm5 can handle nega-

tive edge weights, and we can use its output to detect and help identify

a negative-weight cycle.

The Bellman-Ford algorithm is remarkably simple. After initializing

the shortest and pred values, it just relaxes all m edges n � 1 times.

The procedure appears on the next page, and the figure below it demon-

strates how the algorithm operates on a small graph. The source vertex

is s, the shortest values appear within the vertices, and the shaded edges

indicate pred values: if edge .u; v/ is shaded, then predŒv� D u. In

this example, we assume that each pass over all the edges relaxes them

in the fixed order .t; x/; .t; y/; .t; ´/; .x; t/; .y; x/; .y; ´/; .´; x/; .´; s/;

.s; t/; .s; y/. Part (a) shows the situation just before the first pass, and

parts (b) through (e) show the situation after each successive pass. The

shortest and pred values in part (e) are the final values.

5Based on separate algorithms by Richard Bellman from 1958 and Lester Ford

from 1962.

102 Chapter 6: Shortest Paths

Procedure BELLMAN-FORD.G; s/

Inputs:
� G: a directed graph containing a set V of n vertices and a set E of

m directed edges with arbitrary weights.
� s: a source vertex in V .

Result: Same as DIJKSTRA (page 94).

1. Set shortestŒv� to 1 for each vertex v except s, set shortestŒs�

to 0, and set predŒv� to NULL for each vertex v.

2. For i D 1 to n � 1:

A. For each edge .u; v/ in E:

i. Call RELAX.u; v/.

(a) (b)

(c) (d)

0

5

9

78

6

7

(e)

t x

s

y z

 –4

 –3

 –22

7

4

–2

2

0

5

9

78

6

7

t x

s

y z

 –4

 –3

 –22

7

4

2

2

0

5

9

78

6

7

t x

s

y z

 –4

 –3

 –26

7

4

2

2

0

5

9

78

6

7

t x

s

y z

 –4

 –3

 –26

7

∞

∞

2

0

5

9

78

6

7

t x

s

y z

 –4

 –3

 –2 ∞

∞

2

∞

∞

Chapter 6: Shortest Paths 103

How can an algorithm this simple possibly produce the right answer?

Consider a shortest path from the source s to any vertex v. Recall from

page 86 that if we relax the edges, in order, along a shortest path from s

to v, then shortestŒv� and predŒv� are correct. Now, if negative-weight

cycles are disallowed, then there is always a shortest path from s to v

that does not contain a cycle. Why? Suppose that a shortest path from s

to v contains a cycle. Because the cycle must have nonnegative weight,

we could excise the cycle and end up with a path from s to v whose

weight is no higher than the path containing the cycle. Every acyclic

path must contain at most n � 1 edges, for if a path contains n edges

then it must visit some vertex twice, which would make a cycle. Thus,

if there is a shortest path from s to v, then there is one that contains at

most n � 1 edges. The first time that step 2A relaxes all edges, it must

relax the first edge on this shortest path. The second time that step 2A

relaxes all edges, it must relax the second edge on the shortest path,

and so on. After the .n � 1/st time, all edges on the shortest path have

been relaxed, in order, and therefore shortestŒv� and predŒv� are correct.

Pretty slick!

Now suppose that the graph contains a negative-weight cycle and

we’ve already run the BELLMAN-FORD procedure on it. You can go

around and around a negative-weight cycle, getting a lower-weight path

each time around. That means that there is at least one edge .u; v/ on

the cycle for which shortestŒv� will decrease if you relax it again—even

though this edge has already been relaxed n � 1 times.

So here’s how to find a negative-weight cycle, if one exists, after run-

ning BELLMAN-FORD. Go through the edges once again. If we find an

edge .u; v/ for which shortestŒu� C weight.u; v/ < shortestŒv�, then we

know that vertex v is either on a negative-weight cycle or is reachable

from one. We can find a vertex on the negative-weight cycle by tracing

back the pred values from v, keeping track of which vertices we’ve vis-

ited until we reach a vertex x that we’ve visited before. Then we can

trace back pred values from x until we get back to x, and all vertices

in between, along with x, will constitute a negative-weight cycle. The

procedure FIND-NEGATIVE-WEIGHT-CYCLE on the next page shows

how to determine whether a graph has a negative-weight cycle, and how

to construct one if it does.

It’s easy to analyze the running time of the Bellman-Ford algorithm.

The loop of step 2 iterates n � 1 times, and each time it runs, the loop

of step 2A iterates m times, once per edge. The total running time,

104 Chapter 6: Shortest Paths

Procedure FIND-NEGATIVE-WEIGHT-CYCLE.G/

Input: G: a directed graph containing a set V of n vertices and a

set E of m directed edges with arbitrary weights on which the

BELLMAN-FORD procedure has already been run.

Output: Either a list of vertices in a negative-weight cycle, in order, or

an empty list if the graph has no negative-weight cycles.

1. Go through all edges to find any edge .u; v/ such that

shortestŒu� C weight.u; v/ < shortestŒv�.

2. If no such edge exists, then return an empty list.

3. Otherwise (there is some edge .u; v/ for which

shortestŒu� C weight.u; v/ < shortestŒv�), do the following:

A. Let visited be a new array with one element for each vertex.

Set all elements of visited to FALSE.

B. Set x to v.

C. While visitedŒx� is FALSE, do the following:

i. Set visitedŒx� to TRUE.

ii. Set x to predŒx�

D. At this point, we know that x is a vertex on a negative-weight

cycle. Set v to predŒx�.

E. Create a list cycle of vertices initially containing just x.

F. While v is not x, do the following:

i. Insert vertex v at the beginning of cycle.

ii. Set v to predŒv�.

G. Return cycle.

therefore, is ‚.nm/. To find whether a negative-weight cycle exists,

relax each edge once more until either relaxing changes a shortest value

or all edges have been relaxed, taking O.m/ time. If there is a negative-

weight cycle, it can contain at most n edges, and so the time to trace it

out is O.n/.

At the beginning of this chapter, I promised to show how negative-

weight cycles relate to arbitrage opportunities in currency trading. Ex-

change rates for currencies fluctuate rapidly. Imagine that at some mo-

ment in time, the following exchange rates are in effect:

Chapter 6: Shortest Paths 105

1 U.S. dollar buys 0:7292 euros

1 euro buys 105:374 Japanese yen

1 Japanese yen buys 0:3931 Russian rubles

1 Russian ruble buys 0:0341 U.S. dollars

Then you could take 1 U.S. dollar, buy 0:7292 euros with it, take

the 0:7292 euros and buy 76:8387 yen (because 0:7292 � 105:374 D
76:8387, to four decimal places), take the 76:8387 yen and buy 30:2053

rubles (because 76:8387 � 0:3931 D 30:2053, to four decimal places),

and finally take the 30:2053 rubles and buy 1:03 dollars (because

30:2053 � 0:0341 D 1:0300, to four decimal places). If you could per-

form all four transactions before the exchange rates change, you could

make a 3% return on your 1-dollar investment. Start with one million

dollars, and you make a 30-thousand-dollar profit for doing nothing!

Such a scenario is an arbitrage opportunity. Here’s how to find an

arbitrage opportunity by finding a negative-weight cycle. Suppose that

you’re looking at n currencies c1; c2; c3; : : : ; cn, and you have all the

exchange rates between pairs of currencies. Suppose that with 1 unit

of currency ci you can buy rij units of currency cj , so that rij is the

exchange rate between currencies ci and cj . Here, both i and j range

from 1 to n. (Presumably, ri i D 1 for each currency ci .)

An arbitrage opportunity would correspond to a sequence of k curren-

cies hcj1
; cj2

; cj3
; : : : ; cjk

i such that when you multiply out the exchange

rates, you get a product strictly greater than 1:

rj1;j2
� rj2;j3

� � � rjk�1;jk
� rjk ;j1

> 1 :

Now take logarithms of both sides. It doesn’t matter what base we use,

so let’s make like computer scientists and use base 2. Because the log-

arithm of a product is the sum of the individual logarithms—that is,

lg.x � y/ D lg x C lg y—we’re looking for a situation in which

lg rj1;j2
C lg rj2;j3

C � � � C lg rjk�1;jk
C lg rjk ;j1

> 0 :

Negating both sides of this inequality gives

.� lg rj1;j2
/ C .� lg rj2;j3

/ C � � � C .� lg rjk�1;jk
/ C .� lg rjk ;j1

/ < 0 ;

which corresponds to a cycle with edge weights that are the negatives

of the logarithms of the exchange rates.

To find an arbitrage opportunity, if one exists, construct a directed

graph with one vertex vi for each currency ci . For each pair of curren-

cies ci and cj , create directed edges .vi ; vj / and .vj ; vi / with weights

106 Chapter 6: Shortest Paths

� lg rij and � lg rj i , respectively. Add a new vertex s with a 0-weight

edge .s; vi / to each of the vertices v1 through vn. Run the Bellman-Ford

algorithm on this graph with s as the source vertex, and use the result to

determine whether it contains a negative-weight cycle. If it does, then

the vertices on that cycle correspond to the currencies in an arbitrage

opportunity. The total number of edges m is n C n.n � 1/ D n2, and

so the Bellman-Ford algorithm takes O.n3/ time, plus another O.n2/ to

find whether there is a negative-weight cycle, and another O.n/ to trace

it out, if one exists. Although O.n3/ time seems slow, in practice it’s

not so bad because the constant factors in the running times of the loops

are low. I coded up the arbitrage program on my 2.4-GHz MacBook Pro

and ran it with 182 currencies, which is how many the entire world has.

Once I had loaded in the exchange rates (I chose random values for the

exchange rates), the program took approximately 0:02 seconds to run.

The Floyd-Warshall algorithm

Now suppose that you want to find a shortest path from every vertex to

every vertex. That’s the all-pairs shortest-paths problem.

The classic example of all-pairs shortest paths—which I have seen

several authors refer to—is the table that you see in a road atlas giving

distances between several cities. You find the row for one city, you find

the column for the other city, and the distance between them lies at the

intersection of the row and column.

There is one problem with this example: it’s not all-pairs. If it were

all pairs, the table would have one row and one column for every inter-

section, not for just every city. The number of rows and columns for just

the U.S. would be in the millions. No, the way to make the table you

see in an atlas is to find single-source shortest paths from each city and

then put a subset of the results—shortest paths to just the other cities,

not to all intersections—into the table.

What would be a legitimate application of all-pairs shortest paths?

Finding the diameter of a network: the longest of all shortest paths. For

example, suppose that a directed graph represents a communication net-

work, and the weight of an edge gives the time it takes for a message to

traverse a communication link. Then the diameter gives you the longest

possible transit time for a message in the network.

Of course, we can compute all-pairs shortest paths by computing

single-source shortest paths from each vertex in turn. If all edge weights

are nonnegative, we can run Dijkstra’s algorithm from each of the n

Chapter 6: Shortest Paths 107

vertices, each call taking O.m lg n/ time if we use a binary heap or

O.n lg n C m/ time if we use a Fibonacci heap, for a total running time

of either O.nm lg n/ or O.n2 lg nCnm/. If the graph is sparse, that ap-

proach works well. But if the graph is dense, so that m is near n2, then

O.nm lg n/ is O.n3 lg n/. Even with a dense graph and a Fibonacci

heap, O.n2 lg n C mn/ is O.n3/, and the constant factor induced by the

Fibonacci heap can be significant. Of course, if the graph may contain

negative-weight edges, then we cannot use Dijkstra’s algorithm, and

running the Bellman-Ford algorithm from each of n vertices on a dense

graph gives a running time of ‚.n2m/, which is ‚.n4/.

Instead, by using the Floyd-Warshall algorithm,6 we can solve the all-

pairs problem in ‚.n3/ time—regardless of whether the graph is sparse,

dense, or in between, and even allowing the graph to have negative-

weight edges but no negative-weight cycles—and the constant factor

hidden in the ‚-notation is small. Moreover, the Floyd-Warshall al-

gorithm illustrates a clever algorithmic technique called “dynamic pro-

gramming.”

The Floyd-Warshall algorithm relies on an obvious property of short-

est paths. Suppose that you’re driving from New York City to Seattle

along a shortest route, and that this shortest route from New York to

Seattle passes through Chicago and then through Spokane before arriv-

ing at Seattle. Then the portion of the shortest route from New York

to Seattle that goes from Chicago to Spokane must itself be a shortest

route from Chicago to Spokane. Why is that? Because if there were a

shorter route from Chicago to Spokane, we would have used it in the

shortest route from New York to Seattle! Like I said, obvious. To apply

this principle to directed graphs:

If a shortest path, call it p, from vertex u to vertex v goes from

vertex u to vertex x to vertex y to vertex v, then the portion of p

that is between x and y is itself a shortest path from x to y. That

is, any subpath of a shortest path is itself a shortest path.

The Floyd-Warshall algorithm keeps track of path weights and vertex

predecessors in arrays indexed in not just one dimension, but in three

dimensions. You can think of a one-dimensional array as a table, just

as we saw on page 11. A two-dimensional array would be like a ma-

trix, such as the adjacency matrix on page 79; you need two indices

6Named after Robert Floyd and Stephen Warshall.

108 Chapter 6: Shortest Paths

(row and column) to identify an entry. You can also think of a two-

dimensional array as a one-dimensional array in which each entry is

itself a one-dimensional array. A three-dimensional array would be like

a one-dimensional array of two-dimensional arrays; you need an index

in each of the three dimensions to identify an entry. We’ll use com-

mas to separate the dimensions when indexing into a multidimensional

array.

In the Floyd-Warshall algorithm, we assume that the vertices are

numbered from 1 to n. Vertex numbers become important, because the

Floyd-Warshall algorithm uses the following definition:

shortestŒu; v; x� is the weight of a shortest path from vertex u to

vertex v in which each intermediate vertex—a vertex on the path

other than u and v—is numbered from 1 to x.

(So think of u, v, and x as integers in the range 1 to n that represent ver-

tices.) This definition does not require the intermediate vertices to con-

sist of all x vertices numbered 1 to x; it just requires each intermediate

vertex—however many there are—to be numbered x or lower. Since all

vertices are numbered at most n, it must be the case that shortestŒu; v; n�

equals sp.u; v/, the weight of a shortest path from u to v.

Let’s consider two vertices u and v, and pick a number x in the range

from 1 to n. Consider all paths from u to v in which all intermediate

vertices are numbered at most x. Of all these paths, let path p be one

with minimum weight. Path p either contains vertex x or it does not,

and we know that, other than possibly u or v, it does not contain any

vertex numbered higher than x. There are two possibilities:

� First possibility: x is not an intermediate vertex in path p. Then all

intermediate vertices of path p are numbered at most x � 1. What

does this mean? It means that the weight of a shortest path from u

to v with all intermediate vertices numbered at most x is the same

as the weight of a shortest path from u to v with all intermediate

vertices numbered at most x � 1. In other words, shortestŒu; v; x�

equals shortestŒu; v; x � 1�.

� Second possibility: x appears as an intermediate vertex in path p.

Because any subpath of a shortest path is itself a shortest path, the

portion of path p that goes from u to x is a shortest path from u

to x. Likewise, the portion of p that goes from x to v is a shortest

path from x to v. Because vertex x is an endpoint of each of these

subpaths, it is not an intermediate vertex in either of them, and so

Chapter 6: Shortest Paths 109

the intermediate vertices in each of these subpaths are all numbered

at most x � 1. Therefore, the weight of a shortest path from u to v

with all intermediate vertices numbered at most x is the sum of the

weights of two shortest paths: one from u to x with all intermediate

vertices numbered at most x � 1, and one from x to v, also with

all intermediate vertices numbered at most x � 1. In other words,

shortestŒu; v; x� equals shortestŒu; x; x � 1� C shortestŒx; v; x � 1�.

Because either x is an intermediate vertex in a shortest path from u

to v or it’s not, we can conclude that shortestŒu; v; x� is the smaller of

shortestŒu; x; x � 1� C shortestŒx; v; x � 1� and shortestŒu; v; x � 1�.

The best way to represent the graph in the Floyd-Warshall algorithm

is by a variant of the adjacency-matrix representation from pages 78–79.

Instead of each matrix element being constrained to 0 or 1, the entry for

edge .u; v/ holds the weight of the edge, with a weight of 1 indicating

that the edge is absent. Since shortestŒu; v; 0� denotes the weight of

a shortest path from u to v with all intermediate vertices numbered at

most 0, such a path has no intermediate vertices. That is, it consists

of just a single edge, and so this matrix is exactly what we want for

shortestŒu; v; 0�.

Given the shortestŒu; v; 0� values (which are the edge weights), the

Floyd-Warshall algorithm computes shortestŒu; v; x� values first for all

pairs of vertices u and v with x set to 1. Then the algorithm computes

shortestŒu; v; x� values for all pairs of vertices u and v with x set to 2.

Then for x set to 3, and so on, up through n.

How about keeping track of predecessors? Let’s define predŒu; v; x�

analogously to how we defined shortestŒu; v; x�, as the predecessor of

vertex v on a shortest path from vertex u in which all intermediate ver-

tices are numbered at most x. We can update the predŒu; v; x� values as

we compute the shortestŒu; v; x� values, as follows. If shortestŒu; v; x�

is the same as shortestŒu; v; x � 1�, then the shortest path that we’ve

found from u to v with all intermediate vertices numbered at most x

is the same as the one with all intermediate vertices numbered at

most x � 1. Vertex v’s predecessor must be the same in both paths,

and so we can set predŒu; v; x� to be the same as predŒu; v; x �1�. What

about when shortestŒu; v; x� is less than shortestŒu; v; x � 1�? That hap-

pens when we find a path from u to v that has vertex x as an intermediate

vertex and has lower weight than the shortest path from u to v with all

intermediate vertices numbered at most x �1. Because x must be an in-

termediate vertex on this newly found shortest path, v’s predecessor on

110 Chapter 6: Shortest Paths

the path from u must be the same as v’s predecessor on the path from x.

In this case, we set predŒu; v; x� to be the same as predŒx; v; x � 1�.

We now have all the pieces we need to assemble the Floyd-Warshall

algorithm. Here’s the procedure:

Procedure FLOYD-WARSHALL.G/

Input: G: a graph represented by a weighted adjacency matrix W

with n rows and n columns (one row and one column per vertex).

The entry in row u and column v, denoted wuv, is the weight of

edge .u; v/ if this edge is present in G, and it is 1 otherwise.

Output: For each pair of vertices u and v, the value of shortestŒu; v; n�

contains the weight of a shortest path from u to v, and predŒu; v; n� is

the predecessor vertex of v on a shortest path from u.

1. Let shortest and pred be new n � n � .n C 1/ arrays.

2. For each u and v from 1 to n:

A. Set shortestŒu; v; 0� to wuv.

B. If .u; v/ is an edge in G, then set predŒu; v; 0� to u. Otherwise,

set predŒu; v; 0� to NULL.

3. For x D 1 to n:

A. For u D 1 to n:

i. For v D 1 to n:

a. If shortestŒu; v; x� < shortestŒu; x; x � 1� C
shortestŒx; v; x � 1�, then set shortestŒu; v; x� to

shortestŒu; x; x � 1� C shortestŒx; v; x � 1� and set

predŒu; v; x� to predŒx; v; x � 1�.

b. Otherwise, set shortestŒu; v; x� to shortestŒu; v; x � 1�

and set predŒu; v; x� to predŒu; v; x � 1�.

4. Return the shortest and pred arrays.

For this graph

1 2

4 3

3

81
4

–5

2

the adjacency matrix W , containing the edge weights, is

Chapter 6: Shortest Paths 111

0

B

B

@

0 3 8 1
1 0 1 1

1 4 0 1
2 1 �5 0

1

C

C

A

;

which also gives the shortestŒu; v; 0� values7 (the weights of paths with

at most one edge). For example, shortestŒ2; 4; 0� is 1, because we can

get from vertex 2 to vertex 4 directly, with no intermediate vertices, by

taking edge .2; 4/ with weight 1. Similarly, shortestŒ4; 3; 0� is �5. Here

is a matrix giving the predŒu; v; 0� values:
0

B

B

@

NULL 1 1 NULL

NULL NULL NULL 2

NULL 3 NULL NULL

4 NULL 4 NULL

1

C

C

A

:

For example, predŒ2; 4; 0� is 2 because the predecessor of vertex 4 is

vertex 2, using the edge .2; 4/, with weight 1, and predŒ2; 3; 0� is NULL

because there is no edge .2; 3/.

After running the loop of step 3 for x D 1 (to examine paths that

may include vertex 1 as an intermediate vertex), the shortestŒu; v; 1�

and predŒu; v; 1� values are
0

B

B

@

0 3 8 1
1 0 1 1

1 4 0 1
2 5 �5 0

1

C

C

A

and

0

B

B

@

NULL 1 1 NULL

NULL NULL NULL 2

NULL 3 NULL NULL

4 1 4 NULL

1

C

C

A

:

After the loop runs for x D 2, the shortestŒu; v; 2� and predŒu; v; 2�

values are
0

B

B

@

0 3 8 4

1 0 1 1

1 4 0 5

2 5 �5 0

1

C

C

A

and

0

B

B

@

NULL 1 1 2

NULL NULL NULL 2

NULL 3 NULL 2

4 1 4 NULL

1

C

C

A

:

After x D 3:
0

B

B

@

0 3 8 4

1 0 1 1

1 4 0 5

2 �1 �5 0

1

C

C

A

and

0

B

B

@

NULL 1 1 2

NULL NULL NULL 2

NULL 3 NULL 2

4 3 4 NULL

1

C

C

A

:

7Because a three-dimensional array is a one-dimensional array of two-dimensional ar-

rays, for a fixed value of x we can think of shortestŒu; v; x� as a two-dimensional array.

112 Chapter 6: Shortest Paths

And our final shortestŒu; v; 4� and predŒu; v; 4� values, after running the

loop for x D 4, are
0

B

B

@

0 3 �1 4

3 0 �4 1

7 4 0 5

2 �1 �5 0

1

C

C

A

and

0

B

B

@

NULL 1 4 2

4 NULL 4 2

4 3 NULL 2

4 3 4 NULL

1

C

C

A

:

We can see, for example, that the shortest path from vertex 1 to ver-

tex 3 has weight �1. This path goes from vertex 1 to vertex 2 to ver-

tex 4 to vertex 3, which we can see by tracing back: predŒ1; 3; 4� is 4,

predŒ1; 4; 4� is 2, and predŒ1; 2; 4� is 1.

I claimed that the Floyd-Warshall algorithm runs in ‚.n3/ time, and

it’s easy to see why. We have nested loops three deep, and each one

iterates n times. In each iteration of the loop of step 3, the loop of

step 3A iterates all n times. Likewise, in each iteration of the loop of

step 3A, the loop of step 3Ai iterates all n times. Since the outer loop

of step 3 also iterates n times, the innermost loop (step 3Ai) iterates n3

times in all. Each iteration of the innermost loop takes constant time,

and so the algorithm takes ‚.n3/ time.

It looks as though this algorithm also takes ‚.n3/ space in memory.

After all, it creates two n � n � .n C 1/ arrays. Since each array entry

uses a constant amount of memory, these arrays occupy ‚.n3/ mem-

ory space. It turns out, however, that we can get away with only ‚.n2/

space in memory. How? Just create shortest and pred as n � n arrays,

and forget about the third index into shortest and pred everywhere. Al-

though steps 3Aia and 3Aib keep updating the same shortestŒu; v� and

predŒu; v� values, these arrays turn out to have the correct values at the

end!

Earlier, I mentioned that the Floyd-Warshall algorithm illustrates a

technique called dynamic programming. This technique applies only

when

1. we are trying to find an optimal solution to a problem,

2. we can break an instance of the problem into instances of one or

more subproblems,

3. we use solutions to the subproblem(s) to solve the original problem,

and

4. if we use a solution to a subproblem within an optimal solution to

the original problem, then the subproblem solution we use must be

optimal for the subproblem.

Chapter 6: Shortest Paths 113

We can summarize these conditions under the umbrella name of optimal

substructure and, put more succinctly, it says that an optimal solution

to a problem contains within it optimal solutions to subproblems. In dy-

namic programming, we have some notion of the “size” of a subprob-

lem, and we often solve the subproblems in increasing order of size,

so that we solve the smallest subproblems first, and then once we have

optimal solutions to smaller subproblems, we can try to solve larger sub-

problems optimally using optimal solutions to the smaller subproblems.

This description of dynamic programming sounds rather abstract, so

let’s see how the Floyd-Warshall algorithm uses it. We state a subprob-

lem as

Compute shortestŒu; v; x�, which is the weight of a shortest path

from vertex u to vertex v in which each intermediate vertex is

numbered from 1 to x.

Here, the “size” of a subproblem is the highest-numbered vertex that

we allow to be an intermediate vertex of a shortest path: in other words,

the value of x. Optimal substructure comes into play because of the

following property:

Consider a shortest path p from vertex u to vertex v, and let x be

the highest-numbered intermediate vertex on this path. Then the

portion of p that goes from u to x is a shortest path from u to x

with all intermediate vertices numbered from 1 to x � 1, and the

portion of p that goes from x to v is a shortest path from x to v

with all intermediate vertices numbered from 1 to x � 1.

We solve the problem of computing shortestŒu; v; x� by first computing

shortestŒu; v; x � 1�, shortestŒu; x; x � 1�, and shortestŒx; v; x � 1� and

then using the lesser of shortestŒu; v; x � 1� and shortestŒu; x; x � 1� C
shortestŒx; v; x � 1�. Because we have computed all the shortest values

where the third index is x � 1 before we try to compute any of the

shortest values where the third index is x, we have all the information

we need when we compute shortestŒu; v; x�.

A common practice in dynamic programming is to store optimal so-

lutions to subproblems (shortestŒu; v; x � 1�, shortestŒu; x; x � 1�, and

shortestŒx; v; x � 1�) in a table and then look them up as we compute

an optimal solution to the original problem (shortestŒu; v; x�). We call

such an approach “bottom up,” since it works from smaller subproblems

to larger subproblems. Another approach is to solve subproblems “top

114 Chapter 6: Shortest Paths

down,” working from larger subproblems to smaller ones, again storing

the result of each subproblem in a table.

Dynamic programming applies to a wide range of optimization prob-

lems, only some of which have to do with graphs. We’ll see it again

in Chapter 7, when we find the longest common subsequence of two

strings of characters.

Further reading

Chapter 24 of CLRS [CLRS09] covers Dijkstra’s algorithm and the

Bellman-Ford algorithm. Chapter 25 of CLRS covers all-pairs shortest-

paths algorithms, including Floyd-Warshall; an all-pairs shortest-paths

algorithm based on matrix multiplication, running in ‚.n3 lg n/ time;

and a clever algorithm by Donald Johnson, designed to find all-pairs

shortest paths on sparse graphs in O.n2 lg n C nm/ time.

When edge weights are small nonnegative integers no greater than

a known amount C , a more complex implementation of the priority

queue in Dijkstra’s algorithm yields better asymptotic running times

than a Fibonacci heap. For example, Ahuja, Mehlhorn, Orlin, and Tar-

jan [AMOT90] incorporate a “redistributive heap” into Dijkstra’s algo-

rithm, giving a running time of O.m C n
p

lg C /.

7 Algorithms on Strings

A string is just a sequence of characters from some underlying char-

acter set. For example, this book comprises characters from the set of

letters, digits, punctuation symbols, and mathematical symbols, which

is a rather large, but finite, character set. Biologists encode strands of

DNA as strings over just four characters—A, C, G, T—which represent

the base molecules adenine, cytosine, guanine, and thymine.

We can ask all sorts of questions about strings, but in this chapter

we’ll focus on algorithms for three problems that take strings as inputs:

1. Find a longest common subsequence of two strings.

2. Given a set of operations that can transform one string to another,

and the cost of each operation, find a lowest-cost way to transform

one string to another.

3. Find all occurrences of a pattern string within a string of text.

The first two of these problems have applications in computational bi-

ology. The longer a common subsequence we can find between two

strands of DNA, the more similar they are. One way to align strands of

DNA is to transform one strand to another; the lower the cost of trans-

forming, the more similar the strands. The last problem, finding occur-

rences of a pattern within a text, is also known as string matching. It

comes up in all sorts of programs, such as any time you use a “Find”

command. It also comes up in computational biology, because we can

look for one strand of DNA within another.

Longest common subsequence

Let’s start with what we mean by “sequence” and “subsequence.” A

sequence is a list of items in which the order of items matters. A given

item may appear in a sequence multiple times. The particular sequences

we’ll be working with in this chapter are strings of characters, and we’ll

use the term “string” instead of “sequence.” Likewise, we will assume

that the items making up a sequence are characters. For example, the

string GACA contains the same character (A) multiple times, and it dif-

fers from the string CAAG, which has the same population of characters

116 Chapter 7: Algorithms on Strings

but in a different order. A subsequence Z of a string X is X, possibly

with items removed. For example, if X is the string GAC, then it has

eight subsequences: GAC (no characters removed), GA (C removed),

GC (A removed), AC (G removed), G (A and C removed), A (G and C

removed), C (G and A removed), and the empty string (all characters

removed). If X and Y are strings, then Z is a common subsequence

of X and Y if it is a subsequence of both of them. For example, if X

is the string CATCGA and Y is the string GTACCGTCA, then CCA is a

common subsequence of X and Y consisting of three characters. It is

not a longest common subsequence (LCS), however, since the com-

mon subsequence CTCA has four characters. Indeed CTCA is a longest

common subsequence, but it is not unique, since TCGA is another com-

mon subsequence with four characters. The notions of subsequence and

substring differ: a substring is a subsequence of a string in which the

characters must be drawn from contiguous positions in the string. For

the string CATCGA, the subsequence ATCG is a substring but the sub-

sequence CTCA is not.

Our goal is, given two strings X and Y, to find a longest common

subsequence Z of X and Y. We will use the technique of dynamic

programming, which we saw in Chapter 6, to solve this problem.

You can find a longest common subsequence without resorting to dy-

namic programming, but I don’t recommend it. You could try each sub-

sequence of X and check whether it’s a subsequence of Y, working from

the longest to the smallest subsequences of X, checking each against Y

and stopping once you find a subsequence of both X and Y. (You know

that you’ll eventually find one, since the empty string is a subsequence

of all strings.) If X has length m, then it has 2m subsequences, and so

even if we ignore the time to check each subsequence against Y, the

time to find an LCS would be at least exponential in the length of X in

the worst case.

Recall from Chapter 6 that in order for dynamic programming to ap-

ply, we need optimal substructure: an optimal solution to a problem

contains optimal solutions to its subproblems. To find an LCS of two

strings via dynamic programming, we first need to decide what consti-

tutes a subproblem. Prefixes work. If X is a string x1x2x3 � � � xm, then

the ith prefix of X is the string x1x2x3 � � � xi , and we denote it by Xi .

Here, we require that i be in the range 0 to m, and X0 is the empty

string. For example, if X is CATCGA, then X4 is CATC.

Chapter 7: Algorithms on Strings 117

We can see that an LCS of two strings contains within it an LCS

of the prefixes of the two strings. Let’s consider two strings X D
x1x2x3 � � � xm and Y D y1y2y3 � � � yn. They have some LCS, say Z,

where Z D ´1´2´3 � � � ´k for some length k, which could be anywhere

from 0 to the smaller of m and n. What can we deduce about Z? Let’s

look at the last characters in X and Y : xm and yn. Either they are equal

or they’re not.

� If they’re equal, then the last character ´k of Z must be the same

as that character. What do we know about the rest of Z, which is

Zk�1 D ´1´2´3 � � � ´k�1? We know that Zk�1 must be an LCS of

what remains of X and Y, namely Xm�1 D x1x2x3 � � � xm�1 and

Yn�1 D y1y2y3 � � � yn�1. From our example before—where X D
CATCGA and Y D GTACCGTCA and an LCS is Z D CTCA—the

last character, A, of X and Y is the last character of Z, and we

see that Z3 D CTC must be an LCS of X5 D CATCG and Y8 D
GTACCGTC.

� If they’re not equal, then ´k might be the same as either the last

character xm of X or the last character yn of Y, but not of both. Or

it might not be the same as the last character of either X or Y. If ´k

is not the same as xm, ignore the last character of X : Z must be an

LCS of Xm�1 and Y. Similarly, if ´k is not the same as yn, ignore the

last character of Y : Z must be an LCS of X and Yn�1. Continuing

the example from above, let X D CATCG, Y D GTACCGTC, and

Z D CTC. Here, ´3 is the same as y8 (C) but not x5 (G), and so Z is

an LCS of X4 D CATC and Y.

Therefore, this problem has optimal substructure: an LCS of two strings

contains within it an LCS of the prefixes of the two strings.

How to proceed? We need to solve either one or two subproblems,

depending on whether the last characters of X and Y are the same. If

they are, then we solve just one subproblem—find an LCS of Xm�1

and Yn�1—and then append that last character to get an LCS of X

and Y. If the last characters of X and Y are not the same, then we

have to solve two subproblems—find an LCS of Xm�1 and Y, and find

an LCS of X and Yn�1—and use the longer of these two longest com-

mon subsequences as an LCS of X and Y. If these two longest common

subsequences have the same length, then use either one of them—it

doesn’t matter which.

We will approach the problem of finding an LCS of X and Y in two

steps. First, we’ll find the length of an LCS of X and Y, as well as

118 Chapter 7: Algorithms on Strings

the lengths of the longest common subsequences of all prefixes of X

and Y. You might be surprised that we can find the length of an LCS

without knowing what the LCS is. After computing the LCS lengths,

we will “reverse engineer” how we computed these lengths to find an

actual LCS of X and Y.

To make things a little more precise, let’s denote the length of an

LCS of the prefixes Xi and Yj by lŒi; j �. The length of an LCS of X

and Y is given by lŒm; n�. We can start the indices i and j at 0, since

if either of the prefixes has length 0, then we know their LCS: it’s an

empty string. In other words, lŒ0; j � and lŒi; 0� equal 0 for all values

of i and j . When both i and j are positive, we determine lŒi; j � by

looking at smaller values of i and/or j :

� If i and j are positive and xi is the same as yj , then lŒi; j � equals

lŒi � 1; j � 1� C 1.

� If i and j are positive and xi differs from yj , then lŒi; j � equals the

larger of lŒi; j � 1� and lŒi � 1; j �.

Think of the values of lŒi; j � as being stored in a table. We need to

compute these values in increasing order of the indices i and j . Here’s

the lŒi; j � table for our example strings (we’ll see what the shaded parts

mean a little later):

j 0 1 2 3 4 5 6 7 8 9

yj G T A C C G T C A

i xi l Œi; j �

0 0 0 0 0 0 0 0 0 0 0

1 C 0 0 0 0 1 1 1 1 1 1

2 A 0 0 0 1 1 1 1 1 1 2

3 T 0 0 1 1 1 1 1 2 2 2

4 C 0 0 1 1 2 2 2 2 3 3

5 G 0 1 1 1 2 2 3 3 3 3

6 A 0 1 1 2 2 2 3 3 3 4

For example, lŒ5; 8� is 3, meaning that an LCS of X5 D CATCG and

Y8 D GTACCGTC has length 3, as we saw on page 117.

In order to compute table values in increasing order of the indices,

before we compute a particular entry lŒi; j �, where both i and j are

positive, we need to compute the entries lŒi; j � 1� (immediately left

of lŒi; j �), lŒi � 1; j � (immediately above lŒi; j �), and lŒi � 1; j � 1�

Chapter 7: Algorithms on Strings 119

(above and to the left of lŒi; j �).1 It’s easy to compute the table entries

in this way: we can compute them either row by row, from left to right

within each row, or column by column, from top to bottom within each

column.

The procedure that follows treats the table as a two-dimensional array

lŒ0 : : m; 0 : : n�. After filling the leftmost column and top row with 0s, it

then fills the remainder of the array row by row.

Procedure COMPUTE-LCS-TABLE.X; Y /

Inputs: X and Y : two strings of length m and n, respectively.

Output: The array lŒ0 : : m; 0 : : n�. The value of lŒm; n� is the length

of a longest common subsequence of X and Y.

1. Let lŒ0 : : m; 0 : : n� be a new array.

2. For i D 0 to m:

A. Set lŒi; 0� to 0.

3. For j D 0 to n:

A. Set lŒ0; j � to 0.

4. For i D 1 to m:

A. For j D 1 to n:

i. If xi is the same as yj , then set lŒi; j � to lŒi � 1; j � 1� C 1.

ii. Otherwise (xi differs from yj), set lŒi; j � to the larger of

lŒi; j � 1� and lŒi � 1; j �. If lŒi; j � 1� equals lŒi � 1; j �,

it doesn’t matter which you choose.

5. Return the array l .

Since it takes constant time to fill in each entry of the table, and the

table contains .m C 1/ � .n C 1/ entries, the running time of COMPUTE-

LCS-TABLE is ‚.mn/.

The good news is that, once we compute the lŒi; j � table, its lower-

right entry, lŒm; n�, gives us the length of an LCS of X and Y. The bad

news is that no single entry in the table tells us the actual characters in an

LCS. We can use the table, along with the strings X and Y, to construct

an LCS, using O.m C n/ additional time. We determine how we got

1Even mentioning l Œi �1; j �1� is redundant, since we need to have computed it before

computing both of l Œi; j � 1� and l Œi � 1; j �.

120 Chapter 7: Algorithms on Strings

the value in lŒi; j � by reverse engineering this computation, based on

lŒi; j � and the values it depends on: xi , yj , lŒi � 1; j � 1�, lŒi; j � 1�,

and lŒi � 1; j �.

I like to write this procedure recursively, where we assemble an LCS

from back to front. The procedure recurses, and when it finds characters

in X and Y that are the same, it appends the character to the end of the

LCS it constructs. The initial call is ASSEMBLE-LCS.X; Y; l; m; n/.

Procedure ASSEMBLE-LCS.X; Y; l; i; j /

Inputs:
� X and Y : two strings.
� l : the array filled in by the COMPUTE-LCS-TABLE procedure.
� i and j : indices into X and Y, respectively, as well as into l .

Output: An LCS of Xi and Yj .

1. If lŒi; j � equals 0, then return the empty string.

2. Otherwise (because lŒi; j � is positive, both i and j are positive),

if xi is the same as yj , then return the string formed by first

recursively calling ASSEMBLE-LCS.X; Y; l; i � 1; j � 1/ and

then appending xi (or yj) to the end of the string returned by the

recursive call.

3. Otherwise (xi differs from yj), if lŒi; j � 1� is greater than

lŒi � 1; j �, then return the string returned by recursively calling

ASSEMBLE-LCS.X; Y; l; i; j � 1/.

4. Otherwise (xi differs from yj and lŒi; j � 1� is less than or equal

to lŒi � 1; j �), return the string returned by recursively calling

ASSEMBLE-LCS.X; Y; l; i � 1; j /.

In the table on page 118, the shaded lŒi; j � entries are those that the

recursion visits with the initial call ASSEMBLE-LCS.X; Y; l; 6; 9/, and

the shaded xi characters are those that are appended to the LCS being

constructed. To get an idea of how ASSEMBLE-LCS works, start at

i D 6 and j D 9. Here, we find that x6 and y9 are both the character A.

Therefore, A will be the last character of the LCS of X6 and Y9, and we

recurse in step 2. The recursive call has i D 5 and j D 8. This time, we

find that x5 and y8 are different characters, and we also find that lŒ5; 7�

equals lŒ4; 8�, and so we recurse in step 4. Now the recursive call has

i D 4 and j D 8. And so on. If you read the shaded xi characters

from top to bottom, you get the string CTCA, which is an LCS. If we

Chapter 7: Algorithms on Strings 121

had broken ties between lŒi; j � 1� and lŒi � 1; j � in favor of going left

(step 3) rather than going up (step 4), then the LCS produced would

have been TCGA.

How is it that the ASSEMBLE-LCS procedure takes O.m C n/ time?

Observe that in each recursive call, either i decreases, j decreases, or

both decrease. After mCn recursive calls, therefore, we are guaranteed

that one or the other of these indices hits 0 and the recursion bottoms

out in step 1.

Transforming one string to another

Now let’s see how to transform one string X to another string Y. We’ll

start with X, and we’ll convert it to Y, character by character. We’ll

assume that X and Y consist of m and n characters, respectively. As

before, we’ll denote the i th character of each string by using the lower-

case name of the string, subscripted by i , so that the i th character of X

is xi and the j th character of Y is yj .

To convert X into Y, we’ll build a string, which we’ll call Z, so

that when we’re done, Z and Y are the same. We maintain an index i

into X and an index j into Z. We are allowed to perform a sequence of

specific transformation operations, which may alter Z and these indices.

We start with i and j at 1, and we must examine every character in X

during the process, which means that we will stop only once i reaches

m C 1.

Here are the operations that we consider:

� Copy a character xi from X to Z by setting j́ to xi and then incre-

menting both i and j .

� Replace a character xi from X by another character a by setting ´i

to a and then incrementing both i and j .

� Delete a character xi from X by incrementing i but leaving j alone.

� Insert a character a into Z by setting j́ to a and then increment-

ing j but leaving i alone.

Other operations are possible—such as interchanging two adjacent char-

acters, or deleting characters xi through xm in a single operation—but

we’ll consider just the copy, replace, delete, and insert operations here.

As an example, here is one sequence of operations that transforms

the string ATGATCGGCAT into the string CAATGTGAATC, where the

shaded characters are xi and j́ after each operation:

122 Chapter 7: Algorithms on Strings

Operation X Z

initial strings ATGATCGGCAT

delete A ATGATCGGCAT

replace T by C ATGATCGGCAT C

replace G by A ATGATCGGCAT CA

copy A ATGATCGGCAT CAA

copy T ATGATCGGCAT CAAT

replace C by G ATGATCGGCAT CAATG

replace G by T ATGATCGGCAT CAATGT

copy G ATGATCGGCAT CAATGTG

replace C by A ATGATCGGCAT CAATGTGA

copy A ATGATCGGCAT CAATGTGAA

copy T ATGATCGGCAT CAATGTGAAT

insert C ATGATCGGCAT CAATGTGAATC

Other operation sequences would work, too. For example, we could

just delete each character from X in turn and then insert each character

from Y into Z.

Each of the transformation operations comes with a cost, which is a

constant that depends only on the type of the operation and not on the

characters involved. Our goal is to find a sequence of operations that

transforms X into Y and has a minimum total cost. Let’s denote the cost

of the copy operation by cC , the cost of replace by cR, the cost of delete

by cD, and the cost of insert by cI . For the sequence of operations in

the example above, the total cost would be 5cC C 5cR C cD C cI . We

should assume that each of cC and cR is less than cDCcI , because other-

wise instead of paying cC to copy a character or paying cR to replace a

character, we would just pay cD C cI to delete the character and insert

either the same one (instead of copying) or a different one (instead of

replacing).

Why would you want to transform one string to another? Computa-

tional biology provides one application. Computational biologists often

align two DNA sequences in order to measure how similar they are. In

one way to align two sequences X and Y, we line up identical characters

as much as possible by inserting spaces into the two sequences (includ-

ing at either end) so that the resulting sequences, let’s say X 0 and Y 0,

have the same length but don’t have a space in the same position. That

is, we can’t have both x 0

i and y 0

i be a space. After aligning, we assign a

score to each position:

Chapter 7: Algorithms on Strings 123

� �1 if x 0

i and y 0

i are the same and not a space.

� C1 if x 0

i differs from y 0

i and neither is a space.

� C2 if either x 0

i or y 0

i is a space.

The score for an alignment is the sum of the scores for the individual

positions. The lower the score, the more closely the two strings align.

For the strings in the example above, we can align them as follows,

where t indicates a space:

X 0 W ATGATCGtGCATt
Y 0 W tCAATtGTGAATC

++---*-+--*

A - under a position indicates a score of �1 for that position, a + in-

dicates a score of C1, and a * indicates C2. This particular alignment

has a total score of .6 � �1/ C .3 � 1/ C .4 � 2/, or 5.

There are many possible ways to insert spaces and align two se-

quences. To find the way that produces the best match—having the low-

est score—we use string transformation with costs cC D �1, cR D C1,

and cD D cI D C2. The more identical characters get matched up,

the better the alignment, and the negative cost of the copy operation

provides incentive to match up identical characters. A space in Y 0 cor-

responds to a deleted character, so that in the above example, the first

space in Y 0 corresponds to deleting the first character (A) of X. A space

in X 0 corresponds to an inserted character, so that in the above example,

the first space in X 0 corresponds to inserting the character T.

So let’s see how to transform a string X into a string Y. We’ll use dy-

namic programming, with subproblems of the form “convert the prefix

string Xi into the prefix string Yj ,” where i runs from 0 to m and j runs

from 0 to n. We’ll call this subproblem the “Xi ! Yj problem,” and the

problem that we start with is the Xm ! Yn problem. Let’s denote the

cost of an optimal solution to the Xi ! Yj problem by costŒi; j �. As an

example, take X D ACAAGC and Y D CCGT, so that we want to solve

the X6 ! Y4 problem, and we’ll use the operation costs for aligning

DNA sequences: cC D �1, cR D C1, and cD D cI D C2. We’ll solve

subproblems of the form Xi ! Yj , where i runs from 0 to 6 and j runs

from 0 to 4. For example, the X3 ! Y2 problem is transforming the

prefix string X3 D ACA into the prefix string Y2 D CC.

It’s easy to determine costŒi; j � when i or j is 0, because X0 and Y0

are empty strings. Convert an empty string into Yj by j insert opera-

tions, so that costŒ0; j � equals j �cI . Likewise, convert Xi into an empty

124 Chapter 7: Algorithms on Strings

string by i delete operations, so that costŒi; 0� equals i �cD . When both i

and j are 0, we are converting the empty string to itself, and so costŒ0; 0�

is obviously 0.

When i and j are both positive, we need to examine how optimal

substructure applies to transforming one string to another. Let’s sup-

pose—for the moment—that we know which was the last operation

used to convert Xi to Yj . It was one of the four operations copy, re-

place, delete, or insert.

� If the last operation was a copy, then xi and yj must have been the

same character. The subproblem that remains is converting Xi�1

to Yj �1, and an optimal solution to the Xi ! Yj problem must in-

clude an optimal solution to the Xi�1 ! Yj �1 problem. Why? Be-

cause if we had used a solution to the Xi�1 ! Yj �1 problem that did

not have the minimum cost, we could use the minimum-cost solu-

tion instead to obtain a better solution to the Xi ! Yj problem than

the one we got. Therefore, assuming that the last operation was a

copy, we know that costŒi; j � equals costŒi � 1; j � 1� C cC .

In our example, let’s look at the X5 ! Y3 problem. Both x5 and y3

are the character G, and so if the last operation was copy G, then

because cC D �1, we must have costŒ5; 3� D costŒ4; 2� � 1. If

costŒ4; 2� is 4, then costŒ5; 3� must be 3. If we could have found a

solution to the X4 ! Y2 problem with a cost less than 4, then we

could use that solution to find a solution to the X5 ! Y3 problem

with a cost less than 3.

� If the last operation was a replace, and under the reasonable assump-

tion that we can’t “replace” a character with itself, then xi and yj

must differ. Using the same optimal substructure argument as we

used for the copy operation, we see that, assuming that the last oper-

ation was a replace, costŒi; j � equals costŒi � 1; j � 1� C cR.

In our example, consider the X5 ! Y4 problem. This time, x5

and y4 are different characters (G and T, respectively), and so if the

last operation was replace G by T, then because cR D C1, we must

have costŒ5; 4� D costŒ4; 3�C1. If costŒ4; 3� is 3, then costŒ5; 4� must

be 4.

� If the last operation was a delete, then we have no restrictions on xi

or yj . Think of the delete operation as skipping over the character xi

and leaving the prefix Yj alone, so that the subproblem we need to

Chapter 7: Algorithms on Strings 125

solve is the Xi�1 ! Yj problem. Assuming that the last operation

was a delete, we know that costŒi; j � D costŒi � 1; j � C cD .

In our example, consider the X6 ! Y3 problem. If the last operation

was a delete (the deleted character must be x6, which is C), then

because cD D C2, we must have costŒ6; 3� D costŒ5; 3� C 2. If

costŒ5; 3� is 3, then costŒ6; 3� must be 5.

� Finally, if the last operation was an insert, it leaves Xi alone but adds

the character yj , and the subproblem to solve is Xi ! Yj �1. Assum-

ing that the last operation was an insert, we know that costŒi; j � D
costŒi; j � 1� C cI .

In our example, consider the X2 ! Y3 problem. If the last operation

was an insert (the inserted character must be y3, which is G), then

because cI D C2, we must have costŒ2; 3� D costŒ2; 2� C 2. If

costŒ2; 2� is 0, then costŒ2; 3� must be 2.

Of course, we don’t know in advance which of the four operations

was the last one used. We want to use the one that yields the lowest

value for costŒi; j �. For a given combination of i and j , three of the four

operations apply. The delete and insert operations always apply when

both i and j are positive, and exactly one of copy and replace applies,

depending on whether xi and yj are the same character. To compute

costŒi; j � from other cost values, determine which of copy and replace

applies and take the minimum value of costŒi; j � that the three possible

operations yield. That is, costŒi; j � is the smallest of the following four

values:

� costŒi � 1; j � 1� C cC , but only if xi and yj are the same character,

� costŒi � 1; j � 1� C cR, but only if xi and yj differ,

� costŒi � 1; j � C cD,

� costŒi; j � 1� C cI .

Just as we did for filling in the l table when computing an LCS, we

can fill in the cost table row by row. That’s because, just like the l table,

each entry costŒi; j �, where i and j are positive, depends on having al-

ready computed the entries immediately to the left, immediately above,

and above and to the left.

In addition to the cost table, we’ll fill in a table op, where opŒi; j �

gives the last operation used to convert Xi to Yj . We can fill in the

126 Chapter 7: Algorithms on Strings

entry opŒi; j � when we fill in costŒi; j �. The procedure COMPUTE-

TRANSFORM-TABLES on the following page fills in the cost and op

tables, row by row, treating the cost and op tables as two-dimensional

arrays.

Page 128 has the cost and op tables computed by COMPUTE-

TRANSFORM-TABLES for our example of transforming X D ACAAGC

to Y D CCGT with cC D �1, cR D C1, and cD D cI D C2. Ap-

pearing at row i and column j are the values of costŒi; j � and opŒi; j �,

with operation names abbreviated. For example, the last operation used

when transforming X5 D ACAAG to Y2 D CC replaces G by C, and an

optimal sequence of operations to transform ACAAG to CC has a total

cost of 6.

The COMPUTE-TRANSFORM-TABLES procedure fills in each entry

of the tables in constant time, just as the COMPUTE-LCS-TABLE pro-

cedure does. Because each of the tables contains .m C 1/ � .n C 1/

entries, COMPUTE-TRANSFORM-TABLES runs in ‚.mn/ time.

To construct the sequence of operations that transforms X to Y, we

consult the op table, starting at the last entry, opŒm; n�. We recurse,

much as the ASSEMBLE-LCS procedure does, appending each opera-

tion encountered from the op table to the end of the sequence of op-

erations. The procedure ASSEMBLE-TRANSFORMATION appears on

page 129. The initial call is ASSEMBLE-TRANSFORMATION.op; m; n/.

The sequence of operations to convert X D ACAAGC into a string Z

that is the same as Y D CCGT appears below the cost and op tables on

page 128.

Just as in ASSEMBLE-LCS, each recursive call of the ASSEMBLE-

TRANSFORMATION procedure decreases either i or j , or both, and so

the recursion bottoms out after at most m C n recursive calls. Since

each recursive call takes constant time before and after recursing, the

ASSEMBLE-TRANSFORMATION procedure runs in O.m C n/ time.

One subtlety in the ASSEMBLE-TRANSFORMATION procedure bears

closer examination. The recursion bottoms out only once both i and j

reach 0. Suppose that one of i and j , but not both, equals 0. Each

of the three cases in steps 2A, 2B, and 2C recurses with the value of i

or j , or both, decreased by 1. Could there be a recursive call in which

i or j has the value �1? Fortunately, the answer is no. Suppose that

j D 0 and i is positive in a call of ASSEMBLE-TRANSFORMATION.

From the way the op table is constructed, opŒi; 0� is a delete oper-

ation, so that step 2B executes. The recursive call in step 2B calls

Chapter 7: Algorithms on Strings 127

Procedure COMPUTE-TRANSFORM-TABLES.X; Y; cC ; cR; cD; cI /

Inputs:
� X and Y : two strings of length m and n, respectively.
� cC ; cR; cD; cI : the costs of the copy, replace, delete, and insert

operations, respectively.

Output: Arrays costŒ0 : : m; 0 : : n� and opŒ0 : : m; 0 : : n�. The value in

costŒi; j � is the minimum cost of transforming the prefix Xi into the

prefix Yj , so that costŒm; n� is the minimum cost of transforming X

into Y. The operation in opŒi; j � is the last operation performed when

transforming Xi into Yj .

1. Let costŒ0 : : m; 0 : : n� and opŒ0 : : m; 0 : : n� be new arrays.

2. Set costŒ0; 0� to 0.

3. For i D 1 to m:

A. Set costŒi; 0� to i � cD, and set opŒi; 0� to delete xi .

4. For j D 1 to n:

A. Set costŒ0; j � to j � cI , and set opŒ0; j � to insert yj .

5. For i D 1 to m:

A. For j D 1 to n:

(Determine which of copy and replace applies, and set

costŒi; j � and opŒi; j � according to which of the three

applicable operations minimizes costŒi; j �.)

i. Set costŒi; j � and opŒi; j � as follows:
a. If xi and yj are the same, then set costŒi; j � to

costŒi � 1; j � 1� C cC and set opŒi; j � to copy xi .

b. Otherwise (xi and yj differ), set costŒi; j � to

costŒi � 1; j � 1� C cR and set opŒi; j � to replace xi

by yj .

ii. If costŒi � 1; j � C cD < costŒi; j �, then set costŒi; j � to

costŒi � 1; j � C cD and set opŒi; j � to delete xi .

iii. If costŒi; j � 1� C cI < costŒi; j �, then set costŒi; j � to

costŒi; j � 1� C cI and set opŒi; j � to insert yj .

6. Return the arrays cost and op.

128 Chapter 7: Algorithms on Strings

j 0 1 2 3 4

yj C C G T

i xi

0
0 2

ins C

4

ins C

6

ins G

8

ins T

1 A
2

del A

1

rep A by C

3

rep A by C

5

rep A by G

7

rep A by T

2 C
4

del C

1

copy C

0

copy C
2

ins G

4

ins T

3 A
6

del A

3

del A

2

rep A by C

1

rep A by G

3

rep A by T

4 A
8

del A

5

del A

4

rep A by C

3

rep A by G

2

rep A by T

5 G
10

del G

7

del G

6

rep G by C

3

copy G

4

rep G by T

6 C
12

del C

9

copy C

6

copy C
5

del C

4

rep C by T

Operation X Z

initial strings ACAAGC

delete A ACAAGC

copy C ACAAGC C

delete A ACAAGC C

replace A by C ACAAGC CC

copy G ACAAGC CCG

replace C by T ACAAGC CCGT

ASSEMBLE-TRANSFORMATION.op; i � 1; j /, so that the value of j

in the recursive call stays at 0. Likewise, if i D 0 and j is positive, then

opŒ0; j � is an insert operation, so that step 2C executes, and in the re-

cursive call to ASSEMBLE-TRANSFORMATION.op; i; j � 1/, the value

of i stays at 0.

Chapter 7: Algorithms on Strings 129

Procedure ASSEMBLE-TRANSFORMATION.op; i; j /

Inputs:
� op: the operation table filled in by

COMPUTE-TRANSFORM-TABLES.
� i and j : indices into the op table.

Output: A sequence of operations that transforms the string X into

the string Y, where X and Y are the strings input to

COMPUTE-TRANSFORM-TABLES.

1. If both i and j equal 0, then return an empty sequence.

2. Otherwise (at least one of i and j is positive), do the following:

A. If opŒi; j � is a copy or replace operation, then return the

sequence formed by first recursively calling

ASSEMBLE-TRANSFORMATION.op; i � 1; j � 1/ and then

appending opŒi; j � onto the sequence returned by the recursive

call.

B. Otherwise (opŒi; j � is neither a copy nor a replace operation),

then if opŒi; j � is a delete operation, then return the sequence

formed by first recursively calling

ASSEMBLE-TRANSFORMATION.op; i � 1; j / and then

appending opŒi; j � onto the sequence returned by the recursive

call.

C. Otherwise (opŒi; j � is not a copy, replace, or delete operation,

and so it must be an insert operation), return the sequence

formed by first recursively calling

ASSEMBLE-TRANSFORMATION.op; i; j � 1/ and then

appending opŒi; j � onto the sequence returned by the recursive

call.

String matching

In the string-matching problem, we have two strings: a text string T

and a pattern string P . We want to find all occurrences of P in T .

We’ll shorten the names to “text” and “pattern,” and we’ll assume that

the text and pattern consist of n and m characters, respectively, where

m � n (since it makes no sense to look for a pattern that’s longer than

130 Chapter 7: Algorithms on Strings

the text). We’ll denote the characters in P and T by p1p2p3 � � � pm and

t1t2t3 � � � tn, respectively.

Because we want to find all occurrences of the pattern P in the text T ,

a solution will be all the amounts that we can shift P by to find it in T .

Put another way, we say that pattern P occurs with shift s in text T

if the substring of T that starts at tsC1 is the same as the pattern P :

tsC1 D p1, tsC2 D p2, and so on, up through tsCm D pm. The minimum

possible shift would be 0, and because the pattern should not run off the

end of the text, the maximum possible shift would be n � m. We want

to know all the shifts with which P occurs in T . For example, if the

text T is GTAACAGTAAACG and the pattern P is AAC, then P occurs

in T with shifts 2 and 9.

If we’re checking to see whether pattern P occurs in text T with a

given shift amount s, then we would have to check all m characters

in P against characters of T . Assuming that it takes constant time to

check a single character in P against a single character in T , it would

take ‚.m/ time to check all m characters in the worst case. Of course,

once we find a mismatch between characters of P and T , we don’t have

to check the rest of the characters. The worst case occurs at each shift

amount for which P does occur in T .

It would be easy enough to just check the pattern against the text for

every possible shift, running from 0 to n � m. Here is how it would

work for checking the pattern AAC against the text GTAACAGTAAACG

for each possible shift, with character matches shaded:

Shift Shift

amount Text and pattern amount Text and pattern

0
GTAACAGTAAACG
AAC

6
GTAACAGTAAACG

AAC

1
GTAACAGTAAACG
AAC

7
GTAACAGTAAACG

AAC

2
GTAACAGTAAACG

AAC
8

GTAACAGTAAACG

AAC

3
GTAACAGTAAACG

AAC
9

GTAACAGTAAACG

AAC

4
GTAACAGTAAACG

AAC
10

GTAACAGTAAACG

AAC

5
GTAACAGTAAACG

AAC

Chapter 7: Algorithms on Strings 131

This simple approach is rather inefficient, however: with n � m C 1

possible shifts, each taking O.m/ time to check, the running time would

be O..n � m/m/. We’d examine almost every character in the text m

times.

We can do better, because the simple method of checking the pattern

against the text for every possible shift throws away valuable informa-

tion. In the above example, when we look at shift amount s D 2, we

have seen all the characters in the substring t3t4t5 D AAC. But at the

next shift, s D 3, we look at t4 and t5 again. It would be more efficient to

avoid looking at these characters again if at all possible. Let’s examine

a clever approach to string matching that avoids the wasted time caused

by scanning the text repeatedly. Instead of examining text characters m

times, it examines each character of the text exactly once.

This more efficient approach relies on a finite automaton. Although

the name sounds imposing, the concept is quite simple. Applications

of finite automata abound, but we’ll focus here on using finite automata

for string matching. A finite automaton, or FA for short, is just a set of

states and a way to go from state to state based on a sequence of input

characters. The FA starts in a particular state and consumes characters

from its input, one character at a time. Based on the state it’s in and the

character it has just consumed, it moves to a new state.

In our string-matching application, the input sequence will be the

characters of the text T , and the FA will have m C 1 states, one more

than the number of characters in the pattern P , numbered from 0 to m.

(The “finite” part of the name “finite automaton” stems from the number

of states being finite.) The FA starts in state 0. When it’s in state k, the k

most recent text characters it has consumed match the first k characters

of the pattern. Whenever the FA gets to state m, therefore, it has just

seen the entire pattern in the text.

Let’s look at an example using just the characters A, C, G, and T.

Suppose that the pattern is ACACAGA, with m D 7 characters. Here is

the corresponding FA, with states 0 through 7:

0 1 2 3 4 5 6 7
A C A C A G A

C

A
A

A

A

C

132 Chapter 7: Algorithms on Strings

Circles represent states, and arrows, labeled by characters, show how

the FA transitions from state to state on input characters. For example,

the arrows from state 5 are labeled A, C, and G. The arrow to state 1,

labeled A, indicates that when the FA is in state 5 and it consumes the

text character A, it moves to state 1. Likewise, the arrow to state 4,

labeled C, tells us that when the FA is in state 5 and consumes the text

character C, it moves to state 4. Notice that I drew the horizontal “spine”

of the FA with extra-heavy arrows and that the labels on the arrows of

the spine, read from left to right, give the pattern ACACAGA. Whenever

the pattern occurs in the text, the FA moves right by one state for each

character, until it reaches the last state, where it declares that it has found

an occurrence of the pattern in the text. Notice also that some arrows

are missing, such as any arrow labeled T. If an arrow is missing, then

the corresponding transition goes to state 0.

The FA internally stores a table next-state, which is indexed by all

the states and all possible input characters. The value in next-stateŒs; a�

is the number of the state to move to if the FA is currently in state s

and it has just consumed character a from the text. Here is the entire

next-state table for the pattern ACACAGA:

character

state A C G T

0 1 0 0 0

1 1 2 0 0

2 3 0 0 0

3 1 4 0 0

4 5 0 0 0

5 1 4 6 0

6 7 0 0 0

7 1 2 0 0

The FA moves one state to the right for each character that matches

the pattern, and for each character that fails to match the pattern it moves

left, or stays in the same state (next-stateŒ1;A� is 1). We’ll see how to

construct the next-state table later on, but first let’s trace out what the FA

for the pattern AAC does on the input text GTAACAGTAAACG. Here’s

the FA:

0 1 2 3
A A C

A

A

Chapter 7: Algorithms on Strings 133

From this drawing, you can tell that the next-state table is the following:

character

state A C G T

0 1 0 0 0

1 2 0 0 0

2 2 3 0 0

3 1 0 0 0

Here are the states that the FA moves to and the text characters it con-

sumes to get there:

state 0 0 0 1 2 3 1 0 0 1 2 2 3 0

character G T A A C A G T A A A C G

I’ve shaded the two times that the FA reaches state 3, since whenever it

reaches state 3, it has found an occurrence of the pattern AAC.

Here is the procedure FA-STRING-MATCHER for string matching. It

assumes that the next-state table has already been built.

Procedure FA-STRING-MATCHER.T; next-state; m; n/

Inputs:
� T , n: a text string and its length.
� next-state: the table of state transitions, formed according to the

pattern being matched.
� m: the length of the pattern. The next-state table has rows indexed

by 0 to m and columns indexed by the characters that may occur

in the text.

Output: Prints out all the shift amounts for which the pattern occurs

in the text.

1. Set state to 0.

2. For i D 1 to n:

A. Set state to the value of next-stateŒstate; ti �.

B. If state equals m, then print “The pattern occurs with shift”

i � m.

If we run FA-STRING-MATCHER on the above example, in which

m equals 3, the FA reaches state 3 after consuming the characters t5
and t12. Therefore, the procedure would print out “Pattern occurs with

shift 2” (2 D 5 � 3) and “Pattern occurs with shift 9” (9 D 12 � 3).

134 Chapter 7: Algorithms on Strings

Since each iteration of the loop of step 2 takes constant time and this

loop runs exactly n iterations, it’s plain to see that the running time of

FA-STRING-MATCHER is ‚.n/.

That’s the easy part. The hard part is constructing the finite automa-

ton’s next-state table for a given pattern. Recall the idea:

When the finite automaton is in state k, the k most recent char-

acters it has consumed are the first k characters of the pattern.

To make this idea concrete, let’s go back to the FA on page 131 for the

pattern ACACAGA and think about why next-stateŒ5;C� is 4. If the FA

has gotten to state 5, then the five most recent characters it has consumed

from the text are ACACA, which you can see by looking at the spine of

the FA. If the next character consumed is C, then it does not match the

pattern, and the FA cannot continue on to state 6. But the FA doesn’t

have to go all the way back to state 0, either. Why not? Because now the

four most recently consumed characters are ACAC, which are the first

four characters of the pattern ACACAGA. That’s why when the FA is in

state 5 and it consumes a C, it moves to state 4: it has most recently seen

the first four characters of the pattern.

We are almost ready to give the rule for constructing the next-state

table, but we need a couple of definitions first. Recall that, for i in the

range 0 to m, the prefix Pi of the pattern P is the substring consist-

ing of the first i characters of P . (When i is 0, the prefix is the empty

string.) Define a suffix of the pattern accordingly as a substring of char-

acters from the end of P . For example, AGA is a suffix of the pattern

ACACAGA. And define the concatenation of a string X and a charac-

ter a to be a new string formed by appending a to the end of X, and we

denote it by Xa. For example, the concatenation of the string CA with

the character T is the string CAT.

We’re finally ready to construct next-stateŒk; a�, where k is a state

number running from 0 to m and a is any character that might appear

in the text. In state k, we have just seen the prefix Pk in the text. That

is, the k most recently seen text characters are the same as the first k

characters of the pattern. When we see the next character, say a, we

have seen Pka (the concatenation of Pk with a) in the text. At that

point, how long a prefix of P have we just seen? Another way to ask

this question is how long a prefix of P appears at the end of Pka? That

length will be the number of the next state.

More succinctly:

Chapter 7: Algorithms on Strings 135

Take the prefix Pk (the first k characters of P) and concate-

nate it with the character a. Denote the resulting string by Pka.

Find the longest prefix of P that is also a suffix of Pka. Then

next-stateŒk; a� is the length of this longest prefix.

Yes, there are a few prefixes and suffixes going on, so let’s see how

we determine that next-stateŒ5;C� is 4 for the pattern P D ACACAGA.

Since k is 5 in this example, we take the prefix P5, which is ACACA,

and concatenate the character C, giving ACACAC. We want to find the

longest prefix of ACACAGA that is also a suffix of ACACAC. Since the

string ACACAC has length 6, and a suffix can’t be longer than the string

that it’s a suffix of, we can start by looking at P6 and then working our

way down to shorter and shorter prefixes. Here, P6 is ACACAG, and it is

not a suffix of ACACAC. So now we consider P5, which is ACACA and

is also not a suffix of ACACAC. Next we consider P4, which is ACAC.

But now this prefix is a suffix of ACACAC, and so we stop and determine

that next-stateŒ5;C� should equal 4.

You might wonder whether we can always find a prefix of P that

is also a suffix of Pka. The answer is yes, because the empty string

is a prefix and a suffix of every string. When the longest prefix of P

that is also a suffix of Pka turns out to be the empty string, we set

next-stateŒk; a� to 0. Still using the pattern P D ACACAGA, let’s see

how to determine next-stateŒ3;G�. Concatenating P3 with G gives the

string ACAG. We work through the prefixes of P , starting with P4

(since the length of ACAG is 4) and work our way down. None of the

prefixes ACAC, ACA, AC, or A is a suffix of ACAG, and so we settle for

the empty string as the longest prefix that works. Since the empty string

has length 0, we set next-stateŒ3;G� to 0.

How long does it take to fill in the entire next-state table? We know

that it has one row for each state in the FA, and so it has m C 1 rows,

numbered 0 to m. The number of columns depends on the number of

characters that may occur in the text; let’s call this number q, so that the

next-state table has q.m C 1/ entries. To fill in an entry next-stateŒk; a�,

we do the following:

1. Form the string Pka.

2. Set i to the smaller of k C 1 (the length of Pka) and m (the length

of P).

3. While Pi is not a suffix of Pka, do the following:

A. Set i to i � 1.

136 Chapter 7: Algorithms on Strings

We don’t know in advance how many times the loop of step 3 will run,

but we know that it makes at most mC1 iterations. We also don’t know

in advance how many characters of Pi and Pka must be checked in the

test in step 3, but we know that it’s always at most i , which is at most m.

Since the loop iterates at most m C 1 times and each iteration checks

at most m characters, it takes O.m2/ time to fill in next-stateŒk; a�. Be-

cause the next-state table contains q.m C 1/ entries, the total time to fill

it in is O.m3q/.

In practice, the time to fill in the next-state table isn’t too bad. I

coded up the string-matching algorithm in C++ on my 2.4-GHz Mac-

Book Pro and compiled it with optimization level -O3. I gave it

the pattern a man, a plan, a canal, panama with the 128-

character ASCII character set as the alphabet. The program constructed

a next-state table with 31 rows and 127 columns (I omitted the col-

umn for the null character) in approximately 1:35 milliseconds. With

a shorter pattern, the program of course is faster: it took approxi-

mately 0:07 milliseconds to construct the table when the pattern was

just panama.

Nevertheless, some applications perform string matching frequently,

and in these applications the O.m3q/ time to build the next-state ta-

ble could pose a problem. I won’t go into the details, but there is a

way to cut the time down to ‚.mq/. In fact, we can do even better.

The “KMP” algorithm (developed by Knuth, Morris, and Pratt) uses a

finite automaton but avoids creating and filling in the next-state table

altogether. Instead, it uses an array move-to of just m state numbers

that allows the FA to emulate having a next-state table, and it takes just

‚.m/ time to fill in the move-to array. Again, it’s a bit too compli-

cated to go into, but I ran the KMP algorithm on my MacBook Pro,

and for the pattern a man, a plan, a canal, panama it took

about one microsecond to construct the move-to array. For the shorter

pattern panama, it took about 600 nanoseconds (0:0000006 seconds).

Not bad! Like the FA-STRING-MATCHER procedure, the KMP algo-

rithm takes ‚.n/ time to match the pattern against the text, once it has

constructed the move-to array.

Further reading

Chapter 15 of CLRS [CLRS09] covers dynamic programming in de-

tail, including how to find a longest common subsequence. The algo-

rithm in this chapter for transforming one string to another gives part

Chapter 7: Algorithms on Strings 137

of the solution to a problem in Chapter 15 of CLRS. (The problem in

CLRS includes the two operations, interchanging adjacent characters

and deleting a suffix of X, that I did not consider in this chapter. You

didn’t think I was going to upset my coauthors by giving away the entire

solution, did you?)

String matching algorithms appear in Chapter 32 of CLRS. That

chapter gives the algorithm based on finite automata and also a full

treatment of the KMP algorithm. The first edition of Introduction to Al-

gorithms [CLR90] included the Boyer-Moore algorithm, which is par-

ticularly efficient when the pattern is long and the number of characters

in the alphabet is large.

8 Foundations of Cryptography

When you buy something over the Internet, you probably have to sup-

ply your credit-card number to a server on the seller’s website or to a

server on a third-party payment service’s website. To get your credit-

card number to a server, you send it over the Internet. The Internet is a

public network, and anyone can discern the bits that go over it. There-

fore, if your credit-card number were to go out over the Internet without

being disguised somehow, then anyone could figure it out and start pur-

chasing goods and services on your account.

Now, it’s unlikely that someone is sitting there, just waiting for you

to send something that looks like a credit-card number over the Internet.

It’s more likely that someone is waiting for anyone to do so, and maybe

you will be the unfortunate victim. It would be much safer for you to

disguise your credit-card number whenever you send it over the Internet.

Indeed, you probably do. If you use a secure website—one whose URL

begins with “https:” rather than the usual “http:”—then your browser

disguises the information it sends by a process called encryption. (The

https protocol also provides “authentication,” so that you know you’re

connecting to the site you think you’re connecting to.) In this chapter,

we’ll look at encryption, as well as the opposite process, decryption,

where encrypted information is turned back into its original form. To-

gether, the processes of encryption and decryption form the foundation

of the field of cryptography.

Although I consider my credit-card number to be important infor-

mation to safeguard, I also recognize that it’s not all that important in

the grand scheme of things. If someone steals my credit-card number,

national security is not at risk. But if someone can eavesdrop on in-

structions from the State Department to a diplomat, or if someone can

snoop on military information, national security could indeed be at risk.

Therefore, not only do we need ways to encrypt and decrypt informa-

tion, but these ways need to be highly difficult to defeat.

In this chapter, we’ll examine some of the basic ideas underlying en-

cryption and decryption. Modern cryptography goes far, far beyond

what I’m presenting here. Don’t try to develop a secure system based

solely on the material in this chapter; you would need to understand

Chapter 8: Foundations of Cryptography 139

modern cryptography in much greater detail to create a system that is

secure in both theory and practice. For example, you would need to

follow established standards, such as those published by the National

Institute of Standards and Technology. As Ron Rivest (one of the in-

ventors of the RSA cryptosystem, which we’ll see later in this chapter)

wrote to me, “In general crypto is like a martial arts contest, and to use

it in practice you need to understand the latest adversarial approaches.”

But this chapter will give you a flavor of some algorithms that were

motivated by how to encrypt and decrypt information.

In cryptography, we call the original information the plaintext and

the encrypted version the ciphertext. Encryption, therefore, converts

plaintext to ciphertext, and decryption converts ciphertext back to its

original plaintext. The information needed to convert is known as the

cryptographic key.

Simple substitution ciphers

In a simple substitution cipher, you encrypt a text by just substituting

one letter for another, and you decrypt an encrypted text by inverting the

substitution. Julius Caesar would communicate with his generals by us-

ing a shift cipher, in which the sender replaced each letter in a message

by the letter that appears three places later in the alphabet, wrapping

around at the end. In our 26-letter alphabet, for example, A would be

replaced by D , and Y would be replaced by B (after Y comes Z , then

A and B). In Caesar’s shift cipher, if a general needed more troops,

he could encrypt the plaintext Send me a hundred more soldiers as the

ciphertext Vhqg ph d kxqguhg pruh vroglhuv . Upon receiving this ci-

phertext, Caesar would replace each letter by the letter occurring three

places earlier in the alphabet, wrapping around at the front of the alpha-

bet, to recover the original plaintext Send me a hundred more soldiers .

(In Caesar’s time, of course, the message would have been in Latin,

using the Latin alphabet of the time.)

If you intercept a message and you know that it was encrypted by a

shift cipher, it’s ridiculously easy to decrypt, even if you don’t know

the shift amount (the key) in advance: just try all possible shifts until

the decrypted ciphertext makes sense as plaintext. For a 26-character

alphabet, you need to try only 25 shifts.

You can make the cipher a little more secure by converting each char-

acter to some other, unique, character, but not necessarily the one that

appears a fixed number of places later in the alphabet. That is, you cre-

140 Chapter 8: Foundations of Cryptography

ate a permutation of the characters and use that as your key. It’s still a

simple substitution cipher, but it’s better than a shift cipher. If you have

n characters in your character set, then an eavesdropper who intercepts

a message would have to discern which of the nŠ (n-factorial) permuta-

tions you had used. The factorial function grows very quickly in n; in

fact, it grows faster than an exponential function.

So why not just uniquely convert each character to some other char-

acter? If you’ve ever tried to solve the “cryptoquote” puzzle that ap-

pears in many newspapers, you know that you can use letter frequencies

and letter combinations to narrow down the choices. Suppose that the

plaintext Send me a hundred more soldiers converted to the ciphertext

Krcz sr h byczxrz sfxr kfjzgrxk . In the ciphertext, the letter r appears

the most often, and you could guess—correctly—that its corresponding

plaintext character is e , the most commonly occurring letter in English

text. Then you could see the two-letter word sr in the ciphertext and

guess that the plaintext character corresponding to the ciphertext s must

be one of b , h , m, or w, since the only two-letter words in English

ending in e are be , he, me, and we. You could also determine that

the plaintext a corresponds to the ciphertext h , because the only single-

letter lowercase word in English is a.

Of course, if you’re encrypting credit-card numbers, then you don’t

have to worry too much about letter frequencies or letter combinations.

But the ten digits yield only 10Š unique ways to convert one digit to

another, or 3,628,800. To a computer, that’s not very many, especially

when compared with the 1016 possible credit-card numbers (16 decimal

digits), and an eavesdropper could automate attempts to put through

purchases on each of the 10Š ways—possibly succeeding with credit-

card numbers other than yours.

You might have noticed one other problem with using a simple sub-

stitution cipher: both the sender and receiver have to agree on the key.

Moreover, if you’re sending different messages to different parties, and

you don’t want each party to be able to decrypt messages intended for

someone else, then you need to establish a separate key for each party.

Symmetric-key cryptography

When the sender and receiver use the same key, they are practicing

symmetric-key cryptography. They must somehow agree in advance

upon just what key they’re using.

Chapter 8: Foundations of Cryptography 141

One-time pads

Assuming for now that you’re fine with using symmetric-key cryptog-

raphy, but that a simple substitution cipher is not sufficiently secure,

another option is the one-time pad. One-time pads work on bits. As you

might know, bit is an abbreviation for “binary digit,” and a bit can take

on only two values: 0 and 1. Digital computers store information in se-

quences of bits. Some bit sequences represent numbers, some represent

characters (using either the standard ASCII or Unicode character sets),

and some even represent instructions that the computer executes.

One-time pads apply the exclusive-or, or XOR, operation to bits. We

use ˚ to denote this operation:

0 ˚ 0 D 0 ;

0 ˚ 1 D 1 ;

1 ˚ 0 D 1 ;

1 ˚ 1 D 0 :

The simplest way to think of the XOR operation is that if x is a bit, then

x ˚ 0 D x and x ˚ 1 gives the opposite of x. Furthermore, if x and y

are bits, then .x ˚ y/ ˚ y D x: XORing x with the same value twice

gives x.

Suppose that I want to send you a one-bit message. I could send you

either a 0 or a 1 as the ciphertext, and we would have to agree on whether

I was sending you the bit value I wanted to send you or the opposite of

that bit value. Looked at through the lens of the XOR operation, we

would have to agree on whether I was XORing that bit with 0 or with 1.

If you were to then XOR the ciphertext bit you received with the bit that

I had XORed with—the key—you would recover the original plaintext.

Now suppose that I want to send you a two-bit message. I could leave

both bits alone, I could flip both bits, I could flip the first bit but not the

second, or I could flip the second bit but not the first. Again, we would

have to agree on which bits I was flipping, if any. In terms of the XOR

operation on two bits, we would have to agree on which of the two-bit

sequences 00, 01, 10, or 11 was the key with which I was XORing the

bits of the plaintext to form the ciphertext. And again, you could XOR

the two-bit ciphertext with the same two-bit key that I had XORed the

plaintext with to recover the original plaintext.

If the plaintext required b bits—perhaps it comprises ASCII or Uni-

code characters that total b bits—then I could generate a random se-

quence of b bits as the key, let you know the b bits of the key, and then

142 Chapter 8: Foundations of Cryptography

XOR, bit by bit, the plaintext with the key to form the ciphertext. Once

you received the b-bit ciphertext, you could XOR it, bit by bit, with the

key to recover the b-bit plaintext. This system is called a one-time pad,1

and the key is called the pad.

As long as the bits of the key are randomly chosen—and we’ll ex-

amine this issue later—it’s well nigh impossible for an eavesdropper

to decrypt the ciphertext by guessing the key. Even if the eavesdrop-

per knows something about the plaintext—for example, that it’s En-

glish—for any ciphertext and any potential plaintext, there exists a key

converting the potential plaintext to the ciphertext,2 and this key is the

bitwise XOR of the potential plaintext and the ciphertext. (That’s be-

cause if the potential plaintext is t , the ciphertext is c, and the key is k,

then not only is t ˚ k D c, but also t ˚ c D k; the ˚ operation applies

bit-by-bit to t , k, and c, so that the i th bit of t XORed with the i th bit

of k equals the i th bit of c.) And so encrypting with a one-time pad pre-

vents the eavesdropper from gaining any additional information about

the plaintext.

One-time pads give good security, but the keys require as many bits as

the plaintext, these bits should be randomly chosen, and the keys need

to be shared between the parties in advance. As the name implies, you

should use a one-time pad just one time. If you use the same key k for

plaintexts t1 and t2, then .t1 ˚ k/ ˚ .t2 ˚ k/ D t1 ˚ t2, which can reveal

where the two plaintexts have the same bits.

1The name comes from the pre-computer realization of the idea, where each party

had a pad of paper with a key written on each sheet, and the parties had identical key

sequences. A key could be used one time and then its sheet torn off from the pad,

exposing the next key. This paper-based system used a shift cipher, but on a letter-by-

letter basis, where each corresponding letter of the key gives the shift amount, from 0

for a to 25 for z . For example, since z means to shift by 25, m means to shift by 12,

and n means to shift by 13, the key zmn converts the plaintext dog to the ciphertext

cat . Unlike the XOR-based system, however, shifting the letters of the ciphertext in the

same direction with the same key does not yield back the plaintext; in this case, it would

give bmg . Instead, you have to shift the ciphertext letters in the opposite direction.

2For the letter-by-letter scheme in the previous footnote, the key zmn converts the

plaintext dog to the ciphertext cat , but we can arrive at this ciphertext with a different

plaintext, elk , and a different key, ypj .

Chapter 8: Foundations of Cryptography 143

Block ciphers and chaining

When the plaintext is long, the pad in a one-time pad has to be equally

long, which can be rather unwieldy. Instead, some symmetric-key sys-

tems combine two additional techniques: they use a shorter key, and

they chop up the plaintext into several blocks, applying the key to

each block in turn. That is, they consider the plaintext to be l blocks

t1; t2; t3; : : : ; tl , and they encrypt these plaintext blocks into l blocks

c1; c2; c3; : : : ; cl of ciphertext. Such a system is known as a block ci-

pher.

In practice, block ciphers encrypt using a system quite a bit more

complicated than the simple XORing of the one-time pad. One fre-

quently used symmetric-key cryptosystem, AES (the Advanced Encryp-

tion Standard), incorporates a block cipher. I won’t go into details of

AES, other than to say that it uses elaborate methods to slice and dice a

plaintext block to produce ciphertext. AES uses a key size of 128, 192,

or 256 bits and a block size of 128 bits.

There’s still a problem with block ciphers, however. If the same block

appears twice in the plaintext, then the same encrypted block will ap-

pear twice in the ciphertext. One way to solve this problem uses the

technique of cipher block chaining. Suppose that you want to send

me an encrypted message. You chop up the plaintext t into l blocks

t1; t2; t3; : : : ; tl , and you create the l blocks c1; c2; c3; : : : ; cl of cipher-

text as follows. Let’s say that you’ll encrypt a block by applying some

function E to it, and I’ll decrypt a block of ciphertext by applying some

function D. You create the first block of ciphertext, c1, as you’d expect:

c1 D E.t1/. But before encrypting the second block, you XOR it, bit by

bit, with c1, so that c2 D E.c1 ˚ t2/. For the third block, you first XOR

it with c2: c3 D E.c2 ˚ t3/. And so on, so that in general, you compute

the i th block of ciphertext based on the .i � 1/st block of ciphertext and

the i th block of plaintext: ci D E.ci�1 ˚ ti /. This formula even works

for computing c1 from t1 if you start with c0 being all 0s (because 0˚ x

gives x). To decrypt, I first compute t1 D D.c1/. From c1 and c2, I can

compute t2 by first computing D.c2/, which equals c1 ˚ t2, and then

XORing the result with c1. In general, I decrypt ci to determine ti by

computing ti D D.ci/ ˚ ci�1; as with encryption, this scheme works

even for computing t1 if I start with c0 being all 0s.

We’re not quite out of the woods. Even with cipher block chaining, if

you send me the same message twice, you’ll send the same sequence of

ciphertext blocks each time. An eavesdropper would know that you’re

144 Chapter 8: Foundations of Cryptography

sending me the same message twice, which could be valuable informa-

tion for the eavesdropper to have. One solution is to not start with c0

being all 0s. Instead, you randomly generate c0, you use that when en-

crypting the first block of plaintext, and I use it when decrypting the first

block of ciphertext; we call this randomly generated c0 an initialization

vector.

Agreeing on common information

In order for symmetric-key cryptography to work, both the sender and

receiver need to agree on the key. In addition, if they’re using a block

cipher with cipher block chaining, they might also need to agree on the

initialization vector. As you can imagine, it’s rarely practical to agree

on these values in advance. So how do the sender and receiver agree

on the key and initialization vector? We will see later in this chapter

(page 155) how a hybrid cryptosystem can transmit them securely.

Public-key cryptography

It’s obvious that in order for the receiver of an encrypted message to be

able to decrypt it, the sender and receiver must both know the key used

to encrypt. Right?

Wrong.

In public-key cryptography, each party has two keys: a public key

and a secret key. I’ll describe public-key cryptography with two parties,

you and me, and I’ll denote my public key by P and my secret key

by S . You have your own public and secret keys. Other parties who

participate have their own public and secret keys.

Secret keys are secret, but public keys may be known to everyone.

They could even appear in a centralized directory that lets everyone

know everyone else’s public key. Under the right conditions, you and

I can use either of these keys to encrypt and decrypt. By the “right

conditions,” I mean that there exist functions that use the public and

secret keys to either encrypt plaintext to ciphertext or decrypt ciphertext

to plaintext. Let’s denote the function that I use with my public key

by FP and the function that I use with my secret key by FS .

The public and secret keys have a special relationship:

t D FS .FP .t// ;

so that if you use my public key to encrypt plaintext into ciphertext and

then I use my secret key to decrypt the ciphertext, I get back the original

Chapter 8: Foundations of Cryptography 145

plaintext. Some other applications of public-key cryptography require

that t D FP .FS .t//, so that if I encrypt plaintext with my secret key,

anyone can decrypt the ciphertext.

Anyone should be able to compute my public-key function FP effi-

ciently, but only I should be able to compute my secret-key function FS

in any reasonable amount of time. The time required to successfully

guess my FS without knowing my secret key should be prohibitively

large for anyone else. (Yes, I’m being vague here, but we’ll soon see

an actual implementation of public-key cryptography.) The same holds

for everyone else’s public and secret keys: the public-key function FP

is efficiently computable, but only the holder of the secret key can rea-

sonably compute the secret-key function FS .

Here’s how you can send me a message using public-key cryptogra-

phy:

you me

eavesdropper

plaintext t FP FS

ciphertext c

plaintext t D FS .c/
ciphertext c D FP .t/

You start with the plaintext t . You find my public key P ; maybe you

get it directly from me, or maybe you find it in a directory. Once you

have P , you encrypt the plaintext to produce the ciphertext c D FP .t/,

which you can do efficiently. You send me the ciphertext, so that any

eavesdropper who intercepts what you send me sees only the ciphertext.

I take the ciphertext c and decrypt it using my secret key, reproducing

the plaintext t D FS .c/. You, or anyone else, can encrypt to produce

the ciphertext reasonably quickly, but only I can decrypt the ciphertext

to reproduce the plaintext in any reasonable amount of time.

In practice, we need to make sure that the functions FP and FS work

together correctly. We want FP to produce a different ciphertext for

each possible plaintext. Suppose instead that FP gave the same re-

sult for two different plaintexts, t1 and t2; that is, FP .t1/ D FP .t2/.

Then, when I receive a ciphertext FP .t1/ and try to decrypt it by run-

ning it through FS , I don’t know whether I’ll get back t1 or t2. On the

other hand, it’s OK—in fact, preferable—for encryption to incorporate

an element of randomization, so that the same plaintext is encrypted

into different ciphertexts each time it’s run through FP . (The RSA

cryptosystem, which we’re about to see, is much more secure when

the plaintext is only a small portion of what is encrypted, the bulk of

146 Chapter 8: Foundations of Cryptography

the encrypted information being random “padding.”) Of course, the de-

cryption function FS would need to be designed to compensate, so that

it could convert multiple ciphertexts into the same plaintext.3

A problem arises, however. The plaintext t could take on an arbitrary

number of possible values—in fact, it could be arbitrarily long—and

the number of ciphertext values that FP could convert t to has to be at

least as many as the number of values that t could take on. How can we

construct the functions FP and FS under the additional constraints that

FP has to be easy to compute for everyone and FS has to be easy only

for me? It’s hard, but it’s doable if we can limit the number of possible

plaintexts—that is, we use a block cipher.

The RSA cryptosystem

Public-key cryptography is a lovely concept, but it relies on being able

to find functions FP and FS that work correctly together, FP is easy

for anyone to compute, and FS is easy for only the holder of the secret

key to compute. We call a scheme that fulfills these criteria a public-

key cryptosystem, and the RSA cryptosystem, or just RSA,4 is one such

scheme.

RSA depends on several facets of number theory, many of which re-

late to modular arithmetic. In modular arithmetic, we pick a positive

integer, let’s say n, and whenever we get to n, we immediately wrap

back around to 0. It’s like regular arithmetic with integers, but we al-

ways divide by n and take the remainder. For example, if we’re working

modulo 5, then the only possible values are 0; 1; 2; 3; 4, and 3 C 4 D 2

since 7 divided by 5 gives a remainder of 2. Let’s define an operator,

mod, to compute remainders, so that we can say 7 mod 5 D 2. Mod-

3Baseball uses a similar system. Managers and coaches tell players what plays to put

on using elaborate systems of gestures, called “signs.” For example, touching the right

shoulder might mean to execute a hit-and-run play and touching the left thigh might

mean to bunt. A manager or coach goes through a long series of signs, but only some

of the signs are meaningful; the rest are decoys. The giver and receiver of the signs

have a system where they agree on which signs are meaningful, sometimes based on

the ordering in the sequence of signs and sometimes based on an “indicator” sign. The

manager or coach can give an arbitrarily long series of signs to indicate any particular

play, where most of the signs in the series are meaningless.

4The name comes from its inventors, Ronald Rivest, Adi Shamir, and Leonard Adel-

man.

Chapter 8: Foundations of Cryptography 147

ular arithmetic is like clock arithmetic, but substituting 0 for 12 on the

clock face. If you go to sleep at 11 and sleep for eight hours, you wake

up at 7: .11 C 8/ mod 12 D 7.

What’s particularly nice about modular arithmetic is that we can take

mod operations in the middle of expressions and not change the result:5

.a C b/ mod n D ..a mod n/ C .b mod n// mod n ;

ab mod n D ..a mod n/.b mod n// mod n ;

ab mod n D .a mod n/b mod n :

Furthermore, for any integer x, we have that xn mod n is 0.

In addition, in order for RSA to fulfill the criteria for a public-key

cryptosystem, two number-theoretic properties related to prime num-

bers must hold. As you might know, a prime number is an integer

greater than 1 that has only two integer factors: 1 and itself. For exam-

ple, 7 is prime, but 6 is not, being factorable as 2 � 3. The first property

that RSA relies on is that if you have a number that is the product of

two large secret prime numbers, then nobody else can determine these

factors in any reasonable amount of time. Recall from back in Chapter 1

that someone could test all possible odd divisors up to the square root

of the number, but if the number is large—hundreds or thousands of

digits—then its square root has half as many digits, which could still be

large. Although someone could theoretically find one of the factors, the

resources required (time and/or computing power) would make finding

a factor impractical.6

5As an example, to see that ab mod n D ..a mod n/.b mod n// mod n, suppose that

a mod n D x and b mod n D y. Then there exist integers i and j such that a D ni Cx

and b D nj C y, and so

ab mod n D .ni C x/.nj C y/ mod n

D .n2ij C xnj C yni C xy/ mod n

D ..n2ij mod n/ C .xnj mod n/ C .yni mod n/ C .xy mod n// mod n

D xy mod n

D ..a mod n/.b mod n// mod n :

6For example, if the number has 1000 bits, then its square root has 500 bits and could

be about as large as 2500. Even if someone could test a trillion trillion possible divisors

per second, the sun would have burned out long, long before reaching 2500.

148 Chapter 8: Foundations of Cryptography

The second property is that, even though factoring a large prime

is hard, it’s not hard to determine whether a large number is prime.

You might think that it’s impossible to determine that a number is not

prime—that is, the number is composite—without finding at least one

nontrivial factor (a factor that is not 1 or the number itself). It is, in fact,

possible to do so. One way is the AKS primality test,7 the first algorithm

to determine whether an n-bit number is prime in time O.nc/ for some

constant c. Although the AKS primality test is considered theoretically

efficient, it is not yet practical for large numbers. Instead, we can use

the Miller-Rabin primality test. The downside of the Miller-Rabin test

is that it can make errors, declaring a number that is actually composite

to be prime. (If it declares a number to be composite, however, then the

number is definitely composite.) The good news is that the error rate is

1 in 2s , where we can pick any positive value of s that we want. So,

if we’re willing to live with one error in, say, every 250 tests, then we

can determine with almost perfect certainty whether a number is prime.

You might recall from Chapter 1 that 250 is about a million billion, or

about 1,000,000,000,000,000. And if you’re still uncomfortable with 1

error in 250 tests, with a little more effort, you can make it 1 error in

260 tests; 260 is about a thousand times more than 250. That’s because

the time to perform the Miller-Rabin test increases just linearly with the

parameter s, and so increasing s by 10, from 50 to 60, increases the run-

ning time by only 20%, but decreases the error rate by a factor of 210,

which equals 1024.

Here’s how I would set myself up to use the RSA cryptosystem. After

we see how RSA works, we’ll have to address several details.

1. Pick at random two very large prime numbers, p and q, that are not

equal to each other. How large is very large? At least 1024 bits each,

or at least 309 decimal digits. Even larger is better.

2. Compute n D pq. That’s a number with at least 2048 bits, or at

least 618 decimal digits.

3. Compute r D .p � 1/.q � 1/, which is almost as large as n.

4. Select a small odd integer e that is relatively prime to r : the only

common divisor of e and r should be 1. Any such small integer is

fine here.

7Named after its inventors, Manindra Agrawal, Neeraj Kayal, and Nitin Saxena.

Chapter 8: Foundations of Cryptography 149

5. Compute d as the multiplicative inverse of e, modulo r . That is,

ed mod r should equal 1.

6. Declare my RSA public key to be the pair P D .e; n/.

7. Keep the pair S D .d; n/ as my RSA secret key, revealed to nobody.

8. Define the functions FP and FS by

FP .x/ D xe mod n ;

FS .x/ D xd mod n :

These functions can operate on either a block of plaintext or a block

of ciphertext, whose bits we interpret as representing large integers.

Let’s take an example, but using small numbers so that we can under-

stand what’s going on.

1. Pick the prime numbers p D 17 and q D 29.

2. Compute n D pq D 493.

3. Compute r D .p � 1/.q � 1/ D 448.

4. Select e D 5, which is relatively prime to 448.

5. Compute d D 269. To check: ed D 5 � 269 D 1345, and so

ed mod r D 1345 mod 448 D .3 � 448 C 1/ mod 448 D 1.

6. Declare my RSA public key to be P D .5; 493/.

7. Keep S D .269; 493/ as my RSA secret key.

8. As an example, let’s compute FP .327/:

FP .327/ D 3275 mod 493

D 3,738,856,210,407 mod 493

D 259 :

If we compute FS .259/ D 259269 mod 493, we should get 327 back.

We do, but you really don’t want to see all the digits in the expres-

sion 259269. You can search the Internet for an arbitrary-precision

calculator, and test it out there. (I did.) Then again, because we’re

working with modular arithmetic, we don’t need to compute the ac-

tual value of 259269; we can express all intermediate results mod-

ulo 493, so if you wanted to, you could start with the product 1, and

269 times do the following: multiply what you have by 259 and take

the product modulo 493. You’ll get a result of 327. (I did, or rather,

a computer program that I wrote did.)

150 Chapter 8: Foundations of Cryptography

Here are the details I have to address in order to set up and use RSA:

� How do I work with numbers with hundreds of digits?

� Although testing whether a number is prime isn’t an obstacle, how

do I know that I can find large prime numbers in a reasonable amount

of time?

� How do I find e so that e and r are relatively prime?

� How do I compute d so that it’s the multiplicative inverse of e, mod-

ulo r?

� If d is large, how do I compute xd mod n in a reasonable amount of

time?

� How do I know that the functions FP and FS are inverses of each

other?

How to perform arithmetic with large numbers

Clearly, numbers as large as RSA requires are not going to fit in the

registers found in most computers, which hold at most 64 bits. For-

tunately, several software packages, and even some programming lan-

guages—Python, for example—allow you to work with integers that

have no fixed limit on their size.

Furthermore, all arithmetic in RSA is modular arithmetic, which al-

lows us to limit the sizes of the integers being calculated. For exam-

ple, as we are calculating xd mod n, we’ll be calculating intermediate

results that are x raised to various powers, but all modulo n, which

means that all intermediate results calculated will be in the range from 0

to n � 1. Moreover, if you fix the maximum sizes of p and q, then you

have fixed the maximum size of n, which in turn means that it’s feasible

to implement RSA in specialized hardware.

How to find a large prime number

I can find a large prime number by repeatedly randomly generating a

large odd number and using the Miller-Rabin primality test to determine

whether it’s prime, stopping once I find a prime number. This scheme

presupposes that I’ll find a large prime number before too long. What if

prime numbers are extremely rare as numbers get large? I could spend

a huge amount of time searching for a prime needle in a composite

haystack.

I need not worry. The Prime Number Theorem tells us that, as m

approaches infinity, the number of prime numbers less than or equal

Chapter 8: Foundations of Cryptography 151

to m approaches m= ln m, where ln m is the natural logarithm of m. If

I just randomly select an integer m, there’s about a 1 in ln m chance

that it’s prime. Probability theory tells us that, on average, I need to

try only about ln m numbers near m before I find one that is prime. If

I’m looking for prime numbers p and q with 1024 bits, then m is 21024,

and ln m is approximately 710. A computer can quickly run the Miller-

Rabin primality test on 710 numbers.

In practice, I could run a simpler primality test than the Miller-Rabin

test. Fermat’s Little Theorem states that if m is a prime number, then

xm�1 mod m equals 1 for any number x in the range from 1 to m � 1.

The converse—if xm�1 mod m equals 1 for any number x in the range

from 1 to m�1, then m is prime—is not necessarily true, but exceptions

are very rare for large numbers. In fact, it’s almost always sufficient

to just try odd integers m and declare m to be prime if 2m�1 mod m

equals 1. We’ll see on page 153 how to compute 2m�1 mod m with only

‚.lg m/ multiplications.

How to find one number that is relatively prime to another

I need to find a small odd integer e that is relatively prime to r . Two

numbers are relatively prime if their greatest common divisor is 1. I’ll

use an algorithm for computing the greatest common divisor of two inte-

gers that dates back to the ancient Greek mathematician Euclid. There’s

a theorem in number theory that says that if a and b are integers, not

both zero, then their greatest common divisor g equals ai C bj for

some integers i and j . (Moreover, g is the smallest number that can

be formed in this way, but this fact won’t matter to us.) One of the co-

efficients i and j may be negative; for example, the greatest common

divisor of 30 and 18 is 6, and 6 D 30i C 18j when i D �1 and j D 2.

On the next page appears Euclid’s algorithm in a form that gives the

greatest common divisor g of a and b, along with the coefficients i

and j . These coefficients will come in handy a little later, when I need

to find the multiplicative inverse of e, modulo r . If I have a candidate

value for e, I call EUCLID.r; e/. If the first element of the triple returned

by the call is 1, then the candidate value for e is relatively prime to r .

If the first element is any other number, then r and the candidate value

for e have a divisor greater than 1 in common, and they are not relatively

prime.

152 Chapter 8: Foundations of Cryptography

Procedure EUCLID.a; b/

Inputs: a and b: Two integers.

Output: A triple .g; i; j / such that g is the greatest common divisor

of i and j and g D ai C bj .

1. If b equals 0, then return the triple .a; 1; 0/.

2. Otherwise (b is not 0), do the following:

A. Recursively call EUCLID.b; a mod b/, and assign the returned

result to the triple .g; i 0; j 0/. That is, set g to the first element

of the triple returned, set i 0 to the second element of the triple

returned, and set j 0 to the third element of the triple returned.

B. Set i to j 0.

C. Set j to i 0 � ba=bc j 0.

D. Return the triple .g; i; j /.

I won’t go into why this procedure works,8 nor will I analyze its run-

ning time, but I will just tell you that if I call EUCLID.r; e/, then the

number of recursive calls is O.lg e/. Therefore, I can check quickly

whether 1 is the greatest common divisor of r and a candidate value

for e. (Remember that e is small.) If not, I can try a different candidate

value for e, and so on, until I find one that is relatively prime to r . How

many candidates do I expect to have to try? Not many. If I restrict my

choices for e to odd prime numbers less than r (easily checked with

the Miller-Rabin test or the test based on Fermat’s Little Theorem), any

choice is highly likely to be relatively prime to r . That’s because, by

the Prime Number Theorem, approximately r= ln r prime numbers are

less than r , but another theorem shows that r cannot have more than lg r

prime factors. Therefore, I am unlikely to hit a prime factor of r .

8The call EUCLID.0; 0/ returns the triple .0; 1; 0/, so that it considers 0 to be the great-

est common divisor of 0 and 0. That might strike you as peculiar (I was going to say

“odd,” but this is the wrong context for that meaning of “odd”), but because r is pos-

itive, the parameter a in the first call to EUCLID will be positive, and in any recursive

call, a must be positive. So it doesn’t matter to us what EUCLID.0; 0/ returns.

Chapter 8: Foundations of Cryptography 153

How to compute multiplicative inverses in modular arithmetic

Once I have r and e, I need to compute d as the inverse of e, modulo r ,

so that ed mod r equals 1. We already know that the call EUCLID.r; e/

returned a triple of the form .1; i; j /, that 1 is the greatest common divi-

sor of e and r (because they’re relatively prime), and that 1 D ri C ej .

I can just set d to j mod r .9 That’s because we’re working modulo r ,

and so we can take both sides modulo r :

1 mod r D .ri C ej / mod r

D ri mod r C ej mod r

D 0 C ej mod r

D ej mod r

D .e mod r/ � .j mod r/ mod r

D e.j mod r/ mod r :

(The last line follows because e < r , which implies that e mod r D e.)

And so we have that 1 D e.j mod r/ mod r , which means that I can

set d to the value j in the triple returned by the call EUCLID.r; e/, taken

modulo r . I use j mod r rather than just j in case j is not in the range

from 0 to r � 1.

How to raise a number to an integer power quickly

Although e is small, d might be large, and I need to compute xd mod n

in order to compute the function FS . Although I can work modulo n,

which means that all values I work with will be in the range 0 to n � 1,

I don’t want to have to multiply numbers d times. Fortunately, I don’t

have to. I can multiply numbers just ‚.lg d/ times, using a technique

known as repeated squaring. I can use this same technique for the

primality test based on Fermat’s Little Theorem.

Here’s the idea. We know that d is nonnegative. Suppose first that d

is even. Then xd equals .xd=2/2. Now suppose that d is odd. Then xd

equals .x.d�1/=2/2 �x. These observations give us a nice recursive way to

compute xd , where the base case occurs when d is 0: x0 equals 1. The

9Recall that j could be negative. One way to think of j mod r when j is negative and r

is positive is to start with j and keep adding r until the number you get is nonnegative.

That number equals j mod r . For example, to determine �27 mod 10, you get the

numbers �27, �17, �7, and 3. Once you get to 3, you stop and say that �27 mod 10

equals 3.

154 Chapter 8: Foundations of Cryptography

following procedure embodies this approach, performing all arithmetic

modulo n:

Procedure MODULAR-EXPONENTIATION.x; d; n/

Inputs: x; d; n: three integers, with x and d nonnegative and n

positive.

Output: Returns the value of xd mod n.

1. If d equals 0, then return 1.

2. Otherwise (d is positive), if d is even, then recursively call

MODULAR-EXPONENTIATION.x; d=2; n/, set ´ to the result of

this recursive call, and return ´2 mod n.

3. Otherwise (d is positive and odd), recursively call

MODULAR-EXPONENTIATION.x; .d � 1/=2; n/, set ´ to the

result of this recursive call, and return .´2 � x/ mod n.

The parameter d reduces by at least half in each recursive call. After

at most blg dc C 1 calls, d goes down to 0 and the recursion ends.

Therefore, this procedure multiplies numbers ‚.lg d/ times.

Showing that the functions FP and FS are inverses of each other

Warning: Lots of number theory and modular arithmetic ahead. If

you’re content to accept without proof that the functions FP and FS are

inverses of each other, skip the next five paragraphs and resume reading

at “Hybrid cryptosystems.”

In order for RSA to be a public-key cryptosystem, the functions FP

and FS must be inverses of each other. If we take a block t of plain-

text, treat it as an integer less than n, and feed it into FP , we get

te mod n, and if we feed that result into FS , we get .te/d mod n, which

equals ted mod n. If we reverse the order, first FS and then FP , we

get .td /e mod n, which again equals ted mod n. We need to show that

for any plaintext block t , interpreted as an integer less than n, we have

ted mod n equals t .

Here’s an outline of our approach. Recall that n D pq. We will show

that ted mod p D t mod p and that ted mod q D t mod q. Then, using

another fact from number theory, we’ll conclude that ted mod pq D
t mod pq—in other words, that ted mod n D t mod n, which is just t ,

because t is less than n.

Chapter 8: Foundations of Cryptography 155

We need to use Fermat’s Little Theorem again, and it helps explain

why we set r to be the product .p � 1/.q � 1/. (Weren’t you wondering

where that came from?) Since p is prime, if t mod p is nonzero, then

.t mod p/p�1 mod p D 1.

Recall that we defined e and d so that they are multiplicative inverses,

modulo r : ed mod r D 1. In other words, ed D 1 C h.p � 1/.q � 1/

for some integer h. If t mod p is not 0, then we have the following:

ted mod p D .t mod p/ed mod p

D .t mod p/1Ch.p�1/.q�1/ mod p

D
�

.t mod p/ � ..t mod p/p�1 mod p/h.q�1/
�

mod p

D .t mod p/ � .1h.q�1/ mod p/

D t mod p :

Of course, if t mod p is 0, then ted mod p equals 0.

A similar argument shows that if t mod q is not 0, then ted mod q

equals t mod q, and if t mod q is 0, then ted mod q equals 0.

We need one more fact from number theory to finish up: because

p and q are relatively prime (each being prime), if both x mod p D
y mod p and x mod q D y mod q, then x mod pq D y mod pq.

(This fact comes from the “Chinese Remainder Theorem.”) Plugging

in ted for x and t for y, and remembering that n D pq and that t is less

than n, gives us ted mod n D t mod n D t , which is exactly what we

needed to show. Whew!

Hybrid cryptosystems

Although we can perform arithmetic with large numbers, in practice we

do pay a price in speed. Encrypting and decrypting a long message,

containing hundreds or thousands of blocks of plaintext, could cause a

noticeable delay. RSA is often used in a hybrid system, part public-key

and part symmetric-key.

Here is how you could send me an encrypted message in a hybrid sys-

tem. We agree on which public-key system and symmetric-key system

we’re using; let’s say RSA and AES. You select a key k for AES and

encrypt it with my RSA public key, producing FP .k/. Using the key k,

you then encrypt the sequence of plaintext blocks with AES to produce

a sequence of ciphertext blocks. You send me FP .k/ and the sequence

of ciphertext blocks. I decrypt FP .k/ by computing FS.FP .k//, which

gives me the AES key k, and then I use k to decrypt the ciphertext

156 Chapter 8: Foundations of Cryptography

blocks with AES, thereby recovering the plaintext blocks. If we’re us-

ing cipher block chaining and we need an initialization vector, then you

can encrypt it either with RSA or AES.

Computing random numbers

As we’ve seen, some cryptosystems require us to generate random num-

bers—random positive integers, to be precise. Because we represent an

integer by a sequence of bits, what we really need is a way to generate

random bits, which we can then interpret as an integer.

Random bits can come only from random processes. How can a pro-

gram running on a computer be a random process? In many cases, it

cannot, because a computer program that is built from well defined, de-

terministic instructions will always produce the same result given the

same data to start with. To support cryptographic software, some mod-

ern processors provide an instruction that generates random bits based

on a random process, such as thermal noise within circuits. Designers

of these processors face a threefold challenge: generate the bits at a fast

enough rate for applications that demand random numbers, ensure that

the bits generated meet basic statistical tests for randomness, and con-

sume a reasonable amount of power while generating and testing the

random bits.

Cryptographic programs usually obtain bits from a pseudorandom

number generator, or PRNG. A PRNG is a deterministic program that

produces a sequence of values, based on an initial value, or seed, and

a deterministic rule embodied in the program that says how to generate

the next value in the sequence from the current value. If you start a

PRNG with the same seed each time, you’ll get out the same sequence

of values each time. This repeatable behavior is good for debugging, but

bad for cryptography. Recent standards for random number generators

for cryptosystems require specific implementations of PRNGs.

If you’re using a PRNG to generate bits that look random, you want

to start with a different seed each time, and that seed should be random.

In particular, the seed should be based on bits that are unbiased (not

favoring either 0 or 1), independent (no matter what you know about

the previous bits generated, anyone has only a 50% chance of correctly

guessing the next bit), and unpredictable to an adversary who is trying

to break your cryptosystem. If your processor has an instruction that

generates random bits, that’s a good way to create the PRNG’s seed.

Chapter 8: Foundations of Cryptography 157

Further reading

Cryptography is but one component of security in computer systems.

The book by Smith and Marchesini [SM08] covers computer security

broadly, including cryptography and ways to attack cryptosystems.

To delve deeper into cryptography, I recommend the books by Katz

and Lindell [KL08] and by Menezes, van Oorschot, and Vanstone

[MvOV96]. Chapter 31 of CLRS [CLRS09] provides a quick back-

ground on the number theory leading up to cryptography, as well as de-

scriptions of RSA and the Miller-Rabin primality test. Diffie and Hell-

man [DH76] proposed public-key cryptography in 1976, and the orig-

inal paper describing RSA by Rivest, Shamir, and Adelman [RSA78]

appeared two years later.

For more details on approved PRNGs, see Annex C to Federal In-

formation Processing Standards Publication 140-2 [FIP11]. You can

read about one hardware implementation of a random number genera-

tor based on thermal noise in the article by Taylor and Cox [TC11].

9 Data Compression

In the previous chapter, we examined how to transform information to

shield it from an adversary. Protecting information is not the only rea-

son to transform it, however. Sometimes you want to enhance it; for

example, you might want to modify an image using a software tool

such as Adobe Photoshop in order to remove red-eye or change skin

tones. Sometimes you want to add redundancy so that if some bits are

incorrect, the errors can be detected and corrected.

In this chapter, we investigate another way to transform information:

compressing it. Before we get into some of the methods used to com-

press and decompress information, we should answer three questions:

1. Why would we want to compress information?

We usually compress information for one of two reasons: to save

time and/or to save space.

Time: When transmitting information over a network, the fewer bits

transmitted, the quicker the transmission. Therefore, the sender of-

ten compresses the data before sending, sends the compressed data,

and then the receiver uncompresses the data that it receives.

Space: When the amount of storage available could limit how much

information you can store, you can store more information if it’s

compressed. For example, the MP3 and JPEG formats compress

sound and images in such a way that most people discern little dif-

ference, if any, between the original and compressed materials.

2. What is the quality of the compressed information?

Compression methods can be lossless or lossy. With lossless com-

pression, when the compressed information is decompressed, it is

identical to the original information. With lossy compression, the

decompressed information differs from the original, but ideally in

an insignificant manner. MP3 and JPEG compression are lossy, but

the compression method used by the zip program is lossless.

Generally speaking, when compressing text, we want lossless com-

pression. Even a difference of one bit can be meaningful. The fol-

Chapter 9: Data Compression 159

lowing sentences differ in just one bit in the ASCII codes of their

letters:1

Don’t forget the pop.

Don’t forget the pot.

These sentences can be construed as requests to remember, respec-

tively, the soft drinks (in the midwest of the U.S. at least) or the

marijuana—one bit makes a big difference!

3. Why is it possible to compress information?

This question is easy to answer for lossy compression: you just tol-

erate how the precision decreases. What about lossless compres-

sion? Digital information often contains redundant or useless bits.

In ASCII, for example, each character occupies one eight-bit byte,

and all commonly used characters (not including accented letters)

have a 0 in the most significant (the leftmost) bit. That is, the char-

acter codes in ASCII range from 0 to 255, but all commonly used

characters fall in the range 0 to 127. In many cases, therefore, one-

eighth of the bits in ASCII text are useless, and so it would be easy

to compress most ASCII text by 12:5%.

For a more dramatic example of how to exploit redundancy in loss-

less compression, consider transmitting a black-and-white image, as

fax machines do. Fax machines transmit an image as a series of

pels:2 black or white dots that together form the image. Many fax

machines transmit the pels from top to bottom, row by row. When

the image comprises mostly text, most of the image is white, and so

each row likely contains many consecutive white pels. If a row con-

tains part of a horizontal black line, it might have many consecutive

black pels. Rather than indicate individually each pel in a run of like

color, fax machines compress the information to indicate the length

of each run and the color of the pels in the run. For example, in one

fax standard, a run of 140 white pels is compressed into the eleven

bits 10010001000.

1The ASCII codes for p and t, respectively, are 01110000 and 01110100.

2Pels are like pixels on a screen. Both “pel” and “pixel” are portmanteaus of “picture

element.”

160 Chapter 9: Data Compression

Data compression is a well studied area, and so I can touch on only a

small part of it here. I’ll focus on lossless compression, but you can find

a couple of good references that cover lossy compression in the “Further

reading” section.

In this chapter, unlike the previous chapters, we won’t focus on run-

ning times. I’ll mention them when appropriate, but we’re far more

interested in the size of the compressed information than in how long

compression and decompression take.

Huffman codes

Let’s return to strings that represent DNA for the moment. Recall from

Chapter 7 that biologists represent DNA as strings over the four charac-

ters A, C, G, and T. Suppose that we had a strand of DNA represented by

n characters, where 45% of the characters are A, 5% are C, 5% are G, and

45% are T, but the characters appear in the strand in no particular order.

If we used the ASCII character set to represent the strand, with each

character occupying eight bits, it would take 8n bits to represent the en-

tire strand. Of course, we can do better. Since we represent strands of

DNA by drawing on only four characters, we really need only two bits

to represent each character (00; 01; 10; 11), and so we can reduce the

space to 2n bits.

But we can do even better by taking advantage of the relative frequen-

cies of the characters. Let’s encode the characters with the following bit

sequences: A D 0, C D 100, G D 101, T D 11. The more frequent

characters get the shorter bit sequences. We would encode the 20-

character strand TAATTAGAAATTCTATTATA by the 33-bit sequence

110011110101000111110011011110110. (We’ll see in a moment why

I chose this particular encoding and what properties it has.) Given the

frequencies of the four characters, to encode the n-character strand, we

need only 0:45 �n �1C0:05 �n �3C0:05 �n �3C0:45 �n �2 D 1:65n bits.

(Notice that for the sample strand above, 33 D 1:65 � 20.) By taking

advantage of the relative frequencies of the characters, we can do even

better than 2n bits!

In the encoding we used, not only do the more frequent characters get

the shorter bit sequences, but there’s something else interesting about

the encodings: no code is a prefix of any other code. The code for A

Chapter 9: Data Compression 161

is 0, and no other code starts with 0; the code for T is 11, and no other

code starts with 11; and so on. We call such a code a prefix-free code.3

The prime advantage of prefix-free codes emerges when we de-

compress. Because no code is a prefix of any other code, we can

unambiguously match the compressed bits with their original char-

acters as we decompress bits in order. In the compressed sequence

110011110101000111110011011110110, for example, no character

has the one-bit code 1 and only the code for T begins with 11, and so we

know that the first character of the uncompressed text must be T. Strip-

ping off the 11 leaves 0011110101000111110011011110110. Only the

code for A begins with 0, and so the first character of what remains

must be A. After stripping off the 0 and then the bits 011110, cor-

responding to the uncompressed characters ATTA, the remaining bits

are 101000111110011011110110. Because only the code for G begins

with 101, the next uncompressed character must be G. And so on.

If we measure the efficiency of compression methods according to the

average length of the compressed information, then of the prefix-free

codes, Huffman codes4 are the best. One disadvantage of traditional

Huffman coding is that it requires the frequencies of all the characters

to be known in advance, and therefore compression often requires two

passes over the uncompressed text: one to determine character frequen-

cies, and one to map each character to its code. We’ll see a little later

how to avoid the first pass, at the expense of extra computation.

Once we know the character frequencies, Huffman’s method builds a

binary tree. (If you’ve forgotten about binary trees, see page 98.) This

tree tells us how to form the codes, and it’s also convenient to have when

decompressing. Here’s what the tree looks like for our example of DNA

encoding:

1.0

A: 0.45 0.55

0.1 T: 0.45

G: 0.05C: 0.05

0 1

0 1

0 1

3In CLRS, we called them “prefix codes.” I now prefer the more apt term “prefix-free.”

4Named after their inventor, David Huffman.

162 Chapter 9: Data Compression

The leaves of the tree, drawn as rectangles, represent the characters,

with the frequency of each appearing next to the character. The non-

leaves, or internal nodes, are drawn with rounded corners, with each

internal node containing the sum of the frequencies in the leaves below

it. We’ll soon see why it pays to store frequencies in the internal nodes.

Next to each edge in the tree appears either a 0 or a 1. To determine

the code for a character, follow the path from the root down to the char-

acter’s leaf, and concatenate the bits along the path. For example, to

determine the code for G, start at the root and first take the edge, la-

beled 1, to its right child; then the edge, labeled 0, to the left child (the

internal node with frequency 0:1), and finally the edge, labeled 1, to the

right child (the leaf containing G). Concatenating these bits gives the

code 101 for G.

Although I always labeled edges to left children by 0 and edges to

right children by 1, the labels themselves don’t matter much. I could

have just as easily labeled the edges this way:

1.0

A: 0.45 0.55

0.1 T: 0.45

G: 0.05C: 0.05

0 1

1 0

1 0

With this tree, the codes would be A D 0, C D 111, G D 110, T D 10.

They would still be prefix-free, and the number of bits in each code

would be the same as before. That’s because the number of bits in the

code for a character is the same as the depth of the character’s leaf:

the number of edges in the path from the root down to the leaf. Life

is simpler, however, if we always label edges to left children by 0 and

edges to right children by 1.

Once we know the frequencies of the characters, we build the binary

tree from bottom to top. We start with each of the n leaf nodes, cor-

responding to the uncompressed characters, as its own individual tree,

so that initially, each leaf is also a root. We then repeatedly find the

two root nodes with the lowest frequencies, create a new root with these

nodes as its children, and give this new root the sum of its children’s

frequencies. The process continues until all the leaves are under one

root. As we progress, we label each edge to a left child by 0 and each

Chapter 9: Data Compression 163

edge to a right child by 1, though once we select the two roots with the

lowest frequencies, it doesn’t matter which we make the left child and

which we make the right child of the new root.

For our DNA example, here’s how the process unfolds. We start with

four nodes, each a leaf representing one character:

A: 0.45 C: 0.05 T: 0.45G: 0.05

The nodes for C and G have the lowest frequencies, so we create a new

node, make these two nodes its children, and give it their combined

frequencies:

A: 0.45 0.1T: 0.45

G: 0.05C: 0.05

0 1

Of the three roots remaining, the one we just created has the lowest

frequency, 0:1, and both of the other two have frequencies of 0:45. We

can select either of the other two as the second root; we select the one

for T, and we make it and the root with frequency 0:1 the children of a

new node whose frequency is their sum, 0:55:

A: 0.45 0.55

0.1 T: 0.45

G: 0.05C: 0.05

0 1

0 1

Only two roots remain. We create a new node and make them its chil-

dren, and its frequency (which we don’t need, since we’re going to be

done) is their sum, 1:0:

1.0

A: 0.45 0.55

0.1 T: 0.45

G: 0.05C: 0.05

0 1

0 1

0 1

Now that all the leaves are under this new root, we are done building the

binary tree.

164 Chapter 9: Data Compression

To be a little more precise, let’s define a procedure for building the bi-

nary tree. The procedure, BUILD-HUFFMAN-TREE, takes as input two

n-element arrays, char and freq, where charŒi � contains the i th uncom-

pressed character and freqŒi � gives the frequency of this character. It

also takes the value of n. To find the two roots with the lowest frequen-

cies, the procedure calls the INSERT and EXTRACT-MIN procedures for

a priority queue (see pages 96–97).

Procedure BUILD-HUFFMAN-TREE.char; freq; n/

Inputs:
� char: an array of n uncompressed characters.
� freq: an array of n character frequencies.
� n: the sizes of the char and freq arrays.

Output: The root of the binary tree constructed for Huffman codes.

1. Let Q be an empty priority queue.

2. For i D 1 to n:

A. Construct a new node ´ containing charŒi � and whose

frequency is freqŒi �.

B. Call INSERT.Q; ´/.

3. For i D 1 to n � 1:

A. Call EXTRACT-MIN.Q/, and set x to the node extracted.

B. Call EXTRACT-MIN.Q/, and set y to the node extracted.

C. Construct a new node ´ whose frequency is the sum of x’s

frequency and y’s frequency.

D. Set ´’s left child to be x and ´’s right child to be y.

E. Call INSERT.Q; ´/.

4. Call EXTRACT-MIN.Q/, and return the node extracted.

Once the procedure gets to step 4, only one node remains in the priority

queue, and it’s the root of the entire binary tree.

You can trace out how this procedure runs with the binary trees on

the preceding page. The roots in the priority queue at the start of each

iteration of the loop in step 3 appear at the top of each figure.

Let’s quickly analyze the running time of BUILD-HUFFMAN-TREE.

Assuming that the priority queue is implemented by a binary heap,

each INSERT and EXTRACT-MIN operation takes O.lg n/ time. The

procedure calls each of these operations 2n � 1 times, for a total of

Chapter 9: Data Compression 165

O.n lg n/ time. All other work takes a total of ‚.n/ time, and so

BUILD-HUFFMAN-TREE runs in O.n lg n/ time.

I mentioned earlier that when decompressing it’s convenient to have

the binary tree that BUILD-HUFFMAN-TREE constructs. Starting at the

root of the binary tree, travel down the tree according to the bits of the

compressed information. Strip off each bit, going left if it’s a 0 and

right if it’s a 1. Upon arriving at a leaf, stop, emit a character, and

resume searching at the root. Returning to our DNA example, when de-

compressing the bit sequence 11001111010100011111001101111011,

we strip off the first 1 and go right from the root, then strip off another 1

and go right again, arriving at the leaf for T. We emit T and resume

searching at the root. We strip off the next bit, 0, and go left from the

root, arriving at the leaf for A, which we emit, and then we go back to

the root. Decompression continues in this way until all the bits of the

compressed information have been processed.

If we have the binary tree already built before decompressing, then it

takes constant time to process each bit. So how does the decompression

process gain access to the binary tree? One possibility is to include

a representation of the binary tree with the compressed information.

Another possibility is to include a decoding table with the processed

information. Each entry of the table would include the character, the

number of bits in its code, and the code itself. From this table, it’s

possible to build the binary tree in time linear in the total number of bits

in all codes.

The BUILD-HUFFMAN-TREE procedure serves as an example of a

greedy algorithm, wherein we make the decision that seems best at the

moment. Because we want the least-frequently appearing characters

far from the root of the binary tree, the greedy approach always selects

the two roots with the lowest frequency to place under a new node,

which can later become a child of some other node. Dijkstra’s algorithm

(pages 92–100) is another greedy algorithm, because it always relaxes

edges from the vertex with the lowest shortest value of those remaining

in its priority queue.

I implemented Huffman coding and ran it on an online version of

Moby Dick. The original text took 1,193,826 bytes, but the compressed

version took only 673,579 bytes, or 56:42% the size of the original,

not including the encoding itself. Put another way, on average each

character required only 4.51 bits to encode. Not too surprisingly, the

most frequent character was a space (15:96%), followed by e (9:56%).

166 Chapter 9: Data Compression

The least frequent characters, appearing only twice each, were $, &, [,

and].

Adaptive Huffman codes

Practitioners often find that making two passes over the input, one to

compute character frequencies and one to encode the characters, is

too slow. Instead, the compression and decompression programs work

adaptively, updating character frequencies and the binary tree as they

compress or decompress in just one pass.

The compression program starts with an empty binary tree. Each

character it reads from the input is either new or already in the binary

tree. If the character is already in the binary tree, then the compression

program emits the character’s code according to the current binary tree,

increases the character’s frequency, and, if necessary, updates the binary

tree to reflect the new frequency. If the character is not already in the bi-

nary tree, then the compression program emits the character unencoded

(as is), adds it to the binary tree, and updates the binary tree accordingly.

The decompression program mirrors what the compression program

does. It, too, maintains a binary tree as it processes the compressed

information. When it sees bits for a character in the binary tree, it goes

down the tree to determine which character the bits encode, emits this

character, increases the character’s frequency, and updates the binary

tree. When it sees a character not yet in the tree, the decompression

program emits the character, adds it to the binary tree, and updates the

binary tree.

Something is amiss here, however. Bits are bits, whether they repre-

sent ASCII characters or bits in a Huffman code. How can the decom-

pression program determine whether the bits it’s looking at represent an

encoded or an unencoded character? Does the bit sequence 101 rep-

resent the character currently encoded as 101, or is it the start of an

eight-bit unencoded character? The answer is to precede each unen-

coded character with an escape code: a special code indicating that the

next set of bits represents an unencoded character. If the original text

contains k different characters, then only k escape codes will appear in

the compressed information, each one preceding the first occurrence of

a character. Escape codes will usually appear infrequently, and so we

don’t want to assign them short bit sequences at the expense of a more

frequently occurring character. A good way to ensure that escape codes

are not short is to include an escape code character in the binary tree, but

nail down its frequency to be 0 always. As the binary tree is updated,

Chapter 9: Data Compression 167

the escape code’s bit sequence will change in both the compression and

decompression programs, but its leaf will always be the farthest from

the root.

Fax machines

Earlier, I mentioned that fax machines compress information to indicate

the colors and lengths of runs of identical pels in the rows of the im-

age being transmitted. This scheme is known as run-length encoding.

Fax machines combine run-length encoding with Huffman codes. In

the standard for fax machines that use regular phone lines, 104 codes

indicate runs of different lengths of white pels, and 104 codes indicate

runs of different lengths of black pels. The codes for white-pel runs

are prefix-free, as are the codes for black-pel runs, though some of the

codes for runs of white pels are prefixes of codes for runs of black pels

and vice versa.

To determine which codes to use for which runs, a standards com-

mittee took a set of eight representative documents and counted how of-

ten each run appeared. They then constructed Huffman codes for these

runs. The most frequent runs, and hence the shortest codes, were for

runs of two, three, and four black pels, with codes 11, 10, and 011, re-

spectively. Other common runs were one black pel (010), five and six

black pels (0011 and 0010), two to seven white pels (all with four-bit

codes), and other relatively short runs. One fairly frequent run consisted

of 1664 white pels, representing an entire row of white pels. Other short

codes went to runs of white pels whose lengths are powers of 2 or sums

of two powers of 2 (such as 192, which equals 27 C 26). Runs can be

encoded by concatenating encodings of shorter runs. Earlier, I gave as

an example the code for a run of 140 white pels, 10010001000. This

code is actually the concatenation of the codes for a run of 128 white

pels (10010) and a run of 12 white pels (001000).

In addition to compressing information only within each row of the

image, some fax machines compress in both dimensions of the image.

Runs of same-color pels can occur vertically as well as horizontally,

and so instead of treating each row as if it were encountered in isola-

tion, a row is encoded according to where it differs from the preceding

row. For most rows, the difference from the previous row is just a few

pels. This scheme entails the risk that errors propagate: an encoding or

transmission error causes several consecutive rows to be incorrect. For

this reason, fax machines that use this scheme and transmit over phone

168 Chapter 9: Data Compression

lines limit the number of consecutive rows that can use it, so that after a

certain number of rows, they transmit a full row image using the Huff-

man coding scheme, rather than transmitting just the differences from

the previous row.

LZW compression

Another approach to lossless compression, especially for text, takes ad-

vantage of information that recurs in the text, though not necessarily in

consecutive locations. Consider, for example, a famous quotation from

John F. Kennedy’s inaugural address:

Ask not what your country can do for you—ask what you can do

for your country.

Except for the word not, each word in the quotation appears twice. Sup-

pose we made a table of the words:

index word

1 ask

2 not

3 what

4 your

5 country

6 can

7 do

8 for

9 you

Then we could encode the quotation (ignoring capitalization and punc-

tuation) by

1 2 3 4 5 6 7 8 9 1 3 9 6 7 8 4 5

Because this quotation consists of few words, and a byte can hold in-

tegers ranging from 0 to 255, we can store each index in a single byte.

Thus, we can store this quotation in only 17 bytes, one byte per word,

plus whatever space we need to store the table. At one character per

byte, the original quotation, without punctuation but with spaces be-

tween words, requires 77 bytes.

Of course, the space to store the table matters, for otherwise we could

just number every possible word and compress a file by storing only

indices of words. For some words, this scheme expands, rather than

compresses. Why? Let’s be ambitious and assume that there are fewer

Chapter 9: Data Compression 169

than 232 words, so that we can store each index in a 32-bit word. We

would represent each word by four bytes, and so this scheme loses for

words that are three letters or shorter, which require only one byte per

letter, uncompressed.

The real obstacle to numbering every possible word, however, is that

real text includes “words” that are not words, or rather, not words in

the English language. For an extreme example, consider the opening

quatrain of Lewis Carroll’s “Jabberwocky”:

’Twas brillig, and the slithy toves

Did gyre and gimble in the wabe:

All mimsy were the borogoves,

And the mome raths outgrabe.

Consider also computer programs, which often use variable names that

are not English words. Add in capitalization, punctuation, and really

long place names,5 and you can see that if we try to compress text by

numbering every possible word, we’re going to have to use a lot of

indices. Certainly more than 232 and, because any combination of char-

acters could appear in text, in reality an unbounded amount.

All is not lost, however, for we can still take advantage of recurring

information. We just have to not be so hung up on recurring words.

Any recurring sequence of characters could help. Several compression

schemes rely on recurring character sequences. The one we’ll examine

is known as LZW,6 and it’s the basis for many compression programs

used in practice.

LZW makes a single pass over its input for compression and for de-

compression. In both, it builds a dictionary of character sequences that

it has seen, and it uses indices into this dictionary to represent character

sequences. Think of the dictionary as an array of character strings. We

can index into this array, so that we can speak of its i th entry. Toward

the beginning of the input, the sequences tend to be short, and repre-

senting the sequences by indices could result in expansion, rather than

compression. But as LZW progresses through its input, the sequences

5Such as Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch, a Welsh vil-

lage.

6As you probably guessed, the name honors its inventors. Terry Welch created LZW

by modifying the LZ78 compression scheme, which was proposed by Abraham Lempel

and Jacob Ziv.

170 Chapter 9: Data Compression

in the dictionary become longer, and representing them by an index can

save quite a bit of space. For example, I ran the text of Moby Dick

through an LZW compressor, and it produced in its output an index rep-

resenting the 10-character sequence tfromtthet 20 times. (Each t

indicates one space character.) It also output an index representing the

eight-character sequence toftthet 33 times.

Both the compressor and decompressor seed the dictionary with a

one-character sequence for each character in the character set. Using the

full ASCII character set, the dictionary starts with 256 single-character

sequences; the i th entry in the dictionary holds the character whose

ASCII code is i .

Before going into a general description of how the compressor works,

let’s look at a couple of situations it handles. The compressor builds

up strings, inserting them into the dictionary and producing as output

indices into the dictionary. Let’s suppose that the compressor starts

building a string with the character T, which it has read from its in-

put. Because the dictionary has every single-character sequence, the

compressor finds T in the dictionary. Whenever the compressor finds

the string that it’s building in the dictionary, it takes the next character

from the input and appends that character to the string it’s building up.

So now let’s suppose that the next input character is A. The compres-

sor appends A to the string it’s building, getting TA. Let’s suppose that

TA is also in the dictionary. The compressor then reads the next input

character, let’s say G. It appends G to the string it’s building, resulting

in TAG, and this time let’s suppose that TAG is not in the dictionary.

The compressor does three things: (1) it outputs the dictionary index of

the string TA; (2) it inserts the string TAG into the dictionary; and (3) it

starts building a new string, initially containing just the character (G)

that caused the string TAG to not be in the dictionary.

Here is how the compressor works in general. It produces a sequence

of indices into the dictionary. Concatenating the strings at these indices

gives the original text. The compressor builds up strings in the dictio-

nary one character at a time, so that whenever it inserts a string into the

dictionary, that string is the same as some string already in the dictio-

nary but extended by one character. The compressor manages a string s

of consecutive characters from the input, maintaining the invariant that

the dictionary always contains s in some entry. Even if s is a single

character, it appears in the dictionary, because the dictionary is seeded

with a single-character sequence for each character in the character set.

Chapter 9: Data Compression 171

Initially, s is just the first character of the input. Upon reading a new

character c, the compressor checks to see whether the string s c, formed

by appending c to the end of s, is currently in the dictionary. If it is,

then it appends c to the end of s and calls the result s; in other words,

it sets s to s c. The compressor is building a longer string that it will

eventually insert into the dictionary. Otherwise, s is in the dictionary

but s c is not. In this case, the compressor outputs the index of s in the

dictionary, inserts s c into the next available dictionary entry, and sets

s to just the input character c. By inserting s c into the dictionary, the

compressor has added a string that extends s by one character, and by

then setting s to c, it restarts the process of building a string to look up

in the dictionary. Because c is a single-character string in the dictio-

nary, the compressor maintains the invariant that s appears somewhere

in the dictionary. Once the input is exhausted, the compressor outputs

the index of whatever string s remains.

The procedure LZW-COMPRESSOR appears on the next page. Let’s

run through an example, compressing the text TATAGATCTTAATATA.

(The sequence TAG that we saw on the previous page will come up.)

The following table shows what happens upon each iteration of the loop

in step 3. The values shown for the string s are at the start of the itera-

tion.

Iteration s c Output New dictionary string

1 T A 84 (T) 256: TA

2 A T 65 (A) 257: AT

3 T A

4 TA G 256 (TA) 258: TAG

5 G A 71 (G) 259: GA

6 A T

7 AT C 257 (AT) 260: ATC

8 C T 67 (C) 261: CT

9 T T 84 (T) 262: TT

10 T A

11 TA A 256 (TA) 263: TAA

12 A T

13 AT A 257 (AT) 264: ATA

14 A T

15 AT A

step 4 ATA 264 (ATA)

After step 1, the dictionary has one-character strings for each of the 256

ASCII characters in entries 0 through 255. Step 2 sets the string s to

hold just the first input character, T. In the first iteration of the main

172 Chapter 9: Data Compression

Procedure LZW-COMPRESSOR.text/

Input: text: A sequence of characters in the ASCII character set.

Output: A sequence of indices into a dictionary.

1. For each character c in the ASCII character set:

A. Insert c into the dictionary at the index equal to c’s numeric

code in ASCII.

2. Set s to the first character from text.

3. While text is not exhausted, do the following:

A. Take the next character from text, and assign it to c.

B. If s c is in the dictionary, then set s to s c.

C. Otherwise (s c is not yet in the dictionary), do the following:

i. Output the index of s in the dictionary.

ii. Insert s c into the next available entry in the dictionary.

iii. Set s to the single-character string c.

4. Output the index of s in the dictionary.

loop of step 3, c is the next input character, A. The concatenation s c is

the string TA, which is not yet in the dictionary, and so step 3C runs. Be-

cause the string s holds just T, and the ASCII code of T is 84, step 3Ci

outputs the index 84. Step 3Cii inserts the string TA into the next avail-

able entry in the dictionary, which is at index 256, and step 3Ciii restarts

building s, setting it to just the character A. In the second iteration of

the loop of step 3, c is the next input character, T. The string s c D AT

is not in the dictionary, and so step 3C outputs the index 65 (the ASCII

code for A), inserts the string AT into entry 257, and sets s to hold T.

We see the benefit of the dictionary upon the next two iterations of

the loop of step 3. In the third iteration, c becomes the next input char-

acter, A. Now the string s c D TA is present in the dictionary, and so the

procedure doesn’t output anything. Instead, step 3B appends the input

character onto the end of s, setting s to TA. In the fourth iteration, c be-

comes G. The string s c D TAG is not in the dictionary, and so step 3Ci

outputs the dictionary index 256 of s. One output number gives not one,

but two characters: TA.

Not every dictionary index is output by the time LZW-COMPRESSOR

finishes, and some indices may be output more than once. If you con-

Chapter 9: Data Compression 173

catenate all the characters in parentheses in the output column, you get

the original text, TATAGATCTTAATATA.

This example is a little too small to show the real benefit of LZW

compression. The input occupies 16 bytes, and the output consists of

10 dictionary indices. Each index requires more than one byte. Even if

we use two bytes per index in the output, it occupies 20 bytes. If each

index occupies four bytes, a common size for integer values, the output

takes 40 bytes.

Longer texts tend to yield better results. LZW compression reduces

the size of Moby Dick from 1,193,826 bytes to 919,012 bytes. Here, the

dictionary contains 230,007 entries, and so indices have to be at least

four bytes.7 The output consists of 229,753 indices, or 919,012 bytes.

That’s not as compressed as the result of Huffman coding (673,579

bytes), but we’ll see some ideas a little later to improve the compres-

sion.

LZW compression helps only if we can decompress. Fortunately, the

dictionary does not have be stored with the compressed information.

(If it did, unless the original text contained a huge amount of recurring

strings, the output of LZW compression plus the dictionary would con-

stitute an expansion, not a compression.) As mentioned earlier, LZW

decompression rebuilds the dictionary directly from the compressed in-

formation.

Here is how LZW decompression works. Like the compressor, the

decompressor seeds the dictionary with the 256 single-character se-

quences corresponding to the ASCII character set. It reads a sequence

of indices into the dictionary as its input, and it mirrors what the com-

pressor did to build the dictionary. Whenever it produces output, it’s

from a string that it has added to the dictionary.

Most of the time, the next dictionary index in the input is for an entry

already in the dictionary (we’ll soon see what happens the rest of the

time), and so the LZW decompressor finds the string at that index in

the dictionary and outputs it. But how can it build the dictionary? Let’s

think for a moment about how the compressor operates. When it outputs

an index within step 3C, it has found that, although the string s is in

7I’m assuming that we represent integers using the standard computer representations

of integers, which occupy one, two, four, or eight bytes. In theory, we could represent

indices up to 230,007 using just three bytes, so that the output would take 689,259

bytes.

174 Chapter 9: Data Compression

the dictionary, the string s c is not. It outputs the index of s in the

dictionary, inserts s c into the dictionary, and starts building a new string

to store, starting with c. The decompressor has to match this behavior.

For each index it takes from its input, it outputs the string s at that index

in the dictionary. But it also knows that at the time the compressor

output the index for s, the compressor did not have the string s c in

the dictionary, where c is the character immediately following s. The

decompressor knows that the compressor inserted the string s c into the

dictionary, so that’s what the decompressor needs to do—eventually.

It cannot insert s c yet, because it hasn’t seen the character c. That’s

coming as the first character of the next string that the decompressor

will output. But the decompressor doesn’t have that next string just yet.

Therefore, the decompressor needs to keep track of two consecutive

strings that it outputs. If the decompressor outputs strings X and Y, in

that order, then it concatenates the first character of Y onto X and then

inserts the resulting string into the dictionary.

Let’s look at an example, referring to the table on page 171, which

shows how the compressor operates on TATAGATCTTAATATA. In it-

eration 11, the compressor outputs the index 256 for the string TA, and

it inserts the string TAA into the dictionary. That’s because, at that time,

the compressor already had s D TA in the dictionary but not s c D TAA.

That last A begins the next string output by the compressor, AT (in-

dex 257), in iteration 13. Therefore, when the decompressor sees in-

dices 256 and 257, it should output TA, and it also should remember

this string so that when it outputs AT, it can concatenate the A from AT

with TA and insert the resulting string, TAA, into the dictionary.

On rare occasions, the next dictionary index in the decompressor’s

input is for an entry not yet in the dictionary. This situation arises so

infrequently that when decompressing Moby Dick, it occurred for only

15 of the 229,753 indices. It happens when the index output by the

compressor is for the string most recently inserted into the dictionary.

This situation occurs only when the string at this index starts and ends

with the same character. Why? Recall that the compressor outputs the

index for a string s only when it finds s in the dictionary but s c is not,

and then it inserts s c into the dictionary, say at index i , and begins a

new string s starting with c. If the next index output by the compressor

is going to be i , then the string at index i in the dictionary must start

with c, but we just saw that this string is s c. So if the next dictionary in-

dex in the decompressor’s input is for an entry not yet in the dictionary,

Chapter 9: Data Compression 175

the decompressor can output the string it most recently inserted into the

dictionary, concatenated with the first character of this string, and insert

this new string into the dictionary.

Because these situations are so rare, an example is a bit contrived.

The string TATATAT causes it to occur. The compressor does the fol-

lowing: outputs index 84 (T) and inserts TA at index 256; outputs in-

dex 65 (A) and inserts AT at index 257; outputs index 256 (TA) and in-

serts TAT at index 258; and finally outputs index 258 (TAT—the string

just inserted). The decompressor, upon reading in index 258, takes the

string it had most recently output, TA, concatenates the first character

of this string, T, outputs the resulting string TAT, and inserts this string

into the dictionary.

Although this rare situation occurs only when the string starts and

ends with the same character, this situation does not occur every time

the string starts and ends with the same character. For example, when

compressing Moby Dick, the string whose index was output had the

same starting and ending character 11,376 times (a shade under 5% of

the time) without being the string most recently inserted into the dictio-

nary.

The procedure LZW-DECOMPRESSOR, on the next page, makes all

of these actions precise. The following table shows what happens in

each iteration of the loop in step 4 when given as input the indices in

the output column in the table on page 171. The strings indexed in the

dictionary by previous and current are output in consecutive iterations,

and the values shown for previous and current in each iteration are after

step 4B.

Iteration previous current Output (s) New dictionary string

Steps 2, 3 84 T

1 84 65 A 256: TA

2 65 256 TA 257: AT

3 256 71 G 258: TAG

4 71 257 AT 259: GA

5 257 67 C 260: ATC

6 67 84 T 261: CT

7 84 256 TA 262: TT

8 256 257 AT 263: TAA

9 257 264 ATA 264: ATA

Except for the last iteration, the input index is already in the dictionary,

so that step 4D runs only in the last iteration. Notice that the dictio-

176 Chapter 9: Data Compression

Procedure LZW-DECOMPRESSOR.indices/

Input: indices: a sequence of indices into a dictionary, created by

LZW-COMPRESSOR.

Output: The text that LZW-COMPRESSOR took as input.

1. For each character c in the ASCII character set:

A. Insert c into the dictionary at the index equal to c’s numeric

code in ASCII.

2. Set current to the first index in indices.

3. Output the string in the dictionary at index current.

4. While indices is not exhausted, do the following:

A. Set previous to current.

B. Take the next number from indices and assign it to current.

C. If the dictionary contains an entry indexed by current, then do

the following:

i. Set s to be the string in the dictionary entry indexed by

current.

ii. Output the string s.

iii. Insert, into the next available entry in the dictionary, the

string at the dictionary entry indexed by previous,

concatenated with the first character of s.

D. Otherwise (the dictionary does not yet contain an entry

indexed by current), do the following:

i. Set s to be the string at the dictionary entry indexed by

previous, concatenated with the first character of this

dictionary entry.

ii. Output the string s.

iii. Insert, into the next available entry in the dictionary, the

string s.

nary built by LZW-DECOMPRESSOR matches the one built by LZW-

COMPRESSOR.

I haven’t addressed how to look up information in the dictionary in

the LZW-COMPRESSOR and LZW-DECOMPRESSOR procedures. The

latter is easy: just keep track of the last dictionary index used, and if

the index in current is less than or equal to the last-used index, then the

Chapter 9: Data Compression 177

string is in the dictionary. The LZW-COMPRESSOR procedure has a

more difficult task: given a string, determine whether it’s in the dictio-

nary and, if it is, at what index. Of course, we could just perform a linear

search on the dictionary, but if the dictionary contains n items, each lin-

ear search takes O.n/ time. We can do better by using either one of a

couple of data structures. I won’t go into the details here, however. One

is called a trie, and it’s like the binary tree we built for Huffman coding,

except that each node can have many children, not just two, and each

edge is labeled with an ASCII character. The other data structure is a

hash table, and it provides a simple way to find strings in the directory

that is fast on average.

LZW improvements

As I mentioned, I was none too impressed with how well the LZW

method compressed the text of Moby Dick. Part of the problem stems

from the large dictionary. With 230,007 entries, each index requires

at least four bytes, and so with an output of 229,753 indices, the com-

pressed version requires four times that, or 919,012 bytes. Then again,

we can observe a couple of properties of the indices that the LZW com-

pressor produces. First, many of them are low numbers, meaning that

they have many leading zeros in their 32-bit representations. Second,

some of the indices are going to occur much more frequently than oth-

ers.

When both of these properties hold, Huffman coding is likely to yield

good results. I modified the Huffman coding program to work with

four-byte integers rather than characters, and I ran it with the output of

the LZW compressor on Moby Dick. The resulting file occupies only

460,971 bytes, or 38:61% of the original size (1,193,826 bytes), which

beats Huffman coding alone. Note, however, that I am not including

the Huffman encoding’s size in this figure. And just as compression

entailed two steps—compress the text with LZW and then compress

the resulting indices with Huffman coding—decompression would be a

two-step process: first decompress with Huffman coding, then decom-

press with LZW.

Other approaches to LZW compression focus on reducing the num-

ber of bits necessary to hold the indices that the compressor outputs.

Because many of the indices are small numbers, one approach is to use

fewer bits for smaller numbers, but reserve, say, the first two bits to

indicate how many bits the number requires. Here’s one scheme:

178 Chapter 9: Data Compression

� If the first two bits are 00, then the index is in the range 0 to 63

(26 � 1), requiring another six bits, and hence one byte in all.

� If the first two bits are 01, then the index is in the range 64 (26)

to 16,383 (214 � 1), requiring another 14 bits, and hence two bytes

in all.

� If the first two bits are 10, then the index is in the range 16,384 (214)

to 4,194,303 (222 � 1), requiring another 22 bits, and hence three

bytes in all.

� Finally, if the first two bits are 11, then the index is in the range

4,194,304 (222) to 1,073,741,823 (230 �1), requiring another 30 bits,

and hence four bytes in all.

In two other approaches, the indices output by the compressor are

all the same size, because the compressor limits the size of the dictio-

nary. In one approach, once the dictionary reaches a maximum size, no

other entries are ever inserted. In another approach, once the dictionary

reaches a maximum size, it is cleared out (except for the first 256 en-

tries), and the process of filling the dictionary restarts from the point

in the text where the dictionary filled. In all of these approaches, the

decompressor must mirror the compressor’s action.

Further reading

Salomon’s book [Sal08] is particularly clear and concise, yet it covers

a wide range of compression techniques. The book by Storer [Sto88],

published 20 years before Salomon’s book, is a classic text in the field.

Section 16.3 of CLRS [CLRS09] delves into Huffman codes in some

detail, though it does not prove that they’re the best possible prefix-free

codes.

10 Hard? Problems

When I buy material products over the Internet, the seller has to get

them delivered to my home. Most of the time, the seller uses a package-

delivery company. I won’t say which package-delivery company is most

often used for the products I purchase, other than to say that brown

trucks have been known to stop in front of my driveway every now and

then.

Brown trucks

The package-delivery company operates over 91,000 of these brown

trucks in the U.S., as well as many others worldwide. At least five days

per week, each truck starts and ends at a specific depot and drops off

parcels at numerous residential and commercial locations. The package-

delivery company has a keen interest in minimizing the cost incurred by

each truck as it makes many stops each day. For example, one online

source I consulted claimed that once the company mapped out routes for

its drivers to reduce the number of left turns, it reduced the total distance

traveled by its vehicles by 464,000 miles in an 18-month period, saving

over 51,000 gallons of fuel, with the added benefit of decreasing carbon

dioxide emissions by 506 metric tons.

How can the company minimize the cost of sending out each truck

each day? Suppose that a given truck must deliver parcels to n locations

on a particular day. Adding in the depot, there are n C 1 locations that

the truck must visit. For each of these n C 1 locations, the company can

calculate the costs of sending the truck from there to each of the other n

locations, so that the company has an .nC1/�.nC1/ table of costs from

location to location, where the entries on the diagonal are meaningless,

since the i th row and the i th column correspond to the same location.

The company wants to determine the route that starts and ends at the

depot and visits all the other n locations exactly once, such that the total

cost of the entire route is as low as possible.

It is possible to write a computer program that will solve this problem.

After all, if we consider a particular route and we know the order of

stops on the route, then it’s just a matter of looking up in the table the

180 Chapter 10: Hard? Problems

costs of going from location to location and adding them up. Then we

just have to enumerate all the possible routes and keep track of which

one has the lowest total cost. The number of possible routes is finite,

and so the program will terminate at some point and give the answer.

That program doesn’t seem so hard to write, does it?

Indeed, the program isn’t hard to write.

It’s hard to run.

The hitch is that the number of possible routes that visit n locations

is enormous: nŠ (n-factorial). Why? The truck starts at the depot. From

there, any of the other n locations can be the first stop. From the first

stop, any of the remaining n � 1 locations can be the second stop, and

so there are n � .n � 1/ possible combinations for the first two stops, in

order. Once we settle on the first two stops, any of n � 2 locations could

be the third stop, giving n � .n � 1/ � .n � 2/ possible orders for the first

three stops. Extending this reasoning to the n delivery locations, the

number of possible orders is n � .n � 1/ � .n � 2/ � � � 3 � 2 � 1, or nŠ.

Recall that nŠ grows faster than an exponential function; it’s super-

exponential. In Chapter 8, I pointed out that 10Š equals 3,628,800. To a

computer, that’s not such a big number. But the brown trucks drop off

parcels at many more than just 10 locations per day. Suppose that a truck

delivers to 20 addresses per day. (In the U.S., the company averages

about 170 packages per truck, so even allowing for multiple packages

to be delivered to a single location, 20 stops per day doesn’t seem like an

overestimate.) With 20 stops, a computer program would have to enu-

merate 20Š possible orders, and 20Š equals 2,432,902,008,176,640,000.

If the company’s computers could enumerate and evaluate one trillion

orders per second, it would require over 28 days to try them all. And

that’s for just one day’s worth of deliveries for one of over 91,000 trucks.

With this approach, if the company were to acquire and operate the

computing power needed to find the lowest-cost routes for all trucks

each day, the computing cost would easily wipe out the gains from the

more efficient routes. No, this idea of enumerating all possible routes

and keeping track of the best, although mathematically sound, is simply

not practical. Is there a better way to find the lowest-cost route for each

truck?

Nobody knows. (Or if somebody does know, he or she isn’t telling.)

Nobody has found a better way, yet nobody has proven that a better way

cannot exist. How frustrating is that?

Chapter 10: Hard? Problems 181

It’s more frustrating than you might imagine. The problem of finding

the lowest-cost routes for brown trucks is better known as the traveling-

salesman problem, so called because in its original formulation a trav-

eling salesman1 has to visit n cities, starting and ending at the same

city, and visit all the cities with the shortest possible tour. No algorithm

that runs in time O.nc/, for any constant c, has ever been found for the

traveling-salesman problem. We don’t know of an algorithm that, given

the intercity distances among n cities, finds the best possible order to

visit the n cities in O.n100/ time, O.n1000/ time, or even O.n1,000,000/

time.

It gets worse. Many problems—thousands of them—share this char-

acteristic: for an input of size n, we know of no algorithm that runs

in time O.nc/ for any constant c, yet nobody has proven that no such

algorithm could exist. These problems come from a wide variety of

domains—logic, graphs, arithmetic, and scheduling among them.

To take the frustration to a whole new level, here’s the most amazing

fact: if there were an algorithm that ran in O.nc/ time for any of these

problems, where c is a constant, then there would be an algorithm that

ran in O.nc/ time for all of these problems. We call these problems

NP-complete. An algorithm that runs in time O.nc/ on an input of

size n, where c is a constant, is a polynomial-time algorithm, so called

because nc with some coefficient would be the most significant term in

the running time. We know of no polynomial-time algorithm for any

NP-complete problem, but nobody has proven that it’s impossible to

solve some NP-complete problem in polynomial time.

And there’s even more frustration: many NP-complete problems are

almost the same as problems that we know how to solve in polynomial

time. Just a small tweak separates them. For example, recall from Chap-

ter 6 that the Bellman-Ford algorithm finds shortest paths from a single

source in a directed graph, even if the graph has negative-weight edges,

in ‚.nm/ time, where the graph has n vertices and m edges. If the

graph is given as adjacency lists, then the input size is ‚.n C m/. Let’s

assume that m � n; then the input size is ‚.m/ and nm � m2, and

so the running time of the Bellman-Ford algorithm is polynomial in the

input size. (You can get the same result if n > m.) So finding shortest

1Sorry about the gendered language. The name is historical, and if the problem were

first being cast today, I hope that it would be known as the “traveling-salesperson prob-

lem.”

182 Chapter 10: Hard? Problems

paths is easy. You might be surprised to learn, however, that finding a

longest acyclic path (that is, a longest path without cycles) between two

vertices is NP-complete. In fact, merely determining whether a graph

contains a path without cycles with at least a given number of edges is

NP-complete.

As another example of related problems, where one is easy and one

is NP-complete, consider Euler tours and hamiltonian cycles. Both of

these problems have to do with finding paths in a connected, undirected

graph. In an undirected graph, edges have no direction, so that .u; v/

and .v; u/ are the same edge. We say that edge .u; v/ is incident on

vertices u and v. A connected graph has a path between every pair of

vertices. An Euler tour2 starts and ends at the same vertex and visits

each edge exactly once, though it may visit each vertex more than once.

A hamiltonian cycle3 starts and ends at the same vertex and visits each

vertex exactly once (except, of course, for the vertex at which it starts

and ends). If we ask whether a connected, undirected graph has an

Euler tour, the algorithm is remarkably easy: determine the degree of

each vertex, that is, how many edges are incident on it. The graph has

an Euler tour if and only if the degree of every vertex is even. But if

we ask whether a connected, undirected graph has a hamiltonian cycle,

that’s NP-complete. Notice that the question is not “what is the order of

vertices on a hamiltonian cycle in this graph?” but just the more basic

“yes or no: is it possible to construct a hamiltonian cycle on this graph?”

NP-complete problems come up surprisingly often, which is why

I’m including material on them in this book. If you are trying to find

a polynomial-time algorithm for a problem that turns out to be NP-

complete, you are likely to be in for a big helping of disappointment.

(But see the section on perspective, pages 208–211.) The concept of

NP-complete problems has been around since the early 1970s, and peo-

ple were trying to solve problems that turned out to be NP-complete

(such as the traveling-salesman problem) well before then. To date, we

2So named because the mathematician Leonhard Euler proved in 1736 that it was not

possible to tour the city of Königsberg, Prussia, by crossing every one of its seven

bridges exactly once and ending up at the starting point.

3The name honors W. R. Hamilton, who in 1856 described a mathematical game on a

graph known as the dodecahedron, in which one player sticks five pins in any five con-

secutive vertices and the other player must complete the path to form a cycle containing

all the vertices.

Chapter 10: Hard? Problems 183

don’t know whether a polynomial-time algorithm exists for any NP-

complete problem, nor do we know that no such algorithm can exist.

Many brilliant computer scientists have spent years on this question

without resolving it. I’m not saying that you cannot find a polynomial-

time algorithm for an NP-complete problem, but you would be facing

long odds if you were to try.

The classes P and NP and NP-completeness

In the previous chapters, I was concerned about differences in running

times such as O.n2/ vs. O.n lg n/. In this chapter, however, we’ll be

happy if an algorithm runs in polynomial time, so that differences of

O.n2/ vs. O.n lg n/ are insignificant. Computer scientists generally

regard problems solvable by polynomial-time algorithms as “tractable,”

meaning “easy to deal with.” If a polynomial-time algorithm exists for

a problem, then we say that this problem is in the class P.

At this point, you might be wondering how we could possibly con-

sider a problem that requires ‚.n100/ time as tractable. For an input of

size n D 10, isn’t 10100 a dauntingly large number? Yes, it is; in fact,

the quantity 10100 is a googol (the origin of the name “Google”). For-

tunately, we don’t see algorithms that take ‚.n100/ time. The problems

in P that we encounter in practice require much less time. I’ve rarely

seen polynomial-time algorithms that take worse than, say, O.n5/ time.

Moreover, once someone finds the first polynomial-time algorithm for a

problem, others often follow with even more efficient algorithms. So if

someone were to devise the first polynomial-time algorithm for a prob-

lem but it ran in time ‚.n100/, there would be a good chance that others

would follow suit with faster algorithms.

Now suppose that you’re given a proposed solution to a problem,

and you want to verify that the solution is correct. For example, in the

hamiltonian-cycle problem, a proposed solution would be a sequence

of vertices. In order to verify that this solution is correct, you’d need

to check that every vertex appears in the sequence exactly once, ex-

cept that the first and last vertices should be the same, and if the se-

quence is hv1; v2; v3; : : : ; vn; v1i then the graph must contain edges

.v1; v2/; .v2; v3/; .v3; v4/; : : : ; .vn�1; vn/ and back around to .vn; v1/.

You could easily verify that this solution is correct in polynomial time.

If it is possible to verify a proposed solution to a problem in time poly-

nomial in the size of the input to the problem, then we say that this

184 Chapter 10: Hard? Problems

problem is in the class NP.4 We call the proposed solution a certificate,

and in order for the problem to be in NP, the time to verify the certificate

needs to be polynomial in the size of the input to the problem and the

size of the certificate.

If you can solve a problem in polynomial time, then you can cer-

tainly verify a certificate for that problem in polynomial time. In other

words, every problem in P is automatically in NP. The reverse—is every

problem in NP also in P?—is the question that has perplexed computer

scientists for all these years. We often call it the “P D NP‹ problem.”

The NP-complete problems are the “hardest” in NP. Informally, a

problem is NP-complete if it satisfies two conditions: (1) it’s in NP and

(2) if a polynomial-time algorithm exists for the problem, then there is a

way to convert every problem in NP into this problem in such a way as to

solve them all in polynomial time. If a polynomial-time algorithm exists

for any NP-complete problem—that is, if any NP-complete problem is

in P—then P D NP. Because NP-complete problems are the hardest

in NP, if it turns out that any problem in NP is not polynomial-time

solvable, then none of the NP-complete problems are. A problem is

NP-hard if it satisfies the second condition for NP-completeness but

may or may not be in NP.

Here’s a handy list of the pertinent definitions:

� P: problems solvable in polynomial time, i.e., we can solve the prob-

lem in time polynomial in the size of the input to the problem.

� Certificate: a proposed solution to a problem.

� NP: problems verifiable in polynomial time, i.e., given a certificate,

we can verify that the certificate is a solution the problem in time

polynomial in the size of the input to the problem and the size of the

certificate.

� NP-hard: a problem such that if there is a polynomial-time algo-

rithm to solve this problem, then we can convert every problem

in NP into this problem in such a way to solve every problem in NP

in polynomial time.

� NP-complete: a problem that is NP-hard and also in NP.

4You probably surmised that the name P comes from “polynomial time.” If you’re won-

dering where the name NP comes from, it’s from “nondeterministic polynomial time.”

It’s an equivalent, but not quite as intuitive, way of viewing this class of problems.

Chapter 10: Hard? Problems 185

Decision problems and reductions

When we talk about the classes P and NP, or about the concept of NP-

completeness, we restrict ourselves to decision problems: their output

is a single bit, indicating “yes” or “no.” I couched the Euler-tour and

hamiltonian-cycle problems in this way: Does the graph have an Euler

tour? Does it have a hamiltonian cycle?

Some problems, however, are optimization problems, where we want

to find the best possible solutions, rather than decision problems. For-

tunately, we can often bridge part of this gap by recasting an optimiza-

tion problem as a decision problem. For example, let’s consider the

shortest-path problem. There, we used the Bellman-Ford algorithm to

find shortest paths. How can we pose the shortest-path problem as a

yes/no problem? We can ask “Does the graph contain a path between

two specific vertices whose path weight is at most a given value k?”

We’re not asking for the vertices or edges on the path, but just whether

such a path exists. Assuming that path weights are integers, we can find

the actual weight of the shortest path between the two vertices by asking

yes/no questions. How? Pose the question for k D 1. If the answer is

no, then try with k D 2. If the answer is no, try with k D 4. Keep

doubling the value of k until the answer is yes. If that last value of k

was k0, then the answer is somewhere between k0=2 and k0. Then find

the true answer by using binary search with an initial interval of k0=2

to k. This approach won’t tell us which vertices and edges a shortest

path contains, but at least it will tell us the weight of a shortest path.

The second condition for a problem to be NP-complete requires that

if a polynomial-time algorithm exists for the problem, then there is a

way to convert every problem in NP into this problem in such a way as

to solve them all in polynomial time. Focusing on decision problems,

let’s see the general idea behind converting one decision problem, X,

into another decision problem, Y, such that if there’s a polynomial-time

algorithm for Y then there’s a polynomial-time algorithm for X. We

call such a conversion a reduction because we’re “reducing” solving

problem X to solving problem Y. Here’s the idea:

polynomial-time
reduction

algorithm X to Y

input y polynomial-time
algorithm for Y

yes yes

polynomial-time algorithm for X

nonoto Y

input x

to X

186 Chapter 10: Hard? Problems

We’re given some input x of size n to problem X. We transform this

input into an input y to problem Y, and we do so in time polynomial

in n, say O.nc/ for some constant c. The way we transform input x into

input y has to obey an important property: if algorithm Y decides “yes”

on input y, then algorithm X should decide “yes” on input x, and if Y

decides “no” on y, then X should decide “no” on x. We call this trans-

formation a polynomial-time reduction algorithm. Let’s see how long

the entire algorithm for problem X takes. The reduction algorithm takes

O.nc/ time, and its output cannot be longer than the time it took, and so

the size of the reduction algorithm’s output is O.nc/. But this output is

the input y to the algorithm for problem Y. Since the algorithm for Y is a

polynomial-time algorithm, on an input of size m, it runs in time O.md /

for some constant d . Here, m is O.nc/, and so the algorithm for Y takes

time O..nc/d /, or O.ncd /. Because both c and d are constants, so is

cd , and we see that the algorithm for Y is a polynomial-time algorithm.

The total time for the algorithm for problem X is O.nc C ncd /, which

makes it, too, a polynomial-time algorithm.

This approach shows that if problem Y is “easy” (solvable in poly-

nomial time), then so is problem X. But we’ll use polynomial-time

reductions to show not that problems are easy, but that they are hard:

If problem X is NP-hard and we can reduce it to problem Y in

polynomial time, then problem Y is NP-hard as well.

Why should this statement hold? Let’s suppose that problem X is

NP-hard and that there is a polynomial-time reduction algorithm to con-

vert inputs to X into inputs to Y. Because X is NP-hard, there is a

way to convert any problem, say Z, in NP into X such that if X has a

polynomial-time algorithm, so does Z. Now you know how that con-

version occurs, namely by a polynomial-time reduction:

polynomial-time
reduction

algorithm Z to X

input x polynomial-time
algorithm for X

yes yes

polynomial-time algorithm for Z

nonoto X

input z

to Z

Because we can convert inputs to X into inputs to Y with a polynomial-

time reduction, we can expand X as we did earlier:

Chapter 10: Hard? Problems 187

polynomial-time
reduction

algorithm Z to X

input x polynomial-time
algorithm for Y

yes
yes

polynomial-time algorithm for Z

nonoto X

input z

to Z

polynomial-time
reduction

algorithm X to Y

input y

to Y

polynomial-time algorithm for X

Instead of grouping the polynomial-time reduction for X to Y and the

algorithm for Y together, let’s group the two polynomial-time reduc-

tions together:

polynomial-time
reduction

algorithm Z to X

polynomial-time
algorithm for Y

yes
yes

polynomial-time algorithm for Z

nono

input z

to Z

polynomial-time
reduction

algorithm X to Y

input y

to Y

input x

to X

Now we note that if we immediately follow the polynomial-time reduc-

tion for Z to X by the polynomial-time reduction from X to Y, we have

a polynomial-time reduction from Z to Y :

polynomial-time
reduction

algorithm Z to Y

input y polynomial-time
algorithm for Y

yes yes

polynomial-time algorithm for Z

nonoto Y

input z

to Z

Just to make sure that the two polynomial-time reductions in se-

quence together constitute a single polynomial-time reduction, we’ll use

a similar analysis to what we did before. Suppose that the input ´ to

problem Z has size n, that the reduction from Z to X takes time O.nc/,

and that the reduction from X to Y on an input of size m takes time

O.md /, where c and d are constants. The output of the reduction from

Z to X cannot be longer than the time it took to produce it, and so this

output, which is also the input x to the reduction from X to Y, has size

O.nc/. Now we know that the size m of the input to the reduction from

X to Y has size m D O.nc/, and so the time taken by the reduction from

X to Y is O..nc/d /, which is O.ncd /. Since c and d are constants, this

second reduction takes time polynomial in n.

Furthermore, the time taken in the last stage, the polynomial-time

algorithm for Y, is also polynomial in n. Suppose that the algorithm

for Y on an input of size p takes time O.pb/, where b is a constant.

As before, the output of a reduction cannot exceed the time taken to

188 Chapter 10: Hard? Problems

produce it, and so p D O.ncd /, which means that the algorithm for Y

takes time O..ncd /b/, or O.nbcd /. Since b, c, and d are all constants,

the algorithm for Y takes time polynomial in the original input size n.

Altogether, the algorithm for Z takes time O.nc C ncd C nbcd /, which

is polynomial in n.

What have we just seen? We showed that if problem X is NP-hard

and there is a polynomial-time reduction algorithm that transforms an

input x to X into an input y to problem Y, then Y is NP-hard, too.

Because X being NP-hard means that every problem in NP reduces to it

in polynomial time, we picked any problem Z in NP that reduces to X

in polynomial time and showed that it also reduces to Y in polynomial

time.

Our ultimate goal is to show that problems are NP-complete. So now

all we have to do to show that a problem Y is NP-complete is

� show that it’s in NP, which we can do by showing that there’s a way

to verify a certificate for Y in polynomial time, and

� take some other problem X that we know to be NP-hard and give a

polynomial-time reduction from X to Y.

There is one more little detail that I’ve ignored so far: the Mother

Problem. We need to start with some NP-complete problem M (the

Mother Problem) that every problem in NP reduces to in polynomial

time. Then we can reduce M to some other problem in polynomial time

to show that the other problem is NP-hard, reduce the other problem to

yet some other problem to show that the latter is NP-hard, and so on.

Bear in mind, too, that there’s no limit on how many other problems we

can reduce a single problem to, so that the family tree of NP-complete

problems starts with the Mother Problem and then branches out.

A Mother Problem

Different books list different Mother Problems. That’s fine, since once

you reduce one Mother Problem to some other problem, that other prob-

lem could also serve as the Mother Problem. One Mother Problem often

seen is boolean formula satisfiability. I’ll briefly describe this problem,

but I won’t prove that every problem in NP reduces to it in polynomial

time. The proof is long and—dare I say—tedious.

First off: “boolean” is mathematical lingo for simple logic in which

variables may take on only the values 0 and 1 (called boolean values),

and operators take one or two boolean values and produce a boolean

Chapter 10: Hard? Problems 189

value. We’ve already seen exclusive-or (XOR) in Chapter 8. Typical

boolean operators are AND, OR, NOT, IMPLIES, and IFF:

� x AND y equals 1 only if both x and y are 1; otherwise (either or

both are 0), x AND y equals 0.

� x OR y equals 0 only if both x and y are 0; otherwise (either or both

are 1), x OR y equals 1.

� NOT x is the opposite of x: it’s 0 if x is 1, and it’s 1 if x is 0.

� x IMPLIES y is 0 only if x is 1 and y is 0; otherwise (either x is 0,

or x and y are both 1) x IMPLIES y is 1.

� x IFF y means “x if and only if y,” and it equals 1 only if x and y

are equal (both 0 or both 1); if x and y differ (one of them is 0 and

the other is 1), then x IFF y equals 0.

There are 16 possible boolean operators that take two operands, but

these are the most common.5 A boolean formula consists of boolean-

valued variables, boolean operators, and parentheses for grouping.

In the boolean formula satisfiability problem, the input is a boolean

formula, and we ask whether there is some way to assign the values 0

and 1 to the variables in the formula so that it evaluates to 1. If there

is such a way, we say that the formula is satisfiable. For example, the

boolean formula
�

.w IMPLIES x/ OR NOT
�

�

.NOT w/ IFF y
�

OR ´
�

�

AND .NOT x/

is satisfiable: let w D 0, x D 0, y D 1, and ´ D 1. Then the formula

evaluates to
�

.0 IMPLIES 0/ OR NOT
�

�

.NOT 0/ IFF 1
�

OR 1
�

�

AND .NOT 0/

D
�

1 OR NOT
�

.1 IFF 1/ OR 1
�

�

AND 1

D
�

1 OR NOT .1 OR 1/
�

AND 1

D .1 OR 0/ AND 1

D 1 AND 1

D 1 :

5Some of these 16 two-operand boolean operators are not terribly interesting, such as

the operator that evaluates to 0 regardless of the values of its operands.

190 Chapter 10: Hard? Problems

On the other hand, here’s a simple formula that is not satisfiable:

x AND .NOT x/ :

If x D 0, then this formula evaluates to 0 AND 1, which is 0; if instead

x D 1, then this formula evaluates to 1 AND 0, which again is 0.

A sampler of NP-complete problems

With boolean formula satisfiability as our Mother Problem, let’s see

some of the problems that we can show are NP-complete by using

polynomial-time reductions. Here’s the family tree of reductions that

we’ll see:

Mother Problem:
boolean formula satisfiability

3-CNF satisfiability

clique

vertex cover

hamiltonian pathtraveling salesman

subset sum

hamiltonian cycle

longest acyclic path

partition

knapsack

I won’t show all the reductions in this family tree, because some of them

are rather long and involved. But we’ll see a couple that are interesting

because they show how to reduce a problem from one domain to a dif-

ferent domain, such as logic (3-CNF satisfiability) to graphs (the clique

problem).

3-CNF satisfiability

Because boolean formulas can contain any of the 16 two-operand

boolean operators, and because they can be parenthesized in any num-

ber of ways, it’s difficult to reduce directly from the boolean formula

satisfiability problem—the Mother Problem. Instead, we will define a

related problem that is also about satisfying boolean formulas, but that

has some restrictions on the structure of the formula that is the input to

the problem. It will be much easier to reduce from this restricted prob-

lem. Let’s require that the formula be ANDs of clauses, where each

Chapter 10: Hard? Problems 191

clause is an OR of three terms, and each term is a literal: either a vari-

able or the negation of a variable (such as NOT x). A boolean formula

in this form is in 3-conjunctive normal form, or 3-CNF. For example,

the boolean formula
�

w OR .NOT w/ OR .NOT x/
�

AND .y OR x OR ´/

AND
�

.NOT w/ OR .NOT y/ OR .NOT ´/
�

is in 3-CNF. Its first clause is
�

w OR .NOT w/ OR .NOT x/
�

.

Deciding whether a boolean formula in 3-CNF has a satisfying as-

signment to its variables—the 3-CNF satisfiability problem—is NP-

complete. A certificate is a proposed assignment of the values 0 and 1

to the variables. Checking a certificate is easy: just plug in the proposed

values for the variables, and verify that the expression evaluates to 1.

To show that 3-CNF satisfiability is NP-hard, we reduce from (unre-

stricted) boolean formula satisfiability. Again, I won’t go into the (not

so interesting) details. It gets more interesting when we reduce from a

problem in one domain to a problem in a different domain, which we’re

about to do.

Here’s a frustrating aspect of 3-CNF satisfiability: although it’s NP-

complete, there is a polynomial-time algorithm to determine whether a

2-CNF formula is satisfiable. A 2-CNF formula is just like a 3-CNF

formula except that it has two literals, not three, in each clause. A small

change like that takes a problem from being as hard as the hardest prob-

lem in NP to being easy!

Clique

Now we’re going to see an interesting reduction, for problems in differ-

ent domains: from 3-CNF satisfiability to a problem having to do with

undirected graphs. A clique in an undirected graph G is a subset S of

vertices such that the graph has an edge between every pair of vertices

in S . The size of a clique is the number of vertices it contains.

As you might imagine, cliques play a role in social network theory.

Modeling each individual as a vertex and relationships between individ-

uals as undirected edges, a clique represents a group of individuals all

of whom have relationships with each other. Cliques also have applica-

tions in bioinformatics, engineering, and chemistry.

The clique problem takes two inputs, a graph G and a positive inte-

ger k, and asks whether G has a clique of size k. For example, the graph

on the next page has a clique of size 4, shown with heavily shaded ver-

tices, and no other clique of size 4 or greater.

192 Chapter 10: Hard? Problems

Verifying a certificate is easy. The certificate is the k vertices claimed

to form a clique, and we just have to check that each of the k vertices has

an edge to the other k � 1. This check is easily performed in time poly-

nomial in the size of the graph. Now we know that the clique problem

is in NP.

How can a problem in satisfying boolean formulas reduce to a graph

problem? We start with a boolean formula in 3-CNF. Suppose that the

formula is C1 AND C2 AND C3 AND � � � AND Ck , where each Cr is

one of k clauses. From this formula, we will construct a graph in poly-

nomial time, and this graph will have a k-clique if and only if the 3-CNF

formula is satisfiable. We need to see three things: the construction, an

argument that the construction runs in time polynomial in the size of the

3-CNF formula, and a proof that the graph has a k-clique if and only if

there is some way to assign to the variables of the 3-CNF formula so

that it evaluates to 1.

To construct a graph from a 3-CNF formula, let’s focus on the r th

clause, Cr . It has three literals; let’s call them lr
1 , lr

2 , and lr
3 , so that Cr

is lr
1 OR lr

2 OR lr
3 . Each literal is either a variable or the negation of a

variable. We create one vertex for each literal, so that for clause Cr ,

we create a triple of vertices, vr
1, vr

2 , and vr
3. We add an edge between

vertices vr
i and vs

j if two conditions hold:

� vr
i and vs

j are in different triples; that is, r and s are different clause

numbers, and

� their corresponding literals are not negations of each other.

For example, the graph on the next page corresponds to the 3-CNF for-

mula
�

x OR .NOT y/ OR .NOT ´/
�

AND
�

.NOT x/ OR y OR ´
�

AND .x OR y OR ´/ :

Chapter 10: Hard? Problems 193

NOT x

y

z

x NOT z

x

y

z

C3 = x OR y OR zC2 = (NOT x) OR y OR z

C1 = x OR (NOT y) OR (NOT z)

NOT y

It’s easy enough to see that this reduction can be performed in poly-

nomial time. If the 3-CNF formula has k clauses, then it has 3k literals,

and so the graph has 3k vertices. At most, each vertex has an edge to

all the other 3k � 1 vertices, and so the number of edges is at most

3k.3k � 1/, which equals 9k2 � 3k. The size of the graph constructed

is polynomial in the size of the 3-CNF input, and it’s easy to determine

which edges go into the graph.

Finally, we need to show that the constructed graph has a k-clique if

and only if the 3-CNF formula is satisfiable. We start by assuming that

the formula is satisfiable, and we’ll show that the graph has a k-clique.

If there exists a satisfying assignment, each clause Cr contains at least

one literal lr
i that evaluates to 1, and each such literal corresponds to a

vertex vr
i in the graph. If we select one such literal from each of the k

clauses, we get a corresponding set S of k vertices. I claim that S is

a k-clique. Consider any two vertices in S . They correspond to liter-

als in different clauses that evaluate to 1 in the satisfying assignment.

These literals cannot be negations of each other, because if they were,

then one of them would evaluate to 1 but the other would evaluate to 0.

Since these literals are not negations of each other, we created an edge

between the two vertices when we constructed the graph. Because we

can pick any two vertices in S as this pair, we see that there are edges

between all pairs of vertices in S . Hence, S , a set of k vertices, is a

k-clique.

Now we have to show the other direction: if the graph has a

k-clique S , then the 3-CNF formula is satisfiable. No edges in the graph

connect vertices in the same triple, and so S contains exactly one vertex

per triple. For each vertex vi
r in S , assign 1 to its corresponding literal l i

r

in the 3-CNF formula. We don’t have to worry about assigning a 1 to

194 Chapter 10: Hard? Problems

both a literal and its negation, since the k-clique cannot contain vertices

corresponding to a literal and its negation. Since each clause has a lit-

eral that evaluates to 1, each clause is satisfied, and so the entire 3-CNF

formula is satisfied. If any variables don’t correspond to vertices in the

clique, assign values to them arbitrarily; they won’t affect whether the

formula is satisfied.

In the above example, a satisfying assignment has y D 0 and ´ D 1;

it doesn’t matter what we assign to x. A corresponding 3-clique con-

sists of the heavily shaded vertices, which correspond to NOT y from

clause Ci and ´ from clauses C2 and C3.

Thus, we have shown that there exists a polynomial-time reduction

from the NP-complete problem of 3-CNF satisfiability to the problem of

finding a k-clique. If you were given a boolean formula in 3-CNF with k

clauses, and you had to find a satisfying assignment for the formula, you

could use the construction we just saw to convert the formula in polyno-

mial time to an undirected graph, and determine whether the graph had a

k-clique. If you could determine in polynomial time whether the graph

had a k-clique, then you would have determined in polynomial time

whether the 3-CNF formula had a satisfying assignment. Since 3-CNF

satisfiability is NP-complete, so is determining whether a graph con-

tains a k-clique. As a bonus, if you could determine not only whether

the graph had a k-clique, but which vertices constituted the k-clique,

then you could use this information to find the values to assign to the

variables of the 3-CNF formula in a satisfying assignment.

Vertex cover

A vertex cover in an undirected graph G is a subset S of the vertices

such that every edge in G is incident on at least one vertex in S . We say

that each vertex in S “covers” its incident edges. The size of a vertex

cover is the number of vertices it contains. As in the clique problem,

the vertex-cover problem takes as input an undirected graph G and a

positive integer m. It asks whether G has a vertex cover of size m. Like

the clique problem, the vertex-cover problem has applications in bioin-

formatics. In another application, you have a building with hallways

and cameras that can scan up to 360 degrees located at the intersections

of hallways, and you want to know whether m cameras will allow you

to see all the hallways. Here, edges model hallways and vertices model

intersections. In yet another application, finding vertex covers helps in

designing strategies to foil worm attacks on computer networks.

Chapter 10: Hard? Problems 195

A certificate for the vertex-cover problem is, not surprisingly, a pro-

posed vertex cover. It’s easy to verify in time polynomial in the size

of the graph that the proposed vertex cover has size m and really does

cover all the edges, and so we see that this problem is in NP.

The NP-completeness family tree on page 190 tells you that we re-

duce the clique problem to the vertex-cover problem. Suppose that the

input to the clique problem is an undirected graph G with n vertices

and a positive integer k. In polynomial time, we’ll produce an input

graph G to the vertex-cover problem such that G has a clique of size k

if and only if G has a vertex cover of size n � k. This reduction is

really easy. The graph G has the same vertices as G, and it has ex-

actly the opposite edges as G. In other words, edge .u; v/ is in G if

and only if .u; v/ is not in G. You might have guessed that the vertex

cover of size n � k in G consists of the vertices not in the clique of k

vertices in G—and you would be correct! Here are examples of graphs

G and G, with eight vertices. The five vertices forming a clique in G

and the remaining three vertices forming a vertex cover in G are heavily

shaded:

G G

Note that every edge in G is incident on at least one heavily shaded

vertex.

We need to show that G has a k-clique if and only if G has a vertex

cover of size n � k. Start by supposing that G has a k-clique C . Let

S consist of the n � k vertices not in C . I claim that every edge in G

is incident on at least one vertex in S . Let .u; v/ be any edge in G. It’s

in G because it was not in G. Because .u; v/ is not in G, at least one

of the vertices u and v is not in the clique C of G, because an edge

connects every pair of vertices in C . Since at least one of u and v is not

in C , at least one of u and v is in S , which means that edge .u; v/ is

incident on at least one of the vertices in S . Since we chose .u; v/ to be

any edge in G, we see that S is a vertex cover for G.

196 Chapter 10: Hard? Problems

Now we go the other way. Suppose that G has a vertex cover S

containing n � k vertices, and let C consist of the k vertices not in S .

Every edge in G is incident on some vertex in S . In other words, if

.u; v/ is an edge in G, then at least one of u and v is in S . If you

recall the definition of contrapositive on page 22, you can see that the

contrapositive of this implication is that if neither u nor v is in S , then

.u; v/ is not in G—and therefore, .u; v/ is in G. In other words, if both

u and v are in C , then the edge .u; v/ is present in G. Since u and v are

any pair of vertices in C , we see that there is an edge in G between all

pairs of vertices in C . That is, C is a k-clique.

Thus, we have shown that there exists a polynomial-time reduction

from the NP-complete problem of determining whether an undirected

graph contains a k-clique to the problem of determining whether an

undirected graph contains a vertex cover of size n � k. If you were

given an undirected graph G and you wanted to know whether it con-

tained a k-clique, you could use the construction we just saw to convert

G in polynomial time to G, and determine whether G contained a ver-

tex cover with n � k vertices. If you could determine in polynomial

time whether G had a vertex cover of size n � k, then you would have

determined in polynomial time whether G had a k-clique. Since the

clique problem is NP-complete, so is the vertex-cover problem. As a

bonus, if you could determine not only whether G had a vertex cover of

n � k vertices, but which vertices constituted the cover, then you could

use this information to find the vertices in the k-clique.

Hamiltonian cycle and hamiltonian path

We’ve already seen the hamiltonian-cycle problem: does a connected,

undirected graph contain a hamiltonian cycle (a path that starts and ends

at the same vertex and visits all other vertices exactly once)? The appli-

cations of this problem are a bit arcane, but from the NP-completeness

family tree on page 190, you can see that we use this problem to show

that the traveling-salesman problem is NP-complete, and we’ve seen

how the traveling-salesman problem comes up in practice.

A closely related problem is the hamiltonian-path problem, which

asks whether the graph contains a path that visits each vertex exactly

once, but does not require that the path be a closed cycle. This problem,

too, is NP-complete, and we will use it on page 199 to show that the

longest-acyclic-path problem is NP-complete.

For both of the hamiltonian problems, the certificate is obvious: the

order of the vertices in the hamiltonian cycle or path. (For a hamiltonian

Chapter 10: Hard? Problems 197

cycle, don’t repeat the first vertex at the end.) Given a certificate, we

need only check that each vertex appears exactly once in the list and that

the graph contains an edge between each pair of consecutive vertices in

the ordering. For the hamiltonian-cycle problem, we also have to check

that an edge exists between the first and last vertices.

I won’t detail the polynomial-time reduction from the vertex-cover

problem to the hamiltonian-cycle problem, which shows that the latter

is NP-hard. It’s quite complicated and relies on a widget, which is a

piece of a graph that enforces certain properties. The widget used in

the reduction has the property that any hamiltonian cycle in the graph

constructed by the reduction can traverse the widget in one of only three

ways.

To reduce the hamiltonian-cycle problem to the hamiltonian-path

problem, we start with a connected, undirected graph G with n ver-

tices, and from it we will form a new connected, undirected graph G0

with n C 3 vertices. We pick any vertex u in G, and let its adjacent

vertices be v1; v2; : : : ; vk . To construct G0, we add three new vertices,

x, y, and ´, and we add edges .u; x/ and .y; ´/, along with edges

.v1; y/; .v2; y/; : : : ; .vk ; y/ between y and all the vertices adjacent to u.

Here’s an example:

uu

x y ´

v1v1

v2v2
v3v3

G G0

Heavy edges indicate a hamiltonian cycle in G and a corresponding

hamiltonian path in G0. This reduction takes polynomial time, since G0

contains just three more vertices than G and at most n C 1 additional

edges.

As usual, we need to show that the reduction works: that G has a

hamiltonian cycle if and only if G0 has a hamiltonian path. Suppose

that G has a hamiltonian cycle. It must contain an edge .u; vi / for some

198 Chapter 10: Hard? Problems

vertex vi adjacent to u and, therefore, adjacent to y in G0. To form

a hamiltonian path in G, going from x to ´, take all the edges of the

hamiltonian cycle except for .u; vi / and add the edges .u; x/, .vi ; y/,

and .y; ´/. In the above example, vi is vertex v2, and so the hamiltonian

path omits edge .v2; u/ and adds edges .u; x/, .v2; y/, and .y; ´/.

Now suppose that G0 has a hamiltonian path. Because vertices x

and ´ each have only one incident edge, the hamiltonian path must go

from x to ´, and it must contain an edge .vi ; y/ for some vertex adjacent

to y and, therefore, adjacent to u. To find a hamiltonian cycle in G,

remove x, y, and ´ and all their incident edges, and use all the edges in

the hamiltonian path in G0, along with .vi ; u/.

A similar denouement to those of our previous reductions holds here.

There exists a polynomial-time reduction from the NP-complete prob-

lem of determining whether a connected, undirected graph contains a

hamiltonian cycle to the problem of determining whether a connected,

undirected graph contains a hamiltonian path. Since the former is NP-

complete, so is the latter. Moreover, knowing the edges in the hamilto-

nian path gives the edges in the hamiltonian cycle.

Traveling salesman

In the decision version of the traveling-salesman problem, we are given

a complete undirected graph with a nonnegative integer weight on each

edge, and a nonnegative integer k. A complete graph has an edge be-

tween every pair of vertices, so that if a complete graph has n vertices,

then it has n.n � 1/ edges. We ask whether the graph has a cycle con-

taining all vertices whose total weight is at most k.

It’s pretty easy to show that this problem is in NP. A certificate con-

sists of the vertices of the cycle, in order. We can easily check in poly-

nomial time whether the edges on this cycle visit all the vertices and

have a total weight of k or less.

To show that the traveling-salesman problem is NP-hard, we reduce

from the hamiltonian-cycle problem, another simple reduction. Given a

graph G as input to the hamiltonian-cycle problem, we construct a com-

plete graph G0 with the same vertices as G. Set the weight of edge .u; v/

in G0 to 0 if .u; v/ is an edge in G, and set it to 1 if there is no edge .u; v/

in G. Set k to 0. This reduction takes time polynomial in the size of G,

since it adds at most n.n � 1/ edges.

To show that the reduction works, we need to show that G has a

hamiltonian cycle if and only if G0 has a cycle of weight 0 that includes

all the vertices. Once again, the argument is easy. Suppose that G has

Chapter 10: Hard? Problems 199

a hamiltonian cycle. Then each edge on the cycle is in G, and so each

of these edges gets a weight of 0 in G0. Thus, G0 has a cycle containing

all the vertices, and the total weight of this cycle is 0. Conversely, now

suppose that G0 has a cycle containing all the vertices and whose total

weight is 0. Then each edge on this cycle must also be in G, and so G

has a hamiltonian cycle.

I don’t need to repeat the now-familiar denouement, do I?

Longest acyclic path

In the decision version of the longest-acyclic-path problem, we are

given an undirected graph G and an integer k, and we ask whether G

contains two vertices that have an acyclic path between them with at

least k edges.

Once again, a certificate for the longest-acyclic-path problem is easy

to verify. It consists of the vertices in the proposed path, in order. We

can check in polynomial time that the list contains at least k C1 vertices

(kC1 because a path with k edges contains kC1 vertices) with no vertex

repeated and that there is an edge between every pair of consecutive

vertices in the list.

Yet another simple reduction shows that this problem is NP-hard.

We reduce from the hamiltonian-path problem. Given a graph G with

n vertices as input to the hamiltonian-path problem, the input to the

longest-acyclic-path problem is the graph G, unchanged, and the inte-

ger k D n � 1. If this isn’t a polynomial-time reduction, I don’t know

what is.

We show that the reduction works by showing that G has a hamilto-

nian path if and only if it has an acyclic path containing at least n � 1

edges. But a hamiltonian path is an acyclic path containing n � 1 edges,

so we’re done!

Subset sum

In the subset-sum problem, the input is a finite set S of positive integers,

in no particular order, and a target number t , which is also a positive

integer. We ask whether there exists a subset S 0 of S whose elements

sum to exactly t . For example, if S is the set f1; 2, 7, 14, 49, 98, 343,

686, 2409, 2793, 16808, 17206, 117705, 117993g and t D 138457,

then the subset S 0 D f1; 2, 7, 98, 343, 686, 2409, 17206, 117705g is a

solution. A certificate is, of course, a subset of S , which we can verify

by just adding up the numbers in the subset and checking that their sum

equals t .

200 Chapter 10: Hard? Problems

As you can see from the NP-completeness family tree on page 190,

we show that the subset-sum problem is NP-hard by reducing from

3-CNF satisfiability. Here is another reduction that crosses problem

domains, transforming a problem in logic into an arithmetic problem.

You’ll see that the transformation is clever but, ultimately, quite straight-

forward.

We start with a 3-CNF boolean formula F that has n variables and

k clauses. Let’s name the variables v1; v2; v3; : : : ; vn and the clauses

C1; C2; C3; : : : ; Ck . Each clause contains exactly three literals (remem-

ber that each literal is either vi or NOT vi) joined together by ORs, and

the entire formula F is C1 AND C2 AND C3 AND � � � AND Ck. Put

another way, for a given assignment of 0 or 1 to each variable, each

clause is satisfied if any of its literals evaluates to 1, and the full for-

mula F is satisfied only if all of its clauses are satisfied.

Before we construct the set S for the subset-sum problem, let’s con-

struct the target number t from the 3-CNF formula F . We’ll construct

it as a decimal integer with n C k digits. The least significant k digits

(the rightmost k digits) of t correspond to the k clauses of F , and each

of these digits is a 4. The most significant n digits of t correspond to the

n variables of F , and each of these digits is a 1. If the formula F has,

say, three variables and four clauses, then t comes out to 1114444. As

we’ll see, if there is a subset of S that sums to t , then the digits of t that

correspond to the variables (the 1s) will ensure that we assign a value

to each variable in F , and the digits of t that correspond to the clauses

(the 4s) will ensure that each clause of F is satisfied.

The set S will consist of 2n C 2k integers. It contains integers xi

and x 0

i for each of the n variables vi in the 3-CNF formula F , and it

contains integers qj and q0

j for each of the k clauses Cj in F . We con-

struct each integer in S digit by digit, in decimal. Let’s see an example

with n D 3 variables and k D 4 clauses, so that the 3-CNF formula is

F D C1 AND C2 AND C3 AND C4, and let the clauses be

C1 D v1 OR .NOT v2/ OR .NOT v3/ ;

C2 D .NOT v1/ OR .NOT v2/ OR .NOT v3/ ;

C3 D .NOT v1/ OR .NOT v2/ OR v3 ;

C4 D v1 OR v2 OR v3 :

Here are the corresponding set S and target t :

Chapter 10: Hard? Problems 201

= 1 0 0 1 0 0 1

= 1 0 0 0 1 1 0

= 0 1 0 0 0 0 1

= 0 1 0 1 1 1 0

= 0 0 1 0 0 1 1

= 0 0 1 1 1 0 0

= 0 0 0 1 0 0 0

= 0 0 0 2 0 0 0

= 0 0 0 0 1 0 0

= 0 0 0 0 2 0 0

= 0 0 0 0 0 1 0

= 0 0 0 0 0 2 0

= 0 0 0 0 0 0 1

= 0 0 0 0 0 0 2

= 1 1 1 4 4 4 4

v1 v2 v3 C1 C2 C3 C4

x1

x 0

1

x2

x 0

2

x3

x 0

3

q1

q0

1

q2

q0

2

q3

q0

3

q4

q0

4

t

Note that the shaded elements of S—1000110, 101110, 10011, 1000,

2000, 200, 10, 1, and 2—sum to 1114444. We’ll soon see what these

elements correspond to in the 3-CNF formula F .

We construct the integers in S so that, digit by digit, every column in

the above diagram sums to either 2 (the leftmost n columns) or 6 (the

rightmost k columns). Note that when elements in S are added up, no

carries out of any digit position can occur and we can work with the

numbers digit by digit.

In the diagram, each row is labeled by an element in S . The first 2n

rows correspond to the n variables of the 3-CNF formula, and the last

2k rows are “slack” whose purpose we’ll see a little later. The rows

labeled by elements xi and x 0

i correspond respectively to occurrences of

the literals vi and NOT vi in F . We’ll say that these rows “are” the liter-

als, understanding that we mean that they correspond to the literals. The

goal is to include in the subset S 0 exactly n of the first 2n rows—indeed,

just one of each xi , x 0

i pair—which will correspond to a satisfying as-

signment for the 3-CNF formula F . Because we require that the rows

we choose from the literals add up to 1 in each of the leftmost n col-

unms, we ensure that, for each variable vi in the 3-CNF formula, we

include in S 0 a row for one of xi and x 0

i , but not both. The rightmost

k columns ensure that the rows we include in S 0 are literals that satisfy

each clause in the 3-CNF formula.

202 Chapter 10: Hard? Problems

Let’s focus for the moment on the n leftmost columns, which are

labeled by the variables v1; v2; : : : ; vn. For a given variable vi , both xi

and x 0

i have a 1 in the digit corresponding to vi , and they have 0 in all

other digit positions corresponding to other variables. For example, the

leftmost three digits of both x2 and x 0

2 are 010. The digits of the last 2k

rows in the leftmost n columns are 0. Because the target t has a 1 in

each of the variable positions, exactly one of xi and x 0

i must be in the

subset S 0 in order to contribute to the sum. Having xi in S 0 corresponds

to setting vi to 1, and having x 0

i in S 0 corresponds to setting vi to 0.

Now we turn our attention to the rightmost k columns, which corre-

spond to the clauses. These columns ensure that each clause is satisfied,

as we will see below. If the literal vi appears in clause Cj , then xi has

a 1 in the column for Cj ; if the literal NOT vi appears in clause Cj ,

then x 0

i has a 1 in the Cj column. Because each clause in a 3-CNF for-

mula contains exactly three distinct literals, the column for each clause

must contain exactly three 1s among all the xi and x 0

i rows. For a given

clause Cj , the rows among the first 2n that are included in S 0 corre-

spond to satisfying 0, 1, 2, or 3 of the literals in Cj , and so these rows

contribute 0, 1, 2, or 3 to the sum for Cj ’s column.

But the target digit for each clause is 4, and that’s where the “slack”

elements qj and q0

j , for j D 1; 2; 3; : : : ; k, come in. They ensure that

for each clause, the subset S 0 includes some literal in the clause (some

xi or x 0

i that has a 1 in the column for that clause). The row for qj has a 1

in the column for clause Cj and 0 everywhere else, and the row for q0

j

is the same except that it has a 2. We can add in these rows to achieve

the target digit of 4, but only if the subset S 0 includes at least one literal

from Cj . Which of these slack rows need to be added in depends on

how many of the literals of clause Cj are included in S 0. If S 0 includes

just one literal, then both slack rows are needed, because the sum in

the column is 1 from the literal, plus 1 from qj , plus 2 from q0

j . If S 0

includes two literals, then just q0

j is needed, because the column sum is 2

from the two literals, plus 2 from q0

j . If S 0 includes three literals, then

just qj is needed, because the column sum is 3 from the three literals,

plus 1 from qj . But, if no literals from clause Cj are included in S 0, then

qj C q0

j D 3 is not enough to achieve the target digit of 4. Therefore,

we can achieve the target digit of 4 for each clause only if some literal

in the clause is included in the subset S 0.

Now that we’ve seen the reduction, we can see that it takes polyno-

mial time. We’re creating 2n C 2k C 1 integers (including the target t),

Chapter 10: Hard? Problems 203

each with nCk digits. You can see from the diagram that of the integers

constructed, no two are equal, and so S really is a set. (The definition

of a set does not allow repeated elements.)

To show that the reduction works, we need to show that the 3-CNF

formula F has a satisfying assignment if and only if there exists a sub-

set S 0 of S that sums to exactly t . At this point, you’ve seen the idea,

but let’s recap. First, suppose that F has a satisfying assignment. If

this assignment sets vi to 1, then include xi in S 0; otherwise, include x 0

i .

Because exactly one of xi and x 0

i is in S , the column for vi must sum

to 1, matching the appropriate digit of t . Because the assignment satis-

fies each clause Cj , the xi and x 0

i rows must contribute 1, 2, or 3 (the

number of literals in Cj that are 1) to the sum in Cj ’s column. Including

the necessary slack rows qj and/or q0

j in S 0 achieves the target digit 4.

Conversely, suppose that S has a subset S 0 that sums to exactly t .

In order for t to have a 1 in the leftmost n positions, S 0 must include

exactly one of xi and x 0

i for each variable vi . If it includes xi , then

set vi to 1; if it includes x 0

i , then set vi to 0. Because the slack rows qj

and q0

j summed together cannot achieve the target digit 4 in the column

for clause Cj , the subset S 0 must also include at least one row xi or x 0

i

with a 1 in Cj ’s column. If it includes xi , then the literal vi appears

in clause Cj , and the clause is satisfied. If S 0 includes x 0

i , then the

literal NOT vi appears in clause Cj , and the clause is satisfied. Thus,

each clause is satisfied, and there exists a satisfying assignment for the

3-CNF formula F .

And so we see that if we could solve the subset-sum problem in poly-

nomial time, we could also determine whether a 3-CNF formula is sat-

isfiable in polynomial time. Since 3-CNF satisfiability is NP-complete,

so is the subset-sum problem. Moreover, if we know which integers in

the constructed set S sum to the target t , we can determine how to set

the variables in the 3-CNF formula so that it evaluates to 1.

One other note about the reduction I used: the digits don’t have to

be decimal digits. What matters is that no carries from one place to

another can occur when adding up the integers. Since no column’s sum

can exceed 6, interpreting the numbers in any base 7 or greater would be

fine. Indeed, the example I gave on page 199 comes from the numbers

in the diagram, but interpreted in base 7.

Partition

The partition problem is closely related to the subset-sum problem. In

fact, it’s a special case of the subset-sum problem: if ´ equals the sum

204 Chapter 10: Hard? Problems

of all the integers in the set S , then the target t is exactly ´=2. In other

words, the goal is to determine whether there exists a partition of the

set S into two disjoint sets S 0 and S 00 such that each integer in S is

in either S 0 or S 00 but not both (that’s what it means for S 0 and S 00 to

partition S) and the sum of the integers in S 0 equals the sum of the

integers in S 00. As in the subset-sum problem, a certificate is a subset

of S .

To show that the partition problem is NP-hard, we reduce from the

subset-sum problem. (No big surprise there.) Given a set R of posi-

tive integers and a positive integer target t as input to the subset-sum

problem, in polynomial time we construct a set S as input to the par-

tition problem. First, compute ´ as the sum of all the integers in R.

We assume that ´ is not equal to 2t , because if it is, then the problem

is already a partition problem. (If ´ D 2t , then t D ´=2, and we’re

trying to find a subset of R that sums to the same total as the integers

not in the subset.) Then choose any integer y that is greater than both

t C ´ and 2´. Define the set S to contain all the integers in R and two

additional integers: y � t and y � ´ C t . Because y is greater than

both t C ´ and 2´, we know that both y � t and y � ´ C t are greater

than ´ (the sum of the integers in R), and so these two integers cannot

be in R. (Remember that because S is a set, all of its elements must be

unique. We also know that, because ´ is not equal to 2t , we must have

y � t ¤ y � ´ C t , and so the two new integers are unique.) Note that

the sum of all the integers in S equals ´ C .y � t/ C .y � ´ C t/, which

is just 2y. Therefore, if S is partitioned into two disjoint subsets with

equal sums, each subset must sum to y.

To show that the reduction works, we need to show that there exists

a subset R0 of R whose integers sum to t if and only if there exists a

partition of S into S 0 and S 00 such that the integers in S 0 and the integers

in S 00 have the same sum. First, let’s suppose that some subset R0 of R

has integers that sum to t . Then the integers in R that are not in R0 must

sum to ´ � t . Let’s define the set S 0 to have all the integers in R0 along

with y � t (so that S 00 has y � ´ C t along with all the integers in R that

are not in R0). We just need to show that the integers in S 0 sum to y.

But that’s easy: the integers in R0 sum to t , and adding in y � t gives a

sum of y.

Conversely, let’s suppose that there exists a partition of S into S 0

and S 00, both of which sum to y. I claim that the two integers we added

to R when forming S (y � t and y � ´ C t) can’t both be in S 0, nor

Chapter 10: Hard? Problems 205

can they both be in S 00. Why? If they were in the same set, then that

set would sum to at least .y � t/ C .y � ´ C t/, which equals 2y � ´.

But remember that y is greater than ´ (in fact, it’s greater than 2´), and

so 2y � ´ is greater than y. Therefore, if y � t and y � ´ C t were

in the same set, then that set’s sum would be greater than y. So we

know that one of y � t and y � ´ C t is in S 0 and the other is in S 00.

It doesn’t matter which set we say that y � t is in, so let’s say that it’s

in S 0. Now, we know that the integers in S 0 sum to y, which means that

the integers in S 0 other than y � t must sum to y � .y � t/, or t . Since

y � ´ C t cannot also be in S 0, we know that all the other integers in S 0

came from R. Hence, there is a subset of R that sums to t .

Knapsack

In the knapsack problem, we are given a set of n items, each with a

weight and a value, and we ask whether there exists a subset of items

whose total weight is at most a given weight W and whose total value

is at least a given value V . This problem is the decision version of an

optimization problem where we want to load up a knapsack with the

most valuable subset of items, subject to not exceeding a weight limit.

This optimization problem has obvious applications, such as deciding

which items to take backpacking or what loot a burglar should choose

to pilfer.

The partition problem is really just a special case of the knapsack

problem, in which the value of each item equals its weight and both

W and V equal half the total weight. If we could solve the knapsack

problem in polynomial time, then we could solve the partition problem

in polynomial time. Therefore, the knapsack problem is at least as hard

as the partition problem, and we don’t even need to go through the full

reduction process to show that the knapsack problem is NP-complete.

General strategies

As you have probably realized by now, there is no one-size-fits-all way

to reduce one problem to another in order to prove NP-hardness. Some

reductions are pretty simple, such as reducing the hamiltonian-cycle

problem to the traveling-salesman problem, and some are extremely

complicated. Here are a few things to remember and some strategies

that often help.

206 Chapter 10: Hard? Problems

Go from general to specific

When reducing problem X to problem Y, you always have to start with

an arbitrary input to problem X. But you are allowed to restrict the input

to problem Y as much as you like. For example, when reducing from

3-CNF satisfiability to the subset-sum problem, the reduction had to be

able to handle any 3-CNF formula as its input, but the subset-sum input

it produced had a particular structure: 2n C 2k integers in the set, and

each integer was formed in a particular way. The reduction was not able

to produce every possible input to the subset-sum problem, but that was

OK. The point is that we can solve a 3-CNF satisfiability problem by

transforming the input into an input to the subset-sum problem and then

using the answer to the subset-sum problem as the answer to the 3-CNF

satisfiability problem.

Take note, however, that every reduction has to be of this form: trans-

form any input to problem X into some input to problem Y, even when

chaining together reductions. If you want to reduce problem X to prob-

lem Y and also problem Y to problem Z, the first reduction has to

transform any input to X into some input to Y, and the second reduction

has to transform any input to Y into some input to Z. It’s not enough

for the second reduction to transform only the types of inputs to Y that

are produced by the reduction from X.

Take advantage of restrictions in the problem you’re reducing from

In general, when reducing from problem X to problem Y, you may

choose problem X to impose more restrictions on its input. For exam-

ple, it’s almost always much easier to reduce from 3-CNF satisfiability

than to reduce from the Mother Problem of boolean formula satisfiabil-

ity. Boolean formulas can be arbitrarily complicated, but you’ve seen

how we can exploit the structure of 3-CNF formulas when reducing.

Likewise, it’s usually more straightforward to reduce from the ham-

iltonian-cycle problem than from the traveling-salesman problem, even

though they are so similar. That’s because in the traveling-salesman

problem, the edge weights can be any positive integers, not just the 0

or 1 that we required when reducing to it. The hamiltonian-cycle prob-

lem is more restricted because each edge has only one of two “values”:

present or absent.

Look for special cases

Several NP-complete problems are just special cases of other NP-

complete problems, much as the partition problem is a special case of

Chapter 10: Hard? Problems 207

the knapsack problem. If you know that problem X is NP-complete

and that it’s a special case of problem Y, then problem Y must be NP-

complete as well. That is because, as we saw for the knapsack problem,

a polynomial-time solution for problem Y would automatically give a

polynomial-time solution for problem X. More intuitively, problem Y,

being more general than problem X, is at least as hard.

Select an appropriate problem to reduce from

It’s often a good strategy to reduce from a problem in the same, or

at least a related, domain as the problem you’re trying to prove NP-

complete. For example, we showed that the vertex-cover problem—a

graph problem—was NP-complete by reducing from the clique prob-

lem—also a graph problem. From there, the NP-completeness family

tree showed that we reduced to the hamiltonian-cycle, hamiltonian-path,

traveling-salesman, and longest-acyclic-path problems, all of which are

on graphs.

Sometimes, however, it’s best to leap from one domain to another,

such as when we reduced from 3-CNF satisfiability to the clique prob-

lem or to the subset-sum problem. 3-CNF satisfiability often turns out

to be a good choice to reduce from when crossing domains.

Within graph problems, if you need to select a portion of the graph,

without regard to ordering, then the vertex-cover problem is often a

good place to start. If ordering matters, then consider starting from

the hamiltonian-cycle or hamiltonian-path problem.

Make big rewards and big penalties

When we transformed the input graph G to the hamiltonian-cycle prob-

lem to the weighted graph G0 as input to the traveling-salesman prob-

lem, we really wanted to encourage using edges present in G when

choosing edges for the traveling-salesman tour. We did so by giving

these edges a very low weight: 0. In other words, we gave a big reward

for using these edges.

Alternatively, we could have given the edges in G a finite weight and

given edges not in G infinite weight, thereby exacting a hefty penalty

for using edges not in G. If we had taken this approach and given each

edge in G a weight of W , then we would have had to set the target

weight k of the entire traveling-salesman tour to nW .

Design widgets

I didn’t go into widget design, because widgets can get complicated.

Widgets can be useful for enforcing certain properties. The books cited

208 Chapter 10: Hard? Problems

in the “Further reading” section provide examples of how to construct

and use widgets in reductions.

Perspective

I’ve painted quite a gloomy picture here, haven’t I? Imagine a scenario

in which you try to come up with a polynomial-time algorithm to solve

a problem, and no matter how much you press, you just can’t close the

deal. After a while, you’d be thrilled just to find an O.n5/-time algo-

rithm, even though you know that n5 grows awfully rapidly. Maybe this

problem is close to one that you know is easily solved in polynomial

time (such as 2-CNF satisfiability vs. 3-CNF, or Euler tour vs. hamil-

tonian cycle), and you find it incredibly frustrating that you can’t adapt

the polynomial-time algorithm for your problem. Eventually you sus-

pect that maybe—just maybe—you’ve been banging your head against

the wall to solve an NP-complete problem. And, lo and behold, you are

able to reduce a known NP-complete problem to your problem, and now

you know that it’s NP-hard.

Is that the end of the story? There’s no hope that you’ll be able to

solve the problem in any reasonable amount of time?

Not quite. When a problem is NP-complete, it means that some inputs

are troublesome, but not necessarily that all inputs are bad. For exam-

ple, finding a longest acyclic path in a directed graph is NP-complete,

but if you know that the graph is acyclic, then you can find a longest

acyclic path in not just polynomial time, but in O.n C m/ time (where

the graph has n vertices and m edges). Recall that we did just that when

finding a critical path in a PERT chart in Chapter 5. As another example,

if you’re trying to solve the partition problem and the integers in the set

sum to an odd number, then you know that there’s no way to partition

the set so that both parts have equal sums.

The good news goes beyond such pathological special cases. From

here on, let’s focus on optimization problems whose decision variants

are NP-complete, such as the traveling-salesman problem. Some fast

methods give good, and often very good, results. The technique of

branch and bound organizes a search for an optimal solution into a

tree-like structure, and it cuts off hunks of the tree, thereby eliminating

large portions of the search space, based on the simple idea that if it can

determine that all the solutions emanating from one node of the search

tree cannot be any better than the best solution found so far, then don’t

Chapter 10: Hard? Problems 209

bother checking solutions within the space represented by that node or

anything below it.

Another technique that often helps is neighborhood search, which

takes one solution and applies local operations to try to improve the

solution until no further improvement occurs. Consider the traveling-

salesman problem where all vertices are points in the plane and the

weight of each edge is the planar distance between the points. Even

with this restriction, the problem is NP-complete. In the 2-opt tech-

nique, whenever two edges cross, switch them, which results in a shorter

cycle:

Moreover, a host of approximation algorithms give results that are

guaranteed to be within a certain factor of the optimal value. For ex-

ample, if the input to the traveling-salesman problem obeys the triangle

inequality—for all vertices u, v, and x, the weight of edge .u; v/ is at

most the sum of the weights of edges .u; x/ and .x; v/—then there is a

simple approximation algorithm that always finds a traveling-salesman

tour whose total weight is at most twice that of the lowest, and this al-

gorithm runs in time linear in the size of the input. There is an even

better polynomial-time approximation algorithm for this situation, giv-

ing a tour whose total weight is at most 3=2 times the lowest.

Strangely enough, if two NP-complete problems are closely related,

the solution produced by a good approximation algorithm for one might

produce a poor solution for the other. That is, a solution that is nearly

optimal for one of the problems doesn’t necessarily map to a solution

that is anywhere nearly optimal for the other problem.

Nevertheless, in many real-world situations, a nearly optimal solu-

tion is good enough. Harking back to the discussion about the package-

delivery company with brown trucks, they are happy to find nearly opti-

mal routes for their trucks, even if the routes are not necessarily the best

possible. Every dollar that they can save by planning efficient routes

helps their bottom line.

210 Chapter 10: Hard? Problems

Undecidable problems

Then again, if you’re under the impression that NP-complete problems

are the hardest in the world of algorithms, you’re in for a little sur-

prise. Theoretical computer scientists have defined a large hierarchy of

complexity classes, based on how much time and other resources are

necessary to solve a problem. Some problems take an amount of time

that is provably exponential in the input size.

And it gets even worse. For some problems, no algorithm is possible.

That is, there are problems for which it is provably impossible to create

an algorithm that always gives a correct answer. We call such problems

undecidable, and the best-known one is the halting problem, proven

undecidable by the mathematician Alan Turing in 1937. In the halting

problem, the input is a computer program A and the input x to A. The

goal is to determine whether program A, running on input x, ever halts.

That is, does A with input x run to completion?

Perhaps you’re thinking that you could write a program—let’s call

it program B—that reads in program A, reads in x, and simulates A

running with input x. That’s fine if A on input x actually does run to

completion. What if it doesn’t? How would program B know when to

declare that A will never halt? Couldn’t B check for A getting into some

sort of infinite loop? The answer is that although you could write B to

check for some cases in which A doesn’t halt, it is provably impossible

to write program B so that it always halts and tells you correctly whether

A on input x halts.

Because it’s not possible to write a program that determines whether

another program running on a particular input even halts, it’s also not

possible to write a program that determines whether another program

meets its specification. How can one program tell whether another pro-

gram gives the right answer if it can’t even tell whether the program

halts? So much for perfect automated software testing!

Lest you think that the only undecidable problems have to do with

properties of computer programs, Post’s Correspondence Problem

(PCP) is about strings, such as we saw in Chapter 7. Suppose we have

at least two characters, and we have two lists of n strings, A and B ,

over these characters. Let A consist of strings A1; A2; A3; : : : ; An and

B consist of strings B1; B2; B3; : : : ; Bn. The problem is to determine

whether there exists a sequence of indices i1; i2; i3; : : : ; im such that

Ai1Ai2Ai3 � � � Aim (that is, the strings Ai1; Ai2 ; Ai3 ; : : : ; Aim concate-

nated together) gives the same string as Bi1Bi2Bi3 � � � Bim . For example,

Chapter 10: Hard? Problems 211

suppose that the characters are e, h, m, n, o, r, and y, that n D 5, and

that

A1 D ey ; B1 D ym ;

A2 D er ; B2 D r ;

A3 D mo ; B3 D oon ;

A4 D on ; B4 D e ;

A5 D h ; B5 D hon :

Then one solution is the index sequence h5; 4; 1; 3; 4; 2i, since

both A5A4A1A3A4A2 and B5B4B1B3B4B2 form honeymooner. Of

course, if there’s one solution, there are an infinite number of solutions,

since you can just keep repeating the index sequence of a solution (giv-

ing honeymoonerhoneymooner, etc.). For PCP to be undecidable,

we have to allow the strings in A and B to be used more than once, since

otherwise you could just list all the possible combinations of strings.

Although Post’s Correspondence Problem might not seem particu-

larly interesting on its own, we can reduce it to other problems to show

that they, too, are undecidable. It’s the same basic idea as we used to

show that a problem is NP-hard: given an instance of PCP, transform it

into an instance of some other problem Q, such that the answer to the

instance of Q gives the answer to the instance of PCP. If we could de-

cide Q, then we could decide PCP; but since we know that we cannot

decide PCP, then Q must be undecidable.

Among the undecidable problems that we can reduce PCP to are sev-

eral having to do with context-free grammars (CFGs), which describe

the syntax of most programming languages. A CFG is a set of rules

for generating a formal language, which is a fancy way to say “a set

of strings.” By reducing from PCP, we can prove that it’s undecid-

able whether two CFGs generate the same formal language, whether

two CFGs generate any strings in common, or whether a given CFG is

ambiguous: are there two different ways to generate the same string

using the rules of the CFG?

Wrap-up

We’ve seen quite a range of algorithms in quite a variety of domains,

haven’t we? We’ve seen an algorithm that takes sublinear time—binary

search. We’ve seen algorithms that take linear time—linear search,

counting sort, radix sort, topological sort, and finding shortest paths

212 Chapter 10: Hard? Problems

in a dag. We’ve seen algorithms that take O.n lg n/ time—merge

sort and quicksort (average case). We’ve seen algorithms that take

O.n2/ time—selection sort, insertion sort, and quicksort (worst case).

We’ve seen graph algorithms that take time described by some non-

linear combination of the number n of vertices and the number m of

edges—Dijkstra’s algorithm and the Bellman-Ford algorithm. We’ve

seen a graph algorithm that takes ‚.n3/ time—the Floyd-Warshall al-

gorithm. Now we’ve seen that for some problems, we have no idea

whether a polynomial-time algorithm is even possible. And we’ve even

seen that for some problems, no algorithm is possible, regardless of the

running time.

Even with this relatively brief introduction to the world of computer

algorithms,6 you can see that the area covers a lot of ground. And this

book covers only the tiniest sliver of the area. Moreover, I have re-

stricted our analyses to a particular computational model, in which only

one processor performs operations and the time to perform each oper-

ation is more or less the same, regardless of where in the computer’s

memory the data reside. Many alternative computational models have

been proposed over the years, such as models with multiple processors,

models in which the time to perform an operation depends on where

its data are located, models in which the data arrive in a nonrepeatable

stream, and models in which the computer is a quantum device.

And so you can see that this field of computer algorithms has plenty

of unanswered questions, as well as questions yet to be asked. Take an

algorithms course—you can even take one online—and help us out!

Further reading

The book on NP-completeness is by Garey and Johnson [GJ79]. If

you’re interested in delving into this topic, read it. CLRS [CLRS09]

has a chapter on NP-completeness, which goes into more technical de-

tail than I’ve gone into here, and it also has a chapter on approximation

algorithms. For more on computability and complexity, and a very nice,

short, understandable proof that the halting problem is undecidable, I

recommend the book by Sipser [Sip06].

6Compare the size of this book with CLRS, which weighs in at 1292 pages in its third

edition.

Bibliography

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design

and Analysis of Computer Algorithms. Addison-Wesley, 1974.

[AMOT90] Ravindra K. Ahuja, Kurt Mehlhorn, James B. Orlin, and Robert E. Tar-

jan. Faster algorithms for the shortest path problem. Journal of the

ACM, 37(2):213–223, 1990.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-

troduction to Algorithms. The MIT Press, first edition, 1990.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-

ford Stein. Introduction to Algorithms. The MIT Press, third edition,

2009.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptog-

raphy. IEEE Transactions on Information Theory, IT-22(6):644–654,

1976.

[FIP11] Annex C: Approved random number generators for FIPS PUB 140-2,

Security requirements for cryptographic modules. http://csrc.nist.gov/

publications/fips/fips140-2/fips1402annexc.pdf, July 2011. Draft.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[Gri81] David Gries. The Science of Programming. Springer, 1981.

[KL08] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptog-

raphy. Chapman & Hall/CRC, 2008.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 1: Fun-

damental Algorithms. Addison-Wesley, third edition, 1997.

[Knu98a] Donald E. Knuth. The Art of Computer Programming, Volume 2:

Seminumeral Algorithms. Addison-Wesley, third edition, 1998.

[Knu98b] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sort-

ing and Searching. Addison-Wesley, second edition, 1998.

[Knu11] Donald E. Knuth. The Art of Computer Programming, Volume 4A:

Combinatorial Algorithms, Part I. Addison-Wesley, 2011.

[Mac12] John MacCormick. Nine Algorithms That Changed the Future: The

Ingenious Ideas That Drive Today’s Computers. Princeton University

Press, 2012.

[Mit96] John C. Mitchell. Foundations for Programming Languages. The MIT

Press, 1996.

214 Bibliography

[MvOV96] Alfred Menezes, Paul van Oorschot, and Scott Vanstone. Handbook of

Applied Cryptography. CRC Press, 1996.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method

for obtaining digital signatures and public-key cryptosystems. Com-

munications of the ACM, 21(2):120–126, 1978. See also U.S. Patent

4,405,829.

[Sal08] David Salomon. A Concise Introduction to Data Compression.

Springer, 2008.

[Sip06] Michael Sipser. Introduction to the Theory of Computation. Course

Technology, second edition, 2006.

[SM08] Sean Smith and John Marchesini. The Craft of System Security.

Addison-Wesley, 2008.

[Sto88] James A. Storer. Data Compression: Methods and Theory. Computer

Science Press, 1988.

[TC11] Greg Taylor and George Cox. Digital randomness. IEEE Spectrum,

48(9):32–58, 2011.

Index

O-notation, 19–20

�-notation, 20

‚-notation, 18–19

Š (factorial), 22, 140, 180

b c (floor), 29

abstract data type, 97

abstraction, 97

adaptive Huffman code, 166–167

adjacency list, 79

adjacency matrix, 78

adjacent vertex, 75

ADT, 97

Advanced Encryption Standard (AES),

143, 155

AKS primality test, 148

algorithm

approximation, 3–4, 209

for a computer, 1

correctness of, 2–4

definition, 1–2

greedy, 165

origin of word, 9

polynomial-time, 181

polynomial-time reduction, 186

resource usage of, 4–6

aligning DNA sequences, 122–123

all-pairs shortest paths

Floyd-Warshall algorithm for,

106–114

Johnson’s algorithm for, 114

by matrix multiplication, 114

almost optimal solution, 3

ambiguous grammar, 211

AND, 189

approximation algorithm, 3–4, 209

arbitrage opportunity, 104–106

arithmetic, modular, 146

arithmetic series, 35

arithmetic with large numbers, 150

array, 11

priority queue implemented by, 97–98

searching in, 12–22, 24, 28–32

sorting of, 32–59, 62–70

ASCII, 136, 141, 159

ASSEMBLE-LCS, 120

ASSEMBLE-TRANSFORMATION, 129

assigning a value to a variable, 13

asymptotic notation, 20

BAD-FACTORIAL, 24

base-2 logarithm, 7

baseball, 146

base case, 23

BELLMAN-FORD, 102

Bellman-Ford algorithm, 101–106

for finding an arbitrage opportunity,

104–106

for finding a negative-weight cycle,

103–104

running time of, 103–104

best case, 19

BETTER-LINEAR-SEARCH, 14

big-oh notation, 19–20

big-omega notation, 20

binary heap, 98–101

binary search, 28–32

loop invariant for, 30

recursive version, 31

running time of, 31–32

BINARY-SEARCH, 30

binary tree, 98, 161

binning, 28

bit, 141

block cipher, 142–144

chaining, 143–144

body of a loop, 14, 16

boolean formula, 189

216 Index

satisfiability problem for, 189

bound, 18–20

Boyer-Moore string-matching

algorithm, 137

branch and bound, 208

bucketing (bucketizing), 28

BUILD-HUFFMAN-TREE, 164

cache, 17

call of a procedure, 11

certificate, 184

CFG, 211

child, 98

cipher

shift cipher, 139

simple substitution, 139–140

cipher block chaining, 143–144

ciphertext, 139

clause, 190

clique, 191

clique problem, 191–194

CLRS, 8–9, 24, 59, 70, 89, 114,

136–137, 157, 178, 212

code

escape, 166

Huffman, 160–167, 177

prefix-free, 161

coefficient, 5–6, 18

combine step, 40

in merge sort, 41

in quicksort, 50

common subsequence, 116

longest, 115–121

communication, 4

comparison sorting, 61–62

complete graph, 198

composite number, 3, 148

compression, 158–178

by adaptive Huffman code, 166–167

by fax machines, 159, 167–168

by Huffman code, 160–167, 177

lossless, 158

lossy, 158

by LZ78, 169

by LZW, 168–178

by run-length encoding, 167

COMPUTE-LCS-TABLE, 119

computer algorithm, 1

COMPUTE-TRANSFORM-TABLES, 127

concatenation, 134

connected graph, 182

conquer step, 40

in merge sort, 41

in quicksort, 50

context-free grammar, 211

contrapositive, 22

copy operation on a character, 121

correctness of an algorithm, 2–4

counting sort, 62–68

running time of, 67–68

COUNTING-SORT, 67

COUNT-KEYS-EQUAL, 63

COUNT-KEYS-LESS, 64

critical path, 80–85

running time for finding, 88

cryptography, 138–157

block cipher, 142–144

cipher block chaining, 143–144

hybrid cryptosystem, 155–156

by one-time pad, 140–142

public-key, 144–155

by RSA, 146–155

shift cipher, 139

simple substitution cipher, 139–140

symmetric-key, 140–144

cycle, 82

hamiltonian, 182, 196–198

dag, see directed acyclic graph

DAG-SHORTEST-PATHS, 87

data compression, see compression

data structure, 97

decision problem, 185

DECREASE-KEY, 97, 99, 101

decrement, 37

decryption, 138

degree of a vertex, 182

delete operation on a character, 121

dense graph, 100

depth of a leaf, 162

deterministic quicksort, 58

diameter of a network, 106

DIJKSTRA, 94, 98

Dijkstra’s algorithm, 91–101, 165

Index 217

loop invariant for, 96

running time of, 96–101

directed acyclic graph, 74–80

shortest path in, 85–88

topological sorting of, 75–80

directed edge, 74

relaxation of, 86

directed graph, 74

acyclic, 74–80

representation of, 78–80

shortest path in, 85–88

topological sorting of, 75–80

weighted, 83

disk operations, 4

divide-and-conquer, 40–41

divide step, 40

in merge sort, 41

in quicksort, 49–50

DNA, 115, 160

aligning sequences of, 122–123

doubly linked list, 80

dynamic programming, 112–114

in the Floyd-Warshall algorithm,

107–109, 113

for longest common subsequence,

116–120

for transforming strings, 123–126

edge

directed, 74

entering, 75

incident, 182

leaving, 75

relaxation of, 86

undirected, 182

edge list, 78

edge weight, 83

element of an array, 11

encryption, 1, 3, 138

entering edge, 75

entry of an array, 11

Erdős-Bacon number, 91

Erdős number, 91

escape code, 166

EUCLID, 151–152

Euler tour, 182

exclusive-or, 141

existential lower bound, 62

exponential function, 7

exponentiation, modular, 153–154

EXTRACT-MIN, 97, 100–101

FA, see finite automaton

FACTORIAL, 23

factorial function (Š), 22, 140, 180

FA-STRING-MATCHER, 133

fax machines, 159, 167–168

Fermat’s Little Theorem, 151

F-heap, 101

Fibonacci heap implementation of a

priority queue, 101

finding large prime numbers, 150–151

FIND-NEGATIVE-WEIGHT-CYCLE,

104

finite automaton, 131–136

running time of, 135–136

floor function (b c), 29

flow of control, 10

FLOYD-WARSHALL, 110

Floyd-Warshall algorithm, 106–114

and dynamic programming, 107–109,

113

running time of, 112

footprint, 4

formal language, 211

function, 11

linear, 18

goalie equipment, 71–74

googol, 183

grammar, 211

graph

complete, 198

connected, 182

directed, 74

directed acyclic, 74–80

representation of, 78–80

shortest path in, 85–88

topological sorting of, 75–80

undirected, 182

weighted, 83

greedy algorithm, 165

halting problem, 210

218 Index

hamiltonian cycle, 182, 196–198

hamiltonian path, 196–198

hash table, 177

heap, 98–101

redistributive, 114

heap property, 99

heapsort, 100–101

HEAPSORT, 100

height of a node, 99

Huffman code, 160–167, 177

adaptive, 166–167

running time of, 164–165

hybrid cryptosystem, 155–156

hybrid sorting algorithm, 59

IFF, 189

IMPLIES, 189

incident edge, 182

increment, 14

in-degree, 76

index into an array, 11

inequality, triangle, 209

initialization in a loop invariant, 21

initialization vector, 144

in-place sorting, 40

input

to a procedure, 11

size of, 5

INSERT, 96–97, 99, 101

insertion sort, 35–40

loop invariant for, 37

running time of, 38–39

INSERTION-SORT, 37

insert operation on a character, 121

internal node, 162

Introduction to Algorithms, see CLRS

inverse, multiplicative, 149, 152–153

iteration of a loop, 13

Jabberwocky, 169

Johnson’s algorithm, 114

JPEG, 158

Kevin Bacon number, 90–91

key

in cryptography, 139

public, 144

in searching, 26

secret, 144

in sorting, 26

KMP string-matching algorithm, 136

knapsack problem, 205

Knuth-Morris-Pratt string-matching

algorithm, 136

last in, first out, 77

LCS, see longest common subsequence

leaf, 98

leaving edge, 75

lexicographic ordering, 25

lg, 7

LIFO, 77

linear function, 18

linear search, 13–22, 24

loop invariant for, 21

lower bound for, 20

recursive version, 24

running time of, 17–21

LINEAR-SEARCH, 13

linear-time merging, 42–48

linked list, 79

list

adjacency, 79

edge, 78

linked, 79

literal, 191

Llanfairpwllgwyngyllgogerych-

wyrndrobwllllantysiliogogogoch,

169

logarithm, 7

longest-acyclic-path problem, 199

longest common subsequence, 115–121

by dynamic programming, 116–120

running time of, 119, 121

loop, 13, 16

nested, 34

loop invariant, 21–22

for binary search, 30

for COUNT-KEYS-LESS, 64

for Dijkstra’s algorithm, 96

for insertion sort, 37

for linear search, 21

for partitioning, 53

for selection sort, 34

Index 219

loop variable, 14

lossless compression, 158

lossy compression, 158

lower bound, 18, 20

for comparison sorting, 61–62

existential, 62

for linear search, 20

for selection sort, 35

universal, 62

low-order term, 5, 18

LZ78, 169

LZW compression, 168–178

LZW-COMPRESSOR, 172

LZW-DECOMPRESSOR, 176

main memory, 17

maintenance of a loop invariant, 21

master method, 49

matrix, adjacency, 78

matrix multiplication, 114

median-of-three quicksort, 56

memory, 4

MERGE, 47

merge sort, 40–49

running time of, 48–49

MERGE-SORT, 41

merging, 42–48

method, 11

Miller-Rabin primality test, 148, 157

Moby Dick, 165, 170, 173–174, 177

modular arithmetic, 146

computing multiplicative inverses in,

152–153

exponentiation, 153–154

MODULAR-EXPONENTIATION, 154

Mother Problem, 188–190

MP3, 158

multiplicative inverse, 149, 152–153

naı̈ve method for string matching,

130–131

running time of, 131

negative-weight cycle

and arbitrage opportunities, 104–106

found by Bellman-Ford algorithm,

103–104

neighborhood search, 209

nested loops, 34

network communication, 4

node, 98

internal, 162

NOR, 189

NP, 184

NP-complete, 181, 184

NP-completeness

of clique, 191–194

general strategies for proving,

205–208

of hamiltonian cycle, 196–198

of hamiltonian path, 196–198

of knapsack, 205

of longest acyclic path, 199

of partition, 203–205

perspective on, 208–211

of subset sum, 199–203

of 3-CNF satisfiability, 190–191

of traveling salesman, 198–199

of vertex cover, 194–196

NP-hard, 184

number

composite, 148

Erdős, 91

Erdős-Bacon, 91

Kevin Bacon, 90–91

prime, 147

random, 156

O-notation, 19–20

occurrence of a pattern string with a

shift, 130

Omega-notation, 20

one-time pad, 140–142

operation, 17

optimal solution, 3

optimal substructure, 113

OR, 189

order of growth of running time, 5

out-degree, 76

output from a procedure, 11

P, 183

pad, 142

parameter, 11

parent, 99

220 Index

PARTITION, 54

partitioning, 50, 52–55

running time of, 55

partition problem, 203–205

path, 81

hamiltonian, 196–198

longest acyclic, 199

shortest, 84

weight of, 83

pattern string, 129

PCP, 210

pel, 159

permuting, 32

PERT chart, 80–85, 88

pivot, 50

pixel, 159

plaintext, 139

polynomial-time algorithm, 181

reduction, 186

polynomial-time verification, 183

Post’s Correspondence Problem, 210

predecessor, 85

prefix, 116

prefix-free code, 161

primality test

AKS, 148

Miller-Rabin, 148, 157

prime number, 3, 147

how to find, 150–151

Prime Number Theorem, 150

prime, relatively, 148, 151–152

priority queue, 97

binary heap implementation of,

98–100

Fibonacci heap implementation of,

101

simple array implementation of,

97–98

PRNG, 156–157

procedure, 11

call of, 11

pseudocode, 10

pseudorandom number generator,

156–157

public key, 144, 149

public-key cryptography, 144–155

by RSA, 146–155, 157

public-key cryptosystem, 146

quicksort, 49–57

deterministic, 58

median-of-three, 56

randomized, 56

running time of, 55–57

QUICKSORT, 51

radix sort, 68–70

running time of, 69–70

random bits, 4

randomized quicksort, 56

random number, 156

REALLY-SIMPLE-SORT, 61

REARRANGE, 65

recurrence equation, 49

recursion, 22–24

RECURSIVE-BINARY-SEARCH, 31

RECURSIVE-LINEAR-SEARCH, 24

redistributive heap, 114

reduction, 185–186

relatively prime, 148, 151–152

RELAX, 86

relaxation step, 86

repeated squaring, 153

replace operation on a character, 121

representation of a directed graph,

78–80

resource usage, 4–6

return value from a procedure, 11

RSA, 3, 146–155, 157

run-length encoding, 167

running time

of the Bellman-Ford algorithm,

103–104

best case, 19

of binary search, 31–32

of counting sort, 67–68

of Dijkstra’s algorithm, 96–101

of the Floyd-Warshall algorithm, 112

how to characterize, 16–21

of Huffman code, 164–165

of insertion sort, 38–39

of linear search, 17–21

of longest common subsequence, 119,

121

Index 221

of merge sort, 48–49

of merging, 48

of naı̈ve method for string matching,

131

order of growth of, 5

of partitioning, 55

of quicksort, 55–57

of radix sort, 69–70

of selection sort, 34–35

of single-source shortest paths in a

directed acyclic graph, 88

of string matching by finite

automaton, 135–136

of topological sorting, 80

of transforming strings, 126

worst case, 19

satellite data, 26–27

satisfiable formula, 189

searching, 12–22, 24

binary search, 28–32

comparison of algorithms, 57

linear search, 13–22, 24

search key, 26

search, neighborhood, 209

secret key, 144, 149

seed, 156

selection sort, 32–35

loop invariant for, 34

running time of, 34–35

SELECTION-SORT, 33

sentinel, 15

in merging, 46–47

SENTINEL-LINEAR-SEARCH, 16

sequence, 115

shift cipher, 139

shift of a string, 130

short circuiting, 37

shortest path, 84

Bellman-Ford algorithm for, 101–106

Dijkstra’s algorithm for, 91–101

in a directed acyclic graph, 85–88

Floyd-Warshall algorithm for,

106–114

Johnson’s algorithm for, 114

by matrix multiplication, 114

single-pair, 90

single-source, 85

signs in baseball, 146

simple array implementation of a

priority queue, 97–98

simple substitution cipher, 139–140

shift cipher, 139

single-pair shortest path, 90

single-source shortest path, 85

Bellman-Ford algorithm for, 101–106

Dijkstra’s algorithm for, 91–101

in a directed acyclic graph, 85–88

singly linked list, 80

six degrees of Kevin Bacon game, 90–91

size

of a clique, 191

of input, 5

of a vertex cover, 194

slot, 27

solution, 2–3

sorting, 32–70

applications of, 26

comparison of algorithms, 57–59

counting sort, 62–68

heapsort, 100–101

hybrid algorithm, 59

insertion sort, 35–40

lower bound for, 61–62

merge sort, 40–49

in place, 40

quicksort, 49–57

radix sort, 68–70

selection sort, 32–35

stable, 68

topological, 75–80

sort key, 26

source vertex, 85

sparse graph, 100

SQUARE-ROOT, 11

stable sort, 68

stack, 77

stack overflow error, 24

state, 131

string, 115

longest common subsequence,

115–121

occurrence of, with a shift, 130

pattern, 129

222 Index

text, 129

transformation of, 121–126

string matching, 115, 129–136

Boyer-Moore algorithm for, 137

by finite automaton, 131–136

KMP algorithm for, 136

by naı̈ve method, 130–131

subarray, 21

subsequence, 116

subset-sum problem, 199–203

substitution cipher

shift cipher, 139

simple, 139–140

substring, 116

suffix, 134

symmetric-key cryptography, 140–144

block cipher, 142–144

cipher block chaining, 143–144

by one-time pad, 140–142

target vertex, 85

term, 5

termination in a loop invariant, 21

text string, 129

Theta-notation, 18–19

3-CNF, 191

3-CNF satisfiability problem, 190–191

3-conjunctive normal form, 191

time, 4

TOPOLOGICAL-SORT, 77

topological sorting, 75–80

running time of, 80

transforming strings, 121–126

by dynamic programming, 123–126

running time of, 126

transitive, 71

traveling-salesman problem, 181,

198–199

tree

binary, 98, 161

trie, 177

triangle inequality, 209

trie, 177

2-opt, 209

undecidable problem, 210

undirected edge, 182

undirected graph, 182

Unicode, 141

universal lower bound, 62

upper bound, 18–19

variable

loop, 14

in a procedure, 13

verification in polynomial time, 183

vertex, 74

in-degree of, 76

out-degree of, 76

predecessor, 85

source, 85

target, 85

vertex-cover problem, 194–196

virtual memory, 17

weight

of an edge, 83

of a path, 83

weighted directed graph, 83

wetware, 10

widget, 197

worst case, 19

XOR, 141

	Contents
	Preface
	1 What Are Algorithms and Why Should You Care?
	Correctness
	Resource usage
	Computer algorithms for non-computer people
	Computer algorithms for computer people
	Further reading

	2 How to Describe and Evaluate Computer Algorithms
	How to describe computer algorithms
	How to characterize running times
	Loop invariants
	Recursion
	Further reading

	3 Algorithms for Sorting and Searching
	Binary search
	Selection sort
	Insertion sort
	Merge sort
	Quicksort
	Recap
	Further reading

	4 A Lower Bound for Sorting and How to Beat It
	Rules for sorting
	The lower bound on comparison sorting
	Beating the lower bound with counting sort
	Radix sort
	Further reading

	5 Directed Acyclic Graphs
	Directed acyclic graphs
	Topological sorting
	How to represent a directed graph
	Running time of topological sorting
	Critical path in a PERT chart
	Shortest path in a directed acyclic graph
	Further reading

	6 Shortest Paths
	Dijkstra’s algorithm
	The Bellman-Ford algorithm
	The Floyd-Warshall algorithm
	Further reading

	7 Algorithms on Strings
	Longest common subsequence
	Transforming one string to another
	String matching
	Further reading

	8 Foundations of Cryptography
	Simple substitution ciphers
	Symmetric-key cryptography
	Public-key cryptography
	The RSA cryptosystem
	Hybrid cryptosystems
	Computing random numbers
	Further reading

	9 Data Compression
	Huffman codes
	Fax machines
	LZW compression
	Further reading

	10 Hard? Problems
	Brown trucks
	The classes P and NP and NP-completeness
	Decision problems and reductions
	A Mother Problem
	A sampler of NP-complete problems
	General strategies
	Perspective
	Undecidable problems
	Wrap-up
	Further reading

	Bibliography
	Index

