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Preface

Privacy Issues in the Digital Era

Privacy as a social and legal issue has been a concern of social scientists,
philosophers, and lawyers for a long time. Back in 1890, two American
lawyers, S. Warren and L. Brandeis, defined privacy as the right of an in-
dividual to be alone, and it has been recognized as a fundamental human
right by the United Nations Declaration of Human Rights, the International
Convenant on Civil and Political Rights, the Charter of Fundamental Rights
of the European Union, and many other international treaties. Therefore,
in democratic societies the protection of privacy is a crucial issue.

Meanwhile, the intensive development of information and communi-
cation technologies has resulted in numerous new electronic services that
aim to improve people’s lives by allowing them to communicate and ex-
change data through the Internet, advertise their ideas through the World
Wide Web, and purchase goods and services. To a large extent, the raw
material for most of these electronic services is the personal data of indi-
viduals. Alongside the benefits for the people, these developments have
introduced new risks such as identity theft, discriminatory profiling, con-
tinuous surveillance, and fraud. According to recent surveys, privacy and
(especially) anonymity, are the fundamental issues of concern for most In-
ternet users, ranked higher than issues like ease-of-use, spam-mail, cost,
and security. In view of the above, the OECD Declaration on the Protec-
tion of Privacy on Global Networks (for developing a culture of privacy in
the Global Village) is especially well timed.

In this volume, privacy is considered as the indefeasible right of an
individual to control the ways in which personal information is obtained,
processed, distributed, shared, and used by any other entity.
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The Chapters

This volume is divided into seven parts, including twenty-one chapters in
total:

PartI: The Privacy Space. Ian Goldberg, in his chapter entitled “Privacy-
Enhancing Technologies for the Internet III: Ten Years Later” deals with the
advances in privacy-enhancing technologies (PETs), while suggesting four
principles (usability, deployability, effectiveness, and robustness) that may
guide system designers when selecting or/and employing PETs. Andreas
Pfitzmann, Andreas Juschka, Anne-Katrin Stange, Sandra Steinbrecher and
Stefan Kopsell in their chapter entitled “Communication Privacy“ present
a thorough overview of anonymyzing techniques. Mikhail J. Atallah and
Keith B. Frikken deal with “Privacy-Preserving Cryptographic Protocols”
that allow the collaboration outcome to be computed, while the personal
information revealed for the participants is minimized.

Part II: Privacy Attacks. This part starts with Nikita Borisov, George
Danezis and Parisa Tabriz who study “Byzantine Attacks on Anonymity
Systems.” George Danezis and Richard Clayton, in their chapter entitled
“Introducing Traffic Analysis” present the key issues around traffic analy-
sis, while Jaideep Vaidya and Vijay Atluri in “Privacy, Profiling, Targeted
Marketing, and Data Mining” highlight the problems of profiling, targeted
marketing, data mining, and privacy.

Part III: Privacy-Enhancing Technologies. Michael Backes and
Markus Dirmuth in their chapter address the issue of “Enterprise Privacy
Policies and Languages” while Arvind Narayanan and Vitaly Shmatikov
in “Uncircumventable Enforcement of Privacy Policies via Cryptographic
Obfuscation” deal with obfuscation in the personal and group privacy era.
X. Sean Wang and Sushil Jajodia in “Privacy Protection with Uncertainty and
Indistinguishability” discuss the metrics of uncertainty and indistinguisha-
bility. The last chapter of this part is by Chunhua Su, Jianying Zhou, Feng
Bao, Guilin Wang, and Kouichi Sakurai, who deal with “Privacy-Prevention
Techniques in Data Mining.”

Part IV: User Privacy. Simone Fischer-Hubner, John S6ren Pettersson,
Mike Bergmann, Marit Hansen, Siani Pearson, and Marco Casassa Mont,
in their chapter “HCI Designs for Privacy-Enhancing Identity Management”
report results from the human—computer interaction research work on pri-
vacy and identity management. Maria Karyda and Spyros Kokolakis deal
with “Privacy Perceptions among Members of Online Communities,” while
Sarah Spiekermann in the chapter entitled “Perceived Control: Scales for Pri-
vacy in Ubiquitous Computing” presents three scales for measuring people’s
perception of control over being accessed when moving in RFID-enabled
environments.

Part V: Privacy in Ubiquitous Computing. Pablo Najera and Javier
Lopez in their chapter, “RFID: Technological Issues and Privacy Concerns,”
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identify the threats and privacy issues in RFID environments. Claudio A.
Ardagna, Marco Cremonini, Ernesto Damiani, Sabrina De Capitani di
Vimercati, and Pierangela Samarati, in “Privacy-Enhanced Location Services
Information” review the main techniques employed for protecting the lo-
cation privacy of users in electronic services. Jean Camp and Kay Connelly
in “Beyond Consent: Privacy in Ubiquitous Computing (Ubicomp)” identify
basic threats in ubiquitous environments and propose a particular approach
for bringing PETs to home-based ubicomp.

Part VI: The Economics of Privacy. Athanasios N. Yannacopoulos,
Sokratis Katsikas, Costas Lambrinoudakis, Stefanos Gritzalis, and Stelios
Z. Xanthopoulos in their chapter, “A Risk Model for Privacy Insurance,”
introduce a risk model that can be utilized by an IT firm for modeling
the risks that it is exposed to as a result of privacy violation or disclosure
of personal data of its clients. Alessandro Acquisti and Jens Grossklags in
“What Can Behavioral Economics Teach Us about Privacy?” discuss the role
of uncertainty, ambiguity, and behavioral biases in privacy decision making.

Part VII: Privacy and Policy. Sabrina De Capitani di Vimercati, Sara
Foresti, Stefano Paraboschi, and Pierangela Samarati, in “Privacy of Out-
sourced Data,” deal with the security issues arising in database outsourc-
ing scenarios, while Lilian Mitrou is her chapter deals with “Communica-
tions Data Retention: A Pandora’s Box for Rights and Liberties?” Finally,
Katherine J. Strandburg, in “Surveillance of Emergent Associations: Free-
dom of Association in a Network Society” considers how relational surveil-
lance must be regulated in order to preserve the growing role of emergent
associations in politics and civic society.
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Privacy-Enhancing
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Ten Years Later
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1.1 Introduction

In 1997, with Wagner and Brewer, and again in 2002, we looked at the
then-current state of privacy-enhancing technologies (PETs) for the Internet
[26,27]. Now, in 2007, we are taking a third look. Technologies to help users
maintain their privacy online are as important today as ever before—if not
more so. Identity theft is the fastest-growing crime in the United States today
[47] and it is all too easy for would-be identity thieves to harvest personal
information from the online trails Internet users leave every day. Losses
of large databases of personal information are an almost daily occurrence
[2]; for example, retailers’ servers are penetrated [44], databases are traded
between government and private companies [30], and laptops containing
Social Security numbers are stolen [35].

In 1997, we discussed the dossier effect: all available information about
a person gets cross-referenced, and the resulting dossier ends up being
used for many purposes, lawful and not. This practice has expanded over
the years; the companies that compile and sell these dossiers are known
as data brokers. Choicepoint is a prime example—in 2005, this data broker
sold dossiers on over 150,000 Americans to a group of criminals [10]. The
PETs we discuss here give people a way to control how much of their
personal information is revealed when they use the Internet. By controlling
the spread of this information, they can limit the size of the data brokers’
dossiers about them.

In this chapter, we examine different classes of privacy-enhancing tech-
nologies. For each class, we look at the state of the technology in 2002
and see what has happened in the intervening five years. In Section 1.2,
we look at a range of systems to protect the identities of senders and re-
cipients of electronic mail. In Section 1.3, we examine systems that attempt
to solve the more complex problem of protecting your identity when ac-
cessing interactive Internet services. Section 1.4 surveys a number of tech-
nologies that protect the contents of Internet conversations, as opposed to
the identities of the participants. In Section 1.5, we look to the future and
examine three particular technologies in which we hope to see progress
in the next 5 years. Section 1.6 outlines the principles researchers should
keep in mind when designing future security and privacy technologies in
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order to maximize their usefulness, and Section 1.7 concludes the chapter
analysis.

1.2 E-mail Anonymity and Pseudonymity Systems

The first class of PETs we will examine are systems to provide anonymity
and pseudonymity for electronic mail. E-mail anonymity systems allow a
user to send e-mail without revealing his or her own personal information,
such as identity, e-mail address, or Internet protocol (IP) address. E-mail
pseudonymity systems also allow the user to set up a persistent pseudonym,
or nym, which can be used to receive e-mail as well. With these pseudony-
mous systems, users can participate in ongoing e-mail conversations while
maintaining their privacy.

1.2.1 Type-0 Remailers

The oldest and simplest e-mail anonymity systems were the #ype-0 remail-
ers. The term remailer stems from the basic operation of these systems:
A user sends e-mail to the remailer, which strips off the user’s identifying
information and remails the message to its intended recipient. The remailer
also assigns a random pseudonym to the sender. By keeping a master list
matching the pseudonyms to senders’ real e-mail addresses, replies to re-
mailed messages can be delivered to the original sender.

While these type-0 remailers provided some protection against casual
observers, the master list provided a tempting target for attackers; anyone
who could get his hands on the list could reveal the real e-mail addresses
of all the users of the remailer. The most well-known of these remailers,
anon.penet.fi, was shut down after its operator lost a legal fight that required
him to turn over parts of the list [30].

1.2.2 Type-lI Remailers

In order to better protect the privacy of e-mail users, the type-I, or cypher-
punk remailers, were developed. They work on the same principle—a
message arrives at a type-I remailer, which removes the sender’s identify-
ing information and then sends the message out. But these remailers add a
number of key improvements. The first is chaining: a user sends his mes-
sage to a remailer with instructions to send it, not to the intended recipient,
but rather to a second remailer (run by an operator independent from the
first). That remailer is instructed to send it to a third remailer, and so on.
Only the last remailer in the chain receives the e-mail address of the in-
tended final recipient. Therefore, compromising any one of the remailers or
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their operators does not allow linking the sender to the recipient. The first
remailer knows only that the sender is a user of the remailer network, but
not with whom he is communicating. The last remailer in the chain knows
that somebody sent an anonymous message to a particular recipient, but
cannot identify who it was. Remailers in the middle of the chain know only
that they are forwarding anonymous e-mail, but do not know the sender
or recipient. The goal is that all of the remailers in the chain need to be
compromised in order for the privacy of the sender to be breached.

The second improvement made by the type-1 remailers is encryption.
Without encryption, the first remailer in the chain could simply read the
instructions to the later remailers, including the address of the final recip-
ient. Instead, the first remailer receives an encrypted message. When it is
decrypted, it finds only the address of the second remailer and another en-
crypted message. This inner message, however, is encrypted to the second
remailer, so the first remailer cannot read it. The first remailer sends that
message to the second remailer, which decrypts it to find the address of the
third remailer and another encrypted message (that only the third remailer
can read), and so on. Finally, when the last remailer decrypts its message, it
finds the address of the final recipient as well as the (unencrypted) message
to send.

The third improvement made by the type-I remailers is mixing: incom-
ing messages to any remailer are batched together and randomly reordered
before being sent out. This was an attempt to prevent a passive observer of
a given remailer from determining which outgoing message corresponds
to which incoming message. An attacker could perform a timing correla-
tion attack by comparing the order in which messages were received by
the remailer to the order in which they were subsequently sent out. By
introducing delays and reordering, this attack is hindered.

Unlike the type-0 remailers, technical sophistication is required to use
the type-I remailers. Users have to either manually construct all of the
encrypted parts of a message before sending it or install a tool such as
premail [34] that automatically handles the message construction.

1.2.3 Type-Il Remailers

Although the type-I remailers were, privacy-wise, a great improvement over
the type-0 system, they were still vulnerable to size correlation attacks or
replay attacks. In a size correlation attack, an adversary tries to match the
messages sent by a given remailer to the messages it receives by matching
the sizes of the messages. In a replay attack, the adversary makes a copy
of one of the messages received by the remailer, and sends many copies
of it to that same remailer. The adversary then observes which outgoing
message from that remailer gets repeated many times.
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Type-II or Mixmaster remailers were deployed to address these prob-
lems [41]. Type-II remailers divide all messages into a number of fixed-sized
packets that are sent separately through the network of remailers in order to
defeat size correlations. These remailers also employ more complex tech-
niques to defeat replay attacks.

Messages for type-II remailers cannot be constructed manually in any
reasonable way; users need specially customized software in order to send
anonymous mail.

1.2.4 Type-lll Remailers

Type-II remailers were the current state-of-the-art in 2002. What has hap-
pened in the past five years? A design for type-IIl or Mixminion remailers
has been proposed [13], which improves privacy protection in a number of
ways. First, type-III remailers provide a better system for handling replies
to anonymous messages. Type-II remailers only support anonymity—not
pseudonymity. In order to receive replies to a type-II message, senders
have to set up a pseudonym with the older type-I remailer network.

Type-III remailers also provide improved protection against replay
attacks and against key compromise attacks, where an attacker learns the
private decryption key of one or more of the remailers. The type-III system
has several different new features to prevent other forms of attack and to
aid in the management of the network.

Unfortunately, support for type-III remailers is not yet widespread. The
implementation of the published design has never been released past the
testing stage, and, in the last year, has seen little work done on it.
Although there are about thirty type-III remailers scattered around the world
(about the same as the number of type-II remailers), the authors of Mixmin-
ion specifically warn users that “you shouldn’t trust Mixminion with your
anonymity yet” [14].

1.3 Interactive Anonymity and Pseudonymity Systems

Today’s online communication is increasingly interactive and real-time,
using technologies such as instant messaging. Protecting these types of
communication, as well as other interactive Internet applications, such
as the World Wide Web, remote logins, voice-over-IP, and games, poses
a much more significant challenge than the corresponding problem for
e-mail. Whereas remailers obtain much of their security from delaying and
reordering messages, such delays are unacceptable in the context of low-
latency interactive services, and tradeoffs often have to be made.

In 1995, Wei Dai presented a design of an anonymity system for low-
latency traffic, which he called “PipeNet” [12]. The design of PipeNet
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emphasized security over all else: If the system detected any anomaly that
could be an attacker trying to compromise privacy, the entire network
would shut down. Of course, no realistic system could work this way; peo-
ple simply wouldn’t use it. There have been a number of systems that have
been implemented and fielded over the years to provide practical secu-
rity and privacy to users of interactive Internet applications. We examine
several of these next.

1.3.1 Anonymizer.com

Anonymizer.com, a company we mentioned in the 2002 survey [26], contin-
ues to run the Anonymizer proxy service [1], a system we first mentioned in
the 1997 survey [27]. They continue to be one of the few commercially suc-
cessful anonymity technology providers. The Anonymizer works much like
the type-0 remailers: A Web browser makes a request to the Anonymizer,
which relays the request to the intended Web server. This service protects
the user’s privacy from that Web server, but not from Anonymizer.com itself,
or from anyone watching the Internet near it. As we saw in 2002, by pro-
viding protection only against this simpler threat model, Anonymizer.com
is able to keep costs and complexity down.

1.3.2 Onion Routing

The U.S. Naval Research Lab’s Onion Routing project [28,45] was the first
PipeNet-like system to be widely deployed. Although its primary use was
for anonymizing Web traffic, it also allowed users to anonymously connect
to any Transmission Control Protocol (TCP)/IP server on the Internet. A
user configures his Internet applications to use the SOCKS proxy protocol
[33] to connect to an Onion Proxy. Analogous to remailer systems, the
Onion Proxy creates a path through several Onion Routers situated around
the Internet.

Unlike remailer systems, however, this path is long-lived. Once it is
created, any data sent through this path is anonymously delivered to the
intended TCP/IP server. Any replies from that server are returned along the
path to the Onion Proxy, and from there to the user’s application. When
the application is finished communicating with the server, the path is torn
down, freeing the resources allocated for it at the Onion Routers.

The original deployed Onion Routing network was primarily a proof-
of-concept; it later evolved into the Tor network (see Section 1.3.5 below).

1.3.3 The Freedom Network

The Freedom Network was a commercial venture by Zero-Knowledge Sys-
tems, Inc. [5]. Also a PipeNet-inspired system, it incorporated some of the
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ideas from the Onion Routing project, but its design differed in impor-
tant ways. For example, while Onion Routing was a TCP/IP-based system
that could anonymously transport any TCP/IP protocol, the Freedom Net-
work was an IP-based system that could transport User Datagram Protocol
(UDP)/TP as well. Unlike Onion Routing’s pure anonymity, the Freedom
Network provided a persistent pseudonymity service, enabling users to
maintain separate online personas. It also used protocol-specific techniques
to protect both the users of the network and the network itself. Importantly,
Freedom removed the need for users to configure their Internet applica-
tions, which removed the potential for privacy-degrading mistakes.

The Freedom Network recruited operators from all over the world to run
its AIP nodes (Anonymous Internet Proxies, again analogous to remailers),
and paid them to do so. Unfortunately, as we mentioned in the 2002 survey
[26], these costs proved to be prohibitive; there were not enough paid users
to support the high-quality network that a commercial venture requires, and
the network had already been shut down by that time.

1.3.4 Java Anon Proxy

Java Anon Proxy (JAP) is a project of Technical University Dresden [23]. It
is one of the few privacy-enhancing technologies that was around in 2002
and still in use today. Unlike PipeNet-based systems, JAP is a Web-only
anonymization tool that uses the techniques of type-II remailers to do its
job. Web requests and replies are divided into fixed-sized chunks and sent
through a series of mix nodes. Each node collects a batch of these chunks,
encrypts or decrypts them as appropriate, reorders them, and sends them
on to the next mix node.

As with Onion Routing, users protect their privacy with JAP by running
the JAP client program, and configuring their Web browsers to use the JAP
client as an HTTP proxy. In this way, each of the user's Web requests is
sent to the JAP client, which divides it into chunks and sends these chunks
through the mix network.

1.3.5 Tor

Tor [18,19] is a new system that has appeared since the publication of the
2002 article [20]. It is the next generation of the Onion Routing project, and it
is the most successful (in terms of number of users) interactive anonymity
tool to date. Hundreds of thousands of users send about 8 terabytes of
traffic per day through hundreds of Tor nodes. As it is an extension of
the Onion Routing project, it shares many of that project’s characteristics:
It only anonymizes TCP/IP protocols, it requires configuration of users’
Internet applications, and so on.
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Unlike the erstwhile Freedom Network, the Tor nodes are run by volun-
teers and all of the software is free and open-source. Although somewhat
cumbersome for novice users to install and use on its own, graphical user
interfaces such as Vidalia [21] and other helpful tools like Torbutton [43]
greatly enhance Tor’s ease of use.

Currently, one of Tor’s biggest drawbacks is its noticeable degradation
to Web browsing speeds. Ideally, Tor could be used in an “always on”
mode, with users not even noticing its presence. Although Tor’s sluggish
performance prevents this today, work is being done to improve the situa-
tion. One possible way to accomplish this is to use peer-to-peer techniques
to improve its scalability, as was suggested in 2002 [206]. A different project,
MorphMix [40], proposed such a design, but not only was it never widely
deployed for general use, it was later shown to contain flaws in its privacy
protection [40].

In addition to protecting the users of TCP/IP-based Internet services,
Tor also contains a facility to protect providers of such services. The most
common hidden services are Web servers; a user runs a Web server some-
where in the world, which is only accessible through Tor, and Tor protects
the identities of both the user and the provider of the service. In this way,
Tor provides a censorship-resistant publishing service, which has been used
by whistleblowers, for example, to distribute information of public impor-
tance [37]. Other censorship-resistant publishing services include the Free
Haven [17], FreeNet [8], and Publius [48] projects mentioned in 2002 [26]. Of
these latter three projects, however, only FreeNet is still being developed
and used today. The Wikileaks project [50,51] uses both Tor and FreeNet
in order to provide a censorship-resistant repository of leaked documents,
which anyone can easily add to.

1.4 Communication Privacy Systems

When communicating over the Internet, the above technologies can help
keep identity information private, possibly from third parties, and possibly
also from other parties to the communication. In addition, correspondents
may wish to keep the contents of the communication private from third
parties. The technologies in this section allow you to do this. Note that it
is usually the case that these technologies can be combined with those of
the previous sections to protect both a user’s identity and the contents of
his communication.

It is important to note that with these technologies, all parties to the
communication need to have the same (or compatible) systems installed.
This is not the case with the technologies in the previous sections; those
systems protect their users’ privacy without requiring the other parties’
cooperation.
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1.4.1 PGP and Compatible Systems

Pretty Good Privacy (PGP) [25,39] has been available in one form or another
for over 25 years. Although newer versions have many more features, PGP’s
fundamental purpose is to encrypt or digitally sign e-mail (and to decrypt
it and verify the signatures at the other end, of course). PGP has evolved
from a command-line-only program to one with a full-featured graphical
user interface, and there are a number of compatible implementations, such
as GNU Privacy Guard (GnuPG) [32] and Hushmail [31].

Users install some PGP-compatible software and use it to encrypt their
e-mail messages before sending them. This can be done manually, but
some e-mail programs, including Outlook, Fudora, mutt, and pine, have
incorporated PGP support, which greatly improves its ease of use.

1.4.2 SSL and TLS

As the World Wide Web turned into a platform for e-commerce in the late
1990s, it became important to protect the contents of Web transactions.
Netscape invented the Secure Sockets Layer (SSL) protocol, which in later
versions was renamed Transport Layer Security (TLS) [16,24]. Though not
without problems, SSL and TLS are the single most widely used privacy-
enhancing technology to date. Their success stems from the fact that every
major Web browser comes with support for these technologies built in and
that their use is largely invisible to the user. That is, no special installation
or configuration needs to be done by end users before they can benefit
from these technologies. A Web browser will automatically encrypt Web
requests when communicating with an SSL/TLS Web server, and the server
will automatically encrypt its responses; no user intervention is needed at
all. Later, we will come back to this theme when we examine properties of
useful security and privacy technologies.

1.4.3 Off-the-Record Messaging

In the past five years, online communication has increasingly moved from
e-mail to instant messaging, especially among younger users [7]. First re-
leased in 2004, Off-the-Record Messaging (OTR) [3,4] is a technology to pro-
tect the contents of these instant messaging communications. As the name
implies, OTR provides instant messaging users with an “off-the-record”
conversation. Much like conversing face-to-face, OTR users can commu-
nicate privately and can also repudiate any claims as to the content of their
conversation.

Fundamentally, OTR allows instant messaging users to communicate in
an encrypted and authenticated manner. When user Alice sends a message
to her buddy Bob using OTR, she is assured that only Bob will be able to
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read it. In turn, Bob is assured that the message came from Alice and has
not been modified en route.

Moreover, OTR offers deniability. If Bob tells his friend Charlie what Al-
ice sent him, Bob is able to offer no proofof that assertion—Charlie just has
to trust him. OTR avoids using traditional nonrepudiable digital signatures
for authentication of messages; if messages from Alice had been digitally
signed, Charlie could easily check the signatures for himself. Instead, OTR
uses inherently repudiable message authentication codes to assure Bob that
the message really came from Alice, but renders him unable to prove that
fact to anyone else.

In addition, by taking advantage of the fact that instant messaging con-
versations are interactive, OTR is able to provide perfect forward secrecy
to its messages. If Bob’s computer is lost, is hacked into, gets a virus, or
any such thing, and all of his secrets are stolen, any messages Alice had
previously sent Bob would remain secret.

Users clearly cannot manually encrypt every instant message they send,
so the OTR encryption must be handled in an automatic way. There are
three ways that users can integrate OTR into their instant messaging. The
first is by using a proxy: The user runs an OTR proxy on her computer
and configures her instant messaging client to talk to that proxy instead of
talking directly to the instant messaging server. This technique can be used
by users of proprietary instant messaging clients like iChat and Trillian in
order to obtain OTR functionality. The second method is by using a plug-in:
Many instant messaging clients have the ability to have their functionality
extended by third-party plug-in modules. There are OTR plug-ins available
for the Gaim, Trillian, and Miranda instant messaging clients. The third
method is to have OTR functionality built directly into the user’s client.
This is, of course, the best option, since, like SSL/TLS, the user does not
have to install or configure anything special in order to gain some benefit
from OTR. The popular Adium X instant messaging client for the OS X
operating system has OTR built in.

1.5 Other Privacy-Enhancing Technologies

There are many other privacy-enhancing technologies that have been pro-
posed, but are not yet in widespread use. In this section, we look at three
particular technologies; we hope to see progress on these over the next
five years.

1.5.1 Private Payments

In 2002, we discussed the disappointing lack of adoption of electronic cash
[26]. Today, there are still no serious electronic cash services. It is important
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to fill this gap in the set of available privacy-enhancing technologies. Not
only is it undesirable for there to be centralized records of everything one
purchases online, but databases of payment records—including credit card
numbers—are routinely stolen from merchants and from credit card pro-
cessing firms [15]. These losses can lead to both credit card fraud and
identity theft.

While alternatives to online credit card transactions, such as PayPal [38],
are gaining popularity, a true privacy-protecting electronic cash solution
remains elusive. Although, the last of the patents protecting DigiCash’s
original electronic cash protocol has recently expired, the patents were not
the only barrier to entry for a potential electronic cash provider. As we
mentioned in 2002, making a system widely accepted and interoperable
with the “real” money system is a difficult task. In fact, PayPal itself may
be in the best position to offer true privacy-friendly payments online; it
already has the payment infrastructure, it could easily provide an interface
between electronic cash and the rest of the financial system, and it has a
large installed user base. Skype is also considering adding a payment system
to its voice-and-chat offering [22], though no information is yet available
about privacy properties that this system may or may not have.

1.5.2 Private Credentials

As we saw in 2002, private credentials [6] are a way to separate authoriza-
tion from authentication. They allow users to prove that they are authorized
to access a certain service or gain a certain benefit, while revealing no un-
necessary personal information, such as their identities. Rather than Alice
proving “I am Alice” to some server, and the server checking that Alice is
on the approved access list, Alice instead proves “I am approved to access
this server” without revealing who she is. This obviates any personal infor-
mation about Alice being stored on the server, removing the possibility of
that information being disclosed or stolen. Credentica [11] is expected to
release a line of privacy-friendly Digital Credential products based on this
technology in the near future.

1.5.3 Anti-Phishing Tools

A phishing attack occurs when a user is directed to a malicious Web site,
often via a link in e-mail or chat. The site appears to be a common site, like
a bank, eBay, or PayPal, but is really run by an attacker—the phisher. The
message encourages the user to log in to the site to address an urgent prob-
lem with their account. When the user complies, the phisher captures the
login name and password. From there the phisher can hijack the account,
steal money, or mount an identity theft.
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There are a number of tools available to help a user determine if he
is looking at an authentic Web site or at a phishing site. These tools often
appear as a toolbar in the user’'s Web browser that turns one of three
colors: one color if the tool determines the site is probably genuine, one if
it determines the site is probably a phishing site, and one if it cannot make
a determination.

The way these tools make these determinations vary. Some, like eBay’s
Account Guard [20], compare the URL being visited to centrally maintained
lists of good and bad sites. Users can suggest sites to be added to either
list, and the list maintainers generally manually verify before adding them.
Other tools, like the Cloudmark Anti-Fraud Toolbar [9], use the collective
ratings of its users to automatically mark sites as “genuine” or “phishing.”
Some, like Google’s Safe Browsing toolbar [29], use the fact that genuine
sites generally have higher Google PageRank than phishing sites. Many
tools use combinations of these techniques.

Zhang et al. [52] present an evaluation of ten of these anti-phishing
toolbars and find that they “left a lot to be desired.” They give some sug-
gestions for further improvements to toolbars like these. We can only hope
the state-of-the-art will advance in the next five years.

1.6 Useful Security and Privacy Technologies

Since 2002, we have seen a small amount of progress; there are a handful
of new technologies that people are actually using in order to protect their
privacy when they use the Internet. In comparison, research in privacy-
enhancing technologies in the past five years has been booming. New
technologies have been proposed in a number of different academic set-
tings, but many do not make it out of the lab. Worse, some do not even
make it from design into working code at all. These technologies do not
improve people’s security and privacy.

What would be more advantageous are security and privacy technolo-
gies that make a real difference to real people. We call such systems usefis!
security and privacy technologies, and we have identified a number of
properties such technologies must have.

Usability: It has long been known that many security and privacy
technologies are hard to use or hard to use correctly. Difficult-to-use
technologies frustrate users, and can even put them in the unfortu-
nate situation of believing they are being protected when they, in
fact, are not [42,49]. In order for a technology to be useful, users
need to be able to use it, and be able to use it properly. In addition,
users have to want to use it; if a system protects their privacy at
the expense of greatly slowing down their Internet experience, for
example, users will simply turn it off.
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Deployability: In order for a technology to be useful, it must be
possible for everyday users doing everyday things to obtain it and
benefit from it. This means it needs to be compatible with their pre-
ferred operating system, their preferred Web browser, their preferred
instant messaging client, and so on. Ideally, the technology would
be built right in so that the user doesn’t even need to find and install
separate software packages.

Effectiveness: Many designed, and even widely deployed, security
and privacy technologies contain flaws that can render their ostensi-
ble protection moot. For a technology to be useful, it, of course, has
to work and to give the user the benefit it promises. Open design
and open implementation can help experts spot problems before
too many users are left vulnerable.

Robustness: Some technologies will work as advertised, but only so
long as things go “according to plan.” But most technology designers’
plans overlook the realities of users on the Internet today: Their
computers contract worms and viruses, they forget their passwords,
they get tricked by phishing attacks, they misunderstand (or just
“click through”) security-critical dialog boxes, and so on. A useful
system needs to maintain as much protection as possible in these
situations, since unfortunately they will often occur in practice.

In order to close the gap between the number of systems proposed by
researchers and the number of systems giving benefit to users, developers
of privacy-enhancing technologies should design with these principles in
mind.

1.7 Conclusion

The past five years have seen a small increase in the availability of privacy-
enhancing technologies for the Internet, including at least one, Tor, which
is seeing significant use. This improvement over the previous half decade
is encouraging, but much work remains. We need more technologies that
move all the way from design to widespread use and we suggest that
the four principles of useful security and privacy technologies—usability,
deployability, effectiveness and robustness—may guide us in the right
direction.
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2.1 Introduction

Many people have a fallacious feeling of being anonymous when surfing
the Internet. But, ordinary Internet communication on the network layer is
by default not anonymous because of the usage of identifying characteristics
like Internet Protocol (IP) or Media Access-Control (MAC) addresses. So, if
no additional measures are taken, an adversary can easily observe which
participants of a network communicate with each other. But, anonymity on
the network layer of communication systems can be achieved by the use
of anonymizing techniques. Based on anonymous communication on the
network layer, necessary identification and authenticity of users can still
be implemented on a higher layer, e.g., with privacy-enhancing identity
management [8].

According to [18], anonymity of a subject is the state of not being iden-
tifiable within a set of subjects, the anonymity set. A sender may be anony-
mous only within a set of potential senders, his sender anonymity set, which
itself may be a subset of all subjects worldwide who may send messages
from time to time. This kind of anonymity is called sender anonymity.
The same is true for the recipient who may be anonymous within a set
of potential recipients, which form his recipient anonymity set. This kind
of anonymity is called recipient anonymity. Both anonymity sets may be
disjointed, be the same, or may overlap. The anonymity sets may vary over
time. Beneath sender and recipient anonymity, a third type of anonymity
for communication is relationship anonymity, which is the property that it
is unlinkable—who communicates with whom. Here unlinkability means
that within the system [18], these items (messages, senders, recipients) are
no more and no less related than they are related concerning the a priori
knowledge. Accordingly, sender/recipient anonymity can be defined as the
properties that a particular message is unlinkable to any sender/recipient
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and that to a particular sender/recipient, no message is linkable. Relation-
ship anonymity is the property that it is unlinkable, who communicates
with whom.

Anonymity is the stronger; the larger the respective anonymity set is,
the more evenly distributed the execution of actions by the subjects within
that set is, i.e., not only the size of the respective anonymity set determines
the anonymity of a certain subject, but also how likely a subject of the
anonymity set might have executed the action.

This describes what anonymizing techniques for communication do: To
collect an appropriate set of users, a particular user can be anonymous
within when communicating with others.

Usually subjects cannot have the same anonymity against every pos-
sible participant and outsider who might attack the subject’s anonymity.
Depending on the attacker’s knowledge, the above set of possible sub-
jects and the likelihood with which they have caused an action can vary.
For a specific attacker’s view, anonymity only can decrease. After the at-
tacker has had time to observe/influence the system, his knowledge might
increase. A passive attacker only observes the system. Whether he also
has the opportunity to become an active attacker and execute several
types of attacks influencing the system, depends on the strength of the
system.

This chapter will present an overview of anonymizing techniques
that enable anonymity in a communication network. In addition to the
anonymity techniques presented here, encryption schemes are used to pro-
tect not only the circumstances of communication, but also the content of
communication.

We can differentiate anonymizing techniques by the following criteria:

1. Protection goal: Which type of anonymity can be provided
(sender, recipient, or relationship anonymity)?

2. Security level: Which kind of security level can be achieved for
the protection goal (information theoretic/unconditional or crypto-
graphic/computational security)?

3. Attacker model: Which attackers does the technique (or not) pro-
tect against (outsiders, participants, network providers)?

4. Trust model: Who does the user trust (network providers, partic-
ipants)?

In the following sections, a classification of anonymizing techniques
following the criteria listed above is given.
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Figure 2.1 Using a proxy for surfing on the Internet.

2.2 Simple Proxies

One of the most popular concepts for anonymous surfing on the Internet
is using proxies. The main idea behind this technology is that requests
are not sent directly from the client computer to the Web server. Instead,
the client is connected to another server, the so-called proxy server. The
proxy server starts the HTTP request for the client (Figure 2.1) so that the
Web server only gets the IP address of the proxy, but not the IP address
of the client. In addition, some proxies also filter out information from
the HTTP request, which could be used to identify the user. These include
information such as cookies, the operating system, or browser used. “Active
content” like JavaScript can be blocked as well. At the moment, there are
two different possibilities to connect to a proxy, either via a Web site or
by using a local proxy. These possibilities can also be combined to form
proxy chains.

2.2.1 Web Site

A Web site-based proxy allows the use of the anonymizing service without
installing any additional software.* On this Web site, a form usually can be
found where the user fills in the address of the site he wants to surf. Now,
the mechanism works as described above: The proxy sends a request to the
Web server addressed by the user. After that, the server sends its answer
to the proxy and then the requested data is transferred to the client. As
an additional feature, the proxy also scans the HTTP content searching for
any links. If there are links, they are transformed such a way so that they
immediately can be used via the proxy. The user still remains anonymous
to the provider of the Web sites when clicking on the links.

* This is also called the Zero-Footprint approach.
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2.2.2 Local Proxies

The second method uses a local proxy. For this approach, a software is in-
stalled on the client’s computer as a local proxy, which has to be registered
on the browser as the one to be used when the user tries to connect to a
Web site.

The local proxy software has a list of so-called open proxies that are
proxies in the Internet that are—intentionally or mistakenly—Ileft open for
public use. This means that each Internet user can access and use an open
proxy to hide his/her identity.

The manufacturer of the local proxy software scans the Internet auto-
matically in order to discover new open proxies. The local proxy software
randomly selects one of the open proxies it knows as proxy for anonymiza-
tion (like in the Web site-based approach). Some of the local proxy software
on the market also changes at a user selected time interval when the open
proxy is used.

2.2.3 Proxy Chain

There also might be the possibility of using not only one proxy, but a chain
of several proxies, which can be local or external, before the request is sent
to a Web site. The combination of several proxies can be useful because
different proxies have different pros and cons. By combining the single
proxies, a proxy chain can be created. On the one hand, local proxies can
provide a good filter for the HTTP requests and because of being local, the
speed of surfing on the Internet does not slow down. On the other hand,
by using different external proxies, the trust necessary in the single proxy
providers becomes weaker because the proxy providers have to collaborate
in order to recognize which Web site the client wants to surf.

Protection goal: Sender anonymity against the recipient and rela-
tionship anonymity against all others.
Security level: Unconditional security can be achieved.
Attacker model:
m Protection against the recipient.
m No protection against a single proxy provider or a collusion of
proxy providers in a chain.
m No protection against outside attackers who could link incom-
ing and outgoing messages of one user, e.g., by timing analysis.
Trust model: The user has to trust in the proxy because it can
record all transferred information and observe the user’s activities.
Some proxies insert additional information into the request of the
client, e.g., x-forward-for, so that the Web server also might get the
IP of the user.
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Figure 2.2 Sending request to a Web server via Crowds.

2.3 Crowds

The concept behind Crowds is that the activities of each single user can be
hidden within the activities of many other users. So, the system consists of
a dynamic collection of users called a Crowd. It was designed to provide
sender anonymity and high performance.

As described in [20], a Web site request first passes a random num-
ber of participants of the Crowd before it is sent to the Web server. This
means that when a member of the Crowd gets a message, it decides ran-
domly whether to send the message directly to the destination server or
forward it to another member of the Crowd. If the message is sent to
another member, this member does the same until the message reaches
its final destination—the Web site requested (Figure 2.2). Because of this
mechanism, neither the server nor a member of the Crowd can decide
if someone is the initiator of the request or if he is only forwarding the
request. This means that plausible deniability is achieved.

If a user wants to take part in the Crowds network, he has to install
additional software on his local computer, the so-called “jondo”.* Further-
more, he has to register with a central server, the so-called blender. As one
part of the registration procedure, the user must create a personal login
and a password for personal authentication. The jondo software is a kind
of local proxy, so it has to be configured in the browser before it can be
used for surfing.

* Jondo is a pun on the name John Doe, used to hide the identity of a person.
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When starting the system, the jondo first contacts the blender to request
access to a Crowds network. For access, the blender sends back a list of
Crowds’ members (the crowd of the jondo) and keys for symmetric encryp-
tion. Further, the blender informs all other jondos in the network about the
new member. The above-mentioned keys are necessary because all infor-
mation (requests and responses) are encrypted from member to member
on the Crowds network. Any Web request coming from the browser is now
forwarded to the local jondo, which sends the request randomly to a mem-
ber of the crowd (this can be another member or even the sender himself).

When a message is sent to or received from a member, a special path
identification (ID) is stored. This ID makes it possible to forward a response
of a server back to the requesting client. Each jondo saves pairs of path
IDs (incoming and outgoing) in a local table. If a jondo receives a message
from another jondo, it checks whether the received path ID is already
stored in the table. If it is, the jondo forwards the message to the next
jondo, depending on the second ID of the pair in the table. If the path ID
is not in the table, a new destination jondo (or the server) is selected and
the message is sent to it. Furthermore, a new pair of path IDs is stored in
the table: The existing path ID from where the message has been received
and the new path ID to where the message is sent.

Protection goal: Sender anonymity against the recipient and rela-
tionship anonymity against all others.
Attacker model: No protection against an outside attacker who
monitors the entire network (because the jondos simply forward
messages, but do not transform them). There is no protection for a
jondo whose in- and outgoing links are all observed.
Security level: Because this system does not use asymmetric cryp-
tography, it is not based on cryptographic assumptions and, thus,
unconditional security can be achieved.
Trust model:
m A central instance called a blender is used in this system and
must be trusted.
m The jondo that receives a message has to forward it to guar-
antee availability of the network.
m The other members of one’s Crowd should not collaborate.

2.4 Broadcast

Broadcast is a simple technique that already exists to distribute information
in communication networks, e.g., for reception of radio and television. All
participants of the network receive all information sent and select locally
which information is relevant for them, e.g., by choosing a single television
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or radio channel. This makes it impossible for passive attackers to gain
information about the recipient or recipients of particular information.

If a specific participant of a distribution network is addressed by a mes-
sage, implicit addressing can be used. This means that there is no link
between this implicit address and the physical receiver for anyone other
than the recipient himself. The address can only be interpreted by the re-
cipient (or more precisely, by his receiver) and so the sender does not get
concrete information about the recipient. An implicit address, e.g., a large
random number, has to be sent with the corresponding message and every
station receiving the message compares it with its own implicit addresses
to check whether it is the intended recipient of this message. If the address
is visible for everyone, it is called a visible implicit address.

To avoid different messages to the same recipient from being linked by
others, visible addresses should be changed for each message. The message
itself should be encrypted to prevent other receivers of the broadcast from
reading it. If the address also is encrypted, this is called invisible implicit
addressing. But, this encryption forces every station to decrypt all messages
to check if it is the recipient.

In a switched network, where each station only receives what the par-
ticipant requested or another participant sent to him, a multicast can be
produced. This kind of partial broadcasting means that not every partici-
pant in a network receives a message, only a subset of them. This reduces
the bandwidth needed; however, the anonymity set decreases as well.

It is possible to use a satellite broadcasting network for surfing on the
Internet [1]. This kind of broadcast can also be used for anonymous file
sharing. The broadcast approach allows distribution by sending files via
satellite back to the sender. In which case, all participants would have an
easy opportunity to receive files.

Protection goal:
m Recipient anonymity by using implicit addresses.
m Recipient unobservability for outsiders if dummy traffic is sent.
m Unlinkability of different messages to the same recipient by
changing visible implicit addresses or using invisible implicit
addresses.
Security level: If the system does not use asymmetric cryptog-
raphy (e.g., for implicit addresses), unconditional security can be
achieved.
Attacker model: Regarding anonymity and unlinkability, there is
protection against observing insiders and outsiders. Regarding un-
observability, there is protection against outsiders.
Trust model: If dummy traffic and invisible implicit addressing is
used, no trust in any other participant or provider is needed.
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2.5 RING-Network

In a RING-Network, the stations are circularly cabled (Figure 2.3a). There-
fore, this mechanism is only suitable for local or regional networks.

If a station sends a message, this message is sent in succession at least
once to every station in the RING. By using digital signal regeneration
in each participating station, each message is—regarding the analogue
characteristics—independent of the original sender. Every station regen-
erates the message so that it looks like the original station initiated it.
This method provides anonymity of the sender from attackers who ob-
serve or control stations or connections of the RING-Network, as long as
this is not directly before and directly after the sender. By forwarding the
message around the entire RING, the recipient becomes anonymous and
unobservable as well. A further precondition to guarantee anonymity of the
sender is that the sending permission is appropriately granted.

If two stations of a RING-Network try to observe the station between
them without collaborating, they will not observe anything significant be-
cause outgoing messages are encrypted and, if implicit addresses are used,
they cannot be interpreted. So, an attacker must encircle a single station
and compare the incoming and outgoing messages. If the attacker cannot
do this, it can only infer that someone in a group of directly connected
stations sent a message, but the exact station is not specified.

In order to ensure that messages are received by the intended stations,
it is sufficient if the sender gets the message back unmodified after one
circulation.

Because of the serial connection of the stations, all connections and
stations have to work properly for communication between two stations to
be possible. Defective stations have to be removed from the RING-Network.

~—0O~ PO

O O O O
& o & O
No—d =Y

(a) (b)

Figure 2.3 (a) Ring topology, (b) braided ring.
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A braided ring is a possible solution to avoid interferences. As presented in
Figure 2.3b, two RING-Networks are interdigitated into each other. The first
ring connects neighboring stations and the second ring connects the odd
ones. This not only doubles the transmission capacity, but also compensates
for a malfunction or breakdown in a station or connection. In this case,
the braided ring is reconfigured so that the anonymity of the participants
remains protected.

In conclusion, a ring topology with digital signal regeneration and a
technique for anonymous multiaccess provides sender and recipient
anonymity against an attacker who controls some stations.

Protection goal:

m Sender anonymity.

m Recipient anonymity by sending messages around the entire
ring.

Security level: If the encryption used for outgoing messages is
based on cryptographic assumptions, only computational security
can be achieved. If the encryption is not based on such assump-
tions, unconditional security can be achieved.

Attacker model:

m Protection against an attacker who controls some stations just
as long as the stations before and after the sending user do
not collaborate.

Trust model: The neighboring stations of a user must not collabo-
rate against him.

2.6 Buses

Beimel and Dolev presented in [2] a mechanism for anonymous communi-
cation based on so-called buses. In their approach, each user is modeled
as a bus station, while the messages between the users are transferred with
the buses. The anonymity of the system is based on the premise that a per-
son who goes by bus in an urban city can hardly be traced by an observer,
especially, if the person uses different buses along the way.

If a user wants to send a message to another user, he first has to wait
until the bus arrives at his station. Then he puts the message in one of the
seats of the bus. Beimel and Dolev introduced three types of the system,
each with different advantages and disadvantages.

The first type is based on a ring topology and uses only one single bus.
As shown in Figure 2.4, the bus always moves in one direction. Further-
more, the bus has a seat for each pair of senders and recipients. If, for
example, station A wants to send a message to station B, it encrypts the
message with the public key of B and puts it into the seat AB of the bus.
To ensure that an attacker cannot decide whether a station wants to send
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Figure 2.4 Ring network with only one bus present.

a message or not, every station has to send messages to all other stations,
i.e., if the station currently has the bus. The attacker cannot decide if there
is any “real” communication between the stations. To receive messages, a
station has to decrypt and check all messages in its seats because the others
could have put a message there.

This has an optimal communication complexity if we only count the
number of messages, i.e., buses, because only one bus is necessary. But
messages need a lot of time to be transferred from their sender to their
recipient since, first, the length of each message grows quadratically with
the number of stations, and, second, each message has to be passed around
the ring station by station.

A modification of the system uses variable seats instead of fixed seats.
In this case, the sender encrypts his message in an onion-like manner with
all public keys of the stations, which the bus will pass on the way to the
recipient. The message is encrypted first with the public key of the recipient
and after that with the public keys of the stations between the sender and
recipient in the reverse direction. Now, every station decrypts the incoming
message and checks it to see if the content is meaningful or not. If it is
meaningful, the station is the recipient of this message and so the message
can be deleted or exchanged by dummy traffic. Otherwise, the message
is forwarded to the next station. Having no confirmed seats increases the
probability of collisions. Therefore, the number of the provided seats for
the bus has to be suitably calculated.

The second type introduced by Beimel and Dolev uses two buses (one
for each direction) on each connection between two stations. This leads
to a good time complexity, but a bad communication complexity. In or-
der to provide a system, with both a good time complexity and a small
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Figure 2.5 Network divided into clusters.

communication complexity, a cluster concept is introduced as the third
type. As shown in Figure 2.5, the nodes or stations are integrated in clus-
ters with nearly equal size. Every cluster has its own bus to transfer the
messages.

In conclusion, buses enable one to use the technique of the RING-
Networks in a higher communication layer for any network topology. On
the one hand, the approach allows a flexible configuration between com-
munication complexity and time complexity in contrast to ordinary RING-
Networks. But, on the other hand, an implementation as realized in [15] has
shown that the system is only usable for relatively small networks and also
needs a high amount of dummy traffic to hide meaningful interactions.

Protection goal:

m Sender anonymity

m Recipient anonymity

m Relationship anonymity
Security level: Only computational security can be achieved be-
cause the asymmetric encryption used for outgoing messages is based
on cryptographic assumptions.
Attacker model: Two types of attackers were described: an attacker
who can read messages on the network and control some of the sta-
tions, and attackers who can create, manipulate, or delete messages.
Trust model: As shown in [2], the system is not secure against DoS
(denial of service) attacks. So, steps must be taken to guaranteed
that such attacks do not happen. The other members of a given bus
route should not collaborate.
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2.7 DC-Network

The term DC-Network can stand for Dining Cryptographers network—
an example used by its inventor, David Chaum, to describe the idea of
DC-Networks [6,7]. But it is also possible that DC are for his initials. The
technique is designed to provide sender anonymity on a variety of com-
munication network topologies.

In order to explain the idea behind the DC-Network, the following ex-
ample is presented. Three cryptographers eat at their favorite restaurant.
After finishing dinner, the waiter informs the three that the bill has already
anonymously been paid. The cryptographers respect this, but want to know
whether one of them paid the bill or if it was the National Security Agency.
In order to resolve this uncertainty, they use the following method: Every
cryptographer flips a coin and shows the outcome to the cryptographer
on his right. This means that every result is only known by two of them
and each cryptographer knows two results. Each compares the two known
results and discloses to the others only whether the results are equal or
unequal. If one of the cryptographers is the payer, he would negate his re-
sult; that means, if it is unequal, he tells the others that it is equal. When the
number of the unequal results is uneven, this indicates that a cryptographer
has paid the bill. Otherwise, none of them is the payer.

By translating this principle in a communication network, it is called
superposed sending. This technique realizes that every station sends its
message or a meaningless one at a fixed point in time and the superposition
(the sum within an Abelian group) of these messages will be received by
all stations.

At first a station generates secret random keys* and communicates each
key to exactly one other station in the network. These keys have to be
transferred via a channel that guarantees secrecy. In the limiting case, this
procedure will be repeated for every station in the network. Then, every
station has 7 — 1 keys (where 7 is the number of stations in the network)
and keeps them secret.

If a station wants to send a message, it takes all known keys and the
message and superposes them. Superposing means that all characters are
the message, all keys generated, and the inverse of all keys received are
added up. This is called local superposing. All stations that do not want to
send a message have to send an empty message (i.e., the neutral element
of the Abelian group) superposed with all known keys.

Each station sends the result of its local superposition—its output. All
the outputs that are sent are now being superposed globally. That means

* The characters of the keys as well as the characters of the messages have to be
elements of an Abelian group.
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Station A
Real message of A 00110101
Key with B 00101011
Key with C
Keygraph Sum 00101000 A sends 00101000
A
C Station B
/ Empty message of B 00000000
Key with A 00101011
B Key with C 01101111
Sum 01000100 B sends 01000100
Station C
Empty message of C 00000000
Key with A
Key with B 01101111
Sum 01011001 C sends 01011001

Sum = Real message of A 00110101

Figure 2.6 Superposing in a DC-Network with three stations.

they are added up.* The resulting sum is distributed to every station in
the network. Because each key and its inverse were added exactly once
the keys erase each other after the global superposition. Therefore, the
result of the global superposition is the sum of all messages sent. If no
member station wants to send a message, the sum is the message, which
corresponds to the neutral element of the group. If exactly one member
station wants to send a message, the sum is equal to its message.

If the binary digits 0 and 1 are chosen as the elements of the Abelian
group, then this yields—for important practical purposes—the special case
of binary superposed sending, which was specified by Chaum. In this case,
one does not need to distinguish between addition and “subtraction” of the
exclusive or (XOR), but uses keys operation. In Figure 2.6, the local and
global superposing is shown for such a binary coded system.

Each key must only be used once, i.e., keys have to be changed for each
round of the DC-Network. Otherwise, the output of a station that sends an
empty message would stay identical. The exchange of keys can be reduced
by using a generator for generating keys pseudorandomly.

Superposed sending may cause collisions if two or more stations of
the network want to send simultaneously. All stations then will receive
the sum of the simultaneously sent messages; however, the result will be
a meaningless message. Collisions are a common problem in distribution

** More precise: The group operation is applied to the local outputs.
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channels with multiaccess. It can be solved by access methods that preserve
the anonymity of the sender and also preserve the impossibility to link
sending events.

Every participant of the system gets to know the global sum and, con-
sequently, the original message. To keep the message content secret (as for
every anonymizing technique), an encryption system should be used.
Implicit addressing preserves recipient anonymity.

The DC-Network is very susceptible to denial of service attacks. This
means that if one station breaks down or has malfunctions, only mean-
ingless messages would be transmitted. So, the concerted rules have to
be abided by all. Only if everyone transfers the local sum and everyone
gets the global sum, a DC-Network works fine. Additionally, it is a very
expensive technique regarding network traffic because, with an increasing
number of participants, the number of transferred messages and key char-
acters increases linearly.

Protection goal:

m Sender anonymity.

m Recipient anonymity by using broadcast and implicit addresses.

m Relationship anonymity.

m Sender and recipient unobservability by using dummy traffic
Attacker model: Anonymity and unobservability even against in-
sider attackers, but the system is vulnerable to denial of service at-
tacks, but attackers can be traced and excluded from the DC-Network
[21,22].

Trust model: A majority of all participants has to abide by the con-
certed rules.

2.8 Mixes

The idea of Mixes was described by Chaum in [5]. The method uses public
key cryptography and was designed for e-mail systems to provide sender
anonymity, recipient anonymity, and relationship anonymity without the
need of a central trusted service.

In general, Mixes can be understood as a chain of proxies following
one after another. So far, the idea is similar to proxy servers described in
Section 2.1. In contrast to regular proxies, Mixes consider an attacker who
can eavesdrop on all communications in the network as well as control all
Mixes but one. Mixes have a number of mechanisms, which are described
in the following sections.

2.8.1 Mix Topologies

The concept of Mixes works with only one single Mix present, but in this
case the user has to completely trust this Mix. Therefore, not only one Mix,
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but typically a chain of Mixes is used. As stated, it is sufficient that one
Mix of the chain is trustworthy. There are different methods to organize
the cooperation within the network. One possibility is that each Mix exists
independently in the network and the participants freely decide which
route their messages should take. Thus, each node can communicate to all
other nodes in the network. This topology is called Mix network.

Another possibility is defining a specific chain of Mixes that has to
be used. This chain is called a Mix cascade. Besides these two extremes,
a number of variations of hybrid systems exist, e.g., sparse expander
graphs [10].

As mentioned in [3], there is a controversial discussion on which of the
two Mix topologies, Mix networks or Mix cascades, is the better one.

Following is a discussion of some advantages and disadvantages of Mix
networks and Mix cascades, according to [3] and [10].

In a Mix network, the user can decide which Mixes he wants to use
for the interaction. This approach provides good scalability and flexibility.
Furthermore, by users selecting the Mixes randomly, an attacker does not
know which Mixes he has to control in order to observe a message. So, the
attacker has to control large parts of the network.

In contrast, an attacker of a Mix cascade knows exactly which Mixes
he has to control in order to observe the user messages. Furthermore, Mix
cascades are vulnerable to denial-of-service attacks because disabling one
Mix in the cascade will stop the entire system. It is also mentioned in [10]
that cascades provide small anonymity sets in the general case and do not
scale well to handle big traffic.

On the other hand, the authors of [3] found out that Mix networks (but
not Mix cascades) are vulnerable to powerful attackers, who control all
Mixes but one. Also Mix networks are weak against blending attacks. As
argued by Dingledine et al. [13], this kind of attack does not depend on
network topology, but does on nonsynchronous batching. Another disad-
vantage of Mix networks is that some Mixes can be used marginally while
others are overloaded. In the first case, it is necessary to produce a lot of
dummy traffic or to wait a long period of time to increase the anonymity
set.

Protection goal:
m Sender anonymity.
m Relationship anonymity.
Attacker model:
m Protection against powerful attackers who can observe the
whole network and control many Mixes (big brother).
m Susceptible to denial-of-service attacks and (72— 1) attacks.
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Trust model: At least one Mix in a path used in a Mix network or
in a Mix cascade has to be trusted.

2.8.2 Basic Functionality

As stated above, in this approach the clients do not send their requests
directly to the server (or to another destination), but to a so-called Mix. In
order to hide which participants communicate with which, the Mix does
not send the incoming messages to the destination server instantly. Instead,
the Mix stores several messages from different clients for a defined time,
transforms the messages (thus, the name Mix), and then forwards them to
the destination server or to another Mix, simultaneously. Therefore, even
a global eavesdropper, who can observe all incoming and outgoing mes-
sages of the Mix, cannot decide which incoming message belongs to which
outgoing message.

There are a number of building blocks (Figure 2.7) that ensure the
security of the Mix. In almost every approach that deals with Mixes, the
basic ideas are used. Only specific implementations vary from system
to system.

input
messages

Mix

ignore repeated messages

prevents

N from link-
all input ability by
- messages, -
buffering which are ,,,Z.SZ 5
current recoded “
input in the same
batch way
prevents
Sfrom link-
ability by the
messages’ Sufficient number of messages
g
timing from sufficiently many senders?

additional dummy messages,
if necessary

recode prevents
Sfrom link-
ability by

resort means of the

messages
appearance

output
messages

Figure 2.7 Building blocks of a Mix.
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2.8.3 Preprocessing: Transforming the Message

The overall goal of transforming (recoding) the message hop by hop is to
hinder an attacker from tracking a message simply by comparing the bit
patterns of incoming and outgoing messages.

In order to send a message, the client has to prepare a message. First,
it has to decide which way the message will take through the network.
That means it has to specify to which Mix the message will be forwarded
before it is sent to the destination server. In order to improve the security
of the system, it is appropriated to use not only one Mix, but several. In this
case, it is also important to configure in which order the message will be
forwarded. As a next step, the client uses the provided public keys of the
Mixes to encrypt its message. In this context, attention must be paid to the
order of the encryptions. This depends on the order in which the Mixes will
get the message. The whole process is like putting a letter in an envelope,
addressing this envelope, and then putting it again in an envelope, and
so on. So, when the first Mix gets the thus prepared message, the Mix will
open (or better decrypt) the message and will find an address inside to
where the decrypted message has to be send next. This process is shown
in Figure 2.8.

The encryption scheme explained above can be more precisely de-
scribed as follows:

Ai, ..., A, may be the sequence of the addresses and ¢, ..., ¢, the
sequence of the cipher keys that are publicly known as the Mix sequence
Mixy, ..., Mix, that was chosen by the sender, whereby ¢; also can be a

secret key to a symmetric encryption system. A,;; may be the address of
the recipient who is called Mix,,;; for simplification, and c¢,; is its cipher
key. z, ..., z, may be a sequence of random bit strings. If ¢; is a secret
key of a symmetric system of secrecy, then z; can be an empty bit string.
If ¢ is a cipher key of an asymmetric encryption system that encodes
indeterministically, then 2z can be an empty bit string as well. The sender
creates messages NN; that will be received by Mix;, on the basis of the

e
MIX 1 Q& MIX 2 —»‘

A

v

i

Figure 2.8 Mix cascade with two Mixes.
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message N, which the recipient (Mix,,41) is supposed to receive:

Npp1 = Cppa(N)

N; = ¢i(z, Aiy1, Niy1) (ori=mn ..., 1D

The sender sends N, to Mix;. After the decoding, each Mix receives the
address of the next Mix and the message that is dedicated for the next Mix.

Note: The additional encoding of random bit strings is necessary for the
application of asymmetric encryption systems that are deterministic because
an attacker would be able to guess and test (by encrypting them) not only
short standard messages with the publicly known cipher key, but also the
entire output of the Mix (completely without guessing).

To ensure that an attacker cannot trace a message through a Mix, it
is necessary that input—output pairs of messages have no identifying
characteristic—one could be their size. One solution is to define a fixed
size for all messages, which means short messages have to be filled up with
meaningless information and long messages have to be split into pieces.

2.8.3.1 Reordering: Batch, Pool Mixing

When a Mix operates in batch mode, it collects a fixed number 7 of mes-
sages, and encrypts and reorders them before all stored messages are for-
warded at once. In contrast to that, a Mix that operates in pool mode has
always n messages stored in its buffer called pool. If a new message arrives,
one of the stored messages is randomly picked and forwarded (see also
[16]). The number 7 is the batch respective pool size.

2.8.3.2 Test-for-Replay

An often discussed type of attack is the replay attack. An attacker could
copy a message he has eavesdropped on beforehand and send copies to the
Mix. These messages would take the same way through the network as the
original message because the decryption and the sending algorithms both
work deterministically. By observing the network, a characteristic pattern
of the copied message can be found. These patterns could easily be traced.
In order to prevent such an attack, copies of messages have to be identified
and filtered out.

One possibility to identify such invalid messages is by using time stamps.
When the Mix gets a message, it also receives a tag that tells the Mix in which
timeframe the message is valid. If the message arrives too late at the Mix,
the forwarding will be denied. Another possibility is that the Mixes store a
copy of every message they have already sent. Hence, new messages can
be compared to this database. For performance and security reasons, it is
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best to restrict the volume of the database to a minimum. Messages should
be stored only a short period of time before they are deleted.

2.8.3.3 Dummy Traffic

The information that specific participants send or receive messages can
already be seen as a threat to anonymity. But, convincing an eavesdropper
that no messages were sent on the network is not possible. Instead of this,
it is possible to send messages on the network even when no information is
being transferred. This has the same effect as sending no messages because
an eavesdropper cannot decide if a meaningful message is sent or if the
message contains only meaningless data.

The sending of such meaningless data on the network is called dummy
traffic. According to the idea of Mixes, this means that a Mix could randomly
forward dummy traffic to another Mix on the network. This mechanism also
has a benefit for Mixes working in batch mode: Normally these Mixes have
to wait until a certain number of messages have arrived at the Mix before
all stored messages can be forwarded at once. This strategy can tend to
create long delays when not enough messages were sent to the Mix. With
the help of dummy traffic, it is possible to solve this problem. The Mix
simply creates dummy messages to fill up the buffer.

2.8.3.4 Recipient Anonymity: Untraceable Return Addresses

So far, only the principle of anonymous sending of messages was described.
To allow the recipient to also stay anonymous, a so-called untraceable
return address can be used. This return address is a special message that
has to be created by the recipient and used by the sender to send his
message to the anonymous recipient.

The basic idea of untraceable return addresses is that not the sender but
the recipient defines which Mixes in which order have to be used to deliver
a certain message to him. The return address prepared by the recipient
contains for each Mix on the path a symmetric key that the Mix will use to
encrypt the message sent by the sender. Finally, the recipient will receive a
message that is encrypted multiple times with symmetric keys as specified
by the recipient. Because the recipient knows all of these symmetric keys
(and the order of their application), he can decrypt the message. As the
symmetric keys are unknown to the sender and the coding of the message
changes from Mix to Mix (due to the encryption), the sender cannot trace
his message to the recipient.

The scheme explained above can more precisely be described as
follows:

Ay, ..., Ay may be the sequence of the addresses and ¢, ..., ¢, may
be the sequence of the publicly known cipher keys of the Mix sequence
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Mixy, ..., Mix,,, which was chosen by the recipient, whereby ¢,, can be a
secret key of a symmetric encryption system as well. The message that is
appended to the return address will pass these Mixes in ascending order
depending on their indices. A,,+1; may be the address of the recipient, who
is called Mix,,;+ for simplification. Likewise, for simplification, the sender
will be called Mix,. The recipient creates an untraceable return address
(ky, A1, R1) whereby ky is a key of a symmetric encryption system generated
just for this purpose (an asymmetric encryption system would be possible,
too, but more costly). Mix; is supposed to use this key k& to encode the
content of the message in order to guarantee that Mix; is unable to read
this message. R; is part of the return address, which is transmitted by Mixg
containing the message content that was generated and encoded (by using
key ky). R; is created by starting with a randomly chosen unique name e
of the return address in a recursive scheme described in the following:

B R; designates the part of the return address that will be received by

B R, designates the key of a symmetric encryption system (an asym-
metric encryption system would be possible, too, but more costly)
with which Mix; encodes the part of the message that contains the
message content.

Rur1=e

R] = Cj(/ef, A]‘_H, Rj-H) for _] =m, ..., 1.

These return address parts R; and the (already several times encoded,
if necessary) message content I generated by the sender, called message
content part I;, are constituting the messages N;. These messages N,
are created by Mix;_; and sent to Mix; according to the following recur-
sive scheme. They are created and sent by the sender Mixy and then, in
sequence, are passed through Mixes Mixy, ..., MiX,;

M =Ry, L; §LH=k(D
Nj=Rj, Ij;  Ij= ki) for j=2,....,m+1

Thus, the recipient MiX,,,11 receives e, N1 = e, By (. .. k(R (1)) ...) and is
able to decrypt without any problems and to extract the message content
because he knows all secret keys g; (in case of an asymmetric encryption
system, all decryption keys) assigned to the unique name e of the return
address part in the right order.

Note: The encryption of random bit strings if using deterministic encryp-
tion systems is not necessary because the encoded parts of messages R;,
which were encoded with publicly known cipher keys of the Mix, contain
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information the attacker does not get to know. According to the change of
encoding by keys that are unknown to the attacker, he has no possibility
to test.

2.8.3.5 Checking the Size of the Anonymity Set

If an attacker blocks the message of a specific participant, this message is
isolated from the anonymity set. The same would happen if a message from
a specific participant is surrounded by manipulated or generated messages
from the attacker. This type of attack is known as an (n — 1) attack. No
general solution exists to prevent this type of attack in open environments,
i.e., in environments where participants may join and leave in an uncoordi-
nated fashion. One basic protection is to provide a mechanism that enables
the Mix to identify each participant. Thus, a trustworthy Mix can check if
the buffered messages were sent by a sufficient number of different users.

2.8.3.6 Mix Channels

Mix channels are used to handle a continuous stream of data in real-time
or with only a small delay through a chain of Mixes.

A partitioning of the available bandwith is needed: a signaling part for
establishing a channel and a data part for the actual transmission of mes-
sages. In the following we assume a static partition in a signaling channel
and several data channels.

In order to establish the channel, a channel-establishing message is sent
over the signaling channel, which sends the key k&; that should be used
between the sender and Mix; asymmetrically encrypted with Mix;’s public
key. Therewith a channel, over which the actual message could be trans-
mitted, now is defined by all Mixes, by mixing the channel-establishing
message. A channel can be used as sending channel or as receiving channel.

A sending channel is the precise analogue of hybrid encryption: the
sender establishes the channel, encodes continuously his information N
as message k(k(. ..k, (N)...)) and transfers it to Mix;. Each Mix Mix;
(i =1,...,n— 1) decodes the messages received continuously using &
and transfers the result to Mix;;1. Mix,, creates the plain text message N at
the end. This allows the sender to send messages anonymously while the
recipient is not anonymous.

A receiving channel is a sending channel that is used “backward”: The
recipient establishes the channel. The sender sends to Mix,, the informa-
tion stream NN which is not encoded specifically (but of course end-to-end
encoded) for the Mix,,, encodes it using the key k,, and leads &, (V) “back”
to M,,—1. The other Mixes, s do the same, i.e., Mix; puts out the encoded
stream k(... kR, (N)...). Since the receiver knows all keys k& he is able
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to decrypt N. This allows the recipient to receive messages anonymously
while the sender is not anonymous.

To reach both sender and recipient anonymity Pfitzmann et al. [19] sug-
gested creating Mix channels as links of sending and receiving channels.
The sender establishes a sending channel that ends at a Mix Mix,, and the
recipient establishes a receiving channel that starts at Mix,,. Mix,, diverts
the information stream that arrives at the sending channel to the receiv-
ing channel. The channels that are supposed to be linked are specified
by a common channel flag that is received consistently in both channel
establishing messages by Mix,,,.

The data transfer is coordinated with an asymmetrically encrypted Mix-
input-message that contains information about the Mix,, connecting the
two channels, and whether the user sending the Mix-input-message acts as
a sender or a recipient. Every Mix in the chain can decrypt this Mix-input-
message and at the end the plain text is broadcasted to all subscribers.
Now the channels can be established using establishment-messages of
both participants. They choose the Mixes for the data transfer channel
to the Mix,, and keep them private. So everyone only knows half of the
way and Mix,, relays the incoming data of the Mix-sending-channel to the
Mix-receiving-channel. The two halves of the Mix-channel are necessary to
reach anonymity of the two participants against each other.

Every sender/recipient must have the same number of sending/receiving
channels otherwise they are observable. So the usage of dummy channels
is appropriate.

2.8.4 Existing Systems

In this section, several existing Mix systems are presented that are or have
been available for practical use. They are listed under low latency and high
latency systems.

2.8.4.1 High Latency

Mixminion: Mixminion is based on the specification of the Type-III
Remailer protocol. As described in [11], it enables users to send and
receive e-mails anonymously and thereby take part anonymously
in news groups. This same anonymity set is shared to forward and
reply messages. This also means that a remailer cannot distinguish
between these two types. A message that is transferred is conformed
to a fixed size by cutting it into pieces or padding it with dummy
data. Mixminion is for asynchronous e-mail conversation, so it re-
quires little synchronization and coordination between the nodes.
Each packet is sent through a network of Mixminion servers where
users can choose a route.
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Mixmaster: Mixmaster was designed for the purpose of anonymous
e-mail conversation. Its functionality is based on the Type-II Remailer
as described in [17]. By sending an e-mail, packets of fixed size are
created and each packet can be sent through the Mix network via
another route. But, the last Mix, which will send the message to the
recipient, has to be identical for all packets of an e-mail message.
Only this Mix can reassemble the e-mail. A mixmaster server collects
messages in a pool and forwards them in random order. If the traffic
data is insufficient, the mixmaster creates dummy messages auto-
matically. The mixmaster system provides anonymity for sending or
receiving e-mails and communication relationships.

2.8.4.2 Low Latency

AN.ON project: AN.ON* provides a system that uses the topology
of Mix cascades. The user installs on his computer a client software
called JAP. After that, he can choose between different fixed routes of
Mixes for anonymous Internet surfing. All packets that are transferred
through a Mix cascade have the same size and are sent in a batch
from Mix to Mix. In order to secure from traffic analysis dummy traffic
also is used. This provides sender anonymity to users regarding their
Web surfing.

Tor: Tor [12] is a circuit-based anonymous communication service
that uses onion routing. It provides support of anonymity for ser-
vices based on the Transmission Control Protocol (TCP) like Web
browsing, instant messaging, e-mail, and peer-to-peer. The Tor net-
work consists of several hundred nodes called Tor servers. A client
chooses a random route of nodes through the network and builds a
circuit. Each node in the circuit only knows its predecessor and its
successor. The data through this circuit can leave the circuit at the
end or in midstream so that the observation of the circuit’s end is
unprofitable. The traffic is divided into fixed size cells. Filter mecha-
nisms for privacy enhancement are not provided by Tor. Therefore,
proxies like Privoxy are recommended. The goal of Tor is to maxi-
mize anonymity and reduce the latency to an acceptable level.
Tarzan: Tarzan [14] is an anonymous peer-to-peer network based
on the IP protocol. By providing a kind of IP tunnel, it is inde-
pendent of a concrete application. It is decentralized and uses an
open-ended, Internet-wide pool of nodes. Each peer in the net-
work can act as a Mix. A message initiator selects a route of peers
pseudorandomly through a restricted topology. At the end of the Mix
chain is the network address translator who changes the origin of the

* http://anon.inf.tu-dresden.de/
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packets and communicates directly with the recipient. Therefore, a
bridge between the sender and the recipient is created. The sender
of a message can be concealed because each participant could have
generated a message or merely relayed traffic for others. Tarzan also
makes use of dummy traffic to protect the data against traffic analy-
sis. It protects against network edges analysis as well because a relay
does not know whether it is the first of a Mix path. Because of the
large number of possible peers, the significance of targeted attacks
is reduced. Tarzan provides anonymity against malicious nodes and
global eavesdroppers.

2.9 Private Information Retrieval

Private information retrieval (PIR) allows users to retrieve an item from
another party (e.g., by querying a database or a news server) without re-
vealing which item he is interested in (privacy for the item of interest) the IP
address, which users normally leave behind while downloading messages
from a service provider. In order to achieve this, interest of users can be
observed, it is theoretically feasible that every user downloads any news on
a news server and makes a local news selection. But, this may overstrain
the news server and it would increase the amount of data that has to be
transferred. In order to reduce the bandwidth needed private information
retrieval was developed as an alternative. The idea behind this is [9] some
kind of superposing of information such as that explained in the section
on DC-Networks.

For this technique, several servers with identical databases (composed
of nrecords) are queried. To each database an 7-bit vector is sent. Each bit
in the vector represents one record of the database. If the bit is 1 then the
record is selected otherwise not. All selected records are superposed, e.g.,
the XOR operation is applied to them (as explained in Section 2.7 describing
the DC-network). The result is sent back to the user. The superposition of
all results from the databases gives the requested information. Note that the
communication between the user and the database servers is encrypted.

In order to achieve this, the user has to create the query vectors accord-
ing to the following scheme: All but one vector are generated randomly.
The remaining vector is calculated as the superposition of the random vec-
tors. Additionally the bit representing the record of interest needs to be
filpped.

However, it must be pointed out that this is only possible with many
servers that receive and store each message in the intended order and that
adding new messages must take place simultaneously. So, updating news
is complex and difficult. By using this approach, an attacker and even
a news server would be unable to determine which position in memory
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is being read and, consequently, cannot spy on the information the user
is interested in. If only one of the servers does not cooperate with an
attacker, it will not be possible to determine the information a user is
interested in.

Protection goal: Unlinkability between a user and the item of
interest.
Attacker model:

m Protection against the provider of news services.

m Protection against passive attacks.
Security level: Depending on the cryptography used for encryp-
tion of the messages sent between the user and the database servers,
unconditional security can be achieved.
Trust model: A collaboration of all news servers has to be ex-
cluded.

2.10 General Principles among the Systems

Based on the presented systems, some basic functionalities can be recog-
nized that are reused in different approaches. In order to provide commu-
nication privacy, the following mechanisms are used:

Sender Anonymity

m  Requests are not sent directly from sender to recipient, they
are first transferred to other nodes of the system before they
are sent to the recipient.

Recipient Anonymity

m A large number or even all participants of the system get the
messages that are sent.

m The recipient is not addressed explicitly. Each participant de-
cides locally whether the received message is intended for
him.

Hiding the Communication between Sender and Recipient

m By sending dummy traffic, meaningful communication mes-
sages can be concealed.

m  The creation of an anonymity set can hide the activities of a
single user within the activities of many other users.

In conclusion, anonymity can be improved by combining the presented
mechanisms and systems. But, one has to be careful to make a good trade-
off between attacker/trust model, anonymity, and efficiency. The number
of anonymizing services used in a chain (e.g., Mixes) should be chosen
carefully because each service incurs transfer and computing time. The
same holds for the number of users in the anonymity set using the same
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anonymizing service because usually each user either causes some addi-
tional delay or requires some additional computing power and/or trans-
mission capacity.
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3.1 Definition of Privacy-Preserving
Cryptographic Protocols

Online collaboration in its general form is the computation of some function
over inputs that are distributed among different participants (i.e., organi-
zations, individuals, etc.). As an example, consider an online auction: The
inputs are the bidder’s bid values and the outcome is the winner of the
auction along with the required payment. A simple way to achieve such
collaborations is to collect all of the inputs at a single location and to com-
pute the desired outcome. However, this poses many confidentiality and
privacy concerns, including (1) the shared information may be used against
a participant at a later time; (2) sharing information makes security vulner-
abilities greater because break-ins, spyware, and insider threats at one of
the collaborator’s sites will now reveal other collaborators’ information; and
(3) it may be illegal to share some of the participant’s inputs (e.g., medical
records cannot be shared under HIPAA legislation).

These privacy concerns lead to one of the following outcomes: (1) the
collaboration does not occur and, thus, the potential benefit of such a
collaboration goes unrealized, (2) the collaboration occurs and the partic-
ipants have to absorb the cost of the privacy loss, or (3) the collaboration
occurs and participants lie about their inputs. Note that in many cases the
main privacy concern is not the outcome of the collaboration, but rather
the revelation of the participants’ inputs. In this chapter, we discuss secure
protocols for such collaborations, that is, cryptographic protocols that al-
low the collaboration outcome to be computed, while revealing as little
information as possible about the participants’ inputs. With such protocols
it is possible to obtain the benefit of the collaboration, while minimizing
the cost of the privacy loss.

Computing functions without revealing the inputs is trivial if there is
a party, which we call Trent, that every participant fully trusts with their
information. The participants send their values to Trent and, after he has
received all of the inputs, he computes the desired function. He then sends
the results to the participants. Assuming that Trent is fully trusted, this does
not reveal anything other than the result of the collaboration; of course,
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a participant may try to learn information about other inputs by trying to
invert the function, but this is unavoidable. While this third party solution
does not leak information other than the computed answer, the main prob-
lem with such an approach is the difficulty of finding a fully trusted party
who is acceptable to every participant. Furthermore, even if such a party
could be found, this party would be a lucrative target for outside attacks,
and may become a performance and reliability bottleneck (a single point
of failure).

While the above Trent-based approach for private collaboration is not
possible in most environments, the level of security provided by the ap-
proach should be a goal for protocols that do not rely on a trusted third
party. That is, a protocol is called privacy-preserving if it reveals only the
result of the collaboration and what can be deduced from this result when
given a group of participant’s inputs. For example, suppose we wanted to
compute the intersection of two sets, where each set was the input of a
different party. According to the above definition of a privacy-preserving
protocol, the revelation that “Alice” is the first (in terms of alphabetical
order) item in the intersection would be acceptable because this infor-
mation can be computed from the intersection of the two sets. However,
the revelation of items that are in the first set but not the second set is
unacceptable.

The goal of Secure Multiparty Computation (SMC) and Secure Function
Evaluation (SFE) is to provide a privacy-preserving protocol for any pos-
sible function. This may seem like an impossible task; however, there are
general results that state that any function that is computable in polyno-
mial time can be computed securely with polynomial communication and
computation under various adversary models. The earliest work in this re-
gard was Yao [45,40], and it was shown that any function can be computed
securely in the honest-but-curious adversary model for two participants.
In the honest-but-curious model, an adversary will follow the prescribed
protocol exactly, but after the protocol has finished, the adversary will try
to learn additional information by using its local transcript of the protocol’s
execution. Clearly, this adversary model is contrived, but it is an important
first step toward more realistic adversary models. In Goldreich et al. [23],
this result was extended to multiple parties and to a malicious adversary
model where the participants deviate arbitrarily from the prescribed proto-
col to gain advantage. More specifically, it was shown that as long as a strict
majority of the participants are honest, then any function that is computable
in polynomial time can be computed securely with polynomial communi-
cation and computation. There have been many other results in SMC that
have given similar results for more complex adversary models and have
made such protocols more efficient, but the general results are believed to
be unusable for many interesting problems because of efficiency reasons.
Thus, it has been suggested that domain-specific protocols be developed
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for important problem domains that are more efficient than the protocol
obtained by using the generic results [24].

The remainder of this chapter is organized as follows: In section 3.2,
we discuss the usefulness of SMC for various application domains. In
section 3.3, we give a brief summary of the general results in SMC. In
section 3.4, we outline many techniques that are used when creating
domain-specific, privacy-preserving protocols, and in section 3.5, we give
several specific applications of these techniques. Finally, we summarize the
chapter in section 3.0.

3.2 Applying Privacy-Preserving Cryptographic
Protocols to Real Problems

We begin with a brief (and nonexhaustive) sampling of typical application
areas. The literature in some of these is quite voluminous and we, therefore,
refrain from doing a literature survey of each—we merely give a brief de-
scription of each application area. For convenience, we shall use the term
privacy both for individuals and for other entities (such as government and
corporate entities), even though the term confidentiality is more suitable
for the latter. Finally, to avoid duplication, in this section we do not go over
the applications that are covered in section 3.5.

3.2.1 Database Querying

A query is often too revealing or subject to misinterpretation. For example,
someone inquiring about a specific disease may leave the impression of
either having it, being prone to it, or engaging in behavior that makes it
possible (possibly with adverse consequences on the insurability or even
the employability of the individual). This superficial inference from the
query can, of course, be dramatically wrong (e.g., the person may be help-
ing his child write a school paper on the disease), but it remains a possibility
from which an individual may want to protect himself. A corporate entity
considering making an acquisition (purchase of land, takeover of another
firm, etc.) has more tangible reasons for wanting to cover its tracks—the
mere suspicion of its interest can move the target’s price (and, possibly, its
own quoted stock price). The ability to query a database without revealing
one’s query would be quite valuable. The literature related to this topic is
often abbreviated as PIR (private information retrieval).

As an illustration of the kinds of problems considered in this area, fol-
lowing is a formal definition of a rather simple version of the problem. The
client has a string ¢, and the server has a database of strings 7= {#, ..., tv};
the client wants to know whether there exists a string # in the server’s
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database that matches g. The match could be an exact match or an ap-
proximate (closest) match. The privacy requirement is that the server can-
not know the client’s secret query g or the response to that query, and the
client cannot know the server’s database contents, except for what could
be derived from the query result.

An important version of this problem is in the framework of location-
dependent query processing where the answer to the query depends on
the position of the client; yet the client desires to hide its location from the
server that will process the query. This is important because, while perva-
sive computing and communication have many benefits, one of their more
chilling side effects is the extent to which they enable invasive and detailed
tracking of individuals. The goal of a privacy-preserving protocol between
the client and database is for the client to learn the answer to its location-
dependent query without revealing to the remote database anything about
its location. This framework may allow the database to know the answer
to the query, if what it can infer from that answer is acceptably vague (e.g.,
revealing the location of the nearest gas station is much less intrusive than
revealing the client’s exact position).

3.2.2 Distributed Voting

Many protocols have been proposed for distributed voting in a manner
that preserves voter privacy and prevents cheating. These protocols come
in two broad classes: protocols that make use of a central tabulating facility,
and protocols that involve only the » voters and no one else. The latter
do not scale to large numbers of voters (not surprisingly). The preservation
of privacy and prevention of cheating are the major challenges of these
protocols (especially combined with the usual requirements of efficiency).
Here the meaning of cheating is broad and includes the obvious notions
of double voting, preventing others from voting, destroying their vote after
they have voted, etc. But there are other less obvious notions of what
constitutes cheating, so these protocols have other requirements, such as
preventing voters from selling their vote (i.e., the technology should not
enable voters to prove that they voted for a certain candidate).

3.2.3 Bidding and Auctions

The privacy requirements depend on the type of auction. In the sealed bid,
first-price auction, all bidders simultaneously and independently submit
their bids, and the highest bidder wins and pays the price it submitted.
In this case, there is no need to reveal bids other than the highest bid,
and that would be the goal of the protocol. Of course, the protocol must
keep the participants honest (e.g., prevent them from trying to do ex-post
facto modification of their bids).
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In the Vickrey auction, all bidders also simultaneously and indepen-
dently submit their bids, and the highest bidder wins, but now pays the
second highest price submitted (not the price it submitted). In that case,
there is no need to reveal bid values other than the second highest bid.

3.2.4 Data Mining

Data mining is an important technology that is used for identifying patterns
and trends from massive amounts of data. Traditional data mining has used
a data warehousing model in which the data is collected in one site and
is subsequently analyzed using various algorithms. However, the privacy
of many important kinds of records (e.g., health and financial records for
individuals, proprietary data for corporations) can prevent the use of this
centralized approach. Privacy-preserving data-mining addresses this issue
along two main lines. One approach consists of sanitizing the data before
making it available for centralized data mining—altering the data in such a
manner that its release no longer compromises privacy, while preserving its
usefulness for data-mining purposes. Another approach consists of using
the technologies surveyed in this chapter, by assuming that the data is dis-
tributed among multiple entities who cooperatively mine it so that only the
result is revealed (and not the data at each participant’s site). The second
approach was introduced to the data-mining community relatively recently,
through the Lindell-Pinkas method [33] that makes it possible for two par-
ties to build a decision tree without either party learning anything about
the other party’s data (other than what can be inferred from the result-
ing decision tree). The area has grown rapidly since then, with papers on
techniques for association rules, clustering, classification, and many others.

In such a distributed data-mining framework, the partitioning of the data
among the different sites can be either horizontal or vertical. In horizontal
partitioning, each party has a subset of the rows, i.e., some of the records
(but each in its entirety). In vertical partitioning, each party has a subset
of the columns (hence, no party has an entire record). See [41] for a more
extensive survey and bibliographic references.

3.2.5 Collaborative Benchmarking and Forecasting

Suppose several hospitals in a geographic area want to learn how their
own heart surgery unit is performing compared with the others in terms
of mortality rates, subsequent complications, or any other quality metric.
Similarly, several small businesses might want to use their recent point-of-
sales data to cooperatively forecast future demand and, thus, make more
informed decisions about inventory, capacity, employment, etc. These are
simple examples of cooperative benchmarking and (respectively) forecast-
ing that would benefit all participants as well as the public at large. This is
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because they would make it possible for participants to avail themselves
of more precise and reliable data collected from many sources, to assess
their own local performance in comparison to global trends, and to avoid
many of the inefficiencies that currently arise because of having less infor-
mation available for their decision making. And yet, in spite of all these ad-
vantages, cooperative benchmarking and forecasting typically do not take
place because of the participants’ unwillingness to share their information
with others. Their reluctance to share is quite rational and is due to fears
of embarrassment, lawsuits, weakening their negotiating position (e.g., in
case of overcapacity), revealing corporate performance and strategies, etc.
The recent developments in private benchmarking and forecasting tech-
nologies hold the promise of allowing such collaborations to take place
without revealing any participants’ data to the others, thus, reaping the
benefits of collaboration while avoiding the drawbacks. Moreover, this can
empower organizations that could then cooperatively base decisions on a
much broader information base.

3.2.6 Contract Negotiations

Suppose two entities (Alice and Bob) are negotiating a joint contract, which
consists of a sequence of clauses (i.e., terms and conditions). Alice and Bob
are negotiating the specific value for each clause. Example clauses include:

m How will Alice and Bob distribute the revenue received for jointly
performing a task?

B Given a set of tasks, where Alice and Bob each have a set of tasks
they are willing and able to perform, who performs which tasks?

B Given a set of locations to perform certain tasks, in which locations
does Alice (and Bob) perform their tasks?

Alice and Bob will each have private constraints on the acceptability of
each clause (i.e., rules for when a specific term is acceptable). A specific
clause is an agreement between Alice and Bob that satisfies both of their
constraints. In a nonprivate setting, Alice and Bob can simply reveal their
constraints to one another. However, this has two significant drawbacks.
(1) If there are multiple possible agreements, how do Alice and Bob choose
a specific agreement (some are more desirable to Alice, others more desir-
able to Bob)? (2) The revelation of one’s constraints and preferences is un-
acceptable in many cases (e.g., one’s counterpart in the negotiation can use
these to infer information about one’s strategies or business processes or
even use them to gain an information advantage for use in a future negotia-
tion). This second problem is exacerbated when Alice and Bob are competi-
tors in one business sector, but cooperate in another sector. The goal of a
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privacy-preserving protocol for this problem is to facilitate contract nego-
tiation without revealing either party’s private constraints. There are two
components to such a negotiation: (1) the ability to determine whether
there is a contract that satisfies both parties’ constraints (without reveal-
ing anything other than yes/no), and (2) if there is a contract that satisfies
both parties’ constraints, the selection of a contract that is valid (acceptable
to both parties), fair (when many valid and good outcomes are possible,
one of them is selected randomly with a uniform distribution without ei-
ther party being able to control the outcome), and efficient (no clause is
replaceable by another that is better for both parties).

3.2.7 Rational and Selfish Participants

In the evolution of the models of participant behavior, the honest-but-
curious model and the malicious model (both of which were described
in section 3.1) were chronologically the earliest. It was later realized that,
while these models are important, they do not accurately model many
important interactions that take place over the Internet. This is because
both of these models assume some of the parties are well behaving and
are to be protected from a subset of ill-behaving participants. In reality it
is often the case that all participants will misbehave if it is in their interest
to do so. This led to considerations of incentive issues, i.e., economics
and game theory: A model of participants who are rational and selfish
and who will maximize their expected utility whether it means following
the protocol or deviating from it. Thus, the growing activity in mechanism
design, which combines cryptographic protocols with the rational-selfish
model of participants (i.e., Homo economicus).

The economic notions of equilibrium play a central role in such designs.
For example, a dominant equilibrium exists if a participant’s self-interest
dictates that he or she follows the protocol whether the other participant
follows the protocol or not; by “follow the protocol” we mean not only
electronically, but also as far as providing truthful inputs. On the other
hand, a Nash equilibrium exists if a participant’s self-interest dictates that he
follow the protocol when the other participant also follows the protocol—if
Bob follows the protocol, then it is in Alice’s best interest to follow, and
vice versa.

A further refinement of participant behavior goes beyond the unbounded
Homo economicus model. It is inspired by 1978 Nobel Prize winner Herbert
Simon’s observation that people are only partly rational and, occasionally,
irrational, a fact later rigorously confirmed by some landmark experiments
that document rather puzzling irrationality (like irrational risk aversion)
whereby participants make choices that decrease the expected utility that
they get out of an interaction. This extension of participant behavior to the
bounded rationality model is handled in a rigorous and formal way through
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two methods, one of which consists of modifying the utility function itself
(including the possibility that it is no longer single-valued), while the other
consists of placing limitations or imposing costs on the participant’s ability
to compute that function.

3.3 Overview of General Results

In this section we briefly describe many previous results for SMC. This sec-
tion will not describe many of the technical details of these approaches,
but we refer the reader to [21,22] for a thorough description of these de-
tails. The basic approach used for most papers in SMC is to build a logical
circuit for computing the desired function f. Then, using cryptographic en-
codings, the circuit is evaluated in a scrambled fashion. More specifically,
the values of the intermediate results are hidden, but the output results
can be understood. Now, as long as the communication and computation
to encode and evaluate a gate and wire are constant, the complexity of
evaluating the function f in a privacy-preserving manner will be propor-
tional to the size of the circuit that evaluates f (although in many cases
the constant is very large). Thus, any function computable in polynomial
time can be evaluated securely with polynomial communication and com-
putation. In the remainder of this section, we give an overview of how
scrambled circuit evaluation can be achieved with two participants in the
honest-but-curious adversary model. We then give a summary of how this
can be extended to multiple participants and to more complex and realistic
adversary models.

3.3.1 Two-Party Honest-But-Curious Scrambled
Circuit Evaluation

In this section is a summary of an honest-but-curious two-party scrambled
circuit protocol that was introduced in Yao [46]. This protocol is also very
useful for computing intermediate results when creating domain-specific
protocols. Recently, there has been an implementation of this approach
that is described in [34], and this implementation shows that this protocol
is practical for some problems.

In this protocol, one party is a generator of a scrambled circuit and the
other party is an evaluator. The generator creates a scrambled circuit where
each wire of the circuit has two encodings (one for each possible value of
the wire), and the gates contain information that allows an evaluator to
obtain the encoding of the gate’s output wire when given the encodings
for the gate’s input wires. What makes this a private circuit evaluation is
that the evaluator learns the encoding corresponding to his input for each
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input wire and, thus, learns only one encoding per wire. Following is a
description of a protocol for scrambled circuit evaluation in more detail.

m Circuit Generation: For each wire in the circuit wy, ..., w, the
generator creates random encodings for the wires. We denote the
encodings of 0 and 1 for wire w;, respectively, by w;[0] and w;[1].
To create a 2-ary gate for a function f with input wires w; and w,
and output wire wy, the gate information consists of the following
four messages in a randomly permuted order: (m|wyl f(0, DD &
H(w;l0], wil0D, (ml|wel f(0, DD & H(wil0l, w;[1D, (ml|wil (1, DD &
H(Quw;[1], w,[0D, and (m||wyl f(1, DD & H(w;l1l, w,[1]). Note that m
is a publicly agreed upon marker and that H is a pseudorandom
function (PRF). Note that a PRF can be efficiently implemented using
HMAC [4] or CBC MAC constructions.

B Learning Input Wires: In order to evaluate a circuit, the evaluator
must know the values of the input wires. For input wires corre-
sponding to the generator’s inputs, the generator simply sends the
evaluator the encoding of each of his inputs. For input wires cor-
responding to the evaluator’s inputs, the two parties engage in a
1-out-of-2 Chosen Oblivious Transfer protocol [38] where the two
“messages” are the generator’s encodings of 1 and 0, and the eval-
uator gets the encoding corresponding to his input for that wire.

m Evaluating the Circuit: To evaluate a gate, the evaluator decrypts
each message in the gate with the keys that it has for the input wires.
Only one of these decrypted messages will contain the marker m
(the others will look random) and, thus, the evaluator will learn
exactly one encoding for the output wire.

B Learning the Result: If the goal is to have the evaluator simply
learn the result, then it is enough for the generator to tell the eval-
uator both encodings and the meanings of the output wires.

3.3.2 Extending Scrambled Circuit Evaluation

There have been several schemes that extend SMC to multiple participants
and to the malicious adversary model; the first such scheme was presented
in [23]. The malicious model schemes all assume that a strict majority of
the participants or two-thirds of the participants (the actual number de-
pends on the assumptions being made) are honest. Such an assumption is
unavoidable, due the to impossibility results of Byzantine agreement [16].
Most protocols for the malicious model use some form of zero-knowledge
proof (for a detailed overview of zero-knowledge proofs, see [21]) in order
to make sure that the participants are following the protocol correctly. We
will now describe a brief summary of the protocol described in [35] that
was an extension of Yao’s scrambled circuit evaluation approach to multiple
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parties and to the malicious model. Instead of computing the desired func-
tion f, the participants jointly compute Yao’s encoded circuit for f (where
no minority of the parties would learn the encodings). The circuit is then
revealed to all participants and they then evaluate the circuit to learn the
result. While this approach computes any function in a privacy-preserving
manner in a constant number of communication rounds, it is not believed
that this approach nor other approaches for the malicious model are ef-
ficient enough to be used in practice (because of a very large constant).
Recently, a scheme was proposed [12] that is a promising approach for
efficient malicious model SMC for some problems. As a final note, general
results for SMC have been proposed for other adversary models that are
stronger than the malicious model, including [8] and [9].

3.4 General Techniques for Privacy-Preserving
Protocols

3.4.1 Splitting Techniques

As already explained, in privacy-preserving distributed computations, the
input is partitioned among the participants (Alice has some, Bob has the
rest) and the output is to be revealed to Alice or Bob or both. But, software
has more than just inputs and outputs, it has intermediate values that are
computed as steps along the way to the desired output. Who has these
intermediate values as the computation proceeds? They are usually split
between the participants; this splitting can take many forms, of which we
briefly review two.

3.4.1.1 Additive Splitting

A value x is additively split between A and B if A has a random x, and B
has a random x;, such that x4 + xp = x where addition is modular. If y is
split in a similar manner (= y4+ yp) then A and B can compute the sum of
x and y by adding their respective shares of x and y, that is, if z= x+ y,
then A computes 24 = x4 + Y4 and B computes zz = x5 + yp. Of course,
computing z = x* y in split form is considerably more complicated if x
and y are additively split. In every intermediate step of the computation,
the split inputs are used to compute the resulting intermediate value also in
split form. In some papers, the addition is not modular and, in such a case,
secrecy can be compromised because hiding a value v by adding a random
7 to it leaks information about it. However, the leakage of information about
v is negligible if » is much larger than v.

Multiplicative splitting is similar to additive except that the roles of ad-
dition and multiplication are interchanged in the above.
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3.4.1.2 Encoding-Based Splitting

Another commonly used form of splitting is to encode all intermediate
values so that only one party (say, A) generates and knows the encod-
ing, while the other party B actually carries out the computations and sees
the encoded intermediate values, but does not know what they mean (A
would know, but A does not see them). To illustrate this with an example,
suppose that # is an intermediate Boolean variable in a program. Then,
in this approach, A would generate an encoding of the possible values
of each of these variables as follows. A random 7,[0] is generated by A
as the encoding of the value 0 for variable #, and another random #7,[1]
is generated by A as the encoding of the value 1 for that variable. As
the computation proceeds, it is B that gets to see the encoded intermedi-
ate value of u (B sees either 7,[0] or r,[1]), but without knowing what it
means.

3.4.2 Homomorphic Encryption and Computing
with Encrypted Values

A useful tool for constructing privacy-preserving protocols is a public key,
semantically secure [25] additively homomorphic encryption scheme, such
as [11,36]. We denote the encryption and decryption functions of a homo-
morphic scheme by E,, and Dy, respectively. Given such a scheme, it is
possible to add the plaintexts of two encrypted values by multiplying the
ciphertexts; that is, when given the encryptions Ei(x) and E (), we can
compute E i (x+ ) by computing E ,x(x)* E (). Also, when given E ,i(x)
it is possible to compute E ,;(c*x) for any constant ¢ by computing E () .
It is worth noting that the arithmetic for homomorphic schemes is modular.
Finally, with homomorphic schemes, it is possible to re-encrypt a ciphertext
value to generate another ciphertext with the same plaintext value.
Homomorphic encryption allows us to have another form of split values.
More specifically, one party chooses a homomorphic encryption scheme,
publishes the public key, and then sends its values to the other partici-
pant(s) encrypted with the homomorphic scheme. The participants without
the encryption scheme’s private key cannot learn any significant informa-
tion about the encrypted values (because the encryption scheme is se-
mantically secure). This homomorphic splitting technique works well with
additively split values. If values are additively split modularly with the same
modulus as the homomorphic scheme, then it is trivial to convert values
between the additively split representation and homomorphically split rep-
resentation. If the values are additively split in a non modular fashion, then
it is usually possible to convert to and from a homomorphic-split fashion,
but one has to prevent the calculations from getting larger than the modulus.
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3.4.3 Input Quality Problems

One of the daunting issues that has delayed the widespread adoption of
modern cryptographic privacy-preserving protocols is that when the in-
puts provided by a participant to a protocol are not revealed to any other
participant, there is a temptation to gain an advantage by lying. A num-
ber of approaches have been proposed to mitigate this problem, of which
we briefly review two. But, before we do so, let us stress that this issue
goes beyond worries about the well-formedness of the inputs. That is, this
is not a concern by A that an integer input by B is supposed to satisfy
some constraint (like being in the range 1 to 10), and that B may input
something outside of that range. This kind of mischief can be taken care of
through the use of zero-knowledge proofs: B can convince A that its input
is well-formed (in this case, is in the required range) without revealing to
A anything else about that input. The real concern here is that B’s true
value is 8, but that B may lie and input 5 instead because of B’s belief that
something may be gained by this lie. People sometimes lie about their age,
their salary, or their status when they believe they will gain from the lie.

One approach to resolving this has already been touched upon ear-
lier: Design the interaction in such a way that B cannot gain anything
through such a lie. A process in which no participant can gain anything
by lying is said to be incentive compatible;, more precisely, in an incentive-
compatible interaction no participant can increase their expected utility by
being untruthful about their inputs, or by deviating from the protocol. By
way of example, the earlier mentioned sealed bid, first-price auction is not
incentive-compatible, whereas the Vickrey auction is incentive-compatible
(i.e., no participant can decrease what they pay by bidding a value that
differs from what the item is truly worth to them); presumably this is why
eBay uses the Vickrey auction mechanism.

While mechanism design can incentivize participants to be truthful about
their private inputs, this is not possible in several situations, including the
important problems of access control, trust negotiations, credit checking,
and others where being untruthful may secure the desired access (or loan,
service, etc.). One approach used in such situations is to have the partic-
ipants’ inputs certified offline by a third party certification authority. The
solution must not require online involvement of the certifying authority
in every subsequent certified-inputs transaction, as the third party would
then become a bottleneck in the system. Such offline certification not only
makes the resulting protocols more practical by reducing the burden on
the certifying authority, it also makes them more similar to the state of the
current practice where a credential (like a driver’s license) is issued once
and then used repeatedly without bothering the issuer, and it enhances
privacy in that the issuer need not be alerted to every instance where the
certificate is used (e.g., to prove the age is over 21). The technical challenge
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in such protocols is how each party can verify the other party’s certified
inputs without learning what they are. This approach of certified inputs is
central to trust negotiations and attribute-based access control, which are
covered in the next section.

3.5 Specific Applications

In this section, we introduce specific results for four different applications,
including scalar product, nearest neighbor, trust negotiation, and computa-
tional outsourcing.

3.5.1 Scalar Product

Suppose Alice has a vector d = (a, ..., a,), and Bob has a vector b=
(b, ..., by. Further suppose that they want to learn the scalar product of
dand b. Given the scalar product, it is not possible to determine the other
participant’s exact vector (unless the vectors have size 1), but this may
reveal a single entry in a vector. For example, suppose Bob’s vector is all
zeros except for one entry. In this case, Bob will learn exactly one entry
of Alice’s vector. There are many applications where this small amount of
information is an acceptable leak and so a secure protocol for scalar product
makes sense. Protocols for scalar product have been proposed in [13,40],
but these protocols were shown to leak information in some cases in [20].
However, [20] also introduced a protocol that was proven secure for scalar
product for the honest-but-curious adversary model, which is summarized
below:

1. Alice chooses a homomorphic encryption scheme with E , and Dy
as the respective encryption and decryption functions. She gives
Bob the public key along with the values E (), ..., Epla,).

2. Bob computes the following: [[/L, Ep(a)®, which is equivalent to
Ep(> i 1(a;b)) (by the additive homomorphic properties of the
encryption scheme). He sends this value to Alice.

3. Alice decrypts the value from Bob and learns the scalar product.

In the above protocol, Alice learns the scalar product. It is straightfor-
ward to construct a protocol where Bob learns the scalar product or where
the product is additively split between Alice and Bob. The latter protocol is
useful in situations where the scalar product is an intermediate result that
should not be revealed.

3.5.2 Nearest Neighbor

We already discussed earlier the issue of location privacy in location-
dependent query processing, where it is desired for the mobile client to
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learn the answer to its location-dependent query without revealing to the
remote database anything about its location, other than what the database
can infer from the answer it gives to the query. This section discusses the
instance of this problem in which the queries are of the nearest-neighbor
variety, i.e., the remote database has to return the address of the post
office (or gas station or Chinese restaurant) that is nearest to the mobile
unit without knowing precisely the location of that mobile unit.

We begin with simple solutions that do not require the use of complex
protocols, but whose advantage of simplicity is balanced by drawbacks that
range from a degraded quality of the answer returned by the server to an
increased amount of communication between the client and server.

One simple solution that does not require the database to modify the
way it does its query processing is for the client to lie about its position
by a distance § applied in a random direction from its real position. The
client can choose a § that is large enough for its own notion of how much
it wants to hide its location. That § is not known to the database, and
may vary from one query to the next even for the same client (because the
privacy/accuracy tradeoff for that client may change over time, or from one
query to the next). The damage done to the quality of the server’s answer
is the distance between the post office returned and the true nearest post
office, and is a function of §. In the worst case, it is 2§ and this bound is
tight. Assuming that post offices are uniformly distributed in the plane, it
can be proven that the expected damage is < 4.

A variation on the above scheme avoids the loss of accuracy in the
answer, but it potentially requires more communication. The idea behind
this variation is to “grid” the plane, covering it with tiles of dimensions
A X A; after this gridding of the plane, the client queries the database with
the tile that contains the client’s location. The database answers the query
with all sites that are closest to at least one point in the query tile; that is,
if v is any point of the query tile (not necessarily a site) and site w is the
closest site to v, then w is a part of the answer that the database will return
to the client (note that w could be inside the query tile, or outside of it, and
that a site inside the query tile is always chosen as a part of the answer).
Upon receiving these sites the client determines which of them is closest
to his actual location. The disadvantage of this scheme is that the client
may receive many sites in response to the query—the expected number
received depends on A, but also on the average density p of sites per unit
area (the two determine the expected number of sites per tile, which is
A?p). A further refinement of this basic tiling-based scheme is to have the
database treat the answers that would be returned by the basic scheme
merely as “candidates” for the one site that is returned as an answer: The
site that has the largest number of “votes” from within the tile. In other
words, if v and w are as above, then the winning candidate w is the one
with the largest number of vs in the tile that “choose it” as the nearest site to



62 W Digital Privacy: Theory, Technologies, and Practices

them. This variant does not have the increased communication because a
single site is returned as the answer, but it does have an accuracy tradeoff:
The worst-case damage to a query’s answer is no greater than the tile
diameter D (and that bound is tight), whereas the expected damage is
0.27 D assuming uniformly distributed sites and client locations.

The cryptographic protocol-based solution satisfies both the privacy re-
quirement (not revealing anything to the server other than what it can
infer from the answer it returns), and the quality of answer requirement
(the answer returned is as good as if the server knew the client’s exact
position). This solution requires the server to organize its database in such
a manner that it can support the query-processing protocol with the re-
mote client, and then update it (additions/deletions of sites) incrementally
later on. If 7 is the number of sites, then the database takes O(n log n)
time to initially construct, and then polylogarithmic update time for a site
insertion or deletion. Each nearest-neighbor query takes O(log 7) amount
of communication for its processing by the protocol.

The data structure used is Kirkpatrick’s hierarchical search directed
acyclic graph (DAG) for query point location in a planar subdivision [27],
where the planar subdivision is a Voronoi diagram [14,28,37] of the sites at
the database. The use of this DAG search structure is constrained by the
strict privacy requirement, namely, that the database should not learn any-
thing other than what it can infer from the query’s answer. This rules out
revealing such things as whether the query point is closer to one nonan-
swer site than to another, or revealing the specific reason for which the
query point is outside of a Voronoi cell (only yes/no is allowed), etc. The
processing of a query makes use of a cryptographic protocol that allows the
server to determine whether a query point p (that is known to the client,
but not to the server) is inside a planar subdivision’s cell that is known
to the server, but not to the client. This is done without revealing to the
server anything other than the yes/no answer to the question of whether
the client’s query point is in the cell or not. The protocol is used repeatedly
at each level of the search DAG, and the leaf at which this process ends
gives the site that is the answer to the query (the Voronoi cell in which
the query point lies provides the server no more information than the site
returned as answer).

3.5.3 Trust Negotiation/Attribute-Based Access Control

In traditional access control systems, access is granted to a user based on
that user’s identity. Unfortunately, this does not scale to open systems, such
as the Internet. A different access control approach that has been proposed
is attribute-based access control [5,15,32]. In these systems the access con-
trol policy is stated as a function of a set of attributes. For example, a
policy might be that a user must have secret clearance and work for the
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CIA. For such a system to be secure, there must be a way to verify whether
a user has an attribute. Digital credentials are a tool for doing this verifi-
cation; a third party, which can verify the status of an attribute for a user,
digitally signs a statement stating that the user has the attribute in question.
It is worth pointing out that this notion of using attributes to grant access
to a user mimics a common way that access control is done in the physical
world, e.g., you must show your driver’s license to prove your age.

A simple system for attribute-based access control is to have a user
reveal all of his credentials to the resource holder. Clearly, this scheme has
privacy problems, e.g., revealing one’s age, employment status, or security
clearance to everyone is not desirable. Furthermore, the credentials are not
the only resource that has privacy concerns; more specifically, the policies
themselves may be private. The motivation for hiding the policy is not
necessarily protection from an evil adversary. For example, the policy may
be a commercial secret and revelation of the policy would invite imitators.
As another example, revealing a policy may encourage users to game the
system, e.g., to find the path of least resistance for obtaining access to a
resource.

There have been many attempts to resolve the privacy problems that
are outlined above. For example, in trust negotiation [39,42—44,47-49], the
approach is to assign a release policy to every credential, e.g., Bob will
reveal his secret clearance credential to Alice only if Alice has a secret
clearance credential or is a government employee. The participants then
reveal a credential only when they know that the other party satisfies the
release policy for that credential. An example revelation strategy is the
eager strategy [44]. In the eager strategy, the participants take turns re-
vealing credentials and, as soon as a credential’s release policy is satisfied,
the credential is revealed. This strategy guarantees that a credential is not
revealed until its release policy is satisfied. Of course, the credentials are
still revealed in this scheme and so there have been many schemes that
protect the credentials further, including hidden credentials [7,19,26], secret
handshakes [3], oblivious signature-based envelope [31], oblivious attribute
certificates [29,30], policy-based cryptography [2], and many other schemes.
In what follows, we outline the results of two such approaches.

In [17] secure protocols for attribute-based access control were intro-
duced. Specifically, the requester would input a set of credentials (the
credentials used identity-based encryption [6,10]) and the resource owner
would input the access policy for the resource. At the end of the proto-
col the requester obtains the resource if the requester satisfied the access
policy, but would learn little information if it did not satisfy the policy.
Furthermore, the resource owner would not learn whether access was
granted (and so the credentials were protected). The different protocols
in [17] show a tradeoff between efficiency and privacy (as the more ef-
ficient protocols revealed more information). While it may seem that the
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previous solution reveals minimal information, there are some problems
with this approach. In many environments, a resource owner must keep
track of every user that has accessed a particular resource (perhaps for au-
diting purposes) or they learn this information from other sources. In such
systems, it is possible for a resource owner to probe the client’s creden-
tial set by using different policies for different accesses. To counteract this,
protocols were introduced in [18] that integrated the ideas of trust nego-
tiation with secure protocols. More specifically, the client inputs a set of
credentials along with a set of release policies for those credentials, and the
server does the same and also inputs an access policy for the resource in
question. In this system, a credential was used only when the other party
satisfied the release policy for the item. An additional benefit of this ap-
proach was that the scheme supported arbitrary policy cycles. For example,
many other systems will deadlock if Alice and Bob both have a policy that
states that they will reveal their secret clearance credential only to someone
with secret clearance.

3.5.4 Computational Outsourcing

Outsourcing is a general procedure employed in the business world when
one entity (call it A) chooses to farm out (outsource) a certain task to
another entity (call it B). Computational outsourcing is the special case
where A gets B to do a computational task for them. The possible reasons
why A might want to outsource their computation to B include: A may be
computationally weak (a sensor or inexpensive card); B may have superior
computing power (possibly a supercomputing center); or B may have some
other special capabilities, such as better software, more expert staff, or
lower costs. The secure (i.e., privacy-preserving) version of the problem is
when B doesn’t learn either A’s inputs or the output of the computation.
If that was the only goal of the outsourcing protocol, then this would be
the special case of the general problem described above in which A has all
the inputs and B has none of the inputs. But the outsourcing protocol has
another goal: To place most of the computational burden on B and as little
of it as possible on A; placing such a deliberately unbalanced computational
burden on the participants was previously not a design goal.

More formally, if we let 7(#) be the time complexity of the algorithm that
will be used for solving the (presumably intensive) computational problem
at hand, and if we let S(») be the space complexity of the input, then the
protocol should place the O(7(n) time computational burden on B, and
the computational burden on A should be O(S(7) (which is unavoidable
because A has to at least read the input it has). For example, if A has two 7 x
nmatrices M; and M,, and A wishes to securely outsource to B the task of
computing their product M = M, * M, using the usual O(7?) time algorithm
for matrix multiplication, then the protocol should be such that A has a
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computational burden of O(#7) time and it is the computational burden of
B that has the O(72) time complexity. Of course, A should learn the product
M, and B should not learn anything about My, M;, or their product M.

To illustrate an integrity problem associated with computational out-
sourcing, consider a situation where A is outsourcing to B a sequence of 7
computational tasks that A cannot afford to do on its own local machine (A
could locally afford to do a small number of them, but not all #of them). For
the sake of definiteness, assume that each task consists of an expensive dy-
namic programming computation that compares two biological sequences
for similarity, and returns a similarity score for each such pair. If B was un-
scrupulous, B could collect A’s money for carrying out the computational
job, but without providing the full computational service: B could do only
a fraction of the n tasks (say, 80 percent of them) and skimp on the re-
maining tasks by returning to A random answers for them. The problem
of how A could detect such cheating with a high enough probability, and
with minimal local computation by A, has received increasing attention.

Elegant negative results exist about the impossibility of securely out-
sourcing computationally intractable problems [1].

3.6 Summary

We have briefly described the framework of privacy-preserving protocols,
surveyed some of the issues and results in it, and described a sampling of
its applications. A brief chapter such as this can serve as a starting point for
initial inquiries into this deep and complex area, but it cannot possibly go
into in-depth overage of all its major theoretical issues—that would take a
book. In fact, there is an excellent two-volume book by Goldreich for the
reader interested in a more in-depth treatment of this material [21,22].
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4.1 Introduction

In the study of anonymous systems, research into new designs for ano-
nymity has been balanced by analysis of attack strategies for violating
anonymity. Such strategies shed light on how well systems will defend
users’ privacy and suggest new directions for research and development.
Any analysis of attacks, however, must be parameterized by a model of ad-
versary capabilities. The choice of model has been evolving over the years;
for example, as the scale of anonymous systems has grown, the popular
global passive adversary becomes less realistic and a more limited adversary
may be more appropriate [36]. At the same time, with more loose dynamics
connecting the participants of today’s anonymous networks, the likelihood
that a large number of participants may be compromised and colluding
together is perhaps higher than it used to be. This motivates deeper study
of attacks that such participating adversaries can pose.

In this chapter, we consider how participating adversaries can attack
anonymity systems both by observing traffic in the system and by behaving
maliciously in order to confuse other participants to gain an advantage.
Such Byzantine behavior can give attackers a significant advantage over
following the protocol and can greatly reduce the levels of privacy provided
by an anonymity system.

In particular, we look at attacks that compromise the path of a mes-
sage as it travels through the anonymous system. There are several ways
this attack can work, either by presenting misinformation about the net-
work in order to make traffic pass through malicious participants, or by
making malicious participants appear more desirable (or honest ones less
so) for routing traffic, once again biasing path selection toward compro-
mised hosts. The attacks apply to a wide range of deployed and proposed
anonymity systems and can have a significant impact on the levels of pri-
vacy they provide.

Discussed below are countermeasures to both the path compromise
attacks and the general problem of Byzantine participating adversaries. It
turns out that general techniques for addressing Byzantine behavior in dis-
tributed systems do not easily apply to anonymous networks, and effective
defense against Byzantine attackers remains elusive. This highlights the
importance of the Byzantine adversary model for further study.

4.2 Anonymity Systems

The study and deployment of anonymous systems was kicked off by David
Chaum’s seminal paper on mix networks [7]. In his original proposal, anony-
mous messages are relayed by mixes that batch messages from different
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sources, permute them, and send them out to their destinations. Messages
are also cryptographically transformed by the mix in order to hide the cor-
respondence between inputs and outputs. The output of a mix may be
sent to another mix for further mixing, creating a chain of mixes; layered
encryption is used to ensure that each mix can only know the previous and
next mix in the chain. The sequence of mixes chosen can also be called a
relay path.

Chaum’s design is quite influential and to this day forms the basis of
most high latency anonymous communication systems [10,19,22]. For low
latency communications, Chaum’s design was modified to eliminate batch-
ing of messages and was called onion routing [37]; this traded off suscep-
tibility to traffic analysis attacks for improved performance. The current
generation low latency communication system, Tor [12], uses a similar de-
sign though it optimizes the cryptographic operations used to protect data
transmissions.

The above networks usually construct relay paths chosen uniformly at
random from the set of all mix nodes. Berthold et al. have argued [3] that a
collection of static paths—a mix cascade—can better defend against some
attacks, though the relative merits of mix cascades and free routes have
been the subject of some debate [13]. More recently, peer-to-peer (P2P)
structures for selecting mix nodes have been proposed [18,33] in order to
increase the scale of mix-based networks.

Some alternatives to the mix design do exist, such as DC-Nets [8]. Our
discussion of path compromise attacks below will, of course, not be appli-
cable to such systems. Nevertheless, the adversary model and the general
observations about Byzantine attacks are equally applicable to such systems
and mix networks.

4.3 Attack Models

Any anonymous system must be evaluated for resistance to various types
of attacks. An important decision predicating this analysis is what kind of
adversary is to be considered. A too weak adversary model will lead to an
overly optimistic outlook on the security of the system despite it being sus-
ceptible to attacks. A conservative adversary model, therefore, is preferred
in the security community; yet defending from a very powerful adversary
typically requires very significant costs that few users or operators are will-
ing to pay. The experience of the Tor network [12] is that a somewhat
weaker adversary model can help improve usability and attract larger num-
bers of users, which in itself improves the anonymity of a system. There-
fore, a realistic adversary model is very important for anonymous system
design.
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4.3.1 Common Threat Models

Table 4.1 lists the adversary models and Table 4.2 lists systems that have
been analyzed with each model. The most common model is a global pas-
sive adversary, who can observe all messages sent between all participants.
Although such an adversary is quite powerful, most high latency anony-
mous systems, such as Babel [19], DC-Nets [8], and Mixminion [10], are
designed to resist such an adversary, since this model subsumes all less
powerful but more realistic adversaries. The requirements of low latency
communication, however, make most practical systems susceptible to traf-
fic analysis techniques [29], such that a global passive adversary is easily
able to compromise anonymity. Therefore, adversaries that are considered
by systems such as Tor are usually assumed to be more limited and can
observe only a fraction ¢ of the network.

An active adversary can additionally disrupt communication by insert-
ing, deleting, delaying, or modifying messages on any communication link,
generally following the Dolev—Yao model [14]. Some attacks available to
such adversaries are trickle and flood attacks [35], where the volume of
traffic on a link is increased or decreased to watch the effects on other parts
of the network. Adversaries can also modify (“tag”) messages in transit or
replay past messages; in both cases, monitoring for corresponding errors or
duplicates in other parts of the network to recover the path that messages
travel on. Mixmaster [22] and Babel are both susceptible to tagging attacks;
Mixminion, however, uses hashes to verify the integrity of message headers
and cryptographic checksums to verify the payload. Other forms of active
attacks may exploit the cryptographic primitives used by the anonymous
systems [28] or the bandwidth limitations of low latency systems [24].

Active adversaries, like passive ones, may be either global or local;
most of the attacks described above will succeed even if only a limited
number of links are controlled by attackers. To some extent, active attacks
can be mitigated by link-layer encryption and authentication of messages,

Table 4.1 Adversary Classifications in Anonymous Networking Systems, Their
Influence on the Network (Where c Is the Proportion of Dishonest Users in the
Network and 0 < ¢ < 1), and Their Behavior

% of Network

Adversary Affected Behavior
Global passive adversary 100% Observes traffic
Local passive adversary c Inserts, delays, modifies traffic
Global active adversary 100% Observes traffic
Local active adversary C Inserts, delays, modifies traffic

Participating adversary c Participates in network by running mixes
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Table 4.2  Adversary Classifications and Systems That Have Been Analyzed
with That Threat Model

Adversary Systems
Global passive adversary Babel, DC-Nets, Mix-Nets, Mixmaster,
Mixminion, Tarzan
Local passive adversary Crowds, Mix-Nets
Global active adversary Mix-Nets
Local active adversary Hydra-Onions, Mixminion, Tor
Participating HBC adversary Cashmere, Crowds

Participating Byzantine adversary MorphMix, Tarzan, Tor

but absent a public key infrastructure (PKD), it may still be possible to
compromise such link-layer protections.

4.3.2 A Participating Adversary

The final adversary model is what we call a participating adversary. Most
anonymous communication systems are designed as a network of nodes.
The participating adversary model supposes that some of these nodes be-
long to attackers. This may be achieved by compromising existing nodes or
contributing new ones to an existing system. Since anonymous networks
are usually run with volunteer contributions, these networks will readily
accept (and welcome) new participants who help increase the capacity of
such networks. The only requirement on an attacker is a computer with
a reasonably reliable Internet connection. Therefore, such an adversary is
much easier to set up than, say, a global passive adversary, and yet it can
yield better attack possibilities due to a better vantage point.

We can subclassify the participating adversary into two categories. The
first is an “honest, but curious” (HBC) participant who behaves according
to the anonymity protocols but tries to learn as much as possible about the
communication through observation. Though passive, this adversary may
be able to learn more information since he can observe the private state of
some of the participants. For example, in both the original mix system de-
signed by Chaum [7] and its successors, observing the internal state of the
mix will reveal the permutation connecting the inputs to the outputs, com-
promising the anonymity provided by this mix in a way that an outside ob-
server would not be able to do. Chaum’s design was concerned about such
participating adversaries, motivating the approach of mix chains, where the
presence of participating adversaries can be counteracted by honest mixes
in the chain. More recent systems, such as Cashmere [41] and Crowds [30],
have also been analyzed from the point of view of an HBC participating
adversary.
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An alternative participating adversary is one who may violate the proto-
col and behave in an arbitrary fashion. We call this the Byzantine participat-
ing adversary, after the Byzantine failure model [21]. Byzantine adversaries
may lie about their capabilities or knowledge of the network, or disrupt
communications, but they may also follow the protocol when that best
suits their needs. In particular, Byzantine adversaries can actively try to
avoid detection, making it difficult to isolate misbehaving nodes.

Recent research into anonymity systems, especially those using peer-
to-peer designs, has considered some attacks that fall under the Byzantine
adversary model. Most prominently, the Sybil attack [15] is an example of
Byzantine behavior where a node violates the protocol by pretending to be
multiple disparate node instances in order to gain undue influence on the
network. However, Byzantine behavior is generally underexplored and new
types of attacks can have a significant impact on the anonymity of existing
designs. This situation is perhaps not surprising because the Byzantine
model places few restrictions on attacker behavior and, therefore, makes it
difficult to analyze the full range of possibilities. Yet the possibility of such
attacks, and the low resource requirement to carry them out, means that it
is important to carry out analysis of Byzantine adversaries in order to have
confidence in the anonymity of a system.

We next describe several examples of attacks that can be mounted by
Byzantine adversaries to demonstrate that they are a realistic threat before
returning to the discussion of the Byzantine adversary problem in general.
The attacks considered will all be of the path compromise type.

4.4 Path Compromise Attacks

Both mix networks and onion routing rely on hiding the complete relay
path that a message follows from its source to the destination. An attacker
who knows the entire path can easily link source and destination, com-
promising the unlinkability [27] that such systems aim to provide. These
are called path compromise attacks to distinguish them from other types of
attacks on unlinkability.

Path compromise attacks can be mounted by any participating adver-
sary in a mix or onion-routing network. If relay paths through the network
are selected randomly by users, each path will be compromised with some
probability: ¢’ for mix networks, where / is the length of the relay path, or
¢? for onion-routing networks. The reason that onion-routing networks are
more susceptible to path compromise is that the first and last node on a re-
lay path can use traffic analysis to link traffic routed through them, eliminat-
ing the need to compromise the entire path. Wright et al. [39] demonstrate
that an HBC adversary will succeed at path compromise after 0/clog1/c
path creations with high probability, where 7 is the number of nodes in
the network.
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A Byzantine adversary can be even more successful at path compromise;
for example, an attack on a hidden service in Tor [25] causes the service to
repeatedly create new paths, enabling eventual compromise.* To address
this issue, guard nodes [40] have been introduced in Tor to reduce the
variety of constructed paths.

A Byzantine adversary may also use other techniques to make path
compromise more successful. We consider three possible strategies: making
paths that use compromised nodes appear more attractive, affecting the
discovery process used to form paths, or impacting the reliability of “honest”
paths, thereby driving traffic toward compromised nodes. Each of these
approaches are discussed below.

4.5 Adversary Angels and Adversary Facades

Many anonymity systems have mechanisms to improve the efficiency and
reliability of network routing. For example, MorphMix and Tor favor the
inclusion of nodes with higher bandwidth capabilities in relay paths. As the
performance of a relay path is bounded by the slowest node in the path, it
is reasonable to improve performance by avoiding nodes on, say, modem
connections in favor of nodes that have a digital subscriber line (DSL) or
faster connectivity.

However this creates an easy avenue for adversaries to produce path
compromise attacks by making themselves appear more attractive than
other nodes in the system. In this way, they are selected more often as relay
nodes and have a higher chance of succeeding. Adversaries can simply lie
about their capabilities, thereby creating an adversary facade. Alternately,
they, in fact, can provide extra capabilities by, for example, placing nodes
in well-connected parts of the Internet. We call this second situation an
adversary angel.

Systems that do not verify node capabilities are easily susceptible to
adversary facades; for example, neither Tor nor MorphMix verify the stated
bandwidth of nodes that nevertheless is used in selecting better-performing
paths. Therefore, there is an incentive for attackers to overstate their ca-
pacity to drive more traffic their way [1].

Verification of capabilities could address this issue, but it is in itself diffi-
cult to implement. Using a central verification point may present undue load
in a network like Tor and is simply impractical in a completely decentral-
ized design, such as MorphMix. Further, reliable verification of capabilities

* To be more precise, this attack actually combines an active nonparticipating adversary
who initiates connections with an HBC participant, who logs traffic; but, of course, a
Byzantine adversary can easily simulate this attack.



80 m Digital Privacy: Theory, Technologies, and Practices

such as bandwidth is difficult due to both variance in network conditions
and the possibility of active deception on the part of the attackers when
they are probed.

But even when validation is possible, there is still the concern of ad-
versary angels, who are actually better performing than other nodes in the
system. The incentive to contribute to the network is higher for an adversary
trying to compromise anonymity than for a volunteer; hence, adversaries
may be able to dedicate more resources to the task. This may take the
form of buying extra bandwidth, dedicating extra central processing unit
(CPU) resources, or ensuring high availability of nodes, making them more
attractive for relaying traffic. (In many P2P systems, long-lived nodes will
tend to be better connected than ones that have a shorter lifetime.)

Therefore, the drive to improve performance by biasing path selection
must be carefully balanced by the possibility of such adversary attacks and
any performance-optimizing mechanism must be designed and analyzed
carefully with considerations of a Byzantine adversary, or even adversary
angels.

4.6 Affecting Node Discovery

Anonymous networks such as Tor or Mixminion rely on the existence of a
central directory listing all of the participating relay nodes in the network.
All users consult this directory when paths are created; however, as the
number of nodes grows, the directory becomes a limiting point of scalabil-
ity. It is also a central point of failure and trust in an otherwise decentralized
design, so there is some motivation for removing the centralized directory
and using a P2P architecture to let mix nodes discover each other.

Developing effective node discovery mechanisms is an ongoing chal-
lenge in P2P networking. Node discovery must enable discovery of all the
nodes that are currently live in the system and it must function correctly
even in the face of an attack. It is important that all nodes may be discov-
ered by all other nodes, since a node that picks relay nodes from a more
limited pool may be fingerprinted based on its selections [9]. But, even if
a protocol is designed to find all other nodes, Byzantine adversaries may
disrupt such a protocol and force one to make choices toward a limited set
to enable path compromise.

The most prevalent concern about Byzantine attacks has to do with Sybil
attacks [15], where dishonest nodes are able to present multiple identities
to control a larger proportion of the system than their individual numbers
would otherwise allow. Methods to counter Sybil attacks include limiting
participation based on IP addresses or resource verification techniques,
such as solving computational puzzles [4].
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But even when Sybil attacks are addressed, there is still the possibility
of Byzantine attacks during node discovery. Since nodes learn about other
nodes through their neighbors, these neighbors could misrepresent the
state of the network and make path compromise easier. One approach,
implemented in Tarzan [18], is to distribute a full directory of all nodes to all
other nodes; however, this quickly runs into scaling issues as the number
of participating nodes increases. Another approach is to use redundant
information to validate data presented by neighbors. This is the approach
used in MorphMix [33] and is discussed in more detail below.

4.6.1 Attacking Path Construction in MorphMix

MorphMix is a P2P onion-routing network, where all clients act as peers
in the system, both routing their own traffic through the network as well
as forwarding traffic for other peers. The peers are connected in an over-
lay topology through virtual links via transmission control protocol (TCP)
connections between neighbor nodes in the system. Anonymous commu-
nication is performed by forming relay paths along this overlay structure.
Each peer only knows about its own neighbors and learns about the pos-
sible next nodes to extend the relay path from previous nodes in the path.
Therefore, a Byzantine participating adversary could lie about its connec-
tions to other nodes and ensure that all subsequent nodes in a path were
colluding adversaries, leading to path compromise.

To avoid this attack, MorphMix incorporates a collusion detection mech-
anism (CDM). When a node is asked to extend a relay path, it provides a
selection of its neighbors, along with their IP addresses. The initiator eval-
uates the selection for collusion by correlating the distribution of the IP
address prefixes in the selection with past selections stored in a selection
cache. The idea is that colluding attackers will be forced to choose from
a small set of IP address prefixes and the colluding selections will have
high correlations to each other, whereas honest nodes will provide a more
random sampling of address prefixes. If a selection is deemed honest, a
node is picked out of the selection as the next node in the path. For more
details on the MorphMix path construction algorithm, refer to [31].

Notice that the CDM is designed specifically to resist a Byzantine ad-
versary. It has been evaluated through simulation against two adversary
strategies: providing selections consisting entirely of colluding nodes, or
providing a mix of honest and colluding nodes in selections. In the former
case, the CDM detects malicious selections; in the latter case, the selections
are more likely to be marked as honest, but path compromise correspond-
ingly is less likely [31].

However, a different, more “intelligent” attacker strategy can effectively
defeat the CDM. This example demonstrates both the difficulty in fully
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analyzing all possible Byzantine adversary strategies and the importance of
doing so.

4.6.2 The Attack

The attack is based on this simple intuition: Because each node’s CDM
and collusion threshold are based on only local knowledge, attackers can
model and manipulate the local state of a node to avoid being detected.
In particular, colluding attackers can maintain for each honest node a list
of past selections consisting of colluding nodes that have been sent to
that node. Then, when a new selection is requested, it is formed from
colluding nodes that have the least overlap with past selections. In this
way, the correlation with past selections is kept at a minimum and the
CDM is fooled. More details about how intelligent selections are created
can be found in [38].

4.7 Simulation

Because MorphMix does not have a substantial user base, we were unable
to execute the attack on a live system. Instead, we simulated many tunnel
constructions using the CDM from the MorphMix client prototype [32] and
investigated the effects of the attack on one node, the victim node. We
evaluated how successful the attack was based on how many tunnels we
could compromise, what proportion of all tunnels constructed could be
compromised, and how long the attack could run successfully.

Similar to the analysis in [31], we simulated 5,000 tunnel constructions
consisting of only honest selections from a node distribution based on
traffic traces taken from the Overnet/eDonkey file-sharing system [16]. The
Overnet data gives us an approximation of what IP address distribution
would be like in a deployed MorphMix system.

4.7.1 Attack Execution

We executed the attack during 5,000 tunnel construction attempts by a
single victim node and calculated how many successful tunnels are con-
structed. In MorphMix, a node creates, on average, a new anonymous tun-
nel every 2 minutes. Therefore, creating 5,000 tunnels is roughly equivalent
to 1 week of constant MorphMix usage. In Table 4.3, we can see that the
attack results in a significant portion of anonymous tunnels being compro-
mised using intelligent selections. If colluding adversaries control nodes
in more than 15 percent of the represented subnets in MorphMix, they
are able to compromise at least that percentage of tunnels constructed by
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Table 4.3 Tunnel Construction for Range of Attackers

C Honest Tunnels Malicious Tunnels  Percentage Compromised

(a) Uninterrupted attack execution

5% 3,337.9 6.8 0.2% (o = 0.1%)
10% 2,951.4 33.8 1.1% (0 = 0.2%)
15% 2,283.2 470.1 17.1% (0 = 1.5%)
20% 1,930.0 860.4 30.8% (o = 1.1%)
30% 1,171.5 1,384.0 54.2% (0 = 2.4%)
40% 450.9 1,847.5 80.4% (o0 = 2.3%)

(b) Optimized attack execution

5% 4,251.9 51.8 1.2% (0 = .2%)
10% 4,161.2 146.9 3.4% (o = .2%)

victims. Attacking levels above 30 percent result in the majority of all con-
structed tunnels being compromised by an attacker. While adversaries that
control nodes in fewer unique subnets cannot claim quite as high statis-
tics, by slightly adjusting the attack (Table 4.3b), they can still successfully
compromise more than the ¢? anonymous tunnels that are compromised
using an HBC participating adversary.

4.7.2 Countermeasures

An immediate countermeasure to the above attack might be to increase
the number of nodes in the tunnel and increase the number of entries in
the selection cache. Unfortunately, increasing the size of the tunnel will
increase connection latency and require greater storage and computation
time for each execution of the CDM algorithm. Alternatively, one might
introduce variable length tunnels into MorphMix; however, even with this
change, attackers can still estimate the distribution of tunnel lengths and
probability of compromise. New users to MorphMix are especially vulner-
able to the intelligent selection attack. Since new users enter the system
with an empty selection cache, attackers are guaranteed to successfully
compromise a significant portion of a new user’s initial tunnels, regardless
of the cache size. This type of initial behavior in MorphMix would be an
impediment to recruiting new users into the system.

The general limitation of the MorphMix CDM is that a node only con-
siders its local knowledge when detecting collusive behavior. This local
knowledge is limited, and too easy for attackers to model and exploit.
A more global information flow could be used to better detect collud-
ing attackers; for example, nodes could exchange statistics based on past
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selections. However, such solutions would need to address the question-
able validity of information received from neighbors, so that adversaries
would not use this information channel to their benefit by, for example,
spreading misinformation about honest nodes so that they are considered
malicious. An effective collusion detection mechanism that resists all man-
ner of Byzantine attacks remains an open challenge.

4.8 Selective DoS

Another way that a participating adversary can attack the anonymity of a
system is through a denial-of-service (DoS) attack. DoS has traditionally
not been part of the threat model considered by designs for anonymous
communication because privacy was seen as the most important security
property. More recently, considerations of availability and usability have
emerged, as an unusable or unavailable system cannot successfully protect
users’ privacy. However, there is a more direct connection between privacy
and availability that can be exploited by attackers.

Most anonymous systems have a spectrum of more and less secure
states. As seen above, in mix networks, paths that consist entirely of com-
promised nodes do not provide privacy protection and, similarly, in onion
routing, paths that begin and end at compromised nodes are insecure. Par-
ticipating adversaries can use a selective denial-of-service attack to reduce
the availability and usability of more secure, paths in order to force users to
use insecure alternatives. In this section, we will discuss how these attacks
apply to two common systems—Tor [12] and Mixminion [10}—and consider
some countermeasures. A more in-depth discussion of selective DoS can
be found in [2].

4.8.1 Attacks on Tor

The Tor network is a widely used system for low latency anonymous Inter-
net communication. The network has enjoyed quick growth since its initial
deployment in 2003; as of November 20006, Tor is composed of approxi-
mately 800 active routers supporting hundreds of thousands of users.
Since Tor is an onion routing network, paths are compromised when
the first and last routers in a tunnel are malicious, with probability ¢
To increase their odds, participating adversaries can perform a denial-of-
service-attack on any tunnels that they cannot compromise. This attack is
easy to implement: If the adversary acts as a first or last router in a tunnel,
the tunnel is observed for a brief period of time and matched against all
other tunnels where a colluding router is the last or first router, respectively.
If there is a match, the tunnel is compromised; otherwise, the adversary
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Figure 4.1 Reliability and security analysis of Tor under the selective DoS$ attack.

stops forwarding traffic on the tunnel, effectively killing it. The adversary
also kills all tunnels where it is the middle node, unless both the previous
and the next hop are also colluding.

Under this attack, a tunnel will be reliable only if the first and last nodes
are compromised, or if it is composed of only honest nodes. So, the overall
reliability of Tor in this case is:

Rpos = ¢*+ (1 — ¢’

Figure 4.1 plots the reliability of Tor under the selective DoS attack as
a function of ¢. The reliability decreases as the number of compromised
nodes grows, until it reaches a minimum at ¢ = 0.45, at which point it
starts to rise again. This is because at that point, the ¢ component starts
to dominate; that is, the dishonest nodes start to perform DoS on fewer
tunnels because they can now compromise more of them.

Figure 4.1 also shows the number of secure tunnels, as a fraction of
reliable ones; i.e., the conditional probability of a tunnel being secure given
that it is reliable. This is a useful calculation because the Tor software
faced with a nonfunctioning tunnel, will create a new one in its place
and will repeat this until a working tunnel is constructed. The conditional
probability states how likely it is that this final tunnel will be secure. For
low values of ¢, the line closely matches the conventional security figure
of ¢?, but with higher numbers of compromised nodes it quickly diverges.
For example, with ¢ = 0.5, conventional analysis suggests that 75 percent
of all paths should be secure, whereas under the selective DoS attack, only
33 percent of the successful paths are uncompromised. Even if ¢ = 0.5
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is an unlikely fraction of colluding attackers (though perhaps not entirely
unrealistic, given the volunteer nature of Tor participants), the main point
is that a participating active adversary can have a much greater impact on
Tor security than is shown by conventional analysis.

4.8.2 Attacks on Mixminion

Mixminion [10] and other high latency mix networks differ from Tor in their
strategy for achieving anonymity in that the individual mixes perform delays
and batching of incoming messages in order to frustrate traffic analysis.
Therefore, it is usually not sufficient to compromise only the entry and
exit points of a message, but rather the entire path of forwarders for a
message must be compromised to link the source and the destination. This
means that for a fraction ¢ of compromised nodes and paths of length
I, ¢! messages end up being compromised. This feature of mix networks
motivates the choice of longer paths for routing messages, with / = 5
being frequently used. Such long paths ensure that, for example, even if
50 percent of all mixes are compromised, only 3 percent of all messages
can be linked. Cautious users may choose even higher values of / so that
their messages remain secure even under the most pessimistic assumptions
about the number of compromised mixes.

However, selective denial of service is just as easy to perform in the
case of mix networks as in Tor. The goal of attackers is once again to
disrupt any communication they cannot compromise; in this case, any time
a message is to be either received from an honest node by a dishonest one,
or sent from a dishonest one to an honest one, the message is dropped. This
way, the attackers only forward messages when the path consists entirely
of compromised nodes. Of course, when only honest nodes participate in
forwarding a message, it is delivered as well, so the reliability of message
delivery can be computed as:

Rpos=c'+(1 =0

Mix networks usually lack end-to-end acknowledgments of a forward-
ing path; to improve reliability, Mixminion and other networks can send
multiple copies of a message along multiple paths. This technique is used
to address the inherent unreliability of (honest) mix nodes, but the same
defense can be applied to address this selective denial-of-service attack. In
both cases, redundant messages will increase the probability of a message
being successfully delivered, but at the same time allow for more chances
of compromise:

w

Plcompromise] = (1 — (1 — ¢)')
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Figure 4.2 Reliability and security analysis of Mixminion under the selective DoS
attack.

If we denote by f the fraction of honest nodes that are expected to fail
during a single message delivery round, and by w the number of copies
of a message that are sent (the “width” of a path), we can computed the
revised reliability of message delivery as:

Ross=1— (1= [+ (@ -oa - )])"

It is easy to see that this figure grows with w, so the decrease in reliabil-
ity due to the selective denial-of-service attack can be mitigated by sending
more copies of a message. Figure 4.2 shows the effect of this defense on
performance and security. In this figure, nodes tune their sending param-
eters w to achieve a reliability of 95 percent, with fixed / =5 and f=0.1.
The parameters f and / are chosen to mimic the observed behavior of
Mixminion nodes. We then calculate the fraction of messages that are sent
through the networks that remain secure. We include the fraction also for
a scenario without a selective DoS attack for comparison. It is clear that an
attacker who denies service has an advantage, depicted as the gap between
the two lines.

4.8.2.1 Increasing Path Lengths (1)

One response to increase security under the DoS attack may be to use
longer paths. Conventional analysis suggests that higher values of / provide
exponentially higher security, so nearly arbitrary security levels can easily
be achieved by increasing /. Can the same approach work under the DoS
strategy?
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Figure 4.3 Effect of increasing path lengths.

Figure 4.3 shows the security achieved for varying values of / using the
same parameters as in Figure 4.2 under the DoS strategy. For low values
of ¢, increased values of / have the expected effect of increasing security.
However, as ¢ grows, longer paths not only do not help the security, but,
in fact, are a detriment. This is because long paths make it easier for adver-
saries to perform DoS on paths, and the values of w required to achieve
95 percent reliability become so high that there are more opportunities for
compromise.

The results show that in the presence of an active participating adver-
sary, there is a fundamental limit on the number of compromised mixes
that Mixminion and similar mix networks can withstand. When a majority of
nodes are compromised, no increase in path length can avoid compromise.
This limit is contrary to the conventional wisdom regarding mix network
chains and demonstrates the importance of considering the Byzantime par-
ticipating adversary threat model.

4.8.3 Systems Designed to Improve Reliability

Several anonymous communication systems have been designed with the
explicit goal of improving reliability. We consider whether they can be used
to reduce the threat of the selective DoS attack. The systems considered
are Cashmere [41] and Hydra-Onions [20].

Cashmere uses the structured overlay Pastry [34] to improve reliability
of anonymous communication. Briefly, instead of sending a message to a
single mix, it is sent to a relay group consisting of several nodes. Particular
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features of Pastry routing are used to deliver the message in an anycast [26]
fashion to the closest live member of the relay group, so that even if all
but one of the group members are unavailable, the message will still be
delivered.

Unfortunately, while this design handles nodes that fail in a fail-stop
fashion, it does not handle potential Byzantine behavior of participating
nodes. In particular, if the recipient of the anycast message simply drops
the message, the forwarding path is broken. Therefore, the reliability of
Cashmere is no better in the face of selective DoS than Mixminion with a
single copy of the message. Furthermore, Cashmere uses a complicated PKI
scheme that allows any member of the relay group to decrypt a message
and forward it to the next group. This means that the probability of inse-
cure paths is much higher in Cashmere than in Mixminion, since a single
compromised node in each relay group compromises the entire path.

Unlike Cashmere, Hydra-Onions were engineered with Byzantine faults
in mind. Hydra-Onions are similar in nature to mix networks that send mul-
tiple copies of a message along multiple paths, but Hydra-Onions introduce
mixing between the multiple paths. A mix node that receives a message
forwards it to the next node on the current path, as well as another node
on a random other path. Thus, if a message on some path has been lost
due to a failing or malicious mix router, it may be resurrected at the next
step by a copy sent from another path.

Hydra-Onions, therefore, are more resilient than multiple paths used
by Mixminion. They are also more vulnerable to attack: As in Cashmere,
a single compromised node at each step is sufficient to compromise the
entire path, whereas in Mixminion an entire path must be compromised:

Plcompromise] = (1 — (1 — c)’”)l

As can be seen in Figure 4.4, the extra vulnerability to path compromise
more than compensates for the extra reliability and Hydra-Onions are no
better at protecting privacy in the face of a selective-DoS attack than simple
Mixminion.

4.9 Countermeasures

Recent years have seen the development of practical and generic tech-
niques for Byzantine fault tolerance (BFT) [6]. We might hope that such
techniques could be used to address Byzantine faults in anonymous systems
as well. However, there are two fundamental difficulties in applying BFT
to anonymity systems.
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Figure 4.4 Security of Hydra-Onions under a selective DoS attack.

First, BFT algorithms rely on replicated state machines that implement
the same function. But, fundamentally, a mix node is difficult to replicate
because its operation relies on private state. For example, all replicas would
need to be able to decrypt incoming messages and carry out the same per-
mutation. Such replication would significantly decrease the security of the
system, similar to what happened in Cashmere and Hydra-Onions. (In fact,
Cashmere and Hydra-Onions both try to achieve fault tolerance through
replication, though without rigorous BFT techniques.)

Second, even if replication problems could be overcome, problems of
node discovery cannot be addressed with BFT techniques because they
assume a static set of participating nodes, at most 1/3 of which are com-
promised. However, without reliable node discovery, it seems impractical
to be able to create such a BFT group in the first place—a sort of “chicken
and egg” problem.

There is some hope that reputation systems can help defend against
Byzantine adversaries. A reputation system must accomplish two tasks: de-
tect misbehavior and distribute information about past misbehavior among
nodes in the system. Under selective DoS, for example, nodes could lose
reputation whenever they are involved in a failing path; although some
honest nodes would also be flagged, compromised nodes would appear
more frequently among failing paths (unless half of all nodes are compro-
mised) and could eventually be avoided. However, a robust mechanism
for spreading such reputation is needed. As we saw with the MorphMix
CDM, a local history is unlikely to be sufficient to effectively combat the
DosS attack, but a more global reputation system creates the possibility of
false reports by malicious nodes causing the reputation of honest nodes
to fall. For smaller networks, a centralized solution with a globally trusted
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directory and verifiers may be appropriate [11], but robust reputation sys-
tems for large-scale P2P networks are still an open problem.

4.10 Conclusion

Byzantine attacks are an important consideration for anonymity systems.
Given the volunteer dynamic of present and likely future anonymity net-
works, inserting a number of Byzantine adversaries into a network is well
within reach of many attackers. And, adversaries that violate a protocol
can be significantly more effective than honest-but-curious adversaries, or
the traditional global passive adversary. Therefore, proposed and fielded
systems must be evaluated against the Byzantine model.

At the same time, such evaluation is currently difficult, since the space of
possible Byzantine behaviors is vast and analysis of some Byzantine strate-
gies may miss other, more successful ones, as was the case with MorphMix.
We, therefore, close with two important research challenges: effective coun-
termeasures to the path compromise attacks we describe, and a systematic
approach to verifying a system’s resistance to Byzantine attacks.
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5.1 Introduction

In World War II, traffic analysis was used by the British at Bletchley Park
to assess the size of Germany’s air force, and Japanese traffic analysis
countermeasures contributed to the surprise of the 1941 attack on Pearl
Harbor. Nowadays, Google uses the incidence of links to assess the
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relative importance of Web pages, credit card companies examine trans-
actions to spot fraudulent patterns of spending, and amateur plane spotters
revealed the CIA’s “extraordinary rendition” program. Diffie and Landau,
in their book on wiretapping, went so far as to say that “traffic analy-
sis, not cryptanalysis, is the backbone of communications intelligence” [1].
However, until recently the topic has been neglected by computer science
academics. A rich literature discusses how to secure the confidentiality, in-
tegrity, and availability of communication content, but very little work has
considered the information leaked from communications “traffic data” and
how these compromises might be minimized.

Traffic data records the time and duration of a communication, and traf-
fic analysis examines this data to determine the detailed shape of the com-
munication streams, the identities of the parties communicating, and what
can be established about their locations. The data may even be sketchy or
incomplete—simply knowing what “typical” communication patterns look
like can be used to infer information about a particular observed commu-
nication.

Civilian infrastructures, on which state and economic actors are increas-
ingly reliant, are ever more vulnerable to traffic analysis: Wireless and
Groupe Spécial Mobile (GSM) telephony are replacing traditional systems,
routing is transparent, and protocols are overlaid over others—giving plenty
of opportunity to observe and take advantage of the traffic data. Concretely,
an attacker can make use of this information to gather strategic intelligence
or to penetrate particular security protocols and, thus, violate traditional
security properties.

In this short introduction to the topic, we will highlight the key issues
around traffic analysis. We start with its military roots and present the de-
fenses that the military has developed. We then consider how traffic analysis
is being used in modern civilian contexts. We move on to specific “com-
puter science” issues, and provide an overview of the relevant research
literature on attacks and defenses in contemporary networks. Finally, we
discuss some of the current, rather contentious, policy issues relating to the
retention of traffic data.

5.2 Military Roots

Traffic analysis is a key component of signal intelligence and electronic
warfare. In his book, Intelligence Power in Peace and War [2], Michael
Herman, who has served as chair of the U.K. Joint Intelligence Committee,
discusses how information about messages (which he calls “nontextual” to
distinguish it from the message content) is capable of establishing “targets’
locations, order-of-battle and movement.” He goes on to make the com-
parison that even when messages are not being deciphered, traffic analysis
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“provides indications of his [the enemy’s] intentions and states of mind,
in rather the same way as a neurologist develops insights about a silent
patient by studying EEG traces from the brain.”

Traffic analysis was used by the military even before the invention of
wireless communications, but it was the broadcast nature of radio, per-
mitting anyone to listen in, that transformed its usefulness. The first naval
action of World War I, on August 5, 1914, was the cutting of Germany’s
trans-Atlantic cables by the British cable ship Telconia [3], so that wire-
less telegraphy would have to be used instead of hard-to-intercept cable
communications. Traffic analysis became an extremely potent source of
intelligence as wireless communication became more widespread, particu-
larly in naval and air operations. Ships at sea had to balance the value of
communicating against the threat of being detected via direction finding if
they transmitted. When transmitting, strict standards, governing call signs
and communication procedures, had to be adhered to in order to minimize
the information that traffic analysis could provide.

Another example of traffic analysis providing valuable intelligence [2] is
the British reconstruction in 1941 of the structure of the German air force
radio network. This confirmed that a unit was composed of nine and not
twelve planes, which led to a more accurate estimate of total strength.
Identification of radio equipment was also used for accurate detection of
redeployments: each transmitter can be “fingerprinted” by characteristics
such as unintentional frequency modulations, the shape of the transmitter
turn-on signal transient, the precise center of frequency modulation, and
so on. These fingerprints can be used to track the device even though
the messages it is transmitting are in an unbreakable code. Similar tech-
niques can be used today to identify GSM phones [4]. In World War I,
radio operators became skilled at recognizing the “fist” of other operators,
i.e., the characteristic way in which they typed their Morse code. Indeed,
prior to Pearl Harbor, the Japanese transferred their aircraft carrier radio
operators ashore and took replacement crews, in order to persuade any
eavesdropping Americans that the Japanese fleet was still in port. Even
in more modern times, as the Desert Storm campaign began in 1991,
the British Operation Rhino replayed radio traffic from an exercise a few
weeks earlier and, thereby, misled the Iraqi forces as to where they were
attacking [5].

Intelligence does not necessarily come from radio communications. The
recording of aircraft identification numbers by amateur plane-spotting en-
thusiasts the world over permitted the reconstruction of recent CIA activ-
ities, and helped to prove the existence of their “extraordinary rendition”
program, which transferred terrorist suspects to third countries for impris-
onment and interrogation [6].

Why is traffic analysis so valuable to the military? The technique,
although impressive in what it can determine, provides lower quality
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information when compared with cryptanalysis and recovery of message
content. However, it is both easier and cheaper to extract and process traf-
fic data than content. It is easier because ciphers need considerable effort
to break (when they break at all). It is cheaper because traffic data can be
automatically collected and processed to provide high level intelligence.
Computers can collect traffic data and map out structures and locations,
while a skilled human operator is needed to listen to every radio transmis-
sion (often in a foreign language) in order to extract intelligence. For these
reasons, traffic analysis is often used to perform “target selection” for further
intelligence gathering (such as more intensive and expensive surveillance),
jamming, or destruction. Given the enormous amount of communication
and information on public networks we can expect these “economics of
surveillance” to be ever more relevant and applicable.

An insight into the power of traffic analysis in the military setting, and
its relationship with code breaking techniques, can be obtained by working
through the Zendian Problem [7]. This is a series of problems concerning a
fictitious operation against the totalitarian island of Zendia that were used
on a course taught to U.S. National Security Agency (NSA) cryptanalysts in
the late 1950s, and that have now been declassified.

Signals Intelligence (or Sigint), the military term for techniques that in-
clude traffic analysis, is an arms race, and many “low probability of intercept
and position fix” communication methods have been devised by the mil-
itary to minimize exposure to traffic analysis and jamming (see [4]). Their
principles of operation are simple: scanning many frequencies can only be
done at some maximal rate and a great deal of power is necessary to jam a
wide part of the frequency spectrum. Therefore, the first technique used to
evade interception and foil jamming was “frequency hopping,” now used
in commercial GSM communications to improve reliability in the face of
environmental noise. The basic technique is for Alice and Bob to share a
key that determines, for each given time period, the frequency at which
they will transmit. Eve, on the other hand, does not know the key and has
to observe or jam the entirety of the frequency spectrum that may be used.
In practice, hopping is cheap and easy to implement, and makes it difficult
to jam the signal (given that the hop frequency is high enough), but it is
poor at hiding the fact that communication is taking place. It is mainly used
for tactical battlefield communications, where the adversary is unlikely to
have very large jammers on hand.

A second technique is called Direct Sequence Spread Spectrum (DSSS).
This transforms a high-power, low-bandwidth signal into a high-bandwidth,
low-power signal, using a key that is shared between Alice and Bob. It is
easy for them to pick out the transmitted signal, using their key, but an
adversary will have to try to extract the signal from the noise, a difficult
task given its low power (that will ideally be under the noise floor). DSSS
has also inspired commercial communication systems and is now used in
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Asymmetric Digital Subscriber Line (ADSL) and cable modems as Code Divi-
sion Multiple Access (CDMA). Its most significant implementation problem
is synchronization, and the availability of a reference signal (such as the
Global Positioning System (GPS)) is of great help when implementing a
practical system.

The final technique in the arsenal against interception is “burst com-
munication.” The key idea is to communicate in a very short burst, so
as to minimize the probability that the adversary is monitoring the par-
ticular frequency being used at the relevant time. A cute variant of this
is meteor scatter communications, which uses the ionization trail of small
meteorites hitting the atmosphere to bounce transmissions between spe-
cial forces troops in the field and a base station. Meteor scatter can also be
used in civilian applications when low bandwidth, high latency, but very
low cost and high availability communications are required.

5.3 Civilian Traffic Analysis

Contemporary sociology models groups of individuals, not as a mass or a
fluid, but in terms of their positions within a “social network.” The paradigm
that underpins much of this research is that the position of an agent in the
social network is in many ways more characteristic of them than any of
their individual attributes. This position determines their status, but also
their capacity to mobilize social resources and act (social capital). This
position can also be determined via traffic analysis, yielding a map of the
social network, and the position of each actor within it.

Social Network Analysis [8], and experimental studies, have recently
gained popularity and led to interesting results that are of use not only to
traffic analysis, but also to network engineering more generally. It was first
noted by Milgram [9] that typical social networks present a “small world”
property, in that they have a low diameter (experimentally determined to
be about six hops between any two members) and are efficiently navigable.
In other words, there are short paths (i.e., intermediaries) between you and
anyone else in the world, and you can find them efficiently, for example by
using hints from location and profession. This work has been used to build
efficient peer-to-peer networks, but remains underused in security and trust
analysis. Another key finding is that weak links—people you do not know
all that well—are instrumental in helping you with activities that are not
commonplace, but still very important. A well-studied example is finding a
job, where people using “far links” are, on average, more successful than
those who limit themselves to their local contacts [10].

The first mathematical studies [11] of social networks (or “power law
networks” as they are often described because of the degree distribution
of their edges) tell us a lot about their resilience to failure. It turns out that
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they are extremely resistant to random node failures, meaning that they stay
connected and maintain a low diameter even when many random nodes
have been removed. On the other hand, such networks are very sensitive to
the targeted removal of the nodes with high degree. After a few nodes have
been removed, the network will become disconnected and, well before
that, the diameter increases substantially. An equally effective attack is for
an adversary to remove nodes according to their “between-ness,” i.e., how
many other nodes they are connected to in the network. Traffic analysis
can be used to select the appropriate targets to maximize communication
degradation and disruption.

Carley et al. [12] proposed using network tools to disrupt networks
of terrorists, and addressed the issues raised when multiple agents were
involved, so that removing a single leader would be effective. Garfinkel [13]
considers the Leaderless Resistance model of self-organizing independent
cells without any central control. He notes that it is “a desperate strategy
employed by movements that do not have broad popular support and that
fear infiltrators” and makes a number of policy suggestions for combating it.
More recent research by Nagaraja and Anderson [14] tries to find strategies
for a peer-to-peer network of nodes to resist node deletion attacks. The
intuition behind these defensive strategies is that nodes connect to other
random nodes in order to get resilience, while connecting according to a
power law strategy to get efficient routing. When under attack the network
regenerates links to maximize fault tolerance, and when things are calmer,
it reconfigures itself to be efficient.

Social network analysis is starting to be used for criminal intelligence
[15,16]. Investigators try to map out criminal organizations by the use of
traffic analysis techniques on telephone or network traffic and location
data. This can be used to select targets for more intensive surveillance, and
also to select appropriate targets for arrest and prosecution. Often these
arrests are aiming to maximally disrupt the organization targeted. It is not
always appropriate to arrest the most central or the most well-connected
member—this would merely serve as a promotion opportunity for smaller
crooks to take up the position. It is found to be more effective to arrest
the specialists, i.e., those people in the organization that have a unique
position or skills that others would find difficult to fill. Examples include
those who can forge papers or crooked customs officials.

Similar techniques were used by the U.S. military to locate Saddam
Hussein in 2003. Tribal and family linkages were used to identify partic-
ular individuals with close ties to him, and these were selected for closer
surveillance [17]. The latest (December 2006) U.S. Army Counterinsurgency
Manual now specifically deals with social network analysis, and discusses
the Saddam Hussein operation as an example [18]. The ties between the
9/11 conspirators have also been mapped and these connections clearly
pick out Mohamed Atta as the central figure [19]. Additionally, Dombrowski
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et al. [20] show how it is possible to predict the shape of a social network
only some of whose members and links are known.

Moving away from social links, in the 1970s the German police searched
for Baader-Meinhof safe houses by analyzing gas and electricity records,
looking for rented apartments with spikes in fuel usage where the bills
were paid by transfers from banks in different parts of the country. Thirty
years later, the United Kingdom police searched for cannabis farms (where
the plants are kept warm in artificial sunlight) by looking for unusually
heavy usage of electricity or, if the meter has been overridden, a mismatch
between the power consumed in a locality and that which is billed for. An
infrared scan from a helicopter will then locate the house that is warmer
than its neighbors. In more academic work, Fawcett and Provost [21] show
how data-mining techniques can be used to detect cellular phone fraud,
with their automated approach proving better than handcrafted detection
rules.

Traffic analysis-inspired techniques can also be used to protect systems
and build trust. Advogato [22] is a social network-based system that pro-
vides a community for free software developers. The fact that they are
introduced to each other allows the system to establish whether an author
is likely to be a spammer and filter their messages out. Gibson et al. [23]
observed that the apparently anarchic structure of Web page links could
be seen to comprise many communities with central “authoritative” pages
linked by “hub pages.” Google’s PageRank [24] uses techniques that are
very similar to Web page and social network profiling—it considers pages
that are more central in the network (with more links pointing to them)
as more authoritative. Techniques have also been devised [25] to automat-
ically detect and extract Web communities. These results can be used both
to assist and to attack users.

In a different milieu, Renesys Corporation monitors the Internet’s global
routing table and analyses the Border Gateway Protocol (BGP) traffic sent
by service providers as they announce the blocks of Internet Protocol (IP)
addresses for which they will carry traffic. Analysis of this data permits
Renesys to generate market intelligence indicating when major Internet
Service Provider (ISP) customers are starting to move to new providers,
when ISP market share is changing, or the impact of mergers or acquisitions
on customer numbers [26].

5.4 Contemporary Computer and Communications
Security
Traffic analysis techniques can naturally be applied to Internet communica-

tions. Secured systems can be successfully attacked and sensitive informa-
tion extracted. However, a key difference to keep in mind when studying
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civilian traffic analysis research is that the attackers are generally far from
omnipotent. It is not military powers with large budgets and the ability
to intercept most communications that worry us, but commercial entities,
local governments, law enforcement, criminal organizations, and terrorist
networks that have become the adversary. Therefore, research has focused
on attacks and solutions that can be deployed at low cost and provide
tangible tactical benefits (a pass phrase, a record of Web accesses, etc.).
Beyond this, more strategic work is beginning to be done on the ways in
which Internet traffic analysis can be of use to law enforcement, along with
practical approaches for ensuring that routine surveillance can be evaded.

So what can we do if we are not allowed to look at the plaintext content?

5.4.1 The Traffic Analysis of SSH

The Secure Shell (SSH) protocol permits users to log into remote termi-
nals in a secure fashion. It does this by performing authentication using a
public keyring, with the private keys accessed locally via a passphrase. It
subsequently encrypts all information transmitted or received, guarantee-
ing its confidentiality and integrity. One would think that any subsequent
password entry (that might be required to log into further remote services),
over an SSH connection, should be safe. However, Song et al. [27] show that
there is a lot of information still leaking. In interactive mode, SSH transmits
every key stroke as a packet and, hence, the password length is trivially
available.

However, because keyboard layouts are not random and passwords are
often based upon real words, the exact timing of the keystrokes is related
to how quickly one particular character can be typed after another. Hence,
more advanced techniques, using hidden Markov models, can be used to
extract further information from interpacket timing and lower the effective
entropy of the passwords, thereby making brute force guessing far easier.

It turns out that you do not need to measure the typing abilities of the
person entering the password and another user can be used to build a
profile because the similarities between users are exploitable. This links
in with subtly different results from Monrose and Rubin’s [28] research on
identifying and authenticating users using keystroke dynamics. Although
their focus was on biometrics and authentication, their results have a clear
relevance to the traffic analysis of SSH. They show that there can be enough
variability in typing patterns between users to be able to identity them,
particularly after a long sequence has been observed. As a result, not only
the content of your communications may be leaked, but also your identity—
despite all of the confidentiality that SSH apparently affords.
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5.4.2 The Traffic Analysis of SSL

The Secure Sockets Layer (SSL), and its close friend Transport Layer Secu-
rity (TLS), were introduced primarily to provide private Web access. HTTP
protocol requests and replies are encrypted and authenticated between
clients and servers to prevent information from leaking. Yet there is plenty
of research [29-33] to suggest that information is leaking out of this shell.

The key weaknesses come down to the shape of traffic that is inade-
quately padded and concealed. Browsers request resources, often HTML
pages, that are also associated with additional resources (images, style-
sheets, etc.). These are downloaded through an encrypted link, yet their
size is apparent to an observer, and can be used to infer which pages are
accessed (e.g., it would be possible to tell which specific company reports
were being downloaded by an investment banker, with consequent possi-
bilities for profitable stock trading). There are many variants of this attack:
some attempt to build a profile of the Web site pages and guess which
pages are being accessed, while others use these techniques to overcome
naive anonymizing SSL proxies. In the latter cases, the attacker has access
to the cleartext input streams and he tries to match them with encrypted
connections made to the proxy.

It should be noted that latent structure and contextual knowledge are
of great use when extracting information from traffic analysis. Levene and
Loizou [34] provided a theoretical basis for computing the entropy of Web
navigation and demonstrated that this “surfing” should not be seen as just
random. Danezis [32] assumed that users will usually follow links between
different Web resources. By learning merely the approximate lengths of the
resources that were accessed, he showed that a hidden Markov model can
be used to trace the most likely browsing paths a user may have taken. This
approach provides much faster and more reliable results than considering
users that browse at random, or Web sites that have no structure at all.

5.4.3 Web Privacy

Can a remote Web server that you are accessing tell if you have also been
browsing another site? If you were looking at a competitor’s site, then
maybe giving you a better price might be in order.

Felten et al. [35] show that it is possible to use the caching features of
modern Web browsers to infer information about the Web sites that they
have been previously browsing. The key intuition is that recently accessed
resources are cached and, therefore, will load much more quickly than if
they had to be downloaded from the remote site. Thus, by embedding
some foreign resources into a served page, the attacker’s Web server can
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perform some timing measurements and infer particular previous browsing
activity.

Note that this attack can be performed even if the communication
medium is anonymous and unlinkable. Most anonymization techniques
work at the network layer making it difficult to observe network identities,
but perform only minimal filtering in higher layers. The presence of caches
leads to the Felten attack, but doing away with any caching would be a
major problem for anonymous communication designers, since it is impor-
tant to use any efficiency improvements possible to make the already slow
browsing more usable.

5.4.4 Network Device Identification and Mapping

Can you tell if two different addresses on the Internet are, in fact, the same
physical computer? Kohno et al. at CAIDA [36] have devised a technique
that allows an attacker to determine if two apparently different machines
are the same device. They note that the clock skew (the amount by which
the clock drifts per unit of time) is characteristic of a particular machine,
differing even amongst otherwise identical models from the same manufac-
turer. Therefore, if the clock drift of two remote machines seems to match
for a long time, it is possible to conclude that there is just one machine
present. The technique they use is resistant to latency and can be applied
remotely, even if the target machine synchronizes its clock with Network
Time Protocol (NTP).

The technique can be used in forensics to link visiting machine identities
together, and to determine if two Web sites are hosted on the same consol-
idated server. Equally, it can be used by hackers to detect if the multiple
machines they are accessing are merely different versions of a virtualized
honey-pot machine.

Murdoch [37] has extended this work by observing that the clock skew
will change as the temperature changes. He has shown that, by modulat-
ing the amount of traffic sent to a machine, he can affect the amount of
work it must do, and he can detect the resultant changes in system tem-
perature by examining variations in the clock skew. Hence, if he accesses
a “hidden” machine via an anonymizing overlay network (such as Tor [38])
and varies how much traffic he sends to it, then it will heat up and cool
down as the workload changes. If he can observe a corresponding pattern
of clock skew change on a candidate machine to which direct access is
possible, this is sufficient to link that machine to the hidden identity—and
the anonymization scheme is overcome.

The opposite question is often of interest—are machines physically dif-
ferent? Given two connections originating from the same network address,
have they actually been initiated by one or multiple machines? It can be
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of particular relevance to count the number of machines behind NAT (Net-
work Address Translation) gateways and firewalls. Bellovin [39] noted that
the TCP/IP stack of many operating systems provides a host specific signa-
ture that can be detected and used to estimate the number of hosts behind
a gateway. To be exact, in many operating systems at that time, the field
identifier (IPID), used as a unique number for each IP packet, was a simple
counter that was incremented every time a packet is transmitted. By plotting
the IPID packets over time and fitting lines through the graph, one could
estimate the number of unique Windows hosts. However, this technique
is becoming less effective because many systems now scramble the IPID
field to prevent “idle scanning” (as discussed further below) and so more
complex analysis would now be necessary.

In IPv6 (the latest Internet protocol version) device addresses consist
of a 64-bit network prefix and a 64-bit network identifier. This identifier
needs to be unique, and initial proposals were for it to be constructed from
the 48-bit Ethernet media access control (MAC) address for the interface.
However, this provides a way for remote systems to link visits from the
same mobile machine, despite them coming from different network loca-
tions. Narten and Draves (RFC3041) [40] developed a “privacy extension”
for allocating identifiers randomly, and Aura (RFC3972) [41] documented
a method of creating TPv6 addresses that are bound to a public key, so
that machines could formally demonstrate address ownership without dis-
closing their identity to remote systems. However, Escudero Pascual [42]
criticizes these schemes, particularly because it is possible for remote ma-
chines to determine that visitors are using privacy preserving addresses,
which may in itself be sufficient to make their traffic stand out.

Finally, many network mapping techniques have been introduced in the
applied security world and included in tools such as nmap [43]. The key op-
erations that such tools perform are scanning for network hosts, scanning
for open network ports on hosts, and identifying the operating systems and
services running on them. This information is then used to assess whether
they might be vulnerable to attack. The degree of sophistication of these
tools has increased with the deployment of network intrusion detection
system (IDS) tools, such as the open source snort [44] that can detect
the scanning activities. nmap now can be configured to detect hosts and
open ports using a variety of techniques, including straightforward ping,
TCP connect, TCP SYN packet, as well as indirect scans. For example, idle
scanning involves forging a TCP open (SYN) packet claiming to be from
a third-party machine and destined to the target. It is possible to deter-
mine whether the target was prepared to accept the connection (it will
send SYN/ACK) or if the port is “closed” (it will send RST or nothing). This
is done by determining if the IPID value of the third-party machine has
been altered by the sending of a RST in response to the unexpected (to it)
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SYN/ACK. The obvious advantage is that any IDS at the target will believe
that the third-party machine is the instigator of the scan. The full nmap
documentation is well worth a read [45].

5.4.5 Detecting Stepping Stones

Much work has been done by the intrusion detection community to estab-
lish if a host is being used as an attack platform [46,47]. The usual scenario
involves a firewall that sees incoming and outgoing connections, and tries
to establish if a pair of them may be carrying the same stream. This might
mean that the internal machine is compromised and used to attack another
host, i.e., it is a “stepping stone” for the attacker to hide his identity.

The two main classes of techniques for detecting stepping stones are
passive, where the firewall only observes the streams, and active, where
the stream of data is modulated (often called “watermarked”). Since an
adversary is controlling the content of the stream, and may be encrypting it,
both types of detection rely on traffic data—usually the correlation between
packet inter arrival times—to match incoming and outgoing streams. The
family of traffic analysis techniques that arise are similar to those that are
used to attack anonymous communication channels.

The key result in this area [48,49] is that, if the maximum latency of the
communication is bounded, there is no way of escaping detection in the
long run. This result is, of course, tied to a particular model (the adver-
sary can match packet for packet, which is not obvious if the streams are
encrypted under different keys or mixed with other streams), and covert
channels out of its scope may prove it wrong and escape detection. It is
worth observing that an arbitrary set of active detectors is extremely difficult
(maybe even impossible) to defeat.

5.5 Exploiting Location Data

Wireless communication equipment often leaks location data to third par-
ties, or wireless operators. The extent to which this data can be used to
degrade security properties is still to be seen, but some experiments have
already been performed, and their results are a precursor of a much richer
set of attacks to come.

Escudero Pascual [50] describes an experiment he set up at the Hacker’s-
at-Large (HAL) summer camp. The camp had multiple wireless LAN access
points, which recorded the wireless MAC address of the users whose traffic
they handled. This provided a time-map of users’ movements through-
out the event, including clues about which talks they attended (the access
points were related to the venues). Even more striking were the inferences
that could be drawn about the relationship between users: random pairs
of users could be expected to have a low probability of using the same
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access point at any time and access point usage between them should be
uncorrelated over time. As a result, any above average correlation between
two users is indicative of a social relationship between the users, i.e., they
are consistently moving together at the same time around the camp.

Intel Research at Cambridge U.K., designed a similar experiment. Mem-
bers of staff were issued Bluetooth devices that would record when another
transmitting Bluetooth device was in range. The idea was to measure the
ambient Bluetooth activity, not only to tune ad hoc routing protocols for
real world conditions, but also to establish how often a random pair of
devices meet, thereby establishing how effective the ad hoc communica-
tion infrastructure would be for two-way communications. To the surprise
of the researchers analyzing the data, the devices of two members of staff
were found to be meeting each other rather often at night, which led them
to draw conclusions about their, otherwise undisclosed, relationship.

This is completely in line with evidence gathered by the MIT Reality Min-
ing project [51]. The project distributed about one hundred mobile phones
to students and staff of the Media Lab under the condition that all their
traffic data (GSM, Bluetooth, and location data) could be used for analysis.
The users were also asked to fill in forms about themselves and who they
considered to be their friends or colleagues. The traffic data and question-
naires were then used to build classifiers. It turned out that calling or being
with someone at 8 p.m. on a Saturday night is a very good indicator of
friendship.

They also uncovered location signatures that could differentiate a stu-
dent from a member of the staff. What is even more impressive is that they
did not use the physical locations to draw inferences, but instead the fre-
quency at which they were found to be at places designated as “work” or
“home.” Students tended to have a more uncertain schedule, while mem-
bers of the staff were much more predictable in their habits. This, of course,
led to research about the amount of entropy that location data provides and,
as might be expected, for some individuals (if one is given a set of locations
and time), it is possible to predict with high probability their next move
and new location.

So, the evidence from these preliminary studies is highly suggestive
that whatever the wireless medium used—mobile phone, wireless LAN,
or Bluetooth—sensitive information about your identity, your relations to
others, and your intentions can be inferred merely though traffic analysis.

5.6 Resisting Traffic Analysis on the Internet

A relatively old, but only recently mainstream, subarea of computer secu-
rity research is concerned with “anonymous communications” and, more
generally, communications that do not leak any residual information from
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their meta data. The field was started by Chaum [52], introducing the Mix
as a basic building block for anonymity, and has continued since, adapting
the techniques to provide private e-mail communications and more recently
Web browsing. A thorough overview of the field and key results is available
in two recent Ph.D. theses by Danezis and Serjantov [53,54].

Fielded anonymous communication systems that are the direct products
of twenty years of research, include Mixmaster [55] and Mixminion [56] for
e-mail, and JAP [57] and Tor [38] for Web browsing. They all increase the
latency of communication and its cost in terms of traffic volumes.

A range of traffic analysis attacks has been used to degrade the secu-
rity of anonymous communications networks. Long-term intersection at-
tacks (also referred to as disclosure attacks) exploit long-term observations
of input and output messages to detect communicating parties. These at-
tacks [58-01] consider the anonymity network as a black box, and only
observe parties sending and receiving messages. The key observation is
that for anonymous communications to be usable, the latency of messages
has to be bounded. As a result, the act of sending a message is correlated
in time, albeit not exactly, with observing the corresponding message be-
ing received. An adversary, therefore, can observe the anonymity system
for a sufficiently long period to obviate the lack of exactness, and infer
the communication relationships between different users, and in turn de-
anonymize the messages. Since this family of attacks in not concerned with
the internals of the anonymity network, it is considered to represent a fun-
damental limit on how well any such technology can protect users against
traffic analysis.

Stream traffic analysis has been used to trace Web requests and replies
through low latency networks. Such attacks make use of the timing of the
packet streams transferred by each anonymizing relay to follow the connec-
tion between the communicating parties. Packet counting is the simplest
variant—an adversary simply counts the number of packets in a certain
time interval and tries to match it with the number of packets on another
network link [54]. Low latency anonymity systems are required to trans-
port packets so quickly that this attack is often possible. A slightly more
sophisticated method involves creating a template (a probabilistic modelD)
of the stream to be traced, and matching it with other streams [53]. Un-
less a very strict traffic regime is imposed, with the side effect of slowing
down data transfer or adding large amounts of dummy traffic, such attacks
will always be successful in the long run. As a result, stream tracing at-
tacks also represent a fundamental limit on the anonymity of low latency
systems.

Finally, the attacker can infiltrate the network or try to influence the way
in which honest nodes chose paths to anonymize their traffic. An important
study of the effect of insiders on the security of anonymity systems is pre-
sented by Wright et al. [62], along with the predecessor attack on the crowds
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anonymity system. Crowds implements a simple pass-the-parcel algorithm
to anonymize traffic: Messages are passed from one node to the other,
until one of them—with some preset probability—sends it out onto the
network. Only link encryption is used, and the intention is that anonymity
will be achieved because although nodes will know the content of mes-
sages, they will not be able to tell who the initial sender of the message
was. The predecessor attack relies upon nodes having persistent patterns
of communications. This means that the actual initiator will appear as the
predecessor of a particular message or request rather more often than other
random nodes (that merely relay the communications).

Lately, attacks have focused on weaker adversaries, such as those con-
sidered by the Tor system, and it has been shown that some forms of traffic
analysis can be performed without even having any access at all to the
actual data streams to be traced. In particular, remote network monitoring
techniques have been used to lower the anonymity of Tor [63]. Streams
travelling over the same infrastructure influence each other’s timing and,
therefore, can be used by an adversary to perform traffic analysis on remote
hosts. Similarly, as already mentioned, covert channels based on the effects
of temperature on clock drift can be used to de-anonymize servers [37].
The fact that even such minuscule phenomena can be used to perform
traffic analysis against hardened systems illustrates how difficult the task of
securing systems against traffic analysis is. It also illustrates that so little im-
portance has been paid to securing public networks against traffic analysis
that the information leaked can be detected and abused far, far away from
its source.

Source and destination network addresses are not the only raw mate-
rial for traffic analysis: The timing characteristics of encrypted traffic on a
link, such as its frequency or particular bursts, may also reveal information
to a third party (as seen with the examples of SSL and SSH). Military and
diplomatic circles have long been avoiding this problem by using line en-
cryptors that fill a leased line with ciphertext, no matter if any information
is being transmitted. This prevents an enemy noticing that traffic has either
increased (or indeed decreased) as the result of an event (as, apocryphally,
it is said that the volume of late-night Pentagon pizza orders changes when
hostilities are imminent [64,65]).

Fixed-rate encryption equipment is expensive to purchase (and oper-
ate), so there is a temptation to move to off-the-shelf routers, software
encryption, and the use of general purpose wide-area network links. Very
little research has been done on protecting encrypted IP links against traf-
fic analysis despite warnings concerning the threat posed against standard
protocols like IPSec [66] and transport layer security (TLS). Venkatraman
and Newman-Wolfe [67,68] have looked at imposing traffic schedules to
minimize information leaked as well as covert channels. Ways to analyze
the cost and anonymity provided by such systems is presented in [69].
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The earliest mention of this problem can be found in 1983 [70], with the
conclusion that “beyond the host level, further limitation on information
release becomes increasingly expensive and are probably not necessary in
a nonmilitary environment.”

A related problem, of concern in military circles, is that an enemy could
observe a network and even though all the traffic was encrypted, determine
the function of each node through traffic analysis. A weather station would
generate reports on an hourly basis, but the more interesting target of the
military headquarters could be distinguished by the multiple flows in and
out of its node. The U.S. DARPA Agency set this problem as one of its
challenges in 1998 [71] and it has been addressed, albeit only for fairly
limited network topologies, in a number of papers from Guan et al. [72-74]
that consider adding extra traffic (padding) and rerouting some of the traffic
along alternative network paths.

5.7 Data Retention

For some time, law enforcement officers (the police, secret services, etc.)
have been using telephone call traffic data to identify criminals. Initially,
very simple enquiries were made—determining who made the last call that
the murder victim received, tracking the source of a ransom demand, and so
on. However, there has been a growing use of genuine traffic analysis tech-
niques to develop “friendship trees” and, thereby, identify the roles of indi-
viduals within a conspiracy [13]. However, the denationalization of incum-
bent fixed-line telephone companies has broken their close ties with the
police, and the growth of mobile telephone usage has led to a fragmentation
of the market and fierce price competition, so that collection and storage
of traffic data is now seen as an expensive burden. At the same time, new
flat-rate business models have made the business justification for call traffic
data disappear. This has led to considerable anxiety within law enforcement
agencies that a valuable source of information will cease to be available.

In parallel, criminals have started to use the Internet for their communi-
cations and law enforcement has found that within this open system, with
an extremely disparate set of service providers, the traceability of com-
munications can be problematic, and traffic analysis almost impossible. In
particular, there has been concern that voice traffic will migrate from the
closed and ordered telephony world to Voice over IP (VoIP) running on
the open and anarchic Internet.

In response, particularly after the terrorist attacks in Madrid (2004) and
London (2005), interest grew in mandatory data retention, requiring com-
munications service providers to retain their traffic data logs for a fixed
period, often far longer than their business needs would require. The term
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data retention should be contrasted with a “data preservation” regime,
where data is preserved specially in response to a specific request from
law enforcement personnel.

The United States has long had a data preservation regime, but in 2006
Congress started being pressured to consider moving to a data retention
regime, with online child exploitation being cited as unnecessarily hard to
investigate [75]. At much the same time, the 1994 Communication Assis-
tance for Law Enforcement Act (CALEA) requirements on traditional tele-
phony (call data provision, wiretapping capability) were extended to VoIP
providers [70].

Meanwhile, the European Union (EU) adopted the Data Retention
Directive (2006/24/EC) in March 2006 [77]. This provides for telephone
companies to implement data retention by September 2007 and Internet
companies by March 2009 at the latest. There is some doubt over the
legal status of the directive, which is being challenged (early 2007) by
Ireland on the basis that it should have been implemented under Third Pillar
procedures for Police and Judicial Cooperation in Criminal Matters rather
than as a First Pillar Directive for Market Harmonization. In practice, even
though it is a directive, there is little harmonization, with EU member states
free to decide on retention periods of anything between six months and
two years, and with such technically incompetent definitions having been
chosen that it they could refer to every point-to-point connection made
over the Internet, or merely to records of e-mails passing through major
servers. It looks like being several years before any clarity emerges, and it
is very likely indeed that retention regimes will differ markedly in different
countries.

Notwithstanding all this technical confusion, there has been very little
informed debate on the types of information that will be capable of be-
ing extracted from the retained data. As should be apparent from even the
limited survey we have presented in this chapter, there is significant scope
for drilling down to reveal the most private of information about activities,
habits, interests, and even opinions. Storing this data, in an easily accessi-
ble manner, represents a systemic vulnerability that cannot be overstated
enough.

In order to make balanced judgments between the needs of law en-
forcement agencies and the entitlement of law-abiding citizens to privacy,
policymakers must become far more aware of the wealth of information
that could be extracted from such data about every aspect of the networked
society. Even the extraction of apparently anonymous profiles from traffic
databases would greatly facilitate privacy violations and routine surveil-
lance. We believe that resistance to traffic analysis must be perceived of as
a public good—the more that any attacker knows about the habits of your
neighbors the more they can tell about you.
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5.8 Conclusion

We have seen how traffic analysis has been used by the military and how
broadly similar techniques are beginning to be seen in civilian life. Much
activity still remains classified, but more is entering the public domain,
not least because of a wish to reduce costs by having a broad range of
commercial off-the-shelf (COTS) equipment available.

However, our understanding of the threat that traffic analysis attacks
represent on public networks remains somewhat fragmented, although the
active research in this field has led to considerable improvement. The results
we have presented in this chapter, from what we know so far, should act
as a warning against ignoring this threat. Traffic analysis not only can be
used to reveal what is going on, but can also be used to bypass apparently
robust security mechanisms.
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6.1 Introduction

With the ubiquitous collection and availability of data, there is significant
pressure to actually analyze and correlate the collected data to turn it into
a valuable resource. While it is clear that data can be significantly lever-
aged for great gains, the use of this data cannot be allowed at the cost
of individual privacy. Too often, privacy is an afterthought and this can
cause problems. For example, while a terminally ill HIV/AIDS patient may
be happy to receive notice of experimental drugs that he may be unaware
of, he definitely would not like his health information broadcast or even
leaked to others. Similarly, laws like the Patriot Act may be necessary for
security, but could represent a significant breach of privacy rights.
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However, the purpose of this chapter is to show that data analysis is
not necessarily antithetical to privacy. This chapter explores the problems
of profiling, targeted marketing, data mining, and privacy. Today, there
are significant advances in the field of cryptography that can be leveraged
so that “we can have our cake and eat it, too.” We start out by showing
what is implied by privacy-preserving profiling and then describe technical
ways to achieve it. We then explore the concept of targeted marketing for
both static as well as mobile users, and describe technical ways to achieve
privacy while still allowing clustering analysis. Finally, we show how all of
these problems fall under the umbrella of privacy-preserving data mining,
and provide a brief overview of it. All together, the chapter should convince
you that there are technological solutions for privacy, which may yet enable
safe and beneficial use of distributed data.

6.2 Privacy-Preserving Profiling

Profiling is defined as recording a person’s behavior and analyzing psycho-
logical characteristics in order to predict or assess their ability in a certain
sphere or to identify a particular group of people. To profile is to general-
ize or to typecast. In profiling, based on certain characteristics, a person is
typecast into a certain category. Profiling works better if the characteristics
profiled are accurate. For example, when pulled over by a police officer,
if slurry speech is a good indication of intoxication, then that is a good
characteristic for the police officer to ask for a breathalyzer test. Similarly,
if furtively looking around a store or wearing a trench coat on a hot day
is a good indication that the person is a shoplifter, then those are good
characteristics for a store owner to pay attention to. But, if wearing baggy
trousers and having a mohawk isn’t a good indication that the person is
a shoplifter, then the store owner is going to spend a lot of time paying
undue attention to honest people with an unorthodox fashion sense.

Computerization greatly simplifies profiling. In the first place, computer-
ization increases the amount of data available for people to create profiles.
Also, instead of a person doing the profiling, a computer can look the
profile over and provide some sort of rating. Generally, profiles with high
ratings are further evaluated by people, although sometimes countermea-
sures kick in based solely on the computerized profile. However, since
computers do not have any intuition nor can they adapt like humans, pure
computerization can lead to false positives as well as false negatives.

One of the main drivers of profiling is security. For example, after 9/11,
there has been a major push to increase checking at airports to reduce the
chances of terrorists hijacking a flight. However, the manpower and re-
sources required to comprehensively check every passenger are inordinate
and would make it impossible. Instead, the Federal Aviation Administration
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(FAA) has been trying in recent years to employ information technology
to boost the overall efficiency of security screening. The basic idea behind
the approach is to be more intelligent about which passengers are selected
for rigorous inspections. Instead of searching all passengers, a whole lot
of effort can be saved if you identify the suspicious ones and concentrate
only on them. Of course, this only works if you can develop a good profile
describing likely terrorists. However, once (or if) you have such a profile,
it makes a lot of sense to apply it and concentrate your security efforts only
on the people matching the profile.

Based on this intuitive premise, the Department of Homeland Secu-
rity and the FAA would like to implement a computer-assisted passenger
prescreening system (CAPPS & CAPPS II). The FAA contends that since
CAPPS uses profiles to pinpoint potential terrorists for closer inspection, it
not only results in the apprehension of more criminals, but also makes
security screening more expedient for well-meaning citizens. However,
there are several problems with deploying such a system. Chakrabarti and
Strauss [11] identified a problem with CAPPS, such as nonrandom checking
where an adaptive attacker can figure out the profiles used through sev-
eral nonviolent runs through the system and then consciously vary from
those profiles at the time of the real attack. Even more significantly, there
has been a severe backlash due to privacy concerns. In order to match
against the profiles, passenger information would be collated from a vari-
ety of sources and compared without regard to privacy. This is a significant
problem and has caused the deferment of implementation for both CAPPS
systems.

Following is a description of how this restriction can be lifted through
technical means. We regard the profile matching as a classification task
where the profiles define rules that, when matched, describe a particu-
lar behavioral class (target). Here, privacy-preserving profiling is possible
through cryptographic means, though an efficient solution requires some
trust. In order to perform privacy-preserving profiling, three conflicting
privacy/security requirements must be met: (1) the data must not be re-
vealed, (2) the classifier must not be revealed, and (3) the classifier must
be checked for validity. Kantarcioglu & Clifton [21] proposed methods to
apply a classification model without having to reveal it. This can be used
for privacy-preserving profiling. Thus, the methods proposed have the fol-
lowing property:

1. The classification result is revealed only to a designated party.

2. No information about the classification result is revealed to anyone
else.

3. Rules used for classification can be checked for the presence of cer-
tain conditions without revealing the rules (it is important to check,
for example, that race is not being used as a deciding characteristic).
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Formally, the problem can be defined as follows: Given an instance x
from site D with v attributes, we want to classify x according to a rule set
R provided by the site G. Let x; denote the ith attribute of x. We assume
that each attribute of x has 7 bits, and that each given classification rule
r € Ris of the form (L1 A L2A ... A L,) —> C, where C is the predicted
class if (L1 A L2 A ... A L,) evaluates to true. Each L; is either x; = a, or
a “don’t care” (always true). While one may argue that “don’t care” clauses
are redundant in the problem definition, if they are eliminated, one could
potentially learn the number of clauses in each rule. This may, in itself,
be sensitive information. Therefore, the “don’t care” clauses are included
explicitly in the protocol to mask the number of #rue clauses in each rule.
Now, no party can gain extra information about the number of clauses in a
rule. In addition, D has a set F of rules that are not allowed to be used for
classification. In other words, D requires F N R = ¢. The goal is to find the
class value of x according to R while satisfying the following conditions:

® D will not be able to learn any rules in R.

m D will be convinced that F N R = ¢ holds.

B G will only learn the class value of x and what is implied by the
class value.

All of the above goals are easily achievable if there is a trusted third
party asked to perform the computation. In this case, D and G would give
their respective data (x, F, and R) to the trusted party 7 and ask it to check
all the conditions and return the evaluation result to G. However, the main
problem with this is to find such a trusted third party acceptable to all
participants. The general methods for secure multiparty computation could
be used. Yao first postulated the two-party comparison problem (Yao’s
Millionaire Protocol—two millionaires want to know who is richer without
either disclosing their net worth) and developed a provably secure solution
[42]. This was extended to multiparty computations (for any computable
functionality) by Goldreich et al. [16] (as long as trap door permutations
exist) and to the malicious model of computation by Ben-Or et al. [8]. The
generic circuit-based technique can be used, but is highly restrictive in
terms of the overall computation/communication cost.

Thus, in order to be efficient, the method assumes that an untrusted
noncolluding site is used. The site is untrusted in the sense that it does not
learn anything without active collusion with one or more of the data sites.
Also, neither data site learns any extra information about the other site’s
data without active collusion with the untrusted third party. This assumption
is not unreasonable—there are many examples of such collaboration in the
real world (e.g., the auction site eBay is trusted by both sellers and buyers
to not collude with the other).
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The key tool used in the protocol is Commutative Encryption. A plain
text data item enciphered with multiple encryption keys in any arbitrary or-
der will have the same enciphered text if the encryption algorithm is com-
mutative. Formally, an encryption algorithm is commutative if the following
two equations hold for any given encryption keys K3, ..., K, € K, any data
item to be encrypted m € M, and any permutations of 4, j : Vi, m, € M,
such that my # my:

E]C1 ( .. EK,.n(m) .. ) = EK}/‘] ( .. E](m(m) .. ) (61)
and for any given & € < 1/2*
PV(E](II ( .. EKl.n(ml) .. ) = EK./l ( .. E](].“(mZ) .. )) < € (62)

The order invariance property of commutative encryption can be used
to easily check if two items are equal. Thus, if two values are encrypted by
two keys (from a commutative public key system), then irrespective of the
order of encryption, the two ciphertexts will be exactly the same as long as
the original values are exactly the same. Thus, if two organizations wish to
check if their local inputs are exactly the same, they can each generate a key
and use it to encrypt their inputs. Now the two can encrypt each other’s
input and, simply by checking the encrypted ciphertexts, determine the
equality of the original values. Pohlig and Hellman [29] is one example of a
commutative encryption scheme (based on the discrete logarithm problem).
This or any other commutative encryption scheme would work well for our
purposes.

Using commutative encryption, it is easily possible to solve the problem
of privacy-preserving profiling between the sites D and G as defined above
along with an untrusted noncolluding site S. At the end of the protocol,
S will only learn the number of attributes, the number of rules, and the
number of literals satisfied by each rule for a given instance. The basic idea
is that sites D and G send synchronized streams of encrypted data and rule
clauses to site S. The order of attributes are scrambled in a way known to
D and G, but not S. This prevents S from learning anything about the at-
tributes. Each attribute is also given two values, one corresponding to “don’t
care,” the other to its true value. Finally, each clause also has two values for
each attribute. One possibility is an “X” or invalid value (masking the real
value). The other is the desired result, either the actual value or the agreed
upon “don’t care” value. § compares to see if either the first or second val-
ues match. If so, then either the attribute is a match or the clause is a “don’t
care.” If there is a match for every clause in a rule, then the rule is true.

While this is good, there exists one problem. If all the encryptions are
the same, then S could correlate across rules and instances. However, the
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key is that the “don’t care,” true, and invalid values are encrypted directly
for each data/rule pair in the stream in a way shared by D and G, but
unknown to S. The order (is the first attribute the value or the “don’t
care” value?) also changes, again in a way known only to D and G. Since
all values are encrypted (always with at least one key unknown to $)
the noncolluding site S learns nothing except which rule matches. Since
the rule identifier is also encrypted, this is useless to §. With all of these
precautions, S can no longer learn even the class distribution of different
instances over multiple runs through the protocol. Finally, the results are
split and sent to the two sites. Checking for forbidden rules is possible using
the commutative property of the encryption system. Having a third party
is actually an advantage in the sense that, with collusion (perhaps under
court order), it is possible to expose the entire working of the protocol and
ensure that no one cheated. However, one large drawback of this work
is that negative clauses are not supported and the entire protocol is not
yet implemented. Nevertheless, this indeed shows that privacy-preserving
profiling is technically possible.

6.3 Ensuring Privacy in Targeted Marketing

We now look at how to ensure privacy while still enabling targeted mar-
keting. Depending on whether the customers are static or mobile, there
are two distinct cases. Both have completely different requirements and
solution approaches. Both are covered below.

6.3.1 Ensuring Privacy of Static Users

Effective marketing requires identification of the right target audience. In
this sense, targeted marketing serves as one of the most efficient forms of
marketing. The accepted way of doing this is through clustering. Clustering
and cluster analysis is identified as a critical step in effective marketing.
Malhotra [27] identifies the following critical applications of cluster analysis
(or clustering) in marketing:

B Segmenting the Market: For example, consumers can be clustered
depending on the benefit they seek from the purchase or obtain from
it. Each cluster would then consist of consumers who are relatively
homogeneous in terms of the benefits they seek.

B Understanding Buyer Bebavior: Buyer behavior can be better under-
stood if we group similar buyers together. This allows us to analyze
the buying behavior of each homogeneous subgroup as opposed to
looking at them as a whole. This can provide far more relevant fac-
tors for all of the subpopulations instead of simply getting a generic
profile.
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B [dentifying New Product Opportunities: By clustering brands and
products, competitive sets within the market can be determined.
Brands in the same cluster compete more fiercely with each other
than with brands in other clusters. Thus, a firm can examine its
current offerings compared to those of its competitors to identify
potential new product opportunities.

B Selecting Test Markets: By grouping locations into homogeneous
clusters, it is possible to select comparable locations to test various
marketing strategies.

B Reducing Data: In general, by identifying homogenized clusters,
one can represent the entire cluster by a representative (sample).
In this sense, the overall size of the dataset is reduced. Subsequent
multivariate analysis can be conducted on the clusters rather than
on the individual observations.

In general, any clustering algorithm can be applied to form the clus-
ters. Traditionally, all clustering algorithms assume complete access to the
underlying data. However, if the data is collected at several different sites
(perhaps even remaining with the data owner, i.e., end consumer), pri-
vacy and security concerns restrict the sharing of this data. Thus, the key
question is whether we can still create clusters and analyze them without
complete access to the underlying data. However, this brings up the issue
of exactly what is private and what are the results? For complete security,
one should only learn the number of clusters and their composition, while
receiving no other information. However, this depends on the clustering
algorithm and the way data is shared.

Depending on the specific clustering algorithm used, several algorithms
have been proposed to perform the clustering in a privacy-preserving man-
ner. Vaidya and Clifton [33] proposed the privacy-preserving k-means al-
gorithm for vertically partitioned data. Vertically partitioned data implies
that the data for a single entity is split across multiple sites, and each site
has information for all the entities for a specific subset of the attributes.
Here, the security requirements would imply that the existence of an entity
in a particular site’s database may be revealed; however, it is the values
associated with an entity that are private. Therefore, the goal is to clus-
ter the known set of common entities without revealing any of the values
that the clustering is based on. K-means clustering is a simple, iterative
technique to group items into k clusters: k clusters centers are chosen at
random, each item is assigned to the closest cluster, and then the clus-
ter centers are recomputed based on the data placement. This procedure
repeats until the clustering converges (or a certain number of iterations
are done). The goal is to generate a solution that minimizes the intraclus-
ter variation while maximizing the intercluster distance. The results come
in two forms—assignments of entities to clusters and the cluster centers
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themselves. Since the data is vertically partitioned, all parties need to know
the cluster assignment of an entity (since all jointly own the data for that
entity), but the cluster centers are semiprivate. Each party knows the clus-
ter centers for the attributes that it owns. However, when data is hori-
zontally partitioned (i.e., all sites collect the same features of information
but for different entities, like different banks collecting credit card infor-
mation for different customers), the results are quite different. The cluster
assignment of an entity should be known only to the owning site, while
the cluster centers may be private (not known to anyone) or be public
(known completely to everyone) depending on the security requirements.
Thus, the overall security requirements are quite different based on the data
distribution.

The privacy-preserving k-means of Vaidya and Clifton [33] follows the
basic k-means algorithm very closely. Starting means can be randomly gen-
erated together by all of the parties. The cluster assignment of each item
needs to be decided via a secure protocol. Once all entities are assigned
to clusters, recomputing the cluster means can be done locally by all of
the parties. Finally, the termination test needs to be done securely as well.
For the closest cluster computation, each party can independently calculate
the local distance of its entity from each of the & clusters. What remains is
to find the globally closest cluster. This is done via a secure addition and
permutation procedure so that only the closest cluster index is revealed
(neither distances to clusters nor cluster ordering is revealed).

When to terminate is decided by comparing the improvement to the
mean approximation in each iteration to a threshold. If the improvement
is sufficient, the algorithm proceeds, otherwise it terminates. Each party
locally computes the difference between its share of the old mean and the
new mean for each of the k clusters. Now, the parties must figure out if the
total sum is less than the threshold. This looks straightforward, except that
to maintain security (and practicality) all arithmetic takes place in a field
and is, thus, modular arithmetic. This results in a nonobvious threshold
evaluation at the end, consisting of a secure addition/comparison. Intervals
are compared rather than the actual numbers. Further details can be found
in [33]. Jagannathan and Wright [20] extend this idea to performing the
k-means clustering over arbitrarily partitioned data.

Lin et al. [25] proposed a secure method to perform expectation maxi-
mization (EM)-clustering over horizontally partitioned data. This is simple
if the (intermediate) cluster centers are public information. It is easy for
each party to assign its points to the closest clusters. Recomputation of the
cluster centers only requires secure summation across parties. There have
been other methods proposed for secure clustering [19]. Any of these could
be used.
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6.3.2 Ensuring Privacy of Mobile Users

In recent years, mobile phones and wireless personal digital assistants
(PDAs) have evolved into wireless terminals that are global positioning
system (GPS) enabled. With the expected revenues of mobile commerce
to exceed $88 billion by 2009 [1], mobile commerce will soon become a
gigantic market opportunity. The market for location-aware mobile appli-
cations, often known as location-based services (LBS), is very promising.
LBS is to request usable, personalized information delivered at the point
of need, which includes information about new or interesting products
and services, promotions, and targeting of customers based on more ad-
vanced knowledge of customer profiles and preferences, automatic updates
of travel reservations, etc. For example, a LBS provider can be designed to
present users with targeted content, such as clothing items on sale, based
on prior knowledge of their profile, preferences, and knowledge of their
current location, such as proximity to a shopping mall [39]. Additionally,
LBS can provide nearby points of interests based on the real-time loca-
tion of the mobile customer, advising of current conditions, such as traf-
fic and weather; and deliver personalized, location-aware, and context-
sensitive advertising, again based on the mobile customer profiles and
preferences.

In order to implement such services, customization, and personaliza-
tion based on the location information, customer profiles and preferences,
and vendor offerings is required. This is because, to be effective, targeted
advertising should not overwhelm the mobile consumers and only push
information to a certain segment of mobile consumers based on their pref-
erences and profiles, and based on certain marketing criteria. Obviously,
these consumers should be targeted only if they are in the location where
the advertisement is applicable at the time of the offer.

There are a number of security and privacy concerns in such a location-
based service environment. First, effective delivery of a location-based mo-
bile service may mean locating a mobile customer. Location information
has the potential to allow an adversary to physically locate a person. As
such, wireless subscribers carrying mobile devices have legitimate concerns
about their personal safety if such information should fall into the wrong
hands. Second, the location-based service should not be able to track a
mobile customer and maintain a profile of the customer’s spatiotemporal
patterns. For example, learning that a user would typically be in a certain
location during a certain time may potentially have similar adverse effects
as those of locating a person. And finally, the identity of the individual
should be kept confidential primarily because the services being requested
by a user should not be traced by the LBS.
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A privacy-preserving technique based on requiring a pseudo-ID has
been proposed by Beresford and Stajano [9], which employs the notion of
mix zone. This essentially is to prevent tracing a user if multiple requests
originate from the user. Another significant approach is to employ the no-
tion of location k-anonymity. The proposed approaches essentially enlarge
the spatiotemporal region of an LBS request to include k-1 users [15,17,28].
The notion of k-anonymity has been extended to historical k-anonymity
[10] to ensure k-anonymization of a trace of LBS requests.

Another important privacy requirement is protecting the user profile in-
formation, which may include both sensitive and nonsensitive attributes,
such as name, address, linguistic preference, age group, income level, mar-
ital status, education level, etc. Whether LBS is delivered in a “push” or
“pull” fashion, service providers require access to customers’ preference
profiles either through a proprietary database or then use an arrangement
with an LBS provider, who matches customer profiles to vendor offerings
[4]. Certain segments of mobile consumers are willing to trade off privacy
by sharing such sensitive data with selective merchants, either to bene-
fit from personalization or to receive incentives offered by the merchants.
Therefore, it is important that the sensitive profile information is revealed
to the respective merchants only on the need-to-know basis. For example,
a security policy may specify that a customer is willing to reveal his age
in order to enjoy a 20 percent discount coupon offered on sports clothing.
But, he is willing to do this only during the evening hours and while close
to the store. As a result, the security policies in such an environment are
characterized by spatial and temporal attributes of the mobile customers
(location and time), as well as their profile attributes.

One main challenge is in addressing the issue of overhead when enforc-
ing security, as it may degrade the performance. One way to alleviate this
problem and to effectively serve access requests is to efficiently organize
the mobile objects as well as access control policies where users can specify
which service providers can access their location/profile information based
on the time and the users’ location. Toward this end, an index scheme for
moving object data and user profiles has been proposed in Atluri et al. [5].
However, this does not consider authorizations. An index structure has been
proposed to index authorizations ensuring that the customer profile infor-
mation be disclosed to the merchants based on the choice of the customers
[43]. However, this provides separate index structures for data and autho-
rizations. Atluri and Guo [6] have proposed a unified index structure called
STPR-tree in which authorizations are carefully overlaid on a moving object
index structure (TPR-tree) [31], based on their spatiotemporal parameters.
One main limitation of the STPR-tree is that it is not capable of maintaining
past information. As a result, it cannot support queries contingent on past
location and security policies, which are based on the tracking of mobile
users. More recently, Atluri and Shin [7] presented an index structure, called
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ST _tree, which maintains past, present, and future positions of the mov-
ing objects, along with authorizations, by employing the partial persistent
storage.

6.4 Privacy-Preserving Data Mining

In general, most of the work discussed above falls under the umbrella
of privacy-preserving data mining (PPDM). Privacy-preserving data mining
deals with the problem of mining data without seeing it. While this may
sound counterintuitive, as seen above, secure computation makes this pos-
sible. Agrawal and Srikant [3] introduced the idea of perturbing the local
data to protect privacy while recovering the distribution to enable mining.
For example, if we add a random number chosen from a Gaussian distri-
bution to the real data value, the data miner no longer knows the exact
value. However, important statistics on the collection (e.g., average) will be
preserved. Special techniques are used to reconstruct the original distribu-
tion (not the actual data values). The mining algorithm is modified to work
while taking this into consideration. Their seminal paper applied this idea to
perform ID3 classification. Agrawal and Aggarwal [2] proved a convergence
result for a refinement of this algorithm. The perturbation approach has also
been applied to other data-mining tasks, such as association rule mining
[14,30,44]. Zhu and Liu [45] studied the problem of optimal randomization
for privacy-preserving data mining and demonstrated the construction of
optimal randomization schemes for density estimation.

The perturbation approach is especially well suited to cases where indi-
vidual users have access to their data and care about the privacy of certain
attributes. A “perturber” could be deployed at each user that modifies the
local values according to some known distribution and then sends them to
a global site to collate and mine. However, the big drawback with the per-
turbation approach is that their security is not well established. Knowing the
bounds on a value with some confidence level is often sufficient to breach
privacy. For example, you may not need to know that your coworker Tom
makes exactly $84,720. It is sufficient if you find out that his salary is be-
tween $80,000 to $85,000 with 95 percent confidence. Unfortunately, with
perturbation, it is difficult to avoid such problems without severely degrad-
ing the data. Kargupta et al. and Huang et al. [18,23] pointed out several
security problems with perturbation.

The alternative cryptographic approach is more secure, but often less
efficient. It is well suited to situations with a small number of parties owning
a large amount of data that needs to be jointly analyzed. This approach is
characterized by the formal proofs of security that clearly show exactly what
information is revealed through the secure protocol. Lindell and Pinkas
[26] introduced this concept (of secure computation) to data mining by
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proposing a secure method to do ID3 classification over horizontally par-
titioned data. Since then there has been a lot of work on association rule
mining [22,37], clustering [20,25,33], classification [13,34,36,41], outlier de-
tection [35], and regression [12,24,32].

An excellent survey of all of this work can be found in [38,40]. In gen-
eral, this shows that privacy-preserving data mining is here to stay. How-
ever, there are still several major research challenges open. First, it is still
necessary to implement such methods and create a toolkit to establish
the efficiency of such methods for deployment in real life. Also, result
analysis needs to be carried out to establish exactly what information is
revealed through multiple use of various different data-mining methods.
Finally, much of this work has been method specific—more general meth-
ods enabling broad types of analysis would be much more useful.
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7.1 Introduction

This chapter illustrates some basic issues in the study of enterprise privacy
policies and the underlying languages, namely the treatment of purposes,
conditions, and obligations under which personal data is collected and
can be accessed, as well as the derivation of a suitable toolkit for refining
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policies and for combining them according to several policy operations.
These operations ideally yield an expressive algebra over enterprise pri-
vacy policies together with suitable algebraic laws that allow for conve-
niently using such policies in common business scenarios. This chapter
uses IBM’s Enterprise Privacy Authorization Language (EPAL) for illustrat-
ing these concepts.

7.1.1 Motivation and Overview

The past decades have come with a dramatic intensification in the so-
cial practices of gathering, storing, manipulation, and sharing information
about people. Various new practices have aroused suspicion, indignation,
and protest not only among legal experts and privacy advocates, but also
in the popular media and among the general public, which in turn led to an
increasing privacy awareness. As a consequence, the proper incorporation
of privacy considerations into business processes has rapidly gained im-
portance. Regulatory measures, such as the Children’s Online Privacy Pro-
tection Act (COPPA), the Health Insurance Portability and Accountability
Act (HIPAA), the Sarbanes—Oxley Act, and the European Union Directive
on Data Privacy, serve as additional evidence that avoiding violations of
privacy regulations is becoming a crucial issue. Adhering to such regula-
tions, in particular, requires the development of an expressive and easily
usable method for dealing with privacy concerns of Web site users that en-
sures law-compliant usage of personal data within enterprises as well as in
general business-to-business matters. While the Platform for Privacy Prefer-
ences Project (P3P) [1] constitutes a valuable tool for dealing with privacy
issues of Web site users, the fine-grained treatment of privacy concerns in
business-to-business matters is still not settled satisfyingly, e.g., a language
for the internal privacy practices of enterprises and for technical privacy en-
forcement must offer more possibilities for fine-grained distinction of data
users, purposes, etc., as well as clearer semantics.

7.1.2  Enterprise Privacy Policies

To live up to these requirements, enterprise privacy technologies have
emerged and rapidly gained momentum. One approach for capturing the
privacy requirements of an enterprise—without already specifying the im-
plementation of these requirements to retain sufficient flexibility—is the
use of formalized enterprise privacy policies, see, e.g., [2—4] for first occur-
rences of this concept, which nowadays are widely considered to constitute
a salient approach for providing such a method. Informally speaking, the
aim of a privacy policy is to define by whom, for which purposes, and in
which way collected data can be accessed. Further, a privacy policy may
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impose obligations on the organization using the data. Privacy policies for-
malize privacy statements, such as “we use data of a minor for marketing
purposes only if the parent has given consent” or “medical data can only
be read by the patient’s primary care physician.” In business-to-business
matters, enterprise privacy policies often reflect different legal regulations,
promises made to customers as well as more restrictive internal practices of
the enterprise. Further, they may allow customer preferences. Technically,
enterprise privacy policies closely resemble traditional policies for access
control (see, e.g., [5-8]) augmented with privacy-specific characteristics,
such as purposes, conditions, and obligations.

Although the primary purpose of enterprise privacy policies is enterprise-
internal use, many factors speak for standardization of such policies. For
example, it would allow certain technical parts of regulations to be encoded
into such a standardized language once and for all, and a large enterprise
with heterogeneous repositories of personal data then could hope that en-
forcement tools for all these repositories become available and allow the
enterprise to consistently enforce at least the internal privacy practices cho-
sen by the CPO (chief privacy officer).

For these reasons, IBM has proposed EPAL [3,4,9,10] as an XML speci-
fication, which has been submitted to World Wide Web Constorium (W3C)
for standardization. We will illustrate the underlying ideas of enterprise
privacy policies by means of EPAL in the following, since EPAL contains
several central concepts of privacy languages in an easily understandable
form. EPAL, in particular, allows for a fine-grained description of privacy
requirements in enterprises and has the potential to become a valuable tool
for (business) processes that span several enterprises or different parts of
a larger organization.

7.1.3  Suitably Working with Enterprise Privacy Policies

Enterprise privacy policies often reflect different legal regulations, promises
made to customers, as well as more restrictive internal practices of the enter-
prise. Further, they may allow customer preferences. Hence, they may be
authored, maintained, replaced, and audited in a distributed fashion. In
other words, it is highly desirable to offer a life-cycle management system
for the collection of enterprise privacy policies. In the early days of pri-
vacy policy languages, approaches were based on monolithic and complete
specifications, which is very restrictive given that several policies might
have to be enforced at once while being under control of different authori-
ties. Having in mind actual use cases where sensitive data obeying different
privacy regulations has to be merged or exchanged, this situation calls for a
composition framework that allows for integrating different privacy policies
while retaining their independence.
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The first operation constituting a fundamental notion for many situa-
tions in policy management is policy refinement. Intuitively, one policy
refines another if using the first policy automatically also fulfills the second
policy. Refinement enables verification that an enterprise privacy policy
fulfills regulations or adheres to standards set by consumer organizations
or a self-regulatory body, assuming only that these coarser requirements
are once and for all also formalized as a privacy policy. Similarly, it enables
verification that a detailed policy for a part of the enterprise (defined by
responsibility or by technology) refines the overall privacy policy set by the
company’s CPO. The verification can be done in the enterprise or by ex-
ternal auditors, such as [11,12].

Composition is the notion of constructively combining two or more
policies; often the goal is that the resulting policy refines them all. For
instance, an enterprise might first take all applicable regulations and com-
bine them into a minimum policy. A general promise made to customers,
e.g., an existing P3P policy translated into the more general language, may
be a further input. In enterprise parts that support detailed preferences of
individuals, such preferences may be yet another policy to be composed
with the others, yielding one final policy per individual. (In contrast, sim-
ple preferences may be represented as a set of Boolean opt-in or opt-out
choices, and treated as context data by conditions within a single policy.)
Typical applications where detailed preferences are needed are wallet-style
collections of user data for the purpose of transfer to other enterprises, and
collaborative tools, such as team rooms. Motivated by successful applica-
tions of algebraic tools in access control [5-8,13], privacy policy languages
soon aimed at offering operators for composing and restricting policies as
part of an expressive algebra over enterprise privacy policies together with
its formal semantics and suitable algebraic laws that allow for a convenient
policy management. Policy conjunction and disjunction serve as the core
building blocks for constructing larger policies. For instance, an enterprise
might first take all applicable regulations and combine them into a mini-
mum policy by means of the conjunction operator. As one expects, these
operators are not a simple logical AND and OR, respectively, for expressive
enterprise privacy policies because of the treatment of obligations, different
policy scopes, and default values.

Additional operators usually comprise scoping and master-slave com-
positions. While scoping allows for confining the scope of a policy to
subhierarchies of a policy, master—slave composition allows for giving pri-
ority to one master policy while only evaluating the slave policy if the
master policy does not care about the outcome. Both operators are of ma-
jor use in practice as they enable managing, respectively reasoning about
privacy requirements that involve only certain parts of an organization and
that reflect hierarchical decision structures of enterprises.
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7.2 Syntax and Semantics of EPAL Enterprise
Privacy Policies

Informally speaking, the aim of an enterprise privacy policy is to define by
whom, for which purposes, and in which way collected data can be ac-
cessed. Further, a privacy policy may impose obligations onto the organiza-
tion using the data. This section shows the abstract syntax and semantics of
IBM’s EPAL privacy policy language [9,10,14,15] up to some augmentations
needed to achieve the desired algebraic properties, e.g., that obligations are
already structured in a suitable way (see [15)).

7.2.1 Hierarchies, Obligations, and Conditions

For conveniently specifying rules, the data, users, etc., are categorized in
EPAL as in many access-control languages. The same applies to the pur-
poses. To allow for structured rules with exceptions, categories are ordered
in hierarchies; mathematically they are forests, i.e., multiple trees. For
example, a user “company” may group several “departments,” each con-
taining several “employees.” The enterprise can then write rules for the
entire “company” with exceptions for some “departments.”

Definition 7.1 (Hierarchy) A hierarchy is a pair (H, > i) of a finite set H
and a transitive, nonveflexive relation > C H x H, where every b € H has at
most one immediate predecessor (parent). As usual, we write > y for the reflexive
closure.

For two bierarchies (H, > ) and (G, > ), one defines

(H,>p) C(G,>5) == (HCS DAy C > and
(H,>pU(G,>¢) =(HUG, (>5U >,

where (\)* denotes the transitive closure. Note that the union of hierarchies is
not always a bierarchy again.

As mentioned above EPAL policies can impose obligations, i.e., duties
for an organization/enterprise. Typical examples are to send a notifica-
tion to the data subject after each emergency access to medical data, or
to delete data within a certain time limit. Obligations are not structured in
hierarchies, but by an implication relation. For example, an obligation to
delete data within thirty days implies that the data is deleted within two
months. The overall obligations of a rule in EPAL are expressed as sets of
individual obligations that must have an interpretation in the application do-
main. As multiple obligations may imply more than each one individually,
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the implication relation (which must also be realized in the application do-
main) is specified on these sets of obligations. The following definition also
defines how this relation interacts with vocabulary extensions.

Definition 7.2 (Obligation Model) A#n obligation model is a pair (O, — o)
of a set O and a transitive relation — o C P(O) x P(O), spoken implies, on the
powerset of O, where 6, — ¢ 6, forall 6, C 6, i.e., fulfilling a set of obligations
implies fulfilling all subsets. For O' D P(O), we extend the implication to
O xPO) by (6, =0 62) : &= (6,N O — ¢ &)).

To define the AND and OR composition of privacy policies in a meaning-
JSul way, we moreover assume that P (O) is equipped with an additional ope-
ration V, such that CB(O), v, V) is a distributive lattice; the operator V reflects
the intuitive notion of OR (in analogy to the set-theoretical union U, which
corresponds to AND). In particular, we require the following:

B Forall 6,6, C O, we have 61 — ¢ (61 V 62).
B Forall &y, 0;, 6), 8, € O, we bave (6, — o 0,) A(6] — o 0,) implies both
(61 Vv (5/1) —0 (0_2 Vv 6/2) ﬂ?’ld(O_l U 0_/1) —0 ((32 U (5/2)

Finally, we assume that all occurring obligation models (O, — o) are subsels
of a fixed (super) obligation model OM, = (O, — o,) such that — o is the
restriction of — o, 0 P(O) x P(O).

While EPAL’s obligation model and implication relation constitute a
course-grained abstraction of the relationship between obligations, they
have given rise to various works on how to suitably define and work with
obligations [16,17].

The decision formalized by a privacy policy can depend on context data,
such as the age of a person. In EPAL, this is represented by conditions over
data in so-called containers [9]. The XML representation of the formulas is
taken from XACML [13], which corresponds to a predicate logic without
quantifiers. Containers are formalized as a set of variables with domains;
conditions are formalized as formulas over these variables.

Definition 7.3 (Condition Vocabulary) A condition vocabulary is a pair
Var = (V, Scope ) of a finite set V and a function assigning every x € V, called
a variable, a set Scope(x), called its scope.

Two condition vocabularies Var, = (Vi, Scope,), Var, = (V5, Scope, ) are
compatible if Scope,(x) = Scope,(x) forall x € V1N V5. For that case, we define
their union by Var, U Var, .= (V; U V5, Scope; U Scope,).

One may think of extending this to a full signature in the sense of logic,
i.e., including predicate and function symbols—in EPAL, this is hidden in
user-defined functions that may occur in the XACML conditions. A given



Enterprise Privacy Policies and Languages ® 141

universe of predicates and functions with fixed domains and semantics is
assumed.

Definition 7.4 (Condition Language) Lef a condition vocabulary Var =
(V, Scope ) be given.

B 7hecondition language C(Var) is the set of correctly typed formulas over
V using the assumed universe of predicates and functions, and in the
given syntax of predicate logic without quantifiers.

B An assignment of the variables is a function x : V — |J, Scope(x)
with x(x) € Scope(x) for all x € V. The set of all assignments for the
set Var is written Ass(Var).

B Forx € Rss(Var), let eval, : C(Var) — {true, false} denote the eval-
uation function for conditions given this variable assignment. This is
defined by the underlying logic and the assumption that all predicate
and function symbols come with fixed semantics.

B For x € Uss(War), we denote by ¢, € CVar) some fixed for-
mula such that eval,(c,) = true and eval,/(c,) = false for all x' €
AssVar) \ {x}.

7.2.2 Syntax of EPAL Policies

An EPAL policy contains a vocabulary, a set of authorization rules, and
a default ruling. The vocabulary defines element hierarchies for data, pur-
poses, users, and actions, as well as the obligation model and the condition
vocabulary. Data, users, and actions are as in most access-control policies
(except that users are typically called “subjects” there, which in privacy
policies would lead to confusion with data subjects), and functions are an
important additional hierarchy for the purpose binding of collected data.

Definition 7.5 (Vocabulary) A vocabulary is a tuple Voc = (UH, DH, PH,
AH, Var, OM) where UH, DH, PH, and AH are bhierarchies called user, data,
purpose, and action bierarchy, respectively, Var is a condition vocabulary, and
OM an obligation model.

As a naming convention, we assume that the components of a vocab-
ulary Voc are always called as in Definition 7.5 with UH = (U, >),
DH = (D, >p), PH = (P,>p), AH = (A, >y, Var = (V, Scope ), and
OM = (O, — o), except if explicitly stated otherwise. In a vocabulary Voc;,
all components also get a subscript 7, and similarly for superscripts.

Definition 7.6 (Ruleset and Privacy Policy) A ruleset for a vocabulary
Voc is a subset of Z x U x D x P x Ax C(Var) x BO) x {+, —}.

A privacy policy or EPAL policy is a triple Voc, R, dr) of a vocabulary Voc,
a ruleset R for Voc, and a default ruling dr € {+, o, —}. The set of these policies
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is called EPAL, and the subset for a given vocabulary EPAL(Voc). Moreover,
we call Voc, R, dr) € EPAL well formed, if for all rules (i, u, d, p, a, c, o, 1),
G u,d,p,a, c, d,r") e R with identical precedences i and for all assign-
ments x € Ass(Var) the implication (eval,(¢c) = true= eval,(c¢')) = (r =1
bolds.

Intuitively, a privacy policy is well formed if rules that allow for contra-
dicting rulings do not have identical precedences. The rulings +, o, and —
mean “allow,” “don’t care,” and “deny;” the value o is special in the sense
it can only be assigned to the default ruling of a policy. As a naming con-
vention, we assume that the components of a privacy policy called Polare
always called as in Definition 7.6, and if Po/ has a sub- or superscript,
then so do the components.

7.2.3 Semantics of EPAL Policies

An EPAL request is a tuple (u, d, p, @), which should belong to the set
U x D x P x A for the given vocabulary. Note that EPAL requests are not
restricted to “ground terms” as in some other languages, i.e., minimal ele-
ments in the hierarchies. This is useful if one starts with coarse policies and
refines them because elements that are initially minimal may later get chil-
dren. For instance, the individual users in a “department” of an “enterprise”
may not be mentioned in the CPO’s privacy policy, but in the department’s
privacy policy. For similar reasons, we also define the semantics for re-
quests outside the given vocabulary. We assume a superset S in which all
hierarchy sets are embedded; in practice, it is typically a set of strings or
valid XML expressions.

Definition 7.7 (Request) For a vocabulary Voc, we define the set of valid
requests as Req(Voc) := U x Dx Px A. Given a superset S of thesets U, D, P, A
of all considered vocabularies, the set of all requests is Req := S*.

For valid requests (u, d, p, @), (', d', p’, a’) € Req(Voc) we set

(ud, py <, d', p'.a"): e u<pu andd<pd and p<p p'anda<,a’.

Moreover, we set (u, d, p, a) <1 (W', d’', p', a") if and only if there is exactly one
x€{u, d, p, a} such that x' is the parent of x and for all y € {u, d, p, a} \ {x}
we have y = ). Finally, we refer to a valid request (u, d, p, a) € Req(Voc) as
leaf or leaf node if u, d, p, and a are leaves in the respective hierarchy. We
denote the set of all leaves of Req(Voc) by L(Voc) and for g € Req(Voc), we set
L(q, Voo) :={q' € LVoc) | q" < q} \ {q}.

The semantics of a privacy policy Pol is a function evalp,; that processes
a request based on a given assignment. The evaluation result is a pair
(7, 6) of a ruling (also called decision) and associated obligations; in the
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case of a “don’t care” ruling (r = o), we necessarily have 6 = @, i.e., no
obligations are imposed in this case. There further exists the exceptional
ruling scope_error, which indicates that a request was out of the scope of
the policy.

The semantics is defined by a virtual preprocessing that unfolds the
hierarchies followed by a request processing stage. Note that this is only
a compact definition of the semantics and not an efficient real evaluation
algorithm.

Definition 7.8 (Unfolded Rules) For a privacy policy Pol = (Voc, R, dr),
the unfolded rule set UR(Pol) is defined as follows:

URD(Pol) :={Gi,u',d', p',a’,c,6,r) € R|3(, u, d, p,a,c 6,r) € R
withu>y u'Ad>pd Ap>p p'Na>,a'};
UR(Pol) := URD(Pol)
UG, o', d', p’,a’,c,6,—) € R|3G, u, d, p,a,c 6—)€ URD(PoI)

withu' >y und >pdnp' >p pra’ >4 al.

A crucial point in this definition is the fact that “deny” rules are inherited
both downward and upward along the four hierarchies, while “allow” rules
are inherited downward only. The reason is that the hierarchies are consid-
ered groupings: If access is forbidden for some element of a group, it is also
forbidden for the group as a whole. If upward inheritance of deny rules is
not considered, individuals may bypass their restrictions by instead posing
the desired query on their whole group, which might possess additional
rights (see [18)).

Next, we define which rules are applicable for a request given an as-
signment of the condition variables.

Definition 7.9 (Applicable Rules) Zet a privacy policy Pol = (Voc, R, dr),
a request q = (u, d, p, a) € Req(Voc), and an assignment x € UAss(Var) be
given. Then the set of applicable rules is

AR(Pol, q, x) == 1{(i, u, d, p, a, c, 6, r) € UR(Pol) | eval,(c) = true}.
To formulate the semantics, it is convenient to define the maximum and

minimum precedence of a policy.

Definition 7.10 (Precedence Range) For a privacy policy Pol = (Voc,
R, dr), let max(Pol) := max{i | 3, u, d, p, a, c, 6,r) € R} and min(Pol) :=
min{z | 3(4, u, d, p, a,c, 0,7) € R}.
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We can now define the actual semantics, i.e., the result of a request
given an assignment.

Definition 7.11 (Semantics) Let a well-formed privacy policy Pol = (Voc,
R, dr), a request q = (u, d, p, a) € Req, and an assignment x € Ass(Var) be
given. Then the evaluation result (7, 0) := evalpy (g, x) of policy Pol for q and
x is defined by the following algorithm, where every “return” is understood to
abort the processing of the algoritbm.

1. Out-of-scope testing: If g ¢ Req(Voc), return (r, 6) := (scope_error, #)).
2. Processing by precedence: For each precedence level i := max(Pol)
down to min(Pol):
B Accumulate obligations: Gace := U\ 1y p.a.c.0.mearcrorq ) -
B Normal ruling: If some rule (i, u, d, p, a, c, 6, r) € AR(Pol, g, x) ex-
ists, return (1, Ouee) .
3. Default ruling: If this step is reached, return (v, 6) := (dr, ).

We also say that policy Pol rules (1, 6) for q and x, omitting q and x if they are
clear from the context.

7.3 Refinement and Equivalence of EPAL Policies

Basically, refining a policy Pol means adding more details to it, i.e., enrich-
ing the vocabulary and the set of rules without changing the meaning of
the policy with respect to its original vocabulary. When a policy is first de-
signed, refinement may be achieved in a constructive way, e.g., by starting
with the coarse policy and only adding details by certain provably refining
syntactic means. However, if a regulation changes or the enterprise ex-
tends its operation to new sectors or countries, the enterprise has to verify
that its existing policy still complies with the new or additional regulations.
Hence, a definition of refinement between two arbitrary policies is needed.
Sticky policies are another application of general refinement: Here data is
transferred from the realm of one policy into another (where the transfer,
of course, must be permitted by the first policy), and the second realm
must enforce the first policy. However, the enforcement mechanisms (both
organizational and technical) in the second realm often will not be able to
deal with arbitrary policies for each obtained set of data. In this case, one
realm must perform a refinement test before the data is transferred, i.e.,
one has to verify that the policy of the second realm refines the policy of
the first, at least for the restriction of the first policy to the data types being
transferred.

To be useful for actual use cases, it is essential that operators de-
fined on privacy policies behave in a well-specified and “intuitive” manner
with respect to refinement relations. Thus, before we can make concrete
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statements about the refinement properties of the operators introduced in
the next section, we need some additional terminology.

Definition 7.12 (Compatible Vocabulary) Two vocabularies Voc, and
Voc, are compatible if their condition vocabularies are compatible and UH, U
UH,, DH, U DH,, PH, U PH,, AH, U AH, are bierarchies again.

The notion of compatible vocabularies is a technicality that turns out to
be necessary to specify operations that combine different policies, which
are not necessarily formulated in terms of identical vocabularies.

Definition 7.13 (Union of Vocabularies) 7he union of two compatible
vocabularies Voc, and Voc, is defined as Voc; U Voc, := (UH; U UH,, DH; U
DH,, PH, U PH>, AH, U AH,, Var, U Var,, OM), where OM = (O, — o) is the
obligation model with the lattice (B(O), Vv, U) being generated by PB(Oy) and
PB(O,), and — ¢ being the restriction of — o, o P(O) x P(O).

Next, we need the refinement of obligations whose definition requires
some care, as a refined policy may well contain additional obligations,
whereas at the same time some others have been omitted. Consequently,
the definition of refinement of obligations makes use of both obligation
models—that of the original (coarser) policy and that of the refined policy.

Definition 7.14 (Refinement and Equivalence of Obligations) [Let two
obligation models (O;, = o,) and 6; € O; fori = 1,2 be given. Then 6, is a
refinement of 61, written 6, < 6y if and only if the following bholds:

HO_Q 01002:(}2—)02 6—)01 0_1.

We call 6, and o6, equivalent, written 0, = 0, if and only if 6, < 6, and
0, < 01. Forr, r, € {4, —, o, scope_error}, we further define (ry, 61) = (1, 6)
if and only if rn = r, and 6, = 6,.

We can now formalize the notion of (weak) refinement of well-formed
policies.

Definition 7.15 (Policy Refinement) Let two well-formed privacy policies
Pol; = Vocy, Ry, dr;) fori = 1, 2 with compatible vocabularies be given, and set
Pol: = (Voct, R;, dr) fori =1, 2 where Voc' := (UH, U UH,, DH, U DH,, PH,U
PHz, AH, UAHz, Vﬂ?’,‘, OMZ)

Letry, r, € {+, —, o, scope_error} and 6; C O; fori =1, 2 be arbitrary. We
say that (7‘2, (52) refines (7'1, 61) (Z7l OMl and OMz), written (7‘2, 62) < (7”1, 61),
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if and only if one of the following two conditions holds

(D (n, o) € {(scope_error, D), (o, D)}

2 ne{+ -} n=n,06<o.

We say that (r,, 6;) weakly refines (71, 61) (in OM, and OM,), written (r,, 6,)<
(ry, 61), if and only if one of the following three conditions holds:

(1, 62) < (11, 01)
@ n=+n=-

3 (n,0)=H,D),r=o0.

We call Pol, a refinement of Poly, written Pol, < Pol, if and only if for every
assignment x € Uss(Var, U Var,) and every authorization request q € Req,
we have evalpyr (g, x) < evalpyr(q, x). We call Pol, a weak refinement of Pol;
if the same holds with < replaced by <.

Intuitively, a privacy policy that weakly refines another policy is at least
as restrictive as the coarser one: Even if the original policy rules “allow” for
a certain request, after a weak refinement the same request may be denied,
or (provided that no obligations get lost) an “allow” can be transformed
into a “don’t care.”

Finally, the equivalence of two well-formed privacy policies is defined
in the obvious manner.

Definition 7.16 (Policy Equivalence) Two well-formed privacy policies
Poly and Pol, are called equivalent, written Poly = Pol,, if and only if they are
mutual refinements, i.e., Pol; = Pol, : <= (Pol; < Pol, A Pol, < Poly).

While this notion of policy equivalence is rather intuitive, it turns out
that in some situations only a weaker form of equivalence can be achieved
and we, therefore, conclude this section with the definition of weak policy
equivalence.

Definition 7.17 (Weak Policy Equivalence) Two well-formed privacy poli-
cies Poly and Pol, are called weakly equivalent, written Pol; ~ Pol,, if and
only if they are equivalent on their joint vocabulary, i.e., if and only if Voc, U
Voc,, Ry, dr) = (Voc; U Voo, Ry, dr).
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7.4 Composition of EPAL Policies

Basically, defining symmetric operations on privacy policies reflecting the
intuitive notions of conjunction (AND) and disjunction (OR) looks rather
simple. Unfortunately, with a straightforward yet intuitive approach, it hap-
pens that the conjunction or disjunction of two privacy policies might no
longer constitute a syntactically correct privacy policy. From a practical
point of view, such a behavior is not desirable. First, available tools to en-
force a (EPAL) privacy policy are designed to handle privacy policies only.
Thus, to handle compositions of privacy policies, these tools had to be
modified or new tools had to be developed. The obvious solution to this
problem—making use of a wrapper program that queries several policies
by means of existing tools and combines their results appropriately—is not
always acceptable. In particular, such a workaround might violate condi-
tions that were necessary to pass some (expensive) certification process.

Second, the combined privacy policies can originate in rather different
sources, which are separated through significant geographical distances.
Consequently, in larger, say, multinational, projects where policies of many
different organizations have to be combined, it can be infeasible or at least
very inconvenient to store all (component) policies that contribute to the
ruling of the composition. To circumvent these problems, it is desirable to
work in a subset of EPAL that is on the one hand closed under conjunction
and disjunction as well as other suitable algebraic operations, and on the
other hand is still expressive enough to capture typically used privacy poli-
cies. This subset is the set of so-called well-founded privacy policies [15].
The intuition underlying the notion of well-founded policies can be
described as follows:

B Suppose the ruling specified for some group is “deny,” but none of
the group members is denied from accessing the respective data.
Then this contradicts the idea that in EPAL the group ruling is to
reflect (“to group”) the rulings of the individual group members.

m If each member of a group is permitted to perform some action,
then intuitively the group as a whole is permitted to perform this
action, too.

B Assume that both the ruling specified for a group and for a member
of this group is “allow,” and assume further that the obligations of
the group are not a superset of the obligations of the group member.
Then the group member may be able to avoid certain obligations
by submitting a query where the user is specified to be the group
as a whole. Typically, the availability of such a “workaround” is not
desirable. On the other hand, if the obligations of the group are
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stricter than the union of the obligations of the group members and
we (re)define the group obligations to be the union of the individual
obligations, then no harm (in the sense that a group member can
gain additional privileges) is caused by querying the group.

Formally, well-founded policies are captured as follows.

Definition 7.18 (Well-Founded Policy) Let Pol be a well-formed policy.
Then we call Pol well-founded if and only if for all (q, x) € Req(Voc) x
Uss Var) the following conditions are fulfilled:

B [fq is no leaf node and evalpy, (q, x) = (—, 0), then there exists q' <1 q
such that evalp, (q, x) = (—, 6") for some o'.

B [fevalpy(q’, x) = (+, 04) for each q' <, q and arbitrary o4, then
evalp, (q, x) = (4, 0) for some o.

B [fevalpy(q, x) = (1, 0), then 6 =, ; cvaty; (g x=(r. © -

Up to equivalence, well-founded policies are already uniquely deter-
mined by the rulings of the leaf nodes.

Lemma 7.1 Let Poly, Pol, be well-founded privacy policies with Voc; = Voc,
and let evalpy,(q, x) = evalp.,(q, x) for every g € L(Vocy) and every x €
Ass(Vary). Then Pol, = Pol,.

Actually, the predetermined allow and deny rulings for the set of leaf
nodes can be chosen arbitrarily. In addition, a well-founded policy can
explicitly be transformed algorithmically into a form that is consistent with
any predetermined set of rulings for all leaf nodes.

7.4.1 Defining Conjunction and Disjunction
of Privacy Policies

Unlike in typical access control settings, defining the conjunction and dis-
junction of privacy policies requires taking care of the “don’t care” ruling
0, whose semantics is different from both “allow” and “deny.” Motivated
by the intuition behind the ruling o, definitions are given in analogy to the
conjunction and disjunction in a three-valued Lukasiewicz logic Ls. To han-
dle the obligations, use the operator Vv provided by the obligation model.
Intuitively, one does not want to give a positive answer to a request if one
of the two policies that are to be combined by AND denies the access.
Further on, if one policy allows the access and the other one “does not
care,” then returning a “don’t care” seems plausible and is indeed needed
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to ensure the distributivity of the operators AND and OR. Similarly, for
OR we allow an access if at least one of the two involved policies allows
the request. Moreover, we “do not care,” if one of the operands “does not
care”—except if the other operand explicitly “allows” the request.

Conjunction and disjunction of two well-founded privacy policies can
now be defined. Lemma 7.1 implies that it is sufficient to define the oper-
ations for those requests that are leaves of the considered hierarchies since
once the evaluations on the leaves are fixed, the corresponding privacy pol-
icy is (up to equivalence) uniquely determined. In addition, a policy can
then be explicitly computed that is consistent with the given evaluations of
the leaf nodes. However, to make definitions of the operators independent
of an algorithmic specification, the actual definitions are formulated in such
a way that the result of a conjunction/disjunction of two privacy policies
constitutes an equivalence class of policies—not a specific privacy policy.

The motivation for defining an AND operation on privacy policies is
rather straightforward. Assume that an enterprise takes part in some project
for which data has to be accessed and processed that is controlled by some
external project partner. Then the access to and processing of such data
shall only be allowed as long as none of the individual privacy policies of
the participating enterprises is violated.

Definition 7.19 (Policy Conjunction) Let Poly, Pol, be two well-founded
privacy policies such that Pol; = (Voc}, R;, dr;) fori =1, 2 with Voc} := (UH, U
UH,, DH, U DH,, PH, U PH,, AH, U AH,, Var;, OM;) are also well-founded
privacy policies.

Then the conjunction of Poly, and Pol, is the equivalence class (w.r.t. =) of
all well-founded privacy policies Pol on the joint vocabulary Voc := Voc; U Voc,
such that for all leaf nodes q € L(Voc) and for all assignments x € Uss(Var)
we have (ry, 01) = (13, 62), where

(r1, 01) = evalpy (g, x) and
(7'27 0_2) = eUﬂlPol]*(Qa X) AND eUﬂlPolz*(q, X)a

where AND is defined as in Table 7.1.
By Poly & Pol,, we denote any representative of this equivalence class.

Note that this definition only imposes conditions on the leaf nodes;
hence, the question arises to what extent “inner” queries obey the defining
table for AND as well. Indeed, the desired relations are fulfilled for arbitrary
queries.

Lemma 7.2 Let Pol;, Pol, be well-founded privacy policies that satisfy the
requirements of Definition 7.19 and let Pol = Poly & Pol,. Then for all
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Table 7.1 Definition of AND and OR Operators

AND (+,0") (=,0" (0, )
(+, 0) (+,0U0) (—=,0) (o, )
(—,0) (—,0) (—=,0U0" (—,0)
(o, ) (o0, ) (—,0" (0, 9)
OR (+,0") (=, 0" (o, @)
(+.0) (+,0vo) (+,0) (+,0)
(—,0) (+,0") (—,0Vvo) (0, 9)
(0, 9) (+,0") (o, 9) (0, 9)

requests g € Req(Voc) and for all assignments x € Ass(Var) we have the
equivalence evalpy (g, x) = evalpyr(q, x) AND evalpy(q, x) with Pol} as in
Definition 7.19.

Similar to conjunction, the disjunction of privacy policies is essential for a
variety of use cases. For example, consider two departments of an enter-
prise that cooperate in some project. For carrying out this project, it should
then be possible to access data items whenever one of the individual pri-
vacy policies of the two departments grants such an access. This idea of
“joining forces” is captured by the following definition.

Definition 7.20 (Policy Disjunction) Let Poly, Pol, be two well-founded
privacy policies such that Pol! = (Voc}, R;, dr;) for i = 1,2 with Voc} =
(UH, U UH,, DH, U DH,, PH U PH,, AH, U AH,, Var;, OM,) are also well-
Sfounded privacy policies.

Then the disjunction of Pol, and Pol; is the equivalence class (w.r.t. =) of
all well-founded privacy policies Pol on the joint vocabulary Voc := Voc,; U Voc,
such that for all leaf nodes q € L(Voc) and for all assignments x € UAss(Var)
we have (ry, 61) = (1, 6,) where

(r1, 0 == evalpy (g, x) and

(7'2, 62) = eUﬂlP{)l’l‘(q, X) OR evalPol’g(q, X)a

where OR is defined as in Table 7.1.
By Poly + Poly, we denote any representative of this equivalence class.

Unfortunately, for the disjunction of privacy policies, we have no ana-
logue to Lemma 7.2, i.e., in general, we cannot achieve an equivalence
of the form evalpy (q, x) = evalp,(q, x) OR evalpy(q, x) for arbitrary re-
quests g and assignments . In fact, it is not difficult to construct examples



Enterprise Privacy Policies and Languages ® 151

where imposing such a “node-wise equivalence” yields a contradiction
to well-foundedness. Fortunately, also for the “inner nodes,” the policy
obtained by disjunction is still rather close to what one would expect
intuitively.

Lemma 7.3 Let Pol, Pol, be well-founded privacy policies that satisfy
the requirements of Definition 7.19 and let Po/ = Pol, + Pol,. Then for all
q € Req(Voc) such that evalp,(q, x) = (—, 0) or evalp,;(q, x) OR evalpor;
(g, x) = (4,0 holds for some 0, we have evalp,:(g, x) OR evalp,;
(q, x) < evalpy (g, x).

Additional operators that suitably complement conjunction and disjunc-
tion are scoping and master—slave composition (see [15]). Scoping essentially
means restricting large policies to smaller parts. Use cases for scoping are
omnipresent in practical policy management, e.g., deriving a department’s
privacy policy from the enterprise’s global privacy policy, or considering
only those rules that specifically deal with marketing purposes. Master—
slave composition essentially means first applying one (master) policy, and
if this policy gives a “don’t care” ruling, then the other (slave) policy is
applied. Master—slave composition constitutes the central tool for dealing
with hierarchical structures of an enterprise, e.g., a privacy policy written
by the CPO of a company and containing only a few regulations that have
to be adhered to under all circumstances would be a master policy that can
be master—slave composed with a more fine-grained department policy.

7.4.2 Algebraic Properties of the Operators

Since the operator definitions proposed in the previous section are quite
intuitive, one would not expect any unpleasant surprises when using these
operators to form more complex privacy policies involving three, four, or
more operands. As actual use cases often involve more than only one or
two different privacy policies, one has to ensure that the operators do not
yield nonintuitive behaviors in such scenarios. Fortunately, this is not the
case, and the usual algebraic laws apply.

Lemma 7.4 Let Poly, Pol,, Pol; be well-founded EPAL policies such that the
following expressions are well-defined, i.e., the respective requirements in
Definition 7.19 and Definition 7.20 are met. Then the following holds:

Idempotency :  Pol; & Pol; = Poly, 7.D
POll + POll = POll,
Commutativity : Poly & Pol, = Pol, & Poly, (7.2)

P()ll + P()lz = P()lz + P()ll,
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Associativity : Pol; & (Pol, & Pol3) = (Poly & Poly) & Pols, (7.3)
Poly, + (Pol, + Poly) = (Pol, + Pol,) + Pols,

Distributivity : Pol; + (Pol, & Pols) = (Poly, + Poly) & (Poly + Poly), (7.4)
Poly & (Pol, + Poly) = (Pol; & Poly) + (Poly & Pols),

Strong Absorption : Poly + Poly & Pol,) < Pol;. 7.5

It is worth noting that the proof of the strong absorption property relies
on both Lemma 7.2 and Lemma 7.3 and, although it may look tempting,
one cannot simply switch the roles of conjunction and disjunction in the
proof to derive a “dual” strong absorption law with the roles of & and +
being exchanged.

In addition to purely algebraic properties of the operators, one can also
establish several refinement results. In particular, the following relations,
which from the intuitive point of view are highly desirable, hold true.

Lemma 7.5 Let Poly, Pol, be well-founded privacy policies such that the
respective requirements of Definition 7.19 and Definition 7.20 are met.
Then we have

Weak Multiplicative Refinement : Pol; & Pohb <Pol; (i=1,2), (7.6)

Weak Additive Refinement : Pol;<Pol, + Pol, (i=1,2). 7.7
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8.1 Obfuscation and Its Uses

Obfuscation, when used as a technical term, refers to hiding information
“in plain sight” inside computer code or digital data. The history of obfus-
cation in modern computing can be traced to two events that took place
in 1976. The first was the publication of Diffie and Hellman’s seminal pa-
per on public-key cryptography [DH76]. This paper is famous, of course,
for introducing the first (or, at any rate, first publicly known) public-key
cryptosystem. It also appears to be the first paper to describe software obfus-
cation. Diffie and Hellman suggested that making the encryption program
incomprehensible might be a good way of converting a symmetric cryp-
tosystem into a public-key one. Such a program would be an example of
“white-box” cryptography because it would remain secure—in the sense
that it would be hard for the adversary to invert the encryption function or
to extract the symmetric key from it—even if the program were executed
on a computer completely controlled by the adversary. This was the first
instance of obfuscation for “white-box” cryptography.

Also in 1976, Bill Gates wrote “An Open Letter to Hobbyists” [Gat76], in
which he argued against the hobbyist software market and for the impor-
tance of remunerating software authors for their work. The futility of this
appeal to the morality of software users soon became apparent. Software
manufacturers, concerned about protecting their revenues and anxious to
prevent free-for-all copying of their code, soon launched their quest for
copy prevention technologies, which led to the first uses of obfuscation for
copy protection and digital rights management.

A more recent line of research has focused on obfuscation for access
control and data privacy. In a typical application, a data owner wants to
distribute a database to potential users. Instead of hiding individual data
entries, he wants to obfuscate the database so that only certain queries can
be evaluated on it, i.e., the goal is to ensure that the database, after it has
been made public, can be accessed only in ways permitted by the “privacy
policy.”

8.1.1 Obfuscation for “White-Box” Cryptography

“White-box” cryptography aims to hide cryptographic material inside the
code of a software application. This is a very challenging task because the
attacker is assumed to have complete access both to the executable code
of the application and to the computer on which the code is executing.
A typical problem in “white-box” cryptography is to take an encryption
program (e.g., a symmetric block cipher like DES or AES) and embed the
encryption key in it in such a way that the attacker is unable to extract the
key and/or to convert the encryption program into a decryption program.
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Tamper-resistant software has generally been a failure from the security
viewpoint, and obfuscated software ciphers are no exception. For example,
Chow et al.’s obfuscated implementation of the DES cipher [CEJvO02], com-
mercialized by Cloakware, was completely broken by Jacob et al. [JBF02]
using standard cryptanalysis techniques, such as fault injection and differ-
ential cryptanalysis. Recent theoretical results suggest that there may exist
symmetric cryptosystems that can be obfuscated (and, thus, turned into
public-key cryptosystems) in a provably secure way [HMLS07], but no con-
crete examples are known as of this writing. It is also not clear whether
theoretical “obfuscatability” implies the existence of practical obfuscated
implementations because the polynomial increase in size and decrease in
performance permitted by the theoretical definitions of security may not
be acceptable in many usage scenarios.

8.1.2 Obfuscation for Copy Protection
and Digital Rights Management

The most common application for “white-box” cryptography is digital rights
management (DRM), i.e., protecting digital information from unauthorized
uses. Unauthorized copying of software applications and digital content,
including audio and video files, has been a long-standing concern of soft-
ware manufacturers and content creators who deployed a variety of DRM
technologies over the years to prevent copying of programs and media files.

A simple copy protection mechanism for “shareware” software might
work as follows. A try-before-you-buy version checks the computer’s clock
to see if it is more than 30 days since the day of installation and, if so, refuses
to run until a product key is paid for, obtained from the vendor and input to
the program. The key is usually dependent on the user’s name, computer
ID, and so on. Clearly, one can circumvent this by perpetually resetting
the computer’s clock, and different people can share product keys if they
pretend to be the same person. Doing so, however, presumably degrades
the functionality of the computer to the extent that most users may prefer
to pay the nominal price for the software.

A more creative attack involves modifying the binary code of the soft-
ware to disable the date check. In general, this is a serious risk for any
DRM technology: The user may try to separate the part of the program that
is responsible to checking access rights, licenses, and so on from the “func-
tional” part of the program, which is responsible for executing the actual
application or playing back digital content. Therefore, software manufac-
turers and content vendors aim to design their programs in such a way that
it is difficult to remove the DRM enforcement mechanism without crippling
the product’s functionality and performance.
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Despite the best efforts of content and software vendors, DRM technolo-
gies have a dismal track record, and are often subject to “zero-day cracks,”
i.e., they are successfully attacked on the same day they are published. Few
survive determined circumvention efforts launched by the hacker commu-
nity. The Content Scrambling System (CSS) used to protect the first gen-
eration of DVDs was broken in several different ways [DeC04,Ste99]. The
Advanced Access Content System (AACS), used to protect high-definition
DVDs in HD-DVD and Blu-Ray formats, has also been broken [Sto07]. DRM
protection has been cracked in Adobe eBooks [Pla01], as well as in Apple’s
FairPlay technology used to protect iTunes/iPod music files [BBC06]. Some
CD protection technologies can be disabled simply by holding down the
shift key to prevent the DRM program from loading [Hal03]. The list goes
on and on.

In short, while DRM technologies in the marketplace appear to be rea-
sonably successful in deterring casual users, obfuscation has failed to pre-
vent reverse engineering and cracking. It is also worth mentioning that
some DRM technologies, such as the notorious XCP from Sony-BMG, in-
troduce serious security vulnerabilities into computers on which they are
installed [HF06].

8.1.3 Obfuscation for Data Privacy

Conventional privacy mechanisms usually provide all-or-nothing privacy.
For example, secure multiparty computation schemes enable two or more
parties to compute some joint function while revealing no information
about their respective inputs except what is leaked by the result of the
computation [Yao86, GMW87]. Privacy-preserving data mining aims to com-
pletely hide individual data records while computing global statistical prop-
erties of the database.

In many scenarios, however, privacy of individual records is neither
necessary, nor sufficient. What matters is how the record is accessed. For
example, consider a credit-reporting bureau whose data records contain in-
formation on credit worthiness of individual consumers. Clearly, forbidding
employees of the bureau from accessing any record is unacceptable: They
may need to correct an individual’s data, respond to reports of fraudulent
transactions, and so on. Nevertheless, consumers may want to restrict the
bureau’s ability to compile a list of customers’ addresses and sell it to a
third party.

Online directories are another example. For instance, a college alumni
directory may need to be protected in such a way that someone who al-
ready knows a person’s name and year of graduation is able to look up
that person’s e-mail address, yet spammers cannot indiscriminately harvest
addresses listed in the directory.
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Cryptographic obfuscation provides technological support for this con-
cept of privacy. Given a privacy policy, it effectively transforms the database
so that only the queries permitted by the policy can be feasibly evaluated
on it. This concept of privacy is incomparable to conventional definitions
because, depending on the policy, a permitted query may or even should
reveal individual data entries. One may think of this form of privacy en-
forcement as “embedding” access control into the data.

An important feature of cryptographic data obfuscation is that it is prov-
ably secure and, unlike ad-hoc DRM mechanisms based on code obfusca-
tion, cannot be circumvented by the attacker or malicious user. Therefore,
data owners need not assume that users access their data only via trusted,
“tamper-proof” software or hardware.

Password hashes are perhaps the most common use of cryptographic
obfuscation for data security purposes. For example, the UNIX operating
system does not store user passwords in the clear. Instead, each password
is hashed, and only the hash is stored in the password file. The only op-
eration that can be feasibly computed on a password hash is to compare
it for equality with another hash. If the hash function is cryptographically
strong (and, thus, collision-resistant), with an overwhelming probability
two hashes will be equal if and only if the inputs of the hash function are
equal. Therefore, storing the password hash is equivalent to enforcing the
following access control policy: “Given a stored user password, it may be
compared for equality with a candidate password; no other operations on
it are permitted.”

What about guessing attacks? Great question. The password may indeed
be very easy to guess, but even in this case the access control policy is
enforced. To verify his password guess, the attacker must still comply with
the policy, that is, hash the guess and compare it for equality with the
stored password. Note that the privacy policy in this case does not say that
the password should be hard to guess. Even in the case of a successful
guessing attack, the only operation that the attacker is performing on the
guessed password is comparing it for equality. The fact that users might
choose passwords that are easy to guess may be a flaw of the overall
authentication approach, but it is not a flaw of the mechanism that controls
access to stored passwords.

8.2 Cryptographic Obfuscation

The rigorous study of cryptographic obfuscation began, or at least greatly
accelerated, with the publication in 2001 of the paper by Barak et al. enti-
tled “On the (Im)possibility of Obfuscating Programs” [BGI*01]. This paper
received wide attention as the seminal work on formal definitions and
cryptographic techniques for obfuscation. Its relevance to “real-world”
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obfuscation is not entirely clear, however, and the negative results estab-
lished in the paper do not apply to many practical applications.

One of the main contributions of the Barak et al. paper is its use of
the notion of a virtual black box in defining obfuscation. As is often the
case in cryptography, defining a task turns out to be half the problem of
solving it. For a program P that we want to obfuscate, we define an “ideal
functionality” Ip as a “black box” that has the same input—output behavior
as P. Intuitively, Ip is perfectly secure because it hides everything about
the internals of P. Ip is an abstraction; it is how P would behave had it
been implemented in tamper-proof hardware, which does not allow the
user to separate P into parts, observe its internal values, learn anything
about the implementation details, and so on. The goal is to achieve the
same level of security simply by obfuscating P, i.e., transforming it into a
hard-to-understand program that has the same input—output behavior.

We say that an obfuscated version Op of P is secure if Op “behaves
like” Ip. But what does it mean for Op to behave like Ip? The answer
uses the standard cryptographic methodology: For any efficient adversarial
algorithm A that interacts with Op and produces some output, there should
exist a simulator that interacts with 7p and produces the same output. Thus,
Op behaves as if it were a black box with P inside, hence, the name.

This is a fairly subtle concept. The virtual black box definition specifies
what it means for a given program P to be securely obfuscated only in-
directly, by reference to the ideal functionality. In the password-checking
example, the ideal functionality is a black box, which accepts a candidate
password, and responds “yes” if it is equal to the password inside the box,
“no” otherwise. A password is securely obfuscated if the attacker is limited
to performing equality tests in order to determine whether his guess of the
password is correct. It does not say whether it is hard or easy to guess a
password in response to which the box will answer “yes.” Regardless of
how easy it is to come up with a candidate password, the attacker must try
all candidates one by one.

The real strength of the virtual black box definition of security is that
it guarantees that there is no other feasible way to access the stored pass-
word. Even if the attacker is interested only in recovering, say, the first
character of the password, he can do no better than come up with candi-
dates for the entire password and try them one by one. This is important
for practical security because a flawed implementation of password-based
authentication may enable the attacker to recover parts of the password
without guessing it in its entirety [Ope06].

Barak et al. showed that there is no single obfuscator that works for
all programs. In particular, this means that the dream of creating a piece
of software with a copy-protection check, and obfuscating it as the final
step before public release, is not possible. At the very least, the software
engineering cycle must include specifying which aspects of the program
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need to be obfuscated; the obfuscation method must be specific to the
program being obfuscated.

Furthermore, there are fundamental classes of programs for which there
is no single obfuscator, including encryption schemes and pseudorandom
number generators. (The definition of Barak et al. might have been too
strong, however; we will return to this issue momentarily.) Therefore, any
program obfuscator must exploit the specific properties of the pseudo-
random number generator or encryption scheme it is obfuscating, making
obfuscation much harder and requiring an even tighter integration with the
software design cycle.

As a consequence of the impossibility results demonstrated by Barak
et al., their paper has often been misinterpreted as a conclusive proof that
cryptographic obfuscation, in all its forms and manifestations, is impossible.
This is not, however, the case because the paper does not rule out the use
of obfuscation in many digital privacy scenarios.

It is worth bearing in mind that obfuscation is merely a cryptographic
tool; it can be used for tasks that outwardly have little to do with each
other. Recall the three classes of obfuscation applications surveyed above.
Progress has been made toward the first class of applications, white-box
cryptography. The main idea that makes this possible is the following:
Normally, cryptographic algorithms must operate under the assumption
that their input comes from a malicious adversary who is trying to attack
the system. In many applications of obfuscation, however, the obfuscator
has the luxury of knowing that his input is another cryptographic algorithm,
parameterized by a key, which is guaranteed to be selected uniformly at
random.*

Two recent papers considered such relaxations of the virtual black box
property. Hotheinz et al. [HMLS07] argue that their definition is achiev-
able because it gives simpler obfuscators and/or proofs of security for
“point functions,” which we discuss below. At the same time, their defi-
nition preserves the important property that an obfuscation of a symmetric
encryption algorithm is an asymmetric encryption algorithm. Hohenberger
et al. [HRSVO7] introduce a similar relaxed definition of security, and ac-
tually construct an obfuscator for re-encryption. A re-encryption program
takes a message encrypted with one person’s public key and transforms it
into a message encrypted under another person’s public key. This is useful,
for instance, in secure e-mail forwarding.

The crucial difference that will enable us to bypass the impossibility
results of Barak et al. is that security in the case of data hiding is based on

* A system designer must be extra careful when an algorithm requires this guarantee
for security because the failure of the other algorithm to ensure randomness of the
key can be catastrophic.
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the adversary’s ignorance of one or more pieces of data and, therefore, this
task resembles traditional encryption much more than the “magical” hiding
that one hopes to achieve with software obfuscation.

Let us explore the encryption analogy further. A naive definition of secu-
rity for encryption might say that the adversary shouldn’t be able to recover
the plaintext given the ciphertext. But this is virtually useless because the
adversary may be able to recover all but a few bits of the plaintext, for
instance, and the algorithm would still be “secure” according to this defi-
nition. Instead, the standard notion of security for encryption is semantic
security, which states, very roughly, that anything that can be computed by
the adversary with access to the ciphertext can be computed by the adver-
sary simulator who does not have the ciphertext (therefore, the ciphertext
does not leak any useful information). Note the similarity with the virtual
black-box property.

Unlike the naive definitions of security, both semantic security and the
virtual black-box property describe what the adversary can do instead of
trying to describe what he cannot do. This is generally recognized as the
right approach. A designer of a secure system who proves that the adversary
cannot do A, B, or C, always has to worry that there is some computation
D overlooked during the design phase, which the adversary can perform
(since it is not ruled out by the definition of security), potentially breaking
the system. By contrast, if the designer proves that the adversary is lim-
ited to a well-defined set of operations, he does not have to worry about
overlooking some unexpected way of accessing the system.

8.3 Applications of Obfuscation to Digital Privacy

The simultaneous emergence of ubiquitous Internet access and public,
Internet-accessible databases containing vast amounts of information about
individuals and organizations has created a serious threat to privacy. U.S.
Census tables, online directories, property tax appraisals, and all kinds of
other databases can now be searched online by anyone with a personal
computer and Internet connection. Even when the data stored in these
databases do not directly violate individuals’ privacy, they can be used—
often in conjunction with other sources—to reveal sensitive information
about them. Enforcing privacy policies in public databases is one of the
critical challenges in privacy research today.

A typical scenario involves a database owner releasing some database
for public use (perhaps in a sanitized form) or allowing public access to it
through a Web front-end or similar interface. In either case, the owner has
little or no control over the database once it has been released. Even if the
initial query is audited or monitored, the user, after he or she has obtained
some subset of the data, can distribute it further or perform additional
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queries on it at will. From the viewpoint of privacy, “the horse has left the
barn” the moment the database has been made public.

The problem of protecting privacy in public databases is often inter-
preted as protecting secrecy of individual records. For example, consider
a statistical database containing a sample of some population. Much re-
search has been devoted to the so-called census problem: How to sanitize
the database so that (1) the result of the sanitization does not violate privacy
of any individual whose data is included in the sample, yet (2) the sanitized
database allows accurate estimation of the statistical characteristics of the
underlying population. This conflict between privacy and utility is inherent
in public databases.

Conventional solutions to the census problem perturb individual data
entries by adding random noise to them, while preserving certain statistical
characteristics of the entire database [AS00,EGS03,CDM*05]. As a result,
the user of the perturbed database can estimate its statistical properties,
but privacy of the individual elements is preserved.

In many scenarios, however, the goal is not to hide individual entries,
but to control how they are accessed. Statistical perturbation of the data
does not address this problem at all. For example, if a company outsources
its technical support, the support staffers must have access to the unper-
turbed individual records in the customer database. The objective is not
confidentiality of database records, but access control. For example, users
of the database should not be able to execute queries that return all infor-
mation contained in the database. Some records should not be accessible
unless the user provides a password; in other situations (e.g., preventing
the user from harvesting records for spamming) the user must be able to
describe precisely what he is looking for before access is granted. In all of
these cases, the database must have a built-in access control mechanism
that enforces the database owner’s access policy.

Enforcing access control policies in public databases is a very challeng-
ing problem. The user accesses the database after it has been released.
The underlying data is stored on the user’s medium, and the query is eval-
uated in the user’s computing environment where both the software and
the hardware are controlled by the user. There is no trusted intermediary to
monitor the user’s queries and reject those that do not satisfy the database
owner’s policy. The database owner may attempt to “wrap” the database
into a DRM program enforcing the desired policy. Unfortunately, the track
record of DRM technologies is exceptionally poor, and none have been able
to withstand determined attacks. The data is usually extracted even from
allegedly “tamper-proof” access control programs in a matter of weeks, if
not days.

We envision a different approach to the problem, which relies on cryp-
tographic obfuscation. The goal is to transform the database in such a
way that all queries that are not explicitly permitted by the owner’s access
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control policy become computationally infeasible. This approach is crypto-
graphically secure and uncircumoventable in the following sense: Breaking
the access control mechanism, i.e., accessing the data in any way other than
those permitted by the access control policy, is equivalent to breaking a
cryptographic primitive. Unlike ad hoc access control and DRM technolo-
gies that are routinely broken by attackers, the cryptographic primitives
underlying our approach have withstood many years of intense scrutiny.

In our approach, the data owner defines the set of queries that the user
of the database is permitted to evaluate. The database is then “obfuscated”
so that these and only these queries can be computed on the obfuscated
database. Evaluating any other query is not computationally feasible. In this
way, the access control policy becomes an inseparable part of the database,
which can then be publicly released to the users. Even though the database
owner has no further control over the data, he can be sure that the users
are accessing it only via policy-compliant queries.

Not every access control policy can be enforced in this way. As we ex-
plain below, only certain classes of queries can be securely obfuscated.
In some cases, obfuscation imposes a heavy performance and storage
cost. Nevertheless, for many scenarios—such as securing public directories
against address harvesting—cryptographic obfuscation offers an efficient,
provably secure alternative to ad hoc access control schemes.

8.4 Obfuscation for Access Control

One of the first observations that cryptographic obfuscation may be used
for access control was made by Lynn et al. in [LPS04], who noted that
the standard Unix password-hashing procedure* can be viewed as “point
function obfuscation.” A point function is a function that produces a special
output on a single input, which may be thought of as a key or a password.

Instead of storing each user’s password in the clear, Unix stores a hash
of the password. The security objective is to protect against server compro-
mise: If an attacker breaks into the system, he shouldn’t be able to learn the
users’ passwords right away. Originally, Unix used a hash function based
on the DES cipher, but modern versions of Unix use a true cryptographic
hash function, such as MD5 or SHA-1.

To prove Unix password hashing secure, Lynn et al. invoke the so-called
random oracle model, which is a proof technique that allows the algo-
rithm designer to treat hash functions as if they behaved like true random

* By this, we mean the password-hashing procedure originally deployed in the Unix
operating system starting in the late 1970s; before long, most systems using password
authentication made use of some variant of this procedure.
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functions, i.e., as if they mapped each input to a truly random value. While
this model is somewhat controversial, cryptographers have had qualified
success in building functions that sufficiently scramble their input so that
they are difficult to distinguish from a random function.*

Lynn et al. observe that if the hash function is treated as a random
oracle, then storing a hashed password is equivalent to obfuscating the
original password. More precisely, storing a hashed password is essentially
equivalent to giving the user access to an “oracle,” which allows him to
test any candidate password for equality with the original password. This
is clearly the strongest security property one can hope for in a password
authentication system: It is not feasible to do anything with the stored
password other than compare it for equality with the user’s input.

Let H be a cryptographic hash function, which is modeled as a “random
function” with an 7-bit output. If pis the password, we store the value H(p).
The security proof is based on the intuition that no matter how many times
you evaluate H on inputs different from p, it is going to tell you nothing
about p because H is independently random on every input; but if you
ever query it on p, that means you knew or guessed p in the first place (in
other words, H(p) did not leak any useful information about p). You can
then confirm the guess by asking the oracle whether it is equal to p.

On the other hand, the chance that you can successfully authenticate
with an incorrect password p # p is negligibly small because this can
happen only if H(p) = H(p) for some p different from p. For each p/,
the chance that this happens is only 27" because H(p') is picked at random
from a set of size 2"

Technically, an obfuscator outputs a program that verifies whether a
password is correct or not. It is conceptually simpler, however, to think
of the obfuscator as outputting simply the hash and having a separate
program (which is independent of the password) to verify the user’s input
by hashing it and comparing for equality with the hash produced by the
obfuscator.

Lynn et al. also observe that essentially the same construction can be
used to obfuscate a “lookup function.” If p is the password that unlocks
some secret s, then the obfuscation consists of H(p)®s, where @ represents
the XOR operation, as in a one-time pad. This can be thought of, intuitively,
as encrypting s with p as the key.

This technique can be extended to obfuscating access control in pub-
lic databases [NS05], by composing multiple lookup functions in paral-
lel. A directed-access database is a database in which some attributes are

* Subsequent to the publication of [LPS04], Wee came up with a construction for a point
function obfuscator and proved it secure under a set of assumptions that are closer to
traditional cryptographic assumptions [Wee05].
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designated as query attributes, and the rest as data attributes. The database
is securely obfuscated if, for any record, it is infeasible to retrieve the values
of the data attributes without supplying the values of the query attributes,
yet a user who knows the query attributes can easily retrieve the corre-
sponding data attributes.

To illustrate by example, a directed-access obfuscation of a telephone
directory has the property that is easy to look up the phone number cor-
responding to a particular name and company or a name-address pair,
but queries such as “retrieve all phone numbers stored in the directory”
or “retrieve all names,” are computationally infeasible. Such a directory is
secure against abusive harvesting, but still provides useful functionality.

As mentioned before, our goal is to limit the attacker to a particular set
of queries. It is up to the database owner to decide what these queries
should be. For example, if he does not want query attributes, such as the
name—address pair, to be easily guessable, he can require the user to supply
additional information about the record before the record can be retrieved
from the database. Cryptographic obfuscation provides the data owner with
a technical mechanism for enforcing the desired policy.

The directed-access property of a single database record can be modeled
as a point function. The input is the set of query attributes. The point
function returns a special output on exactly one input, which is the set
of correct values for the query attributes. In this case, the special output
consists of the data attributes of that record.

Informally, we encrypt the data attributes with a key derived from the
hashed query attributes. Directed-access obfuscation guarantees that the
only computationally feasible way to retrieve the data attributes is to sup-
ply the corresponding query attributes; if the retriever does not know the
right query attributes, no information can be extracted at all. Furthermore,
the data attributes are themselves protected from mass harvesting, except
possibly by guessing.

There are two subtleties in this construction. Suppose the user supplies
the correct query attributes for some record, and retrieves a set of data
attributes or what looks like data attributes. How does he know that the
lookup succeeded? One answer is that if it is the wrong record, or if the
wrong query attributes were supplied, the answer is going to “look ran-
dom” (which is required by the virtual black-box definition of security)
and, therefore, not meaningful to the user. This approach is fraught with
danger, however, because it assumes that it is always possible to distinguish
a correct data value from a random-looking one. For example, telling the
difference between a random nine-digit value and a credit card number is
possible, but may be difficult for an uneducated user. Attempting to define
what qualifies as a well-formed piece of data is generally seen as both futile
and unnecessary in cryptography. For instance, it is recommended to com-
press the data before encrypting (except in very special circumstances), and
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the encryption algorithm does not need to worry about trying to exploit
redundancy in the data.

We follow the same approach, and in addition to the lookup functional-
ity, we include “verification” functionality in the obfuscated database. The
verification functionality is another point function obfuscation; this one will
output YES on the correct input and NO everywhere else. The user first
checks the verification functionality, and if it returns YES, proceeds to the
actual lookup function. Note that correctness here holds with overwhelm-
ing probability, and we don’t need to make any assumptions about the
data.

This brings us to the issue of composition. Consider what happens when
two records have the same query attributes. The hashes of the two sets
of query attributes are going to be the same, revealing the fact that the
attributes are equal. Depending on the circumstances, this may or may
not be a privacy leak, but it is certainly a violation of the virtual black-
box definition of security. It is easy to prevent this from happening using
the well-known technique of “salting,” or adding a random value to each
hash. We concatenate a random “salt” to the query attributes before hashing
them, and publish the salt along with the hash. Technically, this is known
as “self-composing” obfuscation.

8.5 Obfuscation for Group Privacy

Let us now turn to more complex privacy policies that possibly allow the
user to retrieve more than one record at a time. The set of query at-
tributes is no longer fixed; the user can base his query on different sets
of attributes for different records. How can privacy be enforced? How
can the database owner prevent the user from issuing the equivalent of
a "SELECT * FROM tablename" query affer the database has been
publicly released?

Our solution is to allow a record to be retrievable if the user can “name”
it precisely. Enforcing or even formulating what this means is difficult. Do
we rule out all queries that return more than one record? This seems like
a natural thing to do if we are concerned about not leaking information
about a record to a user who cannot identify this record in advance. For
example, consider the difference between someone who is looking up
an old classmate in a college alumni directory and can describe precisely
the person’s name and year of graduation, and a spammer who wants to
indiscriminately harvest all addresses listed in the directory.

To prevent abusive information harvesting from public databases, our
approach differentiates legitimate and abusive queries by the number of
records they return. A legitimate query “knows what it wants,” and is
matched by a relatively small number of records. An abusive query tries to
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extract as much information as possible, and is matched by a large number
of records.

We adopt the general principle of pricing via processing, which has
been used, for example, by the “hashcash” system for combatting spam
and denial of service [Bac02]. In the hashcash scheme, the sender of an
e-mail must compute a moderately hard, but not prohibitively expensive,
function in order to send the e-mail. This deters abuse (as the amount of
work to be done goes up linearly with the number of messages to send,
even if they are all copies of each other), but does not affect legitimate,
occasional usage. We will adopt a similar approach to database privacy by
forcing the user to perform a very difficult computation if the number of
records matching his query is large.

8.5.1 Group Privacy Policy

Defining a group privacy policy where the answers to queries with more
and more matching records are harder and harder to obtain. Recall that
we define privacy policies by specifying a black-box “ideal functionality,”
which describes how the database would behave had it been implemented
in perfectly secure tamper-proof hardware. One way to do this would be
for the ideal functionality to delay the response for a while before returning
answers that contain multiple records. For technical reasons, however, it is
not possible to incorporate temporal behavior into the ideal functionality,
so we instead make the ideal functionality more and more error-prone as
the number of records goes up.

The ideal functionality for group privacy is as follows: If there are ¢
records matching query ¢, the ideal functionality returns them with prob-
ability 27/, otherwise it returns a special symbol L. If there are no records
that match, it simply returns L. With access to this functionality, a user can
evaluate a query matched by ¢ records by repeating the query, on average,
27 times.

In databases obfuscated to satisfy this policy, the user is forced to guess
¢t bits before he can access the data attributes in any matching record.
(If t =1, i.e., the record is unique, the user still has to guess 1 bit, but this
simply means that with probability 1/2 he has to repeat the query.) The
policy that requires the retriever to uniquely identify a single record, i.e.,
forbids any query that is satisfied by multiple records, can also be easily
implemented using our techniques.

For example, consider an airline passenger database in which every
record contains the passenger’s name, flight number, date, and ticket pur-
chase details. After the database has been obfuscated, if the user knows the
name and date that uniquely identify a particular record (e.g., because this
information was supplied in a court-issued warrant), he (almost) immedi-
ately learns the key that encrypts the purchase details in the obfuscated
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record. If the passenger traveled on £k flights on that date, the retriever
learns the key except for k& bits. Since k is small, guessing k bits is still fea-
sible. If, however, the retriever only knows the date and the flight number,
he learns the key except for m bits, where m is the number of passen-
gers on the flight, and retrieval of these passengers’ purchase details is
infeasible.

A database obfuscated using this method has the group privacy property
in the following sense. It can be accessed only via queries permitted by the
group privacy policy. The probability of successfully evaluating a permitted
query is inversely exponential to the number of records that satisfy the
query predicate. In particular, to extract a large number of records from the
database, the retriever must know a priori specific information that uniquely
identifies each record, or small subsets of records. The obfuscated database
itself does not help him obtain this information. (The cryptographic details
of obfuscation for group privacy can be found in [NS05].)

We still have not addressed the question of what kind of queries are
permitted by the data privacy policy. If arbitrary queries are permitted, then
it can be shown that the user can extract the entire database even under
the most restrictive privacy policy, i.e., one where the ideal functionality
responds to a query only if there is only a single record matching it. There-
fore, we restrict the user to the following class of queries: Each attribute
can only be tested for equality with a given candidate value; the results of
testing can be combined in any manner whatsoever.

For example, query

e-mail = "johndoe@bigcorp.com" OR
e-mail = "jdoe@bigcorp.com" OR
e-mail = "doe.john@bigcorp.com"

is allowed, whereas the following query is forbidden:

e-mail LIKE "@bigcorp.com"

8.5.2 Tradeoff between Privacy and Utility

Much research still needs to be done on understanding the tradeoffs be-
tween utility, privacy, and efficiency in using cryptographic obfuscation
for digital privacy. The cryptographic community generally views privacy
as paramount and posits that if a given release of data does not achieve
a “proper,” cryptographically strong definition of security, then the data
should not be released at all. The statistical database community, which
tends to work with practical privacy problems in actual databases, adopts
heuristics to protect privacy, and regards utility and efficiency as paramount.
We propose a middle ground: While our provably secure constructions are
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not always feasible for large databases, we also describe practical heuristic
methods that considerably improve efficiency [NSO5]. In terms of utility, our
query language is clearly less expressive than one might hope for, but it
is not clear whether expressiveness can be improved without significantly
sacrificing privacy.

Finally, our construction for group privacy has the security weakness
that it is possible to launch a dictionary attack on individual fields, even
when the privacy policy requires multiple fields to match in order to look
up the corresponding records (technically, there is an individual verification
oracle for each attribute). It is unclear if this weakness can be avoided while
preserving the user’s ability to retrieve records by supplying an arbitrary
subset of query attributes.
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9.1 Introduction

In many data systems, it is important to protect individual privacy while
satisfying application requirements. To provide such protection, privacy
disclosure must be measured in some quantitative manner, as absolute
privacy is usually not a practical proposition. Privacy measurement metrics
have appeared in the literature, but they are either for single table scenarios
(e.g., [17,22,23]), or for a more theoretical purpose (e.g., [20D. This chapter
introduces two data privacy measures that can be used for general relational
data releases and that are amenable to practical applications, and outlines
challenges and possible solutions in using these measures in applications.

173
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Privacy metrics in general have two aspects. One aspect of privacy mea-
sure is based on uncertainty of private property values, i.e., the uncertainty
of an individual’s private value. The idea is that if the published data lacks
the certainty of what private value an individual has, then the privacy of the
individual is protected. The metrics of this type can be classified into two
categories: nonprobabilistic and probabilistic. The nonprobabilistic metrics
are based on whether the private value of an individual can be uniquely
inferred from the released data [1,6,8,14,15,18] or whether the cardinal-
ity of the set of possible private values inferred for an individual is large
enough [24,27]. The probabilistic metrics are based on some characteristics
of the probability distribution of the possible private values inferred from
the released data [2—4,10,11,13]. In this chapter, we concentrate on different
metrics that are applicable on general relational query results [28].

However, uncertainty alone does not provide adequate protection. For
example, we may reveal employee John’s salary to be in a large interval
(say, 100,000 to 300,000 annually). This large interval provides great uncer-
tainty. However, if we also reveal that the salaries of all other employees
are in ranges that are totally different from John’s (say, all are subranges
of 50,000 to 100,000), then John’s privacy may still be violated. In this ex-
ample, the privacy breach can be viewed as due to the fact that from the
published data, an individual is different from all other individuals in terms
of his possible private values. In other words, the example shows the viola-
tion of a privacy requirement, namely, the “protection from being brought
to the attention of others” [12]. To adequately protect privacy, we need to
consider the other aspect of privacy, what we call indistinguishability [26].

Indistinguishability is inspired by the notion of k-anonymization
[5,16,19,22,23]. Given a positive integer k, k-anonymization is to recode,
mostly by generalization, publicly available quasi-IDs in a single released
table, so that at least k& individuals will have the same recoded (or general-
ized) quasi-IDs. (Quasi-IDs are values on a combination of attributes that
can be used to identify individuals through external sources [22,23].) In our
view, this is an effort to provide indistinguishability among the k& individ-
uals, since the recoding makes the individuals indistinguishable from each
other.

The indistinguishability notion used in this chapter applies to general
query results, not just the single generalized table as in k-anonymity. Con-
ceptually, each individual needs to belong to a group of individuals who
are indistinguishable from each other in terms of their possible private val-
ues derived from the released data. In this way, an individual is hidden in a
crowd that consists of individuals who have similar/same possible private
values. For instance, in the above salary example, to protect John’s privacy,
one wants to make sure that any attacker can only derive from the pub-
lished data that a large group of employees have the same range of salary
as John.
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Uncertainty and indistinguishability are two independent aspects for
providing privacy; one does not imply the other. From the above ex-
amples, one can see that uncertainty cannot ensure good indistinguisha-
bility. Likewise, good indistinguishability cannot ensure enough uncer-
tainty. For instance, if in the released data many employees have the same
single, possible salary value, then these employees are indistinguishable
from each other in terms of their salaries, but there is not enough uncer-
tainty to protect their privacy (all their salaries are the same and revealed).
This phenomenon was noted in [17], indicating that k-anonymity (a type of
indistinguishability) alone is not enough to protect privacy, and /-diversity
(a kind of uncertainty) is needed.

To set the stage for a technical discussion in this chapter, the scenario is
formally defined here. We consider releasing data from a single private rela-
tional table Tbl with schema D, where D is a set of attributes. The attributes
in D contain a set of ID attributes and a single P attribute. The ID attributes
can be used to trace back to an individual, while P is the private attribute of
the individual. These assumptions are for simplicity. Indeed, ID may consist
of multiple attributes that together identify individuals, or 7D may be quasi-
IDs that can be used in combination of external sources to identify individ-
uals. Also, in the table, there may be multiple secret attributes. However,
this simplification makes an easier presentation without loss of generality.

It is assumed that the projection on ID, I1;,(7b)), is publicly known. In
the salary example, this means that the list of employees is publicly known.
This assumption is realistic in many situations. In other situations where this
is not true, one may take this approach as providing a conservative privacy
measure. Assuming the attackers know more than they actually do is always
a safe assumption, i.e., a conservative assumption.

Relational operations are considered on T'bl. A relational operation is
a mapping that maps one or more input relations to an output relation.
Traditional relational algebra operations, namely selection (), projection
(0), join (<), and set operations (U, N, —) are typically used to derive
query results from 7'bl. Also included in the discussion are deterministic
anonymization methods that map an input relation to a generalized relation
(see, e.g., [5,16,19,22]). A query Q is a composition of relational operations
on Tbl, and we assume all data releases are in the form of queries and
the corresponding query results. This is a rather flexible data publication
mechanism. In this chapter, V is used to denote a set of queries, v the set
of corresponding query results, and the pair (V, v) a view set (a query with
its result is usually called a view). Also, v is used alone to denote the view
set (V, v) when V is understood.

Included in the following text is a formal definition of uncertainty and
indistinguishability metrics for a view set (V, v) on the private table 7'bl. We
then outline basic ideas on how to achieve practical methods to check if a
set of query results satisfies the uncertainty and indistinguishability metrics.
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The rest of this chapter is organized as follows. In Sections 9.2 and 9.3,
we formally define the privacy metrics uncertainty and indistinguishabil-
ity, respectively. We then discuss in Section 9.4 technical challenges, and
related solutions, in measuring relational query results against these two
metrics. In Section 9.5, we provide pointers to other related works not
mentioned elsewhere in the chapter. We conclude with a summary and a
brief discussion of further research directions in Section 9.6.

9.2 Uncertainty

The example in Figure 9.1 is used to motivate the notion of uncertainty. In
general, we assume that secret and private information takes the form of
associations, that is, pairs of values appearing in the same tuple. For exam-
ple, the association of “Bill” with “HIV” in the base table P, in Figure 9.1 is
private information. Note that neither “Bill” nor “HIV” alone is a secret, but
the association of the two values is. In Figure 9.1, the secret associations
are all the pairs in 7 xame proviem(P1), Where P, is the base table 76l In
this case, Name is the ID attribute, while Problem is the P attribute in the
general setting. We call wp p(Tb)) the secret view.

Also in Figure 9.1 are two queries and their results. By examining the
queries and their results, there is no direct link between people and their
problems. However, a simple deduction can show that Bill has HIV. In
the same example, one can only deduce that George may have a cold
or be obese. We will say that the two queries and their results provide

Name | Job Salary | Problem

George | Manager | 70K Cold

John Manager | 90K Obesity

Bill Lawyer 11K HIV

Base table P;

V1 = I Name,job (P1) va = I jop, proviem (P1)
Name | Job Job Problem
George | Manager Manager | Cold
John Manager Manager | Obesity
Bill Lawyer Lawyer HIV

Figure 9.1 Base table and two releasing views.
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1-uncertainty for Bill (which is no uncertainty at all), while providing 2-
uncertainty for George (and John as well).

Before defining the uncertainty metric, we give one further notation and
one auxiliary definition: Given a view set (V, v), we denote Z” to be the
set of allowable relation tables on schema D, such that for each » in 7%, we
have V(r) = v. This means that Z% consists of all possible relational tables
that give the same result » when the queries V are applied. The auxiliary
definition is as follows.

Definition 9.1 (Association Cover) Each binary tuple on (ID, P) is called
an association. Given a view set v, a set A of associations on (ID, P) is called
an association cover w.r.t. v if all the binary tuples in A bave the same ID valie
and for each r inZ¥, wpp p(r) N A# Q.

Each association cover has the same value on ID. An association cover
of size kis called a k-association cover. An association cover is minimal if
none of its proper subsets are association covers.

Intuitively, a minimal association cover is a set of associations such
that just by looking at the view set, one cannot tell which association in
the association cover actually appears in the original base table 7'bl. In
Figure 9.1, {(John, Cold), (John, Obesity)} is an association cover. Indeed,
Jobn is a manager from v; while a manager has either Cold or Obesity, or
both from #,. Hence, for any base table instance r that yields ¢, and v,
either (Jobn, Cold) or (Jobn, Obesity), or both are in m;p p(7). By definition,
{(Jobn, Cold), (Jobn, Obesity)} is an association cover. This cover is minimal
because neither {(Jobn, Cold)} nor {(Jobn, Obesity)} is an association cover.
The fact that {(John, Cold)} is not an association cover is clear since (Jobhn,
Cold) is not in P, but we know P, is in Z%, where v = {vy, 15}. To see
why {(John, Obesity)} is not an association cover, we only need to change
P, slightly by switching the Problem values of Jobn and George. In this
changed table, the same two queries will yield the same results as applied
to the original P, and, hence, the changed table is in Z?, but (John, Obesity)
is not in this changed table. All this really says is that by just looking at ¢,
and ©,, one cannot tell in the original base table whether John is associated
with Cold or Obesity. Minimal association covers provide us with a formal
basis for defining uncertainty.

Definition 9.2 (kuncertainty) Given a view set v and integer k > 2, we say
v violates k-uncertainty if there exists an association cover w.r.t. v of size less
than k.

Intuitively, if a view set does not violate k-uncertainty (for a user-
specified, sufficiently large k), then we would say that all the secret
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associations are “protected.” This definition requires that for each value
a on ID an association cover of size less than & with ID being a does not
exist; in other words, it requires k-uncertainty for each a on ID.

By definition, if a view set violates k-uncertainty, then there exists an
m-association cover such that # < k. An extreme case is when 2-uncertainty
is violated and, in this case, a binary tuple on (ID, P), the one in the
association cover, is a secret association, i.e., it must be in the secret view
on Tl (actually, in any allowable instance that yields »). In Figure 9.1,
the view set of v; and v, violates 2-uncertainty, since {(Bill, HIV)} is a
1-association cover. This means (Bill, HIV) must be a secret association.

9.3 Indistinguishability

In order to define indistinguishability, notation and assumption are ex-
tended a bit further. Given a relation 7;, on ID, we will use Z” to de-
note the set {r|m;p(r) = rip}, ie., the set of the relations on D whose
ID-projection coincide with 7;5. The domain of P, the private attribute,
is denoted by Dom(P). A tuple is an instance of ZP is denoted by r or
(a, p), where ais in w;,(Thl) and pis in Dom(P). The set Z'P corresponds
to all possible private table instances by only knowing 7 ;,(7bl), which is
assumed to be public information. Furthermore, we assume ID is a key
in D, which means that each composite value on ID appears, at most,
once in the private table. This last assumption can be easily dropped, but
we choose to keep it to simplify our presentation.

We use the example in Figure 9.2 to explain our definition. The ID
attributes are Zip, Age, Race, Gender, and Charge. We use 4, ..., iz to
denote the tuples in the table. Our assumption has been that for each i,
LID) can trace back to a particular individual. In the sequel, the #[ID]
value are used and the individual identified by #[/D] interchangeably. The
private attribute is Problem. Here, Problem is drawn from a finite discrete
domain. (In general the private attribute also can be drawn from an infinite
or a continuous domain, but it should not be difficult to extend the study
to infinite discrete or continuous domains.)

Similar to section 9.2, when a view set (V, v) is released, 7% is denoted
by the subset of possible instances in ZP that yield ». The definition of
indistinguishability, thus, is based on Z.

Definition 9.3 (Symmetricity) Given a view set v and two tuples a; and a; in
7 p(ThD), wesay a; and a; aresymmetric w.r.t. v if the following condition is sat-
isfied: For each instancer in1" containing (a;, p;) and(a;, p;) there exists an-
other instance ' in1" such thatv = (r—{(a;, p), (a;, ppPPU{(a;, pp, (a;, p)}.

Symmetricity is abbreviated as SYM. This definition requires that for
each possible instance in Z?, if two symmetric ID values swap their private
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Zip Age | Race | Gender | Charge | Problem
t; | 22030 | 39 White | Male 1K Cold
ty | 22030 | 50 White | Male 12K AIDS
t3 | 22030 | 38 White | Male 5K Obesity
tsy | 22030 | 53 Black | Male 5K AIDS
ts | 22031 | 28 Black | Female 8K Chest Pain
te | 22031 | 37 White | Female 10K Hypertension
t; | 22031 | 49 Black | Female 1K Obesity
tg | 22031 | 52 White | Male 8K Cold
to | 22032 | 30 Asian | Male 10K Hypertension
tio | 22032 | 40 Asian | Male 9IK Chest Pain
ty1 | 22033 | 30 White | Male 10K Hypertension
tip | 22033 | 40 White | Male 9K Chest Pain

Figure 9.2 A patient table (Tbl).

values while keeping all other tuples unchanged, the resulting new instance
can still yield ». In the sequel, we say two ID values 4[ID] and t[ID] can
swap their private values in an instance, or simply 4 [ID] swaps with t[1D],
if the resulting instance can still yield v.

Note that such a swap is required for all the instances yielding v, hence,
this definition is in terms of v, not the current table 7'b/ (although we used
the projection I1z(7T'hD) in the definition, this projection is not 7'b/ itself
and is assumed to be publicly known). In other words, for two ID values
to be SYM is to be able to swap their corresponding private values in all
possible instances, including 7°5l.

For example, consider the released view v in Figure 9.3 on the table in
Figure 9.2. The two ID values %[ID] and #o[ID] are SYM because they can

Zip Problem

to | 22032 | Hypertension

tio | 22032 | Chest Pain

t11 | 22033 | Hypertension

t12 | 22033 | Chest Pain

Figure 9.3 A released view Ilzip propiem(TBl) Ozip—r22032'0r22033 (TBI) provides
2-SIND.
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swap their Problem values in any instance to yield v while still yielding
the same v. Similarly, the two ID values #1[ID] and #;5[ID] are also SYM.
However, %[ID] and #,[1D] are not SYM, even though they have the same
Problem value (Hypertension) in the current private table. To show this,
consider an instance obtained by swapping the Problem values of # and
ho in T'bl (while other tuples remain unchanged). Now % has Chest Pain
while tp has Hypertension. Denote the new instance Tbl'. Clearly, Tbl
also yields the view v and, therefore, Th!' is in Z%. However, in Tbl', if
we swap the Problem values of #y (i.e., Chest Pain) with that of #; (i.e.,
Hypertension), then both # and #o will have Hypertension. Therefore,
the new instance obtained from 7'bl' does not yield v and, hence, ©[ID]
and #,[ID] are not SYM.

The definition of SYM requires a complete symmetry between two B tu-
ples in terms of their private values. The sets of possible private values of
the SYM tuples are the same because in each possible instance two SYM
ID values can swap their private values without changing the views. Fur-
thermore, the definition based on swapping makes SYM between two ID
values independent on other ID values. That is, even if attackers can guess
the private values of all other ID values, they still cannot distinguish be-
tween these two ID values because the two ID values still can swap their
private values without affecting the views.

The binary relation SYM is reflexive, symmetric, and transitive. That is,
SYM is an equivalence relation. It is easy to see that it is reflexive and
symmetric. The transitivity is shown as follows. If an ID value @ can swap
with another ID value @, and @ can swap with ¢, then ¢ can swap with
az by the following these steps: a; swaps with @&, @ swaps with &, @
swaps with a, by the definition of SYM, the final instance still yields v.

Thus, the equivalence relation SYM partitions the 7D values in w;p(T'bD).
Each set in the partition, which is called a SYM set, is the “crowd” that
provides individual privacy. The sizes of these crowds reflect how much
protection they give to the individuals in the crowd, thus, we have the
following metric.

Definition 9.4 (k-indistinguishability) Given view set v, if each SYM set bas
a cardinality of at least k, we then say v provides k-indistinguishability.

That is, if we can partition the individuals into SYM sets while each
SYM set is at least of size k, then we have k-indistinguishability for each
individual, providing a sizeable crowd (size = k) for each individual for
protection.

In [26], it is shown that k-anonymity is a special case of k-
indistinguishability in the single table release situation. This reveals the
generality of the indistinguishability notion. On the other hand, in the
above definition, one requires “perfect” indistinguishability, i.e., it requires
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complete symmetry in terms of the private attribute values between indi-
viduals. Tt is possible to relax this to allow a degree of symmetry. This is a
topic worthy of future research.

9.4 Technical Challenges and Solutions

In this section, we discuss some technical challenges one faces when one
needs to measure a given view set against the two privacy metrics. Specific
practical solutions also are pointed out.

Given a view set (V, v), the uncertainty provided by the view set is
measured on the associated association covers. From a theoretical perspec-
tive, the question is to determine “if there exists an interger k& such that all
the association covers are of at least size k£” When we are dealing with
relational view sets, the question in general is computable, but the time
complexity can be rather high.

The basic approach to check for the sizes of the association covers has
two steps: (1) from the query expressions and the basic assumptions (that
are public knowledge), design a compact, symbolic representation of all the
association covers, and (2) algorithmically check if there is any association
cover in the symbolic representation smaller than k.

Summarized below are the general complexity results of [28].

B  When there are no functional dependencies in the original table (that
are known to the public/attackers), then the checking can be done
in polynomial time in the number of tuples in the view set. In this
result, we take the number of queries and the size of the queries in
the view set as constants, as they are insignificant in practice when
compared with the number of tuples in the view set.

B When there are functional dependencies, then the checking
complexity is in general %4-hard, which is intractable in practice.
Special subcases exist in which there are still polynomial time
algorithms [28].

The above complexity results apply to what we call the “accurate”
checking problem, i.e., when the algorithm says “violate,” then the view set
does violate the k-uncertainty, while if the algorithm says “doesn’t violate,”
then the view set does not violate the k-uncertainty. Even when the time
complexity is polynomial, in practice, it may not be practical to apply these
accurate algorithms especially when the number of tuples in the view set
is large.

Conservative checking is only to check the necessary condition for the
violation of k-uncertainty. That is, we only want to make sure that if a
view set violates the k-uncertainty, then the algorithm must say “violate,”
while we allow the algorithm to make mistakes in the other direction, i.e., if



182 m Digital Privacy: Theory, Technologies, and Practices

the algorithm says “violate,” the view set may or may not actually violate
k-uncertainty. We can say such an algorithm only checks a necessary con-
dition for k-uncertainty violation. Thus, the key to come up with conser-
vative checking algorithms is to find necessary conditions for k-uncertainty
violation.

Turning to indistinguishability, we know in general that it is intractable
to check if a view set provides k-indistinguishability. We have the following

[26]):

B Given a view set v, whether v provide k-indistinguishability is
coNP-hard.

The basic reason for this intractability is due to the fact that it is difficult to
know if a particular tuple (4, p) is in any instance » € Z¥ when the queries
in the view set contains selection operations. When the selection condi-
tions used in the view set are only on the ID attributes, then the problem
is much easier, and we do have a polynomial algorithm.

As in the case of checking k-uncertainty, we can turn to conservative
checking algorithms. That is, the algorithms must discover violation of A-
indistinguishability by the view set, but may make mistakes when the view
set actually does not violate k-indistinguishability. Again, we look for nec-
essary conditions for k-indistinguishability violation [26].

9.5 Other Related Works

Earlier in this chapter, we mentioned some related works. In this section, we
briefly discuss these works. Without attempting to provide a comprehensive
survey, we concentrate on privacy metrics.

Other than the k-anonymity and /-diversity metrics mentioned earlier, a
recent work [25] suggests the use of a combined metric, so-called
(o, B)-anonymity. The idea is to “protect both identifications and relation-
ships to sensitive information in data” [25]. This metric combines &
anonymity and /-diversity into one framework. However, the metric only
applies to a single table, instead of a general relational view scenario as
the uncertainty and indistinguishability discussed above.

Prior work exists that studies the privacy or secrecy disclosure by general
database views. The conditions of perfect secrecy are studied in [9,20] using
a probability model, and in [29] using query conditional containment. With
uncertainty and indistinguishability, we address the case where we intend
to release data if some partial disclosure by database views is tolerated,
and, hence, the disclosure requires measurement.

A related field is inference control. Authors have studied the informa-
tion disclosure that resulted from FDs or other constraints at the tuple level.
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One of the recent works is Brodsky et al. [6]. With uncertainty and indis-
tinguishability, we concentrate on intuitive metrics for data privacy instead
of general inference control.

Another related field is privacy-preserving data mining, first proposed
in Agrawal and Srikant [3]. Most work in privacy-preserving data mining
uses probability-based metrics, e.g., [2,10,11,21]. A recent interesting work
is Chawla et al. [7] that uses indistinguishability based on a probability
“distance” as a privacy metric.

9.6 Conclusion

In this chapter, we defined two independent metrics that complement each
other and are both important for privacy protection. The metrics apply
to general scenarios where data is released as mutliple query results. We
pointed out the computational intractability involved in checking the un-
certainty and indistinguishability in a general view set; we also mentioned
our research results in attacking the problem both for special tractable cases
and in using efficient conservative methods.

A number of interesting research directions are worthy of attention. The
most important one perhaps is to study methods that modify views to a
user requirement in terms of uncertainty and indistinguishability, when the
views do not satisfy already satisfy the requirement, perhaps in a similar
way as in Machanavajjhala et al. [17]. Another interesting direction is to
study additional special cases where tractable algorithms exist.
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10.1 Introduction
10.1.1 What Is Data Mining?

In today’s information age, data collection is ubiquitous, and every trans-
action is recorded somewhere. The resulting data sets can consist of ter-
abytes or even petabytes of data, so efficiency and scalability is the primary
consideration of most data-mining algorithms. Data mining is becoming in-
creasingly common in both the private and public sectors. Industries, such
as banking, insurance, medicine, and retailing, commonly use data mining
to reduce costs, enhance research, and increase sales. In the public sector,
data-mining applications initially were used as a means to detect fraud and
waste, but have grown to also be used for purposes, such as measuring
and improving program performance.

Data mining is an analytic process designed to explore data (usually
large amounts of data—typically business or market related) in search of
consistent patterns and/or systematic relationships between variables, and
then to validate the findings by applying the detected patterns to new sub-
sets of data. The ultimate goal of data mining is prediction, and predictive
data mining is the most common type and one that has the most direct
business applications. The process of data mining consists of three stages:
(D the initial exploration, (2) model building or pattern identification with
validation/verification, and (3) deployment (i.e., the application of the
model to new data in order to generate predictions).

Inductive Learning: Induction is the inference of information from data
and inductive learning is the model building process where the environment,
i.e., database, is analyzed with a view to finding patterns. Similar objects are
grouped in classes and rules formulated whereby it is possible to predict
the class of unseen objects. This process of classification identifies classes
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such that each class has a unique pattern of values that forms the class
description. The nature of the environment is dynamic, hence, the model
must be adaptive, i.e., should be able to learn. Generally it is only possible
to use a small number of properties to characterize objects, so we make
abstractions, in that objects, which satisfy the same subset of properties,
are mapped to the same internal representation.

Inductive learning, where the system infers knowledge itself from ob-
serving its environment, has two main strategies:

1. Supervised Learning: This is learning from examples where a teacher
helps the system construct a model by defining classes and supply-
ing examples of each class. The system has to find a description
of each class, i.e., the common properties in the examples. Once
the description has been formulated, the description and the class
form a classification rule, which can be used to predict the class of
previously unseen objects. This is similar to discriminate analysis as
in statistics.

2. Unsupervised Learning: This is learning from observation and dis-
covery. The data-mine system is supplied with objects, but no classes
are defined, so it has to observe the examples and recognize pat-
terns (i.e., class description) by itself. This system results in a set of
class descriptions, one for each class discovered in the environment.
Again this is similar to cluster analysis as in statistics.

Induction therefore is the extraction of patterns. The quality of the model
produced by inductive learning methods is such that the model could be
used to predict the outcome of future situations, in other words, not only for
states encountered, but rather for unseen states that could occur. The prob-
lem is that most environments have different states, i.e., changes within,
and it is not always possible to verify a model by checking it for all possi-
ble situations. Given a set of examples, the system can construct multiple
models some of which will be simpler than others. The simpler models are
more likely to be correct if we adhere to Ockhams razor, which states that
if there are multiple explanations for a particular phenomenon, it makes
sense to choose the simplest because it is more likely to capture the nature
of the phenomenon.

Statistics: Statistics has a solid theoretical foundation, but the results
from statistics can be overwhelming and difficult to interpret because they
require user guidance as to where and how to analyze the data. Data min-
ing, however, allows the expert’'s knowledge of the data and the advanced
analysis techniques of the computer to work together. Statistics have a role
to play and data mining will not replace such analyses, but rather they
can act upon more directed analyses based on the results of data mining.
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For example, statistical induction is similar to the average rate of failure of
machines.

Machine Learning: Machine learning is the automation of a learning
process and learning is tantamount to the construction of rules based on
observations of environmental states and transitions. This is a broad field,
which includes not only learning from examples, but also reinforcement
learning, learning with teacher, etc. A learning algorithm takes the data set
and its accompanying information as input and returns a statement, e.g.,
a concept representing the results of learning as output. Machine learn-
ing examines previous examples and their outcomes and learns how to
reproduce these and make generalizations about new cases.

10.1.2 Privacy-Preserving Techniques in Data Mining

Generally when people talk of privacy, they request that information about
themselves be unavailable to others. However, their real concern is that
their information should not be misused. The fear is that once information
is released, it will be impossible to prevent misuse. To do this, we need
technical solutions that ensure data will not be released.

1. Protection of personal information: One should not sacrifice the
privacy of individuals if doing so would not improve security. For
example, consider the security-relevant question of whether a par-
ticular individual has been at a particular location. Monitoring the
identities of every individual in that location will reveal whether
a particular individual has been there, but unnecessarily reveals
the whereabouts of every individual there. A privacy-preserving
solution would answer only the question regarding the particu-
lar individual, rather than revealing everyone’s identity. For ex-
ample, insurance companies will be concerned about sharing this
data. Not only must the privacy of patient records be maintained,
but insurers will be unwilling to release rules pertaining only to
them.

2. Protection of sensitive information: Suppose an airline wants to
compare its passenger lists against a database of suspected indi-
viduals. Obviously, the contents of the database must be protected.
Less obviously, it is also desirable to protect the passenger lists
and the answers to the database queries, since this could be use-
ful information to potential terrorists. Privacy-preserving techniques
would allow an airline to interact with a law enforcement database
to determine whether any passengers of a particular flight are on
a list of suspicious individuals, without revealing any information
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to intruders eavesdropping on the communication or revealing any
additional information about the database to the airline.

3. Collaboration among different agencies: As has been well docu-
mented, different federal and local agencies do not always cooper-
ate to the degree necessary to provide the highest security. Using
privacy-preserving techniques, such agencies could collaborate in
order to determine security-relevant outcomes based on their joint
data without requiring any agency to reveal its data to the others or
to a trusted third party. For example, photographic databases owned
by two different agencies could be compared for potential matches.
The ability to collaborate without revealing information could be
instrumental in fostering interagency collaboration. A classical ex-
ample of where privacy-preserving data-mining solutions can be of
great importance is in the field of medical research. Consider the
case where a number of different hospitals want to jointly mine their
patient data for the purpose of medical research; the hospitals are
reluctant to release their data unless there is a privacy-preserving
solution.

Until recently, many papers about privacy-preserving data mining are
coming out. Because the data-mining technology can be implemented in
many practical methods, there is no universal solution for privacy-preserving
data mining. They technologian can be divided into two methodologies
generally: the data randomization technique and the cryptography-based
technique, especially secure multiparty computation (SMC).

Organization of This Chapter. Section 10.2 describes random data
perturbation methodologies. In this section, we propose a distributed data
clustering scheme using the random data perturbation (RDP) technique,
which has been widely used for preserving the privacy of individual records
in statistical databases. Our privacy-preserving clustering algorithm is based
on kernel density estimation, which takes into account the issues of both
privacy and communication costs that arise in a distributed environment.
We show that our scheme is more secure and robust against the random
matrix-based filtering attack. Section 10.3 describes cryptography-based
methodologies. In section 10.3.1, we present a new scheme to solve k-
means in the security scenario of two-party. Furthermore, we show our
scheme also deals with data standardization to make the result more rea-
sonable. Finally, we show that our scheme is secure and more efficient.
In section 10.3.2, we propose a framework to do the privacy-preserving
document clustering among the users under the distributed environment:
two parties, each having his private documents, want to collaboratively ex-
ecute agglomerative document clustering without disclosing their private
contents. Finally, we summarize our conclusions in section 10.4.
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10.2 Random Data Perturbation Methodologies

10.2.1 A Brief Review of Random Data Perturbation
Techniques

The random perturbation techniques, which are often used in disclosure
control of statistical databases, have been studied by researchers in statis-
tics, algorithms, and, more recently, data mining. It is to add the random
noise to confidential numerical attributes. Thus, even if a snooper is able
to attain an individual value of a confidential attribute, the true value is not
disclosed. One of the key requirements of RDP methods is that they should
provide the appropriate level of security against attackers who attempt to
obtain information on confidential attributes through some mathematical
techniques.

Estimation of Distribution Function from the Perturbed Dataset.
The random value perturbation method attempts to preserve privacy of
the data by modifying values of the sensitive attributes using a random-
ized process [1]. Data miners explore two possible approaches. Value-class
membership and value distortion and emphasize the value distortion ap-
proach. In this approach, the owner of a dataset returns a value u; + v,
where w; is the original data, and v is a random value drawn from a cer-
tain distribution. Commonly used distributions are the uniform distribution
over an interval [—«, @] and Gaussian distribution with mean u = 0 and
standard deviation o. The 7 original data values w, w4, ..., u, are viewed
as realizations of n independent and identically distributed (i.i.d.) random
variables U;, i = 1,2, ..., n, each with the same distribution as that of a
random variable U. In order to perturb the data, n independent samples
0, Uz, ..., Uy are drawn from a distribution V. The owner of the data pro-
vides the perturbed values w4 + vy, th + 05, . .., U, + v, and the cumulative
distribution function Fy(r) of V. The reconstruction problem is to estimate
the distribution F(x) of the original data from the perturbed version.

The authors [1] suggest the following method to estimate the distribution
Fy(w of U, given nindependent samples w; = t; +v;, i =1,2,..., nand
Fy(v). Using Bayes’ rule, the posterior distribution function F;,(x) of U,
given that U + V = w, can be written as

s w2 fu(Ddz
~ % fw =2 fu(Ddz
which upon differentiation with respect to u yields the density function

7= Jr(w —w fu(w)
U A w— 2 fu(2dz

where f;(-), fy(-) denote the probability density function of U and V re-
spectively. If we have nindependent samples u; + v; = w;, i=1,2,..., n,

F,(w
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the corresponding posterior distribution can be obtained by averaging:

z Sv(w; — w fu(w)
Jolw = Z ° W, — 2 fu(Ddz

For sufficiently large number of samples 7, we expect the above density
function to be close to the real density function f;;(z). In practice, since
the true density f;(w) is unknown, we need to modify the right-hand side
of the above equation. The authors suggest an 1terat1ve procedure where
at each step j = 1,2,..., the posterior density fU () estimated at step
j—1is used in the right-hand side of above equation. The uniform density
is used to initialize the iterations. The iterations are carried out until the
difference between successive estimates becomes small. In order to speed
up computations, the authors also discuss approximations to the above
procedure using partitioning of the domain of data values.

10.2.2 Privacy-Preserving Clustering Based on RDP Techniques

10.2.2.1 Introduction and Primitives

Density Estimation-Based Clustering. In density estimation (DE)-based
clustering, the search for densely populated regions is accomplished by
estimating a so-called probability density or cumulative distribution func-
tion from which the given data set is assumed to have arisen. Many tech-
niques for DE-based clustering are proposed [10,28]. The proposed clus-
tering methods require the computation of a nonparametric estimation of
the density function from the data. One important family of nonparametric
estimates is known as kernel estimators. The idea is to estimate a density
function by defining the density at any data object as being proportional to
a weighted sum of all objects in the dataset, where the weights are defined
by an appropriately chosen kernel function.

Our Contributions. Here, we study the random data perturbation tech-
niques and propose a privacy-preserving, density-based clustering scheme
using the RDP techniques.

B We show that random noise addition methods can be used to pre-
serve the data privacy in density estimation-based clustering; it is
possible for a user of the masked data to estimate the distribution
of the original data.

B We make an extension of our scheme for the distributed cluster-
ing with the masking parameters published in order for estimates
obtained from the masked data to be adjusted for consistency and
unbiasedness.

B Moreover, we show that our scheme is secure and it can prevent the
random matrix-based filtering attack.
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Problem Setting. In this section, we deal with the privacy problem
of distributed data clustering (DDC). We assume that there are 7 parties
wanting to cooperate on the joint databases Dy U D, U ... U D, without
revealing the private information of the databases. And we assume the
standard synchronous model of computation in which #» parties commu-
nicate by sending messages via point-to-point channels. Let A(---) be a
clustering algorithm mapping any dataset S to a clustering of S, that is, a
collection of pair-wise disjoint subsets of S. We define the problem of ho-
mogeneous distributed data clustering for clustering algorithm A as follows.
Let S={x|i=1,..., N} € R,be adataset of objects. Let L ;, j =1,..., M,
be a finite set of sites. Each site L ; stores one dataset D; , and it will be as-
sumed that § = Uf}ile. The DDC problem thenisto find for j=1,..., M,
a site clustering C; residing in the data space of L ;, such that

B C;={CND;:Ce A} (correctness requirement).

] Tlrne and Commumcatlons costs are minimized (efficiency require-
ment).

B At the end of the computation, the size of the subset of S, which has
been transferred out of the data space of any site L ;, is minimized
(privacy requirement).

Viewing all of the published data as encoded bits z, ..., z, the goal of
the privacy-breaking adversary is to efficiently decode this encoding to get
the original value. In our setting, the decoding algorithm is given access to
a data matrix that is perturbed by adding some random noise. We want to
provide a privacy scheme such that the a priori probability of original data
X is the same as the a posteriori probability of original data X given the
corresponding perturbed data Z.

Primitive Tools. Random Data Perturbation: Random data perturba-
tion (RDP) methods are often used to protect confidential, numerical data
from unauthorized queries while preserving a certain accuracy of original
information to legitimate queries. This methodology is adding the random
noise to confidential numerical attributes. One of the key requirements of
RDP methods is that they should provide the appropriate level of secu-
rity against an attacker who attempts to obtain information on confidential
attributes through some mathematical techniques. To provide accurate in-
formation, it is desirable that perturbation does not result in a change in
relationships between attributes. Therefore, database administrators have
to balance the trade-off for confidentiality against the needs of legitimate
users for easy access and analysis of organizational data. This method is
also called simple additive noise masking. Let’s assume that the vector of
original data x; for the j-th variable of the original dataset X; is replaced
by a vector z; = x; + €;. Where the random variable €; ~ N(O 02/) such
that the covariance Cou(e,, €)) = 0 for all ¢t # [. Noise that satisfies these
conditions is the uncorrelative noise.
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Verifiable Secret Sharing (VSS) Scheme: A player might lie about his own
share to gain access to other shares. A VSS scheme allows players to be cer-
tain that no other players are lying about the contents of their shares, up to
a reasonable probability of error. Such schemes cannot be computed con-
ventionally; the players must collectively add and multiply numbers without
any individuals knowing what exactly is being added and multiplied.

10.2.2.2  Our Proposal Based on Random Data Perturbation

In this section, our cluster algorithm is based on Klusch et al.’s proposal [20].
Using kernel-based density estimation, it is straightforward to decompose
the clustering problem into six steps as follows:

1. Choose a window width b and a kernel function fx.

Form the data as a matrix with » columns.

Perturb the data and then make a linear transformation.

Reconstruct the density of the perturbed data.

Compute the kernel-based density estimate ¥ 7 ,[SI(%) from the

given dataset.

6. Detect regions of the data space where the value of the estimate is
high and group all data objects of space into corresponding clusters.

MU D

To meet the privacy concern, we make a linear transformation on the
original data before the clustering computation. In this section, we show
how to implement the privacy-preserving protocol using the RDP technique.

Random Data Perturbation Based on Linear Transformation. A
linear transformation between two vector spaces V and Wis a map 7 :
V' — W such that the following holds: T(vy + v;) = T(vy) + T(v,) for
any vectors v, and v, in V, and T(xv) = a T(v) for any scalar o. Our pur-
pose is to perturb the original data while maintaining the unbiased value
of summary statistics for the density estimation clustering. The basic idea
is adding random noise to the original data and then make a linear trans-
formation. And the linear transformation doesn’t affect the accuracy of the
clustering because the distances between variables don’t change. Moreover,
this type of transformation leads to a simple application of the change of
variable theorem. Suppose that X is a random variable taking values in
S € R, where R is a set of real number, and that X has a distribution on
S with probability density function f. Let ¥ = ax+ b where a € R\0 and
b € R. And note that Y takes values in 7' = {ax+ b: xe€ S} C R. Apply
the change of variables theorem to show that Y has probability density
function g(¥) = ﬁf(y—;b), yeT.

We model the database as a matrix that has » columns, where b is the
window width. We then make a linear transformation on the original data
matrix. Here, we denote the original data as x; and noise added to original
data as ;. At first, we generate a perturbed data as Z; = x; + ). The
random noise y; can be generated from Gaussian distribution.
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We apply the linear transform to the perturbed data Z; to make them
more secure against the random matrix-based filtering technique. We can
do the linear transformation as: D; = aZ; + b;. After this step, we can get
a matrix:

where B is a matrix whose j-th column contains the scalar b; in all rows.
Parameters a and b; are determined under the restrictions that E(D;) =
E(Xp and Var(D;) = Var(X;) for j=1,..., n, where E and Var denote
the estimation and variance, respectively.

Due to the restrictions used to determine «, this method preserves ex-
pected values and covariances of the original variables and is quite good in
terms of analytical validity. Namely, a new dataset D is reconstructed from
the perturbed data using certain algorithms, and the difference between D
and the actual original dataset X indicates how much private information
can be disclosed. The farther apart D is from X, the higher level of the
privacy preservation is achieved. Therefore, the difference between D and
X can be used as the measure to quantify how much privacy is preserved.
By fixing the perturbation of an entity, it can prevent the estimates of the
value of a field in a record by repeating queries.

Density Reconstruction. The goal of density reconstruction is to es-
timate the means and standard deviations for each cluster so as to maxi-
mize the likelihood of the observed data (distribution). Put another way,
the expectation maximization (EM) algorithm attempts to approximate the
observed distributions of values based on mixtures of different distribu-
tions in different clusters. The EM algorithm is used to estimate the prob-
ability density of a set of given data. In order to model the probability
density of the data, Gaussian Mixture Model is used. The probability den-
sity of the data modeled as the weighted sum of a number of Gaussian
distributions.

The n original records x4, %, ..., X, are modeled as realizations of n
independent, identically distributed, random variables X;, X5, ..., X,, each
with the same distribution as a random variable X. To hide these records,
n independent, p-variant variables Y1, Y5, ..., ¥, are used, each with the
same distribution as a random variable Y. The published data Z set will be
2=X+M 2=%+ I, .., 2= X+ Y The purpose of our algorithm
is to estimate the density function of the dataset X from our knowledge of
the published data Z and the density function fy.

Here, we can reconstruct the possibility density function fy from the
perturbed data and get the approximated result f}. We approximate the
density function fx with the average of the density function over the inter-
val in which xlies. Let 7(x) denote the interval in which xlies. Let N(Z,) be
the number of points that lie in interval 7, (i.e., number of elements in the
set {zlz el p}, since 4 z;) is the same for points that lie within the same
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interval. The problem is to reconstruct the probability density function of
each distribution, thus we can use the algorithm in Agrawal et al. [1] to
reconstruct it for density estimation-based clustering.

Extending to Distributed Environment. We can apply this scheme
to a distributed environment with #» participants sites L;, j = 1,..., nby
using the VSS scheme [4]. A VSS scheme allows any processor to distribute
shares of a secret, which can be verified for consistency. If the shares
verify, the honest processors can always reconstruct the secret regardless
of the adversary’s behavior. Moreover, the curious processors by themselves
cannot learn any secret information.

The Gaussian noise and the linear transformation parameter aand b; can
be generated and all the participants cooperatively verify that the shared
values are legitimate. Finally, each party site L;, j = 1,..., n can coop-
eratively reconstruct the original data density by using the reconstruction
technique of the verifiable secret-sharing scheme and the density recon-
struction algorithm such as in Agrawal et al. [1].

Here, we apply Dwork et al.’s [8] Gaussian noise generation to get the
noise b; that is mentioned in Section 10.3.1.

Distributed Protocol of Noise Generation

1. Share Summands: On query f, the holder of 4, the data in row
i of the database, computes f(d;) and shares out this value using
a nonmalleable verifiable, secret-sharing scheme, i = 1,..., n
The bits are represented as 0/1 values in GF(¢), for a large prime
q. We denote this set {0, 1}z, to make the choice of field clear.

2. Verify Values: Cooperatively verify that the shared values are
legitimate (i.e., in {0, 1} Gx(,, when [ is a predicate).

3. Generate Noise Shares: Cooperatively generate shares of ap-
propriately distributed random noise.

4. Sum All Shares: Each participant adds together all the shares
that it holds, obtaining a share of the noisy >, f(d;) + noise. All
arithmetic is in GF(g).

5. Reconstruction: Cooperatively reconstruct the noisy sum us-
ing the reconstruction technique of the verifiable secret-sharing
scheme.

The results from Dwork et al. [9] give us a good example of how to
generate Gaussian distributions noise for which the noisy sums provide the
indistinguishability against the adversary. Because, as usual in the Byzantine
literature, we assume that at least 2/3 of the participants will survive, the
total variance for the noise would be sufficient (but not excessive).
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10.2.2.3 Robustness against Filtering Attack

In [18], Kargupta et al. showed that random matrices have predictable
structures in the spectral domain and it developed a random matrix-based
spectral filtering technique (SPF) to retrieve original data from the dataset
distorted by adding random values. Let U be an mx ndata matrix and V be
a noise matrix with the same dimensions. The random value perturbation
technique generates a modified data matrix U, = U + V. What we want to
do is to extract U from U,,. Let U, be the covariance matrix and we get

UpUp=W+ W' WU+W=0"U+VU+UV+ VTV

As the data random vector and noise random vector are uncorrelated,
we have E[UTV] = E[VTU] = 0. Then the equation can be simplified as
UpT U, = U"U+ V"V. Since the correlation matrices U’ U, UpTUp, vy
are symmetric and positive semidefinite, let UTU = Q,A,Qf, U pT U, =
QpApQ[T,, VIV = Q,A,Q!, where Q,, Qp, Q, are orthogonal matrix
whose column vectors are eigenvectors of U7 U, U pT Up, VTV, respectively,
and A, A, A, are diagonal matrices with the corresponding eigenvalues
on their diagonal. So, the attacker can get A, ~ A, + A, with this infor-
mation; he also can get an approximation of original data.

To attack this e-Gaussian distribution perturbation method, first we have
to compute the eigenvalues of covariance matrix Y from the perturbed data,
such as A1 < A, < --- < A, After that, we can estimate the noise eigen-
values and the theoretical bounds A, and A, then we can identify the
noisy eigenstates A; < A;+1 <--- <A ;suchthat A; > A, and A; < A .
The remaining eigenstates can be considered as the ones corresponding to
the actual data.

Let A, be the noise-related diagonal matrix and A, be the actual data-
related diagonal matrix. Then we decompose the covariance matrix into
two parts, with ¥ = ¥; + ¥, = A,A, AT + A,A, AL, After that, we can
separate the original data from the added noise by computing the estimate
U=U,A,A".

Our proposed scheme can guard against the random matrix-based filter-
ing technique. After the linear transformation, the eigenvalues of original
data are changed. The noise and actual data-related eigenvalues will be
more difficult to analyze by the random matrix-based filtering technique
because they are altered by the linear transformation. But, a shortcoming
of the linear transform method is that it does not preserve the univariate
distributions of the original data and it cannot be used in discrete variables.

10.2.2.4 Experimental Analysis

This section presents results for experiments with random numeric data, and
show how our proposals can make the eigenvalues more noncorrelative,
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Figure 10.1 Eigenvalue distribution of original data with Gaussian noise added.

which can avoid the random matrix-based filtering attack. At first, we gen-
erate a random data 300 x 300 matrix, and then analyze the eigenvalue
distribution. As we can see in Figures 10.1 and 10.2, the first figure shows
the eigenvalues distribution of original data with Gaussian noise added,
which can be attacked with a random matrix-based filtering technique. The
second figure shows the eigenvalues distribution of linear transformation.

In Figure 10.2, we show that after a linear transformation, the distribu-
tion of the eigenvalues converges faster. That means its eigenvalues become
more difficult to use in reconstructing the original data.

As indicated earlier in related works, while perturbation methods guar-
antee that complete disclosure will not occur, they are susceptible to partial
disclosure. In our proposal, all the original data and their eigenvalue dis-
tribution are covered by the linear transformation. There is no way for a
random matrix-based filtering attack to succeed.

10.3 Cryptography-Based Methodologies

Privacy Definition under Secure Multiparty Computation. The con-
struction of our protocol is based on secure multiparty computation, which
was introduced by Yao [32] and extended by Goldreich, Micali, and
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Figure 10.2 The eigenvalue distribution after the linear transformation.

Wigderson [14]. It allows a set of n players to securely compute any agreed
function on their private inputs and the corrupted players do not receive
any information concerning the other players’ inputs. In secure multiparty
computation, we always assume that all parties are semibonest. The first
paper to take the classic cryptographic approach to privacy preserving
data mining was presented by Lindell and Pinkas [22]. They present an
effficient, secure multi-party protocol for the problem of distributed deci-
sion tree learning.

Privacy in the Semibonest Model: A semihonest party follows the rules
of the protocol giving its correct input, but it is very curious and it only tries
to deduce information on the inputs of the honest parties by inspecting all
the information available to the corrupted parties. This is somewhat realistic
in the real world because parties who want to mine data for their mutual
benefit will follow the protocol to get correct results. Also, a protocol that
is buried in large, complex software cannot be easily altered, so we always
believe that a semihonest party will never cheat in the protocol’s process.
In the secure computation setting, there are two models. In the ideal model,
every party sends inputs to a trusted party, who computes the document
clustering and sends the outputs. In the real model, every party runs a real
private document clustering protocol with no trusted help. A real protocol
that is run by the parties (in a world where no trusted party exists) is secure,
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if no adversary can do more harm in a real execution than in an execution
that takes place in the ideal world.

Let f: {0, 1}* x {0, 1}* — {0, 1}* x {0, 1}* be a function. A two-party
protocol is defined by a pair of probabilistic, polynomial, time-interactive
algorithms mw = (74, mp). The protocol 7 is executed as follows. Initially,
Alice, who operates according to w4, receives an input a and a random
input 74, and Bob, who operates according to 7z, receives an input b and
a random input 75. The execution then proceeds by synchronous rounds,
where, at each round, each party may send to the other party a message
as specified by 7, based on Alice’s input, her random input, and messages
received in previous rounds. At each round, each party may decide to
terminate and output some value based on Alice’s entire view consisting
of her input, random input, and received messages.

Consider the probability space induced by the execution of 7 on input
x = (a, b) (induced by the independent choices of the random inputs 74,
rp). Let viewy(x) (resp., viewj(x)) denote the entire view of Alice (resp.,
Bob) in this execution, including her input, random input, and all messages
she has received. Let output’ (x) (resp., outputy,(x)) denote Alice’s (resp.,
Bob’s) output. Note that the above four random variables are defined over
the same probability space. We say that & privately computes a function f
if there exist probabilistic, polynomial time algorithms S4 and Sg such that:

{(SaCa, f400), [0} ,iapex = {(VIEW(x), OUPUT T (x)} _,  (10.D)

{(fa(0), Sp(b, [50ON} (4 pex = {(OUPUT 7 (x), VIEW }(x))} (10.2)

xeX

where = denotes computational indistinguishability, which means there is
no probabilistic polynomial algorithm A that can distinguish the probability
distribution over two random strings. This chapter only considers the semi-
honest adversaries. In this model, every party is assumed to act according
to their prescribed actions in the protocol.

10.3.1 Privacy-Preserving k-Means Clustering over Two Parties

10.3.1.1 Brief Review of k-Means Clustering

K-means algorithm was introduced by J. MacQueen in 1967 [24]. The k-
means algorithm is an iterative improvement algorithm for the k-means
clustering problem, which groups data with similar characteristics or fea-
tures together. It assigns each point to the cluster whose center (also called
centroid) is nearest. The center is the average of all the points in the cluster,
i.e., its coordinates are the arithmetic mean for each dimension separately
over all the points in the cluster. It starts with an initial A-means clustering
and then iterates to move each representative point to the centroid of each
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Figure 10.3 Example of k-means clustering.

cluster generated by the current representative points, until a local mini-

mum solution is found. (see Figure 10.3) The algorithm can be described
by a pseudo-program as follows:

Initialize k-clustering (..., C, for »n points

x; (i=1,...,n to 0;

Randomly select k starting cluster points C'y,..,C
repeat

for all data points x; do

Compute the centroid X(C;) of each cluster;
Assign data point x to cluster C; if distance
d(x;, C;) is the minimum over all j.

end for
Calculates new means C'q,.., C'p.
until the difference between (C'y,..,C'; and (...,

Cp is acceptably low.

Distance Measuring: To evaluate how well the cluster C; works, we
have to use mathematical definitions. Many applications of k-means clus-
tering are used to measure the similarity of the two data objects. There are
mainly two kinds of distance measuring methods, given vector x, .., X
and Y, ..., Y

Euclidean Distance:

Distp(X, V) =
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Correlation Distance:

) G — 00— »
Disto(X, V) =1— — - -~
BIX 1) > G — y)?

If Disi(x;, Cy) < Dist(x;, Cp) for all j # m, then x; is in cluster m.

10.3.1.2 Known Results and Their Problems

There are some published papers that propose a number of solutions based
on cryptographic techniques. The one by Vaidya and Clifton [31] introduced
a solution based on Okamoto and Uchiyama homomorphism cryptosystem
[26], which is not secure without random padding and the entire scheme is
not collusion-resistant. Jagannathan and Wright’s proposal [10] is based on
Pallier’s homomorphism cryptosystem [27], but there is a security weakness
in the update computation, which applies an insecure scheme [2]. Thus the
whole protocol is inefficient. In Jha et al.’s solution [17], two parties com-
pute their A-means local clustering respectively, and then use oblivious
polynomial devaluation to construct a private update computation of clus-
ters to join the 2k clusters into kones. It is known that the algorithm is very
sensitive to initiative clusters, so the proposal has the correctness problem
because the result is not based on two parties’ joint databases. In [15], a
secure scalar production protocol [7] is used as a subprotocol, which has a
serious weakness. A leakage of some database entries can reveal the whole
vector (database) and is very inefficient when the database is large. Beyond
the security and correctness problem, all proposals above do not consider
data standardization, which is frequently used in practical application to
deal with different variables. The security, correctness data standardization,
and efficiency improvement are what we want to solve in this chapter.

Our Improvements.

B In this section, we provide an interactive protocol with data stan-
dardization to execute a private two-party k-means clustering
without security and correctness problems based on the homomor-
phic cryptosystem of Pailier’s paper [27].

m  Our solution can be divided into three parts: private data standard-
ization, private distance measuring, and private update computa-
tion. We apply secure scalar production protocol [13] to do private
distance measuring and oblivious polynomial evaluation to con-
struct a secure two-party approximation protocol for private data
standardization and private update computation.

B Our proposal is more efficient with less communication and com-
putational complexity compared to existing proposals.
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Problem Formulation and Notions. Below, we assume that there are
two parties who possess private databases. They want to get the common
benefit for doing clustering analysis in the joint databases. For the privacy
concerns, they need a private preserving system to execute the joint k-
means clustering analysis. The concern is solely that values associated with
an individual entity not be released (e.g., personal or sensitive information);
the techniques must focus on protecting such information.

We assume a multivariate database D = {d,, .., d,}, which consists of 7
objects, each data object d; has m attributes. So, we take each d; object as
a vector set d; = X1, . .., X m, Where x denotes the attribute variable. That
is, each d; is partitioned into disjoint subsets d? and d” such that Alice
knows d' and Bob knows df. We assume that database Party A holds
some data objects in the relational database D = {4, .., d,} mentioned
above denoted by Dy = {d*, .., d}, and Party B holds the other left data
objects Dy = {d?, .., dB}. What we want to do is to attain the final result,
which is output clusters computed over Party A and Party B’s joint data,
without revealing and invading any privacy of both parties. We have to
prevent the D = d, .., d, from being acquired by the adversaries who
are curious to learn the private data held by the other when the k-means
clustering algorithm over the two parties is being executed.

Cryptograpbic Primitives. Following is a brief review of the cryp-
tographic primitives based on public key cryptosystem. In modern terms,
a public-key encryption scheme on a message space M consists of three
algorithms (K, E, D):

m The key generation algorithm K(1¥) outputs a random pair of pri-
vate/public keys (sk, pk), relative to a security parameter k.

B The encryption algorithm E () outputs a ciphertext ¢ corre-
sponding to the plaintext m € M, using random value 7.

B The decryption algorithm Dg(c) outputs the plaintext m associated
to the ciphertext c.

We will occasionally omit the random coins and write E (1) in place of
E px(m; 1). Note that the decryption algorithm is deterministic. We require a
homomorphic encryption scheme satisfying E(a) « E(b) = E(a+ b), where
E is a cryptosystem, * and + denote modular multiplication and addition,
respectively. It also follows that E(@)¢ = E(ax ¢) for ¢ € N. The Paillier
cryptosystem [27] is a proper scheme, which has this property and is the
cryptosystem of our choice to construct a secure protocol.

Oblivious Polynomial Evaluation (OPE) is one of the fundamental cryp-
tographic techniques. It involves a sender and a receiver. The sender’s input
is a polynomial Q(x) of degree kover some field F and the receiver’s input
is an element z€ F. The receiver learns Q(2). It is quite useful to construct
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some protocols that enable keyword queries while providing privacy for
both parties, namely, (1) hiding the queries from the database (client pri-
vacy) and (2) preventing the clients from learning anything but the results
of the queries (server privacy).

Oracle-aided protocol is interactive and the input of queries are supplied
by both parties. An oracle-aided protocol using the oracle functionality f is
said to privately compute a function g if there exist polynomial time algo-
rithms S and S, that satisfy the definition of privacy in semi-honest model
(1) and (2) mentioned at the beginning of Section 10.3 (from Definition of
Privacy), respectively, where the corresponding views of the oracle-aided
protocol g are defined in the natural manner.

10.3.1.3  General Description of Our Proposed Method

Our Security Goal. A secure protocol construction is actually a compiler
that takes any polynomial-time functionality f, or actually a circuit C that
computes [, and constructs a protocol for securely computing f in the
presence of semihonest adversaries. In a secure protocol, the only value
learned by a party should be his input and the final output. This means that
the semihonest adversaries cannot get any useful information even if they
have the simulator to simulate the protocol with the help of intermediate
outputs as in Section 10.3.

This section considers the semihonest adversaries as mentioned in
section 10.3. Our protocol is to preserve both parties’ privacy against such
adversaries during the execution of the protocol. We use the semihonest
model for the secure computation in our protocol; we assume that the two
participants (both Party A and B) are semihonest, i.e., they follow the proto-
col, but they want to reveal the other party’s privacy. Our goal is to execute
the k-means clustering over the two parties and protect the individual data
and intermediate values from leaking to other parties. Each party learns
nothing about the other’s data, except the output results. Both privacy and
correctness need to be preserved.

Initialization. At first, the two parties should agree on the same data-
base schema for the nonnumeric data. Before they release the data and
do the computation, they should remove the identifiers, such as the user
name and customers’ ID numbers from the databases. After that, both
parties initialize the £ cluster randomly. Party A holds a private share of
clustering center as pi, ..., pf!, while Party B holds pf, ..., pf. We use
(C1, Coy ooy C) = (o408, p3'+p7, ..., pil+pP) as the clustering centers.
As we mention in Section 10.3.2, we assume that every data object has mat-
tributes, so for one, cluster C; is also mattribute and consists of C?, ..., C™
We can see that for Party A, the share cluster p/ consists of p/*', ... p*"

i )
respectively, Party B holds p?, which consists of pf ’1, R pf o,
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Privacy-Preserving Two-Party Clustering Protocol. Here, we use
existing cryptographic primitives to construct a secure protocol to execute
the k-means algorithm to get a global result over two participant parties,
with respect of the privacy of both parties.

Data Standardization: Correlation distance Dist, measures trends or
relative differences Distc(x, y) = Distc(ax+ b, p) if a > 0, where a and
b are real numbers. We can overcome this by standardizing the variables.
And Euclidean distance measures absolute differences between vectors.
The choice of distance measure should be based on the application area
and what sort of similarities you would like to detect. In a multiattribute
database, if the values of the variables are in different attributes, then it
is likely that some of the variables will take very large values. Hence, the
distance between two cases, on this variable, can be a large number. Other
variables may be small in value, or not vary much between cases, in which
case the difference in this variable between the two cases will be small.
Thus, the distance metrics considered above are dependent on the choice
of units for the variables involved. The variables with high variability will
dominate the metric. So, we need the data standardization to force the
attributes to have a common value range.

Let x be the mean and o be the standard deviation of the data, then we
can do the standardization and get the standardized data x’; by computing

X' = % , Euclidean and correlation distance are equivalent: Distz(x, y)* =

1
2nDistc(x, ). After that, the k-means clustering will go on. Following is
the general description of our solution for the privacy-preserving k-means

clustering.

The Description of Our Solution

Notions: C; denotes the clustering center, which is a sum of A and
B’s shares. A has her own share cluster p“ and B has his own share
cluster p?, where C; = p + pf. x; is a data object that is used as a
private input in the protocol to be clustered into a group. x; can be
held by Party A or Party B.
Input: (1) Database D4 and Dpg, which are owned by Party A and
Party B, respectively, consisting of 7 object. (2) The total number of
clusters k.
Output: The % proper clusters to which data objects belong with
assignment.
1. Two parties execute the private data standardization protocol.
2. Randomly, Party A selects k objects from her database as ran-
dom share p{', ..., pfl. Symmetrically, Party B selects pf, ..., pf
randomly. And let Cy, ... Cp= (it + pf, ..., pt + pP) as the
initial cluster.
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3. Repeat the following steps:
m Compute the distance of the numeric privately with the
private distance measuring protocol.
B Assign the data objects to the closest cluster.
B Run the update computation and reassign the data to the
closest clusters with private update computation protocol.
4. Stop when the difference between the clusters Cy, ..., Cp and
the former ones is minor.

Secure Approximation Construction: Secure approximation is quite use-
ful in securing multiparty computation to construct an efficient and secure
computation with the private inputs. We give an approximation to a deter-
ministic function f. Feigenbaum et al. [12] report some important concepts
about the secure approximation between parties. We need an approxima-
tion function f with respect to the target function f without revealing any
input information of f. Let f(x) be as above and f(x) is its randomized
approximation function. Then £ is functionally z-private with respect to f if
there is an efficient randomized algorithm S, called simulator, such that for
every x and 1 < iy, ..., 4 < m, S((dy, %), ..., (i, x,), f(x) is identically
distributed to f(x).

We use the secure approximation technique below to do the private
data standardization and update computation. We say that f is functionally
private with respect to f if there exists a probabilistic, polynomial time
algorithm § such that S(f(x, %)) = f(x, ), where = denotes compu-
tational indistinguishability. We define when to compute a deterministic
functions f. We report that f is an e-approximation of £ if, for all inputs
(1, ), | f(x, %) — f(xa, 0| < e

10.3.1.4 The Details of the Proposed Protocols

Private Standardization Protocol. In this protocol, we have to solve
the problem of private computation for mean and standard deviation. We
assume that Party A has 7y data entries in the database and Party B has #,.
Let the data held by Party A be dy = Y1, d* and data held by Party B be
dy = Z:il diA‘

d'+d”
41

The mean is computed as M =
computed as:

o= |—— {i(d;* MY - M)Z}

m+ T i=1

, so that the standard deviation is

So, if we can compute the mean M privately, the privacy-preserving
problem will be solved. Here, we use a oracle-aided protocol proposed by
Kiltz et al. [22] to compute the mean M, it can give a secure approximation
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of the standard deviation. After that, the standardized data can be used in
the following computation.

Private Distance Measuring Protocol. For the standardization of
the multiattribute data, we can compute the distance function using the
Euclidean distance as follows: Z?:i S| = ¢ |2. The major computa-
tion in this step is to compute the distance function with respect to both
parties’ privacy. We break down the distance function into &2 —2x;% C;+ C?,
and then we can apply the secure multiparty computation techniques to
compute this function.

Let the data objects from Party A and Party B be d; = (%1, ..., X »); wWe
compute the distance:

Dist*(dy, pp) = (X1 — p)* + (2 — p >+ (X — p))°
! !

! 1 / /
= Z”‘zzt + Z(p;lt)z + Z('O;ft)z +2 przpft —2 prt’“fz —2 prtxfz
= =1 =1 =1 =1

=1 1

m

1 %G 5 2o (p D2, 301 (p )7 can be computed locally and privately
by Party A or Party B because it does not involve the other’s data. The com-
putation Y/_, oo S i, and S p7,x, need the cooperative
information, so we have to preserve the privacy for both parties.

We take a semantically secure homomorphic public-key cyptosystem
I[1 = Gen, Enc, Dec, and the plain space will be included in Z,, for some
large m. We set u := [4/m/N] and assume that all the vector p € Z;LV are
possessed by Party A or Party B. Below, we show how to do the secure
product computation.

Secure Scalar Product Protocol

Private Input: Private vectors x, y € Z;LV , we assume that x is held
by Party A and y held by Party B.

Output: Shares S4+ Sp = x- y mod m, where S, (resp., Sp) is the
random share A (resp., B).

1. Party A chooses a homomorphic public cryptosystem; Enc
denotes the encryption algorithm while Dec denotes the de-
cryption algorithm. Party A generates a public and private
key pair (pk, sk). Party A sends pk to Party B.

2. Party A sends w; = Encp(x;) (for i e 1,..., N) to Party B.

3. Party B sets v <— [[\, «)". Generate his random share Sj.
Send v/ = v - Encp(—Sp) to Party A.

4. A computes the Syq= Decg(v/)=x- y — Sp, she sends S4
to B.

5. B knows the random Sp, he computes Sy + S = x- ).
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m

After executing this protocol, the resultof 3,7, p7 4 p4d i > Pf; xf, and
>y 7., can be computed without violating the privacy of each other
and output the final results.

Clustering Update Computation. In this step, we assign the data
points to their nearest centroids according to the minimum distance rule.
With this step, we can update the kA-means clusters. There are two conditions
that have to be satisfied: (1) data x; must be encoded by its nearest center,
and (2) each clustering must be at the centroid of points it owns. When
iteration is finished, both Parties A and B know their own share. We want to
find out the proper clustering center for each data object. For this purpose,
we have to do the iteration of the mean value computation. For the privacy
leakage point of view, using the homomorphic cryptosystem may cause
some privacy leakage (according to [13]). From the security and efficiency
point of view, we use the secure approximation protocol.

The distances that are used to update computation are the means of
every attribute. For generality, we assume that Party A holds data objects,
which are assigned to the closest cluster: d', ..., dé‘ and Party B has data

objects dp, ..., d for each cluster where 1 < i < k. For the data objects’
values in j- th attnbute belonging to i-th cluster center is given by d; ;, 1 <
Jj< p (or q) Party A calculates her sum of the j-th attribute in i-th cluster
as s =37 dA and the number of data objects as 7;. Similarly, Party B
calculates s? 7 1, dP ; and sets his total number of data objects as g.

We apply the secure mean computation protocol to do the mean cal-
culation for the cluster update privately. The new i-th cluster for j-th
attribute is: C; ; = (s + SB)/(nJ + my). It can be computed privately using
the Oracle-aided protocol to compute a private 2/-approximation protocol
over the finite filed F), proposed by Kiltz et al. [19]. We will use this protocol
to make a secure computation.

For the cluster update computation, we use the result proposed in [19]
and the OPE, which is proposed in [25] to do the clustering update com-
putation. The input of the sender is a polynomial P of degree k over some
field F. The receiver can get the value P(x) for any element x € F without
learning anything else about the polynomial P and without revealing to the
sender any information about x. With the protocol, we can compute the

approximated M with | -M | < 27! for the clustering update privately,

n; +m
where ¢ is an approxnnatlon and secure parameter.

Theorem 10.1 The correctness of the approximation protocol: The approxima-
tion of the two-party k-means clustering with a 2~/ approximation is achieved
in our protocol.

Proof: The whole scheme for k-means clustering computing consists of two
subprotocols. At first, the two parties execute private distance measuring
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protocol interactively, both parties can get the accurate results of the distance
between their own data and the clustering centers. We can see that the output
of the whole scheme will fall within a certain interval with a overwhelming
probability if the other subprotocol for clustering center update can output
acceptable approximation of the updated clustering centers. We can see that
it doesn’t cause too much bias in the data assignment to the clusters. In the
clustering center update computation, we can get the approximated statistical
mean result, it is a 27/ approximation, as in Kiltz et al.’s proof [19]. So, we can
say that the protocol can get 27/ approximation.

Criterion for Iteration Stopping. Because the k-means clustering
algorithm is iterative, we have to stop it when the output satisfies our
requirements. For this step, we set a threshold value €. The k-means clus-
tering algorithm is doing the iteration until the difference of Euclidean
distance between two consequent calculation is smaller than €. That is
Dist(Cj, Cjy1) = Dz’sl(,of’ﬂrl + pf’Hl, ,of’i + pf”') < €. We can see that
the difference is minor, so we can transform the distance function into
(pf’i + pf’i) — (,of”url + pf’”l) < €/, where € is also a threshold value.

* For justifying the stop criterion with respect to both Party A and Party
B’s privacy, we can use the homomorphic cryptosystem as follows: Party A
locally computes Enc(pf'i — ,of’iH) using her and B’s public key, and Party
B locally computes Enc(pf - pf "1y using his and A’s public key. Then
they can do the multiplication with their encrypted intermediate results and
do the decryption using a secret key and pass it to the other, then the other
party also does the decryption using a secret key, after which we get the
result: 7 := Dec[Enc(,of’i — ,0;-""“) . Enc(,of’i - pf’”l)]. If T < ¢, they can
stop the iteration of clustering update computation.

10.3.1.5 Analysis of the Proposed Scheme
Security Analysis

We have constructed an interactive style scheme to execute the k-means
clustering algorithm. Our protocol is constructed under the semihonest
model and we will prove them secure.

Private Distance Measuring: Clearly, the protocol is correct if the partici-
pants are honest. The security is based on the security of the homomorphic
encryption scheme.

Lemma 10.1. Privacy is preserved in the private distance measuring protocol.

Proof: We denote m as the modified protocol, according to the definition
in section 10.2.2. The view of Party B during the execution of m(x, y) is
VIEW5(x;, i) = { )i, Encpi(x), Sg}, and the view of Party A is VIEW?,(x;, yi) =
{x, Hfil Enc;”k-Encpk(— Sp), S4} (Where i € 1,..., N). Since the cryptosystem
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we use is semantically secure, the two parties only see the random ciphertexts
in the execution of our protocol, for which they cannot guess the plaintexts.
In particular, even when B has given two candidate vectors & and x; to A and
A has randomly chosen one of them, x := x3,. Even after a polynomial number
of protocol executions with A’s input, B will gain only an insignificant amount
of information about x;, that will not help him in guessing the value of 5. On
the other hand, A only sees a random encryption of s4 = x- y — sp, where sp
is random. But A has the key anyway, so she can decrypt this message. Thus,
A obtains no information at all.

Private Data Standardization and Private Clustering Update Computa-
tion: Formally, an oracle computation accessed an oracle to get a result.
Suppose that function g is privately reducible to f and that there exists
a protocol for privately computing f, as well as a protocol for privately
computing g.

Lemma 10.2. Privacy is preserved in private data standardization and private
clustering update computation.

Proof: We employ oracle-aided secure mean computation protocol [19]. To
prove privacy, we must define simulators S4 and Sp as in the definition in
section 10.3.1. Party A takes the simulator S,(S54, nj, My, M) and Party B takes
the simulator S4(S f , m;, Mp, M), each party performs divisions of their shares
locally; parties output their shares at this point. The result will be identical.
It can be readily checked that the statistical difference between simulators S4
and Sz and final output A is about 27! cooperative work.

Suppose that a simulator given M = % adds uniform random noise
Ry and R; in the range [—27', 27] and outputs S(M) = M + R; + R, with
precision 272, When checked, the statistical difference between S(M) and
M is about 27, This implies that the function computed by the protocol
is functionally private with respect to the mean. The protocol satisfies the
security in the semihonest model.

Criterion for Iteration Stopping: For computing the iteration stopping
criterion, we use the homomorphic encryption scheme. The security is
dependent on the cryptosystem we use; the security parameters, such as
the length of public key, are very important for the implementation. The
cryptosystem is considered semantically secure if it is not possible for a
computationally bounded adversary to derive significant information under
the chosen plaintext attack.

Theorem 10.2. Security of approximation protocol: Our scheme is secure
under the semihonest model.
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Proof: During the interactive protocol, we assume that there is adversary Adv
to simulate the computation. In Section 10.2.3, we define the security under
the semihonest model. Recall that there are two models of secure computation,
ideal model and real model, so if we can prove the adversary cannot get any
useful information to reveal any party’s privacy in an ideal model, the protocol
is secure. According to the security definition, the adversary plays a role of a
third party who can get the output of any one of the parties during the protocol
executed process.

In the distance computation of numeric attributes, the adversary’s simulator
S can get output of the secure scalar product protocol OUTPUT ssp. Above we
have shown that the secure scalar product protocol is secure, which means that
the adversary’s VIEW is computational indistinguishable with SCOUTPUT ssp).
In the cluster update computation, we assume the information that simulator
has attained is VIEW 04, The view of the simulator cannot get any party’s pri-
vacy because of the indistinguishability between the SCVIEW ,;,041,, OUTPUT ssp)
and the output of protocol M. At the last step, to decide whether the update
computation iteration should stop, at i-th iteration, the view of simulator is
VIEW:F] = The simulator’s view during this process will be S(VIEWit! ——
VIEW yean, OUTPUT ssp), for the security proof of the homomorphic encryption
scheme, the simulator’s view is also computational indistinguishable to the
protocol final output. This means that during the whole protocol, the adver-
sary’s simulator cannot get any useful information to violate both two parties’
privacy.

Complexity Analysis

In this section, we will analyze the communication and computation com-
plexity and show our scheme is proper for the practical implementation.
First, let’s analyze the complexity.

The private distance computation is the most complex. If Party A sends
nciphertexts x;, the overhead is N/u, where N is the size of each ciphertext
in bits. The data object d; is m—attributes, which is represented by 7, the
homomorphic encryption complexity is O(knm) encryptions.

For the cluster update computation, our solution for the cluster update
computation clearly runs in a constant number of communication rounds
between the two parties. The complexity of our protocol depends chiefly
on the accuracy of the results. Given probabilistic polynomial time function-
ality is given as a binary circuit with N inputs and G gates. The computation
complexity will be O(N + 1) exponentiations and a communication cost of
O((N + D>*N), where ¢ is a secure parameter. Comparing to Jagannathan
et al. [16], they use Yao’s protocol or [2] for the mean computation. Without
going into details, Yao’s protocol requires a communication of O(G) times
the length of the output of a pseudo-random function. According to Kiltz
et al.’s proof in [19], their solution complexity is higher.
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Finally, for the iteration stopping criterion, we only need O(km) bits
communication complexity, better than the same computation in [16]’s pro-
posal. Finally, for the iteration stopping criterion, we only need O(nm) bits
communication complexity, which is better than the same computation in
[31] and [16]'s proposals, which require O(knm).

10.3.2  Privacy-Preserving Document Clustering

10.3.2.1 Background Introduction

The document clustering problem is a kind of textual data-mining tech-
nique. Different from regular data mining, in textual mining, the patterns are
extracted from natural language text rather than from structured databases
of facts. This technique can enable the cross-enterprise document sharing
over a similar topic. One solution is to show that the terms in a query are
related to the words in the document. It is very helpful when a party, who
holds some documents that belong to a discovered cluster with the de-
scription “security, privacy, database,” wants to do a coresearch with other
parties who hold the similar documents. Here, we concentrate more on
agglomerative document clustering, since this method provides us more
illustrations about the partitions of the clusters. The main idea is to find
which documents have the most words in common and place the docu-
ments with the most words in common into the same groups. We then
build the hierarchy bottom-up by iteratively computing the similarity be-
tween all pairs of clusters and then merging the most similar pairs. In the
past few years, a lot of different document clustering algorithms have been
proposed in the literature, including Scatter/Gather [5] and SuffixTree Clus-
tering [33]. Bisecting k-means is proposed by Steinbach et al. [29] based
on an analysis of the specifics of the clustering algorithms and the nature
of document data. The above methods of text-clustering algorithms do not
really address the special challenges of text clustering, and do not provide
an understandable description of the clusters. This has motivated the de-
velopment of new special text clustering methods, which are not based on
the vector space. Some frequent term-based methods have been proposed,
such as Beil et al. [3].

Problem Definition. Our protocol is a two-party frequent term-based
clustering protocol with a divide-and-merge process. At first, we get the
minimum overlap clusters and their descriptions and then build an ag-
glomerative tree model for these clusters. Unlike the partitional algorithms
that build the hierarchical solution for top to bottom, agglomerative algo-
rithms build the solution by initially assigning each document to its own
cluster and then repeatedly selecting and merging pairs of clusters to obtain
a single all-inclusive cluster. We have defined a flat clustering as a subset
of the set of all subsets of the database D, described by a subset of the
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set of all frequent term sets that covers the whole database. To discover
a clustering with a minimum overlap of the clusters, we follow a greedy
approach. After that, we employ agglomerative algorithms to build the tree
from the bottom toward the top. The root is the whole database D4 U Dg
while the leaves are the minimum overlapping cluster.

Preliminaries. Let Dy = {Docl,, ..., Doc"} be a database of m text
documents held by Alice ( Dy is held by Bob, respectively). Each document
Docﬁ1 is represented by the set of terms occurring in D,4. Let minsupp be
a real number, 0 < minsupp < 1, which is agreed by both Alice and
Bob. Let w; = {w}, ..., w¥} be the set of all frequent term sets in D; (i =
Aor B) with respect to minsupp, the set of all term sets contained in at least
minsupp of the D; documents. Let cov(w;) denote the cover of w;, the
set of all documents containing all terms of w;; more precisely, cov(w;) =
{Doc,»/ e D;| w; C DOCZ }. The cover cov(w;) of each element w); is a cluster
candidate. A cluster can be any subset of the set of all subsets of two parties’
database D = D4 U Dg such that each document of D is contained in at
least one of the sets (clusters). We define a clustering description C'D as

a subset of wy, ..., w, We determine a cluster with a minimum overlap
of the cluster candidates. The overlap can be measured by the mutual
entropy.

Cryptographic Primitives: To construct a secure documents clustering
protocol, we apply the following cryptographic primitives.

Homomorphic Encryption and Oblivious Polynomial Evaluation (OPE)
(see section 10.3.2).

Oblivious Transfer (OT): A 1-out-of-N Oblivious Transfer protocol refers
to a protocol where, at the beginning of the protocol, one party (Party B)
has N inputs »x, ..., xy and, at the end of the protocol, the other Party
(A) learns one of the inputs x; for some 1 < i < N of her choice, without
learning anything about the other inputs and without allowing B to learn
anything about x;. Recently, Lipmaa et al. [23] proposed an efficient solution
for 1-out-of-N oblivious transfer protocol with communication complexity
Odog* N)k.

10.3.2.2  Privacy-Preserving Document Clustering Protocol

We proposed a privacy-preserving document clustering protocol [30]. There
are two phases in our protocol, divide phase and merge phase. It works
by breaking down the distributed documents clustering problem into two
subproblems and the solutions to the subproblems are then combined to
give a solution to the original problem. In our protocol, divide-and-merge
algorithms are implemented in a nonrecursive way and the computation
is interactive, so both parties play roles of both client and server, called
client party and server party, respectively. At first, every local party makes a
keyword list, and then he makes a private intersection computation with the
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other parties’ keyword list. After that, two parties will make local clustering
according his keyword list to get the local minimum overlapping clusters.
Finally, both Alice and Bob can merge the two clusters into one according
to similarity of every two clusters. The output will be a tree construction
with a set of all documents as the root, and cluster descriptions will be the
intersection of two keyword sets.

Privacy-Preserving Document Clustering Protocol

Input: Alice’s document database D, and Bob’s document
database Dg.
Output: The clusters and their descriptions based on D4 U Dj.
1. The two parties execute the document clustering in the divide
phase and get the minimum overlapping clusters, respectively.
2. The two parties execute the interactive agglomerative cluster-
ing computation in the merging phase.
3. Both parties get agglomerative clusters and their descriptions.

In our protocol, all the computation of agglomerative document clus-
tering is based on each document’s frequent term, without revealing any
unnecessary content of the document. What a party learns during the ex-
ecution of the protocol is the common frequent term with the other party
and the final output.

Initialization. Each party should do the precomputation on his own
text data in every individual document. Each party should form his database,
which contains N frequent terms as X = (x;, num;) with 1 < 7 < N. In
every document held by the participant party, x; is a keyword and num;
is the document number where the keyword x; occurs in one document
whose frequency is larger than minsupp. Two parties number all their own
documents from 1 to m, where m is the number of total documents held
by a party. For example, Alice can give numbers to her documents as
Docly, ..., Doc™.

Divide Phase of Document Clustering. At first, Alice and Bob have
to predetermine the common threshold minimum support minsupp and
the function for calculating the mutual overlap of frequent sets. After that,
two parties execute the privacy-preserving frequent term query scheme
interactively and get the frequent term sets for document clustering. In this
phase, we apply the algorithm proposed by Beil et al. [3], which works in
a bottom—up fashion. Starting with an empty set, it continues selecting one
more element (one cluster description) from the set of remaining frequent
term sets until the entire database is contained in the cover of the set of all
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chosen frequent term sets (the clustering), setting the database formed by
selected documents. In each step, the party selects the remaining frequent
term set with a cover having the minimum overlap with the other cluster
candidates local.

Clustering Algorithm of Divide Phase

Input: Party P’s (can be Alice or Bob) frequent keyword w; of
databases D;, where 1 < i < nand the threshold minimum support
minsup.

Output: The clusters and their descriptions based on frequent terms
in w;.

1. Party P locally finds out all frequent keywords whose fre-
quency is larger than minsupp, denoted by w.

2. Perform the private keyword queries with w and get the IDs
of the other party’s documents, which have the common key-
words.

3. Calculate entropy overlap for w and let Candidate,, := element
of w with minimum entropy overlap.

4. Remove all documents in cov(Candidate,,) from D and from
the coverage of all of the remaining documents.

5. Let Selected,, .= Selected,, U {Candidate,} and Remain,, :=
w — {Candidate,,}.

6. Remove all documents in cov(Candidate,) from D and from
the coverage of all of the Remain,,.

7. Party P updates the clusters until all the clusters are minimum
overlap.

8. Return the keyword sets of Selected,, as cluster descriptions
and the cover of the sets Selected,, as clusters.

Each party executes the clustering algorithm of the divide phase and
gets local clusters. The algorithm returns clustering description and clus-
ters, which is nonoverlapping. After this local computation, each party can
continue the agglomerative clustering: Merging the cluster to build a ag-
glomerative clustering tree.

Merge Phase of Document Clustering. In the divide phase, every
party gets the local nonoverlap clusters based on the frequent terms of
their own documents and other parties’ document with common frequent
keywords. The agglomeration algorithm creates hierarchical clusters. At
each level in the hierarchy, clusters are formed from the union of two clus-
ters at the next level down. In the merge step, each party starts with his
own cluster and gradually merges clusters until all clusters have been gath-
ered together in one big cluster. There are two steps for clusters merging
computation
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1. Cluster Inclusion Merging Step: A smaller cluster that is included by
the larger one will be merged into the larger one.

2. Agglomerative Step: The two similar clusters will be merged as a
new cluster according to the similarity computation. At the same
time, the description of a new cluster will be the intersection of the
two clusters’ descriptions.

Algorithm of the Merge Phase

1. Initially, each party uses his clusters to do a private inclusion test
with other parties’ clusters. Merge the two clusters if one cluster
is included in the other cluster. Stop when every included subset
of clusters is merged.

2. Among all remaining clusters, pick the two clusters to do the
private similarity computation.

3. Replace these two clusters with a new cluster, formed by merging
the two original ones with the most similarities.

4. Repeat step 2 and step 3 until there is only one remaining cluster,
which covers all parties’ databases.

Note that in the algorithm, we can preserve the privacy by only out-
putting the cluster description. The merged cluster description C'D is an
intersection of two original cluster descriptions, not the union of the two.
Because the coverage Cov(C D) can cover all the documents whose fre-
quent terms are included in € D, with the output of the protocol, the clients
can match their documents with the cluster descriptions C'D and assign
them to the proper cluster with a subset relationship between each cluster
and its predecessors in the hierarchy privately. This produces a binary tree
or dendrogram, of which final agglomerative cluster is the root and each
cluster is a leaf. The height of the bars indicates how close the clusters and
their descriptions are.

10.3.2.3 Implementing the Privacy-Preserving Protocol

In this section, we show how to implement the privacy-preserving pro-
tocol using the cryptographic techniques, which we have mentioned in
Section 10.3.2.1. Our constructions use a semantically secure public-key
encryption scheme that preserves the group homomorphism of addition
and allows multiplication by a constant.

Private Document Selection. When a party gets the local frequent key-
words, he has to construct some queries to select the documents, which
contain the same frequent term with respect to the privacy. In this section,
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we construct a protocol using oblivious polynomial evaluation (OPE) from
Freedman et al. [12] scheme and apply the zero knowledge proof to avoid
the malicious inputs of the client party. The basic idea of the construction
is to encode database D’s entries in {X = (xq, niumy), . . ., (x,, num,)} as

values of a polynomial, i.e., to define a polynomial Q such that Q(x;) =

(numy), where x; denotes the keyword and num; denotes the document
number for clustering. Note that this design is different from previous ap-
plications of OPE, where a polynomial (of degree k) was used only as a

source for (k+ 1) wise independent values.

Document Selection with Private Keyword Search

Input: Client party inputs his local frequent keyword w; server
party inputs {x;, nuny}c,,, all x’s are distinct
Output: Client party gets document number number; if w = x;,
nothing otherwise; server party: nothing

1.

The server party defines L bins and maps the 7 items into
the L bins using a random, publicly known hash function H
with a range of size L. H is applied to the database’s frequent
keywords, frequent keyword x; is mapped to bin H(x;). Let m
be a bound such that, with high probability, at most m items
are mapped to any single bin.

For every bin j, the server party defines two polynomials: P;
and Q; of degree (m— 1). The polynomials are defined such
that for every pair (&;, num;) mapped to bin j, it holds that
Pi(x) = 0 and Q;(x) = (numy|0"), where [ is a statistical
security parameter.

For each bin j, the server party picks a new random value 7;
and defines the polynomial Z;(w) = r; - P(w) + Q (w).

The two parties run an OPE protocol in which the server eval-
uates all L polynomials at the searchword w.

The client party learns the result of Zyc,)(w), i.e., of the poly-
nomial associated with the bin H(w). If this value is of the
form number;|0!, the client party gets the number;.

Our construction uses an OPE method based on homomorphic encryp-

tion, such as Paillier’s system [27], in the following way.

B The server party’s input is a polynomial of degree m, where the
polynomial P(x) = >  a;x'. The client party’s input is a keyword
represented w as a value.
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B The client party sends to the server party homomorphic encryptions
of the powers of w up to the mrth power, i.e., End(w), Endu?), . ..,
Enc(w™).

B The server party uses the homomorphic properties to compute the
following:

H Endauw'’) = Z Enda;u’) = Enc( P(w)).

i=0 i=0

The client party sends this result back to the server party.

To prevent a client from cheating in OPE, the server party can ask
the client party to produce zero knowledge proof of Enc(w;) before the
construction in terms of a single database bin. We can use Damgard and
Jurik’s scheme proposed in [6] to prove that the input is the encryption of
w; without disclosing the keyword w.

The document-selecting protocol preserves a client party’s privacy be-
cause the server cannot distinguish between any two of a client party’s
inputs w, w'. The protocol also protects the server party’s privacy if a poly-
nomial Z with fresh randomness is prepared for every query on every bin,
then the result of the client party’s query w is random if w is not a root of
P, and the malicious input of a client party can be prevented by using the
zero knowledge proof of the frequent keyword w.

Lemma 10.2.(Client party’s privacy is preserved). If the encryption scheme
is semantically secure, then the views of client for any two inputs are indistin-
guishable. (The proof uses the fact mentioned above that the only information
that the server party receives consists of semantically secure encryptions.)

Lemma 10.2. (Sever party’s privacy is preserved). For C’, which operates
in the real model, there is a client C operating in the ideal model, such that for
every input X of Bob, the views of Bob in the ideal model is indistinguishable
from the views in the real model. (The proof is that a polynomial Z with fresh
randomness is prepared for every query on every bin, then the result of the
client’s query w is random if w is not a root of P.)

Private Cluster Inclusion Test. After the local computation of docu-
ment clustering, there may be overlaps among each party’s local result. So,
we have to combine such overlap and make a cluster to be unique in the
global result. Every cluster can be represented as a binary string according
to the documents’ order from Party A to Party B, such as Docl,, Doc, ...,
Docl;. Each bit of the string corresponds to a document; there is 1 in the
entry i if and only if the cluster contains the party 1's document Docl;
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if the document doesn’t exist, there is 0. Client party ¢ has a set C; € D,
server party j hasaset C; C D, and the two parties must establish whether
C; € C; or if either of the parties obtain any additional information. More
precisely, the protocols must satisfy client privacy and server privacy. We
assume that the client has 7 words in his database. Our basic idea is based
on the fact that if for two clusters C; and C; satisfying C; € C;, we have
|CiNCyl =1Cl.

Below, we modify the matrix-based private inclusion scheme [21] into
a new scheme, which can deal with binary string to construct our private
cluster merging protocol. We implement this with the homomorphic cryp-
tosystem, which is proved to be secure in the sense of IND-CPA under
reasonable complexity assumptions.

Private Cluster Inclusion Test Protocol

Private Input: Client party: cluster C;, sever party: cluster C;.
Private Output: Client party knows whether C; C C}; if yes, out-
pUtS CD, N CD7

1. Client party generates a new key pair (sk, pk) <— G. Send
pk to server party. For any i € [7], generate a new nonce
7 <— R. Send ¢; «— E i (Cy; 1) to server party.

2. Server party draws s <— P, r <— R uniformly at random.
Set e «— (Hiz1 Ciltl/ CiltD)* - Epp(0; 1), where [ is the last /;,
bit of 1. Send e to client party.

3. Client party sets d <— Dge). Accept that C; € C; iff d =0
and send the result to server party.

4. Sever party returns the cluster C; as a merged cluster and
outputs the CD; = CD; N CD;.

After this process, the flat clusters for the agglomerative document clus-
tering are generated and only the cluster descriptions are output. All the
parties can use those cluster descriptions to group their documents. By us-
ing zero-knowledge proofs, client party can prove that the correctness of
(a) pkis avalid public key and that (b) every bit of C; encrypts either O or 1.

Lemma 10.2. Private cluster inclusion testing protocol is a privacy-
preserving protocol. Computational client privacy follows directly from
the IND-CPA security. So, an adversary can learn nothing about the plaintext
corresponding to a given ciphertext, even when the adversary is allowed to
obtain the plaintext corresponding to ciphertexts of its choice. As server party
sees only ciphertexts of encrypted clusters, his privacy is guaranteed as the
second step depends only on whether C; € C; or not.
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Private Measurement of Similarity. To measure the similarity of the
cluster, we consider that two clusters, which have the most overlap of
documents, have the most similarity. Such two clusters, that contain most
documents in common should be merged into a cluster in the agglomera-
tive clustering process. We use Hamming distance to measure that similarity
of two clusters. The Hamming distance is the number of positions in two
strings of equal length for which the corresponding elements are differ-
ent. Every cluster can be represented by a binary string as the same as in
the private inclusion cluster merging protocol. To compute the Hamming
distance privately, we use the private-sample-XOR protocol proposed by
Feigenbaum [11] as following:

Notions: In this protocol, d,(a, b) denote the Hamming distance be-
tween (a, b), for any x € {0,1}" r € [ and m € {0, 1}", we denote by
x << r a cyclic shift of x by 7 bits to the left, and by x@ m the string
whose i-th bit is x; @ m;.

Private Approximation of Hamming Distance

1. Party A generates a random mask 1,4 &£ {0, 1} and a random
def

shift amount 74 £ 1. And he computes the n-bit string & Y

(a << ry @ my. Symmetrically, Party B generates mg Lo, 13"

and rp &£ [7, and computes ¥ “f (b << rp) @ mg.
2. A and B invoke in parallel two ({)-OT protocols:

. def i
B A retrieves 24 o/ b, from B;

. de ’
®m B retrieves zp = a,, from A.

rdef r def
3. Asends z, % z4 @ my4 to B. B sends z, ) zp @ mp to A. Both
parties locally output z, @ 2.

After executing the protocol, we can get the approximate result of sim-
ilarity of the two clusters. The smaller the Hamming distance, the more
similar the two clusters, and the most similar two clusters’ cluster descrip-
tions will be joined into an intersection, i.e., CD4N CDg.

Lemma 10.2. (Both parties’ privacy is preserved.)

Proof: The privacy can be formally argued by describing a simulator for each
party. Alice’s random inputs my, 74 in the real protocol are independent of
the inputs (g, b) and the output z, and are, thus, distributed in the simulated
view as they should. And the output z4 received from ({)-OT protocol in the
real model is independent of a, b, my, 74, z as in the simulated view. As in
an ideal model, a simulator for Alice’s view, based on the input & and output
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2, @D 2, is computational indistinguishable with the view in a real model. A
simulator for Bob’s view may be obtained similarly.

Performance evaluation during the private keyword search: We assume
that client party assigns the nitems to L bins arbitrarily and evenly, ensur-
ing that L items are assigned to every bin; thus, L = /% The server party’s
message during the OPE consists of Z = O(4/7) homomorphic encryptions;
he evaluates L polynomials by performing 7 homomorphic multiplications
and replies with the I = /7 results. This protocol has a communication
overhead of O(y/n), O(n) computation overhead at the client party’s side,
and O(y/m computation overhead at the server party’s side. In private
cluster inclusion test protocol, the server party does not perform any pre-
computations when server party gets client party’s query as an encrypted
binary string, the communication of this protocol is len(|d]) bits. For com-
putation of similarity of clusters, we use a (})- OT protocol (in the semihon-
est model) as a subprotocol. Then, the round complexity of the protocol for
approximating the hamming distance dh(a; b) is OT + 1, here OT denotes
the number of rounds required for OT computation. Hamming distance
function can be privately e-approximated with communication complexity
O(7'/? /e) and three rounds of interaction.

10.3.2.4  Security Analysis of the Whole Protocols

Except for the three interactive subprotocols above, other computation pro-
cesses in our protocol are done locally by the two parties, so under the
semihonest model, only one party gets the information based on his own
frequent keywords, and any probabilistic polynomial time adversary can-
not distinguish the responding output in real model from the one in the
ideal model with any party’s private input. By using the zero knowledge
proof, our protocol also can be secure against a malicious party, but the
computational and communication complexity will increase.

Theorem 10.3 Security of approximation protocol: The document clus-
tering protocol is privacy-preserving against the semihonest adversary.

Proof: Our protocol is privacy-preserving as a whole as one can see. Intu-
itively, the privacy of the protocol follows from the fact that, in all processes
of obtaining the output, no party learns any additional information, which
is not published by the other party. According to the privacy definition in
section 10.3.1, we provide the privacy proof as following.

From Lemma 10.1 and Lemma 10.2, we know that in private documents
selection, the security of the subprotocol is based on the assumptions used
for proving the security of the homomorphic encryption system. Since the
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server receives semantically secure homomorphic encryptions and the sub-
protocol protects the privacy of the client, the subprotocol ensures the client
party’s privacy because the server cannot distinguish between any two of
a client party’s inputs w, w/. For server party, if w is not a frequent key-
word, the output is just a random number. It means that the adversary’s
views of both parties in both real model and ideal model is computation-
ally indistinguishable. Each party only learns that w is a common frequent
keyword.

During the private cluster inclusion test, computational client privacy
also follows directly the security of the homomorphic encryption system,
which ensures that e is a random encryption of zero if C; C C, or a random
encryption of a random plain text if C; € C;. According to Lemma 10.3, the
server party sees only ciphertexts, so any adversary that can distinguish two
vectors of ciphertexts can be used for distinguishing only two ciphertexts.
Each party only learns whether C; C C; or not.

When computing the private approximation of Hamming distance be-
tween the inputs a and b, the view of each party in these invocations can
be simulated from its input and dj,(a, b). Summarizing, we have a simulator
S such that S(dy(a, b)) and the output d,(a, b) are identically distributed
according to Lemma 10.4’s security proof, so that no probabilistic poly-
nomial time adversary can distinguish S(dj(a, b)) and db(a, b). Thus, the
whole protocol is privacy-preserving against the probabilistic polynomial
time adversary under semihonest model.

10.4 Concluding Remarks

This chapter presents some suggestions for defining and measuring privacy
preservation. We have shown how these relate to both privacy policy and
practice in the wider community, and to techniques in privacy-preserving
data mining. We apply the privacy-preserving statistical databases tech-
niques and cryptographic protocols to a scheme to preserve the privacy of
a dataset when executing distributed density estimation-based clustering.
It was inspired by the combination of the computational power of ran-
dom data perturbation techniques of secure evaluation of density in the
distributed environment. For preventing the random matrix-based filtering
attack, we employ the linear transformation, which can change the origi-
nal distribution of eigenvalues while preserving some statistical parameter
used in clustering. We have shown that our scheme can prevent the random
matrix-based filtering attack by altering the distribution of eigenvalues. We
have proposed a new scheme based on secure approximation for privacy-
preserving k-means clustering and solved the security problems in existing
schemes [31] [16] [15] and the result of our scheme is without the correct-
ness problem as in [17]. And we have shown that our scheme is more
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efficient with low communication and computation complexity compared
to the existing schemes. We also proposed a divide-and-merge method in
distributed document clustering and produced a framework to preserve the
privacy of participants.

The inability to generalize the results for classes of categories of data-
mining algorithms might be a tentative threat for disclosing information. The
key insight is to trade off computation and communication cost for accu-
racy and improving efficiency over the generic secure multiparty computa-
tion method. Currently, assembling these into efficient privacy-preserving
data-mining algorithms, and proving them secure, is a challenging task.
We demonstrated how to combine the existing techniques to implement a
standard data-mining algorithm with provable privacy and information dis-
closure properties. Our hope is that as the library of primitives and known
means for using them grow, standard methods will be developed to ease
the task of developing privacy-preserving data-mining techniques. Privacy-
preserving data-mining has the potential to increase the reach and benefits
of data-mining technology.

References

[1] R. Agrawal and R. Srikant. Privacy-Preserving Data Mining, Proceedings,
ACMSIGMOD Conference, Edmonton, Alberta, Canada, 2000.

[2] J. Bar-Ilan and D. Beaver. Non-cryptographic Fault-Tolerant Computing in
Constant Number of Rounds of Interaction. Annual ACM Symposium on
Principles of Distributed Computing, Edmonton, Alberta, Canada, pp. 201—
209, 1989.

[3] F. Beil, M. Ester, and X. Xu. Frequent Term-Based Text Clustering, Pro-
ceedings of the 8th Int. Conf. on Knowledge Discovery and Data Mining,
Edmonton, Alberta, Canada, 2002.

[4] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable Secret Shar-
ing and Achieving Simultaneity in the Presence of Faults. In Proceedings
of the 26th Annual IEEE Symposium on Foundations of Computer Science,
Portland, OR, pp. 383-395, 1985.

[5] D.R. Cutting, D.R. Karger, J.O. Pedersen, and J.W. Tukey, Scatter/Gather:
A Cluster-Based Approach to Browsing Large Document Collections. pp.
318-329, Proc. ACM SIGIR 92, Copenhagen, Denmark, 1992.

[6] 1. Damgard and M. Jurik. Client/Server Tradeoffs for Online Elections. vol.
2274 of Lecture Notes in Computer Science, pp. 125-140, PKC2002, New
York, 2002.

[71 W. Du and M. Atallah. Privacy-Preserving Cooperative Statistical Analysis.
In 17th ACSAC, pp. 102-112, Nova Scotia, Canada, 2001.

[8] C.Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our Data,
Ourselves: Privacy Via Distributed Noise Generation. EUROCRYPT20006, St.
Petersburg, Russia, 2000.



Privacy-Preservation Techniques in Data Mining W 225

9]

[10]

(11]

[12]

[13]

(14]

(15]

(16]

(171

(18]

[19]

[20]

[21]

(22]

(23]

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating Noise to Sen-
sitivity in Private Data Analysis. In Proceedings of the 3rd Theory of Cryp-
tography Conference, Banff, Alberta, Canada, 20006.

M. Ester, H.P. Kriegel, J. Sander, and X. Xu, A Density-Based Algorithm
Jfor Discovering Clusters in Large Spatial Databases with Noise. Proceedings
of the 2nd International Conference on Knowledge Discovery and Data
Mining, Portland, OR, 1996.

J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, R. Wright, and M. Strauss.
Secure Multiparty Computation of Approximations. ACM Transactions on
Algorithms, 2, 435372, 2006.

MJ. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword Search and
Oblivious Pseudorandom Functions. Second Theory of Cryptography Con-
ference, TCC 2005, Cambridge, MA, 2005.

B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen. On Secure Product
Computation for Privacy-Preserving Data Mining. In 7th Annual Interna-
tional Conf. in Information Security and Cryptology, Seoul, Korea, 2004.
O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental Game.
In Proceedings of the 19th Annual ACM Symposium on Theory of Com-
puting, New York, 1987.

G. Jagannathan, K. Pillaipakkamnatt, R. Wright. A New Privacy-Preserving
Distributed k-Clustering Algorithm. Proceedings of the 2006 SIAM Interna-
tional Conference on Data Mining (SDM), Bethesda, MD, 2006.

G. Jagannathan and R. Wright. Privacy-Preserving Distributed k-Means Clus-
tering over Arbitrarily Partitioned Data. Proceedings of the 11th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), Chicago, IL, 2005.

S. Jha, L. Kruger, and P. McDaniel. Privacy Preserving Clustering. 10th
European Symposium on Research in Computer Security, Milan, Italy,
2005.

H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. Random Data Pertur-
bation Techniques and Privacy Preserving Data Mining. 2003 1IEEE Inter-
national Conference on Data Mining, Melbourne, FL, 2003.

E. Kiltz, G. Leander, and J. Malone-Lee. Secure Computation of the Mean
and Related Statistics, Theory of Cryptography Conference, Cambridge,
MA, 2005.

M. Klusch, S. Lodi, and G. Moro. Distributed Clustering Based on Sampling
Local Density Estimates. Proc. Intl. Joint Conference on Artificial Intelligence
(IJCAI 2003), Acapulo, Mexico, 2003.

S. Laur, H. Lipmaa, and T. Mielikainen. Private Itemset Support Counting,
vol. 3783 of Lecture Notes in Computer Science, pp. 97-111, Beijing, China,
2005.

Y. Lindell and B. Pinkas. Privacy Preserving Data Mining. In Advances in
Cryptology—CRYPTO ’00, vol. 1880 of Lecture Notes in Computer Science,
pp. 36-54. Springer-Verlag, Heidelberg, Germany, 2000.

H. Lipmaa. An Oblivious Transfer Protocol with Log-Squared Total Commu-
nication. Technical Report 2004/063, International Association for Crypto-
logic Research, 2004.



226 W Digital Privacy: Theory, Technologies, and Practices

[24]

(23]

[26]

(27]

[28]

[29]

(301

(31]

(32]
(33]

J. MacQueen. Some Methods for Classification and Analysis of Multivariate
Observations. Proceedings of the Fifth Berkeley Symposium on Mathemat-
ical Statistics and Probability, vol. 1, pp. 281-297, Berkeley, CA. University
of California Press, 1967.

M. Naor and B. Pinkas. Oblivious Transfer and Polynomial Evaluation. In
31st ACM Symposium on Theory of Computing, pp. 245-254. ACM Press,
New York, 1999.

T. Okamoto and S. Uchiyama. A New Public-Key Cryptosystem as Secure
as Factoring. In Advances in Cryptology—Eurocrypt98, LNCS 1403, pp.
308-318. Springer-Verlag, Heidelberg, Germany, 1998.

P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residue
Classes. EUROCRYPT 99, Prague, Czech Republic, 1999.

E. Schikuta. Grid-Clustering: An Efficient Hierarchical Clustering Method
Jfor Very Large Data Sets. Proceedings of the 13th International Conference
on Pattern Recognition, 1996.

M. Steinbach, G. Karypis, and V. Kumar. A Comparison of Document Clus-
tering Techniques. In KDD Workshop on Text Mining, Boston, MA, 2000.
C. Su, J. Zhou, F. Bao, T. Takagi, and K. Sakurai. Two Party Privacy-
Preserving Agglomerative Document Clustering. The 3rd Information Se-
curity Practice and Experience Conference 2007, to be appear in Lecture
Notes in Computer Science, Proceedings, LNCS 44064, pp. 193-208, Hong
Kong, 2007.

J. Vaidya and C. Clifton. Privacy-Preserving k-Means Clustering Over Ver-
tically Partitioned Data. In Proc. of the 9th ACM SIGKDD Intl. Conf. on
Knowledge Discovery and Data Mining, Washington, D.C., 2003.

A.C. Yao, Protocols for Secure Computation. In 23rd FOCS, New York, 1982.
O. Zamir and O. Etzioni, Web Document Clustering: A Feasibility Demon-
stration. Proc. of 21st ACM SIGIR on Research and Development in Infor-
mation Retrieval, pp. 4654, Melbourne, Australia, 1998.



USER PRIVACY Iil






Chapter 11

HCI Designs for
Privacy-Enhancing
Identity Management

Simone Fischer-Hiibner, John Soéren Pettersson,
Mike Bergmann, Marit Hansen, Siani Pearson,
and Marco Casassa Mont

Contents

111 IntrodUCtON .. .ovve et 230
11.2  Related Work. . ... 231
11.2.1 The PISA Project .....oovviiiiii i 231
11.2.2  Art. 29 Working Party Recommendations ................ 232
11.3  Prime UL Paradigms.........oooviiiiii i 232
11.3.1 Role-Centered Paradigm .................ooooiiiiiinai.. 233
11.3.2 Relationship-Centered Paradigm ......................... 233
11.3.3 TownMap-Based Paradigm ............................... 235
11.3.4 Data Track. ...t 238
11.4 From Legal Privacy Requirements to Prime UI Proposals ........ 239
11.4.1 Information to Be Provided to Individuals............... 240
11.4.2 Obtaining Consent from Individuals ..................... 241

11.4.2.1 A Dialogue Box for Informed
Click-Through ........... ... ..., 241
11.4.2.2 Consent via Menu Selection ................... 242
11.4.2.3 Consent by Drag-and-Drop Agreements ... ... 243

229



230 ®m Digital Privacy: Theory, Technologies, and Practices

11.4.3 Support of the Individual in Exercising

Privacy Rights ... ..o i 244

11.5 Trust and Assurance HCL ...t 246
11.5.1 Lack of TrUSt ...oooiniii 246

11.5.2 Means for Enhancing Trust ...............coooiiiiin... 246
11.5.2.1 Assurance Control ....................coiiii.. 247

11.5.2.2 Obligation Management ....................... 248

11.6 CoNCIUSIONS . ..ot 249
ACKNOWIEdZMENTS .. ..o\t 249
REfEIENCES . . it 249

11.1 Introduction

In today’s information society, users have lost effective control over their
personal spheres. Emerging pervasive computing technologies, where indi-
viduals are usually unaware of a constant data collection and processing in
their surroundings, will even heighten this problem. It is, however critical,
to our society and to democracy to retain and maintain an individual’s au-
tonomy and, thus, to protect privacy and particularly the individual’s right
to informational self-determination. Powerful tools for technically enforc-
ing user control and informational self-determination as well as the pri-
vacy principle of data minimization can be provided by privacy-enhancing
identity management systems, as currently developed within the European
Union 6th Framework Program (EU FP6) integrated project PRIME (Privacy
and Identity Management for Europe®).

With PRIME, all interactions are a priori anonymous, and individuals can
choose to act under different pseudonyms with respect to communication
partners or activities, and also have control over whether or not interactions
and pseudonyms can be linked with each other or not. Moreover, PRIME
provides tools that help individuals to define who has the right to do what
under which conditions with their personal data, as well as tools providing
transparency about who has received what personal data related to them
and possibilities to trace personal data being passed on. However, PRIME
technologies will only be successful if they are accepted and applied by
the end users. For this reason, the PRIME project has also placed emphasis
on human—computer interaction (HCD research on new user interface (UD)
solutions and paradigms for privacy-enhancing identity management.

This chapter will present results from the PRIME HCI research activity
and is partly based on [20]. It will first present related work on which we
have partly based our research for PRIME UI solutions. It will then discuss
Ul paradigms for privacy-enhancing identity management (IDM) elaborated

* https://www.prime-project.eu/
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within PRIME as well as the mapping of related legal privacy principles to
specific UI design solutions. Finally, we discuss how the UI functions can
contribute to increasing trust in privacy-enhancing identity management
systems. Some pertinent results from usability evaluations are reported as
well.

11.2 Related Work

In the recent years, some work has been done in the area of usability and
privacy, including work on the usability of the Platform Privacy Preferences
Project (P3P) user agents [7], the presentation of online privacy notices
[12,14], and user perception and trust issues [25,26,15].

In the following sections, we briefly summarize the related work that
is most relevant in the context of our work in PRIME, namely the research
work of the EU FP5 PISA (Privacy Incorporated Software Agent) project
[16,17] and recommendations of the Art. 29 Working Party concerning the
content and structuring of information to be provided to users [2], which
we used as a basis for our HCI design proposals and HCI research in the
PRIME project.

11.2.1 The PISA Project

Important domain-specific HCI requirements can be derived from privacy
legislation. In the PISA project, it has been studied in detail how privacy
principles derived from the EU Data Protection Directive 95/46/EC [8] can
be translated into HCI requirements and what are possible design solu-
tions to meet those requirements [16,17]. The derived HCI requirements
were grouped into the four categories of comprehension (to understand,
or know), consciousness (be aware or informed), control (to manipulate,
or be empowered), and consent (to agree). In the PRIME project, we have
used and extended these privacy principles and HCI requirements from
the PISA project to derive proposed Ul design solutions for PRIME (see
also section 11.4 and [19]). The PISA project also investigated, in particular,
user agreements for obtaining informed user consent and introduced the
concept of “Just-In-Time-Click-Through Agreements” (JTTCTAs). “The main
feature of a JITCTA is not to provide a large, complete list of service terms,
but instead to confirm the understanding or consent on an as-needed basis.
These small agreements are easier for the user to read and process, and
facilitate a better understanding of the decision being made in-context” [16].
The concept of a JITCTA was also used for the PRIME HCI proposals us-
ing the “Send Data?” dialogue boxes (see [19]), which will be discussed in
section 11.4.2.1.
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11.2.2 Art. 29 Working Party Recommendations

The Article 29 Data Protection Working Party [2] has also investigated what
information should be provided in what form to users in order to fulfill all
legal provisions of the EU Data Protection Directive 95/46/EC for ensuring
that individuals are informed of their rights to data protection [5]. The Art. 29
Working Party recommends providing information in a “multilayered format
under which each layer should offer individuals the information needed to
understand their position and make decisions.” They suggest three layers
of information provided to individuals:

B The short notice (layer 1) must offer individuals the core information
required under Article 10 of the Directive 95/46/EC, which includes
at least the identity of the controller and the purpose of processing.
In addition, a clear indication must be given as to how the individual
can access additional information.

B The condensed notice (layer 2) includes, in addition, all other rel-
evant information required by Art. 10 of the Directive, such as the
recipients or categories of recipients, whether replies to questions
are obligatory or voluntary, and information about the individual’s
rights.

B The full notice (layer 3) includes, in addition to layers 1 and 2, the
“national legal requirements and specificities.”

The Art. 29 Working Party sees short privacy notices as legally acceptable
within a multilayered structure that, in its totality, offers compliance. JITC-
TAs as defined in the PISA project, in fact, are corresponding to such short
privacy notices. Within PRIME, we have followed the Working Party’s rec-
ommendations to use multilayered privacy notices in its design proposals
(see [19] and below).

11.3 Prime Ul Paradigms

In this section, we will present the main characteristics of alternative UI
paradigms for identity management that have been elaborated and tested
by the PRIME HCI work package.

A particular feature prominent in all these attempts was the bundling of
personal data and preference settings with different electronic pseudonymes.
The bundles were called roles or areas in the three main UI paradigms,
namely the role-centered, the relationship-centered, and the TownMap-
based paradigm.

The first two paradigms are traditionally styled, while the third one is
based on the metaphor of a townmap and is an attempt to make preference
settings more accessible and, hopefully, understandable to users. On the
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other hand, the latter two share a common approach to the use of pref-
erence settings, namely that the selection among the different preference
settings (roles and areas, respectively) is implicit when connecting to each
service provider. A user has different privacy needs as regards different
communication partners and predefined selection of roles should facilitate
this a great deal.

The three paradigms are presented below. The UI paradigms have been
embodied in an early prototype for IDM [6] and in some mockups and pro-
totypes produced for the PRIME project (in the PRIME integrated prototype
Version 2 of the year 2007, the word role is replaced by “PreSet” to avoid
confusion with other uses of “role” in applications that include the PRIME
kernel).

11.3.1 Role-Centered Paradigm

Role-centered means that user control of data disclosure is primarily car-
ried out via the roles described above that function like identity cards that
allow for pseudonymous contacts. Within a role, the user can set and uti-
lize different disclosure preferences for different data types. The user then
has to select the role he will be acting under when contacting service
providers, and whenever he thinks that this role is inappropriate, he has
to select one of his other roles. The UI paradigm was embodied in an
early user-side prototype called DRIM (Dresden Identity Management [6])
where the IDM functions were displayed in side bars of an ordinary Inter-
net browser (Mozilla Firefox). This UI paradigm also figures in one of the
PRIME mockups where the IDM functions were integrated in an ordinary
browser (Microsoft Internet Explorer) to explore toolbar designs (although
this mockup was never tested with users).

11.3.2 Relationship-Centered Paradigm

An alternative approach could be to define different privacy preferences
in relation to each communication partner. In the relationship-centered Ul
paradigm embodied in PRIME mockups, the identity management controls
are integrated in the same way as in the role-centered mockup, but in addi-
tion, the ordinary bookmarks (“Favorites” in Explorer) have roles attached
to them. By default, a predefined role based on transactional pseudonyms*
called “Anonymous” is activated. Further kinds of roles could be defined by
the user and added as alternative start-roles for any of the bookmarks. In this
way, during ordinary Web browsing, there is no extra step of selecting roles.
By using transactional pseudonyms as default, the relationship-centered

* That is, when a new pseudonym is created for each transaction [23].
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Figure 11.1 Bookmark list with role icons.

approach allows the privacy-enhancing functions to be switched on from
the start even if the user is not prepared to actively select among them.

In fact, in the PRIME mockups, we decided to always have the icon
for the anonymous role ready in the bookmark list, so that anonymous
“entrance” to all bookmarked Web sites could always be made—one can
hypothesize that even a user, who sets the role of a “registered customer” as
the default for a specific Web site, does not always want to be recognized
when visiting that Web site. In Figure 11.1, the anonymous role is selected
by clicking the masked man for each bookmark while the two other icons
stand for roles that can be alternatively activated and might be recognizable
by the service provider via the pseudonym that the role is acting under
and/or by some released personal data (if the service provider requests
such and if the user has agreed to it). Clicking on the name of a bookmark
implies selecting the left-most role if there is more than one icon.

The solution described above works when a user accesses Web sites
via bookmarks. On the other hand, when the user enters a Web address
in the address field of his browser, the system should find the default role
for that site, if the user has defined one; otherwise, the anonymous role
should be used because this is the standard setting and applies to all Web
sites if nothing else has been set by the user.

More problematic is that users might find it hard to select the anonymous
role when it is not a default; the “Go” button of the Web browser could
have alternatives, as in Figure 11.2, even if users presumably would use
the “Enter” key if they have keyed in an address. The role icon to the left
of the address field shows the current role.

The role-centered and the relationship-centered approaches differ by
what is the primary action by the user: either selecting a role (and only
secondly or implicitly communication partner) or selecting a communica-
tion partner (and implicitly the role = privacy setting).

The primary action of the relationship-centered UI supports the user’s
primary goals, namely accessing service providers. It should also be noted
that while the user interface has to be somewhat more elaborated, this Ul
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Figure 11.2 Traditional “Go” button and address field with two “Gos.”

proposal does not introduce any extra actions during ordinary browsing,
while on the other hand, a role-centered Ul would force the user to re-
peatedly change roles (or change Web sites if roles have default start sites,
while making a role list with a lot of alternative start pages only begs the
question of why to reinvent the ordinary bookmark list).

11.3.3 TownMap-Based Paradigm

In the TownMap-based Ul paradigm, the roles are replaced by areas visual-
izing privacy protection concepts with default privacy settings. Predefined
areas were the Neighborhood (where relationship pseudonymity* is used
by default), the Public area (where transactional pseudonymity is used by
default), and the Work area (where relationship pseudonymity is used) with
different default privacy preference settings for another set of personal data
than for private use.

The approach to use different default “roles” for different areas within
a town should make it easier for a novice to see the options available
once he has grasped the TownMap metaphor. Individual bookmarks or
lists with bookmark menus are symbolized by houses. The user also has
his own house in the map (a prominent house at the baseline). Of course,
the map display has to vanish or be reduced when the user encounters one
of the service providers.

* That is, a pseudonym chosen in regard to a specific communication partner (see [23]).
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Figure 11.3 TownMap with building tools visible.

In Figure 11.3, the user wants to add a shortcut link (similar to dragging
a Web site icon from a present-day browser’s address field to the desktop).
The user has clicked on the button “Show Tools” and picked a house
to place somewhere. This will make it possible not only to put a new
bookmark in the TownMap, but also to put an alternative privacy preference
definition: If a Web site is already listed in the public space, now the user
adds an access point to the same site, but in his neighborhood to indicate
that he should be recognized when accessing the Web site this way.

Figure 11.4 shows a view when the user is browsing a site. The user
has clicked on the TownMap symbol in the browser bar and can now see a
tilted TownMap and all or some of his shortcut links (in this figure, only five
houses have been placed on the map). This could be refined—just compare
the “Looking Glass” UI paradigm presented by SUN Microsystems*—but in
any event, it allows using the spatial relationships with which the user has
become acquainted: The way between the user’s house and the bank, for
instance, can be used for indicating data flow and even for letting the user
show preferred data flows.

A preference test (with NV = 34 test persons) was made by using user
interface animations where groups of test participants could see identity
management carried out in the traditionally styled user interface and also
in the TownMap. Afterward, participants individually filled in a form with
questions about their impression and preferences. Then a third design was
shown, a simplified map. Swedish university students aged 20 and above,
some being older than 45, participated in the preference test; all had used
Internet Explorer and only some had used other browsers, as well. Our
traditionally styled alternative was based on an Internet Explorer mockup.
The traditionally styled browser got a positive response in general: More
than half of the answers gave positive descriptions of it. The maps, on the
other hand, were considered by many to be messy. One should bear in

* “Project Looking Glass,” http://www.sun.com/software/looking_glass.
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Figure 11.4 Tilted TownMap visible.

mind that the maps were populated from the beginning, while a new user
would have found his own map empty (like the bookmark list in an unused
copy of a browser). (For more discussion of the test set-up, see [3].)

On the question concerning their impression of the display of data
and money transaction, nineteen answered that it “facilitates,” while eleven
ticked “superfluous.” Nine of these eleven persons also ticked “looks child-
ish;” fifteen in all ticked “looks OK.” This result speaks in favor of using
animation in explanations.

When ranking the alternatives, twenty-four persons put the traditional
browser as their primary choice. Seven preferred the realistic TownMap
and three preferred the simplified map. Two-fifths of the participants an-
swered that they would like to be able to switch between designs. The
test has been replicated in the United States with twenty-seven (young)
university students. The results were, in the main, similar to the test con-
ducted in Sweden, although a majority of the American subjects wanted to
be able to toggle between designs. Comparing with the age groups among
the Swedish participants, one can see a clear trend: Young Internet users
generally are in favor of the more graphical user interface represented by
the TownMap.
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11.3.4 Data Track

The data track is a function available in all three Ul paradigms and is for
this reason briefly presented in this section. Being able to track what data
is disclosed, when, to whom, and how the data is further processed, is an
important feature to provide transparency of personal data processing.

Within PRIME, the data track function allows users to remember what
personal data they have released to other sites via data records logged at
the end user’s side. The data track is currently also extended to advise users
about their rights and enable them to exercise their basic rights to access
data, or to rectify and request their deletion online (see section 11.4.3), and
help them to check on agreed obligations or to set obligations (see 11.5.2.2).
The data track stores transaction records comprising personal data sent,
including pseudonyms, and used for transactions and credentials that were
disclosed, date of transmission, purpose of data collection, recipient, and all
further details of the privacy policy that the user and recipient have agreed
upon (see also [21]). The privacy policy constitutes a valuable document
in case that a user feels that something is wrong with how his data has
been used. The data track also needs to store the pseudonyms used for
transaction to allow a user to identify himself as a previous contact in case
he wants to exercise his rights to access, rectification, blocking, or deletion
(see Section 11.4.3) while still remaining pseudonymous.

As people engage in many transactions, which may involve multiple
providers simultaneously, the implementation of a usable data track is dif-
ficult from an HCI perspective. Providing users with easy tools to find
relevant data disclosure records is one example. In PRIME, several ways
are considered and are discussed in this section.

Two search methods are quite straightforward and might appear as
the obvious choices: (1) Sorting step-wise by categories, such as “Personal
data” and “Receivers,” and (2) Simple search box. However, these two
approaches seem unsatisfactory because users are unaware of what the
system does as revealed in user tests performed by the PRIME group.

More suitable methods that are currently pilot-tested include: (1) Tem-
plate sentences that put search boxes within meaningful frames: “Who has
received my [drop-down list with data]?” and (2) A scrollable transaction
track that shows all the records at once. The records are shown in abbre-
viated form as small pages stacked along a timeline (see Figure 11.5). A
slider provides the possibility to highlight an individual page in the stack.
In this way, users could browse through the records without having to
understand sorting or to articulate refined search requests. Obviously, this
method seems more appropriate for the beginner whose amount of trans-
action records will be limited. With an increasing amount of transactions
it becomes more and more difficult to find the desired record(s). For the
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