
Masaryk University
Faculty of Informatics

Operating system boot from
fully encrypted device

Bachelor’s Thesis

Daniel Chromik

Brno, Fall 2016

Replace this page with a copy of the official signed thesis assignment and the
copy of the Statement of an Author.

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out by my own. All sources, references and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Daniel Chromik

Advisor: ing. Milan Brož

i

Acknowledgement

I would like to thank my advisor, Ing. Milan Brož, for his guidance
and his patience of a saint. Another round of thanks I would like to
send towards my family and friends for their support.

ii

Abstract

The goal of this work is description of existing solutions for boot-
ing Linux and Windows from fully encrypted devices with Secure
Boot. Before that, though, early boot process and bootloaders are de-
scribed. A simple Linux distribution is then set up to boot from a fully
encrypted device. And lastly, existing Windows encryption solutions
are described.

iii

Keywords

boot process, Linux, Windows, disk encryption, GRUB 2, LUKS

iv

Contents

1 Introduction . 1
1.1 Thesis goals . 1
1.2 Thesis structure . 2

2 Boot Process Description . 3
2.1 Early Boot Process . 3
2.2 Firmware interfaces . 4

2.2.1 BIOS – Basic Input/Output System 4
2.2.2 UEFI – Unified Extended Firmware Interface . . 5

2.3 Partitioning tables . 5
2.3.1 MBR – Master Boot Record 5
2.3.2 GPT – GUID Partition Table 7

2.4 Secure Boot . 8
3 Boot loaders . 11

3.1 GRUB . 11
3.1.1 Boot process on BIOS 11
3.1.2 Boot process on UEFI 12
3.1.3 GRUB and Secure Boot 13

3.2 Windows Boot Manager and Loader 14
3.2.1 Boot Manager . 14
3.2.2 Boot Loader . 15

4 Setting up encrypted device 16
4.1 Partitioning discs . 16

4.1.1 Booting without boot partition 16
4.1.2 Logical Volume Manager 17

4.2 Preparing Logical Volumes and Boot 17
4.2.1 Setting up filesystems 17
4.2.2 Partition encryption 17
4.2.3 Linux Unified Key Setup - LUKS[10] 18

4.3 Configuring mkinitcpio and GRUB 2 19
4.3.1 Setting up GRUB 19
4.3.2 Configuring mkinitcpio 20
4.3.3 Storage Stack . 20

4.4 Enabling Secure Boot . 20
4.4.1 Using default PK 21
4.4.2 Using custom keys 21

v

4.4.3 Cryptboot . 21
5 Booting encrypted Windows 22

5.1 Windows partitions on GPT 22
5.1.1 Microsoft System Reserved - MSR 23
5.1.2 Windows Recovery Environment 23

5.2 Microsoft encryption solutions 23
5.2.1 Windows 10 device encryption 23
5.2.2 BitLocker . 24
5.2.3 BitLocker to go 24
5.2.4 BitLocker eDrive 24

5.3 Third party encryption . 25
5.3.1 Truecrypt . 25
5.3.2 Ciphershed . 26
5.3.3 VeraCrypt . 26

5.4 LUKS encryption on Windows 26
6 Conclusion . 27

6.0.1 Future work . 27

vi

List of Tables

vii

List of Figures

2.1 Early Boot Process 3
2.2 BIOS boot process 4
2.3 UEFI boot process 5
2.4 Classic Master Boot Record 6
2.5 Extended Master Boot Record example 6
2.6 GUID partition Table 7
2.7 Secure boot driver/loader loading 8
2.8 Secure boot databases 9
2.9 Database state on Windows machine 9
3.1 GRUB boot process on BIOS-MBR 11
3.2 GRUB boot process on BIOS-GPT 12
3.3 GRUB boot process on UEFI with GPT disk 12
3.4 GRUB secure boot process on Fedora 13
3.5 Windows Vista boot process 14
3.6 Windows boot manager 14
3.7 Windows boot loader 15
4.1 GRUB booting with boot partition 16
4.2 GRUB booting without boot partition 17
4.3 Device mapper example 18
4.4 LUKS header 19
4.5 State of the storage stack 20
5.1 Windows storage stack 22
5.2 Software encryption 24
5.3 Hardware encryption 25

viii

1 Introduction

The importance of disk encryption has been on the rise in the last 20
years. It protects data in case of theft, where laptop or hard drive gets
stolen. Nowadays most computers are also connected to the internet.
Which opens another door into the computer where encryption could
be helpful .

Disk encryption is the process of making the data look like it is
just a random sequence of numbers. Decryption is the reverse pro-
cess, making the data readable again. On Linux one of the options for
encryption would be dm-crypt, on Windows BitLocker or VeraCrypt.
Only these two Operating Systems are covered in this work. Encryp-
tion programs use various encryption keys, algorithms, hashes etc.,
information about those is stored in headers. These headers can be
stored directly on the disk, at the beginning of the encrypted parti-
tion. Or it could be stored on an external drive, like USB (Universal
Serial Bus) flash disk or on a server.

Full disk encryption is where the entire drive is encrypted, includ-
ing the OS. The only exception are components needed to boot the OS.
This form of encryption provides the benefit of plausible deniability,
it is impossible tell how many Operating Systems (OS) are there on
the disk, if any. The Operating System also cannot be altered when
not in use, and every new file will be automatically encrypted if it
resides on the same drive.

1.1 Thesis goals

The goal of this work is to study and describe early boot process
and generic structure of a boot loader used in OS on the PC (Per-
sonal Computer) platform. Focusing on the UEFI (Unified Extensible
Firmware Interface) firmware specification and Secure Boot. And, us-
ing that knowledge, firstly install a Linux distribution on a fully en-
crypted device. Describe possible ways to set up a Linux with Secure
Boot enabled to boot from a fully encrypted device. And lastly de-
scribe existing solutions for booting Windows from a fully encrypted

1

1. Introduction

device. The only unencrypted parts of the boot process can be parts
critical for the boot process to work.

1.2 Thesis structure

The thesis begins with a description of the general early boot pro-
cess up to the Boot Loader phase. Followed by a description of BIOS
(Basic Input/Output System) and the newer UEFI. These are critical
components of the Boot Process that tell the system how to boot an
Operating System. Description of Partitioning Tables is next, these tell
the Operating System, Firmware Interface or Boot Loader where each
partition on the disk is located. One section is dedicated to Secure
Boot, a feature of UEFI specification which makes the boot process
more secure.

The second chapter is dedicated to Boot Loaders themselves, GRUB
2 (Grand Unified Bootloader) and Windows Boot Manager. GRUB is
a crucial component for booting from an encrypted device, mainly
for the Linux OS. It might be possible to use GRUB to boot Windows
from encrypted device as well, which is described in the last chap-
ter. The implementation part is divided into 2 chapters. First chapter
describes the steps needed to install Linux on a fully encrypted de-
vice and making it bootable. The possibility of enabling Secure Boot
is also looked into. Second chapter is about existing options of boot-
ing Windows from a fully encrypted device with and without Secure
Boot.

2

2 Boot Process Description

When the system is powered on, the CPU (Central Processing Unit)
needs to know how to check if the hardware, like memory or hard
drives, is not faulty, so it can proceed with the bootstrap process. It
also needs to know how and where to look for an operating system.
This is where Firmware Interfaces and Partitioning Tables come into
place, the former allowing to check hardware or how to look for an
OS, while the latter helping with finding the OS. Some problems can
be avoided with the knowledge of how the early boot process works,
especially when installing an older Operating System on new hard-
ware or running a multi-boot1 configuration.

2.1 Early Boot Process

When the system is powered on it starts by loading system firmware,
like BIOS[6] or UEFI[14], into memory. These can be loaded from
Flash or ROM (Read-Only Memory). System firmware on flash mem-
ory is usually prioritized as it can be updated and modified. The ROM
is mostly used as a backup if the Flash storage becomes unusable. The
system then performs POST (Power-On Self-Test) to check the hard-
ware and initialize it. CPU (Central Processing Unit) then searches
for boot record to load into the main memory and gives it control.

Figure 2.1: Early Boot Process

1. two or more operating systems installed on a PC (e.g. Linux and
Windows) and choosing which to boot on startup, more information at
https://en.wikipedia.org/wiki/Multi-booting

3

2. Boot Process Description

2.2 Firmware interfaces

Firmware interfaces provide ways to interact with platform firmware.
They provide ways to change how the system works before an OS is
loaded, like overclocking the CPU or changing boot priorities. There
are 2 firmware interfaces used on the x86 platform, BIOS and UEFI.

2.2.1 BIOS – Basic Input/Output System

BIOS[6] first appeared in the year 1975, and is still used nowadays.
But because of its age, there are many shortcomings and features
that are no longer useful. These are being addressed by its succes-
sor, UEFI[14], which is described in the next subsection.

BIOS can only run on the x86 architecture because it requires 16-
bit mode that it provides. 16-bit mode also leads to BIOS’s unused
functionality, it provides an interface for the OS to communicate with
hardware. It was used mainly in MS-DOS times, but today’s Operat-
ing Systems are 32 or 64 bit, which renders BIOS’s 16-bit interface
inefficient. BIOS boot process is fairly straight forward as shown in
Figure 2.2, but it is not that modifiable.

Figure 2.2: BIOS boot process

BIOS can only boot hard drives partitioned using the MBR method,
more about MBR[2] can be found in subsection 2.3.1. Booting from
GPT[7], more in subsection 2.3.2, is dependant on the secondary boot-
loader, like GRUB[12], which is be described in section 3.1. Multi-
booting on the same physical drive is also dependant on the secondary
bootloader as BIOS can only change priority of the physical drives.

4

2. Boot Process Description

2.2.2 UEFI – Unified Extended Firmware Interface

UEFI[14] is a modern replacement for BIOS. It was developed by Intel,
first called Extended Firmware Interface (EFI), which was later con-
tributed to the Unified EFI forum and was renamed to UEFI. UEFI
doesn’t require a boot sector, it has a built-in bootloader that lets the
user change the boot configuration.

Figure 2.3: UEFI boot process

UEFI understands GPT partitioning and can boot from the EFI
System Partition (ESP). ESP must be formatted using the File Alloca-
tion Table (FAT) file system specification. It contains OS bootloaders
or kernels, device drivers used by the firmware itself and system util-
ity programs. These programs must be compiled as EFI applications
with .efi filename extension. UEFI also provides backwards compat-
ibility in the form of legacy BIOS mode, which can boot from MBR
partitioned disk.

2.3 Partitioning tables

Partitioning tables tell the firmware where to look for boot sectors.
There are 2 mainly used schemes, Master Boot Record and GUID Par-
titioning Table, with a significant amount o differences between them.

2.3.1 MBR – Master Boot Record

In the MBR[2] scheme the boot record is located at the first sector
of a hard disk. The general classic Master Boot Record contains first
stage bootloader and partition table, as shown in figure 2.4. The first
stage bootloader often redirects to a second stage bootloader, which
provides more features.

5

2. Boot Process Description

Figure 2.4: Classic Master Boot Record

There are many variations as to what the MBR contains, e.g. Disk
Manager MBR can have up to 16 partition entries, but only has 252
bytes for the bootstrap area.

MBR was introduced in 1983 and has not changed much since
then, its shortcomings are more and more noticeable nowadays. It
can address only up to 4 TB of data, which can be insufficient. If the
MBR gets damaged there is no way of restoring it, since there is no
data redundancy. General MBR also has only 4 partitions, this, how-
ever, can be overcome with the use of extended logical partitions as
shown in figure 2.5.

Figure 2.5: Extended Master Boot Record example

6

2. Boot Process Description

Only one entry in MBR can be an Extended Partition. An Extended
Partition can contain another Extended Partition though, forming a
linked list which is limited only by disk space.

2.3.2 GPT – GUID Partition Table

GPT[7] is a more modern approach to partitioning, it solves many
problems posed by MBR. There can be 264 sectors on the disk, a sec-
tor being 512 or 4096 bytes, providing much more space than MBR.
In the GPT scheme, extended partitions are no longer needed as there
can be up to 128 partitions.

To provide these features GPT requires much more space than
MBR. It requires at least 16,384 bytes for the partition table entries
which, on 512 byte sectors, would take 32 sectors. It is possible to boot
from the disk as if it was an MBR disk thanks to protective MBR layer,
as shown on figure 2.6. Booting from the disk without the protective
layer, as if it was an ordinary MBR disk, would not work at all and it
could even damage the GPT data.

Figure 2.6: GUID partition Table

Every partition has a long random string called Globally Unique
Identifier (GUID). Redundancy is present in GPT as the partition ta-
ble and GPT header are at the beginning and end of the disk to pre-
vent data loss. The GPT header contains CRC32 of the header itself
as well as the partition array to tell if the data has been corrupted.

Most modern Operating Systems (Windows, OS X, Linux...) can
read from GPT partitioned disk. However, some systems (e.g. Win-
dows, OS X) require EFI firmware to also boot from it.

7

2. Boot Process Description

2.4 Secure Boot

Secure Boot[3] is a feature of the UEFI[14] specification that should
make the boot process more secure. This security is achieved by pre-
venting drivers or OS loaders that are not signed from being loaded
by the firmware.

Figure 2.7: Secure boot driver/loader loading

This should prevent unwanted software from loading, such as
bootkits. It also, at first, made other Operating Systems, like Linux
or BSD, impossible to boot while using default PKs (Platform Keys),
a PK is described after Figure2.4. Some Linux distributions, mainly
Fedora and Ubuntu, can be run in Secure Boot mode with Microsoft
keys. But for many others it has to be disabled or custom PK has to
be used.

With the arrival of Windows 10 manufacturers can ship hardware
on which Secure Boot cannot be disabled. This is used mainly on
portable Windows devices, like tablets or mobile phones.

8

2. Boot Process Description

Figure 2.8: Secure boot databases

1. Platform key - the public part of Platform Key which was gener-
ated by the Original Equipment Manufacturer (OEM). It is used
to protect the KEK Database.

2. Key Exchange Key (KEK) Database - trusted certificates that al-
low modification of DB, DBT and DBX, described below. Usu-
ally contains certificates of OS vendor.

3. Allowed Signatures Database (DB) - CA certificates or their hashes
used to sign bootloaders and other pre-boot components are
stored in this database. It could also contain explicit SHA2 hashes
of the bootloader images.

4. Revoked Signatures Database (DBX) - contains hashes and cer-
tificates that were revoked. If the bootloader is signed by any-
thing from this database, or if its hash is stored here, it will not
be allowed to execute.

5. Timestamp Signatures Database (DBT) - contains timestamping
certificates used when signing bootloaders.

Usually the databases look like this on new Windows machines.

Figure 2.9: Database state on Windows machine

9

2. Boot Process Description

1. Platform key - described above. It is possible to replace it with
custom key, giving the option to sign anything the user wants
to, but Windows components will become unbootable.

2. Key Exchange Keys (KEK) - there are usually two of these, 1
from OEM and 1 from OS vendor.

3. Allowed Signatures Database (DB)

(a) Microsoft UEFI CA - this certificate signs 3rd party bina-
ries, like Fedora or Ubuntu bootloaders.

(b) Microsoft Windows Production CA - used to sign Microsoft
binaries.

(c) OEM Product CA - certificate specific to the OEM. Gives
the OEM an option to sign its own bootloaders. As an ex-
ample Lenovo could make a laptop with Windows and a
custom Linux distribution with Secure Boot enabled and
both would work correctly since Lenovo can sign the Linux
bootloaders.

10

3 Boot loaders

Boot loaders are an important part of the booting process. Even though
UEFI[14] systems can directly boot an OS kernel, boot loaders, such
as GRUB 2[12] and Windows Boot Manager, provide additional func-
tionality. The first section takes a closer look at GRUB 2, the most
widely used boot loader for Linux Systems, and its features. Windows
Boot Manager and Loader is described in the second section.

3.1 GRUB

GRUB[12], which stands for Grand Unified Bootloader, is used mainly
to boot UNIX like systems. It is a reference implementation of the
Free Software Foundation’s Multiboot Specification. There are two
versions, GRUB legacy and GRUB 2. GRUB Legacy is no longer sup-
ported and should be used only for older systems where GRUB 2
would not work. GRUB 2 is cleaned up and rewritten GRUB Legacy
in order to support further development.

3.1.1 Boot process on BIOS

Booting on MBR[2] disk has three stages on GRUB, stage 1, 1.5 and 2.
These three stages are illustrated in figure 3.1. Boot process on GPT[7]
is described in next subsection.

Figure 3.1: GRUB boot process on BIOS-MBR

First stage, boot.img, happens when BIOS[6] gives control to GRUB
code located in the Master Boot Record. Boot.img is configured at in-
stallation time to only load the first sector of core.img. The data for
1.5 stage, core.img, are located in the unused space between MBR and

11

3. Boot loaders

first partition. Once core.img is executed, it loads configuration files
and any needed modules, like file system drivers, and loads stage 2
by its file path. Once stage 2 is loaded it presents the user with a Text
User Interface based operating system selection. There is a slight dif-
ference between MBR and GPT as GPT does not have any free space
between the protective MBR layer and first partition. On GPT disk,
core.img needs to be stored in a separate partition as shown in figure
3.2.

Figure 3.2: GRUB boot process on BIOS-GPT

3.1.2 Boot process on UEFI

On UEFI-based systems the boot process itself is a lot simpler on
the GRUB[12] side. UEFI[14] systems provide their own bootloaders
which load grub.efi into memory and give it control.

Figure 3.3: GRUB boot process on UEFI with GPT disk

12

3. Boot loaders

This process becomes more complicated if secure boot is used, de-
tailed description in section 3.1.3. Booting from MBR disk is the same
as in section 3.1.1 since UEFI provides legacy BIOS mode.

3.1.3 GRUB and Secure Boot

When secure boot is enabled both GRUB and Linux kernel need to be
signed and verified before booting. In this work only the Fedora im-
plementation will be described, however, there are more implemen-
tations of GRUB with secure boot.

Fedora uses a first stage bootloader called Shim [13]. Firstly shim
is verified and executed by UEFI. It then verifies and loads GRUB
bootloader, the verification is done with a CA signed by Fedora. When
GRUB is loading a kernel it calls back into shim to verify the signature
of the kernel.

Figure 3.4: GRUB secure boot process on Fedora

Fedora also checks kernel modules at load time and refuses to load
them if they are not signed or have invalid signature. This last step is
where other Linux distributions are different as they do not require
that modules are signed. Rest of the process should be similar as most
distributions use shim in their boot process in the same way as Fe-
dora.

13

3. Boot loaders

3.2 Windows Boot Manager and Loader

There are two versions of windows boot loaders, NTLDR, which was
used to boot windows XP and older, and Windows Vista startup pro-
cess. NTLDR needed to change because it could not boot in EFI mode,
it was split off into Boot Manager and Boot Loader.

Figure 3.5: Windows Vista boot process

3.2.1 Boot Manager

This is the part that lets the user choose which operating system to
boot if he has more than one. It also provides Advanced Boot Options,
these contain diagnostics and repair tools, like Safe Mode or Debug
Mode, which could be needed if the OS doesn’t boot properly.

Boot manager reads from Boot Configuration Data (BCD), which
can be edited since it uses the same format as Windows Registry hives.
BCD contains entries for options like booting or resuming an OS from
hibernation, invoking a NTLDR version of windows or loading and
executing a Volume Boot Record, allowing to chain load GRUB[12] as
an example. BCD is located at \EFI\Microsoft\BCD on EFI partitions
or \boot\BCD on MBR partitioned drives.

Figure 3.6: Windows boot manager

14

3. Boot loaders

3.2.2 Boot Loader

There are two Boot Loaders in the Vista start up process, winload and
winresume. Winload is executed by the Boot Loader to load the OS
kernel and core device drivers, in EFI systems is it called winload.efi.
Winresume, called winresume.efi on EFI systems, is also executed by
the Boot Loader, but it is used to resume the system from Hibernation.
Both of these files are at \Windows\system32.

Figure 3.7: Windows boot loader

15

4 Setting up encrypted device

Setting up an encrypted Linux OS is described in this chapter. Only
the most important steps are explained, why they need to be done
and how could they be done differently. The step-by-step guide can
be found in the attachment. The first part is about disc partitioning
followed by the creation of filesystems and partition encryption n the
final section the mkinitcpio and GRUB 2[12] will be set up

4.1 Partitioning discs

Since this is a manual installation, the partitioning will need to be
done manually as well. In this case the boot partition will be omitted
as well as the Logical Volume Manager partition, why these are omit-
ted will be explained a bit further. The result of this section should be
2 visible partitions, EFI and a LUKS[10] encrypted partition.

4.1.1 Booting without boot partition

Most Linux OS Installers, like Ubuntu or Fedora, make a boot parti-
tion for GRUB. This makes the management of multiple Linux kernels
or distributions simpler. The boot process would then look like this.

Figure 4.1: GRUB booting with boot partition

However, a dedicated boot partition is not necessary in order to
boot a Linux OS. If the partition is not created the boot data is stored
on the root partition. Without the boot partition full drive encryption
is achieved, the only exception being ESP which cannot be encrypted,
ESP was described in subsection 2.2.2. One less decryption step in the
boot process could also make the process more secure.

16

sec:encryption#,.i

4. Setting up encrypted device

Figure 4.2: GRUB booting without boot partition

4.1.2 Logical Volume Manager

The Linux Logical Volume Manager (LVM) provides 2 main features.
It allows to resize filesystems much more easily than if they were nor-
mal partitions. LVM also logically manages physical volumes, mak-
ing them look as if they were just one. However, booting from LVM
partitions is a bit more complicated, especially when they are en-
crypted and there is no boot partition.

4.2 Preparing Logical Volumes and Boot

The partitions then need to be made into filesystems so they can store
data in a way that the OS understands. Encryption of these partitions
will be described in this section as well.

4.2.1 Setting up filesystems

Just allocating size for partitions is not enough, the OS needs to know
how to read from and write to the partitions. Filesystem types them-
selves tell what kinds of metadata are stored with each file and direc-
tory, how space is allocated or if they provide features such as sym-
bolic or hard links. Filesystems can be OS specific, e.g. Linux ext4
filesystem is not supported by Windows.

4.2.2 Partition encryption

The partitions are encrypted using dm-crypt [1](which stands for Device-
Mapper Crypt), a flexible tool available on Linux and BSD Operating
Systems. It is implemented as a device mapper target, which makes
it possible to stack more software layers on top of another. As an ex-
ample, an LVM partition,inner layer, which would then be encrypted,

17

4. Setting up encrypted device

outer layer, this would be a 2 layer layout. Aforementioned example
is illustrated in the following figure 4.2.2.

Figure 4.3: Device mapper example

4.2.3 Linux Unified Key Setup - LUKS[10]

LUKS is a disk encryption specification, it provides a standard on-
disk format for use in various tools. Thanks to this standardisation it
is much more compatible among Linux distributions. It also provides
secure management of multiple user passwords. LUKS stores all the
setup information in the partition header. In comparison, plain dm-
crypt encryption does not require a header on the device, making it
look like the device is filled with random data. The header, illustrated
in the figure below, needs to be read by the bootloader in order to
decrypt the partition.

18

4. Setting up encrypted device

Figure 4.4: LUKS header

4.3 Configuring mkinitcpio and GRUB 2

GRUB and initialization procedures then need to be configured, man-
ually. GRUB needs to be configured to boot without the boot partition
and decrypt the initial ramdisk. Kernel initialization scripts must de-
crypt the root partition. Setting these components up is fairly straight-
forward as both have this functionality built-in.

4.3.1 Setting up GRUB

Firstly GRUB needs to be configured in order to decrypt the partition
before booting it. GRUB has this functionality built-in but it can’t au-
tomatically detect encrypted partitions. It needs to be told where the
encrypted partition is, whether by its UUID or, if it was a LVM par-
tition, by location of the volume. After the partition is opened it is
stored as a device-mapper device so the OS can use it as well.

19

4. Setting up encrypted device

4.3.2 Configuring mkinitcpio

Setting the initialization scripts is done similarly to GRUB, by adding
flags to files. The scripts need to know that the partition was encrypted
so they can work with the device opened and mapped by GRUB.

4.3.3 Storage Stack

After the partitioning, encrypting and installing the OS is complete
the storage stack should look something like this.

Figure 4.5: State of the storage stack

The home and swap partitions are not included as they are not
necessary. Linux requires only the root partition in order to function
properly. EFI partition is required by the EFI firmware, it contains the
GRUB bootloader. The partitions could, of course, differ if the user
has any other partitions or chooses to use the boot partition.

4.4 Enabling Secure Boot

It is not that difficult to set up a fully encrypted device, as was dis-
covered above. One important security feature was omitted though,
Secure Boot. There are two ways to set up Secure Boot, using the de-
fault PK or using a custom one. Installing an already signed Linux
distribution is required if default PK is to be used, more in subsec-
tion 4.4.1. Removing default PK and installing a custom one requires
more steps but any Linux distribution can be installed in this way.
Custom PK way is described in subsection 4.4.2.

20

4. Setting up encrypted device

4.4.1 Using default PK

If secure boot is enabled when installing Fedora alongside Windows
it uses first stage shim bootloader, shim was described in subsection
3.1.3. There has to be an unencrypted boot partition if root partition is
to be encrypted. The reasoning behind this is that shim can only ver-
ify and load another bootloader, it can’t decrypt a partition by itself.
Because of that it is impossible to boot a Fedora Linux from a fully
encrypted device.

4.4.2 Using custom keys

Another option to have a fully encrypted device with Secure Boot en-
abled is to clear existing UEFI keys and generate custom ones. This
would allow the execution of any bootloader and kernel, but they will
have to be signed manually. The use of Windows could become more
cumbersome or it might not boot at all, when the Windows boot-
loader or kernel gets updated, the keys will need to be manually up-
dated as well. Using this method only the bootloader will be verified,
the kernel will be booted normally. This is, of course, depending on
the bootloader, it might support some sort of kernel verification.

4.4.3 Cryptboot

Cryptboot[9] is a Linux bash script which automates custom UEFI
key management. It basically automates the process described above,
UEFI keys removal and generation of custom ones. Cryptboots main
goal is to prevent Evil Maid attacks.

21

5 Booting encrypted Windows

Booting a fully encrypted Windows 10 OS has some similarities and
differences when compared to Linux encryption. The tools used to
encrypt Windows are different. But the methods of encryption are
fairly similar. Microsoft provides some encryption methods, these are
described in section 5.2. There also third-party encryption options,
some proprietary and some open-source, more in section 5.3.

5.1 Windows partitions on GPT

The minimum amount of partitions needed to boot and run Win-
dows 10 is 2, ESP, called just System partition by Microsoft, and the
Windows partition. In this scenario, encrypting and booting from the
Windows partition would mean booting from a fully encrypted de-
vice as the ESP must not be encrypted. Windows, however, usually
comes with more partitions as illustrated in the image below.

Figure 5.1: Windows storage stack

EFI system partition was described in subsection 2.2.2. Windows
partition contains the entire Windows OS and, if not stored in a data
partition, user data. Windows partition is something like Linux’s home
and root combined. Utility partitions can be any partitions which are
not managed by Windows, like Linux root and home partitions. These
partitions should be located before the Windows partition, allowing
to resize Windows without affecting the utility partitions. Data par-
titions are optional partitions which store user data, it is a part of the
Windows partition if not defined. The remaining partitions are de-
scribed in the following subsections.

22

5. Booting encrypted Windows

5.1.1 Microsoft System Reserved - MSR

This is a hidden partition that exists only on GPT partitioned disks.
On MBR partitioned disks the data is stored in the empty space after
bootloader. The partition itself doesn’t contain any data, other compo-
nents shrink this partition to create their own partitions which store
data. For example, when converting basic disk to a dynamic one, Win-
dows takes a bit of space to store information about the new dynamic
disk.

5.1.2 Windows Recovery Environment

RE partition is booted when the bootloader fails to boot normal Win-
dows. When the bootloader is given control it sets a flag which should
be unset by windows kernel when it is successfully booted. This flag
will be set if the kernel was never given control, thus telling the boot-
loader that it should go into recovery environment.

5.2 Microsoft encryption solutions

Microsoft does provide some encryption solutions. Windows 10 de-
vice encryption, which comes out of the box on Windows 8.1 and
later. The second, more advanced option, is BitLocker. It is not avail-
able on Windows 10 Home, only Pro and Enterprise, though. Both of
these options are proprietary, not open-source.

5.2.1 Windows 10 device encryption

Windows device encryption arrived with Windows 8.1 and is avail-
able on all editions of Windows. It is basically a limited version of Bit-
Locker, which is discussed in subsection 5.2.2. It has 2 requirements.
Firstly, the hardware must support at least TPM 1.2. (Trusted Platform
Module) and Secure Boot. And secondly, the user must be logged in to
a Microsoft account, encryption keys are then uploaded to Microsoft
servers. This second requirement provides an option to recover files if
unable to log in. But it also makes this encryption method less secure
as the keys are stored in a way that the user cannot change.

23

5. Booting encrypted Windows

5.2.2 BitLocker

BitLocker can use, but does not require, TPM. Instead of relying on
TPM a volume password or an external USB startup key can be used.
Microsoft account is not required as well, the keys are not sent to any
servers. 2 feature of BitLocker are described in separate subsections,
BitLocker to go in subsection 6.2.3 and BitLocker eDrive in subsection
6.2.4.

5.2.3 BitLocker to go

BitLocker to go allows the encryption of external devices, like flash
disks or SD cards. These disks must be formatted using the NTFS,
FAT16, FAT32 or exFAT filesystems. BitLocker to go usually includes
an executable file at the beginning of the device, before the encrypted
partitions. This fie is called BitLocker to go reader and as the name
suggests it provides read-only access for devices that do not have Bit-
Locker installed.

5.2.4 BitLocker eDrive

BitLocker eDrive[11] allows to set passwords and handle SEDs (Self
Encrypted Drive). SED is an implementation of hardware encryption
on SSDs (Solid Slate Drives). Software encryption on storage media
is the most widely used method, this is where the CPU encrypts and
decrypts the data on disk. This decryption/encryption naturally re-
quires some processing power from the CPU. The user can, however,
change how the encryption works by using different programs and
configuring these programs in whichever ways they allow.

Figure 5.2: Software encryption

24

5. Booting encrypted Windows

On the other hand, hardware encryption is done by the hardware,
the CPU just receives or sends decrypted data, taking no additional
processing power. But this form of encryption is not configurable, it
is set in the hardware by the manufacturer.

Figure 5.3: Hardware encryption

Setting up these drives usually needed to be done in the Firmware
Interface, many motherboards didn’t even provide this feature, it was
available mostly on laptop motherboards. BitLocker eDrive simplifies
this by setting the password and managing the SED while leaving the
encryption to the drive.

5.3 Third party encryption

There is also a wide variety of third-party encryption solutions. In
this work only some open-source implementations will be described
but there are more, some open-source as well and some proprietary.

5.3.1 Truecrypt

Truecrypt[5] was released in 2004, when windows XP was most widely
used, and there weren’t many encryption options. It provided the op-
tions to encrypt a file, partition or even the entire storage device. Stor-
age device encryption was possible because Truecrypt had its own
bootloader which could decrypt the device before booting the Win-
dows OS. But it was impossible to boot from a GPT[7] partitioned
drive. Truecrypt is also no longer supported since 2014, allegedly be-
cause Microsoft Windows had a built-in encryption and Truecrypt
was no longer needed. And since it is no longer supported it is no
more a viable option for full device encryption, or any encryption at

25

5. Booting encrypted Windows

all. The source code is available to the public, thanks to this there
are a few project which aim to replace Truecrypt, Veracrypt and Ci-
phershed are two such alternatives. DiskCryptor is, or was, a fork of
Truecrypt as well, but its website can no longer be accessed, assuming
that the project is dead.

5.3.2 Ciphershed

Ciphershed is one of the projects that forked from TrueCrypt, it is
still in development. It aims to remain compatible with TrueCrypt
volumes. At the time of writing there was no extra functionality when
compared with TrueCrypt.

5.3.3 VeraCrypt

VeraCrypt[4] is also a fork of TrueCrypt but it isn’t compatible with
TrueCrypt volumes anymore. It not only fixes possible vulnerabilities
but also provides new features, such as encrypting GPT devices. It
is also possible to achieve a full device encryption with VeraCrypt.
However, it doesn’t support Secure Boot, at least at the time that this
work was written.

5.4 LUKS encryption on Windows

There is no known LUKS[10] implementation on the Windows OS.
It might be possible to modify an existing open-source solution so
it will support it. Making such an implementation work with secure
boot might be impossible, at least using default PK, as even VeraCrypt
doesn’t support it yet.

One way to approach this problem could be to modify VeraCrypt
so it encrypts Windows with LUKS. VeraCrypts bootloader and driver
would need to be modified as well. The most plausible solution to add
Secure Boot to all this would be the usage of custom keys. Getting a
custom Windows bootloader signed by Microsoft is not very proba-
ble.

26

6 Conclusion

In the end an Arch Linux was successfully set up to boot from a fully
encrypted device. A step by step guide is provided to achieve an iden-
tical setup. While the demonstration in this work is too minimalist
for practical use, with a little tweaking, an OS for a day to day use
could be set up in a similar way. Secure boot[3] was not enabled in
the provided demonstration. Enabling it is definitely possible, with
CryptBoot[9] it should also be fairly simple, just not with default PKs.

Booting Linux from a fully encrypted device with Secure Boot us-
ing the default PK has proven to be impossible, at least at the time of
writing. An already signed Linux distribution would need to be used
and these don’t support full disk encryption. Modifying the parti-
tions and then GRUB accordingly would make GRUB unsigned. The
only plausible option is that bootloaders shipped with these distri-
butions start supporting full disk encryption. But a fully encrypted
device would not be achievable when dual booting Windows since
it uses different methods to encrypt partitions. Because of that there
will be at least 3 visible partitions, ESP, encrypted Linux and Win-
dows. To make a full device encryption with Windows and Linux
possible, either Windows needs to start supporting Linux encryption
methods or the other way around.

Windows and full disc encryption with secure boot is also not
possible yet. While full disk encryption is possible to achieve with
VeraCrypt[4], it doesn’t support Secure Boot. And Microsoft’s BitLocker[8]
does work with secure boot, but it doesn’t provide full disc encryp-
tion.

6.0.1 Future work

Possible works in the future could include modification of Fedora’s
Anaconda installer to include a full device encryption. If this proves
to be too difficult with secure boot, at least an implementation with
secure boot disabled should be possible.

27

6. Conclusion

When it comes to Windows, BitLocker cannot be modified as it
is proprietary. And, as was described in subsection eraCrypt doesn’t
work with secure boot yet. Modifying VeraCrypt so it can be signed
by Microsoft, or that it starts using custom keys, could possibly be
implemented.

Making full disk encryption possible in dual-boot configurations
could also be possible. There are 2 options to achieve that, encrypting
Windows using LUKS, or encrypting Linux using one of the meth-
ods available on Windows. Encrypting Windows with LUKS could
be done by modifying one of the open-source encryption solutions,
VeraCrypt or CipherShed. Dm-crypt could encrypt Linux partitions
in the same way VeraCrypt does. VeraCrypt could then be modified
so it would be capable of booting these Linux partitions or opening
them and passing control to GRUB.

28

lab:veracrypt#,.V

Bibliography

[1] dm-crypt GitLab website. [Online, accessed 20-Nov-2016, re-
trieved from https://gitlab.com/cryptsetup/cryptsetup].

[2] Master boot record on Microsoft technet website [on-
line]. [Online, accessed 20-Nov-2016, retrieved from
https://technet.microsoft.com/en-us/library/cc976786.aspx].

[3] Secure Boot, Microsoft Technet blog. [On-
line, accessed 3-Dec-2016, retrieved from
https://blogs.technet.microsoft.com/dubaisec/2016/03/14/diving-
into-secure-boot/].

[4] VeraCrypt documentation. [Online, accessed 1-Dec-2016, re-
trieved from https://veracrypt.codeplex.com/documentation].

[5] Milan Brož and Václav Matyáš. The TrueCrypt On-Disk Format
– An Independent View. IEEE Security & Privacy, 12, 2014.

[6] Wikipedia contributors. BIOS [online]. [Online, accessed 16-
February-2016, Retrieved from https://en.wikipedia.org/w/
index.php?title=BIOS&oldid=704747098].

[7] Wikipedia contributors. GUID Partition Ta-
ble. [Online, accessed 20-Feb-2016, retrieved from
https://en.wikipedia.org/w/index.php?title=GUID_Partition_Table].

[8] Niels Ferguson. AES-CBC + Elephant diffuser: A disk encryp-
tion algorithm for Windows Vista. Technical report, Microsoft
Corporation, 2006. [online], accessed December 15, 2014.

[9] Michal Křenek. Cryptboot GitHub website.
[Online, accessed 8-Dec-2016, retrieved from
https://github.com/xmikos/cryptboot].

[10] Ondrej MOSNÁČEK. Key derivation functions and their gpu
implementations [online], 2015 [cit. 2016-12-04].

29

https://en.wikipedia.org/w/index.php?title=BIOS&oldid=704747098
https://en.wikipedia.org/w/index.php?title=BIOS&oldid=704747098

BIBLIOGRAPHY

[11] Tilo Müller, Tobias Latzo, and Felix Freiling. Self-
Encrypting Disks pose Self-Decrypting Risks: How to break
Hardware-based Full Disk Encryption. Technical report,
Friedrich-Alexander-Universität Erlangen-Nürnberg, 2012.
https://www1.informatik.uni-erlangen.de/filepool/
projects/sed/seds-at-risks.pdf, [online], accessed Decem-
ber 15, 2014.

[12] GNU project. GNU GRUB. [Online, accessed 20-Nov-2016, re-
trieved from https://www.gnu.org/software/grub.

[13] Red Hat inc. shim. [Online, accessed 20-Nov-2016, retrieved
from https://github.com/mjg59/shim].

[14] Richard Wilkins and Brian Richardson. UEFI Secure Boot
in Modern Computer Security Solutions. [Online, accessed
20-Nov-2016, retrieved from http://www.uefi.org/sites/
default/files/resources/UEFI_Secure_Boot_in_Modern_
Computer_Security_Solutions_2013.pdf].

30

https://www1.informatik.uni-erlangen.de/filepool/projects/sed/seds-at-risks.pdf
https://www1.informatik.uni-erlangen.de/filepool/projects/sed/seds-at-risks.pdf
http://www.uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
http://www.uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
http://www.uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf

	Introduction
	 Thesis goals
	 Thesis structure

	Boot Process Description
	 Early Boot Process
	 Firmware interfaces
	 BIOS – Basic Input/Output System
	 UEFI – Unified Extended Firmware Interface

	 Partitioning tables
	 MBR – Master Boot Record
	 GPT – GUID Partition Table

	 Secure Boot

	Boot loaders
	 GRUB
	 Boot process on BIOS
	 Boot process on UEFI
	 GRUB and Secure Boot

	 Windows Boot Manager and Loader
	 Boot Manager
	 Boot Loader

	Setting up encrypted device
	 Partitioning discs
	 Booting without boot partition
	 Logical Volume Manager

	 Preparing Logical Volumes and Boot
	 Setting up filesystems
	 Partition encryption
	 Linux Unified Key Setup - LUKSref:luks-thesis

	 Configuring mkinitcpio and GRUB 2
	 Setting up GRUB
	 Configuring mkinitcpio
	 Storage Stack

	 Enabling Secure Boot
	 Using default PK
	 Using custom keys
	 Cryptboot

	Booting encrypted Windows
	 Windows partitions on GPT
	 Microsoft System Reserved - MSR
	 Windows Recovery Environment

	 Microsoft encryption solutions
	 Windows 10 device encryption
	 BitLocker
	 BitLocker to go
	 BitLocker eDrive

	 Third party encryption
	 Truecrypt
	 Ciphershed
	 VeraCrypt

	 LUKS encryption on Windows

	Conclusion
	 Future work

