
http://www.cambridge.org/9780521852319

Complexity and Cryptography

An Introduction

Cryptography plays a crucial role in many aspects of today’s world, from internet bank-

ing and ecommerce to email and web-based business processes. Understanding the

principles on which it is based is an important topic that requires a knowledge of both

computational complexity and a range of topics in pure mathematics. This book provides

that knowledge, combining an informal style with rigorous proofs of the key results to

give an accessible introduction. It comes with plenty of examples and exercises (many

with hints and solutions), and is based on a highly successful course developed and

taught over many years to undergraduate and graduate students in mathematics and

computer science.

The opening chapters are a basic introduction to the theory of algorithms: fundamental

topics such as NP-completeness, Cook’s theorem, the P vs. NP question, probabilistic

computation and primality testing give a taste of the beauty and diversity of the subject.

After briefly considering symmetric cryptography and perfect secrecy, the authors intro-

duce public key cryptosystems. The mathematics required to explain how these work

and why or why not they might be secure is presented as and when required, though

appendices contain supplementary material to fill any gaps in the reader’s background.

Standard topics, such as the RSA and ElGamal cryptosystems, are treated. More recent

ideas, such as probabilistic cryptosystems (and the pseudorandom generators on which

they are based), digital signatures, key establishment and identification schemes are also

covered.

john talbot has been a lecturer in mathematics, University College London since

2003. Before that he was GCHQ Research Fellow in Oxford.

dominic welsh is a fellow of Merton College, Oxford where he was Professor of

Mathematics. He has held numerous visiting positions including the John von Neumann

Professor, University of Bonn. This is his fifth book.

Complexity and Cryptography

An Introduction

JOHN TALBOT

DOMINIC WELSH

  

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge  , UK

First published in print format

- ----

- ----

- ----

© Cambridge University Press 2006

2006

Information on this title: www.cambridge.org/9780521852319

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

- ---

- ---

- ---

Cambridge University Press has no responsibility for the persistence or accuracy of s
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

paperback

paperback

eBook (NetLibrary)

eBook (NetLibrary)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521852319

Contents

Preface page ix

Notation xi

1 Basics of cryptography 1

1.1 Cryptographic models 2

1.2 A basic scenario: cryptosystems 3

1.3 Classical cryptography 7

1.4 Modern cryptography 8

2 Complexity theory 10

2.1 What is complexity theory? 10

2.2 Deterministic Turing machines 16

2.3 Decision problems and languages 22

2.4 Complexity of functions 30

2.5 Space complexity 33

3 Non-deterministic computation 39

3.1 Non-deterministic polynomial time – NP 39

3.2 Polynomial time reductions 43

3.3 NP-completeness 45

3.4 Turing reductions and NP-hardness 54

3.5 Complements of languages in NP 56

3.6 Containments between complexity classes 60

3.7 NP revisited – non-deterministic Turing machines 62

4 Probabilistic computation 67

4.1 Can tossing coins help? 67

4.2 Probabilistic Turing machines and RP 71

v

vi Contents

4.3 Primality testing 74

4.4 Zero-error probabilistic polynomial time 80

4.5 Bounded-error probabilistic polynomial time 81

4.6 Non-uniform polynomial time 83

4.7 Circuits 86

4.8 Probabilistic circuits 92

4.9 The circuit complexity of most functions 93

4.10 Hardness results 94

5 Symmetric cryptosystems 99

5.1 Introduction 99

5.2 The one time pad: Vernam’s cryptosystem 101

5.3 Perfect secrecy 102

5.4 Linear shift-register sequences 106

5.5 Linear complexity 111

5.6 Non-linear combination generators 113

5.7 Block ciphers and DES 115

5.8 Rijndael and the AES 118

5.9 The Pohlig–Hellman cryptosystem 119

6 One way functions 125

6.1 In search of a definition 125

6.2 Strong one-way functions 129

6.3 One way functions and complexity theory 132

6.4 Weak one-way functions 135

7 Public key cryptography 141

7.1 Non-secret encryption 141

7.2 The Cocks–Ellis non-secret cryptosystem 142

7.3 The RSA cryptosystem 145

7.4 The Elgamal public key cryptosystem 147

7.5 Public key cryptosystems as trapdoor functions 150

7.6 Insecurities in RSA 153

7.7 Finding the RSA private key and factoring 155

7.8 Rabin’s public key cryptosystem 158

7.9 Public key systems based on NP-hard problems 161

7.10 Problems with trapdoor systems 164

8 Digital signatures 170

8.1 Introduction 170

8.2 Public key-based signature schemes 171

Contents vii

8.3 Attacks and security of signature

schemes 172

8.4 Signatures with privacy 176

8.5 The importance of hashing 178

8.6 The birthday attack 180

9 Key establishment protocols 187

9.1 The basic problems 187

9.2 Key distribution with secure channels 188

9.3 Diffie–Hellman key establishment 190

9.4 Authenticated key distribution 193

9.5 Secret sharing 196

9.6 Shamir’s secret sharing scheme 197

10 Secure encryption 203

10.1 Introduction 203

10.2 Pseudorandom generators 204

10.3 Hard and easy bits of one-way functions 207

10.4 Pseudorandom generators from hard-core

predicates 211

10.5 Probabilistic encryption 216

10.6 Efficient probabilistic encryption 221

11 Identification schemes 229

11.1 Introduction 229

11.2 Interactive proofs 231

11.3 Zero knowledge 235

11.4 Perfect zero-knowledge proofs 236

11.5 Computational zero knowledge 240

11.6 The Fiat–Shamir identification scheme 246

Appendix 1 Basic mathematical background 250

A1.1 Order notation 250

A1.2 Inequalities 250

Appendix 2 Graph theory definitions 252

Appendix 3 Algebra and number theory 253

A3.1 Polynomials 253

A3.2 Groups 253

A3.3 Number theory 254

viii Contents

Appendix 4 Probability theory 257

Appendix 5 Hints to selected exercises and problems 261

Appendix 6 Answers to selected exercises and problems 268

Bibliography 278

Index 287

Preface

This book originated in a well-established yet constantly evolving course on

Complexity and Cryptography which we have both given to final year Mathe-

matics undergraduates at Oxford for many years. It has also formed part of an

M.Sc. course on Mathematics and the Foundations of Computer Science, and

has been the basis for a more recent course on Randomness and Complexity

for the same groups of students.

One of the main motivations for setting up the course was to give mathe-

maticians, who traditionally meet little in the way of algorithms, a taste for the

beauty and importance of the subject. Early on in the book the reader will have

gained sufficient background to understand what is now regarded as one of the

top ten major open questions of this century, namely the P = NP question. At

the same time the student is exposed to the mathematics underlying the security

of cryptosystems which are now an integral part of the modern ‘email age’.

Although this book provides an introduction to many of the key topics in

complexity theory and cryptography, we have not attempted to write a compre-

hensive text. Obvious omissions include cryptanalysis, elliptic curve cryptog-

raphy, quantum cryptography and quantum computing. These omissions have

allowed us to keep the mathematical prerequisites to a minimum.

Throughout the text the emphasis is on explaining the main ideas and proving

the mathematical results rigorously. Thus we have not given every result in

complete generality.

The exercises at the end of many sections of the book are in general meant to

be routine and are to be used as a check on the understanding of the preceding

principle; the problems at the end of each chapter are often harder.

We have given hints and answers to many of the problems and exercises,

marking the question numbers as appropriate. For example 1a, 2h, 3b would

indicate that an answer is provided for question 1, a hint for question 2 and both

for question 3.

ix

x Preface

We have done our best to indicate original sources and apologise in advance

for any omissions and/or misattributions. For reasons of accessibility and com-

pleteness we have also given full journal references where the original idea

was circulated as an extended abstract at one of the major computer science

meetings two or more years previously.

We acknowledge with gratitude the Institut des Hautes Études Scientifiques

and the Department of Mathematics at Victoria University, Wellington where

one of us spent productive periods working on part of this book.

It is a pleasure to thank Magnus Bordewich and Dillon Mayhew who have

been valued teaching assistants with this course over recent years.

We are also grateful to Clifford Cocks, Roger Heath-Brown, Mark Jerrum

and Colin McDiarmid who have generously given most helpful advice with this

text whenever we have called upon them.

Notation

N = {1, 2, . . . } the set of natural numbers.

Z = {0, ±1, ±2, . . . } the set of integers.

Z+ = {0, 1, 2, . . . } the set of non-negative integers.

Q the set of rational numbers.

R the set of real numbers.

R+ the set of non-negative real numbers.

Z[x1, . . . , xn] the set of polynomials in n variables over Z.

⌈x⌉ the smallest integer greater than or equal to x .

⌊x⌋ the greatest integer less than or equal to x .

log n the base two logarithm of n.

ln x the natural logarithm of x .

{0, 1}k the set of zero–one strings of length k.

{0, 1}∗ the set of all zero–one strings of finite length.
(

n

k

)

= n!/(n − k)!k! the binomial coefficient ‘n choose k’.

g = O(f) g is of order f .

g = �(f) f is of order g.

�(f) f is of order g and g is of order f .

Pr[E] the probability of the event E .

E[X] the expectation of the random variable X .

� an alphabet containing the blank symbol ∗.

�0 an alphabet not containing the blank symbol ∗.

�∗ the set of finite strings from the alphabet �.

�n the set of strings of length n from �.

|x | the length of a string x ∈ �∗
0 .

|A| the size of a set A.

gcd(a, b) the greatest common divisor of a and b.

Zn = {0, 1, . . . , n − 1} the residues mod n.

Z+
n = {1, . . . , n − 1} the non-zero residues mod n.

xi

xii Notation

Z∗
n = {a ∈ Zn | gcd(a, n) = 1} the units mod n.

∨ Boolean disjunction (OR).

∧ Boolean conjunction (AND).

¬ Boolean negation (NOT).

a ← b a is set equal to b.

x ∈R A x is chosen uniformly at random from

the set A.

a1, . . . , ak ∈R A a1, . . . , ak are chosen independently

and uniformly at random from A.

A ≤m B A is polynomially reducible to B.

f ≤T g f is Turing reducible to g.

1

Basics of cryptography

The Oxford English Dictionary gives the following definition of cryptography.

‘A secret manner of writing, either by arbitrary characters, by using letters

or characters in other than their ordinary sense, or by other methods intelligible

only to those possessing the key; also anything written in this way. Generally,

the art of writing or solving ciphers.’

Cryptography is an ancient art, and until relatively recently the above defi-

nition would have been quite adequate. However, in the last thirty years it has

expanded to encompass much more than secret messages or ciphers.

For example cryptographic protocols for securely proving your identity on-

line (perhaps to your bank’s website) or signing binding digital contracts are

now at least as important as ciphers.

As the scope of cryptography has broadened in recent years attempts have

been made to lay more rigorous mathematical foundations for the subject. While

cryptography has historically been seen as an art rather than a science this has

always really depended on which side of the ‘cryptographic fence’ you belong.

We distinguish between cryptographers, whose job it is to design cryptographic

systems, and cryptanalysts, whose job it is to try to break them. Cryptanalysts

have been using mathematics to break ciphers for more than a thousand years.

Indeed Mary Queen of Scots fell victim to a mathematical cryptanalyst using

statistical frequency analysis in 1586!

The development of computers from Babbage’s early designs for his

‘Difference Engines’ to Turing’s involvement in breaking the Enigma code owes

much to cryptanalysts desire to automate their mathematically based methods

for breaking ciphers. This continues with the National Security Agency (NSA)

being one of the largest single users of computing power in the world.

One could argue that cryptographers have been less scientific when design-

ing cryptosystems. They have often relied on intuition to guide their choice

of cipher. A common mistake that is repeated throughout the history of

1

2 1 Basics of cryptography

cryptography is that a ‘complicated’ cryptosystem must be secure. As we will

see those cryptosystems which are currently believed to be most secure are

really quite simple to describe.

The massive increase in the public use of cryptography, driven partly by

the advent of the Internet, has led to a large amount of work attempting to put

cryptography on a firm scientific footing. In many ways this has been extremely

successful: for example it is now possible to agree (up to a point) on what it

means to say that a cryptographic protocol is secure. However, we must caution

against complacency: the inability to prove that certain computational problems

are indeed ‘difficult’ means that almost every aspect of modern cryptography

relies on extremely plausible, but nevertheless unproven, security assumptions.

In this respect modern cryptography shares some unfortunate similarities with

the cryptography of earlier times!

1.1 Cryptographic models

When discussing cryptographic protocols we necessarily consider abstract, ide-

alised situations which hopefully capture the essential characteristics of the real-

world situations we are attempting to model. In order to describe the various

scenarios arising in modern cryptography it is useful to introduce a collection

of now infamous characters with specific roles.

The players

Alice and Bob are the principal characters. Usually Alice wants to send a secret

message to Bob. Bob may also want her to digitally sign the message so that

she cannot deny sending it at a later date and he can be sure that the message

is authentic. Generally Alice and Bob are the good guys, but even this cannot

always be taken for granted. Sometimes they do not simply send messages. For

example they might try to toss a coin down the telephone line!

Eve is the arch-villain of the piece, a passive eavesdropper who can listen in to

all communications between Alice and Bob. She will happily read any message

that is not securely encrypted. Although she is unable to modify messages in

transit she may be able to convince Alice and Bob to exchange messages of her

own choosing.

Fred is a forger who will attempt to forge Alice’s signature on messages to

Bob.

Mallory is an active malicious attacker. He can (and will) do anything that

Eve is capable of. Even more worryingly for Alice and Bob he can also modify

1.2 A basic scenario: cryptosystems 3

Alice BobC

C = e(M) M = d(C)

Fig. 1.1 Alice and Bob using a cryptosystem.

or even replace messages in transit. He is also sometimes known as the ‘man

in the middle’.

Peggy and Victor are the key players in identification schemes. In general

Peggy (the prover) must convince Victor (the verifier) of her identity. While

Victor must be careful that Peggy really is who she claims to be, Peggy must

also make sure that she does not provide Victor with information that will allow

him to impersonate her at a later stage.

Trent is a trusted central authority who plays different roles in different situa-

tions. One important responsibility he has is to act as a digital ‘passport agency’,

issuing certificates to Alice and Bob which allow them to identify themselves

convincingly to each other, hopefully enabling them to thwart Mallory.

Conveniently all of our characters have names starting with distinct letters

of the alphabet so we will sometimes refer to them by these abbreviations.

1.2 A basic scenario: cryptosystems

The first situation we consider is the most obvious: Alice and Bob wish to

communicate secretly. We assume that it is Alice who sends a message to Bob.

The fundamental cryptographic protocol they use is a cryptosystem or cipher.

Formally Alice has a message or plaintext M which she encrypts using an

encryption function e(·). This produces a cryptogram or ciphertext

C = e(M).

She sends this to Bob who decrypts it using a a decryption function d(·) to

recover the message

d(C) = d(e(M)) = M.

The above description explains how Alice and Bob wish to communicate but

does not consider the possible attackers or adversaries they may face. We first

need to consider what an adversary (say Eve the eavesdropper) is hoping to

achieve.

Eve’s primary goal is to read as many of Alice’s messages as possible.

4 1 Basics of cryptography

Alice BobC

C = e(M,K) M = d(C,K)

Fig. 1.2 Alice and Bob using a symmetric cryptosystem.

Alice BobC

C = e(M) M = d(C,K)

Fig. 1.3 Alice and Bob using a public key cryptosystem.

We assume that Eve knows the form of the cryptosystem Alice and Bob are

using, that is she knows the functions d(·) and e(·). Since she is eavesdropping

we can also assume that she observes the ciphertext C.

At this point Alice and Bob should be worried. We seem to be assuming that

Eve knows everything that Bob knows. In which case she can simply decrypt

the ciphertext and recover the message!

This reasoning implies that for a cryptosystem to be secure against Eve there

must be a secret which is known to Bob but not to Eve. Such a secret is called

a key.

But what about Alice, does she need to know Bob’s secret key? Until the

late twentieth century most cryptographers would have assumed that Alice must

also know Bob’s secret key. Cryptosystems for which this is true are said to be

symmetric.

The realisation that cryptosystems need not be symmetric was the single most

important breakthrough in modern cryptography. Cryptosystems in which Alice

does not know Bob’s secret key are known as public key cryptosystems.

Given our assumption that Eve knows the encryption and decryption func-

tions but does not know Bob’s secret key what type of attack might she mount?

The first possibility is that the only other information Eve has is the ciphertext

itself. An attack based on this information is called a ciphertext only attack (since

Eve knows C but not M). (See Figure 1.4.)

To assume that this is all that Eve knows would be extremely foolish. History

tells us that many cryptosystems have been broken by cryptanalysts who either

had access to the plaintext of several messages or were able to make inspired

guesses as to what the plaintext might be.

1.2 A basic scenario: cryptosystems 5

Alice Bob

Eve
C

C

C = e(M) M = d(C,K)

Fig. 1.4 Eve performs a ciphertext only attack.

Alice Bob

Eve

C

C,M

C = e(M) M = d(C,K)

Fig. 1.5 Eve performs a known plaintext attack.

A more realistic attack is a known plaintext attack. In this case Eve also

knows the message M that is encrypted. (See Figure 1.5.)

An even more dangerous attack is when Eve manages to choose the mes-

sage that Alice encrypts. This is known as a chosen plaintext attack and is the

strongest attack that Eve can perform. (See Figure 1.6.)

On the face of it we now seem to be overestimating Eve’s capabilities to

influence Alice and Bob’s communications. However, in practice it is reasonable

to suppose that Eve can conduct a chosen plaintext attack. For instance she may

be a ‘friend’ of Alice and so be able to influence the messages Alice chooses

to send. Another important possibility is that Alice and Bob use a public key

6 1 Basics of cryptography

Alice Bob

Eve

C

M
C,M

C = e(M) M = d(C,K)

Fig. 1.6 Eve performs a chosen plaintext attack.

MalloryAlice BobC

C = e(M)

??

??

Fig. 1.7 Alice and Bob using a cryptosystem attacked by Mallory.

cryptosystem and so Eve can encrypt any message she likes since encryption

does not depend on a secret key.

Certainly any cryptosystem that cannot withstand a chosen plaintext attack

would not be considered secure.

From now on we will assume that any adversary has access to as many

chosen pairs of messages and corresponding cryptograms as they can possibly

make use of.

There is a different and possibly even worse scenario than Eve conducting a

chosen plaintext attack. Namely Mallory, the malicious attacker, might interfere

with the cryptosystem, modifying and even replacing messages in transit. (See

Figure 1.7.)

The problems posed by Mallory are rather different. For example, he may

pretend to be Bob to Alice and Alice to Bob and then convince them to divulge

secrets to him! We will see more of him in Chapter 9.

We now need to decide two things.

(1) What can Eve do with the message-cryptogram pairs she obtains in a

chosen message attack?

(2) What outcome should Alice and Bob be happy with?

1.3 Classical cryptography 7

There are two very different approaches to cryptographic security, depending

essentially on how we answer these questions.

Historically the first rigorous approach to security was due to Shannon

(1949a). In his model Eve is allowed unlimited computational power and Alice

and Bob then try to limit the ‘information’ Eve can obtain about future mes-

sages (and Bob’s secret key) given her message-cryptogram pairs. He was able

to show that there are cryptosystems that are perfectly secure in this model.

However, he also showed that any such cryptosystem will have some rather

unfortunate drawbacks, principally the key must be as long as the message that

is sent.

Modern cryptography is based on a complexity theoretic approach. It starts

with the assumption that Eve has limited computational resources and attempts

to build a theory of security that ensures Eve is extremely unlikely to be able

to read or obtain any useful information about future messages.

We briefly outline the two approaches below.

1.3 Classical cryptography

Consider the following situation. Alice wishes to send Bob n messages. Each

message is either a zero or a one. Sometime earlier Alice and Bob met and

flipped an unbiased coin n times. They both recorded the sequence of random

coin tosses as a string K ∈ {H, T}n and kept this secret from Eve.

Alice encrypts her messages M1, M2, . . . , Mn as follows.

Ci = e(Mi) =

{

Mi , if Ki = H,

Mi ⊕ 1, if Ki = T.

(Here ⊕ denotes ‘exclusive or’ (XOR), so 0 ⊕ 0 = 1 ⊕ 1 = 0 and 1 ⊕ 0 =
0 ⊕ 1 = 1.)

Alice then sends the cryptograms C1, . . . , Cn to Bob, one at a time.

Bob can decrypt easily, since he also knows the sequence of coin tosses, as

follows

Mi = d(Ci) =
{

Ci , if Ki = H,

Ci ⊕ 1, if Ki = T.

So encryption and decryption are straightforward for Alice and Bob. But what

about Eve? Suppose she knows both the first n − 1 cryptograms and also the

corresponding messages. Then she has n − 1 message-cryptogram pairs

(C1, M1), (C2, M2), . . . , (Cn−1, Mn−1).

8 1 Basics of cryptography

If Eve is then shown the final cryptogram Cn what can she deduce about

Mn?

Well since Kn was a random coin toss there is a 50% chance that Cn = Mn

and a 50% chance that Cn = Mn ⊕ 1. Since Kn was independent of the other

key bits then knowledge of these will not help. So what can Eve do?

Suppose for the moment that the messages that Alice sent were also the result

of another series of independent coin tosses, that is they were also a random

sequence of zeros and ones. In this case Eve could try to guess the message Mn

by tossing a coin herself: at least she would have a 50% chance of guessing

correctly. In fact this is the best she can hope for!

But what if the messages were not random? Messages usually contain useful

(non-random) information. In this case Eve may know something about how

likely different messages are. For instance she may know that Alice is far more

likely to send a one rather than a zero. If Eve knows this then she could guess

that Mn = 1 and would be correct most of the time. However, she could have

guessed this before she saw the final cryptogram Cn . Eve has gained no new

information about the message by seeing the cryptogram. This is the basic idea

of perfect secrecy in Shannon’s model of cryptography.

� The cryptogram should reveal no new information about the message.

This theory will be developed in more detail in Chapter 5.

1.4 Modern cryptography

Modern cryptography starts from a rather different position. It is founded on

complexity theory: that is the theory of how easy or difficult problems are to

solve computationally.

Modern cryptographic security can informally be summarised by the fol-

lowing statement.

� It should not matter whether a cryptogram reveals information about the

message. What matters is whether this information can be efficiently

extracted by an adversary.

Obviously this point of view would be futile if we were faced with an adversary

with unbounded computational resources. So we make the following assump-

tion.

� Eve’s computational resources are limited.

1.4 Modern cryptography 9

If we limit Eve’s computational resources then we must also limit those

of Alice and Bob. Yet we still require them to be able to encrypt and decrypt

messages easily. This leads to a second assumption.

� There exist functions which are ‘easy’ to compute and yet ‘hard’ to invert.

These are called one-way functions.

Given this assumption it is possible to construct cryptosystems in which there

is a ‘complexity theoretic gap’ between the ‘easy’ procedures of decryption

and encryption for Alice and Bob; and the ‘hard’ task of extracting information

from a cryptogram faced by Eve.

To discuss this theory in detail we need to first cover the basics of complexity

theory.

2

Complexity theory

2.1 What is complexity theory?

Computers have revolutionised many areas of life. For example, the human

genome project, computational chemistry, air-traffic control and the Internet

have all benefited from the ability of modern computers to solve computa-

tional problems which are far beyond the reach of humans. With the continual

improvements in computing power it would be easy to believe that any computa-

tional problem we might wish to solve will soon be within reach. Unfortunately

this does not appear to be true. Although almost every ‘real’ computational

problem can, in theory, be solved by computer, in many cases the only known

algorithms are completely impractical. Consider the following computational

problem.

Example 2.1 The Travelling Salesman Problem.

Problem: given a list of n cities, c1, c2, . . . , cn and an n × n symmetric matrix

D of distances, such that

Di j = distance from city ci to city c j ,

determine an optimal shortest tour visiting each of the cities exactly once.

An obvious naive algorithm is: ‘try all possible tours in turn and choose the

shortest one’. Such an algorithm will in theory work, in the sense that it will

eventually find the correct answer. Unfortunately it will take a very long time to

finish! If we use this method then we would need to check n! tours, since there

are n! ways to order the n cities. More efficient algorithms for this problem exist,

but a common trait they all share is that if we have n cities then, in the worst

case, they may need to perform at least 2n operations. To put this in perspective

suppose we had n = 300, a not unreasonably large number of cities to visit.

10

2.1 What is complexity theory? 11

If we could build a computer making use of every atom in the Earth in such a

way that each atom could perform 1010 operations per second and our computer

had started its computation at the birth of the planet then it would still not have

finished! In fact, not only would the computation not yet be complete, as the

figures below show, it would have barely started. It seems safe to describe such

a computation as impractical.

seconds in the lifetime of the Earth ≤ 4.1 × 1017

atoms in the Earth ≤ 3.6 × 1051

operations performed by our computer ≤ 1.5 × 1079

2300 ≃ 2 × 1090.

Such an example highlights the difference between a problem being computable

in theory and in practice. Complexity theory attempts to classify problems that

can theoretically be solved by computer in terms of the practical difficulties

involved in their solution.

All computers use resources, the most obvious being time and space. The

amount of resources required by an algorithm gives a natural way to assess its

practicality. In simple terms if a problem can be solved in a ‘reasonable’ amount

of time by a computer that is not ‘too large’ then it seems natural to describe

the problem as tractable.

In complexity theory we seek to classify computational problems according

to their intrinsic difficulty. There are two fundamental questions which we will

consider.

� Is a problem � intrinsically ‘easy’ or ‘difficult’ to solve?
� Given two problems, �1 and �2, which is easier to solve?

In order to show that a problem is ‘easy’ to solve it is sufficient to give an exam-

ple of a practical algorithm for its solution. However, to show that a problem

is intrinsically ‘difficult’ we need to show that no such practical algorithm can

exist. In practice this has proved very difficult. Indeed, there are very few exam-

ples of natural computational problems that have been proven to be intrinsically

difficult, although it is suspected that this is true of a large number of important

problems.

The second question is an obvious way to proceed given the inherent diffi-

culty of the first, and progress in this direction has been far greater. Suppose

we are given a computational problem and asked to find a practical algorithm

for its solution. If we can show that our new problem is ‘at least as difficult’

as a well-known intractable problem then we have a rather good excuse for

our inability to devise a practical algorithm for its solution. A central result in

12 2 Complexity theory

complexity theory (Cook’s Theorem) which we will see in Chapter 3 shows

that there is a rather large class of natural problems that are all ‘as difficult as

each other’.

In order to make sense of the above questions we will require a formal model

of computation capturing the essential properties of any computer. The model

we adopt is the deterministic Turing machine, however, we will first consider

some examples.

Consider the simplest arithmetic operation: integer addition. Given two inte-

gers a ≥ b ≥ 0 we wish to calculate a + b. In order to describe an algorithm

for this problem we need to decide how we wish to encode the input. We will

consider two possibilities: unary and binary.

If the input is in unary then a and b are simply strings of ones of lengths a

and b respectively. We define two basic operations: ++ and −−. If a is a string

of ones then a++ is formed from a by appending a ‘1’ to a, while a−− is

formed from a by deleting a ‘1’ from the end of a.

In the following algorithm and elsewhere we use the notation ‘a ← b’ to

mean ‘let a be set equal to the value of b’.

Algorithm 2.2 Unary integer addition.

Input: integers a ≥ b ≥ 0 encoded in unary.

Output: a + b in unary.

Algorithm:

while b �= 0

a ← a++
b ← b−−

end-while

output a

It is easy to see that this algorithm works, but is it efficient? The while

loop is repeated b times and on each repetition three operations are per-

formed: checking b �= 0, increasing a and decreasing b. So the running

time of this algorithm, measured by the number of operations performed, is

3b + 1 (the output is another operation). This demonstrates two important

ideas.

� The running time of an algorithm is measured in terms of the number of

‘basic operations’ performed.
� The running time of an algorithm will usually depend on the size of the

input.

2.1 What is complexity theory? 13

One obvious objection to the previous example is that unary encoding is a

very inefficient way to describe an integer. A far more natural encoding is binary.

To encode an integer a ≥ 0 in binary we represent it by a string of zeros and ones,

say anan−1 · · · a1, such that a =
∑n

k=1 ak2k−1. We usually insist that the shortest

possible string is used and so an = 1 (unless a = 0). For example, the number

49 is encoded as 110001 rather than 000110001 or 00000000000110001. A bit

is simply a binary digit, so for example 49 is a 6-bit integer, since the binary

encoding of 49 contains 6 binary digits.

In order to describe a binary addition algorithm we introduce a function

sum(a, b, c) that takes three binary digits as its input and outputs their sum.

That is

sum : {0, 1} × {0, 1} × {0, 1} → {0, 1, 2, 3}, sum(a, b, c) = a + b + c.

Algorithm 2.3 Binary integer addition.

Input: integers a ≥ b ≥ 0 encoded in binary as an · · · a1 and bn · · · b1.

Output: a + b in binary.

Algorithm:

c ← 0

for i = 1 to n

if sum(ai , bi , c) equals 1 or 3

then di ← 1

else di ← 0

if sum(ai , bi , c) ≥ 2

then c ← 1

else c ← 0

next i

if c = 1

then output 1dndn−1 · · · d1

else output dndn−1 · · · d1.

Again it is easy to check that this algorithm works, but how does it compare

to our previous algorithm in terms of efficiency? As before we will consider

each line of the algorithm as a ‘basic operation’ and calculate the algorithm’s

running time as the number of basic operations performed. If a ≥ b ≥ 0 and

a, b both have n binary digits then n ≤ ⌊log a⌋ + 1, where log a is the base two

logarithm of a and ⌊m⌋ is the integer part of the real number m. Our algorithm

performs n iterations of the while loop and on each iteration it performs six

operations. So the running time of this algorithm, measured as the number of

14 2 Complexity theory

operations, is at most 6⌊log a⌋ + 9. This compares very favourably with our

previous algorithm. For example, if the two numbers whose sum we wished

to calculate were a = 31 323 and b = 27 149 then our first algorithm would

perform more than fifty thousand operations, while our second algorithm would

perform less than a hundred. This highlights another key idea.

� The intrinsic difficulty of a problem may depend on the encoding of the

input.

In practice there is nearly always a ‘natural’ way to encode the input to a

problem. The guiding principle being that the encoding should describe the

input as succinctly as possible. Given that the running time of an algorithm will

depend on the input size we clearly need to have a fixed notion of ‘input size’.

This will always be the length of the natural encoding of the input.

Since the running time of most algorithms depends on the size of the input

it is natural to consider the performance of an algorithm in terms of its running

time over all inputs of a fixed size. There are two obvious ways one might do

this. We could consider either the average-case running time or the worst-case

running time. The vast majority of work in complexity theory deals with worst-

case analysis and we will always take this approach. (See Levin (1986) for a

succinct introduction to average-case complexity theory.)

� When evaluating the performance of an algorithm we always consider the

worst possible case.

Consider the following basic algorithm for testing whether an integer is

prime.

Algorithm 2.4 Naive Primality Testing.

Input: an integer N ≥ 2.

Output: true if N is prime and false otherwise.

Algorithm:

D ← 2

P ← true

while P is true and D ≤
√

N

if D divides N exactly

then P ← false

else D ← D + 1

end-while

output P

2.1 What is complexity theory? 15

How well does this algorithm perform? This depends very much on the input

N . If N is chosen ‘at random’ then we have a fifty-fifty chance that N will be

even. In this case our algorithm would terminate after a single while loop (since

D = 2 would divide N). However, if the input N is a large prime then it is

easy to see that the while loop will be repeated ⌊
√

N⌋ − 1 times. So by our

principle of evaluating an algorithm’s efficiency according to its performance

in the worst possible case, this algorithm has running time O(
√

N). (For an

explanation of the O-notation see Appendix 1.)

The obvious question to ask is whether this is efficient? Remember that the

natural encoding of an integer is as a binary string, so the size of the input

is in fact n = ⌊log N⌋ + 1. Thus the running time of our algorithm, in terms

of the input size, is O(2n/2). As the size of our input increases the running

time of this algorithm grows exponentially. Such an algorithm is clearly highly

impractical: for a 1024-bit integer the running time is essentially 2512. This is

not only beyond the limits of modern computers but arguably beyond the reach

of any that we could envisage. Yet to use some modern cryptosystems we must

be able to test the primality of such numbers.

We need an algorithm whose running time does not grow exponentially

as the input size increases. An obvious growth rate that is much slower than

exponential is polynomial. Moreover most of the algorithms that have proved

useful in real situations share the property that their running time is polyno-

mial. This observation provides us with our fundamental notion of a practical

algorithm.

� An algorithm is practical if and only if it has polynomial running time.

Hence, if a problem has an algorithm whose running time grows polynomially

with the input size then we consider the problem to be tractable. Justification

for this is provided in the table below. This demonstrates how, as the input

size grows, any exponential time algorithm quickly becomes impractical, while

polynomial time algorithms scale reasonably well. A word of caution: an algo-

rithm with running time O(n1000) is clearly impractical. However, polynomial

time algorithms for ‘natural’ problems almost always have low degree polyno-

mial running time in practice.

n n2 2n

10 100 1024

100 10 000 1.26 × 1030

1000 106 1.07 × 10301

16 2 Complexity theory

Control
unit

2–way infinite tape

Read–write head

0 1 0 0 0** * * * * * *0 1 1 0 1

Fig. 2.1 A deterministic Turing machine.

To proceed any further we require a formal model of computation. In the next

section we describe the classical example of such a model: the deterministic

Turing machine.

Exercise 2.1a Give a polynomial time algorithm for each of the following

problems. In each case describe its running time in terms of the number

of ‘basic operations’ performed.

(i) Multiplication of two integers encoded in binary.

(ii) Computing the matrix product of two n × n integer matrices.

(iii) Calculating the determinant of an n × n integer matrix.

(iv) Sorting n integers a1, . . . , an .

2.2 Deterministic Turing machines

A deterministic Turing machine or DTM consists of:

(i) a finite alphabet � containing the blank symbol ∗;

(ii) a 2-way infinite tape divided into squares, one of which is the special

starting square. Each square contains a symbol from the alphabet �. All

but a finite number of the squares contain the special blank symbol ∗,

denoting an empty square;

(iii) a read–write head that examines a single square at a time and can move

left (←) or right (→);

(iv) a control unit along with a finite set of states Ŵ including a distinguished

starting state, γ0, and a set of halting states. (See Figure 2.1.)

The computation of a DTM is controlled by a transition function

δ : Ŵ × � → Ŵ × � × {←, →}.

2.2 Deterministic Turing machines 17

Initially the control unit is in the starting state γ0 and the read–write head

is scanning the starting square. The transition function tells the machine what

to do next given the contents of the current square and the current state of the

control unit. For example, if the control unit is in state γcur, and the current

square contains the symbol σcur, then the value of δ(γcur, σcur) tells the machine

three things:

(i) the new state for the control unit (if this is a halting state then the

computation ends);

(ii) the symbol to write in the current square;

(iii) whether to move the read–write head to the left or right by one square.

We use �0 to denote �\{∗}, the alphabet of non-blank symbols. We will denote

the collection of all finite strings from �0 by �∗
0 . For x ∈ �∗

0 we denote

the length of x by |x |. The set of strings of length n from �∗
0 is denoted

by �n
0 .

The computation of a DTM on input x ∈ �∗
0 is simply the result of applying

the transition function repeatedly starting with x written in the first |x | tape

squares (these are the starting square and those to the right of it). If the machine

never enters a halting state then the computation does not finish, otherwise

the computation ends when a halting state is reached. A single application of

the transition function is called a step.

A configuration of a DTM is a complete description of the machine at a

particular point in a computation: the contents of the tape, the position of the

read–write head and the current state of the control unit.

If a DTM machine halts on input x ∈ �∗
0 then the content of the tape once

the machine halts is called the output.

We say that a DTM computes a function f : �∗
0 → �∗

0 if the machine halts

on every input x ∈ �∗
0 , and the output in each case is f (x).

To give an idea of what a DTM looks like we give a simple example: a

machine to perform addition of integers encoded in unary (see Algorithm 2.5).

In order to define a DTM we need to describe the set of states Ŵ, the alphabet

� and the transition function δ. We represent the transition function by a list

of quintuples. The first two entries of each quintuple represent the current state

and the content of the current square, while the last three entries represent the

new state, the new symbol to write in the current square and the movement (left

or right) of the read–write head. To save us the trouble of having to describe the

value of the transition function for all state/symbol combinations we assume

that if the machine encounters a state/symbol combination that is not listed then

18 2 Complexity theory

the machine simply halts. (In an attempt to make the machine description more

readable we place comments marked by # next to each instruction.)

It is easy to check that this machine will compute a + b in unary, given the

correct input, but how long will the computation take? The obvious way to

measure time on a DTM is as the number of steps the machine takes before

halting. If the input is a and b then it is easy to check that the machine will take

a + b + 2 steps.

Previously we saw algorithms for unary and binary addition and in those

cases the binary addition algorithm was far more efficient. So a natural question

to ask is how does this unary addition DTM compare with a DTM that performs

addition of integers with the input encoded in binary?

Algorithm 2.5 Unary Addition DTM

The set of states is Ŵ = {γ0, γ1, γ2, γ3}. The starting state is γ0 and the only

halting state is γ3. The alphabet is � = {∗, 1, +, =}.
Input: integers a, b ≥ 0 in unary with +, =. (For example to compute 5 + 2

we would write ‘11111 + 11 =’ on the machine’s tape, with the leftmost

symbol of the input in the starting square.)

Output: a + b in unary.

(γ0, 1, γ1, ∗, →) # a �= 0, reading a

(γ0, +, γ2, ∗, →) # a = 0, erase + read b

(γ1, 1, γ1, 1, →) # reading a

(γ1, +, γ2, 1, →) # replace + by 1 read b

(γ2, 1, γ2, 1, →) # reading b

(γ2, =, γ3, ∗, ←) # finished reading b, erase = halt.

Our binary addition DTM (see Algorithm 2.6) works in an obvious way.

It takes the two least significant bits of a and b and forms the next bit of the

answer, while storing a carry bit on the front of the answer. To get an idea of

how it works try an example. Figure 2.2 shows a few steps in the computation

of 5 + 2.

(Note that in Algorithm 2.6 we use abbreviations to reduce the number

of values of the transition function which we need to describe. For example

(γ3/γ4, 0/1, s, s, ←) is an abbreviation for (γ3, 0, γ3, 0, ←), (γ3, 1, γ3, 1, ←),

(γ4, 0, γ4, 0, ←) and (γ4, 1, γ4, 1, ←). The letter s denotes the fact that the

state/symbol remain the same.)

2.2 Deterministic Turing machines 19

Fig. 2.2 Binary addition of 5 + 2: computation steps 0, 8, 12, and 19.

Algorithm 2.6 Binary Addition DTM

The set of states is Ŵ = {γ0, γ1, . . . , γ24} the starting state is γ0, the only

halting state is γ24. The alphabet is � = {∗, 0, 1, +, =}.
Input: integers a ≥ b ≥ 0 in binary with +, =. (For example to compute

31 + 18 we would write ‘= 11111 + 10010’ on the machine’s tape, with

the symbol ‘=’ in the starting square.)

Output: a + b in binary.

(γ0, =, γ1, =, →) # move the head to the right end of the input

(γ1, 0/1/+, γ1, s, →) # ′′

(γ1, ∗, γ2, ∗, ←) # found end of input

(γ2, 0, γ3, ∗, ←) # the least significant bit of b is 0

(γ2, 1, γ4, ∗, ←) # the least significant bit of b is 1

(γ2, +, γ5, +, ←) # no more bits of b

(γ3/γ4, 0/1, s, s, ←) # keep moving left until we have finished

read b

(γ3, +, γ5, +, ←) # finished reading b

(γ4, +, γ6, +, ←) # ′′

20 2 Complexity theory

(γ5, =, γ23, ∗ →) # no more bits of a erase =
(γ5/γ6, ∗, s, ∗, ←) # moving left looking for a

(γ5, 0, γ7, ∗, ←) # sum of least significant bits of a and b is 0

(γ5, 1, γ8, ∗, ←) # sum of least significant bits of a and b is 1

(γ6, 0, γ8, ∗, ←) # sum of least significant bits of a and b is 1

(γ6, 1, γ9, ∗, ←) # sum of least significant bits of a and b is 2

(γ7/γ8/γ9, 0/1, s, s, ←) # moving left looking for =
(γ7, =, γ10, =, ←) # finished reading a, found =
(γ8, =, γ11, =, ←) # ′′

(γ9, =, γ12, =, ←) # ′′

(γ10/γ11/γ12, 0/1, # moving left looking for the end of the answer

s, s, ←)

(γ10, ∗, γ13, ∗, →) # finished reading answer, now find the carry bit

(γ11, ∗, γ14, ∗, →) # ′′

(γ12, ∗, γ15, ∗, →) # ′′

(γ13, 0, γ16, 0, ←) # carry bit and least sig bits of a and b sum to 0

(γ13, 1, γ16, 1, ←) # carry bit and least sig bits of a and b sum to 1

(γ14, 0, γ16, 1, ←) # carry bit and least sig bits of a and b sum to 1

(γ14, 1, γ17, 0, ←) # carry bit and least sig bits of a and b sum to 2

(γ15, 0, γ17, 0, ←) # carry bit and least sig bits of a and b sum to 2

(γ15, 1, γ17, 1, ←) # carry bit and least sig bits of a and b sum to 3

(γ13, =, γ18, =, ←) # first part of answer is 0

(γ14, =, γ19, =, ←) # first part of answer is 1

(γ15, =, γ20, =, ←) # first part of answer is 0 and carry bit is 1

(γ16, ∗, γ21, 0, →) # set carry bit to 0 and now return to start

(γ17, ∗, γ21, 1, →) # set carry bit to 1 and now return to start

(γ18, ∗, γ16, 0, ←) # first part of answer is 0

(γ19, ∗, γ16, 1, ←) # first part of answer is 1

(γ20, ∗, γ17, 0, ←) # first part of answer is 0 and carry bit is 1

(γ21, 0/1/ = /∗, γ21, # return to start

s, →)

(γ21, +, γ22, +, →) # finished rereading a, found +
(γ22, 0/1, γ22, s, →) # now rereading b

(γ22, ∗, γ2, ∗, ←) # reached start of the input

(γ23, ∗, γ23, ∗, →) # keep moving right

(γ23, +, γ24, ∗, →) # erase + and halt

2.2 Deterministic Turing machines 21

Input a, b Unary machine steps Binary machine steps

10 22 < 200

1000 2000 < 900

106 2 × 106 < 3000

2100 2.5 × 1030 < 65 000

Fig. 2.3 Comparison of running times of unary and binary addition DTMs.

One obvious difference between our two DTMs is that using binary encoding

for the input results in a far more complicated machine, but which is more

efficient? If the binary addition DTM is given input a ≥ b ≥ 0, where a is a

k-bit integer, then it is reasonably easy to see that the machine takes at most

2k + 3 steps before the read–write head is positioned on the rightmost non-

blank symbol and the control unit is in state γ2. The machine then takes at most

6(k + 2) steps before it is again in state γ2 and the read–write head is again

scanning the rightmost non-blank symbol. The machine does this k times, once

for each bit in a. Finally it erases the equals and plus signs. In total it takes

less than 6(k + 2)2 steps. For large inputs this machine is clearly much more

efficient as the table in Figure 2.3 shows.

Having compared the running time of these two machines we introduce the

formal definitions of time complexity.

Time complexity

If a DTM halts on input x ∈ �∗
0 , then its running time on input x is the number

of steps the machine takes during its computation. We denote this by tM (x).

Recall that we wish to assess the efficiency of an algorithm in terms of its

worst-case behaviour. For this reason we define the time complexity of a DTM

M that halts on every input x ∈ �∗
0 , to be the function TM : N → N given by

TM (n) = max
{

t | there exists x ∈ �n
0 such that tM (x) = t

}

.

In practice we will rarely want to work directly with Turing machines. Higher

level descriptions of algorithms, such as the binary addition algorithm given in

Algorithm 2.3, are much easier to use. However, if our model of computation is

to be robust then a high-level algorithm should have a running time (measured

in terms of the number of ‘basic operations’ it performs) that is similar to the

running time of a DTM implementation of the same algorithm. To make this

precise we need to be clear as to what we mean by ‘similar’.

We will consider the running times of different algorithms to be similar if

they differ only by a polynomial factor. Consider the example of binary addition.

In our high-level version, Algorithm 2.3, the running time on input a ≥ b was

22 2 Complexity theory

O(log a) while for our DTM the running time was O(log2 a). Thus, for this

example at least, our model is robust.

Since we consider an algorithm to be practical if and only if it has polynomial

running time, our assumption that the DTM model of computation is robust can

be phrased as follows.

The Polynomial-time Church–Turing Thesis

Any practical deterministic algorithm can be implemented as a DTM with

polynomial running time.

Exercise 2.2b Describe explicitly a DTM with alphabet � = {∗, 0, 1}, that on

input 1n outputs 1n ∗ 1n . That is it takes a string of n ones and replaces it

by two strings of n ones, separated by a blank square. What is the time

complexity of your machine?

Exercise 2.3b Describe a DTM with alphabet {∗, 0, 1, 2} that on input

x1x2 · · · xn , a binary string (so each xi = 0/1), outputs the reversed string

xn · · · x2x1. What is the time complexity of your machine?

2.3 Decision problems and languages

A large part of complexity theory deals with a rather special type of problem:

those for which the output is either true or false. For example the problem of

deciding if a number is prime.

PRIME

Input: an integer n ≥ 2.

Question: is n prime?

This is an example of a decision problem. We introduce a special type of DTM

that is particularly useful for examining such problems.

Acceptor DTMs

An acceptor DTM is an ordinary DTM with exactly two halting states: γT and

γF. These should be thought of as corresponding to true and false respectively.

An input x ∈ �∗
0 is accepted by an acceptor DTM if the machine halts in

state γT on input x and rejected if it halts in state γF.

Any set of strings L ⊆ �∗
0 is called a language. If M is an acceptor DTM

then we define the language accepted by M to be

L(M) =
{

x ∈ �∗
0 | M accepts x

}

.

2.3 Decision problems and languages 23

If M is an acceptor DTM, L = L(M) and M halts on all inputs x ∈ �∗
0 , then

we say that M decides L . For an acceptor DTM M that halts on all inputs we

denote the halting state on input x by M(x).

There is an obvious correspondence between languages accepted by accep-

tor DTMs and decision problems. For example we can associate the decision

problem PRIME with the language

LPRIME =
{

x | x is the binary encoding of a prime number
}

.

Note that in order to obtain this correspondence we needed to choose a natural

encoding scheme for the input to the decision problem, in this case binary.

For a general decision problem, �, we have the associated language

L� =
{

x ∈ �∗
0 | x is a natural encoding of a true instance of �

}

.

An acceptor DTM which decides the language L�, can be thought of as an

algorithm for solving the problem �. Given an instance of � we simply pass

it to the machine, in the correct encoding, and return the answer true if the

machine accepts and false if it rejects. Since the machine always either accepts

or rejects, this gives an algorithm for the problem �.

Complexity classes and P

The aim of complexity theory is to understand the intrinsic difficulty of com-

putational problems. When considering a decision problem a natural way to

measure its difficulty is to consider the time complexity of machines that decide

the associated language.

Since we wish to classify problems in terms of their relative (and hopefully

absolute) difficulty, we will be interested in collections of languages which

can all be decided by DTMs with the same bound on their time complexity.

Any such collection of languages is called a complexity class. A fundamental

complexity class is the class of polynomial time decidable languages, or P. This

is our initial working definition of the class of ‘tractable’ languages.

P =
{

L ⊆ �∗
0 | there is a DTM M which decides L and a polynomial,

p(n) such that TM (n) ≤ p(n) for all n ≥ 1
}

.

If � is a decision problem for which L� ∈ P we say that there is a polynomial

time algorithm for �.

Although complexity classes contain languages not problems, we will often

abuse notation and write � ∈ C if a problem � satisfies L� ∈ C, where C is a

complexity class.

24 2 Complexity theory

So far we have seen very few examples of decision problems. In the remain-

der of this chapter we will consider some of the most important examples,

mainly from the fields of logic and graph theory.

SATisfiability

The classic example of a decision problem is Boolean satisfiability. A Boolean

function is a function f : {0, 1}n → {0, 1}. We interpret ‘1’ as true and ‘0’ as

false.

The basic Boolean functions are negation (NOT), conjunction (AND) and

disjunction (OR). If x is a Boolean variable then the negation of x is

x =
{

1, if x is false,

0, otherwise.

A literal is a Boolean variable or its negation. The conjunction of a collection

of literals x1, . . . , xn is

x1 ∧ x2 · · · ∧ xn =
{

1, if all of the xi are true,

0, otherwise.

The disjunction of a collection of literals x1, . . . , xn is

x1 ∨ x2 · · · ∨ xn =
{

1, if any of the xi are true,

0, otherwise.

A Boolean function, f , is said to be in conjunctive normal form (or CNF) if it

is written as

f (x1, . . . , xn) =
m

∧

k=1

Ck,

where each clause, Ck , is a disjunction of literals. For example consider the

following two Boolean functions

f (x1, . . . , x6) = (x1 ∨ x3 ∨ x5) ∧ (x4 ∨ x2) ∧ (x5 ∨ x6),

g(x1, . . . , x6) = (x3 ∧ x5) ∨ (x3 ∧ x4) ∧ (x6 ∧ x5) ∨ (x3 ∨ x2).

Of these f is in CNF but g is not.

A truth assignment for a Boolean function, f (x1, . . . , xn), is a choice of

values x = (x1, . . . , xn) ∈ {0, 1}n for its variables. A satisfying truth assignment

is x ∈ {0, 1}n such that f (x) = 1. If such an assignment exists then f is said to

be satisfiable.

Boolean satisfiability, otherwise known as SAT, is the following decision

problem.

2.3 Decision problems and languages 25

SAT

Input: a Boolean function, f (x1, . . . , xn) =
∧m

k=1 Ck , in CNF.

Question: is f satisfiable?

We require a natural encoding scheme for this problem. We can use the alphabet

� = {∗, 0, 1, ∨, ∧, ¬}, encoding a variable xi by the binary representation of

i . The literal x i can be encoded by adding a ¬ symbol at the front. We can then

encode a CNF formula, f (x1, . . . , xn) =
∧m

k=1 Ck , in the obvious way using

the alphabet �. For example the formula

f (x1, . . . , x5) = (x1 ∨ x4) ∧ (x3 ∨ x5 ∨ x2) ∧ (x3 ∨ x5),

would be encoded as

‘1 ∨ 100 ∧ 11 ∨ ¬101 ∨ 10 ∧ ¬11 ∨ 101’.

Since no clause can contain more than 2n literals the input size of a CNF formula

with n variables and m clauses is O(mn log n).

An important subproblem of SAT is the so-called k-SAT, for k ≥ 1.

k-SAT

Input: a Boolean formula in CNF with at most k literals in each clause.

Question: is f satisfiable?

Clearly the problem 1-SAT is rather easy. Any satisfying truth assignment for f

in this case must set every literal appearing in f to be true. Thus f is satisfiable

if and only if it does not contain both a literal and its negation. This can clearly

be checked in polynomial time and so 1-SAT ∈ P. For k ≥ 2 the difficulty of

k-SAT is less obvious and we will return to this question later.

Graph problems

Another source of important decision problems is graph theory. (For basic

definitions and notation see Appendix 2.) Obvious real world problems related

to graphs include the travelling salesman problem, tree alignment problems in

genetics and many timetabling and scheduling problems.

As before we need to describe a natural encoding scheme for graphs. Suppose

the graph we wish to encode, G = (V, E), has n vertices and m edges. There are

two obvious ways to encode this on a DTM tape. We could use the adjacency

matrix, A(G). This is the n × n symmetric matrix defined by

A(G)i j =
{

1, if {vi , v j } ∈ E,

0, otherwise.

26 2 Complexity theory

This matrix could then be transcribed as a binary string of length n(n + 1) on the

machine’s tape, with each row separated by the symbol &. With this encoding

scheme the input size would be O(n2).

An alternative way to encode a graph is via a list of edges. Suppose

E = {e1, e2, . . . , em}. Then we can encode the graph by a list of 2m binary

numbers (corresponding to the vertices in the m edges) each separated by the

symbol &. In this case the input size would be O(m log n).

Which of these two encodings is shorter depends on how many edges are

present in the graph. However, unless the graphs we are considering contain very

few edges the input size of the two encodings will differ only by a polynomial

factor. So if we are only interested in whether an algorithm has polynomial

running time then we will be able to work with whichever encoding scheme is

more convenient.

A simple decision problem for graphs is k-CLIQUE, where k ≥ 2 is an

integer. It asks whether or not a graph contains a clique of order k. (That is a

collection of k vertices among which all possible edges are present.)

k-CLIQUE

Input: a graph G.

Question: does G contain a clique of order k?

A very similar problem is CLIQUE.

CLIQUE

Input: a graph G of order n and an integer 2 ≤ k ≤ n.

Question: does G contain a clique of order k?

CLIQUE is our first example of a problem with ‘mixed input’. In such cases we

have to be careful to correctly identify the input size. We follow the obvious rule

that the input size is the sum of the input sizes of the various parts of the input.

So in this case the input is a graph, which has input size O(n2), using the adja-

cency matrix, and an integer 2 ≤ k ≤ n, with input size O(log k) using binary

encoding. Hence the total input size for CLIQUE is O(n2) + O(log k) = O(n2).

Although the problems k-CLIQUE and CLIQUE seem superficially very

similar we can in fact show that the former belongs to P while the status of the

latter is unclear (although it is generally believed not to lie in P).

Proposition 2.7 If k ≥ 2 then k-CLIQUE ∈ P.

Proof: Consider the following algorithm for k-CLIQUE.

Input: a graph G = (V, E).

Output: true if and only if G contains a clique of order k.

2.3 Decision problems and languages 27

Algorithm:

for each W ⊆ V such that |W | = k

if every pair of vertices in W forms an edge in E then output true

next W

output false.

We will measure the running time of this algorithm in terms of the number of

edges whose presence it checks. For a single set W of size k there are
(

k

2

)

edges

that need to be checked. The number of possibilities for the set W is
(

n

k

)

. Hence

the total number of edges checked by the algorithm is at most
(

k

2

)(

n

k

)

. Since k

is a constant that is independent of the input the running time of this algorithm

is O(nk) which is polynomial in n. Hence k-CLIQUE ∈ P. �

But why does the same argument not imply that CLIQUE ∈ P? As noted above

the input size of CLIQUE is O(n2). Hence any polynomial time algorithm for

CLIQUE must have running time bounded by a polynomial in n. However, if we

used the above algorithm to try to decide an instance of CLIQUE with k =
√

n

then, in the worst case, it would need to check
(

√
n

2

)(

n√
n

)

possible edges and

so would have running time �(n
√

n/2) which is not polynomial in n. Whether

CLIQUE belongs to P is not known. In Chapter 3 we will see why this is such

an important question.

A k-colouring is an assignment of k colours to the vertices of a graph G

such that no edge joins two vertices of the same colour. Formally it is a function

f : V → {1, 2, . . . , k} satisfying f (x) �= f (y) for all edges {x, y} ∈ E . A

graph G is said to be k-colourable if and only if a k-colouring of G exists.

Questions related to colourings of graphs are another source of important

decision problems. For an integer k ≥ 1 the problem k-COL asks whether or

not a graph is k-colourable.

k-COL

Input: a graph G.

Question: is G k-colourable?

Proposition 2.8 2-COL belongs to P.

Proof: This is very straightforward. See Exercise 2.4. �

We will return to the question of how difficult k-COL is for k ≥ 3 in the next

chapter.

We noted earlier that 1-SAT trivially belongs to P. Our next result tells us that

2-SAT also belongs to P, but this requires a little more work. Its proof uses the

fact that if we can solve a certain graph decision problem (REACHABILITY)

in polynomial time, then we can solve an instance of 2-SAT in polynomial time.

28 2 Complexity theory

The idea of using an algorithm for a problem �1 to help us to solve a problem

�2 is a recurring theme in complexity theory. It corresponds in an obvious way

to the concept of a subroutine in a computer program.

Proposition 2.9 2-SAT belongs to P.

Proof: Suppose f (x1, . . . , xn) =
∧m

k=1 Ck is our input to 2-SAT. Then each

clause, Ck , is the disjunction of at most two literals. If any clause contains a

single literal, xi , we may suppose the clause is replaced by xi ∨ xi and so every

clause in f contains exactly two literals.

We define an associated digraph G f = (V, E) whose vertices consist of the

literals

V = {x1, . . . , xn, x1 . . . , xn}

and whose edges are defined by

E = {(a, b) | a ∨ b is a clause in f }.

Note that G f has the property that (a, b) ∈ E ⇐⇒ (b, a) ∈ E .

Consider the following decision problem for digraphs.

REACHABILITY

Input: a digraph G = (V, E) and two vertices v, w ∈ V .

Question: is there a directed path from v to w in G?

We claim that:

(a) f is unsatisfiable if and only if there is a variable xi for which there are

directed paths from xi to x i and from x i to xi in the digraph G f .

(b) REACHABILITY belongs to P.

We will prove (a) below but (b) is left as a simple exercise. (See Exercise 2.5.)

We can now describe a polynomial time algorithm for 2-SAT. First define a

function r : V × V → {1, 0} by

r (v, w) =
{

1, if there is a directed path from v to w in G f .

0, otherwise.

Input: a 2-SAT formula f .

Output: true if f is satisfiable and false otherwise.

Algorithm:

Construct the graph G f

for i = 1 to n

if r (xi ,x i) = 1 and r (x i ,xi) = 1 then output false

next i

output true

2.3 Decision problems and languages 29

The fact that this algorithm correctly decides whether or not the input is

satisfiable follows directly from claim (a) above. But why is this a polynomial

time algorithm?

First, the construction of G f can be achieved in polynomial time since we

simply need to read the input and, for each clause (a ∨ b), we insert two edges

into our graph: (a, b) and (b, a). Second, the function r (·, ·) can be evaluated

in polynomial time (by claim (b) above). Finally the for loop in the algorithm

is repeated at most n times and so r (·, ·) is called at most 2n times. Hence this

is a polynomial time algorithm.

We now give a proof of claim (a). First suppose that for some 1 ≤ i ≤ n

there are directed paths in G f from xi to x i and from x i to xi . We will show

that in this case f is unsatisfiable since no truth value can be chosen for xi .

The two directed paths imply that the following clauses belong to f :

(x i ∨ y1), (y1 ∨ y2) , . . . , (y j−1 ∨ y j), (y j ∨ x i),

(xi ∨ z1), (z1 ∨ z2) , . . . , (zk−1 ∨ zk), (zk ∨ xi).

The clauses in the first row imply that xi cannot be true while those in the second

row imply that xi cannot be false. Hence f is unsatisfiable.

Conversely suppose that for each 1 ≤ i ≤ n there is no directed path in G f

from xi to x i or there is no directed path from x i to xi . For a literal a we define

R(a) to be the literals which can be reached by directed paths from a (together

with a itself). We also define R(a) to be the negations of the literals in R(a).

We construct a satisfying truth assignment using the following procedure.

i ← 1

while i ≤ n

if r (xi , x i) = 0

then a ← xi

else a ← x i

set all literals in R(a) to be true

set all literals in R(a) to be false

if any variable has yet to be assigned a truth value

then i ← min{ j | x j is unassigned}
else i ← n + 1

end-while

To see that this works we need to check that we never have both v and v in

R(a). If we did then there would exist directed paths from a to v and from a

to v. But G f has the property that there is a directed path from c to d if and

only if there is a directed path from d to c. Hence in this case there would be a

30 2 Complexity theory

directed path from v to a. Thus there would be a directed path from a to a (via

v), contradicting our assumption that no such path exists (since r (a, a) = 0).

Finally we note that we cannot run into problems at a later stage since if we

choose an unassigned literal b such that r (b, b) = 0 then there is no directed

path from b to a literal which has already been assigned the value false (if there

were then you can check that b would also have already been assigned the value

false). �

Exercise 2.4h Let G be a graph.

(i) Show that the following are equivalent (for terminology see

Appendix 2):

(a) G is bipartite;

(b) G is 2-colourable;

(c) G does not contain any odd length cycles.

(ii) Show that 2-COL ∈ P.

Exercise 2.5 h Complete the proof of Proposition 2.9 by showing that

REACHABILITY belongs to P.

2.4 Complexity of functions

Although we have defined complexity classes for languages, we will also

consider the complexity of functions. For example, consider the function

fac(n) : N → N,

fac(n) =
{

d, the smallest non-trivial factor of n if one exists,

n, otherwise.

An efficient algorithm for computing fac(n) would break many of the most

commonly used cryptosystems. For this reason determining the complexity of

this function is an extremely important problem.

In order to discuss such questions we need to extend our definitions of

complexity to functions.

The class of tractable functions, the analogue of the class P of tractable

languages, is

FP = { f : �∗
0 → �∗

0 | there is a DTM M that computes f and a

polynomial p(n) such that TM (n) ≤ p(n) for all n ≥ 1}.

If f ∈ FP then we say that f is polynomial time computable.

2.4 Complexity of functions 31

One example we have already seen of a function in FP is addition of binary

integers. In fact all of the basic integer arithmetic operations are polynomial

time computable. Our next result is a proof of this for multiplication.

Proposition 2.10 If mult : Z+ × Z+ → Z+ is defined by mult(a, b) = ab then

mult ∈ FP.

Proof: First note that multiplication by two is easy to implement. For a binary

integer a we simply shift all of its digits left by a single place and add a zero

to the right of a. We denote this operation by 2 × a. Consider the following

algorithm.

Algorithm 2.11 Integer Multiplication.

Input: n-bit binary integers a = an · · · a1 and b = bn · · · b1.

Output: mult(a, b) in binary.

Algorithm:

m ← 0

for i = 1 to n

if bi = 1 then m ← m + a

a ← 2 × a

next i

output m.

It is easy to see that this algorithm works. The fact that it runs in polynomial

time follows simply from the observation that the for loop is repeated at most n

times and each line of the algorithm involves basic polynomial time operations

on integers with at most 2n bits. Hence mult ∈ FP. �

Another important example of a polynomial time computable function is expo-

nentiation. We have to be careful, since given integers a and b we cannot in

general write down ab (in binary) in less space than O(b) and this would be

exponential in the input size which is O(log a + log b). We can avoid this prob-

lem if we work modulo an integer c.

Proposition 2.12 The function exp(a, b, c) : Z+ × Z+ × Z+ → Zc, defined by

exp(a, b, c) = ab mod c, belongs to FP.

Proof: We will use the following algorithm.

32 2 Complexity theory

Algorithm 2.13 Exponentiation.

Input: binary integers a = ak · · · a1, b = bm · · · b1, c = cn · · · c1.

Output: ab mod c.

Algorithm:

e ← 1

for i = 1 to m

if bi = 1 then e ← mult(e, a) mod c

a ← mult(a, a) mod c

next i

output e.

Since mult ∈ FP and all of the integers being multiplied in Algorithm 2.13

are bounded above by c then each line of Algorithm 2.13 can be performed in

polynomial time. The for loop is repeated m times so the whole algorithm is

polynomial time. Hence exp ∈ FP. �

Our final example of a polynomial time computable function is the greatest

common divisor function gcd : N × N → N

gcd(a, b) = max{d ≥ 1 | d divides a and d divides b}.

Proposition 2.14 The function gcd belongs to FP.

Proof: The obvious example of a polynomial time algorithm for computing the

greatest common divisor of two integers is Euclid’s algorithm.

Algorithm 2.15 Euclid’s algorithm

Input: binary integers a ≥ b ≥ 1.

Output: gcd(a, b).

Algorithm:

r0 ← a

r1 ← b

i ← 1

while ri �= 0

i ← i + 1

ri ← ri−2 mod ri−1

end-while

output ri−1.

2.5 Space complexity 33

If the input integers are a ≥ b ≥ 1 then the algorithm proceeds by repeated

division with remainder. (In each case qi = ⌊ri−2/ri−1⌋.)

a = q2b + r2, 0 ≤ r2 < b,

b = q3r2 + r3, 0 ≤ r3 < r2,

r2 = q4r3 + r4, 0 ≤ r4 < r3,
...

...

rk−3 = qk−1rk−2 + rk−1, 0 ≤ rk−1 < rk−2,

rk−2 = qkrk−1 + rk, rk = 0.

The algorithm halts when rk = 0 and then outputs gcd(a, b) = rk−1. It is easy

to check that this algorithm is correct. (For integers c and d we denote the fact

that c divides d exactly by c|d .)

First note that rk = 0 implies that rk−1|rk−2 and hence rk−1|rk−3. Continuing

up the array of equations we see that rk−1|ri for any 2 ≤ i ≤ k − 2 and hence

rk−1|a and rk−1|b. Thus rk−1| gcd(a, b). Conversely if d|a and d|b then working

from the first equation down we see that d|ri for 2 ≤ i ≤ k so gcd(a, b)|rk−1.

Hence rk−1 = gcd(a, b) as required.

To complete the proof we need to show that this is a polynomial time algo-

rithm. Each line of Algorithm 2.15 can be executed in polynomial time (since

the basic arithmetic operations involved can be performed in polynomial time).

We simply need to prove that the number of times the while loop is repeated is

bounded by a polynomial in the input size: log a + log b.

Consider the relative sizes of ri and ri+2 for 2 ≤ i ≤ k − 2. Since qi+2 ≥ 1,

ri = qi+2ri+1 + ri+2 and 0 ≤ ri+2 < ri+1, we have ri+2 < ri/2. Hence the

while loop is repeated at most 2⌈log a⌉ times and so Algorithm 2.15 is polyno-

mial time. �

Exercise 2.6b Show that the divisor function, div : Z+ × N → Z+, defined by

div(a, b) = ⌊a/b⌋, belongs to FP.

2.5 Space complexity

Up to this point the only computational resource we have considered is time.

Another resource that limits our ability to perform computations is space. We

now introduce the necessary definitions to discuss the space complexity of a

DTM.

If a DTM halts on input x ∈ �∗
0 , then the space used on input x is the number

of distinct tape squares examined by the read–write head of the machine during

its computation. We denote this by sM (x).

34 2 Complexity theory

If M is a DTM that halts for every input x ∈ �∗
0 , then the space complexity

of M is the function SM : N → N defined by

SM (n) = max
{

s | there exists x ∈ �n
0 such that sM (x) = s

}

.

The most important space complexity class is the class of languages that can

be decided in polynomial space,

PSPACE = {L ⊆ �∗
0 | there is a DTM M which decides L and a

polynomial, p(n), such that SM (n) ≤ p(n) for all n ≥ 1}.

Clearly space is a more valuable resource than time in the sense that the amount

of space used in a computation is always bounded above by the amount of time

the computation takes.

Proposition 2.16 If a language L can be decided in time f (n) then L can be

decided in space f (n).

Proof: The number of squares examined by the read–write head of any DTM

cannot be more than the number of steps it takes. �

This yields the following obvious corollary.

Corollary 2.17 P ⊆ PSPACE.

Another important time complexity class is the class of languages decidable in

exponential time

EXP =
{

L ⊆ �∗
0 | there is a DTM M which decides L and a

polynomial, p(n), such that TM (n) ≤ 2p(n) for all n ≥ 1
}

.

Our next theorem tells us that although space may be more valuable than time,

given an exponential amount of time we can compute anything that can be

computed in polynomial space.

Theorem 2.18 P ⊆ PSPACE ⊆ EXP

Proof: We have already seen that P ⊆ PSPACE, so we prove PSPACE ⊆ EXP.

Suppose a language L belongs to PSPACE. Then there exists a polynomial

p(n) and a DTM M such that M decides L and halts after using at most p(|x |)
tape squares on input x ∈ �∗

0 . The basic idea we use is that since M halts it

can never enter the same configuration twice (where a configuration consists of

the machine’s state, the position of the read–write head and the tape contents)

since if it did then it would be in an infinite loop and so never halt.

2.5 Space complexity 35

To be precise consider an input x ∈ �n
0 . If |�| = m and |Ŵ| = k then at

any point in the computation the current configuration of the machine can be

described by specifying:

(i) the current state,

(ii) the position of the read–write head,

(iii) the contents of the tape.

There are k possibilities for (i) and, since the computation uses at most p(n)

tape squares, there are at most p(n) possibilities for (ii). Now, since each tape

square contains a symbol from � and the contents of any square that is not

visited by the read–write head cannot change during the computation, there

are m p(n) possibilities for (iii). Hence in total there are kp(n)m p(n) possible

configurations for M during its computation on input x .

Can any of these configurations ever be repeated? Clearly not, since if they

were then the machine would have entered a loop and would never halt. Hence

tM (x) ≤ kp(n)m p(n).

So if q(n) is a polynomial satisfying

log k + log p(n) + p(n) log m ≤ q(n),

then L can be decided in time 2q(n) and so L ∈ EXP as required. �

It is known that P �= EXP, for a proof see for example Hopcroft and Ullman

(1979). However, whether PSPACE = EXP is a major open problem. If this

were true it would imply that P �= PSPACE and this is not known. An example

of a language which is in EXP but not known to belong to PSPACE is given by

the following decision problem.

EXP BOUNDED HALTING

Input: a DTM M , a string x and a binary integer n ≥ 1.

Question: does M halt on input x in time n?

Problems

2.1 Let f (n) = nlog n . Let p(n) and q(n) ≥ n be polynomials. Show that for

n sufficiently large f (n) satisfies

p(n) < f (n) < 2q(n).

2.2b A palindrome is a a binary string that is identical when read in either

direction, e.g. 0010100 or 11011011. Describe a DTM that decides the

36 2 Complexity theory

language

LPAL = {x ∈ �∗
0 | x is a palindrome}.

(a) What is the time complexity of your machine?

(b) Show that LPAL can be decided by a DTM that uses space O(n).

(c) What lower bounds can you give for the time complexity of any

DTM that decides LPAL?

2.3b Describe a DTM for deciding unary divisibility. That is it takes input

a, b in unary and accepts if a divides b exactly otherwise it rejects.

2.4b Consider the following generalisation of a DTM. A k-tape DTM is a

machine with k tapes and k corresponding read–write heads (one for

each tape). The transition function now takes the current machine state,

and the contents of the k squares currently scanned by the k read–write

heads and returns the new state for the machine, the new symbol to

write in each of the k current squares and the movements left or right

of the k read–write heads. Describe a 3-tape DTM for binary integer

multiplication. (Do not describe this machine in detail, simply sketch

how it works when given input a ∗ b.) What is the time complexity of

your machine in O-notation? (As before a single step is one application

of the transition function.)

2.5a Let COMPOSITE be the following decision problem.

COMPOSITE

Input: an integer n ≥ 2.

Question: is n composite?

Show that COMPOSITE ∈ P if and only if PRIME ∈ P.

2.6a A Boolean formula f (x1, . . . , xn) is in disjunctive normal form, or DNF,

if it is written as

f (x1, . . . , xn) =
m

∨

k=1

Ck,

where here each clause, Ck , is a conjunction of literals (e.g. x1 ∧ x3 ∧
x7). Show that the following problem belongs to P.

DNF-SAT

Input: a Boolean formula f in DNF.

Question: is f satisfiable?

2.7b If a ∈ Z∗
n then the inverse of a mod n is the unique b ∈ Z∗

n such that

ab = 1 mod n. Show that given n ∈ Z and a ∈ Z∗
n the inverse of a mod

n can be computed in polynomial time using Euclid’s algorithm. Find

the inverse of a = 10 mod 27.

2.5 Space complexity 37

2.8h Show that the square root function, sqrt(n) : Z+ → Z+, sqrt(n) =
⌊
√

n⌋, belongs to FP.

2.9a The Fibonacci sequence {Fn}∞n=0 is defined by F0 = F1 = 1 and Fn =
Fn−1 + Fn−2 for n ≥ 2.

(a) Show that if we use Euclid’s algorithm to calculate the greatest

common divisor of Fn and Fn−1 the number of division steps is

n − 1.

(b) Show that Fn ≤ 2n .

(c) Give a lower bound on the worst-case performance of Euclid’s

algorithm in terms of the number of division steps performed

when given two n-bit integers.

2.10h Karatsuba’s method for multiplication. Consider the following method

for integer multiplication. Given two n-bit integers

a = 2n/2u + v and b = 2n/2x + y,

where u, v, x and y are (n/2)-bit integers, we can obviously compute

ab using four multiplications of (n/2)-bit integers

ab = 2nux + 2n/2(uy + vx) + vy.

Let Mn denote the time taken to multiply two n-bit integers using this

method. Ignoring the time taken to perform additions and multiplica-

tions by powers of 2 show that this gives Mn = O(n2).

Karatsuba showed that you can reduce the number of multiplications

required from four to three, using the fact that

uy + vx = (u + v)(x + y) − ux − vy.

Show that in this case we have Mn = O(nlog2 3).

2.11b Suppose that a language L is decided in space S(n) by a DTM with

alphabet � and set of states Ŵ. What upper bound can you give for the

time required to decide L?

2.12a For an acceptor DTM M and x ∈ �∗
0 , let iM (x) be the amount of ink

used in M’s computation on input x . This is defined to be the number of

times M writes a new non-blank symbol in a square. (So iM (x) counts

all transitions of M except those that replace a symbol by ∗ or leave the

symbol unchanged.) The ink complexity of M is then defined by

IM (n) = max
{

i | there exists x ∈ �n
0 such that iM (x) = i

}

.

Show that LPAL (defined in Problem 2.2) can be decided by a DTM that

uses no ink. (That is a machine M such that IM (n) = 0.)

38 2 Complexity theory

Further notes

Turing machines as a formal model of computation were introduced by A.

Turing (1936) and their equivalence to other classical notions of computability

resulting in the Church–Turing thesis was a major part of recursion theory; see

for example the classical text by Rogers (1967).

The origins of complexity theory can be traced back to Hartmanis and Stearns

(1965) though the notion of P as a fundamental class is generally attributed to

Cobham (1964) and Edmonds (1965).

We note that some large instances (up to 25 000 cities) of the Travelling

Salesman Problem (TSP) have been solved using cutting plane methods. See

Dantzig, Fulkerson and Johnson (1954) and Applegate et al. (2003). However,

no TSP algorithm is known which is guaranteed to always perform less than 2n

operations on an input of n cities.

Proposition 2.9 that 2-SAT is in P was pointed out by Cook (1971).

3

Non-deterministic computation

3.1 Non-deterministic polynomial time – NP

Consider the following algorithm for the decision problem SAT.

Algorithm 3.1 Naive SAT-solver.

Input: a Boolean formula f (x1, . . . , xn) in CNF.

Output: true if f is satisfiable and false otherwise.

Algorithm:

for each possible truth assignment x ∈ {0, 1}n

if f (x) = 1 then output true.

next x

output false

This algorithm is completely impractical since if f is unsatisfiable then it will

try all 2n possible truth assignments before halting and so in the worst case it

has exponential running time. Unfortunately there are no known algorithms for

SAT that perform significantly better. A naive explanation for this is that the

obvious way to show that a formula f is satisfiable is to find a satisfying truth

assignment. But there are too many possible truth assignments to be able to

check them all in polynomial time.

Consider some of the other decision problems we have seen so far. In most

cases we could give a similar ‘search algorithm’ to the one described above

for SAT. For example, a search algorithm for 3-COL could simply consider all

3n possible 3-colourings of a given graph, and check to see if any of them are

legal. Again this would give an exponential time algorithm.

But why are these algorithms so slow? Given a possible truth assignment

for an instance of SAT we can quickly check whether it is satisfying. Similarly,

39

40 3 Non-deterministic computation

Decision Problem Succinct Certificate

SAT A satisfying truth assignment for the input formula f

3-COL A legal 3-colouring of the input graph G

k-CLIQUE A clique of order k in the input graph G

COMPOSITE A proper non-trivial factor of the input integer n

Fig. 3.1 Examples of decision problems with succinct certificates.

given a possible 3-colouring of a graph we can quickly verify whether it is a

legal colouring. These algorithms have exponential running time because in

the worst case they need to check an exponential number of possible truth

assignments or colourings. However, if a given instance of SAT is satisfiable

then we know there must exist a satisfying truth assignment. Equally, if a graph

is 3-colourable then a legal 3-colouring of it must exist.

Previously we considered algorithms for solving decision problems. In this

chapter we consider a different type of question. We wish to identify those

decision problems, such as SAT or 3-COL, with the property that if a given

instance of the problem is true then there exists a ‘succinct certificate’ of this

fact.

One way of looking at this question is to consider the following hypothetical

situation. Suppose we had an instance, f (x1, . . . , xn), of SAT which we knew to

be satisfiable. Could we convince a sceptical observer of this fact in a reasonable

amount of time? Certainly, simply give the observer the instance f together with

a satisfying truth assignment x. Where this truth assignment has come from is

not our concern, the important point is that if f is satisfiable then such a truth

assignment must exist. Our observer could then check that this truth assignment

satisfies f . The observer’s checking procedure could clearly be implemented

as a polynomial time algorithm. Thus a satisfying truth assignment is a succinct

certificate for the satisfiability of f , since it certifies that f is satisfiable and

can be checked quickly.

As we have already noted, many decision problems have obvious succinct

certificates. (See Figure 3.1.)

It is important to emphasise that the certificate being checked in each of the

above examples need not be found in polynomial time. We are simply asserting

that, if an instance of a particular decision problem is true, then there exists a

succinct certificate which when presented to a sceptical observer allows him or

her to verify in polynomial time that a particular instance of the problem is true.

Consider the example of COMPOSITE. In this case a succinct certificate

proving that a particular integer n is composite is a proper, non-trivial factor

of the input. Given such a factor we can easily check in polynomial time that

3.1 Non-deterministic polynomial time – NP 41

it divides n exactly (finding such a factor in polynomial time is a completely

separate problem). Our sceptical observer could use the following polynomial

time checking algorithm in this case.

Algorithm 3.2 Factor checking.

Input: integer n and possible factor d .

Output: true iff d is a proper non-trivial factor of n.

Checking algorithm:

if d divides n exactly and 2 ≤ d ≤ n − 1

then output true

else output false.

If n is composite then for a suitable choice of d the checking algorithm will

verify this fact. However, if n is prime then no matter what value of d is given

to the checking algorithm it will always output false. Moreover this is clearly a

polynomial time algorithm.

It is important to note that we cannot deduce that a number n is prime simply

because this checking algorithm, when given n and a particular possible factor

d , gives the answer false. If n is composite but d is not a factor of n then

this algorithm will output false. We are simply claiming that if this checking

algorithm is given a composite integer n together with a factor d then it will

output true and furthermore if n is composite then such a factor exists.

When a decision problem � has a succinct certificate which can be used

to check that a given instance is true in polynomial time then we say that

the associated language L� is accepted in non-deterministic polynomial time.

Equivalently we say that L� belongs to the complexity class NP.

We can formalise this definition as follows. For x, y ∈ �∗
0 we let x y denote

the string consisting of x followed by a blank square, followed by y. A language

L ⊆ �∗
0 is said to belong to NP if there is a DTM M and a polynomial p(n)

such that TM (n) ≤ p(n) and on any input x ∈ �∗
0 :

(i) if x ∈ L then there exists a certificate y ∈ �∗
0 such that |y| ≤ p(|x |) and

M accepts the input string x y;

(ii) if x �∈ L then for any string y ∈ �∗
0 , M rejects the input string x y.

In other words a language L belongs to NP if there is a polynomial time algo-

rithm which when given an input x ∈ L , together with a correct polynomial

length certificate y, accepts x ; but when given an input x �∈ L will always

reject, no matter which incorrect certificate y is given.

42 3 Non-deterministic computation

An obvious question to ask is how the class NP is related to P. It is easy to

see that P ⊆ NP.

Proposition 3.3 P ⊆ NP.

Proof: If L ∈ P then there is a polynomial time DTM that decides L . Hence

we do not need a certificate to verify that a particular input x ∈ �∗
0 belongs to

L . Our checking algorithm simply takes an input x ∈ �∗
0 and decides whether

or not x belongs to L directly, in polynomial time. �

Checking a certificate seems to be a far easier task than deciding if such a

certificate exists. Indeed it is widely believed that P �= NP. However, this is

currently one of the most important open problems in theoretical computer

science. It is one of the seven ‘Millennium Problems’ chosen by the Clay

Institute with a prize of $1 000 000 offered for its solution.

How much larger can NP be than P? Our next result says that any language in

NP can be decided in polynomial space. We simply try each possible certificate

in turn. Since any possible certificate is of polynomial length, we can check all

possible certificates using a polynomial amount of space by reusing the same

tape squares for successive certificates.

Theorem 3.4 NP ⊆ PSPACE.

Proof: Suppose that L ∈ NP then there is a polynomial, p(n), and a DTM M

such that TM (n) ≤ p(n) and on any input x ∈ �∗
0 :

(i) if x ∈ L then there is a certificate y ∈ �∗
0 such that |y| ≤ p(|x |) and M

accepts the input string x y;

(ii) if x �∈ L then for any string y ∈ �∗
0 , M rejects the input string x y.

We form a new DTM N that on input x produces each possible string y ∈ �∗
0

of length at most p(|x |) in turn and mimics the computation of M on the string

x y. Since M always halts after at most p(|x |) steps, each time we simulate

the computation of M on x y at most 2p(|x |) + 1 tape squares are required

and these squares can be reused for each possible y. We also need some tape

squares to store x and the current possible certificate y at each stage so that we

can restart the next stage of the computation with the string x z where z is the

next possible certificate after y. So in total N will use space O(p(|x |) + |x |).

If x ∈ L then when we reach a good certificate y such that M would accept

x y we make N halt in state γT. If x �∈ L then at no point would M accept x y

and so after trying each possible certificate in turn we halt N in state γF. The

DTM N clearly decides L in polynomial space. Hence L ∈ PSPACE and so

NP ⊆ PSPACE. �

3.2 Polynomial time reductions 43

It is generally believed that NP �= PSPACE although this is not known to be

true. For an example of a language that belongs to PSPACE but is not believed

to belong to NP see Exercise 3.2.

Exercise 3.1 a For each of the following decision problems describe a certificate

to show that it belongs to NP. In each case say whether or not you believe

it also belongs to P.

(i) SUBSET SUM

Input: a finite set of positive integers A and an integer t .

Question: is there a subset of A whose sum is exactly t?

(ii) DIV 3

Input: a finite set A ⊂ Z+.

Question: is there a subset S ⊆ A such that
∑

s∈S s is divisible by

three?

(iii) GRAPH ISOMORPHISM

Input: two graphs G and H .

Question: are G and H isomorphic?

(iv) HAMILTON CYCLE

Input: a graph G.

Question: is G Hamiltonian?

Exercise 3.2 Prove that QBF, defined below, belongs to PSPACE.

QBF

Input: a quantified Boolean formula

F = (Q1x1)(Q2x2) · · · (Qn xn)B(x1, . . . , xn),

where B(x1, . . . , xn) is a Boolean expression in the variables x1, . . . , xn

and each Qi is a quantifier ∀ or ∃.

Question: is F true?

3.2 Polynomial time reductions

There are many situations where the ability to solve a problem �1 would enable

us to also solve a problem �2. The simplest example of this phenomenon is

when we can convert an instance, I , of �1 into an instance, f (I), of �2 and by

solving f (I) obtain an answer for I . Consider the following decision problem.

(Recall that an independent set in a graph is a collection of vertices containing

no edges.)

44 3 Non-deterministic computation

INDEPENDENT SET

Input: a graph G and an integer k.

Question: does G contain an independent set of order k?

This is obviously closely related to the problem CLIQUE. Suppose we had

an efficient algorithm for CLIQUE then given an instance of INDEPENDENT

SET, consisting of a graph G and an integer k, we could form the graph Gc,

the complement of G. This is the graph on the same vertex set as G but with

an edge present in Gc if and only if it is missing from G. Now pass Gc and

k to our algorithm for CLIQUE. It will return the answer true if and only if

the original graph contained an independent set of order k. Hence the ability to

solve CLIQUE would also allow us to solve INDEPENDENT SET. Moreover

the conversion from an instance of INDEPENDENT SET to an instance of

CLIQUE could clearly be achieved in polynomial time. We formalise this idea

of a polynomial time reduction as follows.

If A, B ⊆ �∗
0 and f : �∗

0 → �∗
0 satisfies x ∈ A ⇐⇒ f (x) ∈ B, then f

is a reduction from A to B. If in addition f ∈ FP then f is a polynomial

time reduction from A to B. When such a function exists we say that A is

polynomially reducible to B and write A ≤m B.

The following simple but important lemma shows why the symbol ≤m is

appropriate. It says that if A ≤m B and B is ‘easy’ then so is A.

Lemma 3.5 If A ≤m B and B ∈ P then A ∈ P.

Proof: If A ≤m B and B ∈ P then there exist two DTMs, M and N , with the

following properties:

(i) M computes a function f : �∗
0 → �∗

0 satisfying x ∈ A ⇐⇒ f (x) ∈ B;

(ii) there is a polynomial p(n) such that TM (n) ≤ p(n);

(iii) N decides the language B;

(iv) there is a polynomial q(n) such that TN (n) ≤ q(n).

We now construct a polynomial time DTM which will decide A. Given an input

x ∈ �n
0 we give x as input to M , to obtain f (x). We then pass f (x) to N and

accept or reject according to whether N accepts or rejects f (x).

Since M computes a reduction from A to B and N decides the language

B, our new DTM certainly decides A. To see that it runs in polynomial time

we note that the time taken to compute f (x) by M is at most p(n). Moreover

TM (n) ≤ p(n) implies that | f (x)| ≤ p(n) + n. This is because the machine M

starts with a string of length n on its tape and halts after at most p(n) steps,

so when it halts it cannot have more than p(n) + n non-blank tape squares.

3.3 NP-completeness 45

Thus the time taken by N on input f (x) is at most q(p(n) + n). Hence the total

running time of our new machine is at most p(n) + q(p(n) + n), which is still

polynomial in n, the input size. Hence A ∈ P as required. �

A similar result is clearly true if we replace P by NP.

Lemma 3.6 If B ∈ NP and A ≤m B then A ∈ NP.

Our next result says that if B is at least as difficult as A, and C is at least as

difficult as B, then C is at least as difficult as A. More succinctly the relation

≤m is transitive.

Lemma 3.7 If A ≤m B and B ≤m C then A ≤m C.

Both Lemmas 3.6 and 3.7 are routine to prove and are left as exercises for the

reader. (See Exercises 3.3 and 3.4.)

Exercise 3.3h Prove that if A and B are languages, B ∈ NP and A ≤m B then

A ∈ NP (Lemma 3.6).

Exercise 3.4h Prove that if A, B and C are languages, A ≤m B and B ≤m C

then A ≤m C (Lemma 3.7).

3.3 NP-completeness

Having introduced the notion of one language being at least as difficult as

another language an obvious question to ask is: does NP contain ‘hardest’

languages? By this we mean do there exist examples of languages that belong

toNP and which are at least as difficult as any other language inNP. Accordingly

we define a language L to be NP-complete if

(i) L ∈ NP,

(ii) if A ∈ NP then A ≤m L .

The fact that such languages exist is probably the most important result in

complexity theory. The fact that most languages arising in practice that belong

to NP but which are not known to belong to P are in fact NP-complete makes

this even more intriguing.

Before proving the existence of NP-complete languages we give two results

showing how important NP-complete languages are. The first says that deter-

mining the true difficulty of any NP-complete language is an incredibly impor-

tant question since if any NP-complete language is tractable then they all are.

46 3 Non-deterministic computation

Proposition 3.8 If any NP-complete language belongs to P then P = NP.

Proof: Since P ⊆ NP it is sufficient to show that NP ⊆ P. Suppose L is NP-

complete and also belongs to P. If A ∈ NP then A ≤m L and so Lemma 3.5

implies that A ∈ P. Hence NP ⊆ P as required. �

Our next result will allow us to prove that many languages are NP-complete

once we find a single ‘natural’ example of such a language.

Proposition 3.9 If L is NP-complete, A ∈ NP and L ≤m A then A is also

NP-complete.

Proof: This follows directly from Lemma 3.7. �

The following result due to Cook (1971) is the fundamental theorem of

complexity theory. It provides a very natural example of an NP-complete

language.

Theorem 3.10 SAT is NP-complete.

Before giving the proof of Theorem 3.10 we prove an easier result.

Theorem 3.11 NP-complete languages exist.

Proof: The following language is NP-complete.

BOUNDED HALTING (BH)

Input: pM x 1t , where pM is a description of a DTM M ; 1t is a string of t ones

and x ∈ �∗
0 .

Question: Does there exist a certificate y ∈ �∗
0 such that M accepts x y in time

bounded by t?

BH belongs to NP since a certificate is simply y ∈ �∗
0 such that the DTM M

accepts x y in at most t steps.

We now wish to show that any language L ∈ NP is polynomially reducible

to BH. Let L ∈ NP and M be a DTM for L given by the definition of NP, with

corresponding polynomial p(n). Now consider the function f (x) = pM x 1p(|x |).

Then f ∈ FP, since pM is independent of x (it depends only on the language

L); x can be copied in linear time and the string 1p(|x |) can be written in time

O(p(|x |)).

Moreover, x ∈ L if and only if there exists a certificate y ∈ �∗
0 such that x y

is accepted by M in time p(|x |). But by definition of BH this is true if and only

if pM x 1p(|x |) ∈ BH. Thus x ∈ L ⇐⇒ f (x) ∈ BH.

Hence L ≤m BH and so BH is NP-complete. �

3.3 NP-completeness 47

This is an interesting theoretical result but of little practical use when trying

to find other examples of NP-complete languages. In order to do this we need

to give a more natural example of an NP-complete language. For this reason

we now give a proof of Cook’s Theorem.

Proof of Theorem 3.10: First note that SAT ∈ NP: a succinct certificate is a

satisfying truth assignment. We need to show that for any language L ∈ NP we

have L ≤m SAT.

Let L ∈ NP then, by definition of NP, there exists a DTM M and a polyno-

mial p(n) such that TM (n) ≤ p(n) and on any input x ∈ �∗
0 :

(i) if x ∈ L then there exists y ∈ �∗
0 such that |y| ≤ p(|x |) and M accepts

the input string x y;

(ii) if x �∈ L then for any string y ∈ �∗
0 , M rejects the input string x y.

Our polynomial reduction from L to SAT will take any possible input x ∈ �∗
0

and construct an instance of SAT, say Sx , such that Sx is satisfiable if and

only if x ∈ L . Using the definition of NP this is equivalent to saying that Sx

is satisfiable if and only if there exists a certificate y ∈ �∗
0 , with |y| ≤ p(|x |),

such that M accepts the input x y.

Let the alphabet be � = {σ0, . . . , σl} and the set of states be Ŵ =

{γ0, . . . , γm}. We will suppose that the blank symbol ∗ is σ0, the initial state is

γ0 and the accept state is γ1. We note that if M accepts x y in time p(n), for

some y ∈ �∗
0 , then the only tape squares which can ever possibly be scanned

are those a distance at most p(n) from the starting square. Labelling the tape

squares with the integers in the obvious way, with the starting square labelled

by zero, we note that only the contents of tape squares −p(n), . . . , p(n) can

play a role in M’s computation.

For x ∈ �∗
0 we construct Sx from seven collections of clauses involving the

following variables:

sqi, j,t , sci,t and stk,t .

We think of these variables as having the following meanings (when they are

true):

� sqi, j,t – ‘at time t square i contains symbol σ j ’,
� sci,t – ‘at time t the read-write head is scanning square i’,
� stk,t – ‘at time t the machine is in state γk’.

In order to construct the groups of clauses we will frequently wish to ensure

that exactly one of a collection of variables, say z1, . . . , zs , is true. We use the

48 3 Non-deterministic computation

following notation to show how this can be achieved in CNF

Unique(z1, . . . , zs) =

(

s
∨

i=1

zi

)

∧

(

∧

1≤i< j≤s

(zi ∨ z j)

)

.

It is easy to see that Unique(z1, . . . , zs) is true if and only if exactly one of the

variables z1, . . . , zs is true.

The different collections of clauses in Sx ensure that different aspects of M’s

computation are correct.

(i) The read–write head cannot be in two places at the same time.

At any time t exactly one tape square is scanned by the read–write head:

C1 =

p(n)
∧

t=0

Unique
(

sc−p(n),t , . . . , scp(n),t

)

.

(ii) Each square contains one symbol.

At any time t each tape square contains exactly one symbol:

C2 =

p(n)
∧

i=−p(n)

p(n)
∧

t=0

Unique(sqi,0,t , . . . , sqi,l,t).

(iii) The machine is always in a single state.

At any time t the machine M is in a single state:

C3 =

p(n)
∧

t=0

Unique(st0,t , . . . , stm,t).

(iv) The computation starts correctly.

At time t = 0 the squares −p(n), . . . , −1 are blank, the squares

0, 1, . . . , n contain the string x = σ j0σ j1 · · · σ jn−1
σ jn and the squares

n + 1 up to p(n) can contain anything (since any string in these squares

could be a possible certificate y ∈ �∗
0). Moreover the starting position of

the read–write head is at square zero and the initial state is γ0:

C4 = sc0,0 ∧ st0,0 ∧

n
∧

i=0

sqi, ji ,0 ∧

−1
∧

i=−p(n)

sqi,0,0.

(v) The computation ends in acceptance.

At some time t ≤ p(n) M enters the accept state γ1:

C5 =

p(n)
∨

t=0

st1,t .

3.3 NP-completeness 49

(vi) Only the symbol in the current square can change.

Only the symbol in the current square at time t can be changed at time

t + 1:

C6 =

p(n)
∧

i=−p(n)

l
∧

j=0

p(n)
∧

t=0

(sci,t ∨ sqi, j,t ∨ sqi, j,t+1) ∧ (sci,t ∨ sqi, j,t ∨ sqi, j,t+1).

(vii) The transition function determines the computation.

If at time t the machine is in state γk , the read–write head is scanning

square i , and this square contains symbol σ j then

δ(γk, σ j) = (γp, σq , b)

describes the new state, the new symbol to write in square i and whether

the read–write head moves left or right. (We have b = −1 if it moves left

and b = 1 if it moves right.)

C7 =

p(n)
∧

i=−p(n)

l
∧

j=0

p(n)
∧

t=0

m
∧

k=0

(stk,t ∨ sci,t ∨ sqi, j,t) ∨ (stp,t+1 ∧ sqi,q,t+1 ∧ sci+b,t+1).

(Note that for simplicity we have not written C7 in CNF, it would be trivial to

correct this.)

It is easy to see that if we define Sx to be the Boolean formula given by the

conjunction of all the above collections of clauses we have an instance of SAT.

Moreover it is not too difficult to check that the size of Sx is polynomial in the

input size. (You can check that the number of variables in Sx is O(p(n)2) and

the total number of clauses is O(p(n)3).)

Furthermore Sx is clearly satisfiable if and only if M accepts x y, for some

certificate y ∈ �∗
0 , in time at most p(n). (Given a satisfying assignment for Sx

we can actually read off a good certificate: it will be described by the vari-

ables corresponding to the contents of tape squares n + 1 up to p(n) at time

t = 0.) �

Although the proof of Cook’s theorem is rather involved, once we have this

single ‘natural’ example of an NP-complete language we can proceed to show

that many other languages areNP-complete, using Proposition 3.9. Indeed many

thousands of languages associated to decision problems from many different

areas are now known to be NP-complete.

Recall the decision problem k-SAT from the previous chapter.

k-SAT

Input: a Boolean formula f in CNF with at most k literals per clause.

Question: is f satisfiable?

50 3 Non-deterministic computation

We know that 2-SAT belongs to P (this was Proposition 2.9) so how much

more difficult can 3-SAT be?

Proposition 3.12 3-SAT is NP-complete.

Proof: Clearly 3-SAT ∈ NP since a succinct certificate is a satisfying truth

assignment. Thus, by Proposition 3.9, the proof will be complete if we show

that SAT ≤m 3-SAT. We show this using a method known as local replacement:

we take an instance f of SAT and change it locally so as to give an instance

g(f) of 3-SAT such that g(f) is satisfiable if and only if f is satisfiable.

Given an instance of SAT

f (x1, . . . , xn) =

m
∧

i=1

Ci ,

we leave clauses with at most three literals unchanged. Now consider a clause

Ci = (z1 ∨ z2 ∨ · · · ∨ zk) with at least four literals, so k ≥ 4. Introduce k − 3

new variables y1, . . . , yk−3 and replace Ci by the conjunction of k − 2 new

clauses each containing three literals

Di = (z1 ∨ z2 ∨ y1) ∧ (z3 ∨ y1 ∨ y2) ∧ (z4 ∨ y2 ∨ y3)

∧ · · · ∧ (zk−2 ∨ yk−4 ∨ yk−3) ∧ (zk−1 ∨ zk ∨ yk−3).

We claim that:

(i) the restriction of any satisfying truth assignment for Di to z1, z2, . . . , zk is

a satisfying truth assignment for Ci .

(ii) Any truth assignment satisfying Ci may be extended to a satisfying truth

assignment for Di .

If we can prove these two claims then we will have shown that there is a function

g : �∗
0 → �∗

0 satisfying f ∈ SAT if and only if g(f) ∈ 3-SAT. The clauses in

g(f) are simply those clauses in f which contain less than four literals together

with the k − 2 clauses defined by Di above for each clause Ci in f containing

more than three literals. The fact that g belongs to FP follows from the fact

that a clause with k ≥ 4 literals is replaced by a collection of k − 2 clauses

each containing 3 literals, hence |g(f)| = O(| f |), which is certainly polyno-

mial in | f |. Thus SAT ≤m 3-SAT and so, by Proposition 3.9, 3-SAT is NP-

complete.

We now need to prove the two claims. The first part is easy. Take a satisfying

truth assignment for Di . If (i) does not hold then each z j must be false, but then

y j = 1 for j = 1, . . . , k − 3 and so the last clause in Di is not satisfied. This

contradiction proves (i).

3.3 NP-completeness 51

To see that (ii) is also true suppose we have a satisfying truth assignment

for Ci , so at least one of the z j is true. If z1 = 1 or z2 = 1, then setting each

y j equal to 0 satisfies Di . Similarly if zk−1 = 1 or zk = 1 then setting each y j

equal to 1 satisfies Di . So we may suppose that k ≥ 5 and

l = min{ j | z j = 1}

satisfies 3 ≤ l ≤ k − 2. Setting y j = 1 for 1 ≤ j ≤ l − 2 and y j = 0 for l −

1 ≤ j ≤ k − 3 satisfies Di . Hence (ii) also holds. �

Our next example of an NP-complete problem is from graph theory.

3-COL

Input: a graph G.

Question: is G 3-colourable?

Proposition 3.13 3-COL is NP-complete.

Proof: Clearly 3-COL ∈ NP, since given a colouring of a graph G it is easy

to check that it is legal and that it uses at most 3 colours. We will show

that 3-SAT ≤m 3-COL, using a proof method known as component or gadget

design.

Given an instance of 3-SAT

f (x1, . . . , xn) =

m
∧

i=1

Ci ,

we construct a graph G f with the property that G f is 3-colourable if and only

if f is satisfiable. The graph G f has two vertices for each variable: xi and x i ,

three special vertices T, F and R (we think of these as true, false and red) and

a collection of six vertices corresponding to each clause, say ai , bi , ci , di , ei , fi

for clause Ci .

The edges of G f are as follows:

(i) {xi , x i } for each i = 1, . . . , n (these ensure that we cannot colour xi and

x i with the same colour);

(ii) {R, T }, {T, F}, {F, R} (so vertices T, F and R all receive distinct

colours);

(iii) {xi , R}, {x i , R} for each i = 1, . . . , n (this ensures each literal is coloured

the same colour as vertex T or F and hence is either ‘true’ or ‘false’);

(iv) The edges corresponding to clause Ci = (x ∨ y ∨ z) are {x, ai }, {y, bi },

{ai , bi }, {ai , ci }, {bi , ci }, {ci , di }, {z, ei }, {di , ei }, {di , fi }, {ei , fi }, { fi , F}.

(See Figure 3.2 to see how these work.)

52 3 Non-deterministic computation

F

x

y

z

ai

bi

ci di

ei

fi

Fig. 3.2 Edges corresponding to a clause in the 3-SAT to 3-COL reduction.

We claim that G f is 3-colourable if and only if the formula f has a satisfying

truth assignment.

Suppose first that G f is 3-colourable. Take a 3-colouring, c, of G f using the

colours 0, 1 and ‘red’. The edges of type (ii) ensure that the vertices T, F and R

receive different colours so we may suppose that they are coloured by name,

that is c(F) = 0, c(T) = 1 and c(R) = red. Now the edges of types (i) and (iii)

ensure that for i = 1, . . . , n one of xi and x i is coloured 1 while the other is

coloured 0. This gives an obvious truth assignment for f which we will now

show is satisfying.

Suppose it does not satisfy f , then there is a clause Ci = (x ∨ y ∨ z) in

which each of the literals x, y and z are false, so the corresponding vertices are

coloured 0. However, if we consider Figure 3.2 (and the edges of type (iv)) then

c(x) = c(y) = c(z) = 0 implies that c(ai) = 1 and c(bi) = red or vice-versa.

This then implies that c(ci) = 0 and so c(di) = 1 and c(ei) = red or vice-versa.

This in turn implies that c(fi) = 0, but this is impossible since { fi , F} is an

edge and c(F) = 0. Hence f is satisfied by this truth assignment.

Conversely suppose that f is satisfiable. Take a satisfying truth assignment

and consider the partial colouring of G f that it yields. So we colour the vertices

xi , x i , R, T, F in the obvious way with the colours 0, 1 and red. It remains for

us to show that we can colour the ‘clause vertices’ but this is always possible:

we simply need to check that so long as at least one literal vertex in each clause

has colour 1 then the whole clause component can be coloured in such a way

that clause vertex fi is also coloured 1 (see Exercise 3.5). This shows that G f

is 3-colourable as required.

Hence we have a reduction from 3-SAT to 3-COL. That this is a polynomial

time reduction follows from the fact that G f has 2n + 3 + 6m vertices and

3n + 3 + 11m edges and so |G f | is bounded by a polynomial in | f |. �

3.3 NP-completeness 53

We saw in the previous chapter that for any integer k ≥ 2 the problem k-

CLIQUE belongs to P (see Proposition 2.7). We also noted that the polynomial

time algorithm we gave had running time O(nk) and did not yield a polynomial

time algorithm for the problem CLIQUE. The following result explains why

such an algorithm may be impossible to find.

Proposition 3.14 CLIQUE is NP-complete.

Proof: We will show that SAT ≤m CLIQUE. Given an instance of SAT,

f (x1, . . . , xn) =

m
∧

i=1

Ci

we construct a graph G f with the property that G f has a clique of order m if

and only if f is satisfiable.

The vertices of G f are

V (G f) = {(a, i) | a is a literal in clause Ci }.

The edges are

E(G f) = {{(a, i), (b, j)} | i �= j and a �= b}.

The number of vertices in V (G f) is simply the number of literals in f counted

according to the number of clauses they appear in, so this is O(| f |). The num-

ber of edges is then at most O(|V |2) = O(| f |2). Hence this is a polynomial

time construction. It remains to show that this yields a reduction from SAT to

CLIQUE.

Suppose that f is a satisfiable instance of SAT. Take a satisfying truth assign-

ment for f and for each clause, Ci , choose a literal ai ∈ Ci such that ai is true.

The corresponding vertices of V (G f) form a clique of order m in G f , since if

we take two such vertices (ai , i) and (a j , j) then i �= j and ai , a j are both true

so ai �= a j .

Conversely suppose G f has a clique of order m, then the vertices in the

clique are (a1, 1), . . . , (am, m). Setting each ai to be true gives a satisfying

truth assignment for f , since each clause is now satisfied. This is possible since

whenever we set ai to be true we know that we never need to set ai to also be

true, since otherwise we would have an edge {(ai , i), (ai , j)} with i �= j . �

Exercise 3.5 Complete the proof of Proposition 3.13 by showing that any

partial colouring of the graph in Figure 3.2 in which at least one of the

vertices x , y or z receives colour 1, the others receive colour 0 and vertex

F receives colour 0 can be completed to give a proper 3-colouring of this

graph with the colours 0, 1 and red.

54 3 Non-deterministic computation

3.4 Turing reductions and NP-hardness

One unfortunate restriction of polynomial time reductions is that we have to

convert an instance of one problem into a single instance of another. There

are situations where the ability to solve a problem �1 efficiently will allow

us to solve a problem �2 efficiently, but in the process we need to be able to

solve more than one instance of �1. For example in the proof of Proposition

2.9 we saw that 2-SAT could be solved by repeatedly calling a subroutine for

REACHABILITY.

This more general type of reduction is often very useful and indeed is the

reduction commonly used in practice, such as when an algorithm calls a sub-

routine repeatedly.

Informally a function f is Turing-reducible to a function g if a polynomial

time algorithm for computing g would yield a polynomial time algorithm for

computing f .

To describe Turing-reducibility more precisely we introduce a new type

of Turing machine: a deterministic oracle Turing machine (DOTM). Such a

machine has an extra tape known as the query tape and a special state: γQ, the

query state. There is also an oracle function O associated with the machine.

A DOTM behaves exactly like an ordinary DTM except in two respects. First,

it can read and write to the query tape. Second, when the machine enters the

query state γQ it takes the string y currently written on the query tape and in

a single step replaces it by the string O(y). Note that the time taken to write

the query y on the query tape does count as part of the machine’s computation

time and if the machine wishes to read the string O(y) once it has been written

this also counts towards the computation time, but the machine takes just a

single step to transform the string y into the string O(y). We say that a DOTM

with oracle function O is a DOTM equipped with an oracle for O. The output

of a DOTM is, as before, the contents of the ordinary tape once the machine

halts.

A function f is said to be Turing-reducible to a function g, denoted by

f ≤T g, if f can be computed in polynomial time by a DOTM equipped with

an oracle for g.

A function f is said to be NP-hard if there is an NP-complete language L

such that L ≤T f , where here we identify L with fL , the function corresponding

to the language

fL : �∗
0 → {0, 1}, fL (x) =

{

1, x ∈ L

0, x �∈ L .

3.4 Turing reductions and NP-hardness 55

Thus an NP-hard function is ‘at least as difficult’ as any language in NP in

the sense that a polynomial time algorithm for computing such a function would

yield a polynomial time algorithm for every language in NP. (Simply replace

each call to the oracle for f by a call to a subroutine using the polynomial

time algorithm.) Note that a language can be NP-hard and in particular any

NP-complete language is also NP-hard.

Recall the graph decision problem.

MAX CLIQUE

Input: a graph G and an integer k.

Question: does the largest clique in G have order k?

This problem is clearly at least as difficult as the NP-complete problem CLIQUE

but there is no obvious way to show that it belongs to NP (since there is no

obvious certificate) nor is there an obvious polynomial reduction from CLIQUE

to MAX CLIQUE. However, it is very easy to show that MAX CLIQUE is

NP-hard.

Example 3.15 MAX CLIQUE is NP-hard.

Suppose we had an oracle for MAX CLIQUE then we could solve an instance

of the NP-complete problem CLIQUE in polynomial time using the following

simple algorithm.

Input: a graph G = (V, E) with |V | = n, and an integer k.

Output: true if and only if G has a clique of order k.

Algorithm:

for i = k to n

if MAX CLIQUE is true for (G, i) then output true

next i

output false

Since this algorithm makes at most n − k + 1 calls to the oracle for MAX

CLIQUE and each instance of MAX CLIQUE is of essentially the same size

as the input we have shown that CLIQUE ≤T MAX CLIQUE. Hence MAX

CLIQUE is NP-hard (since CLIQUE is NP-complete).

It is interesting to note that it is currently not known whether the notion

of Turing-reduction is strictly more powerful than polynomial reduction when

considering problems in NP. By this we mean that the collection of languages,

L ∈ NP, for which every other language in NP is Turing-reducible to L is not

known to be different from the class of NP-complete languages.

56 3 Non-deterministic computation

Exercise 3.6 h Let #S AT be the function, mapping Boolean formulae in CNF

to Z+ defined by

#S AT (f) = |{a ∈ {0, 1}n | f (a) = 1}|.

Show that #S AT is NP-hard.

3.5 Complements of languages in NP

If L ⊆ �∗
0 is a language then the complement of L is

Lc =
{

x ∈ �∗
0 | x �∈ L

}

.

If C is a complexity class then the class of complements of languages in C is

denoted by

co-C =
{

L ⊆ �∗
0 | Lc ∈ C

}

.

The most important example of such a class is co-NP, the collection of com-

plements of languages in NP. From our definitions a language L ⊆ �∗
0 belongs

to co-NP if and only if there is a DTM M and a polynomial p(n) such that

TM (n) ≤ p(n) and on any input x ∈ �∗
0 :

(i) if x �∈ L then there exists a certificate y ∈ �∗
0 such that |y| ≤ p(|x |) and

M accepts the input string x y;

(ii) if x ∈ L then for any string y ∈ �∗
0 , M rejects the input string x y.

For a decision problem the complementary language has a very natural inter-

pretation: simply reverse true and false in the output. For example consider the

problem

UNSAT

Input: a Boolean formula f in CNF.

Question: is f unsatisfiable?

Since SAT ∈ NP so UNSAT ∈ co-NP by definition. But what about SAT itself?

To prove that SAT belongs to co-NP we would need to describe a succinct

certificate for a Boolean CNF formula to be unsatisfiable. After a few moments

thought it appears that the only way to convince a sceptical observer that an

instance of SAT is unsatisfiable is by asking the observer to check every possible

truth assignment in turn and verify that none of them are satisfying, but this is

3.5 Complements of languages in NP 57

obviously an exponential time algorithm. It is not known whether SAT belongs

to co-NP, indeed this is an extremely important open problem.

This highlights an important difference between the classes P and NP. In the

case of a language in P we have a polynomial time DTM that can decide L and

hence by reversing the output of our DTM we have a polynomial time DTM for

deciding Lc, thus P = co-P. For NP this is no longer the case. If L ∈ NP we

cannot simply take the DTM given by the definition of NP and produce a new

DTM to show that Lc ∈ NP. The question of whether NP and co-NP are equal

is probably the second most important open problem in complexity theory, after

the P versus NP question.

Our next result explains why there is no obvious certificate to show that

SAT ∈ co-NP: if there were then NP would equal co-NP.

Proposition 3.16 If L is NP-complete and L belongs to co-NP then NP =

co-NP.

Proof: For any two languages A and B it is easy to see that if A ≤m B and

B ∈ co-NP then A ∈ co-NP (by a similar argument to that used in the proof of

Lemma 3.5). Now suppose that L is NP-complete and L ∈ co-NP. If A ∈ NP

then A ≤m L and hence A ∈ co-NP. Thus NP ⊆ co-NP. But now if A ∈ co-NP

then Ac ∈ NP ⊆ co-NP and so A ∈ NP. Hence NP = co-NP. �

We could clearly define the class of co-NP-complete languages analogously to

the class of NP-complete languages and it is easy to check that this is simply

the class of complements of NP-complete languages.

As noted earlier P = co-P so, since P ⊆ NP, we also have P ⊆ NP ∩ co-NP.

Whether or not P is equal to NP ∩ co-NP is another extremely important open

problem.

We noted previously that the language COMPOSITE belongs to NP, since

a succinct certificate for an integer to be composite is a proper, non-trivial

divisor. We now consider the complementary language PRIME, consisting of

binary encodings of prime integers. Given an integer n it is far from obvious

how one would convince a sceptical observer that n is prime in polynomial time.

There is no immediately obvious succinct certificate for primality. The fact that

such a certificate does in fact exist is given by a classical theorem of Pratt (1975).

Theorem 3.17 The language PRIME belongs to NP ∩ co-NP.

In fact far more is true, we have the following outstanding result due to Agrawal,

Kayal and Saxena (2002).

Theorem 3.18 The language PRIME belongs to P.

58 3 Non-deterministic computation

The proof of Theorem 3.18 is not too hard but depends on number theoretic

results which are beyond the scope of this text. We will however give a proof

of the weaker Theorem 3.17 since it contains concepts which are useful for

later chapters and also provides one of the very few examples of a non-trivial

NP-algorithm.

Proof of Theorem 3.17: (For definitions see Appendix 3).

The fact that COMPOSITE ∈ NP implies that PRIME ∈ co-NP so we need

to show that PRIME ∈ NP.

We need to describe a succinct certificate for the fact that an integer n is

prime. If n is a prime then, by Appendix 3, Theorem A3.8, there exists a

primitive root g mod n. So g satisfies gn−1 = 1 mod n but gd �= 1 mod n for

any proper divisor d of n − 1. Conversely suppose g ∈ Z∗
n satisfies

(i) gn−1 = 1 mod n and

(ii) gd �= 1 mod n for any proper divisor d of n − 1,

then Appendix 3, Proposition A3.6 together with (i) above imply that

ord(g)|(n − 1). Moreover condition (ii) above then implies that ord(g) = n − 1.

Finally Appendix 3, Theorem A3.7 says that ord(g)|φ(n) and so (n − 1)|φ(n).

This can only happen if φ(n) = n − 1, in which case n is prime. We will use

this to describe a succinct certificate for the primality of a prime n.

We will not require a certificate for the primality of 2 since our checking

algorithm will recognise this automatically. Let C(n) denote the certificate for

a prime n ≥ 3, C(n) will consist of:

(1) an integer g satisfying gn−1 = 1 mod n but gd �= 1 mod n for any proper

divisor d of n − 1;

(2) a list of primes p1 < p2 < · · · < pr and exponents ei such that

n − 1 =
∏r

i=1 p
ei

i ;

(3) certificates C(p2), . . . , C(pr) for the primality of the odd primes

p2, p3, . . . , pr (note that p1 = 2 since n is odd).

By our earlier argument condition (1) will ensure that n is prime, so we need

to describe a polynomial time checking algorithm that will verify that con-

ditions (1)–(3) actually hold for a particular input n and possible certificate

C(n).

In order to be able to verify (1) efficiently we use the factorisation of n − 1

given in (2) together with the simple fact that if a ∈ Zn and there exists a proper

divisor d of n − 1 such that ad = 1 mod n then there is a divisor of n − 1 of

the form di = (n − 1)/pi such adi = 1 mod n.

We can now describe our checking algorithm.

3.5 Complements of languages in NP 59

Algorithm 3.19 Prime certificate checking.

Input: integer n and possible certificate C(n).

Algorithm:

if n = 2 then output true

if n − 1 �=
∏r

i=1 p
ei

i then output false

if an−1 �= 1 mod n then output false

if a(n−1)/2 = 1 mod n then output false

for i = 2 to r

if a(n−1)/pi = 1 mod n then output false

if C(pi) is not a valid certificate for the primality of pi

then output false

next i

output true.

At this point it should be clear that if n is prime then there exists a certificate

C(n) which this algorithm will accept. While if n is composite then no matter

what certificate is given, Algorithm 3.19 will reject.

In order to complete the proof we need to verify that this is a polynomial

time algorithm. Recall that the input is an integer n and so the input size is

O(log n). Note that the number of prime factors of n counted according to their

multiplicity is at most log n since otherwise their product would be greater than

2log n = n. Hence, with the possible exception of the line checking the certificate

C(pi), each line of Algorithm 3.19 can be executed in polynomial time. We

will measure the time taken by this algorithm by the total number of lines of

the algorithm that are executed; we denote this by f (n). (Note that when a

certificate C(pi) is checked we imagine a new version of the algorithm starts

and count the number of lines executed accordingly.)

Our algorithm ‘knows’ that 2 is prime and so does not need to check a

certificate for this fact, it terminates after a single line and so f (2) = 1.

Now, if n is an odd prime, then we have

f (n) = 5 + 3(r − 1) +

r
∑

i=2

f (pi).

= 5 +

r
∑

i=2

(f (pi) + 3).

Setting g(n) = f (n) + 3 we have

g(n) = 8 +

r
∑

i=2

g(pi).

60 3 Non-deterministic computation

We now use induction on n to show that g(n) ≤ 8 log n. This is true for n = 2

since f (2) = 1 and so g(2) = 4 < 8. Assuming this also holds for all primes

p < n we have

g(n) ≤ 8 +

r
∑

i=2

8 log pi

= 8 + 8 log

(

r
∏

i=2

pi

)

≤ 8 log((n − 1)/2) + 8

= 8 log(n − 1)

< 8 log n.

Hence f (n) ≤ 8 log n − 3 and so Algorithm 3.19 is a polynomial time checking

algorithm and PRIME ∈ NP. �

Example 3.20 Certificate of primality for n = 103.

A certificate for 103 is

C(103) = {5, (2, 1), (3, 1), (17, 1), C(3), C(17)}

C(3) = {2, (2, 1)}, C(17) = {3, (2, 4)}.

This is a certificate for 103 since 5 is a primitive root mod 103, 102 = 21 ×

31 × 171 and C(3), C(17) are certificates for the primality of 3, 17 respectively.

The certificate for 3 is C(3) since 2 is a primitive root mod 3 and 2 = 21. Finally

the certificate for 17 is C(17) since 3 is a primitive root mod 17 and 16 = 24.

Exercise 3.7 a Describe a certificate of primality for 79, as given by Pratt’s

Theorem.

3.6 Containments between complexity classes

The question of whether P and NP are equal has been central to complexity

theory for decades. We know that P ⊆ NP ∩ co-NP ⊆ NP and it is generally

believed that all of these containments are strict.

We have seen plenty of examples of languages that either are NP-complete

or belong to P. Also the complement of any NP-complete language is clearly

co-NP-complete so we could easily give lots of examples of such languages.

Natural examples of languages which are in NP ∩ co-NP but which are not

known to belong to P are relatively scarce. One such example is given by the

following decision problem.

3.6 Containments between complexity classes 61

FACTOR

Input: integers n and k.

Question: does n have a non-trivial factor d , satisfying 1 < d ≤ k?

Clearly FACTOR ∈ NP since an obvious certificate is a factor d satisfying

1 < d ≤ k. We will show that FACTOR ∈ co-NP in Chapter 6. However, it is

not known whether FACTOR ∈ P. If this were true then it would have a very

significant impact on cryptography as we shall see later.

We have yet to see an example of a language that belongs toNP but is believed

neither to be NP-complete nor to belong to co-NP. One possible example is

given by GRAPH ISOMORPHISM described below.

Recall that two graphs G = (VG, EG) and H = (VH , EH) are said to be iso-

morphic if there is a bijection f : VG → VH such that { f (v), f (w)} ∈ EH ⇐⇒

{v, w} ∈ EG . Consider the following decision problem.

GRAPH ISOMORPHISM

Input: two graphs G and H .

Question: are G and H isomorphic?

This clearly belongs to NP since an obvious certificate is an isomorphism, yet

it is not known to be NP-complete. It is also difficult to see how it could belong

to co-NP since the only obvious way to convince a sceptical observer that two

graphs are not isomorphic is to run through all possible bijections between the

vertex sets and check that none of these are isomorphisms.

If P �= NP then the following result due to Ladner (1975) tells us that there

must exist languages in NP which neither belong to P nor are NP-complete.

(Again GRAPH ISOMORPHISM is an obvious candidate language for this

class.)

Theorem 3.21 If P �= NP then there exists a language in NP\P that is not

NP-complete.

One approach to the question of whether P equals NP is the so-called p-

isomorphism conjecture of Berman and Hartmanis (1977) which if proved

would imply that P �= NP.

Two languages over possibly different tape alphabets, A ⊆ �∗
0 and B ⊆ �∗

0,

are p-isomorphic if there exists a function f such that:

(i) f is a bijection between �∗
0 and �∗

0;

(ii) x ∈ A ⇐⇒ f (x) ∈ B;

(iii) both f and f −1 belong to FP.

Conjecture 3.22 All NP-complete languages are p-isomorphic.

62 3 Non-deterministic computation

EXP

NP

co-NP

P

PSPACE

Fig. 3.3 Containments between complexity classes.

Theorem 3.23 If the p-isomorphism conjecture is true then P �= NP.

Proof: If P = NP then all languages in P are NP-complete, but there are finite

languages in P and these cannot be p-isomorphic to infinite languages. �

Figure 3.3 summarises what we currently know about the complexity classes

introduced so far. Note that this picture may ‘collapse’ in many different ways.

In particular if P = NP or NP = co-NP or indeed P = PSPACE, then this

picture would look extremely different.

3.7 NP revisited – non-deterministic Turing machines

Until now we have carefully avoided defining non-deterministic Turing

machines, since the most important non-deterministic complexity class, NP,

can be defined easily without their use. However, for completeness we intro-

duce them now.

3.7 NP revisited – non-deterministic Turing machines 63

A non-deterministic Turing machine or NTM is defined similarly to an accep-

tor DTM with one important difference. Instead of a transition function it has a

transition relation, so that at any point in a computation there are a number of

possible actions it can take and it chooses one of these non-deterministically.

Recall that the transition function of a DTM is a single valued function

δ : Ŵ × � → Ŵ × � × {←, →}.

For an NTM we have a transition relation

� ⊆ (Ŵ × �) × (Ŵ × � × {←, →}) .

Given the content of the tape square currently being scanned, together with

the current state of the machine, an NTM has a choice of possible actions, one

of which is chosen non-deterministically. More precisely if N is an NTM;

the machine is currently in state γc and the content of the current square

being scanned is σc, then at the next step N chooses a possible action non-

deterministically from the set

�(γc, σc) = {(γn, σn, mn) | ((γc, σc), (γn, σn, mn)) ∈ �}.

This determines what to write in the current square; the new state for N and the

movement of the read-write head.

Given x ∈ �∗
0 a computation on input x is the result of starting the machine

with x written on the input tape and then applying the transition relation repeat-

edly, halting if a halting state is reached. (Note that for any given input x there

will typically be more than one possible computation.)

We say that an input x ∈ �∗
0 is accepted by an NTM if there is a computation

on input x that halts in state γT. Such a computation is called an accepting

computation.

We say that an NTM is halting if for every input x ∈ �∗
0 and every possible

computation on input x the machine halts after finitely many steps. From now

on we will consider only halting NTMs.

For an NTM, M , we define the language accepted by M to be

L(M) = {x ∈ �∗
0 | x is accepted by M}.

Similarly to the case for a DTM a step in a computation is simply the result of

applying the transition relation once. For x ∈ L(M) we define the time taken to

accept x to be the number of steps in the shortest accepting computation, that

is

tM (x) = min{t | there is an accepting computation of M on input x that

halts in t steps}.

64 3 Non-deterministic computation

The time complexity of M is then defined to be

TM (n) = max{t | ∃x ∈ L(M) such that |x | = n and tM (x) = t}.

The set of possible computations of an NTM on a particular input can easily

be represented by a tree. A single possible computation is a path from the root

to a leaf. Assuming that the machine is halting every possible computation is

finite and so the tree is also finite. In this case the time taken to accept an input

x is simply the length of the shortest path in the tree that ends in the state γT.

It is intuitively obvious that a language L is accepted by a polynomial time

NTM if and only if it belongs to NP. The key idea is to consider the computation

tree of a polynomial time NTM. At any node in the tree there are a finite number

of choices for the transition to the next stage. Hence a possible certificate string

y ∈ �∗
0 for an input x ∈ �∗

0 is simply a list of branch choices telling us which

branch of the computation tree to follow at each stage of the computation. If

x ∈ L then there is a polynomial length path in the tree leading to the state γT

and this path can be described by a polynomial length string y. While if x �∈ L

then no path leads to the accepting state and so no string y can describe an

accepting path in the tree. Hence we have the following theorem.

Theorem 3.24 The class of languages accepted by polynomial time NTMs is

equal to NP.

Problems

3.1h Consider the following decision problem.

PARTITION

Input: a finite set of positive integers A.

Question: is there a partition of A = B ∪̇ C such that

∑

b∈B

b =
∑

c∈C

c?

Show that PARTITION ≤m SUBSET SUM. (SUBSET SUM is defined

on page 43.)

3.2h If A ⊆ �∗
0 then Ac = {x ∈ �∗

0 | x �∈ A}. Show that A ≤m B implies

Ac ≤m Bc.

3.3h Show that if P = NP then there is a polynomial time algorithm which,

when given a SAT formula f , will output ‘unsatisfiable’ if f is unsat-

isfiable or a satisfying truth assignment if one exists.

3.4h Show that k-COL is NP-complete for k ≥ 4.

3.5h Given a graph G = (V, E) and an integer k ≥ 1 a vertex cover of order k

is a collection of k vertices, W ⊆ V , such that any edge e ∈ E contains

3.7 NP revisited – non-deterministic Turing machines 65

at least one vertex from W . Show that the problem VERTEX COVER

defined below is NP-complete.

VERTEX COVER

Input: a graph G and an integer k.

Question: does G have a vertex cover of order k?

3.6h Show that the following subproblem of 3-COL is still NP-complete.

3-COL MAX DEGREE 4

Input: a graph G in which every vertex has degree at most 4.

Question: is G 3-colourable?

3.7a Does the following decision problem belong to P or NP?

GOLDBACH

Input: an even integer n ≥ 2.

Question: do there exist prime numbers p and q such that n = p + q?

3.8 The following decision problems are not known to belong to NP. In

each case explain why it is difficult to produce a suitable certificate.

(a) UNSAT

Input: a Boolean CNF formula f .

Question: is f unsatisfiable?

(b) MAX CLIQUE

Input: a graph G and an integer k.

Question: is k the maximum order of a clique in G?

3.9h Prove that MAX CLIQUE belongs to PSPACE.

3.10b Consider the following problem.

TRAVELLING SALESMAN

Input: a list of cities c1, . . . , cn and an n × n symmetric matrix of pos-

itive integers giving the distances between each pair of cities.

Output: a shortest tour of the cities, where a tour is an ordering of

the cities and the length of a tour is the sum of the distances between

consecutive cities (including the distance from the last back to the first).

Assuming that HAMILTON CYCLE (defined on page 43) is NP-

complete show that TRAVELLING SALESMAN is NP-hard.

3.11h The chromatic number of a graph G is defined by

χ (G) = min{k | G is k-colourable}.

Show that computing χ (G) is NP-hard.

3.12h Prove that if A ≤T B and B ≤T C then A ≤T C .

66 3 Non-deterministic computation

3.13h Two languages are said to be Turing equivalent if they are Turing

reducible to each other. Prove that any two NP-complete languages

are Turing equivalent.

3.14h Prove that if A ∈ co-NP and B is NP-complete then A ≤T B.

3.15a Let NPC denote the class of NP-complete languages and let NPTC

denote the set of languages in NP which are complete under Turing

reductions. Prove that NPC ⊆ NPTC. Is the containment strict?

Further notes

The notions of both polynomial and Turing reducibility were familiar tools in

recursive function theory, as was the notion of nondeterminism. The class of

languages NP was introduced in 1971 by S. Cook who proved that SAT was

NP-complete under Turing reducibility. Karp (1972) then used SAT to show

that 21 other natural problems were NP-complete under polynomial reductions.

These included VERTEX COVER, CLIQUE, HAMILTON CYCLE and k-COL

(k ≥ 3).

Independently Levin (1973) developed a similar theory using tilings rather

than satisfiability, with the result that Theorem 3.10 is sometimes referred to as

the Cook–Levin theorem.

It should also be noted that several authors/texts use Turing reducibility

rather than polynomial reducibility in their definition of NP-completeness. It

is also interesting to note that Gödel may have been the first to consider the

complexity of an NP-complete problem as, according to Hartmanis (1989), he

asked von Neumann in a (1956) letter how many Turing machine steps are

needed to verify that a Boolean formula is true.

The book by Garey and Johnson (1979) contains a vast array of NP-complete

problems from a wide range of disciplines.

The proof that PRIMES is in P by Agrawal, Kayal and Saxena (2002)

aroused widespread interest in both cryptographic and complexity communi-

ties. Whether it will lead to a fast (practical) deterministic algorithm for testing

primality is a question of ongoing research interest.

Both PRIMES and GRAPH ISOMORPHISM were discussed in Cook’s

original 1971 paper and it is intriguing to consider whether there will one day

be a proof that the latter is also in P.

It is now more than twenty years since Luks (1982) showed that testing graph

isomorphism for graphs of degree at most d is polynomial for any fixed d . (The

algorithm of Luks is polynomial in the number of vertices but exponential in d .)

4

Probabilistic computation

4.1 Can tossing coins help?

Suppose we are trying to solve a decision problem � and we have an algorithm

which, when given an input x ∈ �∗
0 , either outputs ‘true’ or ‘probably false’.

Assuming that whenever it outputs ‘true’ this is correct, while whenever it

outputs ‘probably false’ the probability of this being correct is at least 1/2 can

we use this algorithm to decide �?

With the correct notion of probability the answer to this question for all

practical purposes is ‘yes’. However, before formalising this concept of a prob-

abilistic (or randomised) algorithm we consider a simple example.

Let Z[x1, . . . , xn] denote the set of polynomials in n variables with integer

coefficients. Given two such polynomials f, g ∈ Z[x1, . . . , xn], can we decide

efficiently whether they are identical?

We have to be careful about how the polynomials are presented so that we

know how to measure the input size. For example the following polynomial

f (x1, . . . , x2n) = (x1 + x2)(x3 + x4) · · · (x2n−1 + x2n),

could clearly be encoded using the alphabet � = {∗, 0, 1, x, (,), +, −} with

input size O(n log n). However, if we expanded the parentheses this same poly-

nomial would then seem to have input size O(n2n log n).

The degree of a polynomial is simply the maximum number of variables,

counted according to their multiplicities, occuring in a single term when the

polynomial is expressed in its expanded form. So the above example has degree

n while

g(x1, x2, x3) = x2
1 x3 + x2

2 x2
3 + x3

3 ,

has degree 4.

67

68 4 Probabilistic computation

Deciding whether two polynomials f and g are identical is clearly equivalent

to deciding whether f − g is identically zero so we consider this problem

instead.

NON-ZERO POLY

Input: an integer polynomial f ∈ Z[x1, . . . , xn].

Question: is f not identically zero?

Consider the following ‘probabilistic algorithm’ for this problem. We write

a ∈R A to mean that ‘a is chosen uniformly at random from the set A’, while

a1, . . . , an ∈R A denotes the fact that ‘a1, . . . , an are chosen independently and

uniformly at random from A’.

Algorithm 4.1 Probabilistic algorithm for NON-ZERO POLY.

Input: an integer polynomial f ∈ Z[x1, . . . , xn] of degree k.

Algorithm:

choose a1, . . . , an ∈R {1, 2, . . . , 2kn}

if f (a1, . . . , an) �= 0

then output true

else output false.

Intuitively this algorithm should work very well. If f is not identically zero then

we will only output false if we accidentally choose a root of f , which seems

rather unlikely. We can always repeat this procedure, and if it ever outputs

‘true’ then we know that f is not identically zero (since we have found a point

at which it is non-zero). However, if after repeating this a hundred times with

independent random choices for a1, . . . , an we always obtain the answer ‘false’

then we can be almost certain that this is correct.

An interesting point to note is that Algorithm 4.1 is essentially a probabilistic

version of a ‘search’ algorithm, similar to the algorithm presented for SAT at

the beginning of Chapter 3 (Algorithm 3.1). The important difference is that

we do not try every possible certificate. Instead this algorithm simply chooses

one possible certificate at random and checks to see if it is good. The intuitive

reason why this works is that if the input polynomial is not identically zero then

there are lots of good certificates and the probability that a randomly chosen

certificate is good will be high. On the other hand if the input polynomial is

identically zero then there are no good certificates and so the algorithm will

always correctly answer ‘false’.

The property of having lots of good certificates will allow us to develop

efficient probabilistic algorithms, such as the one given above, for other decision

problems.

4.1 Can tossing coins help? 69

Our next result formalises the intuition behind Algorithm 4.1, telling us that

if we choose integer values in the range {1, . . . , N } then the probability of error

is small.

Theorem 4.2 Suppose f ∈ Z[x1, . . . , xn] has degree at most k and is not iden-

tically zero. If a1, . . . , an are chosen independently and uniformly at random

from {1, . . . , N } then

Pr[f (a1, . . . , an) = 0] ≤
k

N
.

Proof: We use induction on n. For n = 1 the result holds since a polynomial of

degree at most k in a single variable has at most k roots. So let n > 1 and write

f = f0 + f1x1 + f2x2
1 + · · · + ft x

t
1,

where f0, . . . ft are polynomials in x2, x3, . . . xn; ft is not identically zero and

t ≥ 0. If t = 0 then f is a polynomial in n − 1 variables so the result holds. So

we may suppose that 1 ≤ t ≤ k and ft is of degree at most k − t .

We let E1 denote the event ‘ f (a1, . . . , an) = 0’ and E2 denote the event

‘ ft (a2, . . . , an) = 0’. Now

Pr[E1] = Pr[E1 | E2] Pr[E2] + Pr[E1 | not E2] Pr[not E2]

≤ Pr[E2] + Pr[E1 | not E2].

Our inductive hypothesis implies that

Pr[E2] = Pr[ft (a2, . . . , an) = 0] ≤
(k − t)

N
,

since ft has degree at most k − t .

Also

Pr[E1 | not E2] ≤
t

N
.

This is true because a1 is chosen independently of a2, . . . , an , so if a2, . . . , an

are fixed and we know that ft (a2, . . . an) �= 0 then f is a polynomial in x1 that

is not identically zero. Hence f , as a polynomial in x1, has degree t and so has

at most t roots.

Putting this together we obtain

Pr[f (a1, . . . , an) = 0] ≤
k − t

N
+

t

N
≤

k

N

as required. �

Returning to Algorithm 4.1 for NON-ZERO POLY, Theorem 4.2 implies

that if the input f ∈ Z[x1, . . . , xn] is not identically zero then with probability

70 4 Probabilistic computation

at least 1/2 it will output ‘true’, while if it is identically zero then it will always

output ‘false’.

One could argue that being right half of the time is not much good, but we

can simply repeat the procedure as follows.

Input: a polynomial f ∈ Z[x1, . . . , xn] of degree k.

Algorithm:

for i = 1 to 100

choose a1, . . . , an ∈R {1, . . . , 2kn}

if f (a1, . . . , an) �= 0 then output true

next i

output false.

This comes much closer to the ordinary idea of an algorithm, since if it ever

outputs ‘true’ then it is certainly correct, while if it outputs ‘false’ then its

probability of error is at most 1/2100. Such a procedure, known as a probabilistic

algorithm, is clearly extremely useful.

Note that it is also efficient (assuming that we have a source of randomness

and that evaluating the polynomial at a1, . . . , an can be achieved in polynomial

time). Such a procedure is known as a probabilistic polynomial time algorithm.

One obvious problem with such a probabilistic algorithm is that it requires

randomness. In previous chapters we considered the computational resources

of time and space. When evaluating a probabilistic algorithm’s efficiency we

must also take into account the amount of randomness it requires. We measure

this by the number of random bits used during its computation. We will assume

(perhaps rather unrealistically) that we have a source of independent random

bits, such as the outcomes of a series of independent tosses of a fair coin.

In many probabilistic algorithms we will require more than simple random

bits. For instance, in our previous example we needed to choose integers uni-

formly at random from an interval. In our next example we consider one possible

way of doing this using random bits.

Example 4.3 Choosing an integer a ∈R {0, . . . , n} using random bits.

We assume that we are given an infinite sequence of independent random bits.

To choose a random integer a ∈R {0, . . . , n} we use the following procedure

(we suppose that 2k−1 ≤ n < 2k),

read k random bits b1, . . . , bk from our sequence.

If a = b1 · · · bk belongs to {0, . . . , n} (where a is encoded in binary)

then output a

else repeat.

4.2 Probabilistic Turing machines and RP 71

On a single iteration the probability that an output is produced is

Pr[a ∈ {0, . . . , n}] =
n + 1

2k
>

1

2
.

Thus the expected number of iterations before an output occurs is less than two

and, with probability at least 1 − 1/2100, an output occurs within a hundred

iterations.

Moreover when an output occurs it is chosen uniformly at random from

{0, . . . , n}. Since if m ∈ {0, . . . , n} and we let a j denote the value of a chosen

on the j th iteration of this procedure then

Pr[Output is m] =

∞
∑

j=1

Pr[a j = m and a1, . . . , a j−1 ≥ n + 1]

=
1

2k

∞
∑

j=0

(

1 −
n + 1

2k

) j

=
1

n + 1
.

In the next section we will introduce the necessary definitions to formalise the

idea of efficient probabilistic computation.

4.2 Probabilistic Turing machines and RP

In Chapter 2 we said that a problem is tractable if a polynomial time algorithm

for its solution exists. We were careful not to insist that such an algorithm must

be deterministic. To clarify this we now take the following view.

� A problem is tractable if and only if there exists a probabilistic polynomial

time algorithm for its solution.

In order to give a formal definition of a probabilistic polynomial time algorithm

we introduce a new type of Turing machine.

A probabilistic Turing machine or PTM is a DTM with an extra tape, called

the coin-tossing tape, which contains an infinite sequence of uniformly dis-

tributed independent random bits. This tape has a read-only head called the

coin-tossing head. The machine performs computations similarly to a DTM

except that the coin-tossing head can read a bit from the coin-tossing tape in a

single step.

The transition function now depends not only on the current state and the

symbol in the current square of the ordinary tape, but also on the random bit in

the square currently scanned by the coin-tossing head. The transition function

72 4 Probabilistic computation

Control
unit

Coin-tossing head

Ordinary tape Read–write head

Coin-tossing tape

0 1 0 0 0** * * * * * *0 1 1 0 1

1 1 0 1 1 1 110 0

Fig. 4.1 A probabilistic Turing machine.

now tells the machine four things: the new state; the new symbol to write in the

current square of the ordinary tape; the movement left or right of the read–write

head and the movement left or right of the coin-tossing head. See Figure 4.1 for

a picture of such a machine. (Note that since the coin-tossing tape is infinite in

only one direction the coin-tossing head is not allowed to move off the end of

the tape.)

If the underlying DTM is an acceptor DTM then the PTM is an acceptor

PTM.

Since the computation of a PTM, M , on an input x ∈ �∗
0 depends not only

on x but also on the random bits used during its computation, its running time

is a random variable: tM (x). Indeed, whether a PTM halts on a particular input

is itself a random variable.

We say that a PTM is halting if it halts after finitely many steps on every

input x ∈ �∗
0 , irrespective of the random bits used in its computation. The time

complexity of a halting PTM, M , is TM : N → N defined by

TM (n) = max
{

t | there exists x ∈ �n
0 such that Pr[tM (x) = t] > 0

}

.

We will say that a PTM, M , has polynomial running time if there exists a

polynomial p(n) such that TM (n) ≤ p(n), for every n ∈ N. So by definition any

PTM with polynomial running time is halting.

We will sometimes consider PTMs that may not be halting. For such a PTM,

M , the time complexity is not defined, however, we can still define its expected

running time to be ETM : N → N such that

ETM (n) = max
{

t | there exists x ∈ �n
0 such that E[tM (x)] = t

}

.

It is important to note that this is still a measure of ‘worst-case complexity’,

since for a particular input size n it measures the expected time taken to halt

for the ‘worst input’ of length n.

4.2 Probabilistic Turing machines and RP 73

A PTM, M , has polynomial expected running time if and only if there exists

a polynomial p(n) such that ETM (n) ≤ p(n), for every n ∈ N.

We can now define the complexity class of languages decidable in ran-

domised polynomial time or RP. A language L belongs to RP if and only if

there is a PTM, M , with polynomial running time such that on any input x ∈ �n
0 :

(i) if x ∈ L then Pr[M accepts x] ≥ 1/2;

(ii) if x �∈ L then Pr[M accepts x] = 0.

Returning to the probabilistic algorithm for NON-ZERO POLY given on

page 68. it is easy to see that this could be implemented on a PTM. More-

over if the input is the zero polynomial then the algorithm always rejects and so

condition (ii) above is satisfied. Also, using Theorem 4.2, if the input is a non-

zero polynomial then with probability at least 1/2 the algorithm accepts. Hence

condition (i) above is also satisfied. The only question remaining is whether the

algorithm runs in polynomial time.

We introduce a restricted version of this language for which this is certainly

true.

NON-ZERO POLY DET

Input: an n × n matrix A = (ai j) with entries in {0, ±1}.
Question: if C = (ci j) is the n × n matrix with entries ci j = ai j (xi − x j), is the

polynomial f (x1, . . . , xn) = det(C) not identically zero?

The input size in this case is clearly O(n2) and the degree of the polynomial is

O(n). So Algorithm 4.1 requires us to compute the determinant of an n × n inte-

ger matrix. This can be achieved in polynomial time (since evaluating a deter-

minant can be achieved in polynomial time) hence NON-ZERO POLY DET

belongs to RP.

An alternative way of thinking about RP is that it consists of those languages

L with the property that if x ∈ L then the probability that a random polynomial

length string is a succinct certificate of this fact is at least 1/2; while if x ∈ L

then no such certificate exists. Hence we have the following result.

Theorem 4.4 The following containments hold

P ⊆ RP ⊆ NP.

Proof: The containment P ⊆ RP is trivial since a DTM is simply a PTM which

never tosses any coins.

To see that RP ⊆ NP let L ∈ RP. Then there exists a PTM M and a poly-

nomial p(n) such that if x ∈ L then

Pr[M accepts x] ≥
1

2
,

74 4 Probabilistic computation

while if x �∈ L then

Pr[M accepts x] = 0.

So if x ∈ L then there certainly exists at least one string y ∈ �∗
0 of length at

most p(|x |) such that M accepts x using y as the random bits on its coin-tossing

tape. Moreover if x �∈ L then no such string y exists.

Thus we can construct a DTM which on input x y mimics the computation

of M with input x and ‘random bits’ given by y. By the above argument this

machine shows that L ∈ NP and so RP ⊆ NP. �

If a language belongs to RP then we can reduce our probability of mistakenly

rejecting a correct input by repeating the computation. Our next result shows

that by repeating the computation polynomially many times we can reduce the

probability of an error significantly.

Proposition 4.5 If L ∈ RP and p(n) ≥ 1 is a polynomial then there exists a

polynomial time PTM, M, such that on input x ∈ �n
0 ;

(i) if x ∈ L then Pr[M accepts x] ≥ 1 − 2−p(n);

(ii) if x �∈ L then Pr[M accepts x] = 0.

Proof: Exercise 4.1 �

We proved in Chapter 3 that PRIME ∈ NP ∩ co-NP (see Theorem 3.17). In

the next section we will prove that COMPOSITE ∈ RP and hence PRIME ∈
co-RP, the complement of RP. Although it is now known that PRIME ∈ P this

result is not simply of theoretical or historical interest. Probabilistic algorithms

are still by far the most practical way to test for primality.

Exercise 4.1 h Prove Proposition 4.5.

4.3 Primality testing

In cryptography we often need to choose large random prime numbers. This

can be seen as two distinct problems. First, choosing a large integer at random

and, second, testing whether or not the chosen integer is prime. Given a source

of randomness it is straightforward to choose a random integer with exactly

k bits. Thus we will concentrate on the latter problem. So far we have only

seen an extremely naive exponential time deterministic algorithm for primality

testing which is essentially useless (Algorithm 2.4). A major breakthrough

in primality testing was the discovery of efficient probabilistic algorithms

4.3 Primality testing 75

in the 1970s. One of these is the Miller–Rabin algorithm which we present

below.

Since 2002 we have also had available the striking fact that there exists a

deterministic polynomial time algorithm due to Agrawal, Kagal and Saxena.

However, currently this still has running time O(log6 n) and so for practical

purposes the Miller–Rabin algorithm is more useful.

Recall the complementary problem to PRIME.

COMPOSITE

Input: integer n.

Question: is n composite?

Theorem 4.6 COMPOSITE ∈ RP.

The proof of this relies on the following lemma. For an integer n ≥ 1 we

denote the set of non-zero residues mod n by

Z+
n = {a ∈ Zn | a �= 0}.

Lemma 4.7 Let n ≥ 3 be odd and a ∈ Z+
n . Write n − 1 = 2km, with m odd. If

either of the following two conditions hold then n is composite:

(i) an−1 �= 1 mod n;

(ii) an−1 = 1 mod n, am �= 1 mod n and none of the values in the sequence

am, a2m, a4m, . . . , a2k m are congruent to −1 mod n.

Proof: If p is prime then a p−1 = 1 mod p for any a ∈ Z+
p , by Fermat’s Little

Theorem (Appendix 3, Theorem A3.11). Hence if (i) holds then n is composite.

If (ii) holds then let b be the last integer in the sequence am, a2m, . . . that is

not congruent to 1 mod n. Then b2 = 1 mod n but b �= ±1 mod n. Hence b + 1

and b − 1 are non-trivial factors of n so n is composite. �

If a ∈ Z+
n satisfies condition (i) of Lemma 4.7 then it is called a Fermat witness

for the compositeness of n, while if it satisfies condition (ii) of Lemma 4.7 it is

called a Miller witness.

Many composite integers have lots of Fermat witnesses. Unfortunately there

exist some which have very few. For a composite integer n we define the set of

Fermat witnesses for n to be

Fn = {a ∈ Z+
n | a is a Fermat witness for n}.

Note that if a ∈ Z+
n is not a Fermat witness then an−1 = 1 mod n and so there

exists k ∈ Z such that

an−1 − kn = 1.

76 4 Probabilistic computation

Now, since gcd(a, n) divides the left-hand side of this equation, we must have

gcd(a, n) = 1. Hence every a ∈ Z+
n that is not coprime with n is a Fermat

witness for n.

A composite integer n is a Carmichael number if the only Fermat witnesses

for n are those a ∈ Z+
n which are not coprime with n. The smallest example of

such a number is 561 = 3 · 11 · 17.

The following result tells us that if we could ignore Carmichael numbers

then primality testing would be extremely simple. For details of the basic group

theory we will require, see Appendix 3.

Proposition 4.8 If n is composite but not a Carmichael number then |Fn| >

n/2.

Proof: Recall that the set of integers less than and coprime to an integer n form

a multiplicative group Z∗
n = {1 ≤ a < n | gcd(a, n) = 1}.

Consider the set B = Z∗
n\Fn , so

B = {a ∈ Z∗
n | an−1 = 1 mod n}.

This is easily seen to be a subgroup of Z∗
n since

(i) if a, b ∈ B then (ab)n−1 = an−1bn−1 = 1 · 1 = 1 mod n, so ab ∈ B;

(ii) if a ∈ B then (a−1)n−1 = (an−1)−1 = 1−1 = 1 mod n, hence a−1 ∈ B;

(iii) 1n−1 = 1 mod n, so 1 ∈ B.

Hence B is a subgroup of Z∗
n . Then, since n is composite but not a Carmichael

number, there exists b ∈ Z∗
n\B. So B is a proper subgroup of Z∗

n and hence

by Lagrange’s theorem (Appendix 3, Theorem A3.1) |B| is a proper divisor of

|Z∗
n|. Hence |B| ≤ (n − 1)/2 and so

|Fn| = |Z+
n | − |B| > n/2. �

In the light of this result we can give a probabilistic polynomial time algorithm

which can almost test for primality.

Algorithm 4.9 The Fermat ‘Almost Prime’ Test.

Input: an integer n ≥ 2.

Algorithm:

choose a ∈R Z+
n

if an−1 = 1 mod n

then output ‘prime’

else output ‘composite’.

4.3 Primality testing 77

This algorithm almost solves our problem. If the input is prime it certainly

outputs ‘prime’. While if the input is composite, but not a Carmichael number,

then Proposition 4.8 implies that it will output ‘composite’ with probability at

least a half. Since this algorithm is also clearly polynomial time we would have

a very simple primality testing algorithm if Carmichael numbers did not exist.

Unfortunately they not only exist, there are infinitely many such numbers as the

following theorem, due to Alford, Granville and Pomerance (1994), implies.

Theorem 4.10 If C(x) denotes the number of Carmichael numbers less than or

equal to x then C(x) > x2/7, in particular there are infinitely many Carmichael

numbers.

Despite this fact some implementations of cryptosystems which require random

primes actually use Algorithm 4.9. The justification for this being that since

there are far more primes than Carmichael numbers of a given size we would

be incredibly unlucky to choose a Carmichael number by mistake.

We wish to take a more rigorous approach and so require an algorithm

which can also recognise Carmichael numbers. In Lemma 4.7 (ii) we described

a second type of witness for the compositeness of a composite number: the

Miller witness. The Miller–Rabin primality test makes use of both Fermat and

Miller witnesses.

Algorithm 4.11 The Miller–Rabin Primality Test.

Input: an odd integer n ≥ 3.

Algorithm:

choose a ∈R Z+
n

if gcd(a, n) �= 1 output ‘composite’

let n − 1 = 2km, with m odd

if am = 1 mod n output ‘prime’

for i = 0 to k − 1

if am·2i = −1 mod n then output ‘prime’

next i

output ‘composite’.

Theorem 4.12 The Miller–Rabin primality test is a probabilistic polynomial

time algorithm. Given input n

(i) if n is prime then the algorithm always outputs ‘prime’;

(ii) if n is composite then

Pr[the algorithm outputs ‘composite’] ≥
1

2
.

78 4 Probabilistic computation

Hence COMPOSITE ∈ RP or equivalently PRIME ∈ co-RP.

Proof: The Miller–Rabin test is clearly a probabilistic polynomial time algo-

rithm since it involves basic operations such as multiplication, calculation of

greatest common divisors and exponentiation mod n all of which can be per-

formed in polynomial time.

To see that (i) holds suppose the input n is prime. Then for any a ∈ Z+
n

we have gcd(a, n) = 1 and so the algorithm cannot output ‘composite’ at line

2. The only other way it could output ‘composite’ is if am �= 1 mod n and

am·2i �= −1 mod n for any 0 ≤ i ≤ k − 1. In which case either an−1 �= 1 mod n

and so a is a Fermat witness for n, or an−1 = 1 mod n and so a is a Miller witness

for n. But by Lemma 4.7 this is impossible, since n is prime.

It remains to prove (ii). We consider two cases.

Case 1 The input n is composite but not a Carmichael number.

Suppose the algorithm outputs ‘prime’. Then either am = 1 mod n or am·2i =
−1 mod n, for some 0 ≤ i ≤ k − 1. In either case an−1 = 1 mod n, so a is not

a Fermat witness for n. However, by Proposition 4.8 we know that |Fn| > n/2

and so

Pr[algorithm outputs ‘composite’] ≥
1

2
.

Case 2 The input n is a Carmichael number.

We consider two sub-cases depending on whether or not n is a prime power.

(Recall that n is a prime power if n = pk , with p prime and k ≥ 1.)

Case 2a The input n is not a prime power.

Define

t = max
{

0 ≤ i ≤ k − 1 | ∃a ∈ Z∗
n such that am·2i = −1 mod n

}

and

Bt =
{

a ∈ Z∗
n | am·2t = ±1 mod n

}

.

Note that if a �∈ Bt then the algorithm outputs ‘composite’. Since if the algorithm

outputs ‘prime’ then either am = 1 mod n or, by the definition of t , there exists

0 ≤ i ≤ t such that am·2i = −1 mod n. In either case this would imply that

am·2t = ±1 mod n.

So it will be sufficient to prove that |Bt | ≤ |Z∗
n|/2 to complete the proof in

this case.

4.3 Primality testing 79

Now Bt is a subgroup of Z∗
n since the following conditions hold

(i) if a, b ∈ Bt then (ab)m·2t = am·2t

bm·2t = (±1) · (±1) = ±1 mod n, so

ab ∈ Bt ;

(ii) if a ∈ Bt then (a−1)m·2t = (am·2t

)−1 = (±1)−1 = ±1 mod n, so a−1 ∈ Bt ;

(iii) 1m·2t = 1 mod n, so 1 ∈ Bt .

If we can show that Bt �= Z∗
n then we will be done, since then Lagrange’s

Theorem (Appendix 3, Theorem A3.1) implies that |Bt | ≤ |Z∗
n|/2.

The definition of t implies that there exists a ∈ Z∗
n such that am·2t =

−1 mod n. As n ≥ 3 is not a prime power, we can factorise n as n = cd , with 3 ≤
c, d < n and gcd(c, d) = 1. The Chinese Remainder Theorem (Appendix 3,

Theorem A3.5) implies that there exists b ∈ Z+
n satisfying

b = a mod c,

b = 1 mod d.

These equations in turn imply that b ∈ Z∗
n . However b �∈ Bt , since

bm·2t = am·2t = −1 mod c,

bm·2t = 1m·2t = 1 mod d,

imply that bm·2t �= ±1 mod n. Hence Bt �= Z∗
n .

Case 2b The input n is a prime power and a Carmichael number. No Carmichael

number is a prime power (see Exercise 4.3 for a proof of this). Hence the proof

is complete. �

This result shows that COMPOSITE ∈ RP or equivalently that PRIME ∈
co-RP. There also exists a probabilistic primality test due to Adleman and

Huang (1987) which shows that PRIME ∈ RP. Hence PRIME ∈ RP ∩ co-RP.

As we shall see in the next section any language in RP ∩ co-RP actually has a

probabilistic algorithm with polynomial expected running time which has zero

probability of making an error. However, we now know that PRIME ∈ P, which

implies all of the aforementioned results.

Exercise 4.2a Describe the computation of the Miller–Rabin primality test on

input n = 561 if the random value a ∈R Z+
561 that is chosen is a = 5. In

particular does it output ‘prime’ or ‘composite’.

Exercise 4.3a Show that if n is a Carmichael number then n is not a prime

power.

80 4 Probabilistic computation

4.4 Zero-error probabilistic polynomial time

If L ∈ RP then there exists a polynomial time PTM for L which is always

correct when it accepts an input but which will sometimes incorrectly reject an

input x ∈ L . Similarly if L ∈ co-RP then there exists a polynomial time PTM

for L which is always correct when it rejects an input but which will sometimes

incorrectly accept an input x �∈ L .

Formally a language L belongs to co-RP iff there is a PTM, M , with poly-

nomial running time such that on any input x ∈ �∗
0 :

(i) if x ∈ L then Pr[M accepts x] = 1;

(ii) if x �∈ L then Pr[M accepts x] ≤ 1/2.

When we introduced PTMs we defined the notion of time complexity only

for machines that halt on all inputs regardless of the random bits on the coin-

tossing tape. Thus if there is a probabilistic polynomial time algorithm for a

language L which has zero probability of making an error then L ∈ P. (Simply

fix any particular sequence of random bits of the correct polynomial length and

use these to decide any input.) However, if we do not insist that our PTM is

halting then we can still consider algorithms whose expected running times are

polynomial and which have zero error probability. Such algorithms are known

as Las-Vegas algorithms and can be extremely useful, particularly in situations

where it is essential that the answer is correct.

A language L is decidable in zero-error probabilistic polynomial time or

equivalently belongs to ZPP iff there exists a PTM, M , with polynomial

expected running time such that for any input x ∈ �∗
0 :

(i) if x ∈ L then Pr[M accepts x] = 1;

(ii) if x �∈ L then Pr[M accepts x] = 0.

It is not too difficult to show that this class is actually the same as

RP ∩ co-RP.

Proposition 4.13 The classes ZPP and RP ∩ co-RP are equal.

Proof: If L ∈ ZPP then there exists a PTM M with polynomial expected running

time p(n) such that M has zero error probability. Hence if M halts on input

x ∈ �n
0 then it is always correct (as any finite computation uses finitely many

random bits and so has strictly positive probability of occurring).

Form a new PTM N for L by simulating M on input x ∈ �n
0 for time

2p(n) and rejecting if M does not halt. Clearly this is a polynomial time

PTM and it has zero probability of accepting x �∈ L . Moreover, by Markov’s

4.5 Bounded-error probabilistic polynomial time 81

Inequality (Appendix 4, Proposition A4.3), we know that the probability that any

random variable exceeds twice its expected value is at most 1/2. Thus if x ∈ L

then

Pr[M accepts x in time at most 2p(n)] ≥ 1/2.

Hence L ∈ RP. To see that L ∈ co-RP we simply build another PTM which is

identical to N except that it accepts if M does not halt in time 2p(n).

Conversely if L ∈ RP ∩ co-RP then there exist polynomial time PTMs M

and N such that if M accepts it is always correct and if N rejects it is always

correct. Moreover for any x ∈ �n
0 if both machines are run on input x the

probability that one of these events occurs is at least 1/2. So given x ∈ �n
0

simply run M and N repeatedly in turn on input x until M accepts or N

rejects. This gives a PTM with zero-error probability and expected running

time 2(pM (n) + pN (n)), where pM (n) and pN (n) are polynomial bounds on

the running times of M and N respectively. Hence L ∈ ZPP. �

Unfortunately it is very hard to find any examples of languages in ZPP\P.

Indeed this class may well turn out to be empty, although proving this would

be a major new result.

4.5 Bounded-error probabilistic polynomial time

For a language to belong to RP or co-RP there must exist a probabilistic poly-

nomial time algorithm which makes one-sided errors. A more natural type of

algorithm to ask for is one that can make errors on any input (either x ∈ L

or x �∈ L) but which is ‘usually correct’. Thus we will consider algorithms

which have a reasonable chance of accepting an input from the language,

while also having a reasonable chance of rejecting an input not from the

language.

Note that for any language L we can construct a polynomial time PTM, M ,

such that on any input x ∈ �∗
0 :

(i) if x ∈ L then Pr[M accepts x] ≥ 1/2;

(ii) if x �∈ L then Pr[M accepts x] ≤ 1/2.

We simply let M read a single random bit and accept x iff this is 1. (Equivalently

toss a coin and accept x iff the coin lands on heads.)

Such an algorithm is obviously useless, however, if we could make the chance

of accepting a correct input significantly higher and the chance of accepting

an incorrect input significantly lower this would be useful. This leads to the

82 4 Probabilistic computation

class of languages decidable in bounded-error probabilistic polynomial time or

BPP.

A language L belongs to BPP iff there is a PTM, M , with polynomial running

time such that on any input x ∈ �∗
0 :

(i) if x ∈ L then Pr[M accepts x] ≥ 3/4;

(ii) if x �∈ L then Pr[M accepts x] ≤ 1/4.

We should note that the values 3/4 and 1/4 in this definition are unimportant.

Any constants c > 1/2 and (1 − c) < 1/2 could be used in their place, indeed

as we shall see they need not be constants at all.

Exercise 4.4 Show that replacing 3/4 and 1/4 by 2/3 and 1/3 respectively in

the definition of BPP does not change the class.

An important property of BPP (that follows trivially from its definition) is that

it is closed under complements, that is BPP = co-BPP.

Our next result says that if a language L belongs to BPP then we can

essentially decide L in polynomial time. The key idea is that we can boost our

probability of being correct by repeating the algorithm and taking the majority

answer.

Proposition 4.14 If L ∈ BPP and p(n) ≥ 1 is a polynomial then there exists

a polynomial time PTM, M, such that on input x ∈ �n
0 :

(i) if x ∈ L then Pr[M accepts x] ≥ 1 − 2−p(n);

(ii) if x �∈ L then Pr[M accepts x] ≤ 2−p(n).

Thus the probability that M makes a mistake is at most 2−p(n).

Proof: If L ∈ BPP then there exists a PTM N with polynomial running time

such that if x ∈ �∗
0 then

Pr[N makes a mistake on input x] ≤
1

4
.

Our new PTM, M works as follows. Let t ≥ 1, then given x ∈ �n
0 , M simulates

2t + 1 independent computations of N on input x and takes the majority vote.

That is if N accepts more times than it rejects then M accepts, otherwise M

rejects.

By symmetry we need only consider the case x ∈ L . We need to show

that for a suitable choice of t , the probability that M rejects x is at

most 2−p(n).

4.6 Non-uniform polynomial time 83

Now M rejects x if and only if N accepts x at most t times during the 2t + 1

computations. Hence

Pr[M rejects x] ≤
t

∑

k=0

(

2t + 1

k

) (

3

4

)k (

1

4

)2t+1−k

≤
(t + 1)

4

(

2t + 1

t

) (

3

16

)t

≤ 22t+1 (t + 1)

4

(

3

16

)t

≤ (t + 1)

(

3

4

)t

.

Thus setting t = 8p(n) this probability is less than 2−p(n). Hence M needs to

simulate N polynomially many times and, since N had polynomial running

time, so M also has polynomial running time and the result holds. �

Note that this result can be interpreted as saying that a language in BPP is

effectively decidable in polynomial time. This justifies our view of BPP as the

class of ‘tractable languages’.

We have the following obvious containments between complexity classes

that follow directly from the definitions, Theorem 4.4 and Proposition 4.13.

Proposition 4.15 P ⊆ ZPP = RP ∩ co-RP ⊆ RP ⊆ RP ∪ co-RP ⊆ BPP.

With our new plethora of complexity classes comes a whole range of open

questions.

(i) Is P = ZPP?

(ii) Is RP = co-RP?

(iii) Is RP = NP ∩ co-NP?

(iv) Is BPP ⊆ NP?

(v) Is NP ⊆ BPP?

(vi) Is RP ∪ co-RP = BPP?

4.6 Non-uniform polynomial time

Thus far we have always considered the task of finding a single algorithm or

Turing machine to solve a computational problem, but what happens if we are

allowed to use a collection of machines, one for each input length? Theoretically,

given any language L and input length n ≥ 1, there exists a deterministic Turing

84 4 Probabilistic computation

machine Mn that decides L for all inputs of length n. If the input alphabet has

size s then there are sn possible inputs of length n and using a sufficiently

large number of states Mn can have a ‘look-up’ table of all inputs of length

n that belong to L and hence accept x ∈ �n
0 iff x ∈ L . Moreover it could do

this in time O(n) in the following way. Let Mn have 3 + (sn+1 − 1)/(s − 1)

states: a starting state, an accept state, a reject state and one state for each string

of length at most n. As Mn reads the input x ∈ �n
0 its state is given by the

string that it has read so far. Once it has read the whole input its transition

function can tell it whether to accept or reject depending on whether x belongs

to L .

Such a collection of machines would be useless in practice, since the ‘size’

of Mn would be exponential in n. If we wish to use different machines for

different input lengths we need to place restrictions on the size of the machines,

so first we need a definition of the size of a Turing machine.

The size of a Turing machine is the amount of space required to describe it.

In order to describe a Turing machine we need to specify the tape alphabet �,

the set of states Ŵ and the transition function δ. If |�| = s and |Ŵ| = t then the

transition function may be described by giving a quintuple for each possible

state/symbol combination thus the size of such a machine is s + t + 5st .

The obvious restriction to place on a machine if it is to decide inputs of

length n from a language L in an efficient manner is to insist that its size and

running time are polynomially bounded. Formally we say that a language L

is decidable in non-uniform polynomial time if there is an infinite sequence of

DTMs M1, M2, . . . and a polynomial p(n) such that:

(i) the machine Mn has size at most p(n);

(ii) the running time of Mn on any input of size n is at most p(n);

(iii) for every n and every x ∈ �n
0 the machine Mn accepts x iff x ∈ L .

We denote this class by P/poly. Clearly P ⊂ P/poly. (In fact the containment is

strict since P/poly contains non-recursive languages, in other words languages

which are not decidable by any single Turing machine irrespective of their

running time.)

It is easy to check that the following result holds.

Proposition 4.16 If any NP-complete language belongs to P/poly then NP ⊂
P/poly.

We can now show how powerful this new deterministic complexity class really

is.

Theorem 4.17 BPP ⊂ P/poly.

4.6 Non-uniform polynomial time 85

Proof: The key idea in this proof is that if L ∈ BPP then for a fixed input

length n there exists a polynomial time PTM and a single polynomial length

sequence of coin-tosses such that all inputs of length n are correctly decided by

this machine using this single sequence of coin-tosses. This allows us to build

a deterministic Turing machine to decide inputs of length n, with polynomial

size and running time.

Let L ∈ BPP. Without loss of generality we may suppose that �0 = {0, 1}

so there are exactly 2n distinct input strings of length n. Now, by Proposition

4.14, there exists a polynomial time PTM, M , such that for every x ∈ �n
0 :

(i) if x ∈ L then Pr[M accepts x] > 1 − 2−n;

(ii) if x �∈ L then Pr[M accepts x] < 2−n .

We may assume that on all inputs of length n the machine M uses exactly q(n)

coin-tosses, for some polynomial q(n).

For input x ∈ {0, 1}n and coin-toss sequence y ∈ {0, 1}q(n) let

M(x, y) =
{

1, M accepts x using the coin-toss sequence y,

0, M rejects x using the coin-toss sequence y.

Also let

L(x) =
{

1, x ∈ L ,

0, x �∈ L .

For any fixed input x ∈ {0, 1}n the set of ‘good’ coin-toss sequences for x is

GC (x) =
{

y ∈ {0, 1}q(n) | M(x, y) = L(x)
}

.

Properties (i) and (ii) of the machine M imply that

|GC (x)| > 2q(n)(1 − 2−n). (4.1)

For a sequence of coin-tosses y ∈ {0, 1}q(n) the set of ‘good’ inputs for y is

G I (y) = {x ∈ {0, 1}n | M(x, y) = L(x)}.

The following identity must hold, since both sides of this equation count the

number of pairs (x, y) ∈ {0, 1}n+q(n) such that M(x, y) = L(x),

∑

x∈{0,1}n

|GC (x)| =
∑

y∈{0,1}q(n)

|G I (y)|.

Using equation (4.1) we have

∑

y∈{0,1}q(n)

|G I (y)| > 2q(n)+n(1 − 2−n).

86 4 Probabilistic computation

Function f (x, y)

0 0

1 1

x x

¬x NOT 1 + x

Fig. 4.2 The 4 elements of B1, the Boolean functions on one variable.

Hence there must exist a coin-toss sequence z ∈ {0, 1}q(n) satisfying |G I (z)| >

2n − 1. But then |G I (z)| = 2n and so M decides all inputs of length n correctly

using the single coin-toss sequence z.

We can now construct a DTM Mn that on input x ∈ {0, 1}n simulates the

computation of M with the coin-toss sequence z. This machine clearly decides

all inputs of length n correctly and has polynomial size and running time. Hence

L ∈ P/poly and so BPP ⊂ P/poly. �

Exercise 4.5 h Prove that if any NP-complete language L belongs to P/poly

then NP ⊂ P/poly. (Proposition 4.16.)

4.7 Circuits

Recall that a Boolean function is a function f : {0, 1}n → {0, 1}. We will denote

the collection of Boolean functions on n variables by

Bn = { f | f : {0, 1}n → {0, 1}}.

It is a straightforward counting exercise to check that there are exactly 22n

functions in Bn . We list the 4 elements of B1 in Figure 4.2 and the 16 elements

of B2 in Figure 4.3. The algebraic expressions for these functions, such as

1 + x + xy for x → y, are evaluated mod 2.

Examining Figure 4.3 we have 16 different functions in B2 but we can easily

express all of these functions in terms of {¬, ∨, ∧}. For example

x ↔ y = (¬x ∨ y) ∧ (¬y ∨ x).

In fact if we are given a general Boolean function f ∈ Bn we can easily express

f using these three functions.

A Boolean function f is said to be in disjunctive normal form (or DNF) if it

is written as

f (x1, . . . , xn) =
m

∨

k=1

Ck,

4.7 Circuits 87

Function f (x, y)

0 0

1 1

x x

y y

¬x 1 + x

¬y 1 + y

x ∧ y AND xy

x ∨ y OR xy + x + y

x∧y NAND 1 + xy

x∨y NOR 1 + x + y + xy

x → y IF-THEN 1 + x + xy

¬(x → y) x + xy

y → x 1 + y + xy

¬(y → x) y + xy

x ↔ y IFF 1 + x + y

¬(x ↔ y) XOR x + y

Fig. 4.3 The 16 elements of B2, the Boolean functions on two variables.

where each clause Ck is a conjunction of literals. For example, of the following

two formulae the first is in DNF while the second is not

(x1 ∧ x3 ∧ ¬x7) ∨ (¬x4 ∧ x2) ∨ (x5 ∧ x6),

(x3 ∧ x5) ∨ (x7 ∧ x4) ∧ (¬x6 ∨ x5) ∧ (x3 ∧ x2).

Theorem 4.18 Any Boolean function can be written in disjunctive normal form.

Proof: If f ∈ Bn is unsatisfiable then

f (x1, . . . , xn) = x1 ∧ ¬x1.

So suppose that f ∈ Bn is satisfiable. We simply consider each satisfying truth

assignment in turn. For a variable xi , we write x1
i for xi and x0

i for ¬xi . Let

S f = {(a1, . . . , an) | f (a1, . . . , an) = 1}.

Then

f (x1, . . . , xn) =
∨

(a1,...,an)∈S f

n
∧

i=1

x
ai

i .

This follows directly from the fact that the DNF formula on the right hand side

is true iff one of its conjunctions is true and a literal x
ai

i is true iff xi = ai . �

88 4 Probabilistic computation

Thus the set of functions {¬, ∨, ∧} can be used to construct any Boolean func-

tion. But is this a minimal set with this property? No. Since

x ∨ y = ¬(¬(x ∨ y)) = ¬(¬x ∧ ¬y)

we can express all Boolean functions using {¬, ∧}, similarly we could use

{¬, ∨}. These are both minimal sets with this property. We call such a set a

basis for Bn .

In fact there is a smaller basis for Bn .

Proposition 4.19 All Boolean functions can be expressed in terms of ∧, that is

{∧} is a basis for Bn .

Proof: To show this it is sufficient to describe ¬ and ∧ in terms of ∧ since we

already know that {¬, ∧} is a basis for Bn . Now

¬x = x∧x and x ∧ y = (x∧y)∧(x∧y).
�

For a set B of Boolean functions a circuit over B is an acyclic directed graph

with the following properties:

(i) any vertex v with degin(v) = 0 is labelled by a variable (these are the

inputs);

(ii) every other vertex v is labelled by a function b ∈ B with degin(v)

variables (these are the gates);

(iii) there is a special output vertex w with degout(w) = 0.

This is best understood by considering an example such as the circuit over

B = {¬, ∨, ∧} given in Figure 4.4.

A gate computes its output by reading the inputs from its in-edges and

applying the Boolean function with which it is labelled to these inputs. It then

sends the resulting value along all its out-edges.

A circuit C computes a Boolean function f ∈ Bn iff it has the property that

when the inputs are x1 = a1, x2 = a2, . . . , xn = an then the value contained in

the output vertex is f (a1, a2, . . . , an).

The size of a circuit C is the number of gates it contains (that is the number

of vertices in the underlying graph excluding the input and output vertices), we

denote this by |C |. The depth of a circuit C , denoted by d(C), is the length of a

longest directed path through the gates (that is the length of a longest directed

path in the underlying graph from an input vertex to the output vertex). So the

example in Figure 4.4 has size 4 (since it has 4 gates: ∨, ¬, ∨, ∧) and depth 4

(the longest directed path through the circuit contains 4 edges).

4.7 Circuits 89

x1 x2
x3 x4

∨

∨

∧

¬

f

Fig. 4.4 A circuit computing f (x1, x2, x3, x4) = (x1 ∨ x2) ∧ (¬x3 ∨ x4).

For any Boolean function f and basis B we define the circuit complexity of

f with respect to B by

CB(f) = min{|C | | C is a circuit over B which computes f }

and the depth of f with respect to B by

DB(f) = min{d(C) | C is a circuit over B which computes f }.

In the special case B = {¬, ∨, ∧} we omit the subscript B, and write C(f) and

D(f) to denote this.

Circuits can be used to decide languages in the following way. Assume that

inputs are encoded in binary, then a family of circuits {Cn}∞n=1 decides L iff for

every x ∈ {0, 1}n the circuit Cn outputs true iff x ∈ L .

We can now define the class of languages decidable by polynomial size

circuits to be

C-poly = {L ⊂ {0, 1}∗ | there is a polynomial p(n) and a family of

circuits, {Cn}∞n=1 which decide L , satisfying |Cn| ≤ p(n)}.

The reader may have noticed that the class C-poly has certain similarities with

the class P/poly: namely a different circuit/machine is used for each input size

and the size of the circuit/machine is polynomially bounded. It is not too difficult

to see that C-poly ⊆ P/poly since given a family of polynomial size circuits

we can easily construct a family of polynomial sized DTMs with the required

properties. It is less obvious that the converse also holds.

90 4 Probabilistic computation

Theorem 4.20 If L ⊆ �∗
0 is decided by a DTM in time T (n) then there exists

a family of circuits {Cn}∞n=1 such that Cn decides L on inputs of size n and

|Cn| = O(T 2(n)).

Proof: Suppose that L ⊆ �∗
0 is decided by a DTM M in time T (n). Fix n ≥ 1,

we will describe a circuit Cn that decides L on inputs of size n and satisfies

|Cn| = O(T 2(n)).

The DTM M is described by its set of states Ŵ, its tape alphabet � and its

transition function δ. Each state can be encoded as a binary string of length

g = ⌊log |Ŵ|⌋ + 1, while every symbol can be encoded as a binary string of

length s = ⌊log |�|⌋ + 1. We can then encode its transition function δ as a

circuit, D, of constant size, with g + s inputs and g + s + 2 outputs. The outputs

describe the new state, new symbol and whether the head should move left or

right.

Since M takes at most T (n) steps it cannot use tape squares other than

−T (n) up to T (n). We will have T (n) layers in our circuit, one for each possible

time during the computation. Each layer will consist of 2T (n) + 1 component

circuits, one for each possible tape square. The components are all identical,

except those on the last layer and are constructed from the circuit D for δ.

Let Bi,t be the component circuit corresponding to square i on layer t . Then

Bi,t is joined to Bi−1,t+1, Bi,t+1 and Bi+1,t+1. The component Bi,t takes three

types of input.

(i) Three single bits from Bi−1,t−1, Bi,t−1 and Bi+1,t−1 telling it if the

read–write head moved from square i ± 1 to i at time t − 1 or if the

computation has finished and the read–write head is stationary at square i

at time t − 1.

(ii) Three binary strings corresponding to the state of the machine, from

Bi−1,t−1, Bi,t−1 and Bi+1,t−1. (If the read–write head is scanning square i

at time t then by using the single bits corresponding to the head

movement the circuit knows which of these is in fact the current state

of M .)

(iii) A binary string corresponding to the symbol contained in square i at time

t from Bi,t−1.

The computation of Bi,t depends firstly on the single bits telling it whether or not

the read–write head is currently scanning square i . If this is the case then it com-

putes the value of δ using the circuit D with the current state (correctly chosen

from the three possible states it is given) and the current symbol in square i .

The component Bi,t then passes the new state to Bi−1,t+1, Bi,t+1 and Bi,t+1.

It also passes a single bit to Bi−1,t+1, Bi,t+1 and Bi+1,t+1 corresponding to

4.7 Circuits 91

D
Bi,t

Bi−1,t+1 Bi,t+1 Bi+1,t+1

head state symbol

Fig. 4.5 Part of a circuit simulating a Turing machine.

whether the head moved left, right or remained stationary. Finally it passes the

new symbol written in square i to Bi,t+1.

If the head is not currently scanning square i then Bi,t simply passes on the

three states it received to Bi−1,t+1, Bi,t+1 and Bi+1,t+1, it also passes them zeros

to tell them that the head is not moving into any of these squares from square i .

Finally it passes its symbol to Bi,t+1. (Part of the circuit is depicted in Figure 4.5.)

If M ever reaches a halting state then the component circuits simply pass

the halting state on without trying to evaluate δ until the final layer is reached.

The final layer simply checks which square the read-write head is scanning and

reads off the final state of M .

Clearly this circuit will decide L on inputs of length n assuming that x is

encoded as binary and given to the first layer together with the starting state of

M and starting head position.

Moreover the size of this circuit is O(T 2(n)), since it is constructed from

T (n)(2T (n) + 1) component circuits, each of constant size. �

With a little more work, one can prove the following corollary.

Corollary 4.21 The classes C-poly and P/poly are equal.

(This follows from the proof of Theorem 4.20 if we also show that the circuit D

which computes the transition function of M can be implemented as a circuit

of size O(|M | log |M |).)

Theorem 4.17 then implies the following result.

Corollary 4.22 Any language in BPP has polynomial size circuits.

92 4 Probabilistic computation

Exercise 4.6 h Prove by induction on n that there are exactly 22n

Boolean

function on n variables.

4.8 Probabilistic circuits

Having previously considered probabilistic Turing machines it is natural to ask

whether randomness can help in circuit computations.

A probabilistic circuit is an ordinary circuit with some extra inputs y1 . . . , ym

which are chosen independently and uniformly at random from {0, 1}. We say

that a probabilistic circuit C computes a function f : {0, 1}n → {0, 1} iff for

all x1, . . . , xn ∈ {0, 1}

Pr[C(x1, . . . , xn, y1, . . . , ym) = f (x1, . . . , xn)] ≥ 3/4.

We say that a family of probabilistic circuits {Cn}∞n=1 decides a language

L ⊆ {0, 1}∗ iff Cn computes the function fL ,n : {0, 1}n → {0, 1} defined

by

fL ,n(x) =
{

1, if x ∈ L,

0, otherwise.

It is not too difficult to see that Theorem 4.17 can be extended to show

that probabilistic circuits are essentially no more powerful than ordinary

circuits.

Theorem 4.23 If f : {0, 1}n → {0, 1} is computed by a probabilistic circuit C

then it is computed by a deterministic circuit D with |D| = O(n|C |).

Proof: We first construct a probabilistic circuit Q that has probability greater

than 1 − 2−n of computing f (x1, . . . , xn) correctly. This can be done by taking

16n + 1 copies of C and computing the majority of their answers. The analysis

of this is identical to the proof of Proposition 4.14. This new circuit clearly has

size O(n|C |).
By the same argument as that used in the proof of Theorem 4.17 there must

exist a random sequence y for which Q computes every value of f (x1, . . . , xn)

correctly. Fixing this random sequence we obtain a deterministic circuit which

computes f (x1, . . . , xn) and has size O(n|C |). �

Corollary 4.24 Any language which can be decided by polynomial size

probabilistic circuits can be decided by polynomial size deterministic

circuits.

4.9 The circuit complexity of most functions 93

4.9 The circuit complexity of most functions

We saw in Theorem 4.18 that any Boolean function can be written in disjunctive

normal form. This allows us to give an upper bound on the circuit complexity

of any f ∈ Bn .

Corollary 4.25 Any Boolean function f ∈ Bn satisfies C(f) = O(n2n).

Proof: We can construct a circuit for f ∈ Bn of size O(n2n) by using its dis-

junctive normal form. �

Our next result, due to Shannon (1949), shows that in fact ‘most’ Boolean

functions have large circuit complexity (unfortunately the proof uses the so-

called probabilistic method and so does not provide any concrete examples of

such functions).

Theorem 4.26 Almost every function in Bn satisfies C(f) ≥ 2n/n, that is

lim
n→∞

|{ f ∈ Bn | C(f) ≤ 2n/n}|
|Bn|

= 0.

Proof: We need to show that if En is defined by

En = { f ∈ Bn | C(f) ≤ 2n/n},

then

lim
n→∞

|En|
|Bn|

= 0.

Note firstly that the number of Boolean functions on n variables is 22n

.

The result will follow from simply counting the number of circuits with n

inputs and of size s, which we denote by C(n, s).

A circuit (over {∨, ∧, ¬}) with n inputs and s gates is specified by describing:

(i) the function from {∨, ∧, ¬} at each gate;

(ii) the one or two inputs to each gate;

(iii) the choice of the special output gate.

There are three choices for the function at each gate. The number of possible

inputs to a gate is
(

n+s

2

)

(the input could be from one or two of any of the other

s − 1 gates and n inputs). Finally the number of choices for the output gate is

s so

C(n, s) <
s
(

3
(

n+s

2

))s

s!
.

94 4 Probabilistic computation

The factor s! in the denominator is present because the order of the gates is

unimportant.

For s ≥ n and n large we can use Stirling’s formula (see Appendix 1) which

tells us that s! ≥ (s/e)s . We also have s1/s ≤ 2 so

C(n, s) ≤
(

3e(n + s)2

s

)s

≤
(

3es
(n

s
+ 1

)2
)s

.

Since s ≥ n we have

C(n, s) ≤ (12es)s .

Moreover there are at least as many circuits with s + 1 gates as there are with

s gates so

C(n, s) ≤ C(n, s + 1).

Hence if N = 2n/n, n is large and s ≤ N then C(n, s) ≤ (12eN)N . Thus

|En| =
N

∑

s=1

C(n, s) ≤ N (12eN)N = (12e)N N N+1.

So, since |Bn| = 22n = 2nN , we have

log

(

|En|
|Bn|

)

≤ N log(12e) + n − (N + 1) log n,

which tends to −∞ as n tends to infinity. Therefore

lim
n→∞

|En|
|Bn|

= 0.
�

In fact this lower bound essentially gives the true circuit complexity of functions

in Bn as shown by the following result due to Lupanov (1958).

Theorem 4.27 If f ∈ Bn then C(f) = (1 + o(1)) 2n

n
.

4.10 Hardness results

Given that the circuit complexity of most Boolean functions is far from polyno-

mial one might hope that we could find examples of problems in NP with non-

polynomial circuit complexity. Unfortunately the largest known lower bound

for the circuit complexity of a problem in NP is in fact linear.

However, if we restrict the gates of our circuits to belong to M2 = {∧, ∨}
then hardness results can be proved. A circuit is said to be monotone if it contains

4.10 Hardness results 95

only gates from M2. A Boolean function is monotone iff it is computable by a

monotone circuit.

Consider the Boolean function CLIQUEk,n associated to the decision prob-

lem CLIQUE. This has
(

n

2

)

inputs corresponding to the possible edges of a graph

on n vertices and is equal to 1 iff this input graph contains a clique of order k.

Since the presence of a clique of order k can be checked by a circuit of size
(

k

2

)

we know that

C(CLIQUEk,n) = O

((

k

2

)(

n

k

))

.

Razborov (1985) in a significant breakthrough obtained a super-polynomial

lower bound for the complexity of a monotone circuit for CLIQUEk,n . This was

then improved to the following result by Alon and Boppana (1987).

Theorem 4.28 If k ≤ n1/4 then every monotone circuit computing CLIQUEk,n

contains n�(
√

k) gates.

The proof of this result is beyond the scope of this text.

We end this chapter with an intriguing result relating two fundamental ques-

tions in complexity theory. Let E be the following complexity class

E = {L ⊆ �∗
0 | there is a DTM M which decides L and c > 0, such that

TM (n) = O(2cn)}.

Theorem 4.29 If there exists a language L ∈ E and ǫ > 0 such that any family

of circuits {Cn}∞n=1 computing L satisfies |Cn| ≥ 2ǫn for n large then BPP = P.

If no such language exists then P �= NP.

Problems

4.1a Show that the value 1/2 in the definition of RP can be replaced by

any other constant 0 < c < 1 without changing the class. What if we

replace 1/2 by 1/p(n), where p(n) is a polynomial satisfying p(n) ≥ 2

and n = |x |?
4.2a If languages A and B both belong to RP do the following languages

belong to RP?

(a) A ∪ B.

(b) A ∩ B.

(c) A�B.

4.3a Repeat the previous question with RP replaced by

(a) BPP.

(b) ZPP.

96 4 Probabilistic computation

4.4a Suppose Bob wishes to choose a large (≃ 2512) prime and rather than

using the Miller–Rabin test he uses the following algorithm,

repeat forever

choose odd n ∈R {2512 + 1, . . . , 2513 − 1}

p ← true

i ← 0

while p is true and i < 200

i ← i + 1

choose a ∈R Z+
n

if an−1 �= 1 mod n then p ← false

end-while

if p is true output n

end-repeat.

Suppose there are P primes and C Carmichael numbers in the range

{2512 + 1, . . . , 2513 − 1}.
(a) If the algorithm outputs n, give a lower bound for the probability

that n is either prime or a Carmichael number.

(b) Give a lower bound for the number of values of n you expect the

algorithm to choose before it finds one which it outputs?

(c) If P = 2503 and C = 2150 give an upper bound for the probability

that the output n is not prime.

4.5h Consider the following probabilistic algorithm for 2-SAT.

Input: 2-SAT formula f (x1, x2, . . . , xn) =
∧m

j=1 C j .

Algorithm:

choose a1, a2, . . . , an ∈R {0, 1}
while f (a1, a2, . . . , an) �= true

choose j ∈R {k | Ck is not satisfied by a1, . . . , an}
choose a literal xi ∈R C j

change the value of ai

end-while

output ‘satisfiable’.

Show that if the input f is satisfiable then the expected number of rep-

etitions of the while loop in this algorithm before it outputs ‘satisfiable’

is O(n2).

4.6h Show that a language L belongs to BPP iff there exists a polynomial,

p(n) ≥ 3, and a polynomial time PTM, M , such that on input x ∈ �n
0 :

(a) if x ∈ L then Pr[M accepts x] ≥ (1/2) + (1/p(n));

4.10 Hardness results 97

(b) if x �∈ L then Pr[M accepts x] ≤ (1/2) − (1/p(n)).

4.7h A perfect matching of a graph G = (V, E) is a set of edges M such that

each vertex of G is contained in exactly one edge of M . Consider the

matrix A = (ai j) given by

ai j =







xi j , if i is adjacent to j and i < j,

−x j i , if i is adjacent to j and i > j,

0, otherwise.

(Each xi j is an indeterminate.)

(a) Prove that G has a perfect matching iff det A �= 0.

(b) Show that this leads to an RP algorithm to decide if a graph has a

perfect matching.

4.8 Show that if A, B are languages, B ∈ P/poly and A ≤m B then A ∈
P/poly.

4.9 Prove that if L ∈ P/poly then �∗
0\L ∈ P/poly and hence co-P/poly =

P/poly.

4.10h Prove that the disjunctive normal form of the Boolean function x1 ⊕
x2 ⊕ · · · ⊕ xn contains n2n−1 literals.

4.11h The threshold function Tm(x1, . . . , xn) is defined by

Tm(x1, . . . , xn) =
{

1, if
∑n

i=1 xi ≥ m,

0, otherwise.

Show, by construction, that for n ≥ 2 the circuit complexity of

T2(x1, . . . , xn) is less than 3n. (In fact one can also show that the circuit

complexity of T2(x1, . . . , xn) is at least 2n − 3.)

4.12 Let f ∈ Bn . Use the fact that

f (x1, . . . , xn) = (x1 ∧ f (1, x2, . . . , xn)) ∨ (x1 ∧ f (0, x2, . . . , xn)),

to show that C(f) = O(2n).

4.13 We say that a Boolean function f ∈ Bn has property M iff

(x1, . . . , xn) ≤ (y1, . . . , yn) =⇒ f (x1, . . . , xn) ≤ f (y1, . . . , yn),

where (x1, . . . , xn) ≤ (y1, . . . , yn) iff for each i we have xi ≤ yi .

Show that a Boolean function can be computed by a monotone circuit

iff it has property M .

Further notes

The first probabilistic algorithm in the sense that we use in this chapter, seems to

be due to Berlekamp (1970). This was an algorithm for factoring a polynomial

98 4 Probabilistic computation

modulo a prime p. It has running time bounded by a polynomial in deg(f)

and log p, and has probability at least 1/2 of finding a correct factorisation

of f . However, the real importance of this type of algorithm became much

more widely appreciated with the announcement in 1974 of the primality test

of Solovay and Strassen (1977). This was the predecessor of the Miller–Rabin

test described here and is slightly less efficient than the latter.

Theorem 4.2 is due to Schwartz (1979) and also independently to Zippel

(1979).

The seminal paper on the theory of probabilistic Turing machines is that of

Gill (1977). In this he introduced the complexity classes RP, BPP and ZPP, as

well as the much larger class PP probabilistic polynomial time.

Shannon (1949) was the first to consider measuring the complexity of a

function by its circuit size. Good treatments of circuit complexity can be found

in the books of Dunne (1988) and Wegener (1987). The class P/poly was

introduced by Karp and Lipton (1982).

Adleman (1978) proved the very striking result that any language in RP

can be decided by a circuit with polynomial complexity. Its generalisation to

languages in BPP given in Theorem 4.17 is due to Bennett and Gill (1981).

Theorem 4.20 showing how to efficiently simulate a DTM by a circuit is due

to Schnorr (1976) and Fischer and Pippenger (1979).

The first part of Theorem 4.29 is due to Impagliazzo and Wigderson (1997)

while the second is due to Kabanets (see Cook (2000)).

For a good introduction to the theory and application of probabilistic algo-

rithms see the book of Motwani and Raghavan (1995).

5

Symmetric cryptosystems

5.1 Introduction

As described in Chapter 1, a symmetric cryptosystem is one in which both Alice

and Bob share a common secret key K and both encryption and decryption

depend on this key.

Formally we can define such a cryptosystem as a quintuple

〈M,K, C, e(·, ·), d(·, ·)〉,

where M is the message space, the set of all possible messages, K is the key

space, the set of all possible keys, and C is the cryptogram space, the set of all

possible cryptograms. Then

e : M × K → C,

is the encryption function and

d : C × K → M,

is the decryption function. To ensure that cryptograms can be decrypted they

must satisfy the fundamental identity

d(e(M, K), K) = M,

for all M ∈ M and K ∈ K.

Note that this identity implies that there must be at least as many cryptograms

as messages.

Proposition 5.1 For any cryptosystem |M| ≤ |C|.

Proof: If there were more messages than cryptograms then for any given key

there would be at least one cryptogram which Bob would be unable to decrypt

99

100 5 Symmetric cryptosystems

(since it would have to correspond to at least two distinct messages). Hence

|M| ≤ |C|. �

Example 5.2 Simple mono-alphabetic substitution

The message space might consist of all sensible messages in a particular natural

language such as English or French.

The key in this cryptosystem is a permutation π of the alphabet �. To encrypt

a message M ∈ M Alice replaces each letter of the message by its image under

π , so if M = M1 · · · Mn consists of n letters then the cryptogram will be

C = e(M, π) = π (M1) · · ·π (Mn).

To decrypt Bob simply applies the inverse permutation to each letter of the

cryptogram in turn.

In such a cryptosystem each letter a ∈ � is always encrypted as the same letter

π (a) ∈ �. Any cryptosystem in which the encryption of each letter is fixed is

useless since it will be vulnerable to attack via frequency analysis. Informally

frequency analysis works by observing the different frequencies of letters in

messages. For example in English we know that E, T and A will all occur far

more often than J, Q and Z . Using the statistics of letter frequencies it is easy

to discover the key π given a short piece of ciphertext.

Example 5.3 The Vigenère cipher

In the Vigenère cipher the key consists of a string of k letters. These are written

repeatedly below the message (from which all spaces have been removed). The

message is then encrypted a letter at a time by adding the message and key letters

together, working mod 26 with the letters taking values A = 0 to Z = 25.

For example if the key is the three letter sequence KEY then the message

M = THISISTHEMESSAGE

is encrypted using

K = KEYKEYKEYKEYKEYK

to give the cryptogram

C = DLGCMQDLCWIQCEEO.

The Vigenère cipher is slightly stronger than simple substitution. To attack it

using frequency analysis is more difficult since the encryption of a particular

letter is not always the same. However, it is still trivial to break given a reasonable

amount of ciphertext.

5.2 The one time pad: Vernam’s cryptosystem 101

First the attacker must discover the value of k. This can be done by building

up frequency statistics for different possible values of k (since for the correct

value of k, letters that occur a distance k apart in the message are encrypted using

the same fixed alphabet so they should display the same statistics as letters from

the underlying language of the message). Once the value of k has been found,

each letter of the key can be recovered separately using frequency analysis.

Clearly the longer the key the more secure the cryptosystem will be. Similarly

the fewer messages that are sent (and intercepted) the more difficult Eve’s job

will be.

Exercise 5.1a If Alice uses the Vigenère cipher with key ALICE, how does

Bob decrypt the cryptogram NZBCKOZLELOTKGSFVMA?

5.2 The one time pad: Vernam’s cryptosystem

An obvious way of designing a cryptosystem is to represent a message M as a

string of binary digits or bits and then to encrypt as follows.

We denote bitwise addition mod 2 by ⊕. This is also known as exclusive or

(XOR). Thus, if a, b ∈ {0, 1} then a ⊕ b = a + b mod 2, while if a, b ∈ {0, 1}t

then

a ⊕ b = (a1 ⊕ b1, a2 ⊕ b2, . . . , at ⊕ bt) ∈ {0, 1}t .

If the message is an n-bit string M ∈ {0, 1}n then the key K ∈ {0, 1}n is a secret

n-bit string that is chosen uniformly at random by taking n independent random

bits. Alice then forms the cryptogram

C = e(M, K) = M ⊕ K .

Thus

C = (M1 ⊕ K1, M2 ⊕ K2, . . . , Mn ⊕ Kn).

Clearly, if Bob also knows the key K then he can decrypt by calculating

M = d(C, K) = C ⊕ K .

This works since

C ⊕ K = (M ⊕ K) ⊕ K = M ⊕ (K ⊕ K) = M.

This cryptosystem is known as the one-time pad or Vernam’s cryptosystem after

its inventor. It can be seen as an extension of the Vigenère cipher, with a random

key that is exactly the same length as the message.

102 5 Symmetric cryptosystems

This system has the following rather nice property. For any cryptogram C

and any message M there is exactly one key that will result in M being encrypted

as C . Namely

K = (M1 ⊕ C1, . . . , Mn ⊕ Cn).

All of the other ciphers we have examined so far had the property that if Eve tried

to decrypt an intercepted cryptogram she would know when she had succeeded

since she would be able to recognise that the message she had recovered made

sense. With the one-time pad any cryptogram could be the encryption of any

message, so when attempting to decrypt Eve has no way of telling when she

has succeeded!

Although this cryptosystem is certainly secure (it is allegedly used at the

highest levels of government) it has several major drawbacks.

The most significant of these is that the secret key must be as long as the

message, so its use is only practical in situations where the key may be trans-

ported securely in advance and then stored in total security. If a user is lazy

and reuses their key then the system quickly becomes less secure. (The name

one-time pad refers to the fact that the key is used only once.)

Indeed a historical example of how reuse of a one-time pad is insecure can

be found in the NSA’s successful decryption of various KGB communications,

in project VENONA. This was made possible by, among other factors, the

Soviet’s reuse of pages from one-time pads. (See the NSA website for an article

by Robert Benson describing these events.)

Exercise 5.2a A user of the one-time pad encrypts the message 10101 and

obtains the cryptogram 11111. What was the key?

5.3 Perfect secrecy

As was briefly outlined in Chapter 1 there is a classical theory of cryptography

in which cryptosystems can have ‘perfect secrecy’. This is one of the most

important concepts developed by Shannon in the 1940s. He defined such a sys-

tem as one in which ‘the adversary [Eve] gains no new information whatsoever

about the message from the cryptogram’. To define this precisely we need to

describe Shannon’s probabilistic model of symmetric cryptosystems.

Each message M ∈ M has an a priori probability pM > 0 of being sent,

where
∑

M∈M

pM = 1.

5.3 Perfect secrecy 103

The assumption that the pM are non-zero simply means we discard messages

that are never sent.

Similarly each key K ∈ K has an a priori probability qK > 0 of being used

to encrypt the message, and again

∑

K∈K

qK = 1.

The assumption that the qK are non-zero simply means that we discard keys

that are never used.

These induce an a priori probability rC for each cryptogram C ∈ C of being

received, namely

rC =
∑

pMqK ,

where the sum is over all pairs K ∈ K, M ∈ M such that e(M, K) = C .

Since pM > 0 and qK > 0 so rC > 0 for any cryptogram C that can ever be

received (we discard those that cannot).

Typically the pM will vary considerably from message to message (in

most situations some messages are far more likely than others). But in most

cryptosystems it is hard to envisage the keys not being chosen uniformly at

random.

A cryptosystem has the property of perfect secrecy if the adversary learns

nothing about the message from seeing the cryptogram. To be precise we mean

that the a posteriori probability distribution on the message space given the

cryptogram is equal to the a priori probability distribution on the message

space. The a posteriori probability of a message M having been sent given that

a cryptogram C is received is

Pr[M sent | C received] =
Pr[M sent ∩ C received]

Pr[C received]

=
Pr[C received | M sent]pM

rC

=
pM

rC

∑

qK , (5.1)

where the sum is over all K such that e(M, K) = C .

Now for perfect secrecy we require that for each message M and cryptogram

C the a priori probability of M and the a posteriori probability of M given C ,

should be equal. In other words for every M ∈ M and C ∈ C we have

pM =
pM

rC

∑

qK , (5.2)

where the sum is over all K such that e(M, K) = C .

104 5 Symmetric cryptosystems

Perfect secrecy seems an incredibly strong requirement but in fact is realis-

able. However, achieving such a high level of security has a cost.

Theorem 5.4 In any cryptosystem 〈M,K, C, e, d〉 with perfect secrecy

|M| ≤ |C| ≤ |K|.

Proof: As we saw in Proposition 5.1 the inequality |M| ≤ |C| holds for any

cryptosystem.

Suppose now that the cryptosystem has perfect secrecy. Then for any pair

M ∈ M and C ∈ C we have pM > 0 so the right-hand side of Equation (5.2) is

positive. Hence the sum
∑

qK must also be positive, so there is at least one key

K ∈ K such that e(M, K) = C . Now, for a fixed message M , the keys which

result in M being encrypted as different cryptograms must all be distinct. Thus

there must be at least as many keys as cryptograms. �

Proposition 5.5 The one time pad has perfect secrecy.

Proof: We take our message space (and hence cryptogram space and key space)

to be {0, 1}n . Recall the a priori probabilities: pM that the message M is sent;

rC that a cryptogram C is received and qK that a key K is used for encryption.

We need to show that

Pr[M sent | C received] = pM .

By definition

Pr[M sent | C received] =
Pr[M sent ∩ C received]

rC

.

First note that for any message

M = (M1, M2, . . . , Mn)

and cryptogram

C = (C1, C2, . . . , Cn)

there is precisely one key K ∈ K such that e(M, K) = C , namely

K̂ = (M1 ⊕ C1, . . . , Mn ⊕ Cn).

Moreover, as the key consists of n independent random bits, this key is used

with probability qK̂ = 1/2n . Thus

rC =
∑

M∈M

pM

2n

=
1

2n
.

5.3 Perfect secrecy 105

message bit Mi keystream bit Zi

ciphertext bit Ci

mod 2 adder

Fig. 5.1 A stream cipher.

Now

Pr[M sent ∩ C received] = Pr[M sent ∩ K̂ used]

and since the choice of key is independent of the choice of message sent this

gives

Pr[M sent ∩ C received] =
pM

2n
.

Thus

Pr[M sent | C received] =
pM

2n
2n = pM

and so the one-time pad has perfect secrecy. �

The one-time pad is the classic example of a stream cipher, that is a cryptosystem

in which the message is encrypted a single bit at a time. (See Figure 5.1.)

Formally in a stream cipher we encrypt a message M ∈ {0, 1}n a single bit at a

time using a keystream Z ∈ {0, 1}n to give the cryptogram

C = M ⊕ Z .

If the keystream is a truly random string of length n then this is simply a one-

time pad, however, in most situations it is unrealistic to expect both Alice and

Bob to share a secret key of the same length as the message. Instead many other

stream ciphers have been developed that try (but generally fail) to emulate the

one-time pad.

To define a stream cipher we simply need to decide how to generate the

keystream. Having decided that we cannot expect Alice and Bob to share a

long secret random key we instead suppose that they both know a short random

secret key from which they generate a longer keystream which is then used in

a stream cipher. The general method is described below.

(1) Setup. Alice and Bob share a small random secret key K ∈ {0, 1}k . They

both know how to generate a long keystream Z ∈ {0, 1}n from K . (Using

some deterministic process.)

106 5 Symmetric cryptosystems

(2) Encryption. Alice encrypts a message M ∈ {0, 1}n bit by bit using the

keystream to give the cryptogram, C = M ⊕ Z . She sends this to Bob.

(3) Decryption. Bob decrypts using the keystream to recover the message as

M = C ⊕ Z .

For a stream cipher to be secure the keystream should certainly be ‘unpre-

dictable’. Historically many different approaches have been used to generate

long keystreams from short keys. One popular approach has been the use of

linear feedback shift registers. We examine these in the next section.

It is important to note that none of the schemes we will describe in the

remainder of this chapter are provably secure. Indeed the best we can do is

to show what is certainly insecure. In Chapter 10 we will consider methods

for generating unpredictable sequences using formal intractability assumptions.

There we will see methods for generating sequences that are ‘as good as random’

assuming, for example, that factoring a product of two large primes is hard.

The schemes we examine below are important for practical reasons. They

are easy to implement and are used in a wide range of often computationally

constrained devices (for example Bluetooth).

5.4 Linear shift-register sequences

A linear feedback shift register (LFSR) (see Figure 5.2) is a machine consisting

of m registers R0, . . . , Rm−1, arranged in a row, together with an XOR gate.

Each register holds a single bit and may or may not be connected to the XOR

gate. There are constants ci , 1 ≤ i ≤ m which are equal to 1 or 0 depending on

whether or not there exists a connection between register Rm−i and the XOR

gate. The machine is regulated by a clock and works as follows.

Suppose that X i (t) denotes the content of register Ri at time t and let

X(t) = (Xm−1(t), . . . , X0(t)),

denote the state of the machine at time t (this is simply the contents of all the

registers). Then at time t + 1 the machine outputs Z t+1 = X0(t) and its state at

time t + 1 is then given by

X i (t + 1) = X i+1(t),

for 0 ≤ i ≤ m − 2 and

Xm−1(t + 1) = cm X0(t) ⊕ cm−1 X1(t) · · · ⊕ c1 Xm−1(t).

5.4 Linear shift-register sequences 107

R0
Rm−2Rm−1

XOR

output

Zt

Fig. 5.2 A linear feedback shift register.

In other words at each tick of the clock, each register Ri passes the bit it holds

to its neighbour on the right. The content of the rightmost register, R0, becomes

the output bit Z t of the machine and the new content of the leftmost register,

Rm−1, is the output of the XOR gate.

Thus, if the machine is initialised with a state vector X(0), it will produce

an infinite stream of bits, which we denote by {Z t | 1 ≤ t < ∞}, where Z t =

X0(t − 1). If

X(0) = (Zm, Zm−1, . . . , Z1)

then the output stream will start

Z1, Z2, . . . , Zm, . . .

Note that if X(0) = 0 then the output bits will all be zero.

The constants ci are called the feedback coefficients. If cm = 1 then the LFSR

is said to be non-singular. The feedback coefficients define a polynomial

c(x) = 1 + c1x + c2x2 + · · · + cm xm,

known as the feedback polynomial (or alternatively the characteristic or con-

nection polynomial).

For example the LFSR in Figure 5.3 has feedback polynomial 1 + x + x2 +

x4.

We say that an LFSR generates a binary sequence {Zn} if for some initial

state its output is exactly the sequence {Zn}.

We will say that a sequence {Z t } is periodic with period p ≥ 1 if Z t+p = Z t

for all t ≥ 1 and p is the smallest integer with this property.

It is an easy exercise to show that any sequence generated by an LFSR will

ultimately be periodic. That is if we discard some initial bits then the resulting

108 5 Symmetric cryptosystems

R3
R2 R1

R0

XOR

output

Zt

Fig. 5.3 An LFSR with feedback polynomial 1 + x + x2 + x4.

sequence will be periodic. However, if we wish to use the output of an LFSR to

help generate a keystream it would be good to know that the output sequence

does not have too small a period.

Theorem 5.6 The output sequence of any non-singular LFSR is periodic for

all initial states. If the machine has m registers then the maximum period is

2m − 1.

Proof: Let L be a non-singular LFSR with m registers and feedback polynomial

c(x) = 1 + c1x + c2x2 + · · · + cm xm, cm = 1.

If the state of the machine at time t is given by the column vector X(t) then

X(t + 1) = CX(t), (5.3)

where C is the matrix given below and arithmetic is performed mod 2

C =















c1 c2 c3 · · · cm−1 cm

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0















.

Note that det C = cm = 1, so C is a non-singular matrix.

Using Equation (5.3) we obtain the general identity

X(t) = C t X(0), (5.4)

where X(0) is the initial state of the machine.

If X(0) = 0 then clearly the output sequence is always zero; thus it is periodic

with period 1. So we may suppose that X(0)
= 0.

5.4 Linear shift-register sequences 109

In this case Equation (5.4) implies that X(t)
= 0 for all t ≥ 1. Consider the

sequence of vectors

X(0), CX(0), . . . , CkX(0),

where k = 2m − 1. Since this is a sequence of 2m non-zero binary vectors of

length m they cannot all be distinct (since there are only 2m − 1 such vectors

in total). Hence there exist 0 ≤ i < j ≤ k such that

C i X(0) = C j X(0).

As C is non-singular so C−1 exists. Hence C−i exists and

X(0) = C j−i X(0) = X(j − i).

So if p = j − i and t ≥ 0 then

X(t + p) = C t+pX(0) = C t C j−i X(0) = C t X(0) = X(t)

and so the sequence is periodic with period at most

p = j − i ≤ k = 2m − 1.
�

The feedback polynomial c(x) of an LFSR is said to be primitive if the following

two conditions hold.

(i) c(x) has no proper non-trivial factors.

(ii) c(x) does not divide xd + 1 for any d < 2m − 1.

The next result says that such polynomials are good candidates for feedback

polynomials in the sense that they generate output sequences with maximum

period. For a proof see Lidl and Niederreiter (1986).

Theorem 5.7 If R is a non-singular LFSR with a primitive feedback polynomial

then its output sequence will have maximum period on any non-zero input.

One possible way to construct a stream cipher from an LFSR, R, is to pretend that

the output sequence of R is a one-time pad and encrypt the message accordingly.

In other words if R has output sequence Z1, Z2, . . . encrypt each bit of the

message by

Ci = Mi ⊕ Z i .

The following theorem tells us that this is hopelessly insecure.

Theorem 5.8 If the bit sequence Z1, Z2, . . . is generated by a non-singular

m-register LFSR, R, and no shorter LFSR also generates this sequence then

110 5 Symmetric cryptosystems

the feedback polynomial of R is determined uniquely by any 2m consecutive

terms of the sequence.

Proof: Suppose we have 2m consecutive terms of the sequence. Without loss of

generality we may suppose that these are the first 2m terms. Thus they satisfy

the following system of equations mod 2










Zm+1

Zm+2

...

Z2m











=











Zm Zm−1 · · · Z1

Zm+1 Zm · · · Z2

...
...

Z2m−1 Z2m−2 · · · Zm





















c1

c2

...

cm











. (5.5)

If the matrix on the right-hand side of Equation (5.5) is invertible then we are

done since there is then a unique solution to the above system, which gives the

coefficients of the feedback polynomial of R.

So suppose, for a contradiction, that this matrix is not invertible. Thus its

rows are linearly dependent. Moreover the rows of this matrix are consecutive

states of the machine: X(0), . . . , X(m − 1), so we have a linear dependence

m−1
∑

i=0

bi X(i) = 0,

where b0, . . . , bm−1 ∈ {0, 1} are not all zero. Let

k = max{i | bi
= 0}.

Then k ≤ m − 1 and, since we are working mod 2, we have

X(k) =

k−1
∑

i=0

bi X(i).

Now if C is the matrix given by the feedback polynomial of R (as used in the

proof of Theorem 5.6) then for any t ≥ 0 we have

X(t + k) = C t X(k)

=

k−1
∑

i=0

bi C
t X(i)

=

k−1
∑

i=0

bi X(i + t).

So in particular for t ≥ 1 we have

Z t+k =

k−1
∑

i=0

bi Z t+i ,

5.5 Linear complexity 111

and hence the sequence Z1, Z2, . . . is generated by a k-register LFSR (whose

feedback polynomial has coefficients b0, b1, . . . , bk−1). This contradicts the

minimality of m and so proves the result. �

Theorem 5.8 implies that using the output of an LFSR as the keystream in

a stream cipher is insecure since it allows Eve to conduct a known-plaintext

attack.

Corollary 5.9 Using the output of a single LFSR as the keystream in a stream

cipher is vulnerable to a known-plaintext attack.

Proof: Suppose that Alice and Bob use a stream cipher whose keystream is the

output of an m-register LFSR and Eve knows a portion of plaintext of length

2m, say Mi+1, Mi+2, . . . , Mi+2m . If she captures the corresponding portion of

ciphertext Ci+1, Ci+2, . . . , Ci+2m then she can recover the corresponding por-

tion of keystream Z i+1, Z i+2, . . . , Z i+2m (since Z j = C j ⊕ M j). With this she

can now determine the feedback polynomial of the LFSR, using Theorem 5.8.

Eve now knows how to construct the LFSR used to generate the keystream.

She initialises it with the first m bits of the keystream Z i+1, . . . , Z i+m , and then

generates the remainder of the keystream by simulating the LFSR.

Thus Eve is able to read the remainder of the message. �

Exercise 5.3b An enemy knows that the sequence 1011000111 is the output of

a 5-register LFSR. What is the feedback polynomial of this LFSR?

5.5 Linear complexity

Despite the implications of Theorem 5.8, LFSRs are still widely used in cryp-

tography. This is mainly because they are extremely easy to implement in

hardware. We will examine methods of combining the output of several LFSRs

to give more secure non-linear keystreams for use in stream ciphers. Analysing

the cryptographic strengths and weaknesses of such schemes is rather difficult

and in general we can only give minimal necessary requirements. They do not,

however, give any real guarantee of security. The main measure of security

that is used in practice in this area of cryptography is ‘proof by resilience’.

That is if a system resists attacks for a number of years it may be considered

secure.

We have already seen one criterion for security: the period of a sequence.

Clearly if we are to use an LFSR generated keystream then the period of the

sequence should be large. Another natural measure of how useful a sequence

may be for cryptographic purposes is the size of its linear complexity.

112 5 Symmetric cryptosystems

The linear complexity of a binary sequence {Zn} is defined to be the smallest

integer L such that there exists an L-register LFSR which generates {Zn}. If no

such LFSR exists then the sequence has infinite linear complexity.

(Note that this is a completely different notion of complexity to that of

computational complexity considered in Chapters 2–4.)

Our motivation for considering the linear complexity of binary sequences

is that if we use some complicated method for generating a binary sequence

to use as a keystream it would be somewhat disconcerting to discover that in

fact the sequence could be generated by a single LFSR with comparatively

few registers. Hence we should be careful to use sequences with high linear

complexity.

Since the initial m output bits of an m-register LFSR are simply the initial

contents of the registers then clearly any binary sequence of length n is generated

by an LFSR with at most n registers.

Could we combine LFSRs in some way so as to give a sequence of infi-

nite linear complexity? No. Any sequence produced by a deterministic finite

state machine will clearly be ultimately periodic and hence have finite linear

complexity.

Given a finite sequence of bits {Z i } of length n we know there is an LFSR with

n-registers that generates {Z i } so its linear complexity is at most n. However, it

will often be the case that an LFSR with far fewer registers will also generate

the same sequence.

It is not difficult to see that the linear complexity of a binary sequence of

length n can be determined in polynomial time. Massey (1969) describes what

is now known as the Berlekamp–Massey algorithm which has running time

O(n2). We sketch below a conceptually simpler algorithm with running time

O(n3 log n). It depends on the following lemma.

Lemma 5.10 There exists a non-singular m-register LFSR which generates the

sequence Z1, Z2, . . . , Zn iff the following system of equations for c1, . . . , cm

has a solution mod 2 with cm = 1.

Zm+1 = c1 Zm + c2 Zm−1 + · · · + cm Z1,

Zm+2 = c1 Zm+1 + c2 Zm + · · · + cm Z2,

...

Zn = c1 Zn−1 + c2 Zn−2 + · · · + cm Zn−m .

Proof: These equations are simply necessary and sufficient conditions that an

m-register LFSR with feedback polynomial 1 + c1x + · · · + cm xm and initial

state (Zm, Zm−1, . . . , Z1) will output Z1, Z2, . . . , Zn . �

5.6 Non-linear combination generators 113

Testing whether such a solution exists for a particular 1 ≤ m ≤ n can be

achieved in time O(n3), using Gaussian elimination and so we use this as

the basis for a simple ‘divide and conquer’ algorithm. Given any sequence

Z1, . . . , Zn this algorithm will output the feedback polynomial of a minimum

length LFSR that generates the sequence.

Proposition 5.11 There is a polynomial time algorithm for computing the linear

complexity of any binary sequence Z1, . . . , Zn . (The algorithm will also find the

feedback polynomial of a minimum length LFSR that generates the sequence.)

Proof: Our algorithm works as follows. First let m = ⌊n/2⌋ and test the system

of equations given by Lemma 5.10 to see if any m-register LFSR generates

the sequence. If none exists repeat with m = ⌊3n/4⌋ otherwise repeat with

m = ⌊n/4⌋. Repeating in the obvious way we find the linear complexity of the

sequence together with the feedback polynomial of a minimum length LFSR

generating the sequence in time O(n3 log n). �

We close this section by emphasising that whereas having high linear complexity

is desirable in a candidate stream sequence it is far from sufficient. High linear

complexity does not indicate security but low linear complexity certainly does

imply insecurity.

We turn now to the problem of producing a keystream for a stream cipher

using a combination of several LFSRs.

Exercise 5.4b

(i) What is the linear complexity of the sequence 001101111?

(ii) Give the feedback polynomial of a minimal length LFSR that

generates this sequence.

5.6 Non-linear combination generators

Many different methods have been proposed for generating keystreams from

combinations of LFSRs. One common idea is to take a number of LFSRs in

parallel and to use the output of a non-linear function f of the outputs of the

different machines as the desired keystream.

Example 5.12 The Geffe generator.

This was proposed by Geffe in 1973 and is a non-linear combination generator

with three LFSRs. The combining function is

f (x1, x2, x3) = x1x2 + x2x3 + x3.

This combining function has the following attractive property.

114 5 Symmetric cryptosystems

Proposition 5.13 Given three LFSRs A, B, C whose feedback polynomials

are all primitive and whose lengths, a, b, c, are all pairwise coprime the out-

put sequence of the corresponding Geffe generator has period (2a − 1)(2b −

1)(2c − 1) and linear complexity ab + bc + c.

Another way of using LFSRs to produce more secure bitstreams is to work with

a single machine, but to output some non-linear function of the lagged output.

For example, if an LFSR produces the stream {Y (t)}t≥0, then we might output

the stream {Z (t)}t≥k where

Z (t) = f (Y (t), Y (t − 1), . . . , Y (t − k)),

where f is a suitably chosen non-linear function of k + 1 variables. The function

f is called a filter. This type of system is known as a non-linear filter generator.

Variations of this theme can use more than one LFSR before applying

the filter. One attractive system is the shrinking generator, proposed by

Coppersmith et al. (1994).

Example 5.14 A shrinking generator sequence.

Two LFSRs A and S with primitive feedback polynomials are synchronised.

Suppose they have output sequences At and St respectively. If St = 1 at time t

then the shrinking generator outputs Z t = At otherwise there is no output. For

instance if {St } is

011010100101001

and {At } is

101101010010101

then {Z t } is

0100001.

Proposition 5.15 Suppose A and S are LFSRs with a and s registers respec-

tively. If both A and S have primitive feedback polynomials and gcd(a, s) = 1

then any non-trivial output sequence of the corresponding shrinking generator

has period 2s−1(2a − 1) and linear complexity C satisfying

a2s−2 < C ≤ a2s−1.

Currently, if the feedback polynomials of A and S are known, but the initial

states are not, then the best attack to recover the initial state vectors takes time

O(2sa3).

5.7 Block ciphers and DES 115

There is a huge literature on this, and other methods of designing stream

ciphers based on LFSRs. We refer to Menezes, van Oorschot and Vanstone

(1996).

5.7 Block ciphers and DES

Rather than encrypting a message a single bit at a time (as in a stream cipher)

another common way to encrypt a message is in blocks. Naturally such systems

are known as block ciphers.

Formally a block cipher takes a message block of length m and a key of

length k and produces a cryptogram of length m, so

e : {0, 1}m × {0, 1}k → {0, 1}m .

Decryption then satisfies

d : {0, 1}m × {0, 1}k → {0, 1}m, d(e(M, K)) = M.

The shared common key K is secret and usually chosen at random. In general

the form of the encryption function would be publicly known.

The most important and still most widely used block cipher, despite its age,

is the Data Encryption Standard or DES. This is an example of a Feistel cipher.

In general a Feistel cipher is a block cipher that has even block size m = 2n.

The message block is split into a pair of n-bit half-blocks, M = (L0, R0). The

encryption is an iterative procedure which operates as follows for some agreed

number of rounds t . In each round, a new pair of half-blocks, (L j , R j), is

obtained from the previous pair (L j−1, R j−1) by the rule

L j = R j−1, R j = L j−1 ⊕ f (R j−1, K j),

where K j is the subkey for the j th round, obtained (in some prescribed way)

from the actual key K , and f is a fixed function. Thus the final cryptogram will

be C = (L t , Rt).

An important property of the encryption process is that it is invertible by

anyone who knows how to encrypt. To reverse a single round of the encryption

process we need to obtain (L j−1, R j−1) from (L j , R j). But note that R j−1 = L j

and

L j−1 = R j ⊕ f (R j−1, K j) = R j ⊕ f (L j , K j).

Hence decryption can be achieved by anyone who possesses the key and knows

how to encrypt.

116 5 Symmetric cryptosystems

To specify a particular Feistel cipher we need to describe two things. First

the Feistel function used to encrypt the right half-block in each round, that is the

function f above. Second the key schedule, this is the procedure for generating

the subkeys K1, . . . , Kt for the different rounds from the original key K . We

outline some of these details for DES below.

DES is a Feistel cipher that was derived from an IBM cryptosystem known as

Lucifer developed in the early 1970s. It was submitted to the National Institute of

Standards and Technology (NIST) as a candidate for a government standard for

encrypting unclassified sensitive information. Despite various criticisms, such

as changes supposedly made by the NSA to the Feistel function as well as the

cipher’s small key length, it was approved as a standard and published in 1977.

DES operates on message blocks of size 64. The key is also apparently 64

bits, however, only 56 of these are used, the other 8 may be used for parity

checking or simply discarded. Hence the true key length is 56 bits. In practice

messages may be longer than 64 bits and in this case a particular operation

mode must be chosen, we will not discuss this here.

There are 16 rounds of encryption in DES. First a fixed permutation is

applied to the 64 bits in the message block, the so-called initial permutation.

The resulting block is then split in half to give (L0, R0). (The initial permutation

has no obvious cryptographic significance.)

The key schedule used to derive the subkeys for each round works as follows.

(i) First 56 bits of the 64-bit key K are extracted. (The other bits are either

discarded or used for parity checking. For this reason we will simply

assume that the key length is 56.)

(ii) The 56 key bits are then split into two halves of 28 bits.

(iii) In each round both halves are rotated left by one or two bits (depending

on the round number). Then 24 bits are selected from each half to give

the subkey of 48 bits for the round.

As a Feistel cipher the encryption proceeds round by round as described above.

The Feistel function f is defined as follows. In the j th round it takes the

current right half-block R j−1 and the subkey for the j th round K j and does the

following.

(i) The 32-bit half-block R j−1 is expanded to 48 bits using the so-called

expansion permutation, by duplicating some bits.

(ii) The subkey K j , that is also 48 bits, is added bitwise to the expanded

block mod 2.

(iii) The resulting 48-bit block is then split into eight 6-bit blocks each of

which undergoes a non-linear transformation mapping each 6-bit block

5.7 Block ciphers and DES 117

to 4-bits. This is performed by the so-called S-boxes that are in fact

lookup tables.

(iv) A permutation is then applied to the 32-bit output of the S-boxes (the

so-called P-box).

This yields f (R j−1, K j).

Finally after the sixteen rounds are complete another permutation is applied

to (L15, R15), the so-called final permutation. This is simply the inverse of the

initial permutation.

The most important aspect of the encryption is the use of the S-boxes that

introduce non-linearity into the process, without which the system would be

easy to break. The actual design of the S-boxes has been the source of well-

documented controversy over the years. The original design of this aspect was

altered by the NSA with no reasons given at the time. It has since emerged that

the original design would have been vulnerable to a particular type of attack

known as differential cryptanalysis that at the time was not publicly known.

We will not describe the different known attacks on DES in detail. Perhaps

the most important point to note is that even now the best known practical

attack on DES is by brute force, that is searching through all 256 possible keys

until the correct one is found (in fact we can do slightly better than this but not

much). Indeed in 1998 a machine costing $250 000 was built that succeeded in

decrypting a DES-encrypted message after 56 hours (see Electronic Frontier

Foundation, 1998).

Although there exist theoretical attacks using both differential and linear

cryptanalysis these all require huge amounts of known or chosen plaintext and

so are impractical. Thus although these attacks are theoretically less compu-

tationally expensive, in practice brute force remains the best attack. That this

is still true more than thirty years since the invention of DES is a remarkable

achievement given the sustained attempts to find weaknesses in it. Very few

cryptosystems have resisted such extensive cryptanalysis.

Despite the fact that a brute force attack on DES was already known to be

feasible it was still reaffirmed as a federal standard in 1999. However, it was

then recommended that a variant known as Triple DES be used instead.

Triple DES or 3DES as it is sometimes known is a rather ingenious block

cipher based on DES and developed by Walter Tuchman. It builds on the success

of DES, while increasing the key length so that brute force attacks become

impossible (it also has the affect of making the other theoretical attacks more

difficult). It uses DES three times, each time with a different DES key and so

has a key length of 3 × 56 = 168 bits. A key in Triple DES is a triple K =

(K1, K2, K3), where each Ki is a DES key. If we denote encryption under DES

118 5 Symmetric cryptosystems

using key Ki by DE SKi
(·) and denote decryption by DE S−1

Ki
(·) then a message

block M of 64 bits is encrypted under Triple DES with key K = (K1, K2, K3)

as

C = DE SK3

(

DE S−1
K2

(

DE SK1
(M)

))

.

Thus the message is encrypted with DES key K1, ‘decrypted’ with DES key K2

and finally encrypted again with DES key K3. Note that since encryption and

decryption are essentially identical this is the same as encrypting three times

with different DES keys. The reason for using ‘decryption’ in the second stage

is for backwards compatibility with plain DES since by setting K2 = K3 Triple

DES simply becomes single DES with key K1.

An important property of DES encryption exploited by Triple DES is that it

does not form a group. If it were a group then repeated encryption with different

keys would be equivalent to a single encryption by some other key, and hence

Triple DES would be no more secure than DES. The fact that it is not a group

is evidence in favour of Triple DES being more secure than DES.

One other rather simple proposal for securing DES against brute force attacks

is DES-X due to Rivest. This uses a 184-bit key consisting of a single 56-bit

DES key K and two 64-bit keys K1 and K2. Encryption occurs by first simply

XORing K1 with the message then encrypting with DES using key K and finally

XORing with K2 so the cryptogram of a 64-bit message block M is

C = K2 ⊕ DE SK (M ⊕ K1),

where DE SK (·) is DES encryption with key K . This system is comparable to

DES in terms of efficiency and is also backwards compatible with DES, simply

take K1 and K2 to consist of 64 zeros. It has also been shown to be essentially

immune to brute force key search (see Kilian and Rogaway (1996)). Although

DES-X does not give increased security against the theoretical differential and

linear attacks, if you believe that the only way to crack DES is via brute force

then DES-X is an attractive replacement for it.

5.8 Rijndael and the AES

In January 1997 NIST announced the start of the search for a successor to DES:

the Advanced Encryption Standard (AES). This would be an unclassified, public

encryption scheme. Fifteen different designs were submitted and in October

2000 the scheme Rijndael, named after its inventors Joan Daemen and Vincent

Rijmen of the COSIC Laboratory at K.U. Leuven in Belgium, was selected to

5.9 The Pohlig–Hellman cryptosystem 119

be the new AES. (In fact AES is not precisely Rijndael since the latter supports

a larger range of block and key lengths.)

Like DES, AES is a block cipher. The message block size is fixed at 128 bits

while the key length can be 128, 192 or 256 bits. It is a product cipher and uses 10,

12 or 14 rounds of encryption depending on the choice of key length. However,

unlike the previous schemes which were Feistel based and intrinsically linear,

Rijndael is non-linear. The non-linearity in Rijndael is produced by representing

bytes as polynomials of degree 7 in Z2[x]. Thus b7b6 . . . b0 is represented by

the polynomial

b(x) = b0 + b1x + · · · + b7x7.

Addition of bytes is simply ordinary bitwise XOR. Multiplication is by multipli-

cation as polynomials modulo the irreducible polynomial 1 + x + x3 + x4 +

x8.

Although the finite field structures used in presenting Rijndael make it easy

to describe algebraically, describing the fine details is time (and space) con-

suming. Indeed, a whole book has recently been produced with the details of

its description and structure (see Daemen and Rijmen (2004)). Details are also

available on the Rijndael home-page.

While the AES was originally developed for use with unclassified material,

in June 2003 it received the official blessing of the NSA for encryption of

classified material up to the level of TOP SECRET (with a 192- or 256-bit key).

As such it is the first publicly available cryptosystem to have been certified for

classified use by the NSA.

Like DES, AES has also had more than its fair share of controversy. With

its long key lengths it is secure against exhaustive key search. Moreover it has

been designed with differential and linear attacks in mind. However, there has

been significant interest in the algebraic structure of AES. In particular, papers

of Courtois and Pieprzyk (2002) and Murphy and Robshaw (2002) showing

how to recover the AES key from various systems of quadratic equations raised

questions as to whether algebraic attacks might compromise its security.

Exercise 5.5a What is the product in Rijndael of the bytes 10110111 and

10100101?

5.9 The Pohlig–Hellman cryptosystem

Apart from the one-time pad, all of the cryptosystems we have described so far

have relied for their security on their resilience to attack. For example DES may

120 5 Symmetric cryptosystems

now be considered past its prime, however, it has withstood attacks incredibly

well over the years and this resistance to attack has given users confidence in

its security.

The next cryptosystem we will consider was one of the first to be based on a

‘known intractable problem’. That is to say its design was based on a problem

that was already well known and, crucially, believed to be intractable.

The Pohlig–Hellman cryptosystem as it is now called was patented in May

1978. Its security relies on the belief that solving the generalised discrete log-

arithm problem modulo a large prime is difficult.

GEN DISCRETE LOG

Input: a prime p and a, b ∈ Z∗
p.

Output: a solution x to b = ax mod p if it exists.

Let p be a large integer. We will assume messages are broken into blocks so

that each block can be represented by M ∈ Z∗
p. The encryption procedure is

simply exponentiation mod p so

C = e(M) = Me mod p,

where e is the secret encryption key. Decryption is then achieved by

d(C) = Cd mod p,

provided we can find a ‘correct’ decryption key d .

Fermat’s Little Theorem (see Appendix 3, Theorem A3.11), tells us that for

x ∈ Z∗
p

x p−1 = 1 mod p.

Hence we can find d whenever e is coprime with p − 1. For in this case e

has an inverse in the group Z∗
p−1 so taking d to be this inverse, we have ed =

1 mod p − 1 so ed = 1 + k(p − 1) for some integer k. Thus

Cd = (Me)d = M1+k(p−1) = M mod p

and d(e(M)) = M as required.

Note that d can be found in polynomial time from e and p − 1 using Euclid’s

Algorithm (see Problem 2.7).

The prime p may be publicly known. If it is, then multiple users can save

time by using the same prime instead of each having to find a prime of their own.

For Alice and Bob to use this system they need to share a secret key e coprime to

p − 1. From this they can both calculate d and hence both will be able to encrypt

5.9 The Pohlig–Hellman cryptosystem 121

and decrypt easily. (Note that both operations simply involve exponentiation

mod p which we saw in Chapter 2 may be achieved in polynomial time.)

But what does the security of this system rest on?

Recovering the secret key e in the Pohlig–Hellman cryptosystem using a

known-plaintext attack requires Eve to solve a special case of the generalised

discrete logarithm problem.

To be precise, recovering the key e from the message M and cryptogram

C = Me mod p is the same as solving an instance of the generalised discrete

logarithm problem for a triple (p, a, b) where we know that b = ae mod p,

for some e coprime with p − 1. So if we believe that this is difficult then key

recovery should be difficult for Eve.

This idea that ‘breaking the cryptosystem’ requires Eve to solve a well-

known ‘intractable’ problem will be a recurring theme of the remainder of this

text.

Problems

5.1b Given that the cryptogram below was produced by a Vigenère cipher

with keyword length less than five, do the following.

(i) Find the length of the keyword.

(ii) Find the keyword and hence decrypt the cryptogram.

UWMPP ZYZUB ZMFBS LUQDE IMBFF AETPV.

(Note that the gaps in the cryptogram should be ignored, they are sim-

ply an aid to help you keep track of which position each character

lies in.)

5.2a Hill’s cipher encrypts a message M of length d in the Roman alphabet

as follows. We identify the letters A–Z with the elements of Z26. The

key is a d × d matrix A whose entries are from Z26 and which has an

inverse mod 26 (that is there exists a matrix B with entries from Z26

such that AB = B A = Id mod 26). The cryptogram is C = AM .

(i) Show that Hill’s cipher can be broken by a chosen-plaintext attack.

(ii) What is the minimum length of chosen-plaintext required to

recover the key A?

5.3a If S1 = 〈M1,K1, C1, e1, d1〉 and S2 = 〈M2,K2, C2, e2, d2〉 are two

cryptosystems and M2 = C1, show that for a suitable choice of d

(which should be described) the following is also a cryptosystem

〈M1,K1 × K2, C2, e1(e2(·, ·), ·), d(·, ·)〉. (This is called the product of

S1 and S2 and is denoted by S1 ◦ S2.)

122 5 Symmetric cryptosystems

5.4 If a message M ∈ {0, 1}n is encrypted using a one-time pad, show that

the bits of the resulting cryptogram C ∈ {0, 1}n are mutually indepen-

dent and uniformly distributed in {0, 1}.

5.5a Suppose Alice uses the same one time pad to send two messages M1

and M2 of the same length and Eve intercepts both cryptograms. What

can she learn about the messages?

5.6 We say that a symmetric cryptosystem has pairwise secrecy if for any

pair of messages M1, M2 ∈ M and any cryptogram C ∈ C the proba-

bility that M1 is encrypted as C is equal to the probability that M2 is

encrypted as C . (The probability in both cases is given by the random

choice of key.) Show that a cryptosystem has pairwise secrecy iff it has

perfect secrecy.

5.7h Show that the group of all m × m non-singular matrices over Z2 has

order

N = 2m(m−1)/2(22 − 1)(23 − 1) · · · (2m − 1).

Hence show that the period of any output sequence of any non-singular

m-register LFSR must divide N .

5.8 Show that if M is a non-singular, m-register LFSR, with a feedback

polynomial that is irreducible over Z2 then the period of any output

sequence must divide 2m − 1. (Note that a polynomial is irreducible

over a field F iff it cannot be expressed as a product of two non-constant

polynomials over F.)

5.9a (i) Compute the linear complexity of the sequence 0000101001.

(ii) Find the feedback polynomial of a minimal length LFSR that

generates this sequence.

5.10h Suppose that Z t is the output sequence of a Geffe generator, and the

output sequences of the three LFSRs are At , Bt and Ct (so Z t = At Bt +

Bt Ct + Ct mod 2). Show that

Pr[Z t = At] = Pr[Z t = Ct] =
3

4
.

5.11 Can you think of a way to exploit the result of the previous question to

mount a known-plaintext attack on a stream cipher whose keystream is

the output of a Geffe generator?

5.12b If Eve is to recover a DES key by brute force, given a single message-

cryptogram pair, she may need to try up to 256 possible DES keys. This

means that Eve may need to evaluate up to 256 DES encryptions. Now

consider the following ‘secured’ versions of DES.

5.9 The Pohlig–Hellman cryptosystem 123

(i) Suppose Alice and Bob use ‘Double DES’. That is they encrypt a

64-bit message block M by using DES twice with two different

DES keys K1 and K2. So

C = DE SK2

(

DE SK1
(M)

)

.

Show that if Eve knows a single message-cryptogram pair then

she can use a brute force attack that requires 257 DES encryptions

and decryptions to find the key (rather than the 2112 one might

naively assume from the new key length of 2 × 56 = 112). (Note

that with a single message-cryptogram pair Eve cannot be sure to

recover ‘the’ key, but rather to find the collection of possible keys

that are consistent with the message-cryptogram pair.)

(ii) Show that there is a brute force attack on Triple DES, given a

single message-cryptogram pair, that requires approximately 2112

DES encryptions and decryptions to recover the collection of

consistent keys.

5.13b Denoting the complement of a binary string M by M , DES has the

following ‘key complementation’ property. For any M ∈ {0, 1}64 and

key K ∈ {0, 1}56

DE SK (M) = DE SK (M).

How can this property be used to reduce the amount of work Eve does

in a chosen-plaintext attack on DES?

Further notes

The formal definition of a cryptosystem and the concept of perfect secrecy go

back to the original paper of Shannon (1949a). This seminal paper also contains

Theorem 5.4. We have not used the concept of entropy which Shannon used to

develop his theory as it seems somewhat peripheral to the main thrust of this

text. Readers seeking to learn more about this approach can find elementary

introductions in Goldie and Pinch (1991) and Welsh (1988).

Linear shift register machines and their output sequences go back at least

as far as the mid-1950s; see for example Golomb (1955) and Zierler (1955).

Amusingly a version of Theorem 5.8, showing the insecurity of using the output

of a single LFSR as a keystream, appears in the same issue of the journal

Electronic Design in which an article entitled ‘Need to keep digital data secure?’

suggests exactly this method of encryption! (see Twigg, 1972 and Meyer and

Tuchman, 1972).

124 5 Symmetric cryptosystems

The proof of Proposition 5.13 can be found in Geffe (1973) while that of

Proposition 5.15 is in Coppersmith et al. (1994).

For a discussion and analysis of a whole range of stream ciphers based on

non-linear feedback shift registers see Schneier (1996). The monograph by

Cusick, Ding and Renvall (2004) is an up-to-date authoritative and advanced

monograph detailing the relationships between stream ciphers and related num-

ber theoretic problems. There is much work being continually carried out on

algebraic attacks on non-linear stream ciphers; see for example the recent paper

of Courtois (2003).

The origin of DES and its successors is the set of cryptosystems developed at

IBM by Feistel and his colleagues; see for example Feistel (1973) and Feistel,

Notz and Smith (1975). The details of DES can be found in the Federal Infor-

mation Processing Standards Publication 81 (FIPS-81).

The history, development and details of Rijndael can be found in Daemen

and Rijmen (2004) or at www.esat.kuleuven.ac.be/˜rijmen/rijndael.

6

One way functions

6.1 In search of a definition

Having considered classical symmetric cryptography in the previous chapter

we now introduce the modern complexity theoretic approach to cryptographic

security.

Recall our two characters Alice and Bob who wish to communicate securely.

They would like to use a cryptosystem in which encryption (by Alice) and

decryption (by Bob using his secret key) are computationally easy but the

problem of decryption for Eve (who does not know Bob’s secret key) should

be as computationally intractable as possible.

This complexity theoretic gap between the easy problems faced by Alice

and Bob and the hopefully impossible problems faced by Eve is the basis of

modern cryptography. In order for such a gap to exist there must be a limit to the

computational capabilities of Eve. Moreover it would be unrealistic to suppose

that any limits on the computational capabilities of Eve did not also apply to

Alice and Bob. This leads to our first assumption:

� Alice, Bob and Eve can only perform probabilistic polynomial time

computations.

So for Alice and Bob to be able to encrypt and decrypt easily means that

there should be (possibly probabilistic) polynomial time algorithms for both

procedures.

But exactly how should we formalise the idea that Eve must face a computa-

tionally intractable problem when she tries to decrypt an intercepted cryptogram

without Bob’s secret key?

Suppose that we knew that P �= NP and hence that no NP-hard problem has

a polynomial time algorithm. If Alice and Bob used a cryptosystem in which

the problem of decryption for Eve was NP-hard, would this guarantee that their

125

126 6 One way functions

cryptosystem is secure? No. Just because there is no polynomial time algorithm

for a particular problem does not ensure that the problem is always difficult to

solve. It may be extremely easy in most instances but difficult in a few special

cases. A cryptosystem with this property would be useless.

This demonstrates the need for a notion of intractability that is not based on

worst-case behaviour.

So might it be reasonable to suppose that Eve should never be able to decrypt

any cryptogram? Again the answer is no. For instance if Eve simply guesses

the message each time then there is a small but nevertheless non-zero chance

that she will be correct.

So what might be a reasonable notion of security to demand?

For the moment we hope that Alice and Bob would be happy to use a

cryptosystem with the following level of security.

� If Eve uses any probabilistic polynomial time algorithm then the probability

that she correctly decrypts a cryptogram C = e(M) of a random message M

is negligible.

But what do we mean by ‘negligible’? Clearly we need the probability that Eve

succeeds to be as small as possible, but how small exactly? Since Eve is allowed

to use any probabilistic polynomial time algorithm we need to be sure that even

if she repeats her attacks a polynomial number of times she is still unlikely to

succeed. This leads naturally to the following definition.

A function r : N → N is negligible if for any polynomial p : N → N, there

is an integer k0 such that r (k) < 1/p(k) for k ≥ k0. So a negligible function is

eventually smaller than the inverse of any (positive) polynomial. We will use

neg(·) to denote an arbitrary negligible function.

Note that for the remainder of this text all polynomials will be assumed to

be positive. That is to say they satisfy p(k) ≥ 1 for all integers k ≥ 1.

The following result tells us that our definition of negligible fits nicely with

the idea that only polynomial time computations are feasible. It says simply that

if an algorithm has a negligible chance of success then repeating it polynomially

many times cannot alter this fact.

Proposition 6.1 If the probability that an algorithm E succeeds (in some given

computational task) on inputs of size k is negligible (in k) then the probability

that it succeeds at least once when repeated polynomially many times is also

negligible.

Proof: This is straightforward, see Exercise 6.2. �

6.1 In search of a definition 127

In order to capture the precise security properties we require we will forget

about cryptosystems for the moment and instead introduce the slightly more

abstract concept of a one-way function.

Informally a one-way function is a function that is ‘easy’ to compute and

‘hard’ to invert. Slightly more formally a one-way function is a function f :

{0, 1}∗ → {0, 1}∗ satisfying:

(1) Easy to compute. The function f is polynomial time computable.

(2) Hard to invert. Any probabilistic algorithm for inverting f (x), when given

a random instance y = f (x) (i.e. with x chosen at random), has a

negligible chance of finding a preimage of y.

So do such functions exist? We start by considering a candidate one-way func-

tion.

Example 6.2 The function dexp.

Let p be a prime, g be a primitive root mod p and x ∈ Z∗
p. Define

dexp(p, g, x) = (p, g, gx mod p).

The function dexp(p, g, x) is easy to compute since exponentiation mod p can

be performed in polynomial time (see Proposition 2.12). But how difficult is it

to invert?

We define the ‘inverse’ function of dexp to be

dlog(p, g, y) = x,

where y = gx mod p. (Note that the inverse function of dexp should really

return the triple (p, g, x), however, it is clearly easy to find p and g given

(p, g, y), any ‘difficulty’ in inverting dexp lies in the problem of finding x .)

Computing dlog is known as the discrete logarithm problem. It is believed

to be extremely hard. Currently the most efficient algorithm for this problem is

based on the Number Field Sieve algorithm for factorisation and under plausible

assumptions has expected running time O(exp(c(ln p)1/3(ln ln p)2/3)).

However, although the discrete logarithm problem is thought to be hard we

do not know that this is true. If we wish to base cryptographic protocols on the

‘hardness’ of the discrete logarithm problem we need to formulate a precise

intractability assumption, describing exactly how difficult we believe (or hope!)

the discrete logarithm problem to be.

The assumption we make is a natural one given our earlier informal definition

of cryptographic security. It says that any reasonable adversary (a polynomial

128 6 One way functions

time probabilistic algorithm) has a negligible chance of solving a random

instance of the discrete logarithm problem.

The Discrete Log Assumption

For any positive polynomial q(·) and any probabilistic polynomial time algo-

rithm A the following holds for k sufficiently large:

Pr[A(p, g, y) = dlog(p, g, y)] <
1

q(k)
,

where p is a random k-bit prime, g is a random primitive root mod p and x is

a random element of Z∗
p.

Note that A(p, g, y) denotes the output of algorithm A on input (p, g, y).

How realistic is this assumption? It requires the discrete logarithm problem

to be difficult, not just on average but almost always.

Our next result shows why such a strong assumption is necessary. If there is

a ‘small proportion’ of cases for which the discrete logarithm problem is easy

then it is easy in general.

Proposition 6.3 Suppose there is a polynomial time algorithm that for any k-bit

prime p and primitive root g mod p solves the discrete logarithm problem for

a subset Bp ⊆ Z∗
p, where |Bp| ≥ ǫ|Z∗

p|. Then there is a probabilistic algorithm

that solves the discrete logarithm problem in general with expected running

time polynomial in k and 1/ǫ.

Proof: Let A be the given polynomial time algorithm. On input prime p, prim-

itive root g and y ∈ Z∗
p we use the following algorithm.

Input: (p, g, y).

repeat forever

c ∈R Z∗
p

z ← gc mod p

(∗) w ← A(p, g, yz mod p)

If gw = yz mod p then output w − c

end-repeat.

First note that if A succeeds in computing dlog(p, g, yz) in line (∗) then z =
gc mod p implies that

y = gw−c mod p

and so the algorithm correctly outputs dlog(p, g, y) = w − c.

6.2 Strong one-way functions 129

We need to estimate how many times our algorithm will repeat before A

succeeds.

Note that the function f : Z∗
p → Z∗

p defined by f (c) = gc y mod p is a bijec-

tion so the probability that f (c) belongs to Bp, for random c, is equal to

|Bp|
|Z∗

p|
≥ ǫ.

Hence, if the probability that A can compute dlog(p, g, yz) in line (∗) is δ, then

δ ≥ ǫ. So the expected number of iterations of the loop is 1/δ ≤ 1/ǫ. Then as A

is a polynomial time algorithm the expected running time of our new algorithm

for computing dlog(p, g, y) is polynomial in k and 1/ǫ. �

Exercise 6.1 Show that r : N → N is not negligible iff there exists a positive

polynomial p(·) and infinitely many values of k ∈ N such that r (k) ≥
1/p(k).

Exercise 6.2h Prove Proposition 6.1.

6.2 Strong one-way functions

In order to complete our definition of a one-way function we need to deal with

some trivial complications.

First, what exactly does it mean to ‘invert’ f (x)? Since we will sometimes

consider functions that are not one-to-one we simply mean that some preim-

age of y = f (x) is found, that is z satisfying f (z) = y. We denote the set of

preimages of f (x) by

f −1(f (x)) = {z ∈ {0, 1}∗ | f (z) = f (x)}.

Some functions are hard to invert for a completely trivial reason: the length

of any preimage is much longer than the length of f (x). A one-way function

should be hard to invert because it is hard to find a preimage, not because once

a preimage is found it takes too long to write it down. For example consider the

function

f : {0, 1}∗ → {0, 1}∗, f (x) = least significant ⌊log |x |⌋ bits of x .

Clearly any preimage of f (x) is exponentially longer than f (x) itself so no

algorithm can invert f (x) in polynomial space, let alone polynomial time.

To avoid this problem we will suppose that the input to any inverting algo-

rithm for f (x) includes the length of x , encoded in unary.

130 6 One way functions

So if |x | = k then the input to an inverting algorithm is the pair (f (x), 1k)

and the output should be a preimage z ∈ f −1(f (x)). This guarantees that at

least one preimage of f (x) can be written down in polynomial time.

Having decided what it means to invert a function and what the input to an

inverting algorithm should be we can give a formal definition.

A function f : {0, 1}∗ → {0, 1}∗ is strong one-way (or simply one-way) iff

(1) f is polynomial time computable.

(2) For any probabilistic polynomial time algorithm A, the probability that A

successfully inverts f (x), for random x ∈R {0, 1}k , is negligible.

Using our precise definition of negligible we can give an equivalent version of

condition (2).

(2′) For any positive polynomial q(·) and any probabilistic polynomial time

algorithm A the following holds for k sufficiently large:

Pr[A(f (x), 1k) ∈ f −1(f (x)) | x ∈R {0, 1}k] ≤
1

q(k)
.

We now prove the following easy result.

Proposition 6.4 Under the Discrete Logarithm Assumption dexp is a strong

one-way function, where

dexp(p, g, x) = (p, g, gx mod p).

Proof: Looking at the definition of a strong one-way function we see that

(1) follows directly from the fact that dexp is polynomial time computable.

Condition (2′), with f replaced by dexp, is then exactly the Discrete Logarithm

Assumption. �

What other functions might be one-way?

Anyone with even a passing interest in modern cryptography probably knows

that the security of some widely used cryptosystems is based on the assumption

that ‘factoring’ is hard. But what exactly does this mean?

Let mult : {2, 3, . . .} × {2, 3, . . .} → N be defined by mult(a, b) = ab. This

function clearly satisfies condition (1) of the definition of a strong one-way

function since it is easy compute. But is it hard to invert a random instance? No.

Simply check if the number c = mult(a, b) is even. If it is, then output (2, c/2)

else give up. This algorithm will succeed whenever a or b is even which is 3/4

of the time!

However, we can define a variant of this function:

pmult(p, q) = pq, where p and q are both k-bit primes.

6.2 Strong one-way functions 131

Factoring a product of two large primes is believed to be extremely dif-

ficult. Currently the most efficient general purpose factoring algorithms are

the Quadratic Sieve and the Number Field Sieve. These are both probabilis-

tic algorithms and under generally believed assumptions they have expected

running times O(exp(
√

c1 ln N ln ln N)) and O(exp(c2(ln N)1/3(ln ln N)2/3))

respectively, where c1 ≃ 1 and c2 depends on the exact algorithm used (which

in turn may depend on the form of the number being factored) but satisfies

c2 ≤ (64/9)1/3 ≃ 1.923.

For many years the Quadratic Sieve enjoyed the status of ‘best factoring

algorithm’ for successfully factoring challenges such as the RSA-129 chal-

lenge, a 426-bit product of two primes. However, in 1996 the Number Field

Sieve was used to factor the RSA-130 challenge and currently the largest

RSA challenge to have been factored is RSA-576, a 576-bit product of two

primes, its factorisation was completed in Dec 2003 using the Number Field

Sieve. For more detailed discussion of these algorithms, see Lenstra and Lenstra

(1993) and for up-to-date information about the RSA factoring challenges, see

http://www.rsasecurity.com/rsalabs/.

However, as with the discrete logarithm problem, it is not known that factor-

ing the product of two large primes is hard. Hence we need to clearly specify

an intractability assumption, along the same lines as the Discrete Logarithm

Assumption.

Our assumption says that any reasonable adversary when given a number

that is the product of two randomly chosen k-bit primes should have a negligible

chance of factoring it.

The Factoring Assumption

For any positive polynomial r (·) and probabilistic polynomial time algorithm

A the following holds for k sufficiently large

Pr[A(n) = (p, q)] ≤
1

r (k)
,

where n = pq and p, q are random k-bit primes.

Again this gives us a strong one-way function.

Proposition 6.5 Under the Factoring Assumption pmult is a strong one-way

function.

Proof: Clearly pmult is polynomial time computable so condition (1) holds.

The Factoring Assumption then gives (2′). �

132 6 One way functions

6.3 One way functions and complexity theory

Having seen examples of candidate strong one-way functions in the previous

section we now consider what the existence of such functions would mean for

complexity theory.

The following result shows that proving their existence would be a major

result not only for cryptography, but also for complexity theory.

Theorem 6.6 If strong one-way functions exist then

(i) NP �= P;

(ii) there is a language in NP\BPP.

Proof: We first prove (i).

Suppose f : {0, 1}∗ → {0, 1}∗ is a strong one-way function, we need to

construct a language L ∈ NP\P. Define

L f = {(x, y, 1k) | there exists u ∈ {0, 1}k such that f (xu) = y},

where xu is the concatenation of x and u.

First note that L f ∈ NP since given (x, y, 1k) ∈ L f a certificate is any u ∈
{0, 1}k such that f (xu) = u. Furthermore since f ∈ FP we can compute f (xu)

and check that f (xu) = y in polynomial time.

Suppose, for a contradiction that P = NP. Then L f ∈ P and there is a poly-

nomial time DTM, M , that decides L f . We can then use the following inverting

algorithm to invert y = f (x) in polynomial time, contradicting part (2) of the

definition of a strong one-way function.

Recall that the input to an inverting algorithm is (f (x), 1k), where |x | = k.

Input: (f (x), 1k)

z ← ∅ (the empty string)

i ← 1

while i ≤ k

if (z0, f (x), 1k−i) ∈ L f then z ← z0

else z ← z1

i ← i + 1

if f (z) = f (x) output z

end-while

It is straightforward to check that this algorithm will successfully invert f (x).

Moreover each time the algorithm tests ‘(z0, f (x), 1k−i) ∈ L f ?’ we can use

M to obtain an answer in polynomial time. Since all other steps in the algorithm

can also be performed in polynomial time this is a polynomial time inverting

algorithm for f (x), contradicting the assumption that f is strong one-way.

Hence L f ∈ NP\P as required. This completes the proof of (i).

6.3 One way functions and complexity theory 133

To prove (ii) we suppose that L f ∈ BPP and take a PTM, N , which decides

L f with exponentially small error probability (as given by Proposition 4.14).

Using N in our inverting algorithm in place of M our algorithm has a rea-

sonably high probability of successfully inverting f (x). Again this contra-

dicts the fact that f is strong one-way. The details are left to the reader, see

Problem 6.8. �

So simply the existence of any strong one-way function would have important

implications for complexity theory. But what about our candidate functions? In

fact if either the Factoring Assumption or the Discrete Logarithm Assumption

is true then an even stronger result than Theorem 6.6 would hold.

Theorem 6.7 If the Factoring Assumption or the Discrete Logarithm Assump-

tion holds then (NP ∩ co-NP)\P �= ∅.

Before proving this result it is worth emphasising its importance. It says that if

either of the two intractability assumptions hold then a very strong complexity

theoretic result holds, possibly much stronger than simply P �= NP. However,

in the next few chapters we will see that if either of these assumptions fails to

hold then many cryptographic schemes that are extremely widely used must be

easy to break!

To prove this theorem we need to consider how difficult the problems of

factoring and finding the discrete logarithm really are in complexity theoretic

terms (as distinct from the ‘state of the art’ best-known techniques for these

problems that we mentioned earlier).

We start with factorisation. Given an integer n how difficult is it to find its

prime factorisation?

We consider the essentially equivalent problem of finding a single non-trivial

factor of n. Since n has at most ⌊log(n)⌋ prime factors any algorithm which

can find a single non-trivial factor of n can be used to obtain its complete

factorisation if we repeat it ⌊log(n)⌋ times. In particular, a polynomial time

algorithm to find a single non-trivial factor of n would yield a polynomial time

algorithm for factorisation in general.

The following result tells us that in complexity theoretic terms factoring is

possibly not that difficult. In particular this result shows that unless something

very surprising happens – namely NP = co-NP, then factorisation is not NP-

hard.

Proposition 6.8 The function fac : N → N defined by

fac(n) = smallest non-trivial factor of n,

is Turing reducible to a language in NP ∩ co-NP.

134 6 One way functions

Corollary 6.9 If factorisation is NP-hard then NP = co-NP.

Proof of Proposition 6.8: Consider the following decision problem.

FACTOR

Input: integers n and k.

Question: does n have a non-trivial factor d satisfying d ≤ k?

We will show that

(i) FACTOR belongs to NP ∩ co-NP;

(ii) fac ≤T FACTOR.

Clearly FACTOR ∈ NP since if n has a non-trivial factor d ≤ k then an obvious

certificate is the factor itself. To show that FACTOR is in co-NP the certificate

is simply the prime factorisation of n,

n =
m

∏

i=1

p
ei

i .

The checking algorithm first verifies that the given factorisation of n is correct.

It then checks that pi > k for each i and finally verifies the primality of each

pi using the polynomial time primality test of Theorem 3.18.

We now show that fac is Turing reducible to FACTOR. Suppose there is a

polynomial time algorithm for FACTOR. Let F(n, k) denote the output of the

algorithm for FACTOR on input n, k. The following is a ‘divide and conquer’

algorithm for fac.

If F(n, ⌈n/2⌉) is false then output n (since in this case n is prime and so

fac(n) = n). Otherwise we now know that fac(n) ∈ {2, . . . , ⌈n/2⌉}. So now

compute F(n, ⌈n/4⌉). We now know that fac(n) belongs to a set of size at most

⌈n/4⌉. Continuing in this way, after at most O(log n) calls to the algorithm for

FACTOR we will have found fac(n). Hence fac ≤T FACTOR. �

In fact a similar result also holds for the discrete logarithm problem.

Proposition 6.10 The function dlog is Turing-reducible to a language in NP ∩
co-NP.

Proof: This proof has exactly the same structure as that of Proposition 6.8, for

details see Exercise 6.3. �

We can now prove Theorem 6.7.

Proof of Theorem 6.7: Suppose that NP ∩ co-NP = P then by Proposition

6.8 there is a polynomial time algorithm for fac, which will return the smallest

6.4 Weak one-way functions 135

non-trivial factor of a given integer. Hence the Factoring Assumption cannot

hold.

Similarly, Proposition 6.10 implies that if NP ∩ co-NP = P then the Discrete

Logarithm Assumption cannot hold. �

In the next section we will examine a weaker notion of one-way function. This

will show that we do not need such a strong definition to achieve the same type

of security.

The reader who is eager to see the first examples of cryptosystems based on

the concepts we have introduced so far may safely proceed directly to Chapter 7.

For the remainder of this text we will use the term one-way function to mean

strong one-way function.

Exercise 6.3 Consider the decision problem

BDLOG

Input: prime p, primitive root g mod p, y ∈ Z∗
p and t ∈ Z∗

p.

Question: is dlog(p, g, y) > t?

(a) Show that BDLOG ∈ NP ∩ co-NP.

(b) Prove Proposition 6.10 by showing that dlog ≤T BDLOG.

6.4 Weak one-way functions

If we wish to base cryptographic security on one-way functions it would be

good to have some evidence in favour of their existence.

Intuitively, if we place weaker constraints on the difficulty of inverting a

one-way function then we should be readier to believe that they exist.

The following definition of a weak one-way function fulfils this aim. Infor-

mally a function is weak one-way if it is always easy to compute but ‘sometimes’

hard to invert.

Formally a function f : {0, 1}∗ → {0, 1}∗ is weak one-way iff

(1) f is polynomial time computable.

(2) For any probabilistic polynomial time algorithm A the probability that A

fails to invert f (x), for random x ∈R {0, 1}k , is non-negligible.

Note that the term ‘non-negligible’ is not the same as ‘not negligible’. Formally

a function r : N → N is non-negligible iff there is a positive polynomial q(·)
such that for k sufficiently large r (k) ≥ 1/q(k). (For r (·) to be ‘not negligible’

we simply need the bound r (k) ≥ 1/q(k) to hold infinitely often.)

136 6 One way functions

Using the precise definition of non-negligible we can give a more formal

version of condition (2).

(2′) There is a positive polynomial q(·) such that for any probabilistic

polynomial time algorithm A the following holds for k sufficiently large

Pr[A(f (x), 1k) �∈ f −1(f (x)) | x ∈R {0, 1}k] ≥
1

q(k)
.

So can we think of any examples of candidate weak one-way functions? Clearly

a strong one-way function is also weak one-way. But we have already met one

example of a function that may be weak one-way although it is certainly not

strong one-way. Recall the function mult : {2, 3, . . .} × {2, 3, . . .} → N, where

mult(a, b) = a · b.

Using the same assumption that made pmult a strong one-way function we

can prove that mult is weak one-way. We will need to use the Prime Number

Theorem which tells us that a large integer n has probability approximately

1/ ln n of being prime.

Theorem 6.11 (Prime Number Theorem) If π (n) denotes the number of

primes less than or equal to n then

lim
n→∞

π (n) ln n

n
= 1.

This implies the following result.

Lemma 6.12 If k is sufficiently large then

Pr[A random k-bit integer is prime] >
1

k
.

Proof: By the Prime Number Theorem

lim
n→∞

π (n) ln n

n
= 1.

So for n ≥ n0 we have
∣

∣

∣

∣

π (n) ln n

n
− 1

∣

∣

∣

∣

<
1

100
.

Since ln n = log n/log e and log e > 1.4 we have

π (n)

n
>

1

log n
,

for n ≥ n0. Thus, for k sufficiently large, we have

Pr[A random k-bit integer n is prime] =
π (2k)

2k
>

1

k
.

�

6.4 Weak one-way functions 137

Proposition 6.13 Under the Factoring Assumption mult is a weak one-way

function.

Proof: Recall that the Factoring Assumption says:

For any positive polynomial r (·) and probabilistic polynomial time algorithm

A the following holds for k sufficiently large

Pr[A(n) = (p, q)] ≤
1

r (k)
,

where n = pq and p, q are random k-bit primes.

Let Ik denote the set of all k-bit integers and Pk denote the set of all k-bit

primes.

Lemma 6.12 tells us the probability that a random k-bit integer is prime is at

least 1/k. Hence the probability that two independently chosen k-bit integers

are both prime is at least (1/k)2. So a non-negligible proportion of the instances

of mult to be inverted will consist of a product of two primes and so by the

Factoring Assumption they will be difficult to invert.

More formally if A is a probabilistic polynomial time algorithm and n = pq,

where p, q ∈R Pk then the Factoring Assumption implies that

Pr[A fails to invert n] >
1

2
,

for k sufficiently large. Moreover Lemma 6.12 implies that if k is sufficiently

large and a, b ∈R Ik then

Pr[a and b are both prime] ≥
(

1

k

)2

.

Hence if k is sufficiently large, a, b ∈R Ik and n = ab then

Pr[A fails to invert n] ≥ Pr[A fails to invert n | a, b ∈ Pk] Pr[a, b ∈ Pk]

≥
1

2k2
,

is non-negligible. Hence under the Factoring Assumption mult is a weak one-

way function. �

The existence of weak one-way functions is intuitively more plausible than that

of strong one-way functions. However, the following result tells us that if weak

one-way functions exist then so do strong one-way functions.

Theorem 6.14 Strong one-way functions exist iff weak one-way functions exist.

A rigorous proof of this result is beyond the scope of this book, we present an

informal proof below and refer the interested reader to Goldreich (2001).

138 6 One way functions

Proof: One implication is trivial: a strong one-way function is also a weak

one-way function.

So suppose that f : {0, 1}∗ → {0, 1}∗ is a weak one-way function. We need

to construct a strong one-way function from f .

Since any adversary fails to invert a non-negligible proportion of instances

of f (x) we can construct a strong one-way function from f by ensuring that

for an adversary to invert our new function they must successfully invert f at

a large number of random values.

More precisely, let q(·) be the positive polynomial associated with f , given

by condition (2′) of the definition of a weak one-way function. Define g :

{0, 1}∗ → {0, 1}∗ by

g(x1x2 · · · xm) = f (x1) f (x2) · · · f (xm),

where m = nq(n) and each xi is of length n.

For an adversary to invert g they must invert nq(n) values of f (xi). Since

the probability of failing to invert any one of the f (xi) is at least 1/q(n) so the

probability that they manage to invert g is given by

Pr[Invert g(x1 · · · xm)] = Pr[Invert f (x1), . . . , f (xm)]

≤
(

1 −
1

q(n)

)nq(n)

≃ e−n.

Hence the probability that an adversary can invert a random instance of g is

negligible and so g is a strong one-way function. �

Beware: this proof is incomplete. A full proof would need to show that if g

were not a strong one-way function then there exists an adversary who fails to

invert f with probability less than 1/q(n), contradicting the fact that f is weak

one-way. In our proof we have made the implicit assumption that an adversary

who attempts to invert g will do so by inverting each of the f (xi) for 1 ≤ i ≤ m

but this need not be true!

Exercise 6.4a Give an example of a function which is neither negligible nor

non-negligible.

Problems

6.1a If r (k), s(k) are negligible functions which of the following are also

negligible?

(a) r (k) + s(k),

6.4 Weak one-way functions 139

(b) r (k)s(k),

(c) r (s(k)).

6.2h Show that if g and h are distinct primitive roots modulo a prime

p and dlog(p, g, y) is easy to compute for all y ∈ Z∗
p then so is

dlog(p, h, y).

6.3h Prove the following extension of Proposition 6.3.

Suppose that there exists a probabilistic polynomial time algorithm

A for dlog(p, g, b) satisfying the following conditions.

There are positive polynomials, q(·) and r (·), such that if p is a k-bit

prime and g is a primitive root mod p then there exists Bp ⊆ Z∗
p, with

|Bp| ≥ 1/q(k)|Z∗
p|, such that if b ∈ Bp then

Pr[A(p, g, b) = dlog(p, g, b)] ≥
1

r (k)
.

(So for any prime p and associated primitive root g there exists a non-

negligible proportion of the instances of the discrete logarithm problem

that A has a non-negligible probability of successfully inverting.)

Show that there is a probabilistic algorithm for computing dlog in

general with polynomial expected running time.

6.4a Consider the function fSAT defined as follows. For each Boolean func-

tion F on n variables and each truth assignment x ∈ {0, 1}n define

fSAT(F, x) = (F, F(x)).

Is fSAT a one-way function?

6.5b Describe an algorithm, whose running time is polynomial in k, that

when given the product of two independently chosen, random k-bit

integers will find a non-trivial factor with probability at least 0.95.

6.6h Prove that if FACTOR is NP-complete then NP = co-NP.

6.7h Prove that if FACTOR ∈ P then there is a polynomial time algorithm

for factoring any integer.

6.8h Complete the proof of Theorem 6.6 (ii) to show that if strong one-way

functions exist then there is a language in NP\BPP.

6.9h Prove the following strengthening of Theorem 6.7: if either the Fac-

toring Assumption or the Discrete Logarithm Assumption hold then

(NP ∩ co-NP)\BPP is non-empty.

6.10a A prime of the form p = 4k + 3 is known as a Blum prime. Assuming

that approximately a half of all k-bit primes are Blum primes show that

under the Factoring Assumption no efficient algorithm for factoring

integers which are the product of two k-bit Blum primes can exist.

140 6 One way functions

Further notes

The term ‘one-way function’ has a variety of meanings and formal definitions

although the underlying sense is always the same. It should be ‘easy’ to compute

and ‘hard’ to invert.

Many texts use the concept of ‘honesty’ to eliminate functions which are

impossible to invert for the trivial reason that their preimages are too small. We

have adopted an approach which we feel is a more transparent way of achieving

the same objective.

The variations occur in the precise natures of ‘easy’ and ‘hard’. We have

adopted a fairly strict interpretation here so that our concept of one-way

(= strong one-way) corresponds to a useful practical cryptosystem.

There is an extremely weak notion of one-way function, namely that there

is no deterministic polynomial time computable algorithm which inverts for

all possible inputs. For this extremely weak notion, Ko (1985) and Grollman

and Selman (1988) independently prove existence if and only if P equals the

complexity class UP, which consists of the subclass of NP for which for every

input there is at most one succinct certificate. For more on this and related

questions about UP and its relation to counting problems see Chapter 4 of Du

and Ko (2000) or Welsh (1993).

Theorem 6.7, showing that if there is a polynomial time algorithm for fac-

toring or discrete logarithm then NP ∩ co-NP = P, was first pointed out by

Brassard (1979) and independently by Adleman, Rivest and Miller as acknowl-

edged by Brassard in his paper.

Theorem 6.14 showing the surprising result that weak one-way functions

cannot exist if strong one-way functions do not is attributed by Goldreich (2001)

to Yao (1982).

7

Public key cryptography

7.1 Non-secret encryption

Until relatively recently cryptosystems were always symmetric. They relied on

the use of a shared secret key known to both sender and receiver.

This all changed in the 1970s. Public key cryptosystems, as they are now

called, revolutionised the theory and practice of cryptography by relying for

their impenetrability on the existence of a special type of one-way function

known as a trapdoor function. Using these the need for a shared secret key was

removed. Hence James Ellis and Clifford Cocks of the Government Communi-

cation Headquarters (GCHQ), Cheltenham in the UK, who first discovered this

technique, named it ‘non-secret encryption’.

For a fascinating account of how this discovery was made see Chapter 5 of

Singh (2000). He recounts how key distribution was a major problem for the

UK military in the late 1960s. In 1969 Ellis came up with the idea of what we

now call a ‘trapdoor function’. Informally this is a one-way function which can

be inverted easily by anyone in possession of a special piece of information:

the trapdoor.

This was exactly the same idea as Diffie, Hellman and Merkle came up with

several years later, but like them Ellis was unable to find a way of implementing

it.

It was three years later in November 1973 that Cocks, a young recruit to

GCHQ, came up with the very simple solution (essentially the RSA cryptosys-

tem) which was rediscovered several years later by Rivest, Shamir and Adleman

(1978).

141

142 7 Public key cryptography

7.2 The Cocks–Ellis non-secret cryptosystem

We now examine the cryptosystem proposed by Cocks, in response to the

‘existence proof’ of Ellis of the possibility of non-secret encryption.

Suppose that Alice wishes to send a secret message to Bob. The Cocks–Ellis

cryptosystem works as follows.

(1) Setup.

(i) Bob secretly chooses two large distinct primes p, q such that p does

not divide q − 1 and q does not divide p − 1. Bob then publishes his

public key n = pq.

(ii) In order for Bob to be able to decrypt he uses Euclid’s algorithm to

find numbers r, s satisfying pr = 1 mod q − 1 and

qs = 1 mod p − 1.

(iii) He then uses Euclid’s algorithm once more to find u,v satisfying

up = 1 mod q and vq = 1 mod p. His private key (or trapdoor) that

will enable him to decrypt is (p, q, r, s, u, v).

(2) Encryption. Alice has a message M which she splits into a sequence of

numbers M1, M2, . . . , Mt where each Mi satisfies 0 ≤ Mi < n. She then

encrypts these blocks as

Ci = Mn
i mod n,

and sends the encrypted blocks to Bob.

(3) Decryption.

(i) Bob recovers a message block (mod p and q) as

ai = C s
i mod p and bi = Cr

i mod q.

(ii) He can then recover the message block as:

upbi + vqai = Mi mod n.

Before checking that Bob’s decryption process actually works we consider a

toy example.

Example 7.1 Toy example of the Cocks–Ellis cryptosystem.

Suppose Bob chooses p = 5 and q = 7 (these satisfy the conditions of (1)(i)).

He then publishes his public key n = 35.

If Alice wishes to send the message M = 10 she calculates

1035 = 5 mod 35

and sends C = 5 to Bob.

7.2 The Cocks–Ellis non-secret cryptosystem 143

Bob then calculates (using Euclid’s algorithm) r = 5 and s = 3. (We can

check that 5 × 5 = 25 = 1 mod 6 and 3 × 7 = 21 = 1 mod 4.)

He then calculates

a = C3 = 53 = 0 mod 5 and b = C5 = 55 = 3 mod 7.

Next Bob uses Euclid’s algorithm once more to find u = v = 3. (Again we can

check that 3 × 5 = 15 = 1 mod 7 and 3 × 7 = 21 = 1 mod 5.)

He then recovers the message as

upb + vqa = (3 × 5 × 3) + (3 × 7 × 0) = 45 = 10 mod 35.

In order to prove that the decryption process works in general we will need

to use both the Chinese Remainder Theorem and Fermat’s Little Theorem. (See

Appendix 3, Theorems A3.5 and A3.11.)

Proposition 7.2 Decryption in the Cocks–Ellis system works.

Proof: First note that since up = 1 mod q and vq = 1 mod p we have

upbi + vqai = ai mod p and upbi + vqai = bi mod q.

So if we can show that Mi = ai mod p and Mi = bi mod q then the Chinese

Remainder Theorem implies that

upbi + vqai = Mi mod n,

and hence the decryption process works.

Now, if Mi �= 0 mod p, then working mod p, we have

C s
i = Mns

i = M
sqp

i mod p.

Then sq = 1 mod p − 1 implies that sq = 1 + t(p − 1), for some integer t .

So, using Fermat’s Little Theorem, we have

C s
i = M

(1+t(p−1))p

i = M
p

i = Mi mod p.

Hence Mi = ai mod p. Note that this also holds if Mi = 0 mod p.

Similarly we have Mi = bi mod q . Hence by the Chinese Remainder Theo-

rem the decryption process recovers the message block Mi . �

Thus we see that this cryptosystem ‘works’ in the sense that decrypting a

cryptogram yields the original message, but does it have the other properties

we might require of a secure system?

We have yet to decide exactly what these properties should be, but we attempt

to do this now.

144 7 Public key cryptography

There are three distinct aspects of a cryptosystem that are of crucial impor-

tance.

(1) Setup. Before starting communications Bob must choose a public/private

key pair and publish his public key. This task is only performed once but

must still be computationally feasible for the cryptosystem to be viable.

(2) Encryption/Decryption. The encryption of a message by Alice and

decryption of a cryptogram by Bob (using his trapdoor or private key)

should be easy.

(3) Security. Given a random choice of public key and a random message it

should be extremely unlikely that Eve can recover the message from the

cryptogram and public key alone.

We note that the security condition (3) is in some respects rather weak and we

will consider stronger conditions in Chapter 10.

So how does the Cocks–Ellis system measure up to these requirements?

Well it is certainly easy to setup. Bob needs to choose two primes p and q

and compute n, r, s, u and v before he can start to use the system. The Prime

Number Theorem (see Appendix 3, Theorem A3.4) tells us that if k is large

then a random k-bit integer has probability greater than 1/k of being prime.

Hence Bob expects to choose at most k random integers before he finds a prime.

Bob can use a polynomial time primality test to check randomly chosen k-bit

integers for primality and so would expect to find two primes p and q with the

required properties in polynomial time.

Once p and q have been found Bob can then easily compute r, s, u and v

using Euclid’s algorithm. He can also calculate the public key n by a single mul-

tiplication. Overall the setup is feasible since it can be achieved in polynomial

expected time.

Encryption for Alice is easy since she can perform exponentiation mod n

in polynomial time. Decryption for Bob is also easy since it simply involves

exponentiation and multiplication (since he knows his private key) and so can

be performed in polynomial time.

The security of this system also seems rather strong. Eve appears to face

a rather difficult task if she is to decrypt an intercepted cryptogram, namely

‘computing nth roots mod n’. The obvious way to attack this problem is to

factorise n, since this then allows Eve to calculate Bob’s private key easily. But

factorisation is a well-studied problem that is widely believed to be difficult, as

we saw in the previous chapter.

This suggests that Eve will not be able to easily read Alice’s messages.

Unfortunately we have no guarantee that Eve will attack this system via fac-

torisation. To be more certain of its security we would need to show that there

7.3 The RSA cryptosystem 145

is no alternative technique that Eve could use to recover the message from the

cryptogram without factoring the public key.

Exercise 7.1a Suppose Alice and Bob communicate using the Cocks–Ellis

cryptosystem. If Bob’s public key is n = 77 find the encryption of the

message M = 15. Find Bob’s private key in this case and use his decryp-

tion process to recover M .

7.3 The RSA cryptosystem

The most widely used and well-known public key cryptosystem is RSA, due to

Rivest, Shamir and Adleman who announced the scheme in 1977. It received

a huge amount of attention at the time and is now almost certainly the most

famous cryptosystem of all time.

This system is very similar to the Cocks–Ellis system of the previous section

and works as follows.

(1) Setup. Bob secretly chooses two large distinct primes p and q and then

forms his public modulus n = pq. He then chooses his public exponent e

to be coprime to (p − 1)(q − 1), with 1 < e < (p − 1)(q − 1). The pair

(n, e) is his public key and he publishes this. His private key is the unique

integer 1 < d < (p − 1)(q − 1) such that

ed = 1 mod (p − 1)(q − 1).

(2) Encryption. Alice has a message M which she splits into a sequence of

blocks M1, M2, . . . , Mt where each Mi satisfies 0 ≤ Mi < n. She then

encrypts these blocks as

Ci = Me
i mod n,

and sends the encrypted blocks to Bob.

(3) Decryption. Bob decrypts using his private key d by calculating

Mi = Cd
i mod n.

Proposition 7.3 Decryption in RSA works.

Proof: Since ed = 1 mod (p − 1)(q − 1) there is an integer t such that ed =
1 + t(p − 1)(q − 1). Thus

Cd
i = Med

i = M
t(p−1)(q−1)+1
i = Mi mod p,

146 7 Public key cryptography

since either Mi = 0 mod p and so both sides are zero or else Fermat’s

Little Theorem implies that M
p−1
i = 1 mod p. Similarly Cd

i = Mi mod q . The

Chinese Remainder Theorem then implies that Cd
i = Mi mod n. �

Example 7.4 Toy example of RSA.

Suppose Bob chooses the primes p = 7 and q = 11. So n = 77, (p − 1)(q −

1) = 60 and he takes e = 7, since 7 and 60 are coprime. Bob then calculates

his private key to be d = 43, since

43 × 7 = 301 = 1 mod 60.

Hence Bob’s public key is the pair (n, e) = (77, 7) and his private key is d = 43.

If Alice wants to send the message M = 4 she encrypts it as

C = Me = 47 = 16 384 = 60 mod 77.

Bob then decrypts using his private key and recovers the message

M = Cd = 6043 = 4 mod 77.

We now consider the three important aspects of this system: setup, encryp-

tion/decryption and security.

The setup is easy. Bob can choose two k-bit primes by choosing random

integers and testing for primality using a polynomial time test. He then forms

n by multiplication. To find e he can simply choose random k-bit integers until

he finds one that is coprime with (p − 1)(q − 1). To find d he uses Euclid’s

algorithm. Hence the whole setup can be achieved in polynomial expected time.

(See Exercise 7.2 for more details.)

Both encryption, by Alice, and decryption, by Bob, are simply exponentia-

tion mod n and so can be achieved in polynomial time.

Finally Eve again seems to face an intractable problem, namely ‘computing

eth roots mod n’. Again the obvious way to do this is to factorise n. Since if Eve

can factor n then she will be able to compute Bob’s private key from his public

key and hence read any message he receives. Hence we know that if factoring

is easy then RSA is insecure. However, the converse is not known to be true.

Indeed whether breaking RSA is equivalent to factoring is a longstanding open

problem. We will return to RSA and its security in Section 7.6.

We note that although RSA encryption and decryption is efficient in the

sense that Alice and Bob have polynomial time algorithms for these tasks, in

practice RSA and all the other public key cryptosystems we will consider are

far slower than symmetric cryptosystems such as DES or AES. For this reason

they are often simply used to solve the problem of sharing a secret key for use

7.4 The Elgamal public key cryptosystem 147

in a symmetric cryptosystem. For example Alice might send Bob a Triple DES

key encrypted with his RSA public key. They can then switch to Triple DES for

the remainder of their communications. Since Alice can send a different key

each time they initiate communications such a key is known as a session key.

In the next section we introduce another important public key cryptosystem

the security of which is based on the discrete logarithm problem.

Exercise 7.2 Show that Bob can easily choose an RSA key by proving the

following.

(a) Use the Prime Number Theorem to show that if Bob chooses

random odd k-bit integers then he expects to choose polynomially

many before he finds two primes.

(b) Show that if Bob chooses random k-bit integers he expects to

choose polynomially many before he finds one that is coprime with

(p − 1)(q − 1), where p and q are k-bit primes.

(c) Hence explain how Bob can choose both public and private RSA

keys in polynomial expected time.

7.4 The Elgamal public key cryptosystem

The Elgamal public key cryptosystem based on the discrete logarithm problem

was proposed by Elgamal in 1985. It works as follows.

(1) Setup. Bob’s public key is a triple (p, g, gx mod p), where p is a prime, g

is a primitive root mod p and x ∈ Z∗
p. Bob’s private key is x .

(2) Encryption. Alice encrypts a message M using the following protocol. We

assume that 0 ≤ M ≤ p − 1 (if not Alice can split the message into

blocks in the obvious way).

(i) Alice selects a random integer y ∈ Z∗
p and computes k = gy mod p

and d = M(gx)y mod p.

(ii) Alice then sends Bob the cryptogram C = (k, d).

(3) Decryption. Bob decrypts as follows using his private key

M = k p−1−x d mod p.

Proposition 7.5 Decryption in the Elgamal cryptosystem works.

Proof: Working mod p throughout we have

k p−1−x = k−x = g−xy mod p,

148 7 Public key cryptography

so the message is recovered as

k p−1−x d = g−xyd = g−xy Mgxy = M mod p.
�

Example 7.6 Toy example of the Elgamal cryptosystem

Suppose Bob chooses p = 29, g = 2 and x = 5.

Since 25 = 3 mod 29 his public key is (29, 2, 3) and his private key is 5.

For Alice to encrypt the message M = 6 she selects a random y say y = 14

and computes

k = gy = 214 = 28 mod 29

and

d = M(gx)y = 6 × 314 = 23 mod 29.

Alice then sends the pair (28, 23) to Bob.

To decrypt Bob computes

k p−1−x = 2823 = 28 mod 29.

He then recovers M as

k p−1−x d = 28 × 23 = 6 mod 29.

Clearly encryption by Alice and decryption by Bob (using his private key) can

be performed easily. Slightly less obvious is how Bob generates his key. He

needs to choose a k-bit prime p, a primitive root g mod p and x ∈ Z∗
p. We saw

earlier that choosing a k-bit prime is easy (he simply chooses odd k-bit integers

at random and tests for primality using a polynomial time test). However, there

is no obvious efficient algorithm for generating primitive roots modulo a given

prime p. In fact there is not even an efficient algorithm for testing whether a

particular value h ∈ Z∗
p is a primitive root mod p. Hence in theory there is no

efficient algorithm for generating an Elgamal public key, however, in practice

this does not cause major problems (see Exercise 7.3).

So how secure is this cryptosystem?

The following problem is simply the discrete logarithm problem by another

name and so is generally believed to be hard.

ELGAMAL PRIVATE KEY

Input: Elgamal public key (p, g, gx mod p).

Output: private key x .

But what about the following possibly easier problem?

7.4 The Elgamal public key cryptosystem 149

ELGAMAL

Input: Elgamal public key (p, g, gx mod p) and cryptogram (k, d).

Output: message M .

This problem is in fact Turing equivalent to the following problem.

DIFFIE–HELLMAN

Input: prime p, a primitive root g mod p, gx mod p and gy mod p.

Output: gxy mod p.

Note that we will see more on this last problem in Chapter 9 when we consider

the problem of secure key exchange.

Proposition 7.7 The problems ELGAMAL and DIFFIE–HELLMAN are Turing

equivalent.

Proof: Suppose we have an algorithm for DIFFIE–HELLMAN. Then given

an Elgamal public key (p, g, gx mod p) and cryptogram (k, d) we have k =

gy mod p and so using our algorithm for DIFFIE–HELLMAN we can compute

gxy mod p.

We can then easily find the inverse of gxy mod p using Euclid’s algorithm

and hence recover the message M = d(g−xy) mod p as required.

Conversely suppose we have an algorithm for ELGAMAL. If we are given

(p, g, gx mod p, gy mod p) then we can use the algorithm for ELGAMAL to

decrypt the cryptogram (gy mod p, 1), encrypted with the Elgamal public key

(p, g, gx mod p).

This algorithm will then return the corresponding message, which is

g−xy mod p since 1 = Mgxy mod p. Using Euclid’s algorithm we can then

find the inverse of g−xy mod p to give gxy mod p as required.

Hence ELGAMAL and DIFFIE–HELLMAN are Turing equivalent. �

As with the relationship between RSA and factorisation it is not known

whether breaking the Elgamal cryptosystem is equivalent to solving the discrete

logarithm problem.

One obvious security advantage of the Elgamal cryptosystem over RSA

is that if the same message is sent twice then it is highly unlikely that the

same cryptogram will be used on both occasions. (This is due to the use of

randomness in the encryption process. We will consider other cryptosystems

with this property in Chapter 10.)

Exercise 7.3b

(a) Let p be a prime. Describe a polynomial time algorithm for

checking whether h ∈ Z∗
p is a primitive root mod p, given h, p and

the prime factorisation of p − 1.

150 7 Public key cryptography

(b) A prime q such that p = 2q + 1 is also prime is called a Sophie

Germain prime, while p is said to be a safe prime. It is conjectured

that there are infinitely many Sophie Germain primes and that if

πS(x) denotes the number of such primes less than or equal to x then

πS(x) ∼
Cx

(log x)2
,

where C ≃ 1.3203. Assuming that this conjecture is true describe a

probabilistic algorithm with polynomial expected running time for

generating an Elgamal key.

7.5 Public key cryptosystems as trapdoor functions

Having seen some examples of public key cryptosystems we will now attempt

to formalise the properties we would like them to possess in general.

We start by noting that a cryptosystem is not a single function. Rather it is a

family of functions. For example the RSA cryptosystem defines the family of

functions

RSAn,e : Zn → Zn, RSAn,e(x) = xe mod n,

where n = pq is the product of two primes and e is coprime to (p − 1)(q − 1).

We attempt to capture the concept of a public key cryptosystem using the

following definition of a family of trapdoor functions

F = { fi : Di → Di | i ∈ I }.

The different properties of the family correspond to the different properties we

require of a public key cryptosystem. Namely setup, encryption and decryption

should all be easy but breaking the system should be hard.

(1) Setup. First Bob chooses a key length k. Once he has done this there

should be a probabilistic polynomial time algorithm for ‘key generation’.

This should take an input 1k , where k is the key length, and output a pair

(i, ti) where i ∈R I ∩ {0, 1}k is Bob’s public key of size k and ti is the

corresponding trapdoor, Bob’s private key.

So in the case of RSA i would be a public key pair (n, e) and ti would

be the corresponding private key d . (Note that to obtain a public key of

size k Bob should choose two (k/4)-bit primes. This would then ensure

that his public modulus n has size k/2 and his public exponent e has size

at most k/2, so his public key (n, e) has size k.)

7.5 Public key cryptosystems as trapdoor functions 151

(2) Encryption. There should be a probabilistic polynomial time algorithm

that given a public key i ∈ I and a message M ∈ Di outputs the

cryptogram C = fi (M). This ensures that Alice can easily encrypt any

message M ∈ Di , given Bob’s public key.

In the case of RSA this is simply exponentiation by the public exponent

e mod n.

(3) Decryption. Since Bob needs to be able to decrypt there should exist a

probabilistic polynomial time algorithm that given the cryptogram

C = fi (M), the public key i and the trapdoor (or private key) ti outputs

the message M .

In the case of RSA this is simply exponentiation by the private key d

mod n.

(4) Security. Recovering the message should be difficult for Eve.

Recalling our definition of a one-way function we formulate this as

follows. For any probabilistic polynomial time algorithm A, the

probability that A successfully inverts a cryptogram C = fi (M), where M

is a random message and i is a random public key of size k, is negligible.

Formally we have

Pr[fi (A(i, C)) = C | i ∈R I ∩ {0, 1}k, M ∈R Di , fi (M) = C] ≤ neg(k).

So under what type of intractability assumption would the RSA cryptosystem

give a family of trapdoor functions?

We need to assume that any adversary with a polynomial time probabilistic

algorithm has a negligible chance of recovering a message from a cryptogram,

given that both the public key and the message were chosen at random. Formally

we have the following.

The RSA Assumption

For any probabilistic polynomial time algorithm A and polynomial r (·) the

following holds for k sufficiently large

Pr[A(n, e, RSAn,e(x)) = x] <
1

r (k)
,

where the probability is taken over all integers n = pq with p, q distinct random

k-bit primes, all e coprime with (p − 1)(q − 1), all x ∈ Zn and all random bits

used by A.

Proposition 7.8 Under the RSA Assumption, the family {RSAn,e}n,e is a family

of trapdoor functions.

152 7 Public key cryptography

Proof: In Section 7.3 we described all the necessary probabilistic polynomial

time algorithms for key generation, encryption and decryption.

Under the RSA Assumption, the security condition (4) also holds. �

So under the hypothesis that the RSA Assumption holds, the RSA cryp-

tosystem defines a family of trapdoor functions. This gives a certain guarantee

of security (so long as you believe the RSA Assumption).

We will now examine some related security questions. Notably the rela-

tionship between the security of RSA and factorisation. In order to do this we

introduce the following problems.

RSA

Input: RSA public key (n, e) and C = Me mod n, a cryptogram.

Output: the message M .

RSA PRIVATE KEY

Input: RSA public key (n, e).

Output: the corresponding private key d .

RSA FACTOR

Input: an integer n, the product of two distinct primes p, q .

Output: p and q .

We have the following easy result relating the relative difficulties of these

problems.

Proposition 7.9 RSA ≤T RSA PRIVATE KEY ≤T RSA FACTOR.

Proof: If Eve has an efficient algorithm for factoring a product of two primes

then she can easily compute the RSA private key from the public key (since

she can factor she can do this using the same algorithm as Bob). Hence

RSA PRIVATE KEY ≤T RSA FACTOR.

Also if Eve can compute the RSA private key easily from the public key then

she can easily recover plaintext from ciphertext (since she can find the private

key she simply decrypts using Bob’s decryption algorithm). Hence RSA ≤T

RSA PRIVATE KEY. �

Since factorisation is an extremely well-studied problem, which is in gen-

eral believed to be ‘hard’, we would like to be able to say that the problem

RSA (recovering plaintext from ciphertext) is equivalent to factoring. Unfortu-

nately this is currently a long-standing open problem. However, we will see in

Section 7.7 that the problem of recovering the RSA private key from the public

key is essentially equivalent to factoring.

7.6 Insecurities in RSA 153

7.6 Insecurities in RSA

Because of its widespread use in real applications there has been a great deal of

effort expended in trying to break RSA. While it appears that so far it has resisted

any such attack these efforts have resulted in a series of ‘health warnings’ about

possible ways the system may be compromised. We list some of the better

known ones below.

When the prime factors of either p − 1 or q − 1 are all small, factoring

techniques introduced by Pollard (1974) enable n = pq to be factored quickly.

This is also true if the prime factors of p + 1 or q + 1 are all small, as was

shown by Williams (1982).

Proposition 7.10 If the primes p and q in RSA are chosen to be ‘close’ then

RSA is insecure.

Proof: If p and q are ‘close’ then (p + q)/2 is not much larger than
√

pq (we

know that it is always at least as big). Now, assuming p > q , we can write

x =
p + q

2
, y =

p − q

2
,

so n = pq = x2 − y2 = (x − y)(x + y). Hence if Eve can express n as the

difference of two squares then she can factor n. To do this she tests each number

in turn from ⌈
√

n⌉, ⌈
√

n⌉ + 1 . . . , until she find a value s such that s2 − n is a

square. This happens when s = x =
√

n + y2.

If p = (1 + ǫ)
√

n, with ǫ > 0, then Eve needs to test approximately

p + q

2
−

√
n =

ǫ2
√

n

2(1 + ǫ)
,

values of s before she is successful. This is feasible if ǫ is sufficiently

small. �

Example 7.11 Primes p and q are too close.

If n = 56759 then ⌈
√

n⌉ = 239 so testing s = 239 and 240 we find that

2402 − n = 2402 − 56759 = 841 = 292.

Hence

n = (240 + 29)(240 − 29) = 269 × 211.

A more striking result due to Wiener (1990) tells us that the RSA private key d

should not be too small.

154 7 Public key cryptography

Proposition 7.12 Suppose n = pq is an RSA modulus, with q < p < 2q. If

the private key satisfies d < 1
3
n1/4 then Eve can recover d from the public key

(n, e) in polynomial time.

The proof of this is an elegant use of approximation by continued fractions.

This result was improved by Boneh and Durfee (2000) who raised the bound

on d to O(n0.292). They conjectured that if d < n1/2 then there should exist an

efficient algorithm to determine d from the public key. With this in mind there

is a strong case for choosing d to be large.

Proposition 7.13 A small RSA public exponent e makes sending multiple copies

of the same message dangerous.

Proof: See Exercise 7.5. �

Since choosing a public modulus n requires a user to perform a primality test

which is non-trivial it is tempting to think of ways to simplify the process of

choosing an RSA key. In particular could more than one user safely use the

same public modulus?

For example, suppose a trusted central authority chooses n = pq, publishes

n and then securely distributes distinct encryption/decryption pairs, (ei , di), to

the users of a network. Superficially this looks like a good way of reducing the

initial setup costs for the users, however, it is completely insecure. If Eve knows

the public modulus n and any (e, d) pair then (as we will show in Theorem 7.15)

she has a probabilistic algorithm to factor n with polynomial expected running

time. Hence any user of the network could read the messages sent to any other

user. The proof of this is rather involved and is contained in the next section.

Another problem with two users sharing the same public modulus was

pointed out by Simmons (1983).

Proposition 7.14 If the same message M is encrypted with coprime public

exponents e1 and e2 and common public modulus n then the message can easily

be recovered from the cryptograms and public keys.

Proof: Since gcd(e1, e2) = 1, Eve can use Euclid’s algorithm to find h, k ∈ Z

such that he1 + ke2 = 1. If the two cryptograms are C1 and C2 then the message

can now be recovered as

M = Mhe1+ke2 = Ch
1 Ck

2 mod n.
�

An amusing variation on this attack due to Joye and Quisquater (1997)

considers the problem of Bob’s public exponent becoming corrupted (see

Problem 7.8).

7.7 Finding the RSA private key and factoring 155

Exercise 7.4 b Given the RSA public key (n, e) = (62821427, 5) find the pri-

vate key d . (You may suppose that the public key was chosen insecurely.)

Exercise 7.5 h Alice, Bob and Carol have RSA public keys (n A, 3), (nB, 3) and

(nC , 3). If Dave sends the same message M to all three of them, show

that Eve can recover M in polynomial time using only the public keys

and the three cryptograms.

7.7 Finding the RSA private key and factoring

Although we do not know whether breaking RSA (in the sense of systematically

recovering messages from cryptograms) is equivalent to factoring, we can show

that recovering the RSA private key is equivalent to factoring in the following

sense.

Theorem 7.15 Given both RSA keys (n, e) and d there is a probabilistic algo-

rithm for factoring n which has polynomial expected running time.

We first prove a simple result showing that anyone who can calculate square

roots mod n = pq can also factor n. (This is not used directly in the proof of

Theorem 7.15 but shows where one of the key ideas comes from.)

Proposition 7.16 Given a polynomial time algorithm for computing square

roots mod n = pq there exists a probabilistic algorithm for factoring n with

polynomial expected running time.

Proof: Given a square x2 mod n there are exactly four square roots,

±x, ±y mod n. If we know x and y then

(x − y)(x + y) = x2 − y2 = 0 mod n.

Hence pq divides (x + y)(x − y). But we know that x �= ±y mod n so either

p divides x + y and q divides x − y or vice-versa. In either case we can easily

find one of the prime factors of n by calculating gcd(x + y, n) using Euclid’s

algorithm. We can then find the other prime factor by division.

So if we know two square roots x and y such that x �= ±y mod n then we

can factor n easily.

We now describe a probabilistic algorithm for factoring n given a polynomial

time algorithm for computing square roots mod n. Let A be the polynomial time

algorithm for computing square roots mod n. Our factoring algorithm works as

follows.

156 7 Public key cryptography

Input: an integer n = pq, with p and q prime

repeat

x ∈R Z∗
p

z ← x2 mod n

y ← A(z)

if y �= ±x mod n then

s ← gcd(x + y, n)

output s, n/s

end-repeat.

Clearly the probability of success on a single iteration is 1/2, since this is the

probability that the algorithm A returns a square root y of x2 mod n that satisfies

y �= ±x mod n. Hence this algorithm has polynomial expected running time.

Moreover its output is the factorisation of n. �

The proof of Theorem 7.15 is based on the Miller–Rabin primality test (see

Theorem 4.6). It gives a probabilistic algorithm which, when given the public

and private RSA keys, will with high probability find a non-trivial square root

of 1 (that is c such that c2 = 1 mod n but c �= ±1 mod n). As we saw in Propo-

sition 7.16 this ability to find a non-trivial square root allows us to factor n via

Euclid’s algorithm.

The proof also requires the Chinese Remainder Theorem (see Appendix 3,

Theorem A3.5) and Lagrange’s Theorem (see Appendix 3, Theorem A3.1).

Proof of Theorem 7.15: Given the RSA keys (n, e) and d we know that de =
1 mod (p − 1)(q − 1). Hence there exists an integer a ≥ 2 and an odd integer

b such that de − 1 = 2ab.

Our algorithm for factoring n is as follows:

Input: RSA public and private keys: (n, e) and d .

divide de − 1 by 2 to obtain a, b, with b odd such that de − 1 = 2ab.

repeat

x ∈R Zn .

c ← gcd(x, n)

(∗) if c �= 1 then c is a prime factor of n so output c, n/c

y ← xb mod n

i ← 1

while i ≤ a − 1

if y2i �= ±1 mod n and y2i+1 = 1 mod n then

c ← gcd(y2i + 1, n)

(∗∗) output c, n/c

7.7 Finding the RSA private key and factoring 157

i ← i + 1

end-while

end-repeat

If the algorithm outputs at line (∗) then c = p or c = q so we have factored n.

If the algorithm outputs at line (∗∗) then y2i

is a non-trivial square root 1 mod

n. Hence pq|(y2i − 1)(y2i + 1) but pq does not divide (y2i − 1) or (y2i + 1)

and so gcd(y2i + 1, n) = p or gcd(y2i + 1, n) = q . Hence c = p or c = q and

we have factored n.

We will show that with probability at least 1/2 we succeed during a single

iteration of this algorithm. Since a single iteration of the algorithm can be

performed in polynomial time this will imply that the algorithm has polynomial

expected running time.

If the algorithm chooses x ∈R Zn that is not coprime with n then it outputs

the factorisation of n at line (∗). Thus we may suppose that x ∈R Z∗
n .

Define the integer t by

t = max
{

0 ≤ s ≤ a − 1 | there exists x ∈ Z∗
n such that x2s b �= 1 mod n

}

.

Consider the set

Bt =
{

x ∈ Z∗
n | x2t b = ±1 mod n

}

.

If we show that Bt is a subgroup of Z∗
n then Lagrange’s Theorem implies that |Bt |

divides |Z∗
n|. If we also show that Bt �= Z∗

n then |Bt | < |Z∗
n| (since Bt ⊆ Z∗

n).

From this we can deduce that |Bt | ≤ |Z∗
n |/2.

This then implies that for x ∈R Z∗
n we have

Pr[x �∈ Bt] = 1 −
|Bt |
|Z∗

n|
≥

1

2

and hence

Pr
[

x2t b �= ±1 mod n
]

≥
1

2
.

But by definition of t we know that x2t+1b = 1 mod n and so with probability

at least 1/2 the algorithm outputs a factor of n at line (∗∗).

It remains to show that Bt is a subgroup of Z∗
n and Bt �= Z∗

n . To see that Bt

is a subgroup of Z∗
n is easy:

(i) 12t b = 1 mod n =⇒ 1 ∈ Bt .

(ii) x ∈ Bt =⇒ (x−1)2t b = (±1)−1 = ±1 mod n =⇒ x−1 ∈ Bt .

(iii) x, y ∈ Bt =⇒ (xy)2t b = (±1)(±1) = ±1 mod n =⇒ xy ∈ Bt .

158 7 Public key cryptography

So finally we simply need to show that Bt �= Z∗
n . To do this we need to find

w ∈ Z∗
n\Bt .

By definition of t there exists z ∈ Z∗
n such that z2t b = v �= 1 mod n. If v �=

−1 then we are done, since z �∈ Bt . So we may suppose v = −1. Now, by the

Chinese Remainder Theorem, there exists w ∈ Z∗
n such that

w = z mod p,

w = 1 mod q.

We will show that w �∈ Bt . Clearly

w2t b = z2t b = −1 mod p,

w2t b = 12t b = 1 mod q.

But this implies that w2t b �= ±1 mod n since

w2t b = 1 mod n =⇒ w2t b = 1 mod p and w2t b = 1 mod q;

w2t b = −1 mod n =⇒ w2t b = −1 mod p and w2t b = −1 mod q.

Hence w2t b �= ±1 mod n and so w �∈ Bt , as required. �

The following deterministic version of this result was given by May (2004).

Theorem 7.17 If n = pq is an RSA public modulus and p, q have the same

bit length then there is a polynomial time deterministic algorithm for factoring

n, given the RSA keys (n, e) and d.

(See Problem 7.5 for a weaker version of this result.)

Exercise 7.6 a Illustrate Theorem 7.15 by using the above algorithm to factorise

n = 21 631 given that e = 23 and d = 16 679.

7.8 Rabin’s public key cryptosystem

When considering the RSA cryptosystem we could not be sure that recovering

plaintext systematically from ciphertext was as difficult as factoring. The next

public key cryptosystem we will consider was the first example of a provably

secure system, in the sense that the problem of recovering plaintext system-

atically from ciphertext is known to be computationally equivalent to a well-

studied difficult problem: factorisation.

Recall that a prime p that is congruent to 3 mod 4 is called a Blum prime.

Rabin’s cryptosystem works as follows.

7.8 Rabin’s public key cryptosystem 159

(1) Setup. Bob chooses two distinct k-bit Blum primes, p and q , (so p and q

are both congruent to 3 mod 4). He then publishes his public key n = pq ,

while the pair (p, q) remains secret as his private key.

(2) Encryption. Alice has a message M which she splits into a sequence of

numbers M1, M2, . . . , Mt where each Mi satisfies 0 ≤ Mi < n. She then

encrypts these blocks as

Ci = M2
i mod n.

and sends the encrypted blocks to Bob.

(3) Decryption. Bob can recover the message block Mi by computing the four

square roots of Ci mod n using the algorithm described below. Bob then

needs to decide which of the four possibilities is Mi .

Clearly the setup is easy to perform: Bob simply chooses random integers of

the form 4k + 3 and tests them for primality until he finds two primes.

Encryption is also easy since squaring can be performed in polynomial time.

It is less obvious that decryption can also be achieved easily given the private

key (p, q), however, this is also true.

Proposition 7.18 Given the factorisation of n = pq into distinct primes p and

q, both congruent to 3 mod 4, computing square roots mod n is easy.

Proof: Since p and q are distinct primes they are coprime. Hence we can use

Euclid’s Algorithm to compute h and k such that hp + kq = 1 (in polynomial

time).

Let C = M2 mod n be the number whose square roots we are required to

calculate. Set

a = C (p+1)/4 mod p, b = C (q+1)/4 mod q

and

x = (hpb + kqa) mod n, y = (hpb − kqa) mod n.

We claim that the four square roots of C mod n are ±x, ±y. We will check that

x2 = C mod n (the other case is similar).

Using the Chinese Remainder Theorem (Appendix 3, Theorem A3.5) it is

sufficient to prove that x2 = C mod p and x2 = C mod q .

Working mod p we note that if M = 0 mod p then C , a and b are all congru-

ent to 0 mod p and so x2 = C mod p. So suppose that M �= 0 mod p. Working

mod p throughout we have

x2 = (hpa + kqa)2 = (kq)2a2 = (1 − hp)2C (p+1)/2

= C (p+1)/2 = C · C (p−1)/2 = C · M p−1 = C mod p,

160 7 Public key cryptography

where the last equality follows from Fermat’s Little Theorem.

Similarly x2 = C mod q and hence by the Chinese Remainder Theorem

x2 = C mod n.

Since all the computations required to calculate ±x and ±y can be performed

in polynomial time this completes the proof. �

This result shows that, given a cryptogram C , Bob can easily recover the four

square roots of C mod n. However, this still leaves the problem of deciding

which of these square roots is the original message. There are various ways of

solving this problem, depending on the type of message being transmitted.

If the messages have a special structure, for instance if they consist simply of

English text, then there is no problem since it is almost certain that only one of

the square roots will yield a meaningful message. However, if the messages do

not have such a special structure then a possible solution is to pad the message,

say by appending a string of zeros before encrypting. In this case Bob simply

needs to check the four square roots to see which of them ends in the correct

string of zeros. Again it is almost certain that there will be only one possibility.

Having seen that decryption and encryption can both be performed efficiently

in Rabin’s cryptosystem we now examine its security.

If Eve were able to systematically recover plaintext efficiently from cipher-

text then she must be able to compute square roots mod n. But we have already

seen that this is equivalent to being able to factor n.

Theorem 7.19 Systematically recovering plaintext from ciphertext in the Rabin

cryptosystem is equivalent to factoring.

Proof: An algorithm for systematically recovering plaintext from ciphertext

in Rabin’s cryptosystem is precisely an algorithm for computing square roots

mod n. So Proposition 7.16 implies that any efficient algorithm for the former

problem yields an efficient algorithm for factoring.

Conversely an efficient algorithm for factoring allows us to calculate the

private key (p, q) from the public key n = pq and hence allows us to decrypt

in Rabin’s cryptosystem. �

This theorem along with the efficient algorithms for the setup and encryption/

decryption processes yields the following result.

Theorem 7.20 Consider the family of functions

{RABINn : Zn → Zn}n, RABINn(x) = x2 mod n,

where n = pq is a product of distinct k-bit Blum primes.

Under the Factoring Assumption this is a family of trapdoor functions.

7.9 Public key systems based on NP-hard problems 161

Proof: We have already outlined efficient algorithms for the setup, encryption

and decryption processes.

To see that the security condition also holds note that if an adversary’s

probability of inverting a cryptogram produced by encrypting a random message

with a random instance of Rabin’s cryptosystem is not negligible then, by

Theorem 7.19, their probability of factoring n = pq is also not negligible. This

is impossible under the Factoring Assumption. �

Exercise 7.7a Bob uses Rabin’s cryptosystem with public key n = 77. If he

receives the cryptogram C = 71 find the four possible messages.

7.9 Public key systems based on NP-hard problems

The public key systems we have examined so far have all been based on prob-

lems that are Turing reducible to problems in NP ∩ co-NP and hence are not

NP-hard unless NP = co-NP (see Propositions 6.8 and 6.10). A few cryptosys-

tems based on NP-hard problems have been proposed and we will examine two

examples below.

One of the earliest examples of a public key cryptosystem was due to Merkle

and Hellman (1978). It was based on the intractability of the following NP-

complete problem.

SUBSET SUM

Input: a finite set of positive integers A and an integer t

Question: is there a subset of A whose sum is exactly t?

The Merkle–Hellman cryptosystem uses the fact that although this problem is

NP-complete it is easy to solve when the set A is a super-increasing sequence

{a1, . . . , an}. That is, if ai >
∑i−1

j=1 a j for all 2 ≤ i ≤ n.

Lemma 7.21 There is a polynomial time algorithm for deciding SUBSET

SUM when the sequence {a1, . . . , an} is super-increasing. Moreover this algo-

rithm will find the corresponding subset when it exists and this subset is

unique.

Proof: See Exercise 7.8 �

The Merkle–Hellman cryptosystem works as follows.

(1) Setup. Bob’s secret private key consists of a super-increasing sequence

{b1, . . . , bn}, and coprime integers h and d , with
∑

bi < d . He forms the

162 7 Public key cryptography

public key (a1, . . . , an) where

ai = hbi mod d

and publishes this.

(2) Encryption. If Alice wishes to send a message M , an n-bit number with

binary representation M1, . . . , Mn , to Bob she computes the cryptogram

C =

n
∑

i=1

Mi ai .

Since each Mi is either zero or one the message defines a subset of the

{a1, . . . , an} (namely the subset formed by taking those ai for which

Mi = 1) and the cryptogram is the sum of the members of this subset.

(3) Decryption. Bob decrypts by first computing h−1 mod d , the inverse of h

in Z∗
d and then computing h−1C mod d . He then needs to solve an

instance of SUBSET SUM with a super-increasing sequence which, by

Lemma 7.21, is easy. This yields the Mi since

h−1C = h−1
∑

Mi ai =
∑

Mi bi mod d.

Clearly the setup and encryption are easy to perform. Moreover Lemma 7.21

implies that decryption is also straightforward for Bob.

Superficially the security of this system looks good. For Eve to recover the

message from the cryptogram she must solve an instance of SUBSET SUM

given by the sequence {a1, . . . , an} and the integer C . But this is in general

NP-hard.

Moreover, both encryption and decryption are much faster than in RSA so

there was considerable optimism about the future of this system. However, in

1982 Shamir announced that he had broken the Merkle–Hellman system using

Lenstra–Lenstra–Lovász (L3) lattice basis reduction. What Shamir had shown

was that most cases of SUBSET SUM that arise in this cryptosystem can be

solved rather easily.

Note that the general problem SUBSET SUM is still intractable and this

result says nothing about whether P = NP.

Various other knapsack-based public key systems have been suggested over

the years, however, most have proved insecure and in general they are rather

unpopular.

Another public key cryptosystem based on an NP-hard problem was pro-

posed by McEliece in 1978. The basic idea of his scheme is to ‘hide’ the

message by introducing errors. It is based on the following NP-complete

problem.

7.9 Public key systems based on NP-hard problems 163

DECODING LINEAR CODES

Input: a k × n binary matrix G, a vector y ∈ {0, 1}n and a positive integer t .

Question: does there exist a vector z ∈ {0, 1}k with at most t non-zero entries

such that zG = y mod 2?

A k × n binary matrix G generates a t-error correcting linear code iff for any

two vectors z1, z2 ∈ {0, 1}n with at most t non-zero entries and any two distinct

vectors x1, x2 ∈ {0, 1}k we have

x1G + z1 �= x2G + z2.

Thus if we use G to encode a vector x ∈ {0, 1}k as xG then even if up to t

errors occur in the transmission of the vector xG the resulting ‘garbled’ vector

xG + z can still be uniquely decoded as x .

The related NP-hard problem of error correction is the following.

ERROR CORRECTING LINEAR CODES

Input: a k × n binary matrix G, an integer t and a vector C ∈ {0, 1}n , such that

C = xG + z mod 2,

where z ∈ {0, 1}n has at most t non-zero entries.

Output: x if it is unique otherwise output fail.

McEliece’s public key cryptosystem works as follows.

(1) Setup.

(i) Bob chooses a k × n binary matrix G for which the problem of error

correcting up to t errors is easy. (That is he has an efficient algorithm

for this task.)

(ii) Bob chooses a random k × k invertible binary matrix S and a random

n × n permutation matrix P .

(iii) Bob computes H = SG P and publishes his public key (H, t). His

private key is (S, G, P).

(2) Encryption. If Alice wishes to encrypt a message M ∈ {0, 1}k then she

chooses a random vector z ∈ {0, 1}n containing t ones. She then sends the

cryptogram C = M H + z to Bob.

(3) Decryption. Bob decrypts by first computing D = C P−1. He then uses

his efficient decoding algorithm for G to decode D as M ′. Finally he

recovers the message as M = M ′S−1.

McEliece proposed the use of Goppa codes in this system since efficient decod-

ing algorithms are known for these codes. He also suggested the parameter sizes

of n = 1024, k ≥ 524 and t = 50. This results in a public key of size at least

164 7 Public key cryptography

219. This relatively large public key size and the fact that the cryptogram is

significantly longer than the message may have been reasons why other pub-

lic key cryptosystems have been preferred in practice. (For example in RSA

a 1024-bit public modulus results in a public key of size at most 2048 and a

1024-bit message results in a 1024-bit cryptogram.)

Proposition 7.22 Decryption in McEliece’s cryptosystem works.

Proof: Bob forms

D = C P−1 = (M H + z)P−1 = M SG + z P−1.

Since Bob has an efficient decoding algorithm for G that will correct up to t

errors and z P−1 ∈ {0, 1}n contains t ones, he can use his decoding algorithm

to recover M ′ = M S from D. Finally M = M ′S−1 as required. �

Exercise 7.8h Describe a polynomial time algorithm which when given

the super-increasing sequence {a1, . . . , an} and an integer t ≥ 1 solves

the SUBSET SUM problem for this input and finds the corresponding

unique subset when it exists. Hence deduce that decryption works and

can be achieved efficiently in the Merkle–Hellman cryptosystem.

Exercise 7.9a Suppose that Alice sends Bob a message using McEliece’s

cryptosystem and Bob has public key (H, t). Eve intercepts the cryp-

togram C = M H + z and attempts to recover the message as follows:

she chooses k columns of H at random and forms Hk , the restriction of

H to these columns. If Ck and zk are the restrictions of C and z to these

columns then Ck = M Hk + zk . Moreover if zk is the all zero vector and

Hk is invertible then Eve can recover M by inverting Hk .

(a) Show that the probability that this attack succeeds is at most
(

n−t

k

)

/
(

n

k

)

.

(b) Give a lower bound on the expected number of attempts she would

need to succeed if n = 1024, t = 50 and k = 524.

7.10 Problems with trapdoor systems

Recall that in Shannon’s theory of cryptography we could attain perfect secrecy

(at the cost of an extremely long shared key). In simple terms this meant that

Eve learnt nothing about the message by seeing the cryptogram.

With public key systems based on trapdoor functions we have dispensed

with the need for a shared secret key but our level of security is much lower. In

7.10 Problems with trapdoor systems 165

the trapdoor model Eve learns everything about the message from seeing the

cryptogram. The security of the system is based on the assumption that (given

her limited computational powers) she has a negligible chance of recovering

the message from the cryptogram.

For example given an RSA cryptogram C together with the public key (n, e)

Eve knows that the message is

M = Cd mod n,

where d can in principle be calculated from n and e. So there is no uncertainty

about which message has been sent. However, although Eve has all the informa-

tion required to find M she cannot because this is computationally infeasible.

There are at least three obvious problems with this model of security.

(1) Partial information may leak. Just because Eve has a negligible chance of

recovering the message from the cryptogram does not imply that she

learns nothing about the message. Indeed, one-way functions often leak

bits of information.

(2) Messages are not random. Our assumption that Eve has a negligible

chance of recovering a random message is all very well but messages are

not random. The structure of the message space may well mean that the

system is insecure despite the fact that the trapdoor assumption holds.

For example suppose Alice only sends messages of the form:

‘Transfer X dollars into my bank account.’

If Eve knows this then (since encryption is public) she can encrypt

messages of this form with different values of X until she finds the unique

one that gives the cryptogram she has observed. This allows her to recover

the message easily.

(3) Multiple message insecurity. We have already seen that RSA is insecure if

the same message is sent more than once using a low exponent key.

In general if Alice and Bob use RSA then Eve can tell when Alice sends

Bob the same message twice, since she will see the same cryptogram on

both occasions. Such information may be extremely useful.

So having outlined some of the problems with trapdoor systems what could we

aim for in a definition of security for a public key cryptosystem?

Consider the analogy between encryption and sending letters in sealed

envelopes. If Alice sent Bob a letter in a sealed envelope and Eve was not

allowed to open it what could she hope to learn about its contents? Well she

might well be able to make a reasonable guess as to the length of the letter (by

166 7 Public key cryptography

weighing it or examining the size of the envelope). However, this is essentially

all she could expect to learn without actually opening the envelope.

Ideally a cryptosystem should have the same property: Eve should be unable

to learn anything about the message except possibly its length.

We will consider a model of security that captures this in Chapter 10:

polynomial indistinguishability. Informally in this model a cryptosystem is

secure if for any pair of ‘reasonable’ messages, M1, M2, Eve has no way of

telling which of the two messages has been sent given both messages and the

cryptogram.

Clearly any deterministic public key cryptosystem will fail this test since

given a pair of messages M1, M2 and a cryptogram C , Eve can easily check

if C = e(M1) or C = e(M2). So secure cryptography will require probabilistic

encryption.

Problems

7.1a Bob has chosen his RSA public modulus n = pq and now wishes to

choose his public exponent e. Compare the complexity of the following

algorithms for choosing an RSA public exponent e, to be coprime with

(p − 1)(q − 1).

Algorithm A. Choose k-bit odd integers at random and test for primality.

When a prime is found check it does not divide (p − 1)(q − 1).

Algorithm B. Choose k-bit odd integers at random and test whether they

are coprime with (p − 1)(q − 1).

7.2h Recall that φ(n) = #{1 ≤ a < n | gcd(a, n) = 1}. Show that for any

integer n we have

φ(n) = n
∏

p|n

(

1 −
1

p

)

.

7.3b Show that knowledge of an Elgamal user’s public key (p, g, gx mod p)

enables an adversary to recover the least significant bit of the private

key x .

7.4b Consider the following two problems:

RSA FACTOR

Input: an integer n, the product of two distinct primes p, q .

Output: p and q .

RSA PHI

Input: an integer n, the product of two distinct primes p, q .

Output: φ(n) = #{1 ≤ a < n | gcd(a, n) = 1}.

7.10 Problems with trapdoor systems 167

Show that these problems are Turing equivalent (that is they are

Turing reducible to each other).

7.5h Let n = pq be an RSA public modulus, where p, q both have the

same bit length. Show that if the public and private exponents sat-

isfy ed ≤ n3/2 then there is a polynomial time algorithm for factoring

n.

7.6a Suppose that in choosing his Elgamal public key Bob chooses g to be an

arbitrary integer in the range 2 ≤ g ≤ p. Will the resulting cryptosystem

still work?

7.7a Suppose Bob chooses his RSA public modulus as follows. He fixes a

key length k and generates a random odd k-bit integer a. He then tests

a, a + 2, a + 4 . . . for primality and stops once he has found two primes

p and q . He then forms the public modulus n = pq . Explain why this

method is insecure.

7.8h Alice and Bob are using RSA to communicate but Alice’s copy of

Bob’s public exponent e has become corrupted, with a single bit being

flipped. Suppose that Alice encrypts a message with this corrupted

public exponent e′ and Bob then realises her mistake and asks her to

resend the message, encrypted with the correct public exponent e. Show

that Eve can recover the message from Bob’s public key and the two

cryptograms.

7.9b If (n, e) is an RSA public key then 0 ≤ M ≤ n − 1 is a fixed point of the

cryptosystem iff Me = M mod n, that is the encryption of M is itself.

How many fixed points are there for a given RSA public key (n, e),

where n = pq?

7.10h Show that if Bob has RSA public key (n, 3) and both M and M + 1 are

sent to Bob by Alice then Eve can recover M from the two cryptograms.

7.11h Carol uses Rabin’s cryptosystem to send the same message to both Alice

and Bob. Show that an adversary can recover the message given only

the two cryptograms and the public keys.

7.12h Suppose Alice and Bob use Rabin’s cryptosystem and his public key is

n. If Alice sends a message M to Bob but he loses his private key before

he has a chance to read the message then explain why it is insecure for

Bob to simply choose a new public key n∗ > n and ask Alice to resend

the message.

7.13a If π1(x) and π3(x) denote the number of primes less than or equal to x

which are of the form 4k + 1 and 4k + 3 respectively then

lim
x→∞

π1(x)

π3(x)
= 1.

168 7 Public key cryptography

Hence show that there is a probabilistic algorithm for generating Blum

primes which has polynomial expected running time.

7.14h Prove that there are infinitely many Blum primes.

7.15a Suppose that (an) is a super-increasing sequence with the property that

if (bn) is any other super-increasing sequence then an ≤ bn . What is an?

7.16a Suppose a message space M consists of k-bit binary strings in which

no more than 5 entries are non-zero. These are encrypted using the

RSA cryptosystem. Prove that an enemy will be able to decrypt any

cryptogram in polynomial time. Is the same true if Elgamal is used in

place of RSA?

7.17a Alice sends Bob the same message twice using McEliece’s cryptosys-

tem with his suggested parameters n = 1024, t = 50 and k = 524.

Assuming that she uses different random ‘error’ vectors, z1 and z2,

explain how Eve can detect that the same message has been sent twice

just from examining the cryptograms.

Further notes

The presentation of the Cocks–Ellis cryptosystem in Section 7.2 is based on

the technical notes of Cocks (1973) which were not released to the public until

1997.

There is a huge research literature on the RSA and Elgamal public key

systems. A good account of attacks can be found in Menezes, van Oorschot,

and Vanstone (1996) and more recently for RSA in Boneh (1999).

Theorem 7.15 which shows that knowledge of the decryption exponent as

well as the public key (n, e) leads to an expected polynomial time algorithm

for factoring n was noted in the original RSA paper.

A harder version of the question whether breaking RSA is as hard as factoring

is to ask whether breaking low exponent RSA (LE-RSA) is as hard as factoring.

Boneh and Venkatesan (1998) make progress towards showing that any efficient

algebraic reduction from factoring to breaking LE-RSA can be converted into

an efficient factoring algorithm. This means that breaking LE-RSA cannot be

equivalent to factoring under algebraic reductions unless factoring is easy. (An

algebraic reduction is restricted to only performing arithmetic operations but,

for example, is not allowed to compute x ⊕ y.)

We note that Theorem 7.20 relating the security of Rabin’s cryptosystem

to factoring is only true if messages are chosen at random. In particular, if we

insist that messages are of a special form so as to enable unique decryption, it

is no longer true.

7.10 Problems with trapdoor systems 169

Exercise 7.5 is a special case of Håstad’s broadcast attack (1988). Problem

7.10 is a special case of an attack due to Coppersmith et al. (1996).

The language SUBSET SUM used in the knapsack cryptosystem was one

of the original 21 problems proved to be NP-hard by Karp (1972). The L3-

algorithm of Lenstra, Lenstra and Lovász (1983) used by Shamir (1983) in

breaking the knapsack-based system was a landmark in the theory of NP-

hardness. It showed that the problem of factoring polynomials in one variable

with rational coefficients and of fixed degree could be achieved in polyno-

mial time. Kaltofen (1982 and 1985) extended this to polynomials in any fixed

number of variables.

For elementary introductions to the theory of linear codes (as used in

McEliece’s cryptosystem) see Hill (1986) or Welsh (1988).

The use of elliptic curves in public key cryptosystems seems to have been

first proposed by Koblitz (1987) and Miller (1986) and there is now a huge

literature on this topic. However, the mathematical background needed for this

is beyond the scope of this book.

8

Digital signatures

8.1 Introduction

The need to authenticate both the contents and origin of a message is crucial in

any communications network. Consider the following problematic situations in

which Alice and Bob face the forger Fred. In each case we suppose that Bob is

Alice’s banker.

(1) Suppose Fred sends Bob a message claiming to come from Alice asking

him to transfer $1000 into Fred’s account. If Bob has no way of verifying

the origin of this message then Alice is in trouble.

(2) Suppose Fred intercepts a message from Alice to Bob asking him to

transfer $1000 into Carol’s account. If Fred can alter the message so that

‘Carol’ is replaced by ‘Fred’ then again there is trouble.

(3) Suppose Fred intercepts a message from Alice to Bob asking him to

transfer $1000 into Fred’s account. Fred stores the message and resends it

to Bob whenever he is short of cash!

In each case Fred can succeed if no proper system of message authentication is

in place.

Historically the handwritten signature has been the preferred method for

authentication of messages. A digital signature is a method for achieving this

based on cryptography.

Ideally a digital signature should provide the same guarantees as a handwrit-

ten signature, namely it should satisfy:

(1) Unforgeability. Only Alice should be able to sign her name to a message.

(2) Undeniability. Alice should not be able to deny she signed at a later stage.

(3) Authentication. The signature should allow the contents of the message to

be authenticated.

170

8.2 Public key-based signature schemes 171

For Alice’s signature to be unforgeable it must rely on some secret known only

to her, namely her secret or private key. Moreover in order to provide message

authentication the signature must also depend on the contents of the message

being signed.

The original concept of a digital signature based on public key cryptography

was proposed by Diffie and Hellman (1976) and was shown to be practically

viable by Rivest, Shamir and Adleman in the RSA paper (1978). There is now

a huge literature on the subject and a plethora of different schemes exist. We

will only introduce the basic concepts here.

8.2 Public key-based signature schemes

Most of the public key cryptosystems we saw in the previous chapter can

be used as digital signature schemes. The key ingredient required is that the

cryptosystem must be commutative. That is, not only does

d(e(M) = M

need to hold, but also

e(d(M)) = M.

For example, if Alice wishes to send a signed message to Bob she computes the

signature S = dA(M) (that is she ‘decrypts’ the message using her private key)

and sends the pair (M, S) to Bob. He can verify that the message did indeed

come from Alice by using her (publicly-known) encryption function to check

that

eA(S) = eA(dA(M)) = dA(eA(M)) = M.

Using the RSA cryptosystem this process yields the following signature

scheme.

Example 8.1 The RSA signature scheme

(1) Setup. Alice chooses an RSA public key (n, e) and private key d .

(2) Signing. If Alice wishes to sign the message M , 0 ≤ M < n she computes

the signature

S = Md mod n

and sends the pair (M, S) to Bob.

172 8 Digital signatures

(3) Verification. Bob verifies the signature by using Alice’s public key to

check that

M = Se mod n.

On the face of it this scheme looks secure: signing in general seems to require

knowledge of Alice’s private key. We saw in the previous chapter (Theorem

7.15) that recovering the private key from the public key in the RSA cryptosys-

tem is equivalent to factoring, so under the Factoring Assumption this is hard.

However, we will see later that this scheme is far from perfect.

In the next section we will consider exactly what it means for a signature

scheme to be secure.

Exercise 8.1a Suppose Alice has RSA public key n = 143, e = 103 and private

key d = 7. What is the signature corresponding to the message M = 8?

8.3 Attacks and security of signature schemes

What kind of attacks can the forger Fred perpetrate on a signature scheme?

We list the four basic attacks in order of increasing severity.

Direct attack

Fred only knows Alice’s public key. (He does not see any message-signature

pairs).

Known-signature attack

Fred knows Alice’s public key and also has a collection of message-signature

pairs: (M1, S1), . . . , (Mt , St), signed by Alice. (The messages are taken from

those actually sent by Alice.)

Chosen-message attack

Fred knows Alice’s public key and has (somehow!) convinced her to sign a

collection of messages of his own choice: (M1, S1), . . . , (Mt , St).

Adaptive-chosen-message attack

Fred knows Alice’s public key and convinces Alice to sign a sequence of mes-

sages of his own choice: (M1, S1), . . . , (Mt , St), with the choice of each message

Mi dependent on the signatures of the earlier messages.

So what does it mean for Fred to break a signature scheme? His aim is to

produce forgeries, that is message-signature pairs (M, S) for which S is Alice’s

signature of M .

8.3 Attacks and security of signature schemes 173

In order of increasing difficulty (for Fred) we have the following types of

breaks.

Existential forgery

Fred can forge the signature of at least one message whose signature he has not

already seen.

Selective forgery

Fred can forge the signature of at least one message of his choice whose signature

he has not already seen.

Universal forgery

Fred can forge the signature of any message.

Total break

Fred manages to recover Alice’s private key (and hence can create forgeries at

will).

So how does the RSA-based scheme described above stand up to attack?

Proposition 8.2 The RSA signature scheme is

(a) existentially forgeable under a direct attack;

(b) universally forgeable under a chosen-message attack.

Proof: If Alice’s public key is (n, e) then Fred can choose any 0 ≤ R < n, and

form

Y = Re mod n.

Then the pair (Y, R) is a valid message-signature pair since when Bob checks

he finds that Re = Y mod n and so it passes the verification procedure. Hence

(a) holds.

For (b), if Fred wishes to sign the message M then he chooses a random R,

1 ≤ R < n, and asks Alice to sign the messages M1 = M R mod n and M2 =
R−1 mod n. (Note that if R−1 mod n does not exist then d = gcd(R, n) �= 1

and so Fred can factor n as d, n/d .)

If these messages have signatures S1 and S2 then M has signature S1S2 mod n

since

Md = (M R R−1)d = (M R)d (R−1)d = S1S2 mod n.
�

Another well-known signature scheme is based on the Elgamal cryptosystem.

174 8 Digital signatures

Example 8.3 The Elgamal signature scheme

(1) Setup. Alice chooses an Elgamal public key (p, g, y) and private key x ,

where p is a prime, g is a primitive root modulo p, x ∈R Z∗
p is random

and y = gx mod p.

(2) Signing. To sign the message M , where 0 ≤ M < p, Alice does the

following.

(a) She selects a random k, 1 ≤ k ≤ p − 2 satisfying gcd(k, p − 1) = 1.

(b) She computes

S1 = gk mod p and S2 = k−1(M − x S1) mod (p − 1).

(c) Her signature for the message M is the pair (S1, S2) which she sends

to Bob together with the message M .

(3) Verification. To check the signature Bob does the following.

(a) He computes

V = yS1 S
S2

1 = (gx)S1 (gk)S2 mod p

and

W = gM mod p.

(b) Bob accepts Alice’s signature iff V = W mod p.

It is a straightforward exercise to show that the Elgamal signature scheme works

(in the sense that Bob accepts correctly signed messages).

As with the Elgamal cryptosystem this scheme can clearly be totally broken

by an adversary who can solve the discrete logarithm problem efficiently. It is

also universally forgeable by anyone who can solve the Diffie–Hellman problem

(although the best current method of solving the Diffie–Hellman problem is via

the discrete logarithm).

As with the RSA system this signature scheme is vulnerable to existential

forgery.

Proposition 8.4 The Elgamal signature scheme is existentially forgeable under

a direct attack.

Proof: Suppose Fred chooses a ∈ Zp−1 and b ∈ Z∗
p−1 and computes

S1 = ga yb mod p and S2 = −S1b−1 mod p − 1.

We can then check that (S1, S2) is a valid signature of the message

M = aS2 mod p − 1.

8.3 Attacks and security of signature schemes 175

Bob computes

V = yS1 S
S2

1 = y−S2b(ga yb)S2 = gaS2 = gM = W mod p,

and so accepts Fred’s forgery. �

There are many variants of the Elgamal signature scheme. One important exam-

ple is the Digital Signature Algorithm (DSA). This was first proposed by NIST

in 1991 and was developed by the NSA. In its original form it aroused some

controversy. It was not until May 1994 after several modifications had been

made that it became the Digital Signature Standard (DSS).

Example 8.5 The Digital Signature Algorithm

(1) Setup. A global public key (p, q, g) is constructed as follows:

(a) p is a prime of exactly N bits, where N is a multiple of 64 in the range

512 ≤ N ≤ 1024 (so 2N−1 < p < 2N);

(b) q is a prime of 160 bits which divides p − 1;

(c) g = h(p−1)/q mod p, where h is a primitive root mod p. In other

words g is an element of order q in Z∗
p.

(d) Alice chooses a private key xA, 1 < xA < q and publishes her public

key yA = gxA mod p.

(2) Signing. For Alice to sign a message M , satisfying 0 ≤ M < q, she

chooses a random k, 1 < k < q and computes

S1 =
(

gk mod p
)

mod q and S2 = k−1(M + xA S1) mod q.

Her signature for M is the pair (S1, S2), which she sends to Bob together

with the message M .

(3) Verification. Bob verifies her signed message as follows.

(a) He computes

W = S−1
2 mod q, U1 = MW mod q, U2 = S1W mod q

and

V =
(

gU1 y
U2

A mod p
)

mod q.

(b) Bob accepts iff V = S1.

Proposition 8.6 The Digital Signature Algorithm works.

Proof: First note that

(M + xA S1) W = kS2S−1
2 = k mod q. (8.1)

176 8 Digital signatures

Now

V =
(

gU1 y
U2

A mod p
)

mod q

=
(

gMW gxA S1W mod p
)

mod q,

since gq = 1 mod p. So

V =
(

g(M+xA S1)W mod p
)

mod q.

Using (8.1) we obtain

V =
(

gk mod p
)

mod q

= S1.

So for a correctly signed message the verification procedure works. �

Exercise 8.2 a Alice uses the Elgamal signature scheme to sign the message

M = 30. If her public key is (71, 7, 58), her private key is x = 4 and

when signing she chooses k = 3 what is her signature?

Exercise 8.3a Show that the Elgamal signature scheme works in the sense that

the verification procedure accepts correctly signed messages.

8.4 Signatures with privacy

None of the signature schemes we have examined so far has attempted to hide

the contents of the message being signed. Indeed the message is always sent to

Bob unencrypted along with the signature and is used by Bob in the verification

process. This allows Bob to verify that the message is authentic. However, this

also enables an eavesdropper to obtain the contents of the message very easily.

In many situations the fact that the signed message can be verified by anyone

may be extremely useful. However, if Alice also wishes to keep the contents of

the message secret then she must also encrypt the signature using Bob’s public

key.

The general protocol would then be as follows.

Example 8.7 A generic signature with privacy scheme.

(1) Setup. Alice and Bob both choose public/private key pairs.

(2) Signing. Alice signs a message M using her private key as S = dA(M).

(3) Encryption. She then encrypts the signature using Bob’s public key as

C1 = eB(S) and encrypts the message as C2 = eB(M) and sends the pair

(C1, C2) to Bob.

8.4 Signatures with privacy 177

(4) Decryption. Bob uses his private key to decrypt and recover the signature

as

dB(C1) = dB(eB(S)) = S.

He also recovers the message as

dB(C2) = dB(eB(M)) = M.

(5) Verification. He then verifies the signature using Alice’s public key and

accepts iff

eA(S) = eA(dA(M)) = M.

In practice this may not be possible, since we are combining elements of both

Alice and Bob’s cryptosystems. The problem is that the signature S may not lie

in the domain of Bob’s cryptosystem and so Alice cannot then encrypt it with

his public key. (For instance if they are using RSA and Alice’s public modulus

n A is larger than Bob’s public modulus nB then S may not satisfy 0 ≤ S < nB .

In this case Alice cannot encrypt S with Bob’s public key as required in step

(3) above.)

To avoid this problem Rivest, Shamir and Adleman proposed the following

public key system for signatures and secrecy.

Example 8.8 The RSA signature scheme with privacy.

(1) Setup.

(a) A large value, say h = 21024, is announced by Alice.

(b) Each user of the system chooses two RSA public key pairs, one for

encryption, (n, e), and one for signing, (m, f), satisfying m < h < n.

(2) Signing. Suppose Alice wishes to sign a message M , where 0 ≤ M < m A,

and send it securely to Bob. If Alice’s private key, corresponding to her

signature public key (m A, f A), is dA then Alice computes her signature as

S = MdA mod m A.

(3) Encryption. Since 0 ≤ S < m A < h < nB Alice can now encrypt her

signature using Bob’s encryption public key (nB, eB) to give

C1 = SeB mod nB

which she sends to Bob together with C2 = MeB mod nB .

(4) Decryption. Bob decrypts C1 to recover the signature as

S = C
dB

1 mod nB,

178 8 Digital signatures

where dB is Bob’s private key corresponding to his encryption public key

(nB, eB). He also recovers the message as M = C
dB

2 mod nB .

(5) Verification. Finally Bob verifies the signature using Alice’s signing

public key (m A, f A) and accepts the signature iff

M = S f A mod m A.

8.5 The importance of hashing

There are two major problems with the public key-based signature schemes we

have seen.

(1) They are existentially forgeable.

(2) If the message is long then the signature will take a long time to compute.

(Recall that in practice most public key cryptosystems are not used to

encrypt long messages, rather they are used to encrypt short session keys.)

The common solution employed to overcome both of these problems is the use

of a hash function. We give only an informal definition of what this is.

A hash function h should map a (possibly lengthy) message to a small digest

h(M), called the hash of the message. Ideally it has the following properties.

(H1) The length of h(M) should be small so that it can signed efficiently.

(H2) The function h should be a publicly known one-way function.

(H3) It should ‘destroy algebraic relationships’ between messages and

signatures.

(H4) It should be ‘collision-resistant’, that is it should be difficult to find two

messages with the same hash value.

Of all these conditions the last two are the most difficult to formalise. Before

examining what these conditions mean we describe how to use a hash function

in a signature scheme.

Assuming that Alice and Bob have chosen a hash function h, the public key-

based signature schemes we have described in previous sections can be adapted

so that rather than signing the message, M , Alice instead signs the hash of the

message, h(M). To be precise the new scheme works as follows.

Example 8.9 A generic ‘hash then sign’ signature scheme.

(1) Setup.

(a) Alice and Bob first agree on a hash function h to use.

(b) Alice then chooses her public and private keys and publishes her

public key.

8.5 The importance of hashing 179

(2) Signing. If Alice wishes to sign a message M she does the following.

(a) She first computes the hash of the message, H = h(M).

(b) She then uses her private key to sign the hash, as S = dA(H).

(c) Finally she sends the pair (M, S) to Bob.

(3) Verification. Bob checks the signature as follows.

(a) He computes the hash of the message H = h(M).

(b) He uses Alice’s public key to check that the signature is authentic and

accepts iff the following identity holds

eA(S) = eA(dA(H)) = H.

One immediate advantage of this type of scheme is that rather than signing

a message by ‘decrypting’ a possibly lengthy message Alice now signs by

computing the hash of the message and then ‘decrypting’ this short hash value.

This will generally result in significant efficiency savings.

Now that we know how Alice and Bob will use a hash function in their signa-

ture scheme we can return to the definition of a hash function and in particular

discuss the last two conditions: (H3) ‘destroying algebraic relationships’ and

(H4) ‘collision-resistant’.

To motivate condition (H3), recall the attack on the RSA scheme that showed

it was universally forgeable under a chosen-message attack (see Proposition 8.2

(b)). This result relied on the fact that if

M = M1 M2 mod n

and Mi has signature Si then the signature of M is

S = S1S2 mod n.

If we want a hash function to be useful in thwarting such an attack then we need

to make sure that the following identity does not hold

h(M1)h(M2) = h(M) mod n.

This is because if it does then the attack described in Proposition 8.2 (b) still

works. This is an example of the type of algebraic relationship which the hash

function should destroy.

In general the exact ‘algebraic properties’ that we wish the hash function to

destroy will vary from one signature scheme to another.

The other condition, of ‘collision-resistance’, refers to a problem that is

actually introduced by using hash functions, rather than an existing problem in

signature schemes. If we wish to ensure that a forger Fred cannot substitute his

message for a message M which Alice has signed then it is essential that Fred

180 8 Digital signatures

cannot find another message M ′ such that h(M) = h(M ′). Since if he can find

such a message, then he can replace M by M ′ and, since both messages have

the same hash value, the signature for M will still be valid as a signature for M ′.

Thus we say that a hash function h is collision-resistant if it is computa-

tionally infeasible for an adversary to find two messages M1 and M2 such that

h(M1) = h(M2) (such a pair of messages is known as a collision). However, this

is rather difficult to make precise. Since a hash function maps long messages

to short hash values and in general there will be a large number of possible

messages (far greater than the number of possible hash values) there will gen-

erally be lots of pairs of messages that have the same hash value. When this is

true there clearly exists an extremely short algorithm for describing collisions:

it simply outputs two messages that collide! However, in reality what matters

is whether anyone can actually figure out what this algorithm is.

A family of widely used hash functions is described in the Secure Hash Stan-

dard (FIPS 180-2). These consist of SHA-1, which is the hash function desig-

nated for use in the Digital Signature Standard, together with SHA-256, SHA-

384 and SHA-512. These functions map messages to hash values of lengths

160, 256, 384 and 512 bits respectively. Despite the fact that the compression

involved implies that there are an extremely large number of possible messages

that collide (SHA-1 maps a message space of size 2264

to a hash space of size

2160) no-one has yet found even a single pair of messages that collide! (However,

a recent attack on SHA-1 requiring work of order 263 to find a single collision

suggests that this may not hold true for much longer.)

As a concrete example of a hash function consider the following, due to

Chaum, van Heijst and Pfitzmann (1992).

Let p be a safe prime, that is p is of the form 2q + 1, where q is also prime.

Let a, b be distinct primitive roots modulo p and define

h : Zq × Zq → Z∗
p, h(x, y) = ax by mod p.

It can be shown (by case analysis see Problem 8.10) that given a single collision

for h there is a polynomial time algorithm to compute loga b mod p. However,

as we will see in the next section, to withstand even the simplest attack p must

be large.

8.6 The birthday attack

There are various attacks on ‘hash then sign’ signature schemes, the most basic

of which is the birthday attack. This attack is loosely motivated by the following

scenario.

8.6 The birthday attack 181

Suppose that Fred wishes to forge Alice’s signature for a particular message

M1. Unsurprisingly Alice is unwilling to sign M1, however, she is willing to

sign another message M2. Now almost certainly the values h(M1) �= h(M2) and

so a valid signature for M2 is not a valid signature for M1. However, if Alice

is willing to sign M2 she may well also be willing to sign a message M ′
2 that

differs from M2 in a few bits (for instance suppose some of the spaces in the

message are replaced by tabs). Also Fred may be satisfied with a signature of

a message M ′
1 that only differs from M1 in a few bits. With this in mind, Fred

produces two lists of possible messages

M1 = {M1,1, M1,2, . . . , M1,n}

and

M2 = {M2,1, M2,2, . . . , M2,n}.

The first list consists of messages obtained from M1 by changing a few bits and

are all messages that Fred would like Alice to sign but which she would never

be willing to sign. The second list consists of messages obtained from M2 by

changing a few bits and are all messages that Alice would be willing to sign.

Now all Fred needs to do is to find a pair M ′
1 ∈ M1 and M ′

2 ∈ M2 such that

h(M ′
1) = h(M ′

2). Fred can then ask Alice to sign the message M ′
2 (which she is

happy to do) and later he can claim that Alice in fact signed the message M ′
1 (a

message that she would never have willingly signed).

If the hash function h is truly collision-resistant then Fred will fail, since this

attack requires him to find a collision. However, it shows how the ability to find

even a single collision may have disastrous consequences for the security of a

signature scheme. This leads us to consider the question of how Fred might go

about finding a single collision for an arbitrary hash function.

Our next result, describing the birthday attack, shows that Fred may not

need to examine too many messages before he finds a collision. To be precise

it says that if Fred generates random messages and computes their hash values

then with probability at least 1/2 he finds a collision after generating
√

2|R|
messages, where |R| is the total number of possible hash values for the hash

function in question. Thus if we wish a hash function to be collision-resistant

we must ensure that it maps messages to hash values consisting of t-bits, where

2(t+1)/2 =
√

2|R| is sufficiently large that generating 2(t+1)/2 random messages

and corresponding hash values is infeasible for Fred.

Theorem 8.10 If h : {0, 1}m → {0, 1}t , 3 ≤ t < m, n = 2⌈(t+1)/2⌉ and

M1, . . . , Mn ∈R {0, 1}m are chosen independently at random then

Pr[There is a collision] >
1

2
.

182 8 Digital signatures

Proof: Let us assume to start with that the hash function h is regular, that is

for every possible hash value y ∈ {0, 1}t the number of messages M ∈ {0, 1}m

satisfying h(M) = y is exactly 2m−t .

Thus for any fixed hash value y ∈ {0, 1}t and random message M we have

Pr[h(M) = y] =
1

2t
.

Now if Fred chooses n random messages independently from {0, 1}m then the

probability that they all have distinct hash values is the same as the probability

that if n balls are thrown independently and uniformly at random into 2t bins

then no bin contains more than one ball. The total number of ways of throwing

n balls into 2t bins is 2tn , whereas the number of ways of throwing n balls

into 2t bins so that no bin contains more than one ball is n!
(

2t

n

)

. Hence we

have

Pr[No collision] =
(

2t

n

)

n!

2tn

=
n−1
∏

i=1

(

1 −
i

2t

)

.

We can now use the inequality 1 − x ≤ e−x for 0 ≤ x ≤ 1 to give

Pr[No collision] ≤
n−1
∏

i=1

e−i/2t

.

Using the fact that

1 + 2 + · · · + (n − 1) =
n(n − 1)

2
,

we obtain

Pr[No collision] ≤ e−n(n−1)/2t+1

.

So for n = 2⌈(t+1)/2⌉ the probability that no collision occurs is at most exp(−1 +
1/2(t+1)/2). Using the fact that t ≥ 3 we have

Pr[No collision] ≤ e−3/4 <
1

2
.

Hence

Pr[There is a collision] >
1

2
.

If h is not regular, that is certain hash values are more likely than others, the

result also holds (see Exercise 8.4 for details). �

8.6 The birthday attack 183

This last result tells us that for a hash function to be secure against the

birthday attack it must be true that generating 2t/2 messages and corresponding

hash values is infeasible (where the hash value is a t-bit string). However, it

says nothing about a lower bound on when this attack might succeed. In fact

if the hash function is regular then the birthday attack is unlikely to succeed if

fewer than 2t/2 messages are generated.

Proposition 8.11 If h : {0, 1}m → {0, 1}t is regular, 3 ≤ t < m, n = 2⌊(t−k)/2⌋

and M1, . . . , Mn ∈R {0, 1}m are chosen independently at random then

Pr[There is a collision] <
1

2k+1
.

Proof: Since h is regular we know that for each y ∈ {0, 1}t we have |h−1(y)| =
2m−t . Let Fi be the event that the i th message has a hash value that is the same

as one of the earlier messages. Then

Pr[Fi] ≤
i − 1

2t
,

so

Pr[There is a collision] = Pr[F2 ∪ F3 ∪ · · · ∪ Fn]

≤
n

∑

i=2

Pr[Fi]

≤
n

∑

i=2

i − 1

2t

=
n(n − 1)

2t+1
.

Hence

Pr[There is a collision] <
n2

2t+1
≤

2t−k

2t+1
=

1

2k+1
.

�

In fact one can show that the more ‘irregular’ the hash function is the quicker

the birthday attack will succeed. Intuitively this is not surprising. As an extreme

case think of a hash function that maps all messages to a single hash value. For

details see Bellare and Kohno (2004).

Note that the hash function SHA-1 maps messages to hash values of 160 bits.

So this result says that if SHA-1 is regular then the birthday attack is infeasible

since 280 messages are required. In general for any attack on a hash function to

be taken seriously it must do better than the birthday attack.

184 8 Digital signatures

Exercise 8.4h

(a) Show that if p1 + p2 + · · · + pN = 1 and pi ≥ 0 for 1 ≤ i ≤ N

then for k ≤ N

∑

pi1
pi2

· · · pik
≤

(

N

k

)

k!

N k
,

where the sum is over all choices of distinct i1, . . . ik satisfying

1 ≤ i j ≤ N for 1 ≤ j ≤ k.

(b) Hence complete the proof of Theorem 8.10 by showing that if a

hash function h is not regular then the success probability of the

birthday attack is at least as good as when h is regular.

Problems

8.1a Estimate the complexity of the signing procedure of the RSA scheme.

How does this compare with the time needed to verify a signature?

8.2a Repeat the above for the Elgamal signature scheme (assume that Alice

uses a safe prime, that is p = 2q + 1, with q also prime).

8.3h Suppose Alice uses a signature scheme based on Rabin’s cryptosystem

with public key n and private key (p, q). So the signature of a message

M is S such that S2 = M mod n. Can all messages 0 ≤ M < n be

signed? Given that she restricts her message space to those messages

that can be signed show that Fred can totally break this scheme using

a chosen-message attack. (That is Fred can recover Alice’s private key

using an attack where he is first shown Alice’s public key and then

chooses messages for Alice to sign.)

8.4a Show that if Fred sees two message-signature pairs (M1, S1) and

(M2, S2) in the RSA scheme then he can forge the signature to the

message M1 M2 mod n.

8.5h Show that the DSA scheme is existentially forgeable under a direct

attack.

8.6a Suppose Alice sends two different messages M1 to Bob and M2 to Carol,

and provides signatures for each message using the DSA. Show that if

Alice is lazy and instead of choosing two different random values of

k (in step (2) of the DSA) she uses the same value for both signatures

then it is possible for Eve to recover her private key xA from the signed

messages.

8.7h Let h : {0, 1}m → {0, 1}t be a hash function, with t ≤ m − 1. Show that

if h can be inverted in polynomial time then there is a probabilistic

8.6 The birthday attack 185

algorithm for finding a collision with polynomial expected running

time.

8.8h Suppose that h : M → H is a hash function which sends messages M ∈
M to hash values h(M) ∈ H. If N (h) denotes the number of unordered

pairs of messages which collide and sy = |h−1(y)| for y ∈ H, prove

that

2N (h) =
∑

y∈H
s2

y − |M|.

Hence show that N (h) is minimised when the sy are all equal.

8.9h Prove that in a non-leap year, if at least 23 people are in a room then

the probability that a pair share the same birthday is at least 1/2.

8.10 Consider the hash function h : Zq × Zq → Z∗
p defined by

h(x, y) = ax by mod p,

where a, b are distinct primitive roots mod p and p, q are prime with

p = 2q + 1.

(a) Show that if

h(x1, y1) = h(x2, y2),

with (x1, y1) �= (x2, y2), then d = gcd(y2 − y1, p − 1) is either 1

or 2.

(b) Show that if d = 1 then

loga b = (x1 − x2)(y2 − y1)−1 mod p − 1.

(c) Show that if d = 2 and z = (y2 − y1)−1 mod q then

loga b = (x1 − x2)z mod p − 1

or

loga b = q + (x1 − x2)z mod p − 1.

(d) Deduce that if an adversary can find a collision in polynomial time

then they can calculate loga b mod p in polynomial time.

8.11a If the hash function of the previous question is to resist the birthday

attack how large should p be? (You may suppose that no forger is

able to produce more than 280 messages and corresponding hash

values.)

186 8 Digital signatures

Further notes

We have given just a brief introduction to signature schemes. The origin of the

concept appears to be the seminal paper of Diffie and Hellman (1976) and the

first practical method was the RSA scheme in (Rivest, Shamir and Adleman,

1978).

The Elgamal scheme was introduced in the 1985 paper containing his public

key cryptosystem. Other early schemes based on symmetric cryptosystems were

proposed by Lamport (1979) and Rabin (1978).

Hash functions have a much longer history. They have many noncrypto-

graphic applications: Knuth (1973) traces them back to work at IBM in 1953.

The introduction of the concept of a one-way hash function seems to have

been the papers of Rabin (1978), Merkle (1978) and Davies and Price (1980).

Mitchell, Piper and Wilde (1992) is an interesting review of digital signatures

which also treats hash functions while Menezes, van Oorschot and Vanstone

(1996) is an invaluable source for both signatures and hashing. More recent

surveys are Pedersen (1999) and Preneel (1999).

The cryptographic hash function SHA-1 was introduced as a Federal Infor-

mation Processing Standard (FIPS-180-1) in 1995 by the National Institute of

Standards and Technology (NIST) as a technical revision aimed at improving

security of an earlier version SHA-0 introduced as FIPS-180 by NIST in 1993.

For more details on the construction and implementation of SHA-1 and its

relation to earlier families of hash functions see Chapter 9 of Menezes, van

Oorschot and Vanstone (1996). The book by Pfitzmann (1996) and the chapter

on signature schemes in Goldreich (2004) provide an up-to-date account of the

state of current knowledge in this area.

9

Key establishment protocols

9.1 The basic problems

We saw in Chapter 5 that the one-time pad is a cryptosystem that provides

perfect secrecy, so why not use it? The obvious reason is that the key needs to

be as long as the message and the users need to decide on this secret key in

advance using a secure channel.

Having introduced public key cryptography in Chapter 7 one might wonder

why anyone would want to use a symmetric cryptosystem. Why not simply

use RSA or some other public key cryptosystem and dispense with the need to

exchange secret keys once and for all?

The problem with this approach is that symmetric cryptosystems are gener-

ally much faster. For example in 1996, DES was around 1000 times faster than

RSA. In situations where a large amount of data needs to be encrypted quickly

or the users are computationally limited, symmetric cryptosystems still play an

important role. A major problem they face is how to agree a common secret

key to enable communications to begin.

This basic ‘key exchange problem’ becomes ever more severe as communi-

cation networks grow in size and more and more users wish to communicate

securely. Indeed while one could imagine Alice and Bob finding a way to

exchange a secret key securely the same may not be true if you have a net-

work with 1000 users. For each pair of users to agree on a secret key seems

to require
(

1000
2

)

= 499 500 secure channels (one for each pair of users). More-

over if a new user joins the network another 1000 secure channels need to be

established!

For the majority of this chapter we will examine methods for establishing

secret keys securely without the use of a secure channel. However, we first

consider ways to reduce the number of secure communications needed to enable

all of the users of a network to communicate securely with each other.

187

188 9 Key establishment protocols

Suppose a network contains N users, each of whom may wish to commu-

nicate securely with any other user. If users generate the keys themselves then

before two users, Alice and Bob, can communicate they need to agree on a key.

This would seem to require the existence of
(

N

2

)

secure channels to enable each

pair of users to securely agree a common secret key. This is clearly prohibitive

for large networks so we will suppose that there is a trusted central authority

whose job it is to distribute keys to the users.

In this model we would seem to require the following conditions to

hold.

(1) The existence of N secure communication channels (one from the trusted

authority to each user).

(2) Each user needs to be able to securely store N − 1 distinct keys (one for

each other user).

This may still be too much, for instance if the users have limited storage capa-

bilities then they may not be able to store N − 1 distinct keys.

9.2 Key distribution with secure channels

Several schemes have been proposed to alleviate the above problems. Below

we present one of the simplest such schemes. It requires the intervention of

a trusted authority, Trent or T , who is responsible for distributing the keys. It

reduces the number of separate secure keys that need to be sent to (and stored

by) each user but, in its simplest version, has the downside that if any group of

two or more users collaborate then they can compute the keys of all the other

pairs of users in the system. The first such scheme, due to Blom (1984), relied on

the theory of maximum distance separable (MDS) codes, the simplified version

we present here is due to Blundo et al. (1993).

(1) Suppose there are N users. The trusted authority, T , chooses a large prime

p > N which he makes public.

(2) Each user Ui in turn chooses a distinct zi ∈R Z∗
p which is made

public.

(3) The trusted authority T chooses random a, b, c ∈R Z∗
p and generates the

polynomial

f (x, y) = a + b(x + y) + cxy.

The form of the polynomial is public but a, b and c remain secret.

9.2 Key distribution with secure channels 189

(4) Using a secure channel T sends each user Ui the coefficients of the

polynomial

gi (x) = f (x, zi) mod p,

that is he sends di = a + bzi mod p and ei = b + czi mod p to Ui .

(5) Now if Ui and U j wish to communicate they form the common key

gi (z j) = f (z j , zi) = f (zi , z j) = g j (zi).

This reduces the number of secure messages that need to be sent to 2N , instead

of N (N − 1), since two messages are sent to each user rather than N − 1.

Moreover each user only needs to store the two coefficients rather than N − 1

different keys.

To see that it impossible for a user Uk to compute the key of two other users

Ui , U j , consider the following.

User Uk needs to compute

Ki j = f (zi , z j) = a + b(zi + z j) + c(zi z j).

He or she knows the coefficients of gk(x) and zi , z j . Hence he or she can form

the following system of linear equations in the unknowns a, b, c:

a + b(zi + z j) + czi z j = Ki j

a + bzk = dk

b + czk = ek .

The determinant of the matrix of coefficients is (zk − zi)(zk − z j) �= 0. So for

any possible value of the secret key K̂i j there is a unique choice of a, b, c

that satisfies this system. However, since a, b, c were chosen at random this

means that all possible values of K̂i j are equally likely to be correct and so it is

impossible for Uk to determine the secret key Ki j .

However, if two users Ui and U j cooperate then they can determine all of

the keys in the system. This is because they have four equations in the three

unknowns a, b, c, namely:

a + bzi , a + bz j , b + czi , b + cz j .

Hence they can find a, b, c and so calculate gk(x) for any k. This then allows

them to find all the keys in the system.

Example 9.1 A toy example of the key distribution scheme with secure channels.

(1) Suppose there are three users so N = 3 and Trent chooses p = 11 and

makes this public.

190 9 Key establishment protocols

(2) The users choose random zi ∈R Z∗
11, say z1 = 3, z2 = 9, z3 = 4 and make

these public.

(3) Trent chooses random a, b, c ∈R Z∗
11, say a = 2, b = 5 and c = 8. He

then forms the polynomial

f (x, y) = 2 + 5(x + y) + 8xy mod 11.

(4) Using secure channels Trent sends the coefficients of gi (x) = f (x, zi) to

user Ui . So he sends d1 = 6, e1 = 7 to U1; d2 = 3, e2 = 0 to U2 and

d3 = 0, e3 = 4 to U3.

(5) If U1 and U2 wish to communicate they form the following common key:

g1(z2) = g1(9) = 6 + 7 · 9 = 3 mod 11, g2(z1) = 3 + 0 · 3 = 3 mod 11.

9.3 Diffie–Hellman key establishment

So far we have rather unrealistically assumed the existence of secure chan-

nels to facilitate key distribution. We would now like to dispense with this

assumption, but how then can Alice and Bob possibly establish a shared secret

key?

Although this seems on the face of it to be an impossible problem an inge-

nious solution to it was proposed in the mid-1970s by Diffie and Hellman. Their

key establishment protocol works as follows.

Alice and Bob wish to agree on a common secret key to use in a symmetric

cryptosystem. We assume that a key for their cryptosystem is simply a large

integer.

First Alice publicly announces a large prime p and a primitive root g mod

p. The protocol then proceeds as follows:

(1) Alice chooses a secret random integer 1 < xA < p − 1 and computes

yA = gxA mod p. She then sends yA to Bob.

(2) Bob does the same as Alice, choosing a secret random integer

1 < xB < p − 1 and computing yB = gxB mod p. He then sends yB to

Alice.

(3) Alice forms the key K = y
xA

B mod p and Bob forms the same key

K = y
xB

A mod p.

Note that at the end of this protocol Alice and Bob really do both possess the

same key since

y
xB

A = gxA xB = gxB xA = y
xA

B mod p.

9.3 Diffie–Hellman key establishment 191

Example 9.2 A toy example of Diffie–Hellman key establishment.

(1) Suppose Alice chooses the prime 19 and primitive root 2.

(2) Alice chooses xA = 5 and calculates

yA = gxA = 25 = 13 mod 19.

She then sends 13 to Bob.

(3) Bob chooses xB = 6 and calculates

yB = gxB = 26 = 7 mod 19.

He then sends 7 to Alice.

(4) Alice then computes

K = y
xA

B = 75 = 11 mod 19.

(5) Similarly Bob computes

K = y
xB

A = 136 = 11 mod 19.

Hence Alice and Bob do share a common secret key at the end of the protocol.

Now let us consider its security. It is certainly vulnerable to an enemy who

can compute discrete logarithms. Indeed the security of the Diffie–Hellman

key establishment protocol depends on the belief that the following problem

(which we have already discussed in connection with the Elgamal cryptosystem)

is ‘hard’.

DIFFIE–HELLMAN

Input: prime p, primitive root g, gx mod p and gy mod p with x, y ∈ Z∗
p.

Output: gxy mod p.

This problem is obviously related to the problem of computing dlog(p, g, b)

for prime p, primitive root g and b ∈ Z∗
p.

For example it is easy to see that

(a) Any efficient algorithm for the DIFFIE–HELLMAN problem renders the

Diffie–Hellman key establishment protocol insecure.

(b) DIFFIE–HELLMAN is Turing-reducible to dlog.

A problem which has remained open for a number of years is whether the

converse of (b) is also true. Namely is dlog Turing-reducible to DIFFIE–

HELLMAN?

A well-known attack on the discrete logarithm problem is via the algorithm

of Pohlig and Hellman (1978). This is feasible if the prime factors of p − 1 are

192 9 Key establishment protocols

small. More precisely, if p − 1 has factorisation

p − 1 = p
a1

1 p
a2

2 · · · p
at

t ,

then the Pohlig–Hellman algorithm has running time dominated by

O

(

t
∑

j=1

a j ln(p − 1) +

t
∑

j=1

√
p j

)

multiplications. Hence an ideal choice of p in either Diffie–Hellman or Elgamal

would be p = 2q + 1, with q also prime. In other words: take p to be a safe

prime.

Other insecurities in Diffie–Hellman have been pointed out by van Oorschot

and Wiener (1996) (see Problem 9.6).

As we shall see in the next chapter the problem of recovering the most

significant bit of x given y = gx mod p, p and g is essentially as hard as

computing the entire discrete logarithm x . For the Diffie–Hellman problem itself

we have the following result due to Boneh and Venkatesan (1996) relating the

difficulty of computing the most significant bits of the shared key to the problem

of recovering the entire shared key.

Proposition 9.3 Let p be a k-bit prime, g ∈ Z∗
p, ǫ > 0 and n = ⌈ǫk⌉. If there

exists an efficient algorithm that computes the n most significant bits of gab

given p, g, ga and gb then there is an efficient algorithm that computes all of

gab, given p, g, ga and gb.

It is widely believed that the problem DIFFIE–HELLMAN is hard. If it is

then Diffie–Hellman key establishment is secure against attack by a passive

adversary (such as Eve). However, even if it is hard there is still a glaring

insecurity in the Diffie–Hellman key establishment protocol as it stands. This is

because an active adversary, Mallory, can mount a ‘man in the middle attack’.

Proposition 9.4 The Diffie–Hellman key establishment protocol is vulnerable

to a ‘man in the middle attack’.

Proof: Recall that the protocol starts with Alice publicly announcing a large

prime p and a primitive root g mod p. Mallory now alters the protocol as

follows.

(1) Alice chooses a secret integer 1 < xA < p − 1 and computes yA = gxA

mod p. She then sends yA to Bob.

(M1) Mallory intercepts Alice’s communication of yA and replaces it by

yM = gxM mod p, where xM is known to Mallory. He then sends this to

Bob.

9.4 Authenticated key distribution 193

(2) Bob does the same as Alice, choosing an integer 1 < xB < p − 1 and

computes yB = gxB mod p. He then sends yB to Alice.

(M2) Mallory intercepts Bob’s communication of yB and again replaces it by

yM . He then sends this to Alice.

(3) Alice forms the key K AM = y
xA

M mod p and Bob forms the key

K B M = y
xB

M mod p.

(M3) Mallory now also calculates the two keys as K AM = y
xM

A mod p and

K B M = y
xM

B mod p.

At the end of the key establishment protocol Alice and Bob have different keys

which are both known to Mallory. Once they start communicating Mallory can

intercept, decrypt and then re-encrypt messages at will so Alice and Bob will

never know that he is reading (and possibly altering) their messages. �

The reason that Mallory can perform this ‘man in the middle attack’ is that

Alice and Bob have no way (in the current protocol) of knowing the identity of

the other user. What is required is an authentication process to be built into the

scheme so that Mallory cannot impersonate them.

Exercise 9.1a Alice and Bob use the Diffie–Hellman protocol with prime p =

11 and primitive root g = 2.

(i) If Alice sends Bob yA = 9 what was her choice of xA?

(ii) If the final common key K AB is 3 then what did Bob send to Alice

as yB?

Exercise 9.2 Prove that DIFFIE–HELLMAN is Turing reducible to dlog.

9.4 Authenticated key distribution

We noted above that the Diffie–Hellman key establishment protocol is insecure

when faced with an active adversary who can intercept communications and

introduce his or her own messages. If Mallory interposes himself between Alice

and Bob he can fool them both into sharing two distinct common keys with him.

He can then read and possibly alter any messages they exchange.

In order to solve this problem Alice and Bob need to be certain that they

are communicating with each other. In other words they need to introduce

authentication into the key establishment protocol.

An obvious way to do this is to use certificates which have been signed by

a trusted authority, as we describe below.

194 9 Key establishment protocols

For example, the Diffie–Hellman key establishment protocol could be

adapted as follows.

Setup:

(1) Trent publicly announces a prime p and primitive root g mod p.

(2) Alice and Bob each choose secret private keys a and b respectively

satisfying 1 < a, b < p − 1. They then form their public keys

K A = ga mod p and K B = gb mod p.

(3) Alice and Bob register their public keys with Trent who verifies their

identities and provides them with certificates CA and CB respectively. A

certificate is a message containing the user’s identity and public key,

which has been signed by Trent using a digital signature scheme as

described in Chapter 8.

Protocol:

(1) If Alice and Bob wish to communicate Alice sends CA to Bob and Bob

sends CB to Alice.

(2) Alice and Bob now each check that the other’s certificate is valid and

extract the public key of the other user. This involves checking that the

certificate was signed by Trent and that each certificate does correctly

identify the other user. (Note that this requires them to trust Trent and also

to have authentic copies of Trent’s public key to verify his signature.)

(3) Finally they form a common key for communication by computing

K AB = (K A)b = gab = (K B)a mod p.

This scheme solves the earlier problem of authentication, however, it has a

different drawback. What if Alice and Bob wish to communicate frequently?

In the original Diffie–Hellman protocol they would choose a different key each

time but now their key is fixed: unless they go back to Trent and ask him to

issue new certificates based on new public keys they will always use the same

common key for their communications.

A different solution to the authenticated key establishment problem, which

does not suffer from this shortcoming was proposed by the NSA. Known as the

Key Exchange Algorithm (KEA) it was declassified in 1998. It essentially mixes

the original Diffie–Hellman protocol with the authenticated version described

above and works as follows.

Setup:

(1) Trent publicly announces a 1024-bit prime p, a 160-bit prime divisor q of

p − 1 and an element g ∈ Z∗
p of order q .

9.4 Authenticated key distribution 195

(2) Alice and Bob each choose secret private keys a and b respectively,

satisfying 1 ≤ a, b ≤ q − 1. They then form their public keys

K A = ga mod p and K B = gb mod p.

(3) Alice and Bob register their public keys with Trent who verifies their

identities and provides each of them with a certificate CA and CB

respectively. As before these certificates consist of messages containing

the user’s public key and identity which have been digitally signed by

Trent.

Protocol:

1. If Alice and Bob wish to communicate Alice sends CA to Bob and Bob

sends CB to Alice.

2. Alice and Bob now each check that the other’s certificate is valid and

extract the public key of the other user. This involves checking that the

certificate was signed by Trent and that each certificate correctly identifies

the other user.

3. Alice chooses random 1 ≤ rA ≤ q − 1 and sends RA = gr
A mod p to Bob.

4. Bob then chooses random 1 ≤ rB ≤ q − 1 and sends RB = gr
B mod p to

Alice

5. Alice then performs the following checks and terminates the protocol if

any are failed:

(i) She checks that 1 < RB < p.

(ii) She checks that (RB)q = 1 mod p.

6. Bob performs analogous checks on the information Alice has sent him.

7. Finally Alice and Bob each form the common secret key

K AB = (K B)rA + (RB)a = (K A)rB + (RA)b mod p.

Example 9.5 Toy example of the Key Exchange Algorithm.

Setup:

(1) Trent chooses the primes p = 43 and q = 7 a divisor of p − 1 = 42. He

then takes g = 4. (Since 4 is an element of order 7 in Z∗
43.)

(2) Alice and Bob choose a = 5 and b = 2 respectively so their public keys

are K A = 45 = 35 mod 43 and K B = 42 = 16 mod 43.

(3) Alice and Bob register these public keys with Trent who issues them with

certificates CA and CB that he signs.

Protocol:

(1) Alice and Bob exchange certificates.

196 9 Key establishment protocols

(2) Alice and Bob verify that that each other’s certificate is valid and extract

the other’s public key.

(3) Alice chooses rA = 6 and sends RA = 46 = 11 mod 43 to Bob.

(4) Bob chooses rB = 3 and sends RB = 43 = 21 mod 43 to Alice.

(5) Alice checks:

(i) 1 < RB = 21 < 43.

(ii) R
q

B = 217 = 1 mod 43.

(6) Bob checks:

(i) 1 < RA = 11 < 43.

(ii) R
q

A = 117 = 1 mod 43.

(7) Alice and Bob both form the common secret key

K AB = 166 + 215 = 353 + 112 = 39 mod 43.

(Note that in reality the primes p and q used in the Key Exchange Algorithm

should be 1024-bit and 160-bit integers respectively.)

Exercise 9.3a Prove that if Alice and Bob use the Key Exchange Algorithm

then they do obtain a common key.

9.5 Secret sharing

We have seen a number of ingenious methods for exchanging keys for use in

cryptosystems, however, there still remains the problem of how to store a secret

key securely and reliably. One could suggest we simply encrypt the key before

storing it, but this is not a solution: if we did this we would simply have a new

secret key to store.

A second problem is that a user with a secret private key faces a dilemma if

he or she simply stores the key as it is. For instance the user could store the key

in a single secure location (his or her head or hard-drive) but a single accident

(lapse of memory, hard-drive failure) could then render the key lost forever.

An alternative is to store copies of the key in several locations, but this only

improves the reliability of key storage at the cost of compromising secrecy.

Another scenario which we would like to consider is how to manage the

storage of a key which needs to be accessible to groups of users rather than

individuals. For example a company using a digital signature scheme might

want it to be impossible for any single employee to be able to sign a company

document, but for various groups of people to be able to do this.

One of the first to consider this problem was Shamir in 1979 who proposed

an extremely elegant solution which we describe below.

9.6 Shamir’s secret sharing scheme 197

We formalise the problem as follows. There is a secret number K (this could

represent a key or some other digital secret) and we wish to store it both reliably

and securely. To achieve this we form ‘secret shares’ K1, K2, . . . , Km such that

(1) knowledge of any n of the secret shares makes K easily computable;

(2) knowledge of n − 1 or fewer secret shares leaves K completely

undetermined.

This is called an (n, m)-threshold scheme.

Before we present Shamir’s implementation of such a threshold scheme we

examine how such a scheme could be used to solve the two problems described

above.

If Alice has a private key she wishes to keep secret yet also wishes to store

reliably she could use a (n, 2n − 1)-threshold scheme. She forms the 2n − 1

secret shares and stores each in a different secure location. This is extremely

reliable since as long as Alice does not lose more than half of the secret shares

she can recover her secret key. It is also secure since an adversary would need

to steal more than half of the secret shares to be able to discover Alice’s secret

key.

A company wishing to allow only groups of employees to sign documents

simply needs to decide how large the groups should be. For example if it was

decided that any two employees should be able to sign then a (2, m)-threshold

scheme would be fine. Simply distribute a single secret share to each employee.

Then any two employees can recover K using their secret shares and hence sign.

Moreover, if certain highly trusted employees are required to be able to sign

individually then they would simply be given two secret shares each instead of

one.

9.6 Shamir’s secret sharing scheme

Shamir’s scheme is based on polynomial interpolation and relies on the fact

that given n points (x1, y1), . . . , (xn, yn) with the xi distinct, there is exactly

one polynomial q(x) of degree n − 1 such that q(xi) = yi for 1 ≤ i ≤ n.

We assume that first of all the secret K is known only to a ‘dealer’ whose

job it is to create and distribute the secret shares K1, K2, . . . , Km .

Let p be a prime larger than m and K . To obtain the ‘secret shares’ the dealer

chooses independent random coefficients a1, a2, . . . , an−1 ∈R Z∗
p and forms the

polynomial

q(x) = an−1xn−1 + · · · + a2x2 + a1x + K mod p

198 9 Key establishment protocols

The dealer then distributes to the m people the ‘secret shares’ q(1), . . . , q(m),

where all calculations are performed mod p. So the secret share Ki is given by

Ki = q(i) mod p and this is known only to person i .

If an entity (possibly Alice or a group of company employees) knows the

values of n secret shares together with their corresponding indices, say,

(Kb1
, b1), (Kb2

, b2) . . . (Kbn
, bn),

then they can find the coefficients of q(x) using Lagrange interpolation. They

can then recover K by evaluating q(0) = K .

To be precise they use the following formulae for interpolation

q(x) =

n
∑

j=1

q j (x), q j (x) = Kb j

∏

k �= j

(

x − bk

b j − bk

)

.

Now suppose an adversary (Eve or a corrupt small group of employees) has

gained access to n − 1 or fewer of the secret shares can they calculate K ? No.

Given any n − 1 secret shares the value of K is equally likely to be any number

in Z∗
p.

For each possible value of the secret K̂ (together with the n − 1 secret shares

Kb1
, . . . Kbn−1

) there is exactly one polynomial q̂(x) of degree n − 1 satisfying

q̂(0) = K̂ and q̂(bi) = Kbi
, for i = 1, . . . , n − 1.

However, since the coefficients of q(x) were random these polynomials are all

equally likely and so our adversary is forced to conclude that all possible values

of the secret K are equally likely given the information they possess. Hence the

true value of the secret K remains completely undetermined.

Shamir noted that this scheme also has the following useful properties.

(1) The size of each secret share is not too large, it is simply a pair of integers

from Z∗
p.

(2) Pieces can be dynamically added as required, simply calculate a new

secret share Kn+1 = q(n + 1).

(3) The secret shares can be changed without altering the secret K . The

dealer simply chooses a new random polynomial with the same constant

term K . Changing the polynomial frequently adds to the security of the

scheme since any adversary who has gathered some secret shares

generated with one polynomial will have to start this process again each

time the polynomial is changed.

(4) If different numbers of secret shares are given to different people one can

build a hierarchical scheme in which the ‘importance’ of the individuals

determines how many of them need to collaborate to recover K . For

9.6 Shamir’s secret sharing scheme 199

instance Shamir gives the example of a (3, n)-threshold scheme in which

ordinary company executives have a single secret share each, the

vice-presidents have two each and the president has three. In this setup K

can be recovered by either any three executives, or any two executives one

of whom is a vice-president or the president alone.

Problems

9.1 The following describes a generalisation of the key distribution scheme

with secure channels of Section 9.2.

Suppose Trent used the following polynomial

f (x, y) =

k
∑

i=1

k
∑

j=1

ai j x
i y j

and

gi (x) = f (x, zi) mod p.

(a) Show that if ai j = a j i then any pair of users Ui and U j can

communicate securely using

Ki j = gi (z j) = g j (zi) mod p.

(b) Show that any k + 1 users can determine all the keys.

(c) Show that this system is secure against attacks by any group of k

users.

9.2a Suppose Alice, Bob and Carol wish to agree a common secret key using

an adapted version of the Diffie–Hellman key establishment protocol. If

they wish to share a common key K = gabc mod p, where a was chosen

by Alice, b was chosen by Bob and c was chosen by Carol, show that

they can do this using six separate communications.

9.3a Burmester–Desmedt conference keying. Consider the following gener-

alisation of Diffie–Hellman for establishing a common key between a

group of t ≥ 2 users.

(1) Setup. Trent announces a large prime p and primitive root g mod

p.

(2) Key generation. A group of t users U0, . . . , Ut−1 wish to form a

common key.

(i) Each Ui chooses random 1 ≤ ri ≤ p − 2 and sends yi = gri

mod p to all of the t − 1 other users.

(ii) Each Ui computes zi = (yi+1 y−1
i−1)ri mod p and sends this to

all of the t − 1 other users.

200 9 Key establishment protocols

(iii) Each Ui then computes

Ki = y
tri

i−1zt−1
i zt−2

i+1 · · · z2
i+t−3zi+t−2 mod p,

where the indices are understood mod t .

(a) Show that at the end of this protocol the t users all share a

common key which you should find.

(b) Show that for a passive adversary to obtain this common key from

the communications is as hard as solving the Diffie–Hellman

problem.

9.4a Let 0 < ǫ < 1 and A be a polynomial time algorithm that on

input (p, g, y) with p prime, g a primitive root mod p and y ∈

{1, 2, . . . , ⌈ǫ(p − 1)⌉} outputs dlog(p, g, y). Show that if Alice and

Bob use the Diffie–Hellman key establishment procedure with publicly

known prime p and primitive root g then an adversary armed with algo-

rithm A has a probabilistic algorithm for obtaining their common key

with polynomial expected running time.

9.5 Prove that if Alice and Bob use the Diffie–Hellman key establishment

protocol and choose their private keys xA and xB independently and

uniformly at random from Z∗
p then the resulting key K AB is uniformly

distributed in Z∗
p.

9.6a Alice and Bob agree to use a safe prime p = 2q + 1 in the Diffie–

Hellman protocol, together with primitive root g. Suppose that Alice

sends yA = gxA mod p to Bob and Bob sends yB = gxB mod p to Alice.

Show that if Mallory replaces yA by y
q

A and yB by y
q

B then he knows

that the common key K AB will be one of ±1.

How many possible values would there be for K AB if p = rq + 1,

where r > 2 is an integer?

9.7h Alice and Bob use the Diffie–Hellman protocol. Show that Eve can

easily decide whether their common key K AB is a quadratic residue

mod p, given yA, yB, p and g.

9.8h Prove that the language defined below belongs to NP.

PRIMITIVE

Input: prime p and integer t .

Question: is there a primitive root g mod p satisfying g ≤ t?

9.9h For any prime p there are φ(p − 1) primitive roots mod p. Also for any

integer n ≥ 5 we have

φ(n) >
n

6 ln ln n
.

9.6 Shamir’s secret sharing scheme 201

Use these facts to show that there is a probabilistic algorithm with

polynomial expected running time which when given a prime p together

with the prime factorisation of p − 1 finds a primitive root mod p.

9.10a Shamir’s three pass protocol. Shamir suggested the following scheme

for secure communication which requires neither a shared secret key

nor a public key.

First choose a symmetric cryptosystem that is commutative in the

following sense. If Alice and Bob’s encryption functions are eA(·)

and eB(·) respectively then for any message M we have eA(eB(M)) =

eB(eA(M)).

(a) If Alice wishes to send a message M to Bob she encrypts it as

C = eA(M).

(b) Bob then encrypts C and returns eB(C) to Alice.

(c) Alice then decrypts this as

dA(eB(C)) = dA(eB(eA(M))) = dA(eA(eB(M))) = eB(M)

and returns this to Bob.

(d) Finally Bob decrypts this as M = dB(eB(M)).

Consider some of the symmetric cryptosystems we saw in Chapter 5 and

decide, first, whether they commute and, second, whether they would

be secure if used in this way. In particular would it be secure to use the

one-time pad in this scheme?

Further notes

There is now a huge literature on key distribution and key management. Blom

(1984) appears to have been the initiator of the idea of reducing the required

number of secure channels while providing security against a fixed size coali-

tion. Other schemes are given in Matsumoto and Imai (1987) and Gong and

Wheeler (1990). A very readable account of this theory can be found in Blundo,

De-Santis, Herzberg, Kutten, Vaccaro and Yung (1993), which also contains the

scheme presented in the text.

The Diffie–Hellman protocol, announced publicly in 1976, was the first prac-

tical solution to the key distribution problem. However, the underlying idea had

been proposed earlier (in 1969) by James Ellis of GCHQ and a practical imple-

mentation in almost exactly the same format as the Diffie–Hellman protocol

was discovered previously by Malcolm Williamson (also of GCHQ) in 1974 as

reported by Ellis in his history of non-secret encryption published in (1997).

(See also Williamson (1974, 1976).)

202 9 Key establishment protocols

It should also be mentioned that in 1974 Merkle discovered a key agreement

scheme which used the same abstract idea but a different implementation (based

on puzzles). This system was submitted for publication in 1975 but did not

appear until 1978: see Merkle (1978).

The Burmester–Desmedt conference keying protocol, generalising the

Diffie–Hellman protocol to more than two parties (see Problem 9.3) appears in

Burmester and Desmedt (1995).

The idea of using threshold schemes for secret sharing was independently

proposed by Blakley (1979) and Shamir (1979). Blakley’s proposal was differ-

ent from Shamir’s; it was based on subsets of vector spaces and has led to some

interesting questions in matroid theory. See for example Seymour (1992) and

Blakley and Kabatyanskii (1997).

The attack on Diffie–Hellman raised in Problem 9.6 is described in van

Oorschot and Wiener (1996) which also contains an interesting treatment of

computing discrete logarithms, particularly when the exponent is known to be

short.

10

Secure encryption

10.1 Introduction

We have seen two possible methods for secure encryption so far, but both had

serious problems.

The one-time pad in Chapter 5 offered the incredibly strong guarantee of

perfect secrecy: the cryptogram reveals no new information about the message.

The drawback was that it required a secret shared random key that is as long

as the message. This really presents two distinct problems: first the users need

to generate a large number of independent random bits to form the pad and,

second, they need to share these bits securely.

The public key systems built on families of trapdoor functions in Chapter 7

provided an ingenious solution to the problem of sharing a secret key. They

also offered a reasonable level of security under various plausible intractabil-

ity assumptions. However, this security was framed in terms of the difficulty

Eve would face in recovering a message from a cryptogram. This is sig-

nificantly weaker than perfect secrecy. It is extremely easy for Eve to gain

some information about the message from the cryptogram in a system such as

RSA. For instance if the same message is sent twice then Eve can spot this

immediately.

All this leaves us with two major problems which we will consider in this

chapter.

(1) If we wish to use a one-time pad how do we generate enough independent

random bits for the key?

(2) If we wish to use a public key system can we build one that offers a level

of security comparable to that of the one-time pad?

The best current solution to both of these problems has a common basis: secure

pseudorandom generators.

203

204 10 Secure encryption

10.2 Pseudorandom generators

Anyone who considers arithmetical methods of producing random digits

is, of course, in a state of sin

John von Neumann (1951)

Informally a pseudorandom generator is a deterministic algorithm that takes

a random string and ‘stretches’ it to produce a longer string that is ‘as good

as random’. Before we can hope to formally define a secure pseudorandom

generator we need to decide what we mean when we say that a string is random.

Mathematicians have no problem with this. A random string of length k is

simply the outcome of k independent coin tosses with an unbiased coin.

Reality is more complicated. Where do we find a truly unbiased coin? How

can we tell when we have found one? How can we be sure that our coin tosses

are actually independent?

One approach to the randomness of a string is that of Kolmogorov–Chaitin

complexity. This is based on the idea that a string is random if any algorithm

to produce the string is essentially as long as the string itself. Put another way:

the shortest explanation for the string is the string itself. Unfortunately this is

completely useless for practical purposes. (In general it is impossible to compute

the Kolmogorov–Chaitin complexity of a string.)

We will consider randomness in a completely different way. Rather than

randomness being an essential property of a string itself we will start from the

idea that ‘randomness is in the eye of the beholder’.

While a string is Kolmogorov–Chaitin-random if no short explanation of the

string exists we will call a string pseudorandom if no adversary can efficiently

distinguish it from a truly random string. So the pseudorandomness of a string

depends on the computational power of our adversary.

Having decided, at least informally, what we require of a pseudoran-

dom string we turn to the problems that computers face in generating such

strings.

Modern computers are (at least in theory) completely deterministic. So for

a computer to produce random bits it will require external input from the envi-

ronment. Extracting truly random bits from the environment is a difficult task.

Ignoring possible philosophical objections, we could extract random bits by

measuring the time taken by a radioactive source to decay. More practically

we could use the least significant digit of the time taken by a user between

keystrokes on the keyboard (measured in a suitably precise manner that makes

predicting this value impossible).

Most people would be happy to generate a small number of random bits by

these methods, but are they truly random? There is no answer to this question.

10.2 Pseudorandom generators 205

However, we could argue that bits generated in this manner are as good as

random, in that an adversary would be unable to predict the next bit given the

previously generated bits.

Assuming for now that we can obtain a small quantity of truly random bits

from the environment we are still faced with the problem that obtaining a large

number of independent random bits will be difficult. (If you want a million

random bits are you actually willing to sit at your keyboard hitting ‘random’

keys all day?) A pseudorandom generator is a possible solution to this problem.

Suppose we could find a deterministic algorithm that takes a short string of

random bits and produces a longer string that has the property that no adversary

can hope to predict the next bit in the string from the previous bits. This would

give a source of pseudorandom bits that is effectively random, in the sense that

an adversary who attempts to guess the next bit finds this task as difficult as if

the string were truly random.

A bit generator G is defined to be a deterministic polynomial time algorithm

that takes a string x ∈ {0, 1}k and produces a longer string G(x) of polynomial

length l(k) > k.

For a bit generator G to be a pseudorandom generator we need the string

G(x) to be unpredictable whenever the input string x is random. We note that

even if a string is truly random an adversary will still have a 50% chance of

correctly predicting the next bit in the string by simply tossing a coin. So for a

string to be pseudorandom we need it to be impossible for an adversary to do

significantly better than this.

Formally, our adversary will be known as a predictor. A predictor is a prob-

abilistic polynomial time algorithm P that attempts to predict the next bit of

a bit generator G(x) given its initial bits. Any good pseudorandom generator

should be unpredictable and so we define a next-bit test that any predictor must

fail almost half of the time. (Recall that l(k) > k is the length of the output

string G(x) on input x of length k.)

The next-bit test

Select random x ∈R {0, 1}k and compute G(x) = y1 y2 · · · yl(k).

Give the predictor P the input 1k .

i ← 1

while i ≤ l(k)

P either asks for the next bit, yi , or outputs a guess b

if P outputs a guess then

the test ends and P passes the test iff b = yi .

else

206 10 Secure encryption

P is given the next bit yi

i ← i + 1.

end-while

P fails since it has not made a guess.

We say that a bit generator G is a pseudorandom generator iff for any predictor

P the probability that P passes the next-bit test is at most negligibly greater

than 1/2. That is for x ∈R {0, 1}k

Pr[P passes the next-bit test on input 1k] ≤
1

2
+ neg(k).

(Recall that a function is negligible iff it is eventually smaller than the inverse

of any positive polynomial.)

So a pseudorandom generator produces bits that are essentially unpredictable

for any reasonable adversary. This definition is perhaps not as strong as we

would like. A pseudorandom generator should have the property that the bits it

produces are indistinguishable from those produced by a truly random source.

In order to distinguish randomness from non-randomness we need to use a

statistical test. An example of such a test might be to check that approximately

a half of the bits in a given string are zero.

It is easy to come up with a long list of possible statistical tests which we could

use to check a bit generator for pseudorandomness, but we can never be sure

that out list is exhaustive. If we base the ‘randomness’ of our pseudorandom

generator on a predetermined list of tests we run the risk that an adversary

may develop a new test which can somehow distinguish the output of our

pseudorandom generator from a random source. This would be problematic so

we demand that a pseudorandom generator should be able to pass any reasonable

statistical test. To do this we need to define what we mean by a statistical test.

A statistical test is a probabilistic polynomial time algorithm T which when

given an input string outputs either 0 or 1.

A bit generator G, which outputs a string of length l(k) when given a string

of length k, is said to pass a statistical test T if the output of T given G(x), with

x ∈R {0, 1}k , is indistinguishable from the output of T given a truly random

string y ∈R {0, 1}l(k). Formally we say that G passes the test T iff for x ∈R

{0, 1}k and y ∈R {0, 1}l(k) we have

|Pr[T (G(x)) = 1] − Pr[T (y) = 1]| ≤ neg(k).

This definition needs a little time to sink in but is intuitively obvious. It simply

says that the probability that the test T gives a particular answer is essentially

the same whether T is presented with a pseudorandom string G(x) or a truly

random string y of the same length.

10.3 Hard and easy bits of one-way functions 207

We would like a pseudorandom generator to be able to pass any statistical

test. In fact it does, due to the following important result of Yao (1982). As with

many of the proofs of results in this chapter this proof is too difficult to include

at this level. We refer the reader to the original (or to Goldreich (2001)).

Theorem 10.1 A bit generator G is a pseudorandom generator iff it passes all

statistical tests.

So how does one build a pseudorandom generator? We will see in Section 10.4

that one-way functions play an important role here.

Exercise 10.1a Suppose that G1 and G2 are pseudorandom generators which

both output strings of length l(k), when given an input of length k. Decide

whether the following bit generators are also pseudorandom generators.

If you believe they are provide a proof.

(i) G1 ⊕ G2.

(ii) G1, the Boolean complement of G1. (That is if G1 outputs a 1 then

G1 outputs a 0 and vice-versa.)

10.3 Hard and easy bits of one-way functions

Suppose Alice and Bob use a public key cryptosystem based on a family of

trapdoor functions. Although decrypting is difficult for Eve we have already

noted that she may be able to gain valuable information about the message from

the cryptogram. For example, she may be able to decide whether the message

starts with a 0 or 1. But surely if a function is one-way then ‘most’ of the

information about the message should be hard for Eve to compute.

We now try to formalise the idea that a particular piece of information related

to the message is difficult for Eve to obtain from the cryptogram.

A predicate is a yes/no question. In other words it is a function

B : {0, 1}∗ → {0, 1}.

Informally a hard-core predicate of a one-way function f is a predicate that is

difficult to compute given only f (x) but easy to compute given x . If f is an

encryption function then this corresponds to a question that Eve cannot answer,

given only the cryptogram, but that anyone can answer, given the message.

Since a predicate has only two possible values Eve always has a 50% chance

of correctly guessing B(x) (even without knowing anything about B, x or f (x)).

She simply needs to toss a coin. So to say that a predicate is difficult to compute

means that it is infeasible for her to do significantly better than this.

208 10 Secure encryption

Formally a predicate B : {0, 1}∗ → {0, 1} is a hard-core predicate of a func-

tion f : {0, 1}∗ → {0, 1}∗ iff

(1) there is a probabilistic polynomial time algorithm for computing B(x)

given x .

(2) For any probabilistic polynomial time algorithm A and x ∈R {0, 1}k

Pr[A(f (x)) = B(x)] ≤
1

2
+ neg(k).

One obvious property of a hard-core predicate is that it is essentially unbiased:

on a random input it is almost equally likely to be 0 or 1. More precisely we

have the following result.

Lemma 10.2 If B : {0, 1}∗ → {0, 1} is a hard-core predicate of a function

f : {0, 1}∗ → {0, 1}∗ then for x ∈R {0, 1}k

|Pr[B(x) = 0] − Pr[B(x) = 1]| ≤ neg(k).

Proof: Suppose this does not hold. Then without loss of generality we may

suppose there is a positive polynomial q(·) such that for infinitely many k and

x ∈R {0, 1}k

Pr[B(x) = 0] − Pr[B(x) = 1] ≥
1

q(k)
.

Now

Pr[B(x) = 0] + Pr[B(x) = 1] = 1

implies that

Pr[B(x) = 0] ≥
1

2
+

1

2q(k)
.

Hence the polynomial time algorithm A that on input f (x) always outputs 0

satisfies

Pr[A(f (x)) = B(x)] ≥
1

2
+

1

2q(k)
,

for infinitely many k, contradicting the fact that B(x) is a hard-core

predicate. �

Hence a hard-core predicate is a function that is hard to compute and outputs

an essentially unbiased single bit. In our search for a pseudorandom generator

this looks quite promising!

10.3 Hard and easy bits of one-way functions 209

So what about some of the one-way functions we have seen, do they have

any obvious hard-core predicates? For example recall the function dexp. Under

the Discrete Logarithm Assumption this is a one-way function.

Let p be a prime, g be a primitive root mod p and x ∈ Z∗
p, then

dexp(p, g, x) = (p, g, gx mod p).

Two obvious predicates to consider are the least and most significant bits of x .

We define two corresponding functions.

least(x) =
{

0, if x is even,

1, otherwise.

most(x) =
{

0, if x < (p − 1)/2,

1, otherwise.

Our next result tells us that computing the least significant bit of x , given

dexp(p, g, x), is easy. While, under the Discrete Logarithm Assumption, com-

puting the most significant bit of x , given dexp(p, g, x), is hard.

Theorem 10.3

(i) Given dexp(p, g, x) we can compute least(x) in polynomial time.

(ii) Under the Discrete Logarithm Assumption most(x) is a hard-core

predicate of dexp(p, g, x).

To prove this we need a little more number theory. First recall that b ∈ Z∗
n is a

quadratic residue mod n iff there is x ∈ Z∗
n such that

b = x2 mod n.

We denote the set of quadratic residues modulo n by

Qn = {b ∈ Z∗
n | b = x2 mod n}.

We will need Euler’s Criterion (see Appendix 3, Theorem A3.13) which gives a

simple test to decide whether b ∈ Qp, when p is prime. It reduces this problem

to the easy task of exponentiation mod p. We also require the following lemma

which tells us that computing square roots mod p is easy.

Lemma 10.4 If p is a prime and b ∈ Qp then there is a probabilistic polynomial

time algorithm for computing the two square roots of b mod p.

Proof: There is only one even prime and the result holds trivially in that case.

For odd primes there are two cases to consider.

210 10 Secure encryption

First suppose that p = 4m + 3. Then the two square roots of b are

±bm+1 mod p since by Euler’s Criterion b(p−1)/2 = 1 mod p so

(±bm+1)2 = b2m+2 = b(p+1)/2 = b(p−1)/2+1 = b mod p.

Thus if p = 4m + 3 there is a polynomial time algorithm. The other case, when

p = 4m + 1, is more difficult and we omit the proof. It is a special case of the

probabilistic algorithm of Berlekamp (1970) for factoring a polynomial mod

p, reduced to the quadratic x2 − b. (See Chapter 4 Further Notes.) �

We now turn to a proof of Theorem 10.3.

Proof of Theorem 10.3: To prove (i) we claim that the following is a polynomial

time algorithm for computing least(x) given dexp(p, g, x).

Algorithm L E AST :

Input: (p, g, b), p a prime, g a primitive root mod p and b = gx ∈ Z∗
p.

c ← b(p−1)/2 mod p.

If c = 1 then output 0 else output 1.

We need to show that c = 1 if and only if least(x) = 0.

If least(x) = 0 then x = 2k and so b = gx = (gk)2 mod p is a quadratic

residue mod p. Hence, by Euler’s Criterion, c = 1.

Conversely, if c = 1 then, by Euler’s Criterion, b = gx is a quadratic residue

mod p. Thus gx = g2y mod p for some 0 ≤ y < p − 1. Then, since g is a

primitive root, x = 2y mod p − 1 and so least(x) = 0.

Hence the algorithm L E AST correctly computes least(x) when given

dexp(p, g, x).

Since exponentiation mod p can be performed in polynomial time this com-

pletes the proof of (i).

We do not prove (ii) in full. Instead we prove the weaker result that if there is a

polynomial time algorithm M O ST for computing most(x) given dexp(p, g, x)

then the Discrete Logarithm Assumption cannot hold. (The full proof must

also deal with the case that the algorithm M O ST does not always succeed in

computing most(x) but instead succeeds with probability significantly greater

than 1/2. We refer the reader to Blum and Micali (1984).)

To prove this we need to use M O ST to construct an efficient algorithm D for

solving the discrete logarithm problem, thus violating the Discrete Logarithm

Assumption.

The algorithm D works as follows. Given (p, g, b), where b = gx mod p,

first use algorithm L E AST described above to find the least significant bit

of x . If this is 1 then divide b by g. So b is now an even power of g and so

has two square roots modulo p. We then use the polynomial time algorithm

10.4 Pseudorandom generators from hard-core predicates 211

given by Lemma 10.4 to find these two square roots of b modulo p: r1 and

r2. One of these is gx/2 the other is gx/2+(p−1)/2. Now M O ST can distinguish

between these two roots since the most significant bits of their exponents are 0

and 1 respectively. We want the root gx/2. We then start the process again with

b = gx/2. In this way we recover x , a single bit at a time, halting once we reach

b = 1. Hence we can compute dlog(p, g, b).

Formally the algorithm D works as follows.

Algorithm D:

Input: (p, g, b), p a prime, g a primitive root mod p and b = gx ∈ Z∗
p.

i ← 0, x0 ← 0

while b �= 1

c ← L E AST (p, g, b)

if c = 1 then b ← bg−1 and xi ← 1

else xi ← 0.

r1, r2 ←
√

b mod p

if M O ST (p, g, r1) = 0 then b ← r1

else b ← r2

i ← i + 1

end-while

output x ← xi · · · x1x0.

Assuming that M O ST is polynomial time computable, this is a polynomial

time algorithm for computing dlog(p, g, b) (since L E AST is polynomial time

and finding square roots mod p can be achieved in probabilistic polynomial

time by Lemma 10.4).

Hence ifmost(x) is polynomial time computable then the Discrete Logarithm

Assumption cannot hold. �

A similar result holds for the least significant bit of a message encrypted using

RSA.

Theorem 10.5 Under the RSA assumption, the least significant bit of the mes-

sage is a hard-core predicate of RSA encryption.

The proof of this is not too difficult, we give a breakdown of it in Problem

10.9.

10.4 Pseudorandom generators from hard-core predicates

So far we seem to have strayed rather far from pseudorandom generators but in

fact we have almost just produced one.

212 10 Secure encryption

The Blum–Micali generator uses the hard-core predicate most(x) of

dexp(p, g, x) to produce a pseudorandom string of polynomial length l(k) from

a random string x of length k. It works as follows.

Choose a random k-bit prime p and primitive root g mod p.

Choose x ∈R Z∗
p.

Let x1 = x and xi = gxi−1 mod p, for i = 2 to l(k).

Let bi = most(xi).

Output the sequence bl(k), bl(k)−1, . . . , b2, b1.

Theorem 10.6 Under the Discrete Logarithm Assumption the Blum–Micali

generator is a pseudorandom generator.

Proof: For the full proof see the original paper of Blum and Micali (1984), we

provide a basic sketch.

If the Blum–Micali-generator is not a pseudorandom generator then there is

a predictor P that has probability significantly greater than 1/2 of passing the

next-bit test. This means that P can predict one of the Blum–Micali-generator’s

output bits, given the previous bits.

We need to show how to use P to give an algorithm for guessing most(x)

from gx mod p, with success probability significantly greater than 1/2. This

would contradict Theorem 10.3 (ii), that most(x) is a hard-core predicate of

dexp(p, g, x) under the Discrete Logarithm Assumption.

We start with an input x2 = gx1 mod p, where x1 ∈R Z∗
p is unknown. We

want to use P to calculate most(x1). We do this as follows. Let n = l(k). First we

compute x3, . . . , xn , where xi = gxi−1 mod p, so we have x2, . . . , xn . We then

set bi = most(xi), for i = 2, . . . , n. The bit we wish to find is b1 = most(x1).

We present the predictor P with the bits bn, bn−1, . . . , b2 in turn, and hope that

it will correctly predict b1.

The main problem we face is that we do not know which of the n bits P

will try to guess as we give it the bits bn, bn−1, . . . , b2. As we want to find

most(x1) we would like P to guess the nth bit of this sequence, since this is

b1 = most(x1), but P may choose to guess another bit instead.

To get around this problem we choose random 1 ≤ i ≤ n and then give P

the sequence bi , bi−1, . . . , b2 instead of bn, . . . , b2. (Note that if i = 1 we do

not give any bits to P at all.)

Now, since x1 was chosen uniformly at random from Z∗
p and the func-

tion dlog is a bijection, the bits we give to the predictor are identically dis-

tributed to the original output bits: bn, bn−1, . . . , b2. (Since the bits we use are

those that would have occurred had we started with dlogn−i (p, g, x1) instead

of x1.)

10.4 Pseudorandom generators from hard-core predicates 213

If P chooses to guess the i th bit of the sequence we give it then it is in

fact guessing the value of b1 = most(x1) as required. Moreover since P passes

the next-bit test then in this case it will have a reasonable chance of guessing

most(x1) correctly.

If P instead guesses some other bit in the sequence, say the j th where j < i ,

then we simply ignore P and toss a coin to try to guess most(x1). Similarly if

P does not guess by the time we have given it all i − 1 bits bi , . . . , b2 then we

simply toss a coin. In both of these cases we will succeed with probability 1/2.

So what is our overall probability of success?

Suppose P has success probability 1/2 + ǫ, when it guesses a bit. With

probability 1/n, P chooses to guess the i th bit of the sequence (since we chose

i at random). Hence we have a guessing algorithm for most(x1) satisfying

Pr[Guess most(x1) correctly] ≥
1

2

(

1 −
1

n

)

+
(

1

2
+ ǫ

)

1

n
=

1

2
+

ǫ

n
.

By assumption ǫ is not negligible so neither is ǫ/n. But this implies that most(x)

is not a hard-core predicate of dexp(p, g, x), contradicting Theorem 10.3 (ii).

�

There is a slight problem with the Blum–Micali generator as it stands. Namely

it outputs bits in reverse order so the user needs to decide how many bits are

wanted before he or she starts. In fact we can easily fix this, by reversing the

order that it outputs bits.

Proposition 10.7 If G is a pseudorandom generator and
←−
G is the bit generator

that takes the output of G and outputs these bits in reverse order then
←−
G is also

a pseudorandom generator.

Proof: We use the fact that any pseudorandom generator passes all statistical

tests (see Theorem 10.1).

If
←−
G is not a pseudorandom generator then it must fail a statistical test T .

Form the test
←−
T that first reverses the input string it is given and then mimics

T . This is a statistical test that G will fail hence G is not a pseudorandom

generator. This contradiction proves the result. �

So far we have seen that if the Discrete Logarithm Assumption holds then

dexp is a one-way function with hard-core predicate most(x). Moreover, using

this hard-core predicate we constructed a pseudorandom generator. But what

if someone discovered how to compute discrete logarithms efficiently. Would

that be the end of pseudorandom generators?

214 10 Secure encryption

In fact Yao (1982) proved that the existence of any one-way function implies

the existence of a one-way function with a hard-core predicate. A simpler

construction was given by Goldreich and Levin (1989).

Theorem 10.8 If f is a one-way function and g(x, r) = (f (x), r), where |x | =

|r | = k, then

B(x, r) =

k
∑

i=1

xiri mod 2,

is a hard-core predicate of the one-way function g.

Thus if we know of any one-way function then we can construct a one-way

function with a hard-core predicate.

We saw, with the Blum–Micali generator, a way to construct a pseudorandom

generator given a particular hard-core predicate, namely the most significant

bit of dexp. But given any one-way function can we construct a pseudorandom

generator? In fact the rather surprising answer to this question is yes. However,

a proof of this is well beyond the scope of this book. We instead consider a

weaker result.

We say that f : {0, 1}∗ → {0, 1}∗ is length preserving iff | f (x)| = |x | for

every x ∈ {0, 1}∗. We call f : {0, 1}∗ → {0, 1}∗ a permutation iff every x ∈
{0, 1}∗ has a unique preimage under f .

Theorem 10.9 Let f : {0, 1}∗ → {0, 1}∗ be a one-way, length preserving per-

mutation with hard-core predicate B : {0, 1}∗ → {0, 1} then

G : {0, 1}k → {0, 1}k+1, G(x) = (f (x), B(x)),

is a pseudorandom generator.

Proof: The basic idea is as follows. If x ∈R {0, 1}k then, since f is a length

preserving permutation, f (x) will be uniformly distributed over {0, 1}k . Thus

if there is some statistical test T that distinguishes G(x) = (f (x), B(x)) from a

truly random string z ∈ {0, 1}k+1 (such a test exists if G is not a pseudorandom

generator by Theorem 10.1) then this must tell us something about the bit B(x).

This will then allow us to construct a guessing algorithm for B(x) which will

have success probability significantly greater than 1/2, contradicting the fact

that B(x) is a hard-core predicate of f .

More formally suppose there is a positive polynomial q(·) such that for

infinitely many k

Pr[T (G(x)) = 1] − Pr[T (z) = 1] ≥
1

q(k)
,

10.4 Pseudorandom generators from hard-core predicates 215

where x ∈R {0, 1}k and z ∈R {0, 1}k+1. So T is more likely to output a 1 if given

the input G(x) than if given a random input z.

We can now use the test T to create a guessing algorithm A for B(x).

Algorithm A.

Input: f (x)

b ∈R {0, 1}

c ← T (f (x), b)

if c = 1 then output b

else output b.

It is now an exercise in conditional probabilities (see Problem 10.11) to show

that

Pr[A(f (x)) = B(x) | x ∈R {0, 1}k] ≥
1

2
+

1

q(k)
.

Hence B(x) is not a hard-core predicate, a contradiction. �

One might argue that the pseudorandom generator given in the previous theorem

is not much good. All it does is extend a random string by a single bit. In fact

with more work one can prove the existence of a pseudorandom generator that

stretches a random string of length k to one of length l(k) > k, for any fixed

polynomial l.

Theorem 10.10 Let f : {0, 1}∗ → {0, 1}∗ be a one-way length preserving per-

mutation with hard-core predicate B : {0, 1}∗ → {0, 1}. If l(·) is a polynomial

then

G : {0, 1}k → {0, 1}l(k)

defined by

G(x) =
(

B(x), B(f (x)), B(f 2(x)), . . . , B
(

f l(k)−1(x)
))

,

is a pseudorandom generator.

In the proof of Theorem 10.9 we used the fact that f was a permutation to

argue that if x is uniformly distributed over {0, 1}k then so is f (x). Proving

that pseudorandom generators exist under the much weaker assumption that

any one-way function exists, as was shown by Håstad, Impagliazzo, Levin and

Luby (1999), is far more difficult.

Theorem 10.11 One-way functions exist iff pseudorandom generators exist.

Let us now return to the problems that Alice and Bob faced when constructing a

one-time pad. They can now do this safely so long as they have a pseudorandom

generator G and can share a short secret random seed. They proceed as follows.

216 10 Secure encryption

(1) Setup. Alice chooses a short random key x ∈R {0, 1}k and shares this

secretly with Bob.

(2) Encryption. Alice encrypts an m-bit message M = (M1, . . . , Mm) by

generating the pseudorandom string

G(x) = (B1, . . . , Bm),

using G and then forming the cryptogram C = G(x) ⊕ M .

(3) Decryption. For Bob to decrypt he simply forms the same pseudorandom

string G(x) and recovers the message as M = C ⊕ G(x).

Of course this is not a true one-time pad since it consists of a pseudorandom

string. However, if Eve were able to gain any significant information about the

message from the cryptogram then G could not be a pseudorandom generator.

So the existence of one-way functions implies the existence of pseudorandom

generators and this in turn greatly simplifies the problems Alice and Bob face

in constructing a secure one-time pad.

But what about secure public key encryption?

10.5 Probabilistic encryption

We now return to the problem of secure public key cryptography. We start by

considering the following basic problem.

How can Alice use public key encryption to securely encrypt a single bit

message M ∈ {0, 1} that she wishes to send to Bob?

Clearly any deterministic public key system such as RSA will fail in this

task since Eve can simply check whether the observed cryptogram C satisfies

C = e(0) or C = e(1) and so can easily distinguish between the two possible

messages.

Alice and Bob need to use randomness in the encryption process, but how?

Suppose Alice and Bob wish to use RSA, they can take advantage of the fact

that it is as difficult to recover the least significant bit of a message encrypted

using RSA as it is to recover the entire message (see Theorem 10.5). Formally

the least significant bit is a hard-core predicate of RSA encryption, under the

RSA assumption.

If Alice wishes to send a single bit M ∈ {0, 1} then she first obtains Bob’s

public RSA key (n, e) and then chooses x ∈R Z∗
n with the property that the least

significant bit of x is M . She then encrypts x and sends Bob the cryptogram

C = xe mod n.

10.5 Probabilistic encryption 217

Bob then decrypts as usual with his private key and so obtains

x = Cd mod n.

He then examines the least significant bit of x to see whether the message M

was 0 or 1. Note that if Alice now sends the same message twice then it is

extremely unlikely that the two cryptograms will be the same.

For Eve to guess which message has been sent she needs to guess the value of

the least significant bit of x given only the cryptogram. Since the least significant

bit is a hard-core predicate of RSA encryption Eve cannot succeed in guessing

the message with probability significantly greater than 1/2.

In general Alice and Bob can follow a similar procedure given any family

of trapdoor functions with hard-core predicates. Suppose they have a family of

trapdoor functions { fi : Di → Di }i∈I , with hard-core predicates {Bi }i∈I then

they can encrypt single bit messages as follows.

Single bit probabilistic encryption

(1) Setup. Bob chooses a key length k and generates a public/private key pair

(i, ti). He publishes i and keeps ti secret.

(2) Encryption. Alice encrypts a single bit M ∈ {0, 1} by choosing x ∈R Di

with Bi (x) = M (note that by Lemma 10.2 approximately half of the

values in Di will satisfy Bi (x) = M so she can do this easily). She then

sends Bob the cryptogram C = fi (x).

(3) Decryption. Bob uses his private key ti to recover x from C = fi (x). He

then calculates the message M = Bi (x).

The security of this system seems rather good. If Alice encrypts one of two

possible messages and sends the resulting cryptogram to Bob then, since M =
Bi (x) is a hard-core predicate of fi , Eve cannot guess which message was sent

with success probability significantly greater than 1/2.

But how can Alice and Bob send longer messages? The obvious way to do

this would be to encrypt each bit of the message separately using the single bit

encryption method described above.

We suppose as before that Alice and Bob have a family of trapdoor functions

{ fi : Di → Di }i∈I , with hard-core predicates {Bi }i∈I . They can then encrypt

longer messages as follows.

Longer message probabilistic encryption

(1) Setup. Bob chooses a key length k and generates a public/private key pair

(i, ti). He publishes i and keeps ti secret.

218 10 Secure encryption

(2) Encryption. Alice encrypts an m-bit message M ∈ {0, 1}m by choosing

x1, . . . , xm ∈R Di with Bi (x j) = M j , for 1 ≤ j ≤ m. She then sends Bob

the cryptogram C = (fi (x1), fi (x2), . . . fi (xm)).

(3) Decryption. Bob uses his private key ti to recover each x j from fi (x j). He

then calculates the message M = (Bi (x1), Bi (x2), . . . Bi (xm)).

This method has one very obvious drawback: message expansion. For example,

encrypting an m-bit message using a hard-core predicate of RSA with a k-bit

public modulus would yield a cryptogram consisting of m, k-bit integers hence

the length of the cryptogram would be O(mk). We will see a more efficient

system later but first we consider the more important problem of whether this

general method of encryption is secure.

How can we define security for longer messages? When encrypting a single

bit we argued that encryption was secure if Eve could not guess which of the

two possible messages was sent with success probability significantly greater

than 1/2. Extending this idea to longer messages gives rise to the concept of

polynomial indistinguishability which we will describe below.

Informally a cryptosystem is polynomially indistinguishable iff whenever

Eve presents Bob with two messages M1, M2 of the same length and he gives

her an encryption of one of them, C , then she has no way of guessing whether

C is an encryption of M1 or an encryption of M2 with probability significantly

greater than 1/2. (Note that any deterministic cryptosystem will fail this test

since given two messages M1, M2 they both have fixed encryptions C1, C2 and

so given a cryptogram C , Eve simply checks whether C = C1 or C = C2.)

These considerations lead naturally to the following security test.

(1) Bob chooses a key length k.

(2) He then generates a random public and private key pair (e, d) of the

required length and publishes his public key e.

(3) Eve produces two messages M1, M2 of length k in probabilistic

polynomial time.

(4) Bob then chooses one of the messages at random M ∈R {M1, M2} and

encrypts it as C = e(M).

(5) Bob then sends the cryptogram C to Eve.

(6) Eve then guesses which of the two messages Bob encrypted.

(7) If Eve is correct then she succeeds otherwise she fails.

Clearly by guessing at random Eve will succeed in this test half of the time.

We say that a cryptosystem is polynomially indistinguishable iff no matter

what probabilistic polynomial time algorithm Eve employs her probability of

succeeding in this test is at most negligibly greater than 1/2.

10.5 Probabilistic encryption 219

It is important to note that in step (3) of the test Eve produces the messages

M1, M2 herself in probabilistic polynomial time. In an ideal world we would

like to insist that Eve cannot distinguish between encryptions of any pair of

messages of the same length but this would be unrealistic. For example, suppose

Bob uses a cryptosystem whose security is based on the difficulty of factoring

a product of two primes, n = pq, and that knowledge of the factorisation of n

allows anyone to easily compute his private key. Obviously in such a system

Eve can distinguish between encryptions of the messages M1 = p and M2 = q

since given this pair of messages she can compute Bob’s private key and hence

decrypt any cryptogram.

We need to insist that the pairs of messages that Eve tries to distinguish

between are ‘reasonable’ in the sense that she could produce them herself (and

in particular without using Bob’s private key).

Returning now to our (rather inefficient) method for encrypting longer mes-

sages, we can now show that it is secure.

Theorem 10.12 The probabilistic encryption process for longer messages,

using hard-core predicates of trapdoor functions, yields a polynomially indis-

tinguishable cryptosystem.

Proof: We will not present a full proof of this result. The basic idea is to show

that if Eve can distinguish between encryptions of two particular m-bit messages

M1 and M2 then in fact she can distinguish between encryptions of other two

m-bit messages that differ only in a single bit. (Consider a sequence of messages

starting with M1 and ending with M2, formed by flipping a single bit of M1 at

a time until after at most m steps we arrive at M2. There must exist a pair of

consecutive messages in this sequence such that Eve will be able to distinguish

between their encryptions. By construction these messages differ in exactly one

bit.)

But if Eve can distinguish between encryptions of two messages that differ

in a single bit then she can construct a guessing algorithm for the hard-core

predicate whose success probability will not be negligible. This contradiction

proves the result. �

Thus we have an encryption method using hard-core predicates of a family of

trapdoor permutations that is provably secure in the sense that it is polynomially

indistinguishable. However, we still seem rather far from the notion of perfect

secrecy that Shannon proved one could attain in symmetric cryptography. Our

definition of security, while quite reasonable, is not exactly the most natural.

Really we would like to be sure that no partial information about the message is

leaked by the cryptogram. Recall that with perfect secrecy we were guaranteed

220 10 Secure encryption

that Eve would learn nothing at all about the message from the cryptogram.

We need to describe the computational version of this condition: semantic

security.

Informally we say that a cryptosystem is semantically secure if any piece of

information that Eve is able to compute given the cryptogram, she could just as

easily have computed without the cryptogram.

We formalise this by saying that Eve obtains a piece of information if she is

able to compute some function b : M → {0, 1} such as for example

b(M) =
{

1, M contains Alice’s bank account details,

0, otherwise.

In our formal definition of semantic security we will again insist that the mes-

sages involved are reasonable. This simply means that there is a probabilistic

polynomial time algorithm for producing messages, given the key length and

public key.

Let b : M → {0, 1}. We consider two scenarios.

(1) No cryptogram. Eve is given Bob’s public key and is told that Alice

has chosen a reasonable message M of length k. We ask Eve to guess

b(M).

(2) Cryptogram. Eve is given Bob’s public key and is told that Alice has

chosen a reasonable message M of length k as before. But this time we

also give Eve the cryptogram C = e(M) and ask her to guess b(M).

A cryptosystem is said to be semantically secure iff for any function b : M →
{0, 1}, Eve’s probability of succeeding in guessing b(M) when given the cryp-

togram (that is in the second scenario) is at most negligibly greater than when

not given the cryptogram (as in the first scenario).

This is a far more natural notion of security, and clearly one that is desirable.

For this reason the next result due to Goldwasser and Micali (1984) is of great

value.

Theorem 10.13 A public key cryptosystem is semantically secure iff it is poly-

nomially indistinguishable.

Thus having described a method of encryption that is polynomially indis-

tinguishable we now have the bonus of knowing that it is also semantically

secure.

This still leaves one major problem. Can we find a more efficient method of

secure encryption? (Recall that the method described above involved a consid-

erable expansion in the message size.)

10.6 Efficient probabilistic encryption 221

10.6 Efficient probabilistic encryption

In Section 10.4 we saw how Alice and Bob could construct a secure one-time

pad using a pseudorandom generator and a small shared random seed. This

made symmetric cryptography far more practical by reducing the need for a long

shared random key. The construction of a pseudorandom generator was achieved

using a hard-core predicate of a length preserving one-way permutation (see

Theorem 10.10).

But what if they had used a trapdoor function rather than simply a one-way

function?

Suppose Alice and Bob know a family of length preserving, trapdoor per-

mutations { fi : Di → Di }i∈I with hard-core predicates {Bi }i∈I . They can con-

struct a pseudorandom generator using the method described in Theorem

10.10. Moreover, they can then build a secure public key cryptosystem as

follows.

(1) Setup. Bob decides on a key length k and chooses a random public key

and trapdoor (i, ti) of the desired length. He then publishes the public key

i and keeps the trapdoor ti secret.

(2) Encryption. Alice encrypts a message M ∈ {0, 1}m as follows.

(i) First she chooses a random seed x ∈R Di .

(ii) Then she computes fi (x), f 2
i (x), . . . , f m

i (x).

(iii) Next she uses the hard-core predicate Bi to form the pseudorandom

string:

P = (Bi (x), Bi (fi (x)), . . . , Bi (f m−1
i (x))).

(iv) She then uses this as a one-time pad and sends Bob the cryptogram

C = (P ⊕ M, f m
i (x)).

(3) Decryption. Writing E = P ⊕ M and y = f m
i (x), Bob decrypts

C = (E, y) as follows.

(i) He uses his trapdoor ti to recover x ∈ Di such that f m
i (x) = y.

(ii) He can now construct P in the same way as Alice since he knows the

random seed x .

(iii) He then recovers the message as M = E ⊕ P .

This yields a polynomially indistinguishable (and hence semantically secure)

cryptosystem.

Theorem 10.14 The efficient probabilistic encryption process described above

is polynomially indistinguishable.

222 10 Secure encryption

Proof: Consider the string (P, f m
i (x)). Since fi is a length preserving one-

way permutation this string is pseudorandom (for the same reason that the

constructions in Theorems 10.9 and 10.10 gave pseudorandom generators).

Indeed the bit generator

G i (x) = (P, f m
i (x)) = ((Bi (x), Bi (fi (x)), . . . , Bi (f m−1

i (x))), f m
i (x))

is a pseudorandom generator.

Let R be a random string of length m. It is impossible for Eve to distinguish

between C = (P ⊕ M, f m
i (x)) and (R, f m

i (x)), for any reasonable message M

since otherwise she would have a statistical test that the pseudorandom generator

G i would fail. But this implies that for any two reasonable messages M1 and

M2 an encryption of M1 is indistinguishable from (R, f m
i (x)) which in turn is

indistinguishable from an encryption of M2. Hence encryptions of M1 and M2

are indistinguishable. �

Thus, given a family of length preserving trapdoor permutations with hard-core

predicates, Alice and Bob can construct a secure public key cryptosystem that

does not suffer from excessive message expansion. (Note that the cryptogram

is now only k bits longer than the original message.)

However, such a system may still be rather inefficient in terms of the com-

putations involved. Notably decryption may be rather expensive. We close this

chapter with a description of the currently most efficient known version of such

a scheme: the Blum–Goldwasser cryptosystem.

This system is based on a restricted version of Rabin’s cryptosystem. Recall

that the function R AB I Nn(x) = x2 mod n, where n = pq is a product of

two distinct primes, yields a family of trapdoor functions under the Factoring

Assumption. However, they suffer from the problem that they are not permu-

tations. Williams (1980) proposed a modified version of this system that does

not suffer from this drawback.

Recall that a Blum prime is a prime of the form p = 3 mod 4 and that Qn

denotes the set of quadratic residues mod n.

Lemma 10.15 If p, q are Blum primes and n = pq then the Rabin–Williams

function RWn : Qn → Qn , RWn(x) = x2 mod n is a permutation.

Proof: We need to use Appendix 3, Theorem A3.14 which says that ab ∈ Qp

iff either a ∈ Qp and b ∈ Qp, or a �∈ Qp and b �∈ Qp. Note also that if n = pq

is the product of two distinct primes then b ∈ Qn implies that b ∈ Qp and

b ∈ Qq .

10.6 Efficient probabilistic encryption 223

Euler’s Criterion (Appendix 3, Theorem A3.13) tells us that −1 �∈ Qp for

any Blum prime p = 4k + 3 since

(−1)(p−1)/2 = (−1)2k+1 = −1 mod p.

Thus if p is a Blum prime and a ∈ Qp then −a �∈ Qp.

Suppose that x, y ∈ Qn and RWn(x) = RWn(y). We need to show that x =
y mod n. Now x2 = y2 mod n so n | (x − y)(x + y). Then, since x, y ∈ Qn ,

we know that x, y ∈ Qp and so −x, −y �∈ Qp and so −x, −y �∈ Qn . Hence

x �= −y mod n. So either x = y mod n or without loss of generality p | (x − y)

and q | (x + y). But if the latter holds then x = −y mod q and since y ∈ Qq

and q is a Blum prime so x �∈ Qq , contradicting the fact that x ∈ Qn . Hence

x = y mod n and the function RWn is a permutation as required. �

We now note that under the Factoring Assumption the Rabin–Williams func-

tions yield a family of trapdoor permutations. We require the following result

due to Blum, Blum and Shub (1986).

Proposition 10.16 Under the Factoring Assumption the family of Rabin–

Williams functions {RWn : Qn → Qn}n is a family of trapdoor permutations

with hard-core predicates Bn(x) = least significant bit of x.

Using the Rabin–Williams family together with the hard-core predicates Bn we

obtain the Blum–Blum–Shub generator which works as follows. (Recall that as

before l(k) is the polynomial length of the generator’s output.)

Choose two random k-bit Blum primes p, q and let n = pq.

Select random x ∈R Z∗
n .

Let x0 = x2 mod n, xi = x2
i−1 mod n for i = 1 to l(k).

Let bi be the least significant bit of xi .

Output the sequence b1, b2, . . . , bl(k).

The fact that this is a pseudorandom generator (under the Factoring Assumption)

follows immediately from Proposition 10.16 and Theorem 10.10.

Finally we have the polynomially indistinguishable (and hence semantically

secure) Blum–Goldwasser cryptosystem. This is a particular example of the

generic efficient probabilistic cryptosystem outlined at the beginning of this

section, making use of the Blum–Blum–Shub pseudorandom generator. We

give the details below.

Theorem 10.17 Under the Factoring Assumption there exists a polynomially

indistinguishable cryptosystem.

224 10 Secure encryption

To simplify the decryption process we work with a subset of the Blum primes,

namely those Blum primes of the form p = 7 mod 8.

The Blum–Goldwasser cryptosystem

(1) Setup. Bob chooses a key length k and selects two random k-bit primes

p = 8i + 7 and q = 8 j + 7. He then forms his public key n = pq which

he publishes.

(2) Encryption. Alice encrypts a message M ∈ {0, 1}m as follows

(i) First she chooses a random seed x0 ∈R Qn . (She can do this by

choosing z ∈R Z∗
n and then squaring modulo n.)

(ii) Then she computes xi = x2
i−1 mod n, for i = 1, . . . , m.

(iii) Next she uses the hard-core predicate Bn (that is the least significant

bit) to form the pseudorandom string:

P = (Bn(x0), Bn(x1), . . . , Bn(xm−1)).

(iv) She then uses this as a one-time pad and sends Bob the

cryptogram

C = (P ⊕ M, xm).

(3) Decryption. Writing E = P ⊕ M and y = xm , Bob decrypts C = (E, y)

as follows.

(i) He uses his private key (p, q) to recover x0 from y (the details are

described below).

(ii) He can now construct the pad P in the same way as Alice since he

knows the random seed x0.

(iii) He then recovers the message as M = E ⊕ P .

We make use of the special form of the primes in the decryption process.

Suppose that Bob is sent the cryptogram (E, y), where E = P ⊕ M and y =
xm . First note that if b ∈ Qn we have b ∈ Qp and so by Euler’s Criterion

b(p−1)/2 = 1 mod p. Then, as p = 8i + 7, we have

b = b · b(p−1)/2 = b1+4i+3 = (b2i+2)2 mod p.

Hence the unique square root of b that is also a quadratic residue mod p is

b2i+2 mod p. Hence x0, the 2m th root of y that Bob needs to calculate in order

to decrypt, is given (mod p) by

x = y(2i+2)m

mod p.

10.6 Efficient probabilistic encryption 225

Similarly x0 = y(2 j+2)m

mod q , where q = 8 j + 7. Bob can then use the

Chinese Remainder Theorem and Euclid’s algorithm to recover x0 mod n. He

finds integers h, k such that hp + kq = 1 and then computes

x0 = kqy(2i+2)m

+ hpy(2 j+2)m

mod n.

Finally he forms the pad P in the same way as Alice and recovers the message

as M = E ⊕ P .

Hence the total time spent decrypting an m-bit message encrypted with a

k-bit key is O(k3 + k2m). So if the message is significantly longer than the key

then this takes time O(k2m) which is the same as the time taken for encryption

and faster than the deterministic (and less secure) RSA cryptosystem.

Exercise 10.2a Alice and Bob use the Blum–Goldwasser cryptosystem. Sup-

pose Bob has public key 7 × 23 = 161 and Alice wishes to send the

message M = 0101.

(a) If Alice chooses random seed x0 = 35 ∈ Q161 calculate the

pseudorandom string

P = (B161(x0), B161(x1), B161(x2), B161(x3)).

(b) Find the cryptogram C that she sends to Bob.

(c) Check that Bob’s decryption process works in this case.

Problems

10.1h Let G : {0, 1}k → {0, 1}l(k) be a bit generator, with l(k) > k a polyno-

mial. Consider the following ‘statistical test’ for G:

TG(y) =
{

1, if there is an input x for which G(x) = y,

0, otherwise.

(a) Show that this test will succeed in distinguishing the output of G

from a truly random source (irrespective of whether or not G is a

pseudorandom generator).

(b) Explain why TG may not be a statistical test in the formal sense

defined on page 206.

(c) Use this to prove that if NP ⊆ BPP then no pseudorandom

generators exist.

10.2h Suppose we have a source of bits that are mutually independent but

biased (say 1 occurs with probability p and 0 occurs with probability

1 − p). Explain how to construct an unbiased sequence of independent

random bits from this source by considering pairs of bits.

226 10 Secure encryption

10.3h Consider a linear feedback shift register with m registers and maximum

period 2m − 1. Prove that for any non-zero initial state the output

sequence contains exactly 2m−1 ones and 2m−1 − 1 zeros in its output

of 2m − 1 bits.

10.4b Recall the Elgamal cryptosystem from Chapter 7. Define the predicate

Q(M) =

{

1, if M is a quadratic residue modulo p,

0, otherwise.

Show that Q is easy to compute from the public key (p, g, gx) and

an encryption of M , e(M) = (k, d), where k = gy mod p and d =

Mgxy mod p.

10.5h Let p = 8k + 5 be prime. Show that, given ((p − 1)/2)! mod p, there

is a polynomial time algorithm to find a solution to

x2 = n mod p.

10.6h Show that the function g defined in Theorem 10.8 is one-way.

10.7h Prove that if pseudorandom generators exist then one-way functions

exist.

10.8 Suppose that f : {0, 1}∗ → {0, 1}∗ is a length preserving permutation.

Show that if x ∈R {0, 1}k then f (x) will be uniformly distributed over

{0, 1}k .

10.9 Show that if Eve has a polynomial time algorithm for computing the

least significant bit of a message encrypted using RSA then she can

construct a polynomial time algorithm for recovering the whole mes-

sage.

It may be useful to show the following.

(a) If M1, M2 are two messages then

e(M1 M2 mod n) = e(M1)e(M2) mod n,

where e(M) is the encryption of M using the public key (n, e).

(b) Let C = e(M) and define L(C) to be the least significant bit of

the message and B(C) to be the most significant bit of the

message. So

L(C) =
{

0, M is even,

1, M is odd,

and

B(C) =
{

0, 0 ≤ M < n/2,

1, M > n/2.

Show that B(C) = L(Ce(2) mod n).

10.6 Efficient probabilistic encryption 227

(c) Given an algorithm for computing B(C) show that Eve can

recover M (consider B(C), B(Ce(2)), B(Ce(4)) . . . in turn).

(d) Hence show that Eve can recover the message using her

algorithm for L(C).

10.10a The Goldwasser–Micali cryptosystem works as follows. Bob chooses

two random k-bit primes p, q and forms n = pq. He then chooses a

quadratic non-residue y mod n (that is y ∈ Z∗
n\Qn) and publishes his

public key (n, y). Alice encrypts an m-bit message M = M1 M2 · · · Mm

as follows. She chooses u1, . . . , um ∈R Z∗
n and encrypts Mi as Ci given

by

Ci =
{

u2
i mod n, if Mi = 0,

u2
i y mod n, if Mi = 1.

(a) Describe a polynomial time decryption algorithm for Bob.

(b) If Bob has public key (77, 5) and receives the cryptogram

(71, 26) what was the message?

(c) Explain why this cryptosystem can be totally broken by anyone

who can factorise products of two primes.

(d) What intractability assumption would one require to hold for this

system to be secure?

10.11 Complete the proof of Theorem 10.9 as follows. Throughout suppose

that z ∈R {0, 1}k+1, x ∈R {0, 1}k and b ∈R {0, 1}.
(a) First explain why

Pr[T (z) = 1] = Pr[T (f (x), b) = 1]

and

Pr[T (G(x)) = 1] = Pr[T (f (x), b) = 1 | b = B(x)].

(b) Now show that

Pr[T (z) = 1] =
1

2
(Pr[T (f (x), b) = 1 | b = B(x)]

+ Pr[T (f (x), b) = 1 | b �= B(x)]).

(c) Show next that

Pr[A(f (x)) = B(x)] =
1

2
(Pr[T (f (x), b) = 1 | b = B(x)]

+ Pr[T (f (x), b) = 0 | b �= B(x)]).

(d) Finally use the assumption that

Pr[T (G(x)) = 1] − Pr[T (z) = 1] ≥
1

q(k)

228 10 Secure encryption

to show that

Pr[A(f (x)) = B(x)] ≥
1

2
+

1

q(k)
.

Further notes

The study of what constitutes a random sequence and different interpretations

of what it means to be random have a long history; see the monograph of

Li and Vitányi (1997). The use of pseudorandom sequences in Monte Carlo

simulators goes back at least as far as the middle of the last century, see for

example Hammersley and Handscomb (1964). Fundamental early papers con-

structing pseudorandom generators based on difficult computational problems

are Blum and Micali (1984: extended abstracts 1982 and 1985), Shamir (1981)

and Yao (1982). Shamir (1981) presented a scheme which from a short secret

random seed outputs a sequence x1, . . . , xn such that the ability to predict xn+1

is equivalent to inverting RSA.

Examples of early (cryptographically strong) pseudorandom bit generators

were Yao (1982) and Blum, Blum and Shub (1986). Yao (1982) and Gold-

wasser, Micali and Tong (1982) implemented pseudorandom generators based

on the intractability of factoring. These papers also relate pseudorandom gener-

ators and the next-bit test. Goldwasser and Micali (1982, 1984) introduced the

concept of polynomial indistinguishability and the related concept of semantic

security.

The concept of a hard-core predicate was introduced by Blum and Micali

(1984) who proved Theorem 10.3 showing that the most significant bit of the

discrete logarithm was a hard-core predicate.

The Blum–Goldwasser cryptosystem appears in Blum and Goldwasser

(1985).

The books of Goldreich (2001) and Luby (1996) give authoritative accounts

of the theory relating pseudorandomness and its cryptographic applications.

11

Identification schemes

11.1 Introduction

How should Peggy prove to Victor that she is who she claims to be?

There is no simple answer to this question, it depends on the situation. For

example if Peggy and Victor meet in person, she may show him her passport

(hopefully issued by an authority that he trusts). Alternatively she could present

him with a fingerprint or other biometric information which he could then

check against a central database. In either case it should be possible for Peggy

to convince Victor that she really is Peggy. This is the first requirement of

any identification scheme: honest parties should be able to prove and verify

identities correctly.

A second requirement is that a dishonest third party, say Oscar, should be

unable to impersonate Peggy. For example, two crucial properties of any pass-

port are that it is unforgeable and that its issuing authority can be trusted not to

issue a fake one. In the case of biometrics Victor needs to know that the central

database is correct.

A special and rather important case of this second requirement arises when

Victor is himself dishonest. After asking Peggy to prove her identity, Victor

should not be able to impersonate her to someone else.

Let us suppose for now that Peggy and Victor do not meet in person. Instead

they engage in some form of communication, at the end of which hopefully

Victor is convinced of Peggy’s identity. It is now more difficult to list possible

identification schemes. Clearly Peggy must provide Victor with some informa-

tion that will convince him of her identity. However, she needs to be careful,

since any information she gives to Victor may then be used by either Victor or

some eavesdropper to impersonate her at a later date.

The simplest form such a scheme could take would be to use a password.

Peggy first registers her password with Victor. At a later date Peggy can convince

229

230 11 Identification schemes

Victor of her identity by sending him this password. Unfortunately there are

many problems with such a system.

(1) Peggy must transmit her password via a secure communication channel

otherwise any eavesdropper can steal her password and impersonate her.

(2) Peggy can only convince those people she has previously exchanged a

password with of her identity.

(3) Victor can obviously impersonate her since he also knows her password.

So how can we solve these problems? The problem of requiring a secure

communication channel can clearly be solved by using encryption. However

this only stops an eavesdropper from recovering the password. If Peggy sim-

ply sends her password in encrypted form then an eavesdropper does not

need to decrypt it, he simply needs to record it and then resend it when he

wishes to fool Victor into believing that he is Peggy. Thus encryption alone is

useless.

The key problem is that the password does not change. To solve this we need

to introduce randomness or timestamps into the scheme.

A better approach might be to dispense with passwords and instead use a

so-called challenge–response scheme. Such schemes can be based on either

public key or symmetric cryptosystems, we will only consider the public key

case.

Typically a scheme of this type would work as follows.

(1) Challenge. Victor sends Peggy a cryptogram formed by encrypting a

random message with her public key.

(2) Response. Peggy responds with the decrypted message.

Equivalently we could think of this as Victor asking Peggy to sign a random

message. Recall that when considering digital signature schemes we saw that

it was a rather bad idea to sign all messages without question. It was far better

to use a hash function and then sign the hash of the message. In particular

this provided a defence against chosen-message attacks or, from the encryption

point of view, chosen-ciphertext attacks.

The following identification scheme attempts to take these fears into account.

Example 11.1 A public-key challenge-response identification scheme

(1) Victor chooses a random value r and computes its hash with a publicly

known hash function h to produce a witness x = h(r).

(2) Victor then uses Peggy’s public key to encrypt a message consisting of r

and an identifier of Victor, IV , and sends the challenge C = e(r, IV) to

Peggy together with the witness x .

11.2 Interactive proofs 231

(3) Peggy then decrypts C to obtain r and IV . She then checks that IV is

Victor’s identifier and that h(r) = x . If these hold she returns the response

r to Victor.

(4) Victor accepts Peggy’s proof of identity iff she returns the correct value

of r .

This scheme represents a significant improvement over a basic password system.

However, can Peggy be sure that if Victor is dishonest and issues challenges that

are chosen in some cunning fashion he does not gain any information that will

enable him to impersonate her? Peggy may need to identify herself to Victor

frequently. She would like to be sure that by repeatedly identifying herself

she does not enable Victor to accumulate information that will allow him to

impersonate her later.

If we go back to first principles it is obvious that no matter how Peggy proves

her identity to Victor she clearly provides him with some information that he

did not already possess: namely that she is indeed Peggy. Ideally Peggy would

like to use an identification scheme in which this is the only piece of information

that she reveals. But is this possible? To describe such a scheme we need to

learn about so-called zero knowledge proofs. We start by considering the more

general topic of interactive proofs.

11.2 Interactive proofs

The idea of an interactive proof system originated in the work of Goldwasser,

Micali and Rackoff (1985). To motivate this topic we need to recall what it

means to say that a language L belongs to NP. (We give a slight rewording of

the actual definition introduced in Chapter 3.)

We say that L ∈ NP if there is a polynomial time algorithm that given an

input x and a possible proof y, checks whether y is a valid proof that x ∈ L . If

x ∈ L then at least one valid proof exists, while if x �∈ L then no valid proof

exists.

An interactive proof represents a very natural generalisation of this in which

the proof is not simply given to the checking algorithm but rather is presented

by a prover who tries to answer any questions the checking algorithm may have.

The computational model of an interactive proof system consists of two

probabilistic Turing machines which can communicate with each other. Each

machine has access to a private source of random bits.

As is now customary, we name these machines Peggy (=P=prover) and

Victor (=V =verifier). Peggy is all powerful except that she is only allowed to

232 11 Identification schemes

send messages of a length bounded by some polynomial function of the input

size.

The verifier, Victor, is much more constrained. His total computation time

must be less than some fixed polynomial bound, again of the input size.

Peggy and Victor alternate sending each other messages on two special

interaction tapes. Both must be inactive in the time interval between sending a

message and receiving a response. By convention Victor initiates the interaction.

Consider the following decision problem.

GRAPH NON-ISOMORPHISM (GNI)

Input: two graphs G1 and G2 with vertex set {1, 2, . . . , n}.

Question: are G1 and G2 non-isomorphic?

Recall that GNI is not known to belong to P but clearly belongs to co-NP. The

classical example of an interactive proof system is the following system for

GNI.

Example 11.2 Interactive proof of GNI

Let G1 and G2 be two graphs that Peggy wishes to prove are non-isomorphic.

Victor and Peggy use the following protocol.

(1) Victor chooses a random index i ∈R {1, 2} and a random permutation

π ∈R Sn .

(2) Victor then applies π to the vertices of G i to form the graph H = π (G i).

(3) Victor then sends H to Peggy and asks for the index j ∈ {1, 2} such that

H is isomorphic to G j .

(4) Peggy responds with an index j .

(5) Victor accepts iff j = i .

Clearly if G1 and G2 are not isomorphic then Peggy can always choose j

correctly and hence satisfy Victor. (Note that this relies on the fact that Peggy

has unbounded computational capabilities since there is currently no known

polynomial time algorithm for this task.)

However, if G1 and G2 are isomorphic then no prover can do better than

guess the value of i correctly half of the time so

Pr[Victor is fooled by a malicious prover] =
1

2
.

By repeating this procedure t times we can reduce the chance that a malicious

prover can fool Victor, when G1 and G2 are in fact isomorphic, from 1/2 to

(1/2)t .

11.2 Interactive proofs 233

Formally an interactive proof system consists of two PTMs: P (the prover)

and V (the verifier) which can exchange messages via two communication

tapes, the P → V tape and the V → P tape. The P → V tape is write only

for P and read only for V . The V → P tape is write only for V and read only

for P . Both P and V have private work tapes and private coin toss tapes. They

both also share a read only input tape.

We now place conditions on the computational power of the two machines.

(a) The verifier V is a polynomial time PTM.

(b) The prover P is a computationally unlimited PTM (so P can use an

unlimited amount of time, space and random bits).

(c) The verifier V starts the computation and P , V then take alternate turns,

where a turn consists of a machine reading its tapes, performing a

computation and sending a single message to the other machine.

(d) The length of the messages which are sent are polynomially bounded.

(e) The number of turns is polynomially bounded.

(f) The computation ends when V enters a halting state of accept or reject.

The condition (c) that V starts the computation is a convention to ensure the

protocol is properly defined. We will often ignore this and have P start the

computation. Such protocols could be easily modified to have V send an initial

message to signal the start of the computation.

We say that an input x is accepted/rejected by (V, P) depending on whether

V accepts or rejects after interacting with P on input x .

A language L has a polynomial time interactive proof if there exists a verifier

V and a prover P such that the following hold.

(i) Completeness. If x ∈ L then Pr[(V, P) accepts x] = 1.

(ii) Soundness. If x �∈ L then for any (possibly malicious) prover P ′,

Pr[(V, P ′) accepts x] ≤
1

2
.

In both cases the probability is given by the random bits used by the verifier V .

We denote the class of languages with polynomial time interactive proofs

by IP.

In the above definition it is important to distinguish between P and P ′. We

can think of P as the ‘honest’ prover who can convince the verifier V. While

P ′ is a possibly ‘dishonest’ prover who is unlikely to fool V. (If we think about

identification schemes then the completeness condition captures the idea that

Peggy can convince Victor of her identity, while the soundness condition means

that an imposter is unlikely to fool Victor.)

234 11 Identification schemes

Proposition 11.3 SAT ∈ IP.

Proof: Given the input CNF formula f (x1, . . . , xn), the verifier V simply asks

the prover for a satisfying assignment. Since P has unbounded computational

resources she can, whenever the formula is satisfiable, find a satisfying assign-

ment. Hence the completeness condition holds.

However, if the input f is not satisfiable then V can never be fooled into

accepting f since V can easily check any assignment a prover P ′ sends him

to see if it satisfies f . Hence the soundness condition also holds since the

probability that a malicious prover can fool V is zero. �

It is clear that a simple modification of the above argument will work for any

language L ∈ NP. Thus we have the following result.

Theorem 11.4 NP ⊆ IP.

We can now give another example to show that IP contains languages that are

not known to belong to NP.

Recall that x ∈ Z∗
n is a quadratic residue mod n if there exists y ∈ Z∗

n such

that

y2 = x mod n.

Otherwise we say that x is a quadratic non-residue mod n. Another example

of a language belonging to IP is given by the following decision problem.

QUADRATIC NON-RESIDUES (QNR)

Input: an integer n and x ∈ Z∗
n .

Question: is x a quadratic non-residue mod n?

Obviously QNR ∈ co-NP, but it is unknown whether QNR ∈ NP (there is no

obvious succinct certificate to show that a given number x is a quadratic non-

residue). However, we have the following result that gives a hint of the power

of interactive proof systems.

Proposition 11.5 QNR ∈ IP

Proof: We will need to use the fact that if x is a quadratic non-residue mod n

and y is a quadratic residue mod n then xy is a quadratic non-residue mod n.

(See Exercise 11.1.)

We claim that the following is an interactive proof system for QNR.

(1) Given an input x , the verifier V chooses i ∈R {0, 1} and z ∈R Z∗
n . If i = 0

then V computes w = z2 mod n, otherwise V computes w = xz2 mod n.

The verifier V then sends w to P and asks for the value of i .

(2) Since P is computationally unbounded she can decide whether or not w is

a quadratic residue. In the case that x is indeed a quadratic non-residue

11.3 Zero knowledge 235

this allows P to determine the value of i (since in this case w is a

quadratic residue iff i = 0). The prover P sends the value j to V .

(3) The verifier V accepts iff i = j .

This interactive proof system clearly satisfies the completeness condition since

if x is a quadratic non-residue then P can distinguish between the case i = 0

(when w = z2 mod n is a quadratic residue) and the case i = 1 (when w =

xz2 mod n is a quadratic non-residue).

To see that the soundness condition also holds, suppose that x is a quadratic

residue. Then, irrespective of the value of i , the verifier V gives the prover a

random quadratic residue w. Hence no matter how devious a prover P ′ may

be she cannot hope to guess the value of i correctly more than half of the

time. �

How important is the constant 1/2 in the soundness condition? Actually any

constant 0 < p < 1 will suffice.

Proposition 11.6 If IPp denotes the class of languages with interactive proofs

with soundness probability p, then IPp = IPq whenever 0 < p ≤ q < 1.

Proof: If 0 < p ≤ q < 1 then clearly IPp ⊆ IPq . To see that the converse also

holds suppose that L ∈ IPq and let Aq = (V, P) be an interactive proof system

with soundness probability q for L . Modify this system to give a new interactive

proof system Ap = (V ∗, P∗) by carrying out t independent runs of Aq , and

accepting iff all runs accept. Now if x ∈ L then

Pr[(V ∗, P∗) accepts x] = 1,

while if x �∈ L then for any prover P ′

Pr[(V ∗, P ′) accepts x] ≤ q t .

If t is chosen such that q t < p then this gives a polynomial time interactive

proof system with soundness p for L . Hence IPp = IPq . �

Exercise 11.1 a Show that if x is a quadratic non-residue mod n and y is a

quadratic residue mod n then xy is a quadratic non-residue mod n.

Exercise 11.2 Prove that if L1 ∈ IP and L2 ≤m L1 then L2 ∈ IP.

11.3 Zero knowledge

One of the original motivations of Goldwasser, Micali and Rackoff in introduc-

ing interactive proof systems was to obtain proof systems which gave away no

‘knowledge’ or ‘information’ whatsoever.

236 11 Identification schemes

Example 11.7 The gold prospector

Peggy has two indistinguishable looking lumps of metal, one of which she

claims is gold. Victor wishes to purchase the gold and is able to distinguish

between any two substances except for gold and pyrites (otherwise known as

Fool’s Gold). He fears that Peggy has two identical lumps of pyrites.

Victor devises the following test. He takes the two lumps and then selects

one at random which he shows to Peggy and asks her which it is. He records her

answer and then repeats the test. He does this twenty times and keeps a record

of Peggy’s answers.

If the two lumps of metal are truly different then her answers should be

consistent and one of the lumps must be gold. In this case Victor decides

to buy both lumps (Peggy may still be lying about which is which). How-

ever, if the two lumps are identical then Peggy is extremely unlikely to give

consistent answers to Victor’s questions since she has no way of distinguish-

ing between the two lumps. In this case Victor does not buy them (on the

premise that if the two lumps are identical then they will surely both be Fool’s

Gold).

Note that this test has two important properties. First, if Peggy is lying then

she is highly unlikely to fool Victor. Second, in the case that Peggy is honest,

Victor still has no way of telling which of the two lumps is actually gold after

conducting the tests, he simply knows that one of them is. In particular he has

not learnt anything which would enable him to pass a similar test given by

another sceptical gold buyer!

Goldwasser, Micali and Rackoff (1985) attempt to make the notion of

‘knowledge’ precise. Informally they say that an interactive proof system for a

language L is zero knowledge if whatever the (possibly dishonest) verifier V

can compute in probabilistic polynomial time after interacting with the prover,

he could already compute before interacting with the prover, given the input x

alone. In other words the verifier learns nothing from his interactions with the

prover that he could not have computed for himself.

There are different types of zero-knowledge proofs, we start by considering

the strongest variety.

11.4 Perfect zero-knowledge proofs

A perfect zero-knowledge (or PZK) proof is an interactive proof in which P

convinces V that an input x possesses some specific property but at the end of

the protocol V has learnt nothing new about how to prove that x has the given

property. We start with an example.

11.4 Perfect zero-knowledge proofs 237

Example 11.8 A PZK proof for GRAPH ISOMORPHISM

GRAPH ISOMORPHISM

Input: two graphs G1 and G2 with vertex set {1, 2, . . . , n}

Question: are G1 and G2 isomorphic?

Consider the following interactive proof system

(1) The prover P chooses a random permutation π ∈R Sn . She then computes

H = π (G1) and sends H to V .

(2) The verifier V chooses a random index i ∈R {1, 2} and sends this to P .

(3) The prover P computes a permutation σ ∈ Sn such that H = σ (G i) and

sends σ to V .

(4) The verifier V checks that H is the image of G i under the permutation σ .

Steps (1)–(4) are repeated t times and V accepts P’s proof iff the check in step

(4) is successful every time, otherwise V rejects the proof.

Now consider the probability that V accepts (G1, G2). If G1 and G2 are

isomorphic then P can in each case find a permutation σ such that H = σ (G i)

so the probability of V accepting is 1.

If G1 and G2 are not isomorphic then, no matter what dishonest strategy

a prover employs, she can only fool V at most half of the time since either

she chooses H = π (G1) and so she can give the correct response when i = 1

or she chooses H = π (G2) and so can give the correct response when i = 2.

However, to fool V she needs to answer correctly all t times and the probability

that this occurs is at most

Pr[V accepts (G1, G2)] =

(

1

2

)t

.

Note that it is easy to see that all of V ’s computations may be performed in

polynomial time. Hence this is a polynomial time interactive proof.

Intuitively this must be a zero-knowledge proof because all that V learns

in each round is a random isomorphic copy H of G1 or G2 and a permutation

which takes either H → G1 or H → G2 but not both. Crucially V could have

computed these for himself without interacting with P . He could simply have

chosen a random index i ∈R {1, 2} and a random permutation σ ∈R Sn and then

formed the graph H = σ (G i).

To make this idea more precise we say that V ’s transcript of the interactive

proof consists of the following:

(1) the graphs G1 and G2;

(2) the messages exchanged between P and V ;

(3) the random numbers i1, i2, . . . , it .

238 11 Identification schemes

In other words the transcript is

T = [(G1, G2), (H1, i1, σ1), (H2, i2, σ2), . . . , (Ht , it , σt)].

The key reason why this interactive proof is perfect zero knowledge is that if

G1 and G2 are isomorphic then anyone can forge these transcripts, whether or

not they actually participate in an interactive proof with P . All a forger requires

is the input and a polynomial time PTM.

Formally, we can define a forger to be a polynomial time PTM, F , which

produces forged transcripts. For such a machine and an input x we let F(x)

denote the set of all possible forged transcripts and T (x) denote the set of

all possible true transcripts (obtained by V actually engaging in an interactive

proof with P on input x).

We have two probability distributions on the set of all possible transcripts

(both true or forged).

First, we have PrT [T], the probability that T occurs as a transcript of an

actual true interactive proof conducted by V with P on input x . This depends

on the random bits used by V and P . Second, we have PrF [T], the probability

that T is the transcript produced by the forger F , given input x . This depends

only on the random bits used by F (since V and P play no part in producing

the forgery).

An interactive proof system for a language L is perfect zero knowledge iff

there exists a forger F such that for any x ∈ L we have

(i) the set of forged transcripts is identical to the set of true transcripts. That

is F(x) = T (x),

(ii) the two associated probability distributions are identical. That is for any

transcript T ∈ T (x) we have PrT [T] = PrF [T].

Proposition 11.9 The interactive proof system for GRAPH ISOMORPHISM

given above is perfect zero knowledge.

Proof: To simplify matters we assume that the verifier is honest and follows the

protocol correctly.

Suppose G1 and G2 are isomorphic what does a possible transcript consist

of? Well it looks like

T = [(G1, G2), (H1, i1, σ1), (H2, i2, σ2), . . . , (Ht , it , σt)],

where each i j ∈ {1, 2}, each σ j ∈ Sn and each H j = σ j (G i j
). Our forger F

knows the input (G1, G2) and so can easily produce any of the possible true

transcripts. All he needs to do is first write down the input and then choose

11.4 Perfect zero-knowledge proofs 239

random i ∈R {1, 2} and σ ∈R Sn and form the triple (σ (G i), i, σ). He then

repeats this t times to produce a transcript.

Clearly the set of forged transcripts and the set of true transcripts will be

identical, so F(G1, G2) = T (G1, G2).

Moreover the forger F will have an equal chance of producing any possible

transcript. But it is also the case that true transcripts produced by the interaction

of V with P will also occur with equal probability. Hence if the total number

of transcripts is N and T is a transcript then

PrT [T] = PrF [T] =
1

N
.

So both conditions hold. �

Unfortunately the above proof is incomplete. To show that the protocol really

is PZK we need to deal with the possibility that the verifier may be dishonest.

If he is, then proving perfect zero knowledge is more difficult, see for example

Goldreich, Micali and Wigderson (1991).

Example 11.10 A PZK proof for QUADRATIC RESIDUE.

QUADRATIC RESIDUE (QR)

Input: integer n the product of two unknown distinct primes and an integer

b ∈ Z∗
n .

Question: is b a quadratic residue mod n?

Obviously there is a protocol showing that QR belongs to IP, the prover simply

gives the verifier a square root of b mod n. Clearly this is not a zero-knowledge

proof. However, there is a zero-knowledge interactive proof which we describe

below.

(1) The prover P chooses a random x ∈R Z∗
n and sends y = x2 mod n to V .

(2) The verifier V chooses a random integer i ∈R {0, 1} and sends i to P .

(3) The prover P computes

z =
{

x mod n, if i = 0,

x
√

b mod n, if i = 1,

and sends this to V .

(4) The verifier V accepts iff z2 = bi y mod n.

Clearly if b is a quadratic residue mod n then the prover can always pass this

test.

If b is not a quadratic residue mod n then any prover will always fail one

of the possible tests no matter what she chooses as y. To be precise if a prover

240 11 Identification schemes

sends y = x2 mod n then she will be able to respond correctly to the challenge

i = 0 but not to the challenge i = 1 (since
√

b does not exist). While if she tries

to cheat and chooses y = b−1x2 mod n then she will now be able to respond

correctly to the challenge i = 1 by sending z = x but not to the challenge i = 0

(again because
√

b does not exist). So whatever a prover does if b is a quadratic

non-residue then

Pr[V accepts b] ≤
1

2
.

Hence this is a polynomial time interactive proof but is it a PZK proof?

We need to consider what V learns in the process of interacting with

P . After t rounds of interaction with P , the verifier V has the following

transcript

T = [(n, b), (x2
1 , i1, x1bi1/2), (x2

2 , i2, x2bi2/2), . . . , (x2
t , it , xt b

it /2)],

where each x j ∈R Z∗
n and i j ∈R {0, 1}.

We now consider how a forger might produce such a transcript. First he writes

down the input (n, b). He then chooses i ∈R {0, 1}. If i = 0 he chooses x ∈R

Z∗
n and calculates y = x2 mod n. If i = 1 he chooses x ∈R Z∗

n and computes

b−1 mod n and y = x2b−1 mod n. Finally he produces the forged triple (y, i, x).

It is straightforward to check that this forging algorithm produces transcripts

with an identical probability distribution to that of the true transcripts.

Exercise 11.3 Complete the proof that the interactive proof system for QR

given above is perfect zero knowledge, assuming that the verifier is honest.

11.5 Computational zero knowledge

With perfect zero knowledge we required the forger to be able to forge transcripts

with exactly the same probability distribution as that of the true transcripts

produced by interactions between V and P . This is a rather strong condition.

If we wish to use zero-knowledge proofs as the basis of identification

schemes then perfect zero knowledge is stronger than we need. Rather than

requiring the distributions of true and forged transcripts to be identical it is suf-

ficient to require the two distributions to be indistinguishable to an adversary.

Thus we introduce the weaker notion of computational zero knowledge

(CZK). A language L has a CZK proof if there is an interactive proof system

for L and a forger F who produces transcripts with a distribution that differs

from the distribution of the true transcripts in a way that is indistinguishable to

anyone equipped with a polynomial time PTM.

11.5 Computational zero knowledge 241

Under certain assumptions about one-way functions, all languages in NP

have CZK proofs.

A vital tool required in the proof of this result is a bit commitment scheme

so we first explain what this is and why they exist (so long as one-way functions

exist). In passing we will also discover how to toss a coin over the telephone!

Bit commitment

Suppose Bob wants Alice to commit to the value of a single bit, either 0 or 1.

Alice is willing to do this but she does not want Bob to know which bit she

has chosen until some later date. How can Bob ensure that Alice commits to

a particular (unknown) bit in such a way that she cannot lie about her choice

later?

One possible solution is for Alice to use a one-way permutation, f :

{0, 1}∗ → {0, 1}∗, with hard-core predicate B(x). She chooses x ∈ {0, 1} such

that B(x) ∈ {0, 1} is the bit to which she wishes to commit. She then sends her

commitment C = f (x) to Bob.

Later, Alice can decommit and reveal the bit she chose by sending Bob the

value x . She cannot cheat since f is a permutation so there is a unique x for

which f (x) = C . Moreover, given x , Bob can easily compute f (x) and B(x)

so Bob can easily decide which bit Alice originally chose and check that she

did not cheat.

The security of this scheme relies on the fact that B(x) is a hard-core predicate

and so if Bob tries to guess this bit he will be wrong with probability essentially

1/2.

Using Theorem 10.8 we know that if any one-way permutation exists then a

one-way permutation with a hard-core predicate exists. Thus as long as one-way

permutations exist we know that bit commitment schemes exist.

Note that rather than committing to a single bit, Alice could commit to any

number of bits: she simply commits to each bit in turn. Hence we can talk about

commitment schemes in which Alice commits to some integer in a given range,

rather than just a single bit.

One rather nice use of a bit commitment scheme is to devise a fair method

of tossing a coin over the telephone.

How to toss a coin over the telephone

Alice and Bob wish to toss a coin but are unfortunately in different locations

and only have a telephone line to help. What can they do to ensure that neither

of them can cheat?

242 11 Identification schemes

Rather than a coin we imagine that they choose a single bit z ∈ {0, 1}. More-

over we assume that Alice wins if the bit is 0 and Bob wins if the bit is 1.

Obviously it would not be fair for only one of them to choose the bit

so both must be involved. One possibility is Alice chooses a bit a and Bob

chooses a bit b and the outcome of the coin toss is the bit a ⊕ b. But the

problem with this is that whoever gets to choose their bit last can ensure they

win.

We can fix this by using a bit commitment scheme as follows.

(1) Alice chooses a bit a ∈ {0, 1} and sends Bob a commitment to this value

C(a).

(2) Bob now has no idea which bit Alice has chosen and he simply chooses

another bit b and sends this to Alice.

(3) Alice then decommits and the outcome of the coin toss is the bit a ⊕ b.

Since Bob chooses his bit last he decides the outcome. But because he has no

idea what Alice has chosen he has no way to influence this!

We now return to computational zero-knowledge proofs.

Theorem 11.11 If a one-way permutation exists then every language in NP

has a computational zero-knowledge proof.

Proof: There are two parts to the proof.

(1) Show that the NP-complete problem 3-COL has a CZK proof.

(2) Using the fact that any language L ∈ NP is polynomially reducible to

3-COL show that L also has a CZK proof.

We start by describing a zero-knowledge proof of 3-COL. Let G = (A, E) be

the input graph, with vertex set A = {v1, . . . , vn} and edge set E . Suppose that

G is 3-colourable. (That is there is a way of assigning three colours to the

vertices of G so that no two vertices of the same colour are joined by an edge.)

Now P wishes to convince V that G is 3-colourable but she cannot simply

show a particular 3-colouring to V since that would clearly not be a zero-

knowledge proof.

Instead P uses a commitment scheme. She chooses a 3-colouring of G and

sends V commitments for the colours of all the vertices.

Then V chooses a random edge in the graph and asks P to decommit to

the colours of the two end vertices. He then checks that they do indeed have

different colours.

They then repeat this process, with P using a different 3-colouring of G.

If G is not 3-colourable then in any colouring of G at least one of the edges

of G is monochromatic (that is both vertices have the same colour). Since V

11.5 Computational zero knowledge 243

chooses which edge to check at random he discovers this with probability at

least 1/|E |. Thus by repeating the checks t times he can be almost certain that

the graph is 3-colourable.

We describe the protocol in more detail below.

(1) The prover P selects a legal 3-colouring φ of G = (A, E), so

φ : A → {1, 2, 3}.
(2) Then P chooses a random permutation of the colour set π ∈R S3 and

forms the colouring

M = (πφ(v1), πφ(v2), . . . , πφ(vn))

(3) Next P uses a commitment scheme to commit to the colours of the

vertices as

C1 = C(πφ(v1)), C2 = C(πφ(v2)), . . . , Cn = C(πφ(vn)).

(4) Then P sends C = (C1, C2, . . . , Cn) to V .

(5) The verifier V asks for the colours of the vertices of a random edge

e ∈R E , say e = (va, vb).

(6) First P checks that (va, vb) is an edge. If it is she decommits to the

colours πφ(va) and πφ(vb).

(7) Then V checks that P has not cheated (that is she has decommitted

honestly) and that πφ(va) �= πφ(vb). If not then he rejects.

How convincing is this proof system for V ?

If G is 3-colourable and both participants follow the protocol then V will

always accept. Hence the completeness condition holds.

If G is not 3-colourable then the probability that V rejects on one round is

at least

Pr[V picks an edge with a bad colouring] ≥
1

|E |
.

Hence repeating the protocol t times gives

Pr[V is deceived] ≤
(

1 −
1

|E |

)t

.

If G has m edges and we take t = m2 this gives

Pr[V is deceived] ≤ e−m .

Thus the soundness condition holds and hence this is a polynomial time inter-

active proof for 3-COL.

244 11 Identification schemes

But what information does P reveal? A transcript of a single round of the

protocol is of the form

T = [(C1, C2, . . . , Cn), (va, vb), (Da, Db)],

where C1, . . . , Cn are the commitments to the colours of the vertices, (va, vb)

is a random edge of G and (Da, Db) is the decommitment information that P

sends to V to allow him to check the colours of the vertices va and vb to which

she previously committed.

So how might forger F proceed? Unless F actually knows a 3-colouring

of G there is no obvious way for him to forge transcripts perfectly. (Note that

this would require F to solve an NP-hard problem.) But he can still do the

following. He chooses a random edge (va, vb) ∈R E and chooses two random

distinct colours for these vertices. He then forms the colouring of G that colours

every vertex with colour 1, apart from the vertices va and vb which receive

the previously chosen colours. He then uses the same commitment scheme

as P to commit to this colouring. His forged transcript then consists of his

commitments to the (almost certainly illegal) colouring of G, the edge (va, vb)

and the decommitment information for the colours of va and vb.

Forged transcripts produced in this way certainly do not have a probability

distribution which is identical to that of the true transcripts, but an adversary

armed with a polynomial time PTM cannot distinguish between the true and

forged transcripts without breaking the security of the commitment scheme.

But this is impossible since the security of the commitment scheme was based

on a hard-core predicate of a one-way function.

Note that the forger is able to ‘cheat’ when he produces these fake transcripts

in a way that P cannot when interacting with V since F can produce his

‘commitments’ after he has chosen the edge which will be checked. Obviously

P cannot do this because the interactive nature of the proof system forces her

to commit before being told which edge will be checked.

One final point to note is that the forger can repeat this process for a poly-

nomial number of rounds.

Hence this gives a CZK proof of 3-COL.

Finally we note that any language L ∈ NP has a CZK proof since L is

polynomially reducible to 3-COL. �

Although Theorem 11.11 tells us that any language in NP has a CZK proof it

is still illuminating to see CZK proofs of other NP languages. The next CZK

proof we will consider is one for the language HAM CYCLE.

Recall that a Hamilton cycle of a graph G is an ordering of the vertices of

G such that consecutive vertices are joined by an edge and the first and last

vertices are also joined by an edge.

11.5 Computational zero knowledge 245

HAM CYCLE

Input: a graph G.

Question: does G have a Hamilton cycle?

Recall that we can encode a graph via its adjacency matrix. If G has n vertices

this is the n × n matrix whose (i, j)th entry is 1 if there is an edge from vi to

v j and 0 otherwise.

Example 11.12 A CZK proof of HAM CYCLE.

Given a graph G with a Hamilton cycle, the protocol is as follows.

(1) The prover P chooses a random permutation π ∈R Sn and reorders the

vertices to give the graph H = π (G).

(2) Using a commitment scheme P sends V commitments to all of the entries

in the adjacency matrix of H .

(3) Then V randomly chooses i ∈R {0, 1} and sends i to P .

(4) If i = 0 then P sends V a Hamilton cycle C of H and decommits only to

those bits of the hidden matrix corresponding to the edges in C .

If i = 1 then P decommits to the entire hidden matrix and sends the

permutation π to V .

(5) If i = 0 then V checks that P decommitted correctly to the edges in C

and that C is indeed a Hamilton cycle. If not then V rejects.

If i = 1 then V checks that P decommitted correctly and that the

permutation π does map G to H . If not then V rejects.

We first need to check that this is a polynomial time interactive proof system.

When G has a Hamilton cycle P can always make V accept by simply

following the protocol. Hence the completeness condition holds.

But what if G does not have a Hamilton cycle? In this case any prover

has probability at least 1/2 of failing. Since either the prover uses a different

adjacency matrix to that of H , and so is unable to respond correctly to the

challenge i = 1, or she uses the correct adjacency matrix, and so is unable to

respond correctly to the challenge i = 0 as H does not contain a Hamilton

cycle. This shows that the soundness condition also holds and hence this is a

polynomial time interactive proof of HAM CYCLE.

To see that this is a CZK proof we need to consider what the transcripts look

like. Let N = n2 be the size of the adjacency matrix then a true transcript of a

single round is of the form

T = [(C1, C2, . . . , CN), 0, (Da1
, Da2

, . . . , Dan
)],

or

T = [(C1, C2, . . . , CN), 1, π, (D1, D2, . . . , DN)],

246 11 Identification schemes

where the Ci s are the commitments to the matrix entries, the Di s are the decom-

mitment values and π is a permutation.

A forger can do the following. He first chooses i ∈R {0, 1}. If i = 0 he

chooses a random Hamilton cycle on n vertices and forms its adjacency matrix.

He then uses the same commitment scheme as P to commit to this matrix. His

forged transcript then consists of his commitments to the entire matrix, the value

0 and the decommitment values for the entries in the matrix corresponding to

the edges of the Hamilton cycle.

If i = 1 the forger simply chooses a random permutation π ∈R Sn , forms

H = π (G) and then uses the same commitment scheme as P to commit to the

adjacency matrix of H . His forged transcript then consists of his commitments

to the entire matrix, the value 1, the permutation π and the decommitment

values for all the entries of the matrix.

As with the CZK proof for 3-COL the distributions of true and forged tran-

scripts are not identical. However, no polynomial time PTM can distinguish

between them since this would involve breaking the security of the commit-

ment scheme which is impossible since this was based on a hard-core predicate

of a one-way function.

Exercise 11.4a Modify Example 11.12 to show that C L I QU E has a compu-

tational zero-knowledge proof.

11.6 The Fiat–Shamir identification scheme

A possible motivation for studying zero-knowledge proofs is the problem of

authentication at cash dispensing machines. Instead of typing in a secret 4

or 6 digit number one would take on the role of the prover Peggy in a zero-

knowledge proof system. This was suggested by Fiat and Shamir in 1987 and

then modified by Feige, Fiat and Shamir (1988) in a paper which the US army

briefly attempted to classify. For a very interesting account of the background

involving the Fiat–Shamir protocol, the military connections and patents see

Landau (1988). We present a simplified version of the Fiat–Shamir scheme

below.

Setup:

(1) A trusted third party Trent publishes a large public modulus n = pq

keeping the primes p and q secret.

(2) Peggy secretly selects a random 1 ≤ s ≤ n − 1 and computes

v = s2 mod n and registers v with Trent as her public key.

11.6 The Fiat–Shamir identification scheme 247

Protocol: Repeat the following t times. Victor accepts Peggy’s proof of identity

iff all t rounds succeed.

(1) Peggy chooses a random ‘commitment’ 1 ≤ r ≤ n − 1. She then

computes the ‘witness’ x = r2 mod n and sends x to Victor.

(2) Victor chooses a random ‘challenge’ e ∈R {0, 1} and sends this to Peggy.

(3) Peggy computes the ‘response’ y = rse mod n and sends this to Victor.

(4) If y = 0 or y2 �= xve mod n then Victor rejects otherwise he accepts.

Clearly Peggy can identify herself since whichever challenge is issued by Victor

she can respond correctly.

But should Victor be convinced? A cheating prover, say Oscar, who does not

know Peggy’s secret key s could either send the witness r2 or r2v−1 to Victor in

step (1). In the former case Oscar can respond to the challenge ‘e = 0’ (with r)

but not ‘e = 1’. Similarly in the latter case Oscar can respond to the challenge

‘e = 1’ (with r) but not the challenge ‘e = 0’. In both cases if Oscar could

respond to both possible challenges then he could calculate Peggy’s private

key s and hence is able to compute square roots mod n. But as we saw in

Proposition 7.16 this is equivalent to being able to factor n.

Hence assuming that factoring is intractable a dishonest prover can fool

Victor with probability at most 1/2.

To see that this is a zero-knowledge proof consider the transcript of a single

round of the protocol (r2, e, rse), where 1 ≤ r ≤ n − 1 and e ∈R {0, 1} are both

random.

A forger could do the following. First he chooses e ∈R {0, 1}. If e = 0

then he chooses random 1 ≤ r ≤ n − 1 and computes y = r2 mod n. If e = 1

then he chooses random 1 ≤ r ≤ n − 1 and computes v−1 mod n and y =
r2v−1 mod n. Finally he forges the triple (y, e, r).

A more efficient variant of this scheme is the modified identification protocol

of Feige, Fiat and Shamir (1988).

Since the appearance of this scheme several others with the same objective

have been proposed: see the review of Burmester, Desmedt and Beth (1992)

and Chapter 10 of Menezes, van Oorschot and Vanstone (1996).

Exercise 11.5 Prove that in the Fiat–Shamir scheme, even if Peggy chooses

her secret value s from some strange probability distribution on Zn then

y = rs mod n will still be distributed uniformly at random in Zn provided

that so is r .

Exercise 11.6 a A cash machine uses the Fiat–Shamir scheme for customer

identification. It operates with a security threshold α, this is the probability

that a dishonest customer will successfully fool the machine. If a k-bit

248 11 Identification schemes

public modulus n is used how long does the identification procedure

take?

Problems

11.1h Let IP(m, r) be the class of languages with interactive proofs in which

on input x the verifier uses at most r (|x |) random bits and the total

number of messages exchanged is at most m(|x |).

(a) Prove that IP(0, poly) = co-RP.

(b) Prove that IP(2, 0) = NP. (Recall that the first message to be sent

comes from V .)

(c) Prove that IP(poly, log) = NP.

11.2 Prove that if L1 and L2 belong to IP then so does L1 ∩ L2.

11.3h Show that IP ⊆ PSPACE. (In fact IP = PSPACE.)

11.4h Consider the problem of selecting a permutation uniformly at random

from Sn . Prove that this can be done in time polynomial in n.

11.5 Show formally that GRAPH NON-ISOMORPHISM ∈ IP. (This is

another example of a language that belongs to IP but is not known

to belong to NP.)

11.6h We say that a language L has an interactive proof system with error

probability p if there exists a verifier V and prover P such that the

following hold.

(i) If x ∈ L then Pr[(V, P) accepts x] ≥ 1 − p.

(ii) If x �∈ L then for any (possibly malicious) prover P ′,

Pr[(V, P ′) accepts x] ≤ p.

Prove that the following statements are equivalent.

(a) There exists a constant 0 < ǫ < 1/2 such that L has an interactive

proof system with error probability ǫ.

(b) For every constant 0 < ǫ < 1/2, L has an interactive proof system

with error probability ǫ.

11.7a Consider the PZK proof for GRAPH ISOMORPHISM given in Example

11.8.

(a) Can P’s computations be done in polynomial time?

(b) Show that if P knows a single isomorphism between G1 and G2

then this is possible.

Further notes

The introduction and formalisation of the concept of an interactive proof is due

to Goldwasser, Micali and Rackoff (1989) but the ideas had been circulated in

11.6 The Fiat–Shamir identification scheme 249

an extended abstract presented at STOC 1985. The article by Johnson (1988)

in his NP-completeness column gives an interesting account of the state of

knowledge at that time and the relationship with Arthur–Merlin proof systems

which had been introduced by Babai (1985).

The concept of a zero-knowledge proof was also proposed first in the paper

of Goldwasser, Micali and Rackoff (1989). Zero-knowledge schemes for GI,

GNI and 3-COL were proposed by Goldreich, Micali and Wigderson (1991).

The zero-knowledge protocol for HAM CYCLE presented in Example 11.12

is attributed by Luby (1996) to M. Blum.

Coin-tossing over the telephone was proposed by Blum (1983).

The original authentication/signature scheme of Fiat and Shamir (1987) was

modified by Feige, Fiat and Shamir (1988). For an interesting account of the

difficulties arising in patenting this see Landau (1988).

The remarkable result that IP = PSPACE was proved by Shamir (1990) but

the real breakthrough came earlier that year when Lund, Fortnow, Karloff and

Nisan (1992) introduced the idea of using algebraic methods to show that hard

counting problems such as evaluating the permanent of a matrix, or counting

satisfying assignments to a CNF formula had interactive proofs. Hitherto it had

not even been known that co-NP ⊆ IP.

Appendix 1

Basic mathematical background

A1.1 Order notation

Let f : N → N and g : N → N be two functions. We say that f is of order

g and write f (n) = O(g(n)) iff there exist a, b ∈ R+ such that f (n) ≤ ag(n)

for every n ≥ b. Informally this means that f is bounded above by a constant

multiple of g for sufficiently large values of n.

For example if f (n) = n2 + 3n + 2 then f (n) = O(n2). Note that we also

have f (n) = O(n3), indeed f (n) = O(nk) for any k ≥ 2.

One important case is f (n) = O(1) which denotes the fact that f is bounded.

Manipulation of O-notation needs to be performed with care. In particular it

is not symmetric, in the sense that f (n) = O(g(n)) does not imply that g(n) =
O(f (n)). For example n = O(n2) but n2 �= O(n).

We write f (n) = �(g(n)) to denote g(n) = O(f (n)). If both f (n) =
O(g(n)) and f (n) = �(g(n)) then we write f (n) = �(g(n)).

A1.2 Inequalities

The following useful inequality holds for all x ∈ R

1 + x ≤ ex .

The factorial of an integer n ≥ 1 is simply

n! = n(n − 1)(n − 2) · · · 2 · 1.

For example 5! = 5 · 4 · 3 · 2 · 1 = 120. Note that 0! = 1 by definition.

The binomial coefficient
(

n

k

)

, ‘n choose k’, is the number of subsets of size

k, of a set of size n
(

n

k

)

=
n!

k!(n − k)!
.

For example
(

5
2

)

= 10.

250

A1.2 Inequalities 251

The following simple inequalities often prove useful (the first is essentially

Stirling’s formula)

√
2πn

(n

e

)n

≤ n! ≤
√

2πn
(n

e

)n

e1/12n

and
(n

k

)k

≤
(

n

k

)

<

(en

k

)k

.

Appendix 2

Graph theory definitions

A graph, G = (V, E), consists of a set V of vertices and a set E of unordered

pairs of vertices called edges.

A clique in G = (V, E) is a subset W ⊆ V such that any pair of vertices in

W forms an edge in E . A clique is said to have order k ≥ 1 if |W | = k.

An independent set of vertices in a graph G = (V, E) is a subset W ⊆ V

such that W does not contain any edges from E .

A k-colouring of a graph G = (V, E) is c : V → {1, 2, . . . , k} satisfying

{v, w} ∈ E =⇒ c(v) �= c(w).

A graph G is said to be k-colourable if there exists a k-colouring of G.

A graph G = (V, E) is bipartite if there is a partition of V = W1 ∪̇ W2 such

that every edge in E joins a vertex of W1 to a vertex of W2.

A path in a graph G = (V, E) is a collection of distinct vertices {v1, v2, . . . ,

vt } such that {vi , vi+1} ∈ E for 1 ≤ i ≤ t − 1. If we also have {v1, vt } ∈ E then

this is a cycle.

A path (respectively cycle) containing all of the vertices of a graph is called

a Hamilton path (respectively Hamilton cycle). If a graph contains a Hamilton

cycle then it is said to be Hamiltonian.

Two graphs G = (VG, EG) and H = (VH , EH) are said to be isomorphic iff

there is a bijection f : VG → VH such that

{ f (v), f (w)} ∈ EH ⇐⇒ {v, w} ∈ EG .

In some situations we will require graphs that have directed edges. A directed

graph or digraph is G = (V, E) where V is a set of vertices and E is a set of

ordered pairs of vertices called directed edges. A directed path joining vertices

v, w ∈ V is a collection of distinct vertices {v1, . . . , vt } such thatv1 = v,vt = w

and for 1 ≤ i ≤ t − 1 there is a directed edge (vi , vi + 1) ∈ E .

252

Appendix 3

Algebra and number theory

A3.1 Polynomials

We denote the set of polynomials in k variables with integer coefficients by

Z[x1, x2, . . . , xk]. For example

f (x1, x2, x3) = 2x1x2 + 2x7
2 x4

3 + 3x1x2x5
3 + 6.

A monomial is a single term polynomial, for example

g(x1, x2) = 3x3
1 x8

2 .

The degree of a monomial is the sum of the powers of the variables. So the

degree of g(x1, x2) given above is 3 + 8 = 11. The degree of a polynomial is

the maximum degree of the monomials occuring in the polynomial. For example

the degree of f (x1, x2, x3) given above is max{2, 11, 7, 0} = 11.

A3.2 Groups

A group is a pair (G, ·), where G is a set and · is a binary operation on G,

satisfying the following conditions:

(i) if g, h ∈ G then g · h ∈ G;

(ii) if g, h, k ∈ G then g · (h · k) = (g · h) · k;

(iii) there exists 1G ∈ G such that for every g ∈ G, g · 1G = g = 1G · g;

(iv) for each g ∈ G there exists g−1 ∈ G such that g · g−1 = 1G = g−1 · g.

If (G, ·) is a group then H ⊆ G is a subgroup of G if H forms a group under the

binary operation of G. In particular, H ⊆ G is a subgroup of G iff it satisfies

the following conditions:

(i) if g, h ∈ H then g · h ∈ H ;

(iii) 1G ∈ H ;

(iv) if h ∈ H then h−1 ∈ H .

253

254 Appendix 3 Algebra and number theory

The order of a group G is the number of elements in G and is denoted by

|G|.

One important example of a group that we will use is Sn the symmetric group

of order n. This is the group of all permutations on a set of n elements, with

composition as the binary operation.

The order of an element g in the group (G, ·) is defined by

ord(g) = min{k ≥ 1 | gk = 1G}.

The subgroup generated by an element g ∈ G is

〈g〉 = {gi | 1 ≤ i ≤ ord(g)}.

One of the most important results in group theory is Lagrange’s theorem.

Theorem A3.1 (Lagrange) If H is a subgroup of G then |H | divides |G|

exactly.

One important corollary we will use is the following.

Corollary A3.2 If H is a proper subgroup of a group G then |H | ≤ |G|/2.

The following result is a special case of Lagrange’s theorem.

Corollary A3.3 If G is a group and g ∈ G then ord(g) divides |G| exactly.

A3.3 Number theory

An integer d is a divisor of an integer n iff there is an integer c such that n = cd.

We denote this by d|n and say that d divides n. If d|n and d �= n then d is a

proper divisor of n. If d|n and d �= 1 then d is a non-trivial divisor of n.

If an integer n ≥ 2 has no proper, non-trivial divisors then n is prime, other-

wise n is composite.

Locally the distribution of primes among the natural numbers seems essen-

tially random. However, the following theorem, a highlight of nineteenth cen-

tury mathematics, gives the asymptotic density of the primes.

Theorem A3.4 (Prime Number Theorem) If π (n) denotes the number of

primes less than or equal to n then

lim
n→∞

π (n) ln n

n
= 1.

The greatest common divisor of two integers m and n is

gcd(m, n) = max{d | d is a divisor of m and n}.

The integers m and n are said to be coprime iff gcd(m, n) = 1.

A3.3 Number theory 255

Two integers a and b are said to be congruent modulo an integer n iff n|a − b.

We denote this by a = b mod n.

If n is a positive integer then the set of residues mod n is

Zn = {a | 0 ≤ a ≤ n − 1}.

This is a group under addition mod n with identity 0. The set of non-zero

residues mod n is

Z+
n = {a | 1 ≤ a ≤ n − 1}.

Theorem A3.5 (Chinese Remainder Theorem) If n1, n2, . . . , nk are pairwise

coprime (that is gcd(ni , n j) = 1 for i �= j), and N =
∏k

i=1 ni then the following

system of congruences has a unique solution mod N

x = a1 mod n1

x = a2 mod n2

...

x = ak mod nk .

Moreover, writing Ni = N/ni and using Euclid’s algorithm to find b1, . . . , bk

such that bi Ni = 1 mod ni , the solution is given by

x =

k
∑

i=1

bi Ni ai mod N .

The set of units mod n is

Z∗
n = {a | 1 ≤ a ≤ n − 1 and gcd(a, n) = 1}.

This is a group under multiplication mod n with identity 1.

If p is prime then Zp is a field.

The Euler totient function is φ : N → N defined by φ(n) = |Z∗
n|. In particular

if n = p is prime then φ(p) = p − 1.

If g ∈ Z∗
n then the order of g is

ord(g) = min{k ≥ 1 | gk = 1 mod n}.

We have the following simple result.

Proposition A3.6 If g ∈ Z∗
n and gk = 1 mod n then ord(g)|k.

The following is a special case of Corollary A3.3.

Theorem A3.7 If g ∈ Z∗
n then ord(g)|φ(n).

If g ∈ Z∗
n satisfies

{

g, g2, . . . , gφ(n)
}

= Z∗
n

then g is a primitive root mod n.

256 Appendix 3 Algebra and number theory

Theorem A3.8 If k ≥ 1 and n is of the form 2, 4, pk or 2pk , where p is an odd

prime, then there exists a primitive root mod n.

Theorem A3.9 If p is prime then there exist φ(p − 1) distinct primitive roots

mod p.

Theorem A3.10 (Euler’s Theorem) If n ∈ N and a ∈ Z∗
n then

aφ(n) = 1 mod n.

The special case of this theorem when n = p is prime is of particular importance.

Theorem A3.11 (Fermat’s Little Theorem) If p is prime and a ∈ Z∗
p then

a p−1 = 1 mod p.

A related result (which can be used to prove Fermat’s Little Theorem) is the

following.

Theorem A3.12 (Wilson’s Theorem) If p is prime then

(p − 1)! = −1 mod p.

A residue y ∈ Z∗
n is a quadratic residue mod n iff there exists x ∈ Z∗

n such that

x2 = y mod n. Otherwise y ∈ Z∗
n is said to be a quadratic non-residue mod n.

We denote the set of quadratic residues mod n by Qn .

Theorem A3.13 (Euler’s Criterion) If p is an odd prime and y ∈ Z∗
p then y

is a quadratic residue mod p iff y(p−1)/2 = 1 mod p.

If p is prime we define the Legendre symbol of b ∈ Z∗
p by

(

b

p

)

=

{

1, if b is a quadratic residue mod p,

−1, otherwise.

Theorem A3.14 If p is a prime and a, b ∈ Z∗
p then ab is a quadratic residue

mod p iff a and b are both quadratic residues mod p or a and b are both

quadratic non-residues mod p. Equivalently we have
(

ab

p

)

=

(

a

p

) (

b

p

)

.

Appendix 4

Probability theory

In this text we will be using only the basic notions of discrete probability theory.

The sample space �, which is the set of all possible outcomes, is restricted

to being a countable set. The collections of events F can be taken to be all

subsets of � and an event A occurs if the outcome ω belongs to the set A.

For example the sample space of throwing a die would be {1, 2, 3, 4, 5, 6}

and a possible event could be A = {1, 3, 5}, the event that the die lands with an

odd number face up.

Two events A and B are disjoint if A ∩ B = ∅. The probability (measure)

Pr is a function from F to [0, 1] satisfying the following conditions.

(P1) For any event A, 0 ≤ Pr[A] ≤ 1.

(P2) Pr[�] = 1.

(P3) For any countable family of pairwise disjoint events {Ai | 1 ≤ i < ∞}

we have

Pr

[

∞
⋃

i=1

Ai

]

=

∞
∑

i=1

Pr[Ai].

The triple (�,F, Pr) is called a probability space and it is easy to deduce the

following consequences of the three axioms.

For any event A

Pr[�\A] = 1 − Pr[A].

For any two events A, B

Pr[A ∩ B] + Pr[A ∪ B] = Pr[A] + Pr[B].

A key concept is the conditional probability of an event A, given the occurrence

of an event B. This is denoted by Pr[A | B] and only defined for Pr[B] > 0

when

Pr[A | B] =
Pr[A ∩ B]

Pr[B]
.

257

258 Appendix 4 Probability theory

A simple result concerning conditional probabilities that we will require is

Bayes’ Theorem.

Theorem A4.1 If A, B are events satisfying Pr[A] > 0 and Pr[B] > 0 then

Pr[A | B] Pr[B] = Pr[B | A] Pr[A].

Two events A and B are independent if

Pr[A ∩ B] = Pr[A] Pr[B].

Whenever Pr[B] �= 0 this is equivalent to the natural condition; A, B are inde-

pendent iff

Pr[A | B] = Pr[A].

More generally {Ai | i ∈ I } are mutually independent iff

Pr

[

⋂

i∈I

Ai

]

=
∏

i∈I

Pr[Ai].

A frequently used result, known as the partition theorem, allows complex events

to be broken up into simpler sub-events.

Theorem A4.2 If the events {Bi | 1 ≤ i < ∞} form a partition of �, that is

the Bi are pairwise disjoint and their union is �, then for any event A

Pr[A] =

∞
∑

i=1

Pr[A | Bi] Pr[Bi],

where we assume that if any Pr[Bi] = 0 then so is the corresponding term in

the sum.

A (discrete) random variable on (�,F, Pr) is a function X : � → R which

takes only countably many distinct values.

Two random variables X, Y on � are independent if for all x, y in their

range

Pr[(X (ω) = x) ∩ (Y (ω) = y)] = Pr[X (ω) = x] Pr[Y (ω) = y].

If {xi | i ∈ I } denotes the set of values taken by X then the expectation of X is

defined by

E[X] =
∑

i∈I

xi Pr[X = xi].

More generally, for any function g : R → R we have

E[g(X)] =
∑

i∈I

g(xi) Pr[X = xi].

Appendix 4 Probability theory 259

The variance of X , var[X], is given by

var[X] = E[X2] − (E[X])2.

It is easy to check that for all a, b ∈ R we have

E[aX + bY] = aE[X] + bE[Y]

and

var[aX + b] = a2var[X].

When X, Y are independent we also have

E[XY] = E[X]E[Y]

and

var[X + Y] = var[X] + var[Y].

Three particular families of random variables occur frequently in the text.

The random variable X is uniformly distributed over a finite set S if for each

s ∈ S

Pr[X (ω) = s] =
1

|S|
.

The random variable X has the geometric distribution with parameter p, if it

takes only values in N and for any integer k ∈ N we have

Pr[X (ω) = k] = (1 − p)k−1 p.

Thus X is the number of independent trials of an experiment with success

probability p, up to and including the first success. It is useful to note that when

X is geometric with parameter p then

E[X] =
1

p
and var[X] =

(1 − p)

p2
.

Thus if an experiment (or algorithm) has success probability p and we repeat

it until it is successful (the repetitions being independent) then the expected

number of trials is 1/p.

The random variable X has the binomial distribution with parameters n and

p, if it takes only integer values 0, 1, . . . , n and for any integer 0 ≤ k ≤ n we

have

Pr[X (ω) = k] =

(

n

k

)

pk(1 − p)n−k .

Thus X is the number of successes in n independent trials, each of which has

success probability p.

260 Appendix 4 Probability theory

It is useful to note that when X is binomial with parameters n, p then

E[X] = np and var[X] = np(1 − p).

The following are two fundamental inequalities.

Proposition A4.3 (Markov’s Inequality) If X is a random variable satisfying

X ≥ 0 and t > 0 then

Pr[X ≥ t] ≤
E[X]

t
.

Proposition A4.4 (Chebyshev’s Inequality) If X is a random variable, E[X2]

exists and t > 0 then

Pr[|X | ≥ t] ≤
E[X2]

t2
,

or equivalently, if E[X] = µ then

Pr[|X − µ| ≥ t] ≤
var[X]

t2
.

Of course this inequality is only useful when E[X2] is finite.

Appendix 5

Hints to selected exercises and problems

Chapter 2

Exercises

2.2 Copy the string symbol by symbol, keeping track of which ones have

already been copied.

2.3 Leave x1 fixed and copy x2 to its left. Use the symbol ‘2’ as a marker.

2.4 (i) (a) ⇐⇒ (b). A partition V = U ∪̇ W , with no edges in U or W is a

2-colouring. (b) ⇐⇒ (c). Can you 2-colour an odd length cycle? (ii)

Consider 2-colouring each connected component of G. Show that if you

ever run into problems then G contains an odd length cycle.

2.5 Use a breadth-first search to find a directed path from v to w. Start

from v, find all its neighbours, then find all the neighbours of these

neighbours. Continue until you reach w or there are no new

neighbours.

2.6 First find an integer k satisfying 2kb ≤ a < 2k+1b.

Problems

2.2 Check that the two ends of the string agree and delete both symbols.

Continue until the string is empty or consists of a single symbol.

2.3 Subtract a from b repeatedly.

2.4 Copy b from the first tape onto the second tape (in time O(log b)). Then

perform ordinary multiplication adding the answer up on the third tape.

2.7 Apply Euclid’s algorithm to a and n and then ‘work backwards’.

2.8 Consider an approach using ‘divide and conquer’. Check if (n/2)2 ≥ n, if

this is true then sqrt(n) ∈ {0, . . . , ⌊n/2⌋} otherwise

sqrt(n) ∈ {⌊n/2⌋, . . . , n}. Repeat this procedure, approximately halving

the size of the search space at each stage. Show that this gives a

polynomial time algorithm.

261

262 Appendix 5 Hints to selected exercises and problems

c

a b

Fig. A5.1 The graph H .

2.10 In the first case use Mn = 4Mn/2 = 16Mn/4 . . . to show that

Mn = O(n2). With Karatsuba’s method use Mn = 3Mn/2 = 9Mn/4 . . .

to show that Mn = O(3log n) = O(nlog 3).

2.11 Consider the proof of Theorem 2.18.

Chapter 3

Exercises

3.3 First compute the reduction from A to B, then use the certificate for

f (x) ∈ B.

3.4 If the reductions are f and g then x ∈ A ⇐⇒ f (x) ∈ B ⇐⇒ g(f (x)) ∈

C . Moreover if f, g ∈ FP then g ◦ f ∈ FP.

3.6 Computing #S AT allows us to decide SAT.

Problems

3.1 There exists a partition of A into sets with equal sums iff there is a

subset of A whose sum is equal to half the total sum of A.

3.2 You can use the same function for both reductions.

3.3 First check whether f (x1, x2, . . . , xn) is satisfiable, then check whether

f (1, x2, . . . , xn) is satisfiable and continue in this way until a satisfying

truth assignment is found.

3.4 Give a reduction from 3-COL and use the fact that 3-COL is

NP-complete. (Given a graph G consider adding a new vertex that is

joined to all of the other vertices of G. When is this new graph

4-colourable?)

3.5 Give a reduction from CLIQUE.

3.6 Show that 3-COL ≤m 3-COL MAX DEGREE 4. Consider the graph H

given in Figure A5.1. It has maximum degree 4 and is 3-colourable.

Moreover in any 3-colouring of H the vertices a, b, c all receive the

Appendix 5 Hints to selected exercises and problems 263

same colour. Given a general graph G replace each vertex by a copy

of H .

3.9 An algorithm simply checking for the presence of cliques of

order 1, 2, . . . n, could clearly be implemented in polynomial

space.

3.10 Show that HAMILTON CYCLE ≤T TRAVELLING SALESMAN.

3.11 If you can calculate χ (G) then you can decide if G is

3-colourable.

3.12 Think of solving A using a subroutine for B which in turn uses a

subroutine for C .

3.13 Any two NP-complete languages are polynomially reducible to each

other.

3.14 Ac is polynomially reducible to B.

Chapter 4

Exercises

4.1 Repeat the ordinary RP algorithm p(n) times and accept iff it ever

accepts. This gives a probabilistic polynomial time algorithm with the

desired properties.

4.5 Show that if B ∈ P/poly and A ≤m B then A ∈ P/poly.

4.6 Consider the size of the truth table of any Boolean function

f (x1, . . . , xn).

Problems

4.5 Consider the ‘distance’ d(a, b) between a = (a1, . . . , an) and some fixed

satisfying assignment b = (b1, . . . , bn), that is d(a, b) = #{i | ai
= bi }.

This is bounded above by n. Our algorithm performs a random walk in

which d(a, b) changes by ±1 on each iteration.

4.6 Use a ‘majority vote’ machine as in the proof of Proposition 4.14.

4.7 (a) Use the formal definition of the determinant of an n × n

matrix

det(A) =
∑

σ∈Sn

sign(σ)a1,σ (1)a2,σ (2) · · · an,σ (n).

(b) Use the fact that NON-ZERO POLY DET ∈ RP.

4.10 Consider the proof of Theorem 4.18 and the fact that x1 ⊕ · · · ⊕ xn has

2n−1 distinct satisfying truth assignments.

4.11 First note that T2(x1, x2) can be computed by a single AND gate. Now,

for n = 2k even, first compute (x1 ∧ x2), (x3 ∧ x4), . . . , (xn−1 ∧ xn) and

(x1 ∨ x2), (x3 ∨ x4), . . . , (xn−1 ∨ xn). Now write a = (x1, . . . , xn−2) and

264 Appendix 5 Hints to selected exercises and problems

use the fact that

T1(a) = (x1 ∨ x2) ∨ (x3 ∨ x4) ∨ · · · ∨ (xn−3 ∨ xn−2)

and

T2(x1, . . . , xn) = T2(a) ∨ (xn−1 ∧ xn) ∨ (T1(a) ∧ (xn−1 ∨ xn)).

Chapter 5

Exercises

5.3 Use Theorem 5.8.

5.4 Use Theorem 5.8.

Problems

5.1 Consider the distances between occurrences of the character U.

5.7 Consider how you might construct a non-singular m × m matrix over

Z2, row by row. There are 2m − 1 choices for the first row, then 2m − 2

choices for the second row. How many choices are there for the next

row?

5.10 The outputs of At , Bt , Ct are each equally likely to be 0 or 1.

5.12 (i) Consider decrypting C once with DES and encrypting M once

with DES. If you use K2 to do the former and K1 to do the latter

then they should give you the same answer. (ii) Use the same

idea again.

5.13 Eve can ask for encryptions of a message M and its complement

M .

Chapter 6

Exercises

6.2 Assume, for a contradiction, that there is a positive polynomial q(·) such

that the probability of at least one success when E is repeated q(k) times

is not negligible. Then use Exercise 6.1 to show that the success

probability of E could not have been negligible.

Problems

6.2 Use the fact that dlog(p, g, h) is easy to compute.

6.3 Mimic the proof of Proposition 6.3.

6.5 Consider performing trial division on the product n = ab, for values

d = 2, 3, 5, 7, 11.

6.6 Recall Proposition 3.16.

6.7 Use a ‘divide and conquer’ algorithm to find the factors of n.

6.8 See the proof of Theorem 6.6 for the basic idea.

Appendix 5 Hints to selected exercises and problems 265

6.9 Show that if FACTOR ∈ BPP then the Factoring Assumption cannot

hold. Similarly show that if BDLOG ∈ BPP then the Discrete

Logarithm Assumption cannot hold.

Chapter 7

Exercises

7.3 (a) Recall Pratt’s Theorem (Theorem 3.17). (b) Appendix 3, Theorem

A3.9 tells us that for any prime p the number of distinct primitive roots

mod p is φ(p − 1).

7.4 The primes p and q are ‘close’.

7.5 Use the Chinese Remainder Theorem.

7.8 Find ai such that ai ≤ t < ai+1. Now, since the sequence a1, . . . , an is

super-increasing, if there exists a subset S whose sum is equal to t then

ai ∈ S. Replace t by t − ai and repeat.

Problems

7.2 Prove first that if m, n are coprime then φ(mn) = φ(m)φ(n). Then prove

that φ(pk) = pk − pk−1.

7.3 Use Euler’s Criterion Appendix 3, Theorem A3.13.

7.4 Given φ(n) you can find p by solving a quadratic equation.

7.5 Show first that if p and q have the same bit length then p + q < 3n1/2

and φ(n) > n/2. We know that ed − 1 = kφ(n) so if we can find k then

we can obtain φ(n) and hence, by the previous problem, find p and q .

To find k set k̂ = (ed − 1)/n, then show that 0 < k − k̂ < 6(ed − 1)/

n3/2. Thus k is equal to one of the six values given by i + ⌈(ed − 1)/n⌉,

0 ≤ i ≤ 5.

7.8 Show that if e is Bob’s public exponent and e′ is the corrupted public

exponent, formed from e by flipping a single bit, then gcd(e, e′) = 1 and

hence the attack described in Proposition 7.14 can be used to recover the

message.

7.9 Use the fact that the number of solutions mod p to the equation

xk = 1 mod p is gcd(k, p − 1), together with the Chinese Remainder

Theorem.

7.10 If the two cryptograms are C1 = e(M) and C2 = e(M + 1) then

consider (C2 + 2C1 − 1)/(C2 − C1 + 2).

7.11 Consider the case that Alice and Bob’s public keys are coprime first. Use

the Chinese Remainder Theorem.

7.12 This is vulnerable to the same attack as the previous problem.

7.14 For any prime p consider

Q p = (22 ·3·5 · · · p) − 1,

where the product is over all primes less than or equal to p. Show that

Q p has a Blum prime factor that is greater than or equal to p.

266 Appendix 5 Hints to selected exercises and problems

Chapter 8

Exercises

8.4 (b) Take N = 2t , k = n and let pi denote the probability that a random

message M ∈ {0, 1}m satisfies h(M) = yi , where the set of all possible

hash values is {0, 1}t = {y1, y2, . . . , yN }.

Problems

8.3 Only quadratic residues mod n can be signed. To break this scheme use

Proposition 7.16.

8.5 Given the global public key (p, q, g) together with Alice’s public key

yA = gxA mod q , Fred chooses random 1 < a, b < q and forms

S1 = (ga yb
A mod p) mod q and S2 = S1b−1 mod q . You can check that

(S1, S2) is a valid DSA signature for the message M = aS2 mod q .

8.7 If Eve chooses M ∈R {0, 1}m and computes h(M) then, since t ≤ m − 1,

on average h(M) will have at least two preimages and so using the

polynomial time inverting algorithm Eve finds a different message

M ′
= M such that h(M) = h(M ′) with probability at least 1/2. Hence

she expects to find a collision after at most two attempts.

8.8 Note that N (h) =
∑

y∈H

(

sy

2

)

and that
∑

y∈H sy = |M|. Finally note that

if
∑

i xi is fixed then
∑

i x2
i is minimised when the xi are all equal.

8.9 Calculate the probability that all the birthdays are different (mimic the

proof of Theorem 8.10).

Chapter 9

Problems

9.7 Use Euler’s Criterion (Appendix 3, Theorem A3.13) that b(p−1)/2 =

1 mod p iff b is a quadratic residue mod p. Then K AB = gab is a

quadratic residue mod p iff either yA or yB is a quadratic residue mod p.

9.8 Recall the proof of Pratt’s Theorem (Theorem 3.17).

9.9 Choosing elements of a ∈R Z∗
p we expect to find a primitive root after

O(ln ln(p − 1)) attempts. Given the factorisation of p − 1 we can use

the algorithm given in the proof of Theorem 3.17 to verify that any given

a ∈ Z∗
p is a primitive root in polynomial time.

Chapter 10

Problems

10.1 (a) Show that if x ∈R {0, 1}k and y ∈R {0, 1}l(k) then

Pr[T (G(x)) = 1] − Pr[T (y) = 1] ≥ 1/2.

10.2 Consider pairs of bits in this sequence. Ignore 00 and 11 and consider

the probability of 01 and 10.

Appendix 5 Hints to selected exercises and problems 267

10.3 Consider the set of states.

10.4 Use Euler’s Criterion together with Appendix 3, Theorem A3.14.

10.5 Since x2 = n mod n, so n4k+2 = n(p−1)/2 = 1 mod p. Thus n2k+1 =

±1 mod p. If n2k+1 = 1 mod p then x = n(p+3)/8 mod p is a solution. If

n2k+1 = −1 mod p use Wilson’s Theorem (Appendix 3, Theorem

A3.12) that (p − 1)! = −1 mod p. Show that ((p − 1)/2)! is a square

root of −1 mod p and set x = n(p+3)/8((p − 1)/2)! mod p.

10.6 Show that any inverting algorithm for g(x, r) = (f (x), r) will also invert

f (x), contradicting the fact that f is one-way.

10.7 Show that the pseudorandom generator is itself a one-way function.

Chapter 11

Problems

11.1 (a) This follows directly from the definitions. (b) For NP ⊆ IP(2, 0) note

that the prover can simply provide a certificate y which V then checks

with his NP polynomial time checking algorithm. Conversely if

L ∈ IP(2, 0) then V uses no random bits so the soundness condition tells

us that V never accepts x
∈ L . Hence P provides certificates which can

be checked by V in deterministic polynomial time and so L ∈ NP. (c)

Using part (b) NP ⊆ IP(2, 0) ⊆ IP(poly, log). Conversely if V uses log n

random bits then we can simulate V deterministically since the total

number of different random strings of length log n is 2log n = n. Hence

we may suppose that L ∈ IP(poly, 0) so now the soundness conditions

tells us that V never accepts x
∈ L . Taking all the messages of P

together now gives a polynomial length certificate, showing that L ∈ NP.

11.3 Only polynomially many messages of polynomial length are exchanged.

11.4 First choose r1 uniformly at random from 1, . . . , n and map 1 → r1.

Now remove r1 from the set and repeat on a set of size n − 1.

11.6 (b) implies (a) is trivial. For the converse use the fact that given an

interactive proof system with error probability 0 < ǫ < 1/2 we can

obtain one with error probability 0 < δ < ǫ < 1/2 by using a ‘majority

vote’ machine (as in the proof of Proposition 4.14).

Appendix 6

Answers to selected exercises and problems

Chapter 2

Exercises

2.1 The standard algorithms need respectively (i) O(n) integer additions and

left shifts (see Algorithm 2.11); (ii) O(n3) integer multiplications and

additions (O(n) for each of the n2 entries); (iii) O(n3) integer

multiplications and additions using Gaussian elimination; (iv) the

simplest algorithm requires O(n2) integer comparisons (O(n log n)

algorithms exist).

2.2 The tape alphabet is � = {0, 1, ∗} and the set of states is

Ŵ = {γ0, γ1, . . . , γ6}. The starting state is γ0 and the only halting state is

γ6. The machine halts if it encounters a state/symbol combination for

which it does not have a rule.

(γ0, 1, γ1, 1, →) # leave first one alone

(γ0, ∗, γ6, ∗, →) # blank input – halt

(γ1, 1, γ1, 0, →) # flip other ones to zeros

(γ1, ∗, γ2, ∗, →) # found end of first string

(γ2, 1, γ2, 1, →) # move to end of second string

(γ2, ∗, γ3, 1, ←) # found end of second string append one

(γ3, 1, γ3, 1, ←) # back to beginning of second string

(γ3, ∗, γ4, ∗, ←) # found beginning of second string

(γ4, 0, γ5, 1, →) # found zero – flip it back to a one

(γ4, 1, γ4, 1, ←) # looking for another zero

(γ4, ∗, γ6, ∗, →) # finished

(γ5, 1, γ5, 1, →) # move to end of first string

(γ5, ∗, γ2, ∗, →) # found end of first string

This machine has time complexity 2n2 + 2n + 2 = O(n2) for n ≥ 1.

2.3 The tape alphabet is � = {0, 1, 2, ∗} and the set of states is

Ŵ = {γ0, γ1, . . . , γ6}. The starting state is γ0 and the only halting state is

γ6. As always the machine halts if it encounters a state/symbol

268

Appendix 6 Answers to selected exercises and problems 269

combination for which it does not have a rule.

(γ0, 0/1, γ1, same, →) # leave first one alone

(γ0, ∗, γ6, ∗, →) # blank input – halt

(γ1, 0, γ2, 2, ←) # remember zero to copy leave marker

(γ1, 1, γ3, 2, ←) # remember one to copy leave marker

(γ1, 2, γ1, 2, →) # find next symbol

(γ1, ∗, γ5, ∗, ←) # finished delete markers

(γ2/γ3, 0/1/2, same, same, ←) # move to beginning of reversed string

(γ2, ∗, γ4, 0, →) # append zero to string

(γ3, ∗, γ4, 1, →) # append one to string

(γ4, 0/1/∗, γ4, same, →) # find next symbol to copy

(γ4, 2, γ1, 2, →) # found first marker

(γ5, 2, γ5, ∗, ←) # deleting markers

(γ5, 0/1, γ6, same, ←) # finished

This machine has time complexity 2n2 + 1 = O(n2) on an input of length

n ≥ 0.

2.6 If a < b output 0. Otherwise set c ← 0 then find k = ⌊log a/b⌋ (check

successive values of k to find the one that satisfies 2kb ≤ a < 2k+1b).

Then set a ← a − 2kb and c ← c + 2k . Now repeat with the new values

of a and c. Stop once a < b and then output c. In one iteration we reduce

a by a factor of at least two and we need to check at most log a possible

values to find k. Hence this algorithm takes time O(n2) when a is an n-bit

integer. Thus div ∈ FP.

Problems

2.2 The tape alphabet is � = {0, 1, ∗} and the set of states is

Ŵ = {γ0, γ1, . . . , γ5, γT, γF}, γ0 is the start state; γT is the accept state and

γF is the reject state. If the machine ever encounters a state/symbol

combination that it does not have a rule for then it rejects.

(γ0, 1, γ1, ∗, →) # found 1, erase it and store as state γ1

(γ0, 0, γ2, ∗, →) # found 0, erase it and store as state γ2

(γ0, ∗, γT, ∗, →) # empty string – accept (even length

input)

(γ1/γ2, 0/1, same, same, →) # go right (looking for end of string)

(γ1, ∗, γ3, ∗, ←) # end of string found, now looking for a

matching 1

(γ2, ∗, γ4, ∗, ←) # end of string found, now looking for

matching 0

(γ3, 1, γ5, ∗, ←) # found matching 1, erase it and restart

(γ4, 0, γ5, ∗, ←) # found matching 0, erase it and restart

(γ3/γ4, ∗, γT, ∗, ←) # empty string – accept (odd length input)

(γ5, 0/1, γ5, same, ←) # keep going back to start

(γ5, ∗, γ0, ∗, →) # beginning of string found, start again.

270 Appendix 6 Answers to selected exercises and problems

(a) This DTM has time complexity (n + 1)(n + 2)/2 = O(n2) for any

input of size n ≥ 0.

(b) This machine has space complexity n + 2 = O(n).

(c) There is an obvious lower bound for the time-complexity of a DTM

accepting L P AL on an input of length n. In order to recognise that a

string is a palindrome the whole string must be examined hence the

running time must be at least n. (In fact any single tape DTM

accepting L P AL must have time-complexity �(n2).)

2.3 The tape alphabet is � = {0, 1, ∗} and the set of states is

Ŵ = {γ0, γ1, . . . , γ7, γT, γF}, γ0 is the start state; γT is the accept state and

γF is the reject state. If the machine ever encounters a state/symbol

combination for which it does not have a rule then it rejects. The input is

a, b in unary, with a blank square separating a and b and the read–write

head initially scanning the leftmost one.

(γ0, ∗, γ1, ∗, →), (γ0, 1, γ0, 1, →), (γ1, ∗, γT, ∗, ←), (γ1, 1, γ2, 1, ←),

(γ1, 0, γ1, 0, →), (γ2, ∗, γ3, ∗, ←), (γ2, 1, γ2, 1, ←), (γ2, 0, γ2, 0, ←),

(γ3, ∗, γ7, ∗, →), (γ3, 1, γ4, 0, →), (γ3, 0, γ3, 0, ←), (γ4, ∗, γ5, ∗, →),

(γ4, 0/1, γ4, same, →), (γ5, ∗, γF, ∗, ←), (γ5, 1, γ6, 0, ←),

(γ5, 0, γ5, 0, →), (γ6, ∗, γ3, ∗, ←), (γ6, 0/1, γ6, same, ←),

(γ7, ∗, γ1, ∗, →), (γ7, 0, γ7, 1, →), (γ7, 1, γ7, 1, →).

2.4 The obvious 3-tape DTM for performing multiplication of binary integers

will have time complexity O(n2) when given two n-bit integers: for each

bit of b that is equal to 1 we need to add a suitably shifted copy of a onto

the answer, so for each bit of b the machine takes O(n) steps.

2.5 Take an algorithm for COMPOSITE. This gives an algorithm for PRIME

by simply negating its answer.

2.6 Accept f (x1, . . . , xn) iff there is a clause (Ck) such that for no variable xi

both xi and x i appear in Ck .

2.7 Apply Euclid’s algorithm to a, n. Once we have found gcd(a, n) = 1

work backwards to find h, k ∈ Z such that ka + kn = 1. Then

ka = 1 mod n so k is the inverse of a mod n. Since Euclid’s algorithm

takes O(log n) division steps, each of which can be performed in

polynomial time, this yields a polynomial time algorithm for calculating

the inverse of a mod n. (In fact its running time will be O(log3 n).) For

a = 10 and n = 27 we have: 27 = 2 × 10 + 7, 10 = 7 + 3,

7 = 2 × 3 + 1. Thus 1 = 7 − 2 × 3 = 3 × 7 − 2 × 10 = 3 × 27 −
8 × 10. Hence the inverse of 10 mod 27 is −8 = 19 mod 27.

2.9 (a) At each division step of Euclid’s algorithm we obtain a new Fibonacci

number. Starting with Fn we end with F2 thus there are n − 1 division

steps. (b) Solving the difference equation for Fn gives

Fn =
1

√
5





(

1 +
√

5

2

)n+1

−

(

1 −
√

5

2

)n+1


 .

Appendix 6 Answers to selected exercises and problems 271

Thus Fn ≤ 2n . (c) Given input a = Fn and b = Fn−1 the number of

division steps performed by Euclid’s algorithm is n − 1 (from part (a)),

moreover since Fn−1 < Fn ≤ 2n this gives a lower bound on the number

of division steps performed when given two n-bit integers.

2.11 |Ŵ|S(n)|�|S(n).

2.12 The machine described in the solution to Problem 2.2 decides L P AL and

uses no ink.

Chapter 3

Exercises

3.1 (i) A subset S ⊆ A with sum equal to t . (ii) A subset S ⊆ A whose sum

is divisible by three. (iii) An isomorphism φ : G → H . (iv) An ordering

of the vertices of G that forms a Hamilton cycle. Of these only (ii) is

known to belong to P.

3.7 79 has certificate C(79) = {3, (2, 1), (3, 1), (13, 1), C(13), C(3)}, where

C(13) = {2, (2, 2), (3, 1), C(3)} and C(3) = {2, (2, 1)}.

Problems

3.7 It belongs to NP: a certificate is a pair of primes p, q such that

p + q = n (together with certificates for the primality of p and q).

Goldbach conjectured that such p and q exist for all even integers n. If

this is true then GOLDBACH belongs to P.

3.10 Given a graph G = (V, E) with vertex set {v1, v2, . . . , vn}, form the

following input to TRAVELLING SALESMAN. Take n cities

c1, . . . , cn , with distances between cities given by

d(ci , c j) =
{

1, if {vi , v j } ∈ E,

n2, otherwise.

Our algorithm for HAMILTON CYCLE simply asks an algorithm for

TRAVELLING SALESMAN for a shortest tour of these cities. If this

tour is of length less than n2 then it corresponds to a HAMILTON

CYCLE from the graph G, while if it is of length at least n2 then G

could not have been Hamiltonian. Thus, since HAMILTON CYCLE is

NP-complete, we know that TRAVELLING SALESMAN is NP-hard.

3.15 It is not known whether the containment is strict.

Chapter 4

Exercises

4.2 First it checks that gcd(5, 561) = 1. Then it computes 560 = 2435. Next

it computes 535 = 23 mod 561 and then 570 = 529 mod 561,

5140 = 463 mod 561, 5280 = 67 mod 561. Hence the algorithm outputs

‘composite’. (Which is correct since 561 = 3 × 187.)

272 Appendix 6 Answers to selected exercises and problems

4.3 Suppose that n = pk for some prime p and k ≥ 2. Use the fact

(Appendix 3, Theorem A3.8) that there exists a primitive root g mod pk .

Note that gcd(g, n) = 1 and so gn−1 = 1 mod n. Since g is a primitive

root mod pk this implies (using Appendix 3, Proposition A3.6) that

pk−1(p − 1) = φ(pk)|n − 1. Hence p|n − 1 and p|n, a contradiction.

Problems

4.1 Replacing 1/2 by 1/p(n) does not change the class RP.

4.2 (a) Yes. (b) Yes. (c) Not known.

4.3 (a) Yes to all. (b) Yes to all.

4.4 (a) Pr[Output is composite and not a Carmichael number] ≤ 1/2200,

thus Pr[Output is prime or Carmichael] ≥ 1 − 1/2200. (b) If the

algorithm outputs n then n is almost certainly a prime or a Carmichael

number. Hence we would expect it to try at least 2511/(P + C) values of

n. (c) Pr[n not prime] = Pr[n composite and not Carmichael] +
Pr[n Carmichael] ≤ 1/2200 + C/(P + C) ≃ 1/2200 + 1/2353 ≃ 1/2200.

Chapter 5

Exercises

5.1 NOTAGOODCHOICEOFKEY.

5.2 01010.

5.3 1 + x2 + x5.

5.4 (i) 5. (ii) 1 + x + x2 + x5 (in this case the next bit would be 0) or

1 + x + x3 + x4 + x5 (in this case the next bit would be 1).

5.5 00001000.

Problems

5.1 (i) The keyword length is 4. (ii) The keyword is BILL and the message

is TO BE OR NOT TO BE.

5.2 (ii) d2.

5.3 d(C, (K1, K2)) = d2(d1(C, K1), K2).

5.5 M1 ⊕ M2.

5.9 (i) 5. (ii) 1 + x2 + x4 + x5.

5.12 (i) For all 256 possible keys K compute DE SK (M). Similarly compute

DE S−1
K (C) for all 256 possible keys K . Now C = DE SK2

(DE SK1
(M))

so we have DE SK1
(M) = DE S−1

K2
(C). Thus we can find consistent keys

(K1, K2) by comparing our two lists for matches. The total number of

encryptions and decryptions required was 257. (ii) Use the same idea, but

this time we have DE SK2
(DE SK1

(M)) = DE S−1
K3

(C), so one of our list

consists of all 2112 ‘double encryptions’ of M and the other consists of

Appendix 6 Answers to selected exercises and problems 273

all 256 decryptions of C . Thus the number of encryptions and

decryptions performed is 2112 + 256 ≃ 2112.

5.13 First Eve chooses a message M and obtains encryptions of C1 = e(M)

and C2 = e(M). She then goes through all 256 keys a pair at a time (that

is she considers K together with K). For a key K she computes

E = DE SK (M) and checks whether E = C1 or E = C2. If the former

holds then K is a possible value for the key, while if the latter holds then

C2 = DE SK (M) = DE SK (M) so K is a possible value for the key.

This attack now requires 255 DES encryptions to recover the collection

of consistent keys, rather than 256, since Eve never needs to encrypt with

both a key and its complement.

Chapter 6

Exercises

6.4 r (k) = 1/2k , for k even, r (k) = 1/k, for k odd.

Problems

6.1 r (k) + s(k) and r (k)s(k) are also negligible but r (s(k)) need not be: if

r (k) = s(k) = 1/2k , then r (s(k)) = 2−2−k → 1 as k → ∞.

6.4 No.

6.5 The probability that a random k-bit integer is divisible by 2, 3, 5, 7 or 11

is approximately 61/77. Hence the probability that neither of two

independently chosen random k-bit integers are divisible by 2, 3, 5, 7, or

11 is at most (16/77)2 < 0.05. Hence with probability at least 0.95 the

trial division algorithm finds a factor of n = ab. Clearly this is a

polynomial time algorithm.

6.10 The probability that a product of two random k-bit primes is in fact the

product of two Blum k-bit primes is 1/4. Hence an algorithm for

factoring products of Blum primes with success probability r (k) would

yield an algorithm for factoring products of primes with success

probability at least r (k)/4. Hence, under the Factoring Assumption, r (k)

is negligible.

Chapter 7

Exercises

7.1 p = 7, q = 11, r = 3, s = 5, u = 8, v = 2, C = 71 mod 77.

7.3 (a) The checking algorithm given in Theorem 3.17 is exactly what we

require. (b) Assuming the conjecture you expect to choose O(k2) k-bit

integers before you find a Sophie Germain prime q . Then taking

p = 2q + 1 we know there are φ(p − 1) = φ(2q) = φ(q) = q − 1

274 Appendix 6 Answers to selected exercises and problems

primitive roots mod p. Thus exactly a half of the elements of Z∗
p are

primitive roots mod p. Hence we can find one easily and use the

algorithm of part (a) to check (since we have the prime factorisation of

p − 1 = 2q).

7.4 p = 7919 and q = 7933. Thus, using Euclid’s algorithm we find

d = 12561115.

7.6 21631 = 223 × 97.

7.7 M = ±15, ±29 mod 77.

7.9 (a) The probability that zk is the zero vector given that z contains t ones

is
(

n−t

k

)

/
(

n

k

)

. (b)
(

n

k

)

/
(

n−t

k

)

= (450!1024!)/(974!500!) > 253.

Problems

7.1 Algorithm B will be faster since Algorithm A will reject integers that

will be correctly accepted by Algorithm B, while Algorithm B will

never reject an integer that is accepted by Algorithm A.

7.3 See the proof of Theorem 10.3 for an algorithm.

7.4 Clearly given p, q it is trivial to compute φ(n) = (p − 1)(q − 1).

Conversely given n and φ(n) we know that p satisfies

p2 − p(n + 1 − φ(n)) + n = 0. So solving this yields p (and then

dividing n by p gives q).

7.6 Yes.

7.7 The primes he chooses are almost certain to be very close and hence

n = pq is easy to factor.

7.9 (1 + gcd(e − 1, p − 1))(1 + gcd(e − 1, q − 1)).

7.13 Choose odd k-bit integers at random and use the Miller–Rabin primality

test. The Prime Number Theorem, together with the result that

limx→∞ π1(x)/π3(x) = 1, imply that you expect to test O(k) integers

before you find a Blum prime.

7.15 an = 2n−1.

7.16 An enemy simply computes all
(

k

5

)

+
(

k

4

)

+
(

k

3

)

+
(

k

2

)

+
(

k

1

)

+ 1 = O(k5)

possible messages and corresponding cryptograms in polynomial time.

When he intercepts a cryptogram he simply compares it with his list to

discover the message. If Elgamal is used instead of RSA there is no

obvious way for him to do this, since if the same message is sent twice it

will almost certainly be encrypted differently due to the use of

randomness in the encryption process.

7.17 Eve knows C1 + C2 = (M H + z1) + (M H + z2) = z1 + z2 mod 2.

Consider the number of ones in this vector as opposed to the number of

ones in a vector obtained by adding two cryptograms of random distinct

messages. Using McEliece’s suggested parameters the former will

contain at most 100 ones, while the latter will contain 512 ones on

average.

Appendix 6 Answers to selected exercises and problems 275

Chapter 8

Exercises

8.1 S = 57.

8.2 S1 = 73 = 59 mod 71 and 3−1 = 47 mod 70. Hence S2 = 48 mod 70.

Thus her signature is (59, 48).

8.3 V = yS1 S
S2

1 = yS1 gM−x S1 = gM = W mod p and hence accepts a

correctly signed message.

Problems

8.1 Signing is exponentiation mod n, thus it takes time O(log3 n).

Verification takes the same amount of time (comparing M to e(S) takes

an insignificant amount of time).

8.2 For random k, computing gcd(k, p − 1) using Euclid’s algorithm takes

time O(log3 p). Moreover if p = 2q + 1 is a safe prime then Alice

expects to try (p − 1)/φ(p − 1) = 2 values before she succeeds.

Signing S1 and S2 then take time O(log3 p) since Alice needs to find

k−1 mod p − 1 and then perform exponentiation and multiplication mod

p. Verification involves exponentiation mod p and so also takes time

O(log3 p).

8.4 S = (M1 M2)d = Md
1 Md

2 = S1S2 mod n.

8.6 If the message/signatures are (M1, (S1, S2)) and (M2, (S1, S3)) then

S2 − S3 = k−1(M1 − M2) mod q . Eve can find (M1 − M2)−1 mod q and

so find k−1 mod q and hence k. Then she recovers Alice’s private key as

xA = (kS2 − M1)S−1
1 mod q .

8.11 If p is 160 bits then the birthday attack requires 280 messages and

corresponding hash values, hence p should be at least this large.

Chapter 9

Exercises

9.1 xA = 6 and yB = 8.

9.3 (K B)rA + (RB)a = gbrA +grB a =ga RB + grAb = (K A)rB + (RA)b mod p.

Problems

9.2 Alice sends ga to Bob who sends gab to Carol. She then sends gc to both

Alice and Bob; Bob sends gbc to Alice and Alice sends gac to Bob. At the

end of this process they can all form the common secret key gabc mod p.

9.3 (a) The common conference key is gr0r1+r1r2+···+rt−1r0 mod p.

9.4 If Eve intercepts ga, gb mod p then she repeatedly passes algorithm A

the input (p, g, gagz mod p), where 1 ≤ z ≤ p − 1 is random. With

probability ǫ, ga+z mod p lies in the range for which A can solve the

276 Appendix 6 Answers to selected exercises and problems

discrete logarithm problem. Hence Eve expects to find a after 1/ǫ

iterations. She then forms the common key as K = (gb)a mod p.

9.6 y
qb

A = gab(p−1)/2 = y
qa

B , so the common key is 1 if either a or b is even

and −1 otherwise. If p = rq + 1 then K AB = gab(p−1)/r which would

take one of r possible values.

9.10 If Alice and Bob use one-time pads in this scheme then it is hopelessly

insecure. Suppose Alice has one-time pad K A and Bob has one-time

pad K B then the three cryptograms are M ⊕ K A, M ⊕ K A ⊕ K B and

M ⊕ K B . So clearly at the end Bob can decrypt and obtain M ,

however, so can Eve since if she adds the first two cryptograms mod 2

she obtains K B and so can recover M from the third cryptogram.

Chapter 10

Exercises

10.1 (i) No, consider the case G1 = G2. (ii) Yes, if G1 fails a statistical test

T then G1 would fail the test T .

10.2 (a) P = (1, 0, 1, 1). (b) C = (P ⊕ M, x4 mod n) = (1110, 133).

Problems

10.4 From the public key (p, g, gx) and k = gy mod p we can use Euler’s

Criterion to find the least significant bits of x and y, hence we know

whether or not gxy is a quadratic residue mod p. Finally we can use

Euler’s Criterion again, together with Appendix 3, Theorem A3.14, to

compute Q(M) from d = Mgxy mod p.

10.10 (a) Bob can decrypt in polynomial time by testing whether Ci is a

quadratic residue mod p and mod q using Euler’s Criterion. Then he

knows that Mi = 0 iff C
(p−1)/2
i = 1 mod p and C

(q−1)/2
i mod q . (b)

M = 01. (c) Given p and q Eve can decrypt using Bob’s algorithm. (d)

That deciding whether or not a ∈ Z∗
n is a quadratic residue mod n is

intractable, when n = pq is the product of two random k-bit primes.

Chapter 11

Exercises

11.1 By contradiction. If xy = b2 mod n and x = a2 mod n then

y = (ba−1)2 mod n.

11.4 Step (3) in the protocol is changed so that if i = 0 then P sends V a list

of vertices forming a clique of the correct order and decommits to those

bits of the hidden matrix corresponding to the edges in this clique.

Similarly in step (4) if i = 0 then V checks that P correctly

decommitted to a clique of the correct order.

Appendix 6 Answers to selected exercises and problems 277

11.6 Both Victor and Peggy’s computations (in a single round) can be

performed in time O(k2). For the probability of Victor being fooled to be

at most α we require t rounds, where t = ⌈log 1/α⌉. Hence the

identification procedure will take time O(k2 log 1/α).

Problems

11.7 (a) Not unless finding an isomorphism between two isomorphic graphs

can be done in polynomial time and this is not known. (b) Given an

isomorphism, G2 = τ (G1), P can now perform step (3) in polynomial

time since either i = 1 and she sends σ = π to V or i = 2 and she sends

σ = π ◦ τ−1 to V .

Bibliography

∗means further reading.

Adleman, L. M. (1978). Two theorems on random polynomial time. Proceedings of the

19th IEEE Symposium on Foundations of Computer Science. Los Angeles, IEEE

Computer Society Press, pp. 75–83.

Adleman, L. M. and Huang, M. A. (1987). Recognising primes in random polynomial

time. Proceedings of the 19th ACM Symposium on Theory of Computing, New

York, Association for Computing Machinery, pp. 461–9.

Agrawal, M., Kayal, N. and Saxena, N. (2002). PRIMES is in P. http://www.cse.

iitk.ac.in/news/primality.html.

Alexi, W., Chor, B., Goldreich, O. and Schnorr, C. P. (1988). RSA and Rabin functions:

certain parts are as hard as the whole. SIAM J. Comput., 17, 194–209.

Alford, W. R., Granville, A. and Pomerance, C. (1994). There are infinitely many

Carmichael numbers. Ann. Math., 140, 703–22.

Alon, N. and Boppana, R. B. (1987). The monotone circuit complexity of Boolean

functions. Combinatorica, 7, 1–22.

Applegate, D., Bixby, R., Chvátal, V. and Cook, W. (2003). Implementing the Dantzig–

Fulkerson–Johnson algorithm for large travelling salesman problems. Math.

Program., 97, (1–2), 91–153.

Babai, L. (1985). Trading group theory for randomness. 17th ACM Symposium on the

Theory of Computing, pp. 420–1.

Bellare, M. and Kohno, T. (2004). Hash function balance and its impact on the birthday

attack. In Advances in Cryptology EURPCRYPT 2004, Springer-Verlag Lecture

Notes in Computer Science, 3027, 401–18.

Bennett, C. and Gill, J. (1981). Relative to a random oracle A, PA �= NPA �= co-NPA

with probability 1. SIAM J. Comput., 10, 96–113.

Berlekamp, E. R. (1970). Factoring polynomials over large finite fields. Mathematics of

Computation, 24, 713–35.
∗Berlekamp, E. R., McEliece, R. J. and van Tilburg, H. C. A. (1978). On the inherent

intractability of certain coding problems. IEEE Trans. Info. Theory 24, 384–6.

Berman, L. and Hartmanis, J. (1977). On isomorphisms and density of NP and other

complete sets. SIAM J. Comput., 6, 305–22.

278

Bibliography 279

Blakley, G. R. (1979). Safeguarding cryptographic keys. Proceedings of AFIPS 1979

National Computer Conference, 48, New York, pp. 313–7.

Blakley, G. R. and Kabatyanskii, G. A. (1997). Generalized ideal secret sharing schemes

and matroids. Probl. Inform. Transm., 33 (3), 277–84.

Blom, R. (1984). An Optimal Class of Symmetric Key Generation Schemes. Springer-

Verlag Lecture Notes in Computer Science, 209, 335–8.

Blum, L., Blum, M. and Shub, M. (1986). A simple unpredictable random number

generator. SIAM J. Comp., 15, 364–83.

Blum, M. (1983). Coin flipping by telephone: a protocol for solving impossible problems.

Proceedings of 24th IEEE Computer Conference, pp. 133–7; reprinted in SIJGACT

News, 15 (1), 23–7.

Blum, M. and Goldwasser, S. (1985). An efficient probabilistic public-key encryption

scheme that hides all partial information. In Advances in Cryptology CRYPTO ’84,

Springer-Verlag Lecture Notes in Computer Science, 196, 289–302.

Blum, M. and Micali, S. (1982). How to generate cryptographically strong sequences

of pseudorandom bits. Proceedings of the IEEE 23rd Annual Symposium on Foun-

dations of Computer Science, 112–17.

Blum, M. and Micali, S. (1984). How to generate cryptographically strong sequences

of pseudo-random bits. SIAM J. Comput., 13, 850–64.

Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U. and Yung, M. (1993).

Perfectly-secure key distribution for dynamic conferences. In Advances in Cryp-

tology CRYPTO ’92, Springer-Verlag Lecture Notes in Computer Science, 740,

471–86.

Boneh, D. (1998). The decision Diffie–Hellman problem. In Proceedings of the Third

Algorithmic Number Theory Symposium, Springer-Verlag Lecture Notes in Com-

puter Science, 1423, 48–63.

(1999). Twenty years of attacks on the RSA cryptosystem. Notices Amer. Math. Soc.,

46, pp. 203–13.

Boneh, D. and Durfee, G. (2000). Cryptanalysis of RSA with private key d less than

N 0.292. IEEE Trans. Info. Theory, 46, pp. 1339–49.

Boneh, D. and Venkatesan, R. (1996). Hardness of computing most significant bits in

secret keys of Diffie–Hellman and related schemes. Proceedings of CRYPTO ’96,

pp. 129–42.

(1998). Breaking RSA may not be equivalent to factoring. In Advances in Cryptology

EUROCRYPT ’98, Springer-Verlag Lecture Notes in Computer Science, 1403,

pp. 59–71.

Brassard, G. (1979). A note on the complexity of cryptography. IEEE Trans. Info. Theory,

IT-25 (2), 232–4.

Burmester, M. and Desmedt, Y. (1995) A secure and efficient conference key distribution

system. In Advances in Cryptology EUROCRYPT ’94, Springer-Verlag Lecture

Notes in Computer Science, 950, 275–86.

Burmester, M., Desmedt, Y. and Beth, T. (1992). Efficient zero-knowledge identification

schemes for smart cards. The Computer Journal, 35, 21–9.

Chaum, D., van Heijst, E. and Pfitzmann, B. (1992). Cryptographically strong undeni-

able signatures, unconditionally secure for the signer. In Advances in Cryptology

CRYPTO ’91, Springer-Verlag Lecture Notes in Computer Science, 576, 470–84.

280 Bibliography

Chor, B. and Rivest, R. (1988). A knapsack-type public key cryptosystem based on

arithmetic in finite fields. IEEE Trans. Info. Theory, 34, 901–9.

Cobham, A. (1964). The intrinsic computational difficulty of functions. Proceedings

of International Congress for Logic Methodology and Philosophy of Science,

Amsterdam, North-Holland, pp. 24–30.

Cocks, C. C. (1973). A Note on ‘Non-secret Encryption’. CESG Research Report, 20

November 1973.
∗Cohen, H. (1993). A Course in Computational Algebraic Number Theory. Berlin,

Springer-Verlag.

Cook, S. A. (1971). The complexity of theorem proving procedures. Proceedings Third

Annual ACM Symposium on the Theory of Computing, pp. 151–8.

(2000). P v NP – Official problem description. http://www.claymath.org/ millennium/

P vs NP/Official Problem Description.pdf.

Coppersmith, D., Franklin, M., Patarin, J. and Reiter, M. (1996). Low-exponent RSA

with related messages. In EUROCRYPT ’96, Springer-Verlag Lecture Notes in

Computer Science, 1070, 1–9.

Coppersmith, D., Krawczyz, H. and Mansour, Y. (1994). The shrinking generator. In

Advances in Cryptology CRYPTO ’93, Springer-Verlag Lecture Notes in Computer

Science, 773, 22–39.

Courtois, N. T. (2003). Fast algebraic attacks on stream ciphers with linear feedback. In

Crypto 2003, Springer-Verlag Lecture Notes in Computer Science, 2729, 176–94.

Courtois, N. T. and Pieprzyk, J. (2002). Cryptanalysis of block ciphers with overdefined

systems of equations. In Advances in Cryptology ASIACRYPT 2002, Springer-

Verlag Lecture Notes in Computer Science, 2501, 267–87.

Cusick, T. W., Ding, C. and Renvall, A. (2004). Stream Ciphers and Number Theory

(Revised Edition). North Holland Mathematical Library, Elsevier.
∗Daemen, J. and Rijmen, V. (2000). The block cipher Rijndael. In Smart Card Research

and Applications, Springer-Verlag Lecture Notes in Computer Science, 1820, J. J.

Quisquater and B. Schneier, eds., pp. 288–96.

(2004). The Design of Rijndael. Springer-Verlag.

Dantzig, G., Fulkerson, R. and Johnson, S. (1954). Solution of a large scale travelling

salesman problem Oper. Res., 2, 393–410.

Davies, D. W. and Price, W. L. (1980). The application of digital signatures based on pub-

lic key cryptosystems. Proceedings of 5th International Conference on Computer

Communications, J. Salz, ed., pp. 525–30.

Diffie, W. and Hellman, M. E. (1976). New directions in cryptography. IEEE Trans. Info.

Theory, 22, 644–54.

Du, D.-Z. and Ko, K. I. (2000). Theory of Computational Complexity. New York,

Wiley.

Dunne, P. E. (1988). The Complexity of Boolean Networks. San Diego, Academic Press.

Edmonds, J. (1965). Paths, trees and flowers. Canadian J. Math., 17, 449–67.

Electronic Frontier Foundation (1998). Cracking DES, Secrets of Encryption Research,

Wiretap Politics and Chip Design, O’Reilly.

Elgamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Trans. Info. Theory, 31, 469–72.

Ellis, J. H. (1970). The Possibility of Non-Secret Digital Encryption. CESG Research

Report, January 1970.

Bibliography 281

(1997). The history of non-secret encryption. On http://www.cesg.gov.uk/site/

publications/media/ellis.pdf.

Feige, U., Fiat, A. and Shamir, A. (1988). Zero-knowledge proofs of identity. J. Cryp-

tology, 1 (2), 77–94.

Feistel, H. (1973). Cryptography and computer privacy. Scientific American, May, 15–

23.

Feistel, H., Notz, W. A. and Smith, J. L. (1975). Some cryptographic techniques for

machine-to-machine data communications. Proceedings of IEEE, 63 (11), 1545–

54.
∗Ferguson, N., Schroeppel, R. and Whiting, D. (2001). A simple algebraic representation

of Rijndael. In Selected Areas in Cryptography, Springer-Verlag Lecture Notes in

Computer Science, 2259, 103–11.

Fiat, A. and Shamir, A. (1987). How to prove yourself: practical solutions to identification

and signature problems. In Proceedings of Crypto ’86, Springer-Verlag Lecture

Notes Computer Science, 263, 186–94.

Fischer, M. J. and Pippenger, N. (1979). Relations among complexity measures. Journal

of the ACM, 19 (4) 660–74.

Garey, M. and Johnson, D. (1979). Computers and Intractability: a Guide to the Theory

of NP-completeness. San Francisco, Freeman.

Geffe, P. (1973). How to protect data with ciphers that are really hard to break.

Electronics, 46, 99–101.

Gill, J. (1977). Computational complexity of probabilistic Turing machines. SIAM J.

Comput., 6, 675–95.

Goldie, C. M. and Pinch, R. G. E. (1991). Communication Theory. Cambridge University

Press.

Goldreich, O. (1999). Modern Cryptography, Probabilistic Proofs and Pseudo-

randomness. Algorithms and Combinatorics Series, 17, Springer-Verlag.

(2001). Foundations of Cryptography. Cambridge University Press.

(2004). Foundations of Cryptography (Vol. 2). Cambridge University Press.

Goldreich, O. and Levin, L. A. (1989). Hard-core predicates for any one-way function.

21st ACM Symposium on the Theory of Computing, pp. 25–32.

Goldreich, O., Micali, S. and Wigderson, A. (1991). Proofs that yield nothing but their

validity or all languages in NP have zero-knowledge proof systems. Journal of the

ACM, 38, 691–729.
∗Goldwasser, S. (1990). The search for provably secure cryptosystems. Cryptology

and Computational Number Theory, Proceedings of the Symposium on Applied

Mathematics, Vol. 42, Providence, RI, Amer. Math. Soc.

Goldwasser, S. and Micali, S. (1982). Probabilistic encryption and how to play mental

poker keeping secret all partial information. Proceedings of the 14th Annual ACM

Symposium on Theory of Computing, pp. 365–77.

(1984). Probabilistic encryption. Journal of Computer and Systems Science, 28, 270–

99.

Goldwasser, S., Micali, S. and Rackoff, C. (1985). The knowledge complexity of inter-

active proof-systems. Proceedings of the 17th Annual ACM Symposium on Theory

of Computing, pp. 291–304.

(1989). The knowledge complexity of interactive proof systems. SIAM J. Comput.,

18 (1), 186–208

282 Bibliography

∗Goldwasser, S., Micali, S. and Rivest, R. (1998). A secure digital signature scheme.

SIAM J. Comput., 17 (2), 281–308.

Goldwasser, S., Micali, S. and Tong, P. (1982). Why and how to establish a common

code on a public network. 23rd Annual Symposium on the Foundations of Computer

Science, IEE Press, pp. 134–44.

Golomb, S. W. (1955). Sequences with Randomness Properties. Glenn L. Martin Co.

Final Report on Contract No. W36-039SC-54-36611, Baltimore, Md.

Gong, L. and Wheeler, D. J. (1990). A matrix key-distribution scheme. Journal of Cryp-

tology, 2, 51–90.

Grollman, J. and Selman, A. (1988). Complexity measures for public-key cryptosystems.

SIAM J. Comput., 17, 309–35.

Hammersley, J. M. and Handscomb, D. C. (1964). Monte Carlo Methods. London,

Methuen and Co., New York, Wiley and Sons.
∗Hardy, G. H. and Wright, E. M. (1975). An Introduction to the Theory of Numbers, 4th

edn, London and New York, Oxford Clarendon Press.

Hartmanis, J. (1989). Gödel, von Neumann and the P =?NP problem. EATCS Bulletin,

38, 101–7.

Hartmanis, J. and Stearns, R. E. (1965). On the computational complexity of algorithms.

Trans. Amer. Math. Soc., 117, 285–306.

Håstad, J. (1988). Solving simultaneous modular equations of low degree. SIAM J.

Comput., 17, 336–41.
∗(1990). Pseudo-random generators under uniform assumptions. Proceedings of 22nd

ACM Symposium on Theory of Computing, pp. 395–404.

Håstad, J., Impagliazzo, R., Levin, L. A. and Luby, M. (1999). Construction of a pseudo-

random generator from any one-way function. SIAM J. Comput., 28 (4), 1364–96.
∗Hill, L. S. (1929). Cryptography in an algebraic alphabet. Amer. Math. Monthly, 36,

306–12.

Hill, R. (1986). A First Course in Coding Theory. Oxford, Oxford University Press.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory, Languages

and Computation. Addison-Wesley.
∗Impagliazzo, R. and Luby, M. (1989). One-way functions are essential for complexity

based cryptography. Proceedings 30th Symposium on Foundations of Computer

Science, pp. 230–5.
∗Impagliazzo, R. and Rudich, S. (1989). Limits on the provable consequences of one-

way permutations. Proceedings of 21st ACM Symposium on Theory of Computing,

pp. 44–61.

Impagliazzo, R. and Wigderson, A. (1997). P = BPP if E requires exponential cir-

cuits: derandomizing the XOR Lemma. 29th ACM Symposium on the Theory of

Computing, pp. 220–9.

Johnson, D. S. (1988). Interactive proof systems for fun and profit (the NP-completeness

column: an ongoing guide). Journal of Algorithms, 13, 502–4.

Joye, M. and Quisquater, J.-J. (1997). Faulty RSA encryption. UCL Crypto Group

Technical Report Series. Technical Report CG-1997/8.
∗Kahn, D. (1967). The Codebreakers: the Story of Secret Writing. New York, Macmillan.

Kaltofen, E. (1982). A polynomial-time reduction from bivariate to univariate integral

polynomial factorization. 23rd Annual Symposium on Foundations of Computer

Science, pp. 57–64.

Bibliography 283

Kaltofen, E. (1985). Polynomial-time reductions from multivariate to bi- and univariate

integral polynomial factorization. SIAM J. Comput., 14, 469–89.

Karp, R. M. (1972). Reducibility among combinatorial problems. Complexity of Com-

puter Communications, eds. R. Miller and J. Thatcher, New York, Plenum Press.

Karp, R. M. and Lipton, M. (1982). Turing machines that take advice. L’Enseignement

Mathematique, 28, 191–209.

Kilian, J. and Rogaway, P. (1996). How to protect DES against exhaustive key search. In

Advances in Cryptology CRYPTO ’96, Springer-Verlag Lecture Notes in Computer

Science, 1109, 252–67.
∗Knuth, D. E. (1969). The Art of Computer Programming: Seminumerical Algorithms,

Vol. 2. Reading, Mass., Addison-Wesley.

(1973). The Art of Computer Programming – Fundamental Algorithms, Vol. 1, 2nd

edition, Addison-Wesley.

Ko, K. (1985). On some natural complete operators. Theoret. Comput. Sci., 37, 1–30.

Koblitz, N. (1987). Elliptic curve cryptosystems. Math. Comp., 48, 203–9.

(1994). A Course in Number Theory and Cryptography, 2nd edn, New York, Springer-

Verlag.
∗Kocher, P. (1996). Timing attacks on implementations of Diffie–Hellman, RSA, DSS,

and other systems. In CRYPTO ’96, Springer-Verlag Lecture Notes in Computer

Science, 1109, Springer-Verlag, 104–13.

Ladner, R. E. (1975). On the structure of polynomial time reducibility. J. Assoc. Comput.

Mach., 22, 155–71.

Lamport, L. (1979). Constructing digital signatures from a one-way function. SRI Intl.

CSL 98.

Landau, S. (1988). Zero knowledge and the Department of Defence. Notices Amer. Math.

Soc., 35, 5–12.
∗Lenstra, A. K. and Lenstra, H. W. Jr. (1990). Algorithms in number theory. Handbook

of Theoretical Computer Science (Volume A: Algorithms and Complexity), Ch. 12,

Amsterdam and Cambridge, MA, Elsevier and MIT Press, pp. 673–715.
∗(1993). The development of the number field sieve. Lecture Notes Math., 1554,

Berlin, Springer-Verlag.

Lenstra, A. K., Lenstra, H. W. Jr. and Lovász, L. (1982). Factoring polynomials with

rational coefficients. Mathematische Annalen, 261, 515–34.

Levin, L. (1973). Universal Search Problems. Problemy Peredaci Informacii, 9, 115–6;

English translation in Problems of Information Transmission, 9, 265–6.

Levin, L. A. (1986). Average Case Complete Problems. SIAM J. Comput., 15 (1),

285–6.

Li, M. and Vitányi, P. (1997). An Introduction to Kolmogorov Complexity and Its Appli-

cations. 2nd edn, Berlin, Springer-Verlag.

Lidl, R. and Niederreiter, H. (1986). Introduction to Finite Fields and their Applications.

Cambridge, Cambridge University Press.

Luby, M. (1996). Pseudorandomness and Cryptographic Applications. Princeton, NJ,

Princeton University Press.

Luks, E. M. (1982). Isomorphism of graphs of bounded valence can be tested in poly-

nomial time. J. Comput. System Sc., 25, 42–65.

Lund, C., Fortnow, L., Karloff, H. and Nisan, N. (1992). Algebraic methods for interac-

tive proof systems. Journal of the ACM, 39 (4), 859–68.

284 Bibliography

Lupanov, O. B. (1958). On the synthesis of contact networks. Dokl. Akad. Nauk, SSSR,

119, 23–6.

Massey, J. L. (1969). Shift-register synthesis and BCH decoding. IEEE Trans. Info.

Theory, 15, 122–7.

Matsumoto, T. and Imai, H. (1987). On the key predistribution system: a practical

solution to the key distribution problem. In Advances in Cryptology: Proceed-

ings of Crypto ’87, Springer-Verlag Lecture Notes in Computer Science, 293,

185–93.

May, A. (2004). Computing the RSA secret key is deterministic polynomial time equiv-

alent to factoring. In Advances in Cryptology CRYPTO 2004, Springer-Verlag Lec-

ture Notes in Computer Science, 3152, 213–9.
∗McCurley, K. S. (1990). The discrete logarithm problem. Proceedings of Symposium

Applied Mathematics, Vol. 42, Providence, RI, Amer. Math. Soc., pp. 49–74.

McEliece, R. J. (1978). A public-key cryptosystem based on algebraic coding theory.

DSN Progress Report, pp. 42–4.

Menezes, A. J., van Oorschot, P. C. and Vanstone, S. A. (1996). Handbook of Applied

Cryptography. Boca Raton, New York, London and Tokyo, CRC Press.

Merkle, R. C. (1978). Secret communications over insecure channels. Communications

of the ACM, 21, 294–9.

Merkle, R. C. and Hellman, M. E. (1978). Hiding information and signatures in trapdoor

knapsacks. IEEE Transactions on Information Theory, 24, 525–30.

Meyer, C. and Tuchman, W. (1972). Pseudorandom codes can be cracked. Electronic

Design, 23, 74–6.

Miller, G. L. (1976). Riemann’s hypothesis and tests for primality. Journal of Computer

and Systems Science, 13, 300–17.

Miller, V. S. (1986). Uses of elliptic curves in cryptography. In Advances in Cryptology

CRYPTO ’85, Springer-Verlag Lecture Notes in Computer Science, 218, 417–26.

Mitchell, C. J., Piper, F. and Wild, P. (1992). Digital signatures. Contemporary Cryptol-

ogy, The Science of Information Integrity, pp. 325–78. IEEE Press.

Mollin, R. A. (2001). An Introduction to Cryptography. London, New York, Chapman

and Hall.

Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. Cambridge, UK, Cam-

bridge University Press.

Murphy, S. and Robshaw, M. (2002). Essential algebraic structure within the AES. In

Advances in Cryptology CRYPTO 2002, Springer-Verlag Lecture Notes in Com-

puter Science, 2442, 1–16.
∗Odlyzko, A. M. (2000). Discrete logarithms: the past and the future. Designs, Codes,

and Cryptography, 19, 129–45.

Pedersen, T. P. (1999). Signing contracts and paying electronically. In Lectures on Data

Security, Springer-Verlag Lecture Notes in Computer Science, 1561, 134–57.

Pfitzmann, B. (1996). Digital Signature Schemes (General Framework and Fail-Stop

Signatures), Springer-Verlag Lecture Notes in Computer Science, 1100.

Pohlig, S. and Hellman, M. E. (1978). An improved algorithm for computing logarithms

over GF(p) and its cryptographic significance. IEEE Trans. Info. Theory, 24, 106–

10.

Pollard, J. (1993). Factoring with cubic integers. The Development of the Number Field

Sieve, Springer-Verlag Lecture Notes in Math. 1554, 4–10.

Bibliography 285

Pollard, J. M. (1974). Theorems on factorization and primality testing. Proceedings of

the Cambridge Philosophical Society, 76, 521–8.

Pratt, V. (1975). Every prime has a succinct certificate. SIAM J. Comput., 4, 214–20.

Preneel, B. (1999). The state of cryptographic hash functions. In Lectures on Data

Security, Springer-Verlag Lecture Notes in Computer Science, 1561, 158–82.

Rabin, M. O. (1978). Digitalized signatures, in DeMillo, R., Dobkin, D., Jones, A.

and Lipton, R. (eds) Foundations of Secure Computation, 155–68, Academic

Press.

(1979). Digitalized signatures and public key functions as intractable as factorization.

MIT Laboratory for Computer Science, January, TR 212.

(1980a). Probabilistic algorithm for primality testing. J. Number Theory, 12, 128–38.

(1980b). Probabilistic algorithms in finite fields. SIAM J. Comput., 9, 273–80.

Razborov, A. A. (1985). Lower bounds on the monotone complexity of some Boolean

functions. Doklady Akademii Nauk SSR, 281, 798–801 (in Russian); English trans-

lation in Soviet Math. Dokl., 31, 354–7.

Rivest, R. L., Shamir, A. and Adleman, L. (1978). A method for obtaining digital sig-

natures and public key cryptosystems. Communications of the ACM, 21, 120–6.

Rogers, H., Jr. (1967). Theory of Recursive Functions and Effective Computability. New

York, McGraw-Hill.

Schneier, B. (1996). Applied Cryptography, Protocols, Algorithms and Source Code in

C (Second Edition). John Wiley and Sons.

Schnorr, C. P. (1976). The network complexity and the Turing machine complexity of

finite functions. Acta Informatica, 7 (1), 95–107.

Schwartz, J. T. (1979). Probabilistic algorithms for verification of polynomial identi-

ties. In Symbolic and Algebraic Computation, Springer-Verlag Lecture Notes in

Computer Science, 72, 200–15.

Schwartz, J. T. (1980). Fast probabilistic algorithms for verification of polynomial iden-

tities. J. Assoc. Comput. Mach., 27, 701–17.

Seymour, P. D. (1992). On secret-sharing matroids. J. Combinatorial Theory, Ser. B, 56,

69–73.

Shamir, A. (1979). How to share a secret. Communications of the ACM, 22, 612–13.

(1981). On the generation of cryptographically strong pseudo-random sequences.

In 8th International Colloquium on Automata Languages and Programming,

Springer-Verlag Lecture Notes in Computer Science, 115, 544–50.

(1983). A polynomial time algorithm for breaking the basic Merkle–Hellmann cryp-

tosystem. Advances in Cryptology, Proceedings of CRYPTO82, pp. 279–88.

(1984). A polynomial time algorithm for breaking the basic Merkle–Hellman cryp-

tosystem. IEEE Trans. Info. Theory, 30, 699–704.

(1990). IP = PSPACE. Proceedings of the 31st IEEE Symposium on Foundations of

Computer Science. Los Angeles, IEEE Computer Society Press, pp. 11–15.

Shannon, C. E. (1948). A mathematical theory of communication. Bell Systems Technical

Journal, 27, 379–423, 623–56.

(1949a). Communication theory of secrecy systems. Bell Syst. Tech. J., 28, 657–715.
∗(1949b). The synthesis of two-terminal switching circuits. Bull. Systems Tech. J., 28,

59–98.

Simmons, G. J. (1983). A ‘weak’ privacy protocol using the RSA cryptoalgorithm.

Cryptologia, 7, 180–2.

286 Bibliography

Singh, S. (2000). The Science of Secrecy. London, Fourth Estate Limited.

Solovay, R. and Strassen, V. (1977). A fast Monte Carlo test for primality. SIAM J.

Comp., 6, 84–5. [erratum 7 (1978), 118].
∗Stinson, D. (2002). Cryptography: Theory and Practice (2nd edn) Boca Raton, FL,

Chapman & Hall/CRC.

Turing, A. (1936). On computable numbers with an application to the Entscheidungs

problem. Proceedings of London Mathematics Society, Ser. 2, 42, 230–65.

Twigg, T. (1972). Need to keep digital data secure? Electronic Design, 23, 68–71.

Van Oorschot, P. and Wiener, M. (1996). On Diffie–Hellman key agreement with short

exponents. In Advances in Cryptology EUROCRYPT ’96, Springer-Verlag Lecture

Notes in Computer Science, 1070, 332–43.
∗Vaudenay, S. (1998). Cryptanalysis of the Chor–Rivest cryptosystem. In Advances in

Cryptology CRYPTO ’98, Springer-Verlag Lecture Notes in Comput. Sci., 1462,

243–56.

Vernam, G. S. (1926). Cipher printing telegraph systems for secret wire and radio tele-

graphic communications. J. AIEE, 45, 109–15.

von Neumann, J. (1951). The general and logical theory of automata, in Jeffress, L. (ed)

Cerebral Mechanisms in Behaviour: the Hixon Symposium, New York, John Wiley

and Sons, pp. 1–41.

Wegener, I. (1987). The Complexity of Boolean Functions. New York, John Wiley &

Sons.

Welsh, D. J. A. (1988). Codes and Cryptography. Oxford University Press.

(1993). Complexity: Knots, Colourings and Counting. London Mathematical Society

Lecture Note Series 186, Cambridge University Press.

Wiener, M. (1990). Cryptanalysis of short RSA secret exponents. IEEE Trans. Info.

Theory, 36, 553–8.

Williams, H. C. (1980). A modification of the RSA public key cryptosystem. IEEE Trans.

Info. Theory, IT-26, 726–9.

(1982). A p + 1 method of factoring. (1982). Mathematics of Computation, 39, 225–

34.

Williamson, M. J. (1974). Non-secret encryption using a finite field. CESG Report, 21

January 1974.

(1976). Thoughts on cheaper non-secret encryption. CESG Report, 10 August 1976.

Yao, A. C. (1982). Theory and applications of trapdoor functions. Proceedings of 23rd

Symposium on Foundations of Computer Science, 23, 80–91.

Zierler, N. (1955). Several Binary-Sequence Generators. M.I.T. Lincoln Laboratory

Technical Report 95, Lexington, Mass.

Zippel, R. E. (1979) Probabilistic algorithms for sparse polynomials. In Proceedings of

EUROSAM ’79, Springer-Verlag Lecture Notes in Comput. Sci., 1472, 216–26.

Index

2-COL, 27

2-SAT, 28

3-COL, 51

3-COL MAX DEGREE 4, 65

3-SAT, 50

accepted, 22

acceptor DTM, 22

acceptor PTM, 72

adaptive-chosen-message attack, 172

adjacency matrix, 25

AES, 118

Alice, 2

alphabet, 16

AND, 24

associated language, 23

attacks

chosen plaintext attack, 5

ciphertext only attack, 4

known plaintext attack, 4

authenticated key distribution, 193

authentication, 170

basis, 88

BDLOG, 135

Berlekamp–Massey algorithm, 112

binary, 13

bipartite, 252

birthday attack, 180

bit, 13

bit commitment, 241

bit generator, 205

blank symbol ∗, 16

block cipher, 115

AES, 118

DES, 115

DES-X, 118

Feistel cipher, 115

Pohlig–Hellman cryptosystem,

119

Rijndael, 118

Triple DES, 117

Blom key distribution, 188

Blum prime, 139, 158

Blum–Blum–Shub generator, 223

Blum–Goldwasser cryptosystem, 224

Blum–Micali generator, 211

Bob, 2

Boolean function, 24

AND, 24

conjunction (AND) ∧, 24

disjunction (OR), ∨, 24

literal, 24

negation, 24

OR, 24

satisfiable, 24

satisfying truth assignment, 24

truth assignment, 24

Boolean functions

conjunctive normal form (CNF), 24

disjunctive normal form (DNF), 36

BOUNDED HALTING, 46

bounded-error probabilistic polynomial time

(BPP), 82

Carmichael number, 76

certificate, 41, 194

challenge-response schemes, 230

chosen plaintext attack, 5

chosen-message attack, 172

Church–Turing Thesis, 22

cipher, 3

287

288 Index

ciphertext, 3

ciphertext only attack, 4

circuit, 88

circuit complexity, 89

computes, 88

depth, 88

gate, 88

input, 88

monotone, 94

output, 88

size, 88

circuit complexity, 89

clause, 24

CLIQUE, 26

clique, 252

Cocks–Ellis cryptosystem, 142

private key, 142

public key, 142

coin tossing, 241

coin-tossing head, 71

coin-tossing tape, 71

collision, 180

collision-resistant, 180

colouring, 27

commitment schemes, 241

complement, 56

completeness, 233

complexity class, 23

bounded-error probabilistic polynomial time

BPP, 82

co-NP, 56

exponential time EXP, 34

non-deterministic polynomial time NP, 41

non-uniform polynomial time P/poly, 84

NP-complete, 45

polynomial size circuits C-poly, 89

polynomial space PSPACE, 34

polynomial time P, 23

randomized polynomial time RP, 73

zero-error probabilistic polynomial time

ZPP, 80

COMPOSITE, 36

composite, 254

computation, 17

computational zero knowledge (CZK), 240

computes, 17, 88

configuration, 17

conjunction (AND) ∧, 24

conjunctive normal form (CNF), 24

co-NP, 56

control unit, 16

cryptogram, 3

cryptogram space, 99

cryptosystem, 3

cycle, 252

decides, 23

decision problems, 22

2-COL, 27

2-SAT, 28

3-COL, 51

3-COL MAX DEGREE 4, 65

3-SAT, 50

associated language, 23

BDLOG, 135

BOUNDED HALTING, 46

CLIQUE, 26

COMPOSITE, 36

DECODING LINEAR CODES, 163

DIV 3, 43

DNF-SAT, 36

EXP BOUNDED HALTING, 35

FACTOR, 61, 134

GEN DISCRETE LOG, 120

GOLDBACH, 65

GRAPH ISOMORPHISM, 61

GRAPH NON-ISOMORPHISM (GNI),

232

HAMILTON CYCLE, 43

INDEPENDENT SET, 44

k-CLIQUE, 26

k-COL, 27

k-SAT, 25, 49

MAX CLIQUE, 65

NON-ZERO POLY, 68

NON-ZERO POLY DET, 73

PARTITION, 64

PRIME, 57

PRIMITIVE, 200

QBF, 43

QUADRATIC NON-RESIDUES (QNR),

234

REACHABILITY, 28

SAT, 24

SUBSET SUM, 161

UNSAT, 65

VERTEX COVER, 65

DECODING LINEAR CODES, 163

decrypt, 3

decryption function, 99

depth, 88

DES, 115

Index 289

DES-X, 118

deterministic oracle Turing machine (DOTM),

54

deterministic Turing machine (DTM), 16

accepted, 22

acceptor DTM, 22

alphabet, 16

blank symbol ∗, 16

computation, 17

computes, 17

configuration, 17

control unit, 16

decides, 23

halting state, 16

input, 17

language accepted by, 22

length, 17

output, 17

read–write head, 16

rejected, 22

running time, 21

size, 84

space, 33

space complexity, 34

starting square, 16

starting state, 16

states, 16

step, 17

tape, 16

time complexity, 21

transition function, 16

dexp, 127

differential cryptanalysis, 117

DIFFIE–HELLMAN, 149, 191

Diffie–Hellman key establishment, 190

Digital Signature Algorithm (DSA), 175

digital signatures, 170

certificate, 194

Digital Signature Algorithm (DSA),

175

Elgamal signature scheme, 174

RSA signature scheme, 171

digraph, 252

direct attack, 172

directed graph, 252

Discrete Log Assumption, 128

discrete logarithm problem, 127

disjunction (OR), ∨, 24

disjunctive normal form (DNF), 36

DIV 3, 43

divides, 254

dlog, 127

DNF-SAT, 36

DTM, 16

ELGAMAL, 147

Elgamal, 149

private key, 147

public key, 147

ELGAMAL PRIVATE KEY, 148

Elgamal signature scheme, 174

encrypt, 3

encryption function, 99

ERROR CORRECTING LINEAR CODES,

163

Euclid’s algorithm, 32

Eve, 2

existential forgery, 173

EXP, 34

EXP BOUNDED HALTING, 35

expected running time, 72

exponential time EXP, 34

exponentiation, 32

fac, 133

FACTOR, 61, 134

factoring algorithms, 130

Number Field Sieve, 131

Quadratic Sieve, 131

Factoring Assumption, 131

feedback coefficients, 107

feedback polynomial, 107

primitive, 109

Feistel cipher, 115

Fermat witness, 75

Fiat–Shamir identification scheme, 246

Fibonacci sequence, 37

fixed point, 167

forger, 238

FP, 30

Fred, 2

gate, 88

gcd, 32

GCHQ, 141

GEN DISCRETE LOG, 120

generates, 107

GOLDBACH, 65

Goldwasser–Micali cryptosystem, 227

Goppa codes, 163

graph, 252

GRAPH ISOMORPHISM, 61

290 Index

GRAPH NON-ISOMORPHISM (GNI), 232

greatest common divisor, 32

halting (PTM), 72

halting state, 16

HAMILTON CYCLE, 43

Hamilton cycle, 252

Hamilton path, 252

Hamiltonian, 252

hard-core predicate, 208

hash function, 178

birthday attack, 180

collision, 180

collision-resistant, 180

hash functions

SHA-1, 180

SHA-256, 180

SHA-384, 180

SHA-512, 180

Hill’s cipher, 121

identification schemes, 229

challenge–response schemes, 230

Fiat–Shamir, 246

INDEPENDENT SET, 44

independent set, 252

ink complexity, 37

input, 17, 88

interactive proof, 231

intractability assumptions

Discrete Log Assumption, 128

Factoring Assumption, 131

RSA Assumption, 151

invert, 129

IP, 233

irreducible, 122

k-colourable, 252

k-colouring, 252

k-CLIQUE, 26

k-COL, 27

key, 4

key establishment, 187

authenticated key distribution, 193

Diffie–Hellman key establishment, 190

Key Exchange Algorithm (KEA), 194

man in the middle attack, 192

Key Exchange Algorithm (KEA), 194

key space, 99

keystream, 105

KGB, 102

known plaintext attack, 4

known-signature attack, 172

Kolmogorov–Chaitin complexity, 204

k-SAT, 25, 49

L3 lattice basis reduction, 162

language, 22

language accepted by, 22

Las-Vegas algorithms, 80

length, 17

length preserving, 214

LFSR, 106

linear code, 163

linear complexity, 112

Berlekamp–Massey algorithm, 112

linear feedback shift register (LFSR),

106

feedback coefficients, 107

feedback polynomial, 107

generates, 107

non-singular, 107

periodic, 107

literal, 24

Mallory, 2

man in the middle attack, 192

MAX CLIQUE, 65

McEliece’s cryptosystem, 162

Merkle–Hellman cryptosystem, 161

message, 3

message space, 99

Miller witness, 75

monotone, 94

mult, 130

negation, 24

neg, 126

negligible, 126

next-bit test, 205

non-deterministic polynomial time NP, 41

certificate, 41

non-linear filter generator, 114

non-negligible, 135

non-secret encryption, 141

non-singular, 107

non-uniform polynomial time P/poly,

84

NON-ZERO POLY, 68

NON-ZERO POLY DET, 73

NP-complete, 45

NP-hard, 54

Index 291

NSA, 1, 175, 194

VENONA, 102

Number Field Sieve, 131

one time pad, 101

one-way functions, 125

dexp, 127

pmult, 130

length preserving, 214

permutation, 214

strong one-way functions, 129

weak one-way functions, 135

OR, 24

output, 17, 88

pairwise secrecy, 122

palindrome, 35

PARTITION, 64

path, 252

Peggy, 3

perfect matching, 97

perfect secrecy, 102

perfect zero knowledge (PZK), 236

periodic, 107

permutation, 214

plaintext, 3

pmult, 130

Pohlig–Hellman cryptosystem, 119

polynomial expected running time, 73

polynomial running time (PTM), 72

polynomial size circuits C-poly, 89

polynomial space PSPACE, 34

polynomial time, 23

polynomial time P, 23

polynomial time computable FP, 30

polynomial time reduction, 44

polynomially indistinguishable, 218

polynomially reducible ≤m , 44

positive polynomial, 126

predicate, 207

predictor, 205

PRIME, 57

prime, 254

Prime Number Theorem, 136, 254

prime power, 78

PRIMITIVE, 200

primitive polynomial, 109

primitive root, 255

probabilistic algorithm, 70

probabilistic circuit, 92

probabilistic encryption, 216

probabilistic Turing machine

acceptor PTM, 72

coin-tossing head, 71

coin-tossing tape, 71

expected running time, 72

halting (PTM), 72

polynomial expected running time, 73

polynomial running time (PTM), 72

time complexity (PTM), 72

probabilistic Turing machine (PTM), 71

product cipher, 121

pseudorandom generator, 206

Blum–Blum–Shub generator, 223

Blum–Micali generator, 211

PSPACE, 34

PTM, 71

public exponent, 145

public key cryptography, 4, 141

Cocks–Ellis cryptosystem, 142

Elgamal, 147

McEliece’s cryptosystem, 162

Merkle–Hellman cryptosystem, 161

Rabin’s cryptosystem, 158

RSA, 145

public modulus, 145

QBF, 43

quadratic non-residue, 234, 256

QUADRATIC NON-RESIDUES (QNR),

234

quadratic residue, 209, 256

Quadratic Sieve, 131

query tape, 54

Rabin’s cryptosystem, 158

randomized polynomial time RP, 73

REACHABILITY, 28

read–write head, 16

reduction, 44

rejected, 22

Rijndael, 118

RSA, 145, 152

public exponent, 145

public key, 145

public modulus, 145

RSA assumption, 151

RSA FACTOR, 152, 166

RSA PHI, 166

RSA PRIVATE KEY, 152

RSA signature scheme, 171

running time, 21

292 Index

safe prime, 150

SAT or satisfiability, 24

satisfiable, 24

satisfying truth assignment, 24

Schwartz’s Lemma, 69

secret sharing, 196

Shamir’s secret sharing scheme, 197

selective forgery, 173

session key, 147

SHA-1, 180

SHA-256, 180

SHA-384, 180

SHA-512, 180

Shamir’s secret sharing scheme, 197

Shamir’s three pass protocol, 201

shrinking generator, 114

simple substitution, 100

Sophie Germain prime, 150

soundness, 233

space, 33

space complexity, 34

starting square, 16

starting state, 16

states, 16

statistical test, 206

step, 17

stream cipher, 105

keystream, 105

non-linear filter generator, 114

shrinking generator, 114

strong one-way functions, 129

SUBSET SUM, 43, 161

super-increasing, 161

symmetric cryptosystems, 4, 99

one time pad, 101

Hill’s cipher, 121

simple substitution, 100

Vernam’s cryptosystem, 101

Vigenère cipher, 100

tape, 16

time complexity, 21

time complexity (PTM), 72

total break, 173

transcript, 237

transition function, 16

trapdoor functions, 150

TRAVELLING SALESMAN, 65

Trent, 3

Triple DES, 117

truth assignment, 24

Turing equivalent, 66

Turing-reducible, 54

unary, 12

undeniability, 170

unforgeability, 170

universal forgery, 173

UNSAT, 65

VENONA, 102

Vernam’s cryptosystem, 101

VERTEX COVER, 65

vertices, 252

Victor, 3

Vigenère cipher, 100

weak one-way functions, 135

mult, 130

XOR, 101

zero knowledge, 235

computational zero knowledge, 240

forger, 238

perfect zero knowledge, 236

transcript, 237

zero-error probabilistic polynomial time ZPP,

80

