

Internet Security
Cryptographic Principles, Algorithms
and Protocols

Man Young Rhee

School of Electrical and Computer Engineering

Seoul National University, Republic of Korea

Internet Security

Internet Security
Cryptographic Principles, Algorithms
and Protocols

Man Young Rhee

School of Electrical and Computer Engineering

Seoul National University, Republic of Korea

Copyright 2003 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK,
without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the
Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19
8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Rhee, Man Young.
Internet security : cryptographic principles, algorithms, and protocols / Man Young Rhee.

p. cm.
Includes bibliographical references and index.
ISBN 0-470-85285-2 (alk. paper)
1. Internet – Security measures. 2. Data encryption (Computer Science) 3. Public key cryptography.

I. Title.

TK5105.875.I57 .R447 2003-02-05
005′8.2 – dc21

2002191050

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-85285-2

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

Contents

Author biography xi

Preface xiii

1 Internetworking and Layered Models 1
1.1 Networking Technology 2

1.1.1 Local Area Networks (LANs) 2
1.1.2 Wide Area Networks (WANs) 3

1.2 Connecting Devices 5
1.2.1 Switches 5
1.2.2 Repeaters 6
1.2.3 Bridges 6
1.2.4 Routers 7
1.2.5 Gateways 8

1.3 The OSI Model 8
1.4 TCP/IP Model 12

1.4.1 Network Access Layer 13
1.4.2 Internet Layer 13
1.4.3 Transport Layer 13
1.4.4 Application Layer 13

2 TCP/IP Suite and Internet Stack Protocols 15
2.1 Network Layer Protocols 15

2.1.1 Internet Protocol (IP) 15
2.1.2 Address Resolution Protocol (ARP) 28
2.1.3 Reverse Address Resolution Protocol (RARP) 31
2.1.4 Classless Interdomain Routing (CIDR) 32
2.1.5 IP Version 6 (IPv6, or IPng) 33
2.1.6 Internet Control Message Protocol (ICMP) 41
2.1.7 Internet Group Management Protocol (IGMP) 41

2.2 Transport Layer Protocols 42
2.2.1 Transmission Control Protocol (TCP) 42
2.2.2 User Datagram Protocol (UDP) 45

vi CONTENTS

2.3 World Wide Web 47
2.3.1 Hypertext Transfer Protocol (HTTP) 48
2.3.2 Hypertext Markup Language (HTML) 48
2.3.3 Common Gateway Interface (CGI) 49
2.3.4 Java 49

2.4 File Transfer 50
2.4.1 File Transfer Protocol (FTP) 50
2.4.2 Trivial File Transfer Protocol (TFTP) 50
2.4.3 Network File System (NFS) 50

2.5 Electronic Mail 51
2.5.1 Simple Mail Transfer Protocol (SMTP) 51
2.5.2 Post Office Protocol Version 3 (POP3) 52
2.5.3 Internet Message Access Protocol (IMAP) 52
2.5.4 Multipurpose Internet Mail Extension (MIME) 52

2.6 Network Management Service 53
2.6.1 Simple Network Management Protocol (SNMP) 53

2.7 Converting IP Addresses 54
2.7.1 Domain Name System (DNS) 54

2.8 Routing Protocols 54
2.8.1 Routing Information Protocol (RIP) 54
2.8.2 Open Shortest Path First (OSPF) 55
2.8.3 Border Gateway Protocol (BGP) 55

2.9 Remote System Programs 56
2.9.1 TELNET 56
2.9.2 Remote Login (Rlogin) 56

3 Symmetric Block Ciphers 57
3.1 Data Encryption Standard (DES) 57

3.1.1 Description of the Algorithm 58
3.1.2 Key Schedule 60
3.1.3 DES Encryption 62
3.1.4 DES Decryption 67
3.1.5 Triple DES 71
3.1.6 DES-CBC Cipher Algorithm with IV 73

3.2 International Data Encryption Algorithm (IDEA) 75
3.2.1 Subkey Generation and Assignment 76
3.2.2 IDEA Encryption 77
3.2.3 IDEA Decryption 82

3.3 RC5 Algorithm 84
3.3.1 Description of RC5 85
3.3.2 Key Expansion 86
3.3.3 Encryption 91
3.3.4 Decryption 92

3.4 RC6 Algorithm 95
3.4.1 Description of RC6 95

CONTENTS vii

3.4.2 Key Schedule 96
3.4.3 Encryption 97
3.4.4 Decryption 100

3.5 AES (Rijndael) Algorithm 107
3.5.1 Notational Conventions 107
3.5.2 Mathematical Operations 108
3.5.3 AES Algorithm Specification 111

4 Hash Function, Message Digest and Message Authentication Code 123
4.1 DMDC Algorithm 123

4.1.1 Key Schedule 124
4.1.2 Computation of Message Digests 128

4.2 Advanced DMDC Algorithm 133
4.2.1 Key Schedule 133
4.2.2 Computation of Message Digests 136

4.3 MD5 Message-digest Algorithm 138
4.3.1 Append Padding Bits 138
4.3.2 Append Length 138
4.3.3 Initialise MD Buffer 138
4.3.4 Define Four Auxiliary Functions (F, G, H, I) 139
4.3.5 FF, GG, HH and II Transformations for Rounds

1, 2, 3 and 4 139
4.3.6 Computation of Four Rounds (64 Steps) 140

4.4 Secure Hash Algorithm (SHA-1) 149
4.4.1 Message Padding 149
4.4.2 Initialise 160-Bit Buffer 150
4.4.3 Functions Used 150
4.4.4 Constants Used 150
4.4.5 Computing the Message Digest 151

4.5 Hashed Message Authentication Codes (HMAC) 155

5 Asymmetric Public-key Cryptosystems 161
5.1 Diffie–Hellman Exponential Key Exchange 161
5.2 RSA Public-key Cryptosystem 165

5.2.1 RSA Encryption Algorithm 165
5.2.2 RSA Signature Scheme 170

5.3 ElGamals Public-key Cryptosystem 172
5.3.1 ElGamal Encryption 173
5.3.2 ElGamal Signatures 175
5.3.3 ElGamal Authentication Scheme 177

5.4 Schnorr’s Public-key Cryptosystem 179
5.4.1 Schnorr’s Authentication Algorithm 179
5.4.2 Schnorr’s Signature Algorithm 181

5.5 Digital Signature Algorithm 184

viii CONTENTS

5.6 The Elliptic Curve Cryptosystem (ECC) 187
5.6.1 Elliptic Curves 187
5.6.2 Elliptic Curve Cryptosystem Applied to the ElGamal

Algorithm 195
5.6.3 Elliptic Curve Digital Signature Algorithm 196
5.6.4 ECDSA Signature Computation 198

6 Public-key Infrastructure 201
6.1 Internet Publications for Standards 202
6.2 Digital Signing Techniques 203
6.3 Functional Roles of PKI Entities 210

6.3.1 Policy Approval Authority 210
6.3.2 Policy Certification Authority 212
6.3.3 Certification Authority 213
6.3.4 Organisational Registration Authority 214

6.4 Key Elements for PKI Operations 215
6.4.1 Hierarchical Tree Structures 216
6.4.2 Policy-making Authority 217
6.4.3 Cross-certification 218
6.4.4 X.500 Distinguished Naming 221
6.4.5 Secure Key Generation and Distribution 222

6.5 X.509 Certificate Formats 222
6.5.1 X.509 v1 Certificate Format 223
6.5.2 X.509 v2 Certificate Format 225
6.5.3 X.509 v3 Certificate Format 226

6.6 Certificate Revocation List 233
6.6.1 CRL Fields 234
6.6.2 CRL Extensions 235
6.6.3 CRL Entry Extensions 237

6.7 Certification Path Validation 238
6.7.1 Basic Path Validation 239
6.7.2 Extending Path Validation 240

7 Network Layer Security 243
7.1 IPsec Protocol 243

7.1.1 IPsec Protocol Documents 244
7.1.2 Security Associations (SAs) 246
7.1.3 Hashed Message Authentication Code (HMAC) 248

7.2 IP Authentication Header 250
7.2.1 AH Format 251
7.2.2 AH Location 253

7.3 IP ESP 253
7.3.1 ESP Packet Format 254
7.3.2 ESP Header Location 256
7.3.3 Encryption and Authentication Algorithms 258

CONTENTS ix

7.4 Key Management Protocol for IPsec 260
7.4.1 OAKLEY Key Determination Protocol 260
7.4.2 ISAKMP 261

8 Transport Layer Security: SSLv3 and TLSv1 277
8.1 SSL Protocol 277

8.1.1 Session and Connection States 278
8.1.2 SSL Record Protocol 279
8.1.3 SSL Change Cipher Spec Protocol 282
8.1.4 SSL Alert Protocol 283
8.1.5 SSL Handshake Protocol 284

8.2 Cryptographic Computations 290
8.2.1 Computing the Master Secret 290
8.2.2 Converting the Master Secret into Cryptographic

Parameters 291
8.3 TLS Protocol 293

8.3.1 HMAC Algorithm 293
8.3.2 Pseudo-random Function 296
8.3.3 Error Alerts 300
8.3.4 Certificate Verify Message 302
8.3.5 Finished Message 302
8.3.6 Cryptographic Computations (For TLS) 302

9 Electronic Mail Security: PGP, S/MIME 305
9.1 PGP 305

9.1.1 Confidentiality via Encryption 306
9.1.2 Authentication via Digital Signature 307
9.1.3 Compression 308
9.1.4 Radix-64 Conversion 309
9.1.5 Packet Headers 313
9.1.6 PGP Packet Structure 315
9.1.7 Key Material Packet 319
9.1.8 Algorithms for PGP 5.x 323

9.2 S/MIME 324
9.2.1 MIME 325
9.2.2 S/MIME 331
9.2.3 Enhanced Security Services for S/MIME 335

10 Internet Firewalls for Trusted Systems 339
10.1 Role of Firewalls 339
10.2 Firewall-Related Terminology 340

10.2.1 Bastion Host 341
10.2.2 Proxy Server 341
10.2.3 SOCKS 342
10.2.4 Choke Point 343

x CONTENTS

10.2.5 De-militarised Zone (DMZ) 343
10.2.6 Logging and Alarms 343
10.2.7 VPN 344

10.3 Types of Firewalls 344
10.3.1 Packet Filters 344
10.3.2 Circuit-level Gateways 349
10.3.3 Application-level Gateways 349

10.4 Firewall Designs 350
10.4.1 Screened Host Firewall (Single-homed Bastion Host) 351
10.4.2 Screened Host Firewall (Dual-homed Bastion Host) 351
10.4.3 Screened Subnet Firewall 352

11 SET for E-commerce Transactions 355
11.1 Business Requirements for SET 355
11.2 SET System Participants 357
11.3 Cryptographic Operation Principles 358
11.4 Dual Signature and Signature Verification 359
11.5 Authentication and Message Integrity 363
11.6 Payment Processing 366

11.6.1 Cardholder Registration 366
11.6.2 Merchant Registration 371
11.6.3 Purchase Request 373
11.6.4 Payment Authorisation 374
11.6.5 Payment Capture 376

Acronyms 379

Bibliography 383

Index 391

About the Author

Man Young Rhee received his B.S.E.E degree from Seoul National University in 1952
and his M.S.E.E and Ph.D. degree from the University of Colorado in 1956 and 1958,
respectively. Since 1997, Dr. Rhee is an Invited Professor of Electrical and Computer
Engineering, Seoul National University. He is also Professor Emeritus of Electrical Engi-
neering at Hanyang University, Seoul, Korea. At the same university he served as Vice
President. Dr. Rhee taught at the Virginia Polytechnic Institute and State University
(U.S.A.) as a professor and was employed at the Jet Propulsion Laboratory, California
Institute of Technology.

In Korea, he was Vice President of the Agency for Defense Development, Ministry
of National Defense, R.O.K.; President of the Korea Telecommunications Company (dur-
ing 1977–79 the ESS Telephone Exchange system was first developed in Korea); and
President of the Samsung Semiconductor and Telecommunications Company.

From 1990 to 1997 he was President of the Korea Institute of Information Security
and Cryptology. During the year 1996–99, he served as Chairman of the Board of Direc-
tors, Korea Information Security Agency, Ministry of Information and Communication,
R.O.K.

Dr. Rhee is a member of the National Academy of Sciences, Senior Fellow of the Korea
Academy of Science and Technology, and honorary member of the National Academy
of Engineering of Korea. He was a recipient of the Outstanding Scholastic Achievement
Prize from the National Academy of Sciences, R.O.K. He was also awarded the NAEK
Grand Prize from the National Academy of Engineering of Korea.

Dr. Rhee is the author of four books: Error Correcting Coding Theory (McGraw-Hill,
1989), Cryptography and Secure Communications (McGraw- Hill, 1994), CDMA Cellular

Mobile Communications and Network Security (Prentice Hall, 1998) and Internet Security

(John Wiley, 2003). His CDMA book was recently translated into Japanese (2001) and
Chinese (2002), respectively.

His research interests include cryptography, error correcting coding, wireless Internet
security and CDMA mobile communications.

Dr. Rhee is a member of the Advisory Board for the International Journal of Infor-

mation Security, a member of the Editorial Board for the Journal of Information and

Optimization Sciences, and a member of the Advisory Board for the Journal of Commu-

nications and Networks. He was a frequent invited visitor for lecturing on Cryptography
and Network Security for the graduate students at the University of Tokyo, Japan.

Preface

The Internet is global in scope, but this global internetwork is an open insecure medium.
The Internet has revolutionised the computing and communications world for the purpose
of development and support of client and server services. The availability of the Internet,
along with powerful affordable computing and communications, has made possible a new
paradigm of commercial world. This has been tremendously accelerated by the adoption
of browsers and World Wide Web technology, allowing users easy access to information
linked throughout the globe. The Internet has truly proven to be an essential vehicle of
information trade today.

The Internet is today a widespread information infrastructure, a mechanism for infor-
mation dissemination, and a medium for collaboration and interaction between individuals,
government agencies, financial institutions, academic circles and businesses of all sizes,
without regard for geographic location.

People have become increasingly dependent on the Internet for personal and profes-
sional use regardless of whether it is for e-mail, file transfer, remote login, Web page
access or commercial transactions. With the increased awareness and popularity of the
Internet, Internet security problems have been brought to the fore. Internet security is
not only extremely important, but more technically complex than in the past. The mere
fact that business is being performed online over an insecure medium is enough to entice
criminal activity to the Internet.

The Internet access often creates a threat as a security flaw. To protect users from Internet-
based attacks and to provide adequate solutions when security is imposed, cryptographic
techniques must be employed to solve these problems. This book is designed to reflect the
central role of cryptographic operations, principles, algorithms and protocols in Internet
security. The remedy for all kinds of threats created by criminal activities should rely on
cryptographic resolution. Authentication, message integrity and encryption are very impor-
tant in cultivating, improving, and promoting Internet security. Without such authentication
procedures, an attacker could impersonate anyone and then gain access to the network.
Message integrity is required because data may be altered as it travels through the Internet.
Without confidentiality by encryption, information may become truly public.

The material in this book presents the theory and practice on Internet security and its
implementation through a rigorous, thorough and qualitative presentation in depth. The
level of the book is designed to be suitable for senior and graduate students, professional
engineers and researchers as an introduction to Internet security principles. The book

xiv PREFACE

consists of 11 chapters and focuses on the critical security issues related to the Internet.
The following is a summary of the contents of each chapter.

Chapter 1 begins with a brief history of the Internet and describes topics covering
(1) networking fundamentals such as LANs (Ethernet, Token Ring, FDDI), WANs (Frame
Relay, X.25, PPP) and ATM; (2) connecting devices such as circuit- and packet-switches,
repeaters, bridges, routers, and gateways; (3) the OSI model which specifies the function-
ality of its seven layers; and finally (4) a TCP/IP five-layer suite providing a hierarchical
protocol made up of physical standards, a network interface and internetworking.

Chapter 2 presents a state-of-the-art survey of the TCP/IP suite. Topics covered include
(1) TCP/IP network layer protocols such as ICMP, IP version 4 and IP version 6 relat-
ing to the IP packet format, addressing (including ARP, RARP and CIDR) and rout-
ing; (2) transport layer protocols such as TCP and UDP; (3) HTTP for the World Wide
Web; (4) FTP, TFTP and NFS protocols for file transfer; (5) SMTP, POP3, IMAP and
MIME for e-mail; and (6) SNMP protocol for network management.

Chapter 3 deals with some of the important contemporary block cipher algorithms that
have been developed over recent years with an emphasis on the most widely used encryp-
tion techniques such as Data Encryption Standard (DES), International Data Encryption
Algorithm (IDEA), the RC5 and RC6 encryption algorithms, and Advanced Encryption
Standard (AES). AES specifies an FIPS-approved Rijndael algorithm (2001) that can pro-
cess data blocks of 128 bits, using cipher keys with lengths of 128, 192 and 256 bits.
DES is not new, but it has survived remarkably well over 20 years of intense cryptanal-
ysis. The complete analysis of triple DES-EDE in CBC mode is also included., Pretty
Good Privacy (PGP) used for electronic mail (e-mail) and file storage applications utilises
IDEA for conventional block encryption, along with RSA for public key encryption and
MD5 for hash coding. RC5 and RC6 are both parameterised block algorithms of variable
size, variable number of rounds, and a variable-length key. They are designed for great
flexibility in both performance and level of security.

Chapter 4 covers the various authentication techniques based on digital signatures. It
is often necessary for communication parties to verify each other’s identity. One practical
way to do this is the use of cryptographic authentication protocols employing a one-way
hash function. Several contemporary hash functions (such as DMDC, MD5 and SHA-1)
are introduced to compute message digests or hash codes for providing a systematic
approach to authentication. This chapter also extends the discussion to include the Internet
standard HMAC, which is a secure digest of protected data. HMAC is used with a variety
of different hash algorithms, including MD5 and SHA-1. Transport Layer Security (TLS)
also makes use of the HMAC algorithm.

Chapter 5 describes several public-key cryptosystems brought in after conventional
encryption. This chapter concentrates on their use in providing techniques for public-key
encryption, digital signature and authentication. This chapter covers in detail the widely
used Diffie–Hellman key exchange technique (1976), the Rivest–Schamir–Adleman
(RSA) algorithm (1978), the ElGamal algorithm (1985), the Schnorr algorithm (1990),
the Digital Signature Algorithm (DSA, 1991) and the Elliptic Curve Cryptosystem
(ECC, 1985) and Elliptic Curve Digital Signature Algorithm (ECDSA, 1999).

Chapter 6 presents profiles related to a public-key infrastructure (PKI) for the Internet.
The PKI automatically manages public keys through the use of public-key certificates. The

PREFACE xv

Policy Approval Authority (PAA) is the root of the certificate management infrastructure.
This authority is known to all entities at entire levels in the PKI, and creates guidelines that
all users, CAs and subordinate policy-making authorities must follow. Policy Certificate
Authorities (PCAs) are formed by all entities at the second level of the infrastructure.
PCAs must publish their security policies, procedures, legal issues, fees and any other
subjects they may consider necessary. Certification Authorities (CAs) form the next level
below the PCAs. The PKI contains many CAs that have no policy-making responsibilities.
A CA has any combination of users and RAs whom it certifies. The primary function of the
CA is to generate and manage the public-key certificates that bind the user’s identity with
the user’s public key. The Registration Authority (RA) is the interface between a user and
a CA. The primary function of the RA is user identification and authentication on behalf
of a CA. It also delivers the CA-generated certificate to the end user. X.500 specifies the
directory service. X.509 describes the authentication service using the X.500 directory.
X.509 certificates have evolved through three versions: version 1 in 1988, version 2 in
1993 and version 3 in 1996. X.509 v3 is now found in numerous products and Internet
standards. These three versions are explained in turn. Finally, Certificate Revocation
Lists (CRLs) are used to list unexpired certificates that have been revoked. CRLs may
be revoked for a variety of reasons, ranging from routine administrative revocations to
situations where private keys are compromised. This chapter also includes the certification
path validation procedure for the Internet PKI and architectural structures for the PKI
certificate management infrastructure.

Chapter 7 describes the IPsec protocol for network layer security. IPsec provides the
capability to secure communications across a LAN, across a virtual private network (VPN)
over the Internet or over a public WAN. Provision of IPsec enables a business to rely heav-
ily on the Internet. The IPsec protocol is a set of security extensions developed by IETF to
provide privacy and authentication services at the IP layer using cryptographic algorithms
and protocols. To protect the contents of an IP datagram, there are two main transfor-
mation types: the Authentication Header (AH) and the Encapsulating Security Payload
(ESP). These are protocols to provide connectionless integrity, data origin authentication,
confidentiality and an anti-replay service. A Security Association (SA) is fundamental
to IPsec. Both AH and ESP make use of a SA that is a simple connection between a
sender and receiver, providing security services to the traffic carried on it. This chapter
also includes the OAKLEY key determination protocol and ISAKMP.

Chapter 8 discusses Secure Socket Layer version 3 (SSLv3) and Transport Layer
Security version 1 (TLSv1). The TLSv1 protocol itself is based on the SSLv3 protocol
specification. Many of the algorithm-dependent data structures and rules are very simi-
lar, so the differences between TLSv1 and SSLv3 are not dramatic. The TLSv1 protocol
provides communications privacy and data integrity between two communicating parties
over the Internet. Both protocols allow client/server applications to communicate in a
way that is designed to prevent eavesdropping, tampering or message forgery. The SSL
or TLS protocols are composed of two layers: Record Protocol and Handshake Protocol.
The Record Protocol takes an upper-layer application message to be transmitted, frag-
ments the data into manageable blocks, optionally compresses the data, applies a MAC,
encrypts it, adds a header and transmits the result to TCP. Received data is decrypted to
higher-level clients. The Handshake Protocol operated on top of the Record Layer is the

xvi PREFACE

most important part of SSL or TLS. The Handshake Protocol consists of a series of mes-
sages exchanged by client and server. This protocol provides three services between the
server and client. The Handshake Protocol allows the client/server to agree on a protocol
version, to authenticate each other by forming a MAC, and to negotiate an encryption
algorithm and cryptographic keys for protecting data sent in an SSL record before the
application protocol transmits or receives its first byte of data.

A keyed hashing message authentication code (HMAC) is a secure digest of some
protected data. Forging an HMAC is impossible without knowledge of the MAC secret.
HMAC can be used with a variety of different hash algorithms: MD5 and SHA-1, denoting
these as HMAC-MD5 (secret, data) and SHA-1 (secret, data). There are two differences
between the SSLv3 scheme and the TLS MAC scheme: TSL makes use of the HMAC
algorithm defined in RFC 2104; and TLS master-secret computation is also different from
that of SSLv3.

Chapter 9 describes e-mail security. Pretty Good Privacy (PGP), invented by Philip
Zimmermann, is widely used in both individual and commercial versions that run on a
variety of platforms throughout the global computer community. PGP uses a combination
of symmetric secret-key and asymmetric public-key encryption to provide security services
for e-mail and data files. PGP also provides data integrity services for messages and
data files using digital signatures, encryption, compression (ZIP) and radix-64 conversion
(ASCII Armor). With growing reliance on e-mail and file storage, authentication and
confidentiality services are increasingly important. Multipurpose Internet Mail Extension
(MIME) is an extension to the RFC 822 framework which defines a format for text
messages sent using e-mail. MIME is actually intended to address some of the problems
and limitations of the use of SMTP. S/MIME is a security enhancement to the MIME
Internet e-mail format standard, based on technology from RSA Data Security. Although
both PGP and S/MIME are on an IETF standards track, it appears likely that PGP will
remain the choice for personal e-mail security for many users, while S/MIME will emerge
as the industry standard for commercial and organisational use. The two PGP and S/MIME
schemes are covered in this chapter.

Chapter 10 discusses the topic of firewalls as an effective means of protecting an
internal system from Internet-based security threats. A firewall is a security gateway that
controls access between the public Internet and a private internal network (or intranet). A
firewall is an agent that screens network traffic in some way, blocking traffic it believes to
be inappropriate, dangerous or both. The security concerns that inevitably arise between
the sometimes hostile Internet and secure intranets are often dealt with by inserting one or
more firewalls on the path between the Internet and the internal network. In reality, Internet
access provides benefits to individual users, government agencies and most organisations.
But this access often creates a security threat.

Firewalls act as an intermediate server in handling SMTP and HTTP connections in
either direction. Firewalls also require the use of an access negotiation and encapsulation
protocol such as SOCKS to gain access to the Internet, to the intranet or both. Many
firewalls support tri-homing, allowing the use of a DMZ network. To design and configure
a firewall, it needs to be familiar with some basic terminology such as a bastion host,
proxy server, SOCKS, choke point, DMZ, logging and alarming, VPN, etc. Firewalls are

PREFACE xvii

classified into three main categories: packet filters, circuit-level gateways and application-
level gateways. In this chapter, each of these firewalls is examined in turn. Finally, this
chapter discusses screened host firewalls and how to implement a firewall strategy. To
provide a certain level of security, the three basic firewall designs are considered: a
single-homed bastion host, a dual-homed bastion host and a screened subnet firewall.

Chapter 11 covers the SET protocol designed for protecting credit card transactions
over the Internet. The recent explosion in e-commerce has created huge opportunities
for consumers, retailers and financial institutions alike. SET relies on cryptography and
X.509 v3 digital certificates to ensure message confidentiality, payment integrity and
identity authentication. Using SET, consumers and merchants are protected by ensuring
that payment information is safe and can only be accessed by the intended recipient. SET
combats the risk of transaction information being altered in transit by keeping information
securely encrypted at all times and by using digital certificates to verify the identity of
those accessing payment details. SET is the only Internet transaction protocol to provide
security through authentication. Message data is encrypted with a random symmetric
key which is then encrypted using the recipient’s public key. The encrypted message,
along with this digital envelope, is sent to the recipient. The recipient decrypts the digital
envelope with a private key and then uses the symmetric key to recover the original
message. SET addresses the anonymity of Internet shopping by using digital signatures and
digital certificates to authenticate the banking relationships of cardholders and merchants.
How to ensure secure payment card transactions on the Internet is fully explored in
this chapter.

The scope of this book is adequate to span a one- or two-semester course at a senior
or first-year graduate level. As a reference book, it will be useful to computer engineers,
communications engineers and system engineers. It is also suitable for self-study. The
book is intended for use in both academic and professional circles, and it is also suitable
for corporate training programmes or seminars for industrial organisations as well as
research institutes. At the end of the book, there is a list of frequently used acronyms,
and a bibliography.

Man Young Rhee
Seoul, Korea

1
Internetworking and Layered Models

The Internet today is a widespread information infrastructure, but it is inherently an
insecure channel for sending messages. When a message (or packet) is sent from one
Website to another, the data contained in the message are routed through a number of
intermediate sites before reaching its destination. The Internet was designed to accom-
modate heterogeneous platforms so that people who are using different computers and
operating systems can communicate. The history of the Internet is complex and involves
many aspects – technological, organisational and community. The Internet concept has
been a big step along the path towards electronic commerce, information acquisition and
community operations.

Early ARPANET researchers accomplished the initial demonstrations of packet-
switching technology. In the late 1970s, the growth of the Internet was recognised and
subsequently a growth in the size of the interested research community was accompanied
by an increased need for a coordination mechanism. The Defense Advanced Research
Projects Agency (DARPA) then formed an International Cooperation Board (ICB) to
coordinate activities with some European countries centered on packet satellite research,
while the Internet Configuration Control Board (ICCB) assisted DARPA in managing
Internet activity. In 1983, DARPA recognised that the continuing growth of the Internet
community demanded a restructuring of coordination mechanisms. The ICCB was dis-
banded and in its place the Internet Activities Board (IAB) was formed from the chairs
of the Task Forces. The IAB revitalised the Internet Engineering Task Force (IETF) as
a member of the IAB. By 1985, there was a tremendous growth in the more practical
engineering side of the Internet. This growth resulted in the creation of a substructure
to the IETF in the form of working groups. DARPA was no longer the major player in
the funding of the Internet. Since then, there has been a significant decrease in Internet
activity at DARPA. The IAB recognised the increasing importance of IETF, and restruc-
tured to recognise the Internet Engineering Steering Group (IESG) as the major standards
review body. The IAB also restructured to create the Internet Research Task Force (IRTF)
along with the IETF.

Internet Security. Edited by M.Y. Rhee
 2003 John Wiley & Sons, Ltd ISBN 0-470-85285-2

2 INTERNET SECURITY

Since the early 1980s, the Internet has grown beyond its primarily research roots, to
include both a broad user community and increased commercial activity. This growth
in the commercial sector brought increasing concern regarding the standards process.
Increased attention was paid to making progress, eventually leading to the formation of
the Internet Society in 1991. In 1992, the Internet Activities Board was reorganised and
renamed the Internet Architecture board (IAB) operating under the auspices of the Internet
Society. The mutually supportive relationship between the new IAB, IESG and IETF led
to them taking more responsibility for the approval of standards, along with the provision
of services and other measures which would facilitate the work of the IETF.

1.1 Networking Technology

Data signals are transmitted from one device to another using one or more types of
transmission media, including twisted-pair cable, coaxial cable and fibre-optic cable. A
message to be transmitted is the basic unit of network communications. A message may
consist of one or more cells, frames or packets which are the elemental units for network
communications. Networking technology includes everything from local area networks
(LANs) in a limited geographic area such as a single building, department or campus to
wide area networks (WANs) over large geographical areas that may comprise a country,
a continent or even the whole world.

1.1.1 Local Area Networks (LANs)

A local area network (LAN) is a communication system that allows a number of indepen-
dent devices to communicate directly with each other in a limited geographic area such
as a single office building, a warehouse or a campus. LANs are standardised by three
architectural structures: Ethernet, token ring and fibre distributed data interface (FDDI).

1.1.1.1 Ethernet

Ethernet is a LAN standard originally developed by Xerox and later extended by a joint
venture between Digital Equipment Corporation (DEC), Intel Corporation and Xerox.
The access mechanism used in an Ethernet is called Carrier Sense Multiple Access with
Collision Detection (CSMA/CD). In CSMA/CD, before a station transmits data, it must
check the medium where any other station is currently using the medium. If no other
station is transmitting, the station can send its data. If two or more stations send data
at the same time, it may result in a collision. Therefore, all stations should continuously
check the medium to detect any collision. If a collision occurs, all stations ignore the data
received. The sending stations wait for a period of time before resending the data. To
reduce the possibility of a second collision, the sending stations individually generate a
random number that determinates how long the station should wait before resending data.

1.1.1.2 Token Ring

Token ring, a LAN standard originally developed by IBM, uses a logical ring topology.
The access method used by CSMA/CD may result in collisions. Therefore, stations may

INTERNETWORKING AND LAYERED MODELS 3

attempt to send data many times before a transmission captures a perfect link. This
redundancy can create delays of indeterminable length if traffic is heavy. There is no way
to predict either the occurrence of collisions or the delays produced by multiple stations
attempting to capture the link at the same time. Token ring resolves this uncertainty by
making stations take turns in sending data.

As an access method, the token is passed from station to station in sequence until it
encounters a station with data to send. The station to be sent data waits for the token. The
station then captures the token and sends its data frame. This data frame proceeds around
the ring and each station regenerates the frame. Each intermediate station examines the
destination address, finds that the frame is addressed to another station, and relays it to
its neighbouring station. The intended recipient recognises its own address, copies the
message, checks for errors and changes four bits in the last byte of the frame to indicate
that the address has been recognised and the frame copied. The full packet then continues
around the ring until it returns to the station that sent it.

1.1.1.3 Fiber Distributed Data Interface (FDDI)

FDDI is a LAN protocol standardised by ANSI and ITU-T. It supports data rates of
100 Mbps and provides a high-speed alternative to Ethernet and token ring. When FDDI
was designed, the data rate of 100 Mbps required fibre-optic cable.

The access method in FDDI is also called token passing. In a token ring network,
a station can send only one frame each time it captures the token. In FDDI, the token
passing mechanism is slightly different in that access is limited by time. Each station
keeps a timer which shows when the token should leave the station. If a station receives
the token earlier than the designated time, it can keep the token and send data until the
scheduled leaving time. On the other hand, if a station receives the token at the designated
time or later than this time, it should let the token pass to the next station and wait for
its next turn.

FDDI is implemented as a dual ring. In most cases, data transmission is confined to the
primary ring. The secondary ring is provided in case of the primary ring’s failure. When
a problem occurs on the primary ring, the secondary ring can be activated to complete
data circuits and maintain service.

1.1.2 Wide Area Networks (WANs)

A WAN provides long-distance transmission of data, voice, image and video information
over large geographical areas that may comprise a country, a continent or even the world.
In contrast to LANs (which depend on their own hardware for transmission), WANs can
utilise public, leased or private communication devices, usually in combination.

1.1.2.1 PPP

The Point-to-Point Protocol (PPP) is designed to handle the transfer of data using either
asynchronous modem links or high-speed synchronous leased lines. The PPP frame uses
the following format:

4 INTERNET SECURITY

• Flag field: Each frame starts with a one-byte flag whose value is 7E(0111 1110). The
flag is used for synchronisation at the bit level between the sender and receiver.

• Address field: This field has the value of FF(1111 1111).
• Control field: This field has the value of 03(0000 0011).
• Protocol field: This is a two-byte field whose value is 0021(0000 0000 0010 0001)

for TCP/IP.
• Data field: The data field ranges up to 1500 bytes.
• CRC: This is a two-byte cyclic redundancy check. Cyclic redundancy check (CRC)

is implemented in the physical layer for use in the data link layer. A sequence of
redundant bits (CRC) is appended to the end of a data unit so that the resulting data
unit becomes exactly divisible by a predetermined binary number. At its destination,
the incoming data unit is divided by the same number. If there is no remainder, the
data unit is accepted. If a remainder exists, the data unit has been damaged in transit
and therefore must be rejected.

1.1.2.2 X.25

X.25 is widely used, as the packet switching protocol provided for use in a WAN. It was
developed by the ITU-T in 1976. X.25 is an interface between data terminal equipment
and data circuit terminating equipment for terminal operations at the packet mode on a
public data network.

X.25 defines how a packet mode terminal can be connected to a packet network for
the exchange of data. It describes the procedures necessary for establishing connection,
data exchange, acknowledgement, flow control and data control.

1.1.2.3 Frame Relay

Frame relay is a WAN protocol designed in response to X.25 deficiencies. X.25 provides
extensive error-checking and flow control. Packets are checked for accuracy at each station
to which they are routed. Each station keeps a copy of the original frame until it receives
confirmation from the next station that the frame has arrived intact. Such station-to-station
checking is implemented at the data link layer of the OSI model, but X.25 only checks
for errors from source to receiver at the network layer. The source keeps a copy of the
original packet until it receives confirmation from the final destination. Much of the traffic
on an X.25 network is devoted to error-checking to ensure reliability of service. Frame
relay does not provide error-checking or require acknowledgement in the data link layer.
Instead, all error-checking is left to the protocols at the network and transport layers,
which use the frame relay service. Frame relay only operates at the physical and data
link layer.

1.1.2.4 Asynchronous Transfer Mode (ATM)

ATM is a revolutionary idea for restructuring the infrastructure of data communication. It
is designed to support the transmission of data, voice and video through a high data-rate
transmission medium such as fibre-optic cable. ATM is a protocol for transferring cells. A
cell is a small data unit of 53 bytes long, made of a 5-byte header and a 48-byte payload.

INTERNETWORKING AND LAYERED MODELS 5

The header contains a virtual path identifier (VPI) and a virtual channel identifier (VCI).
These two identifiers are used to route the cell through the network to the final destination.

An ATM network is a connection-oriented cell switching network. This means that the
unit of data is not a packet as in a packet switching network, or a frame as in a frame relay,
but a cell. However, ATM, like X.25 and frame relay, is a connection-oriented network,
which means that before two systems can communicate, they must make a connection. To
start up a connection, a system uses a 20-byte address. After the connection is established,
the combination of VPI/VCI leads a cell from its source to its final destination.

1.2 Connecting Devices

Connecting devices are used to connect the segments of a network together or to connect
networks to create an internetwork. These devices are classified into five categories:
switches, repeaters, bridges, routers and gateways. Each of these devices except the first
one (switches) interacts with protocols at different layers of the OSI model.

Repeaters forward all electrical signals and are active only at the physical layer. Bridges
store and forward complete packets and affect the flow control of a single LAN. Bridges
are active at the physical and data link layers. Routers provide links between two separate
LANs and are active in the physical, data link and network layers. Finally, gateways
provide translation services between incompatible LANs or applications, and are active
in all layers.

Connection devices that interact with protocols at different layers of the OSI model
are shown in Figure 1.1.

1.2.1 Switches

A switched network consists of a series of interlinked switches. Switches are hard-
ware/software devices capable of creating temporary connections between two or more
devices to the switch but not to each other. Switching mechanisms are generally classified
into three methods: circuit switching, packet switching and message switching.

Physical (L1)

Data link (L2)

Network (L3)

Transport (L4)

Session (L5)

Presentation (L6)

Application (L7)

Gateway

Router

Bridge

Repeater

Figure 1.1 Connecting devices.

6 INTERNET SECURITY

• Circuit switching creates a direct physical connection between two devices such as
telephones or computers. Once a connection is made between two systems, circuit
switching creates a dedicated path between two end users. The end users can use the
path for as long as they want.

• Packet switching is one way to provide a reasonable solution for data transmission.
In a packet-switched network, data are transmitted in discrete units of variable-length
blocks called packets. Each packet contains not only data, but also a header with
control information. The packets are sent over the network node to node. At each
node, the packet is stored briefly before being routed according to the information in
its header.

In the datagram approach to packet switching, each packet is treated independently
of all others as though it exists alone. In the virtual circuit approach to packet switch-
ing, if a single route is chosen between sender and receiver at the beginning of the
session, all packets travel one after another along that route. Although these two
approaches seem the same, there exists a fundamental difference between them. In
circuit switching, the path between the two end users consists of only one channel.
In the virtual circuit, the line is not dedicated to two users. The line is divided into
channels and each channel can use one of the channels in a link.

• Message switching is known as the store and forwarding method. In this approach, a
computer (or a node) receives a message, stores it until the appropriate route is free,
then sends it out. This method has now been phased out.

1.2.2 Repeaters

A repeater is an electronic device that operates on the physical layer only of the OSI
model. A repeater boosts the transmission signal from one segment and continues the
signal to another segment. Thus, a repeater allows us to extend the physical length of
a network. Signals that carry information can travel a limited distance within a network
before degradation of the data integrity due to noise. A repeater receives the signal before
attenuation, regenerates the original bit pattern and puts the restored copy back on to
the link.

1.2.3 Bridges

Bridges operate in both the physical and the data link layers of the OSI model. A sin-
gle bridge connects different types of networks together and promotes interconnectivity
between networks. Bridges divide a large network into smaller segments. Unlike repeaters,
bridges contain logic that allows them to keep separate the traffic for each segment.
Bridges are smart enough to relay a frame towards the intended recipient so that traffic can
be filtered. In fact, this filtering operation makes bridges useful for controlling congestion,
isolating problem links and promoting security through this partitioning of traffic.

A bridge can access the physical addresses of all stations connected to it. When a
frame enters a bridge, the bridge not only regenerates the signal but also checks the
address of the destination and forwards the new copy to the segment to which the address
belongs. When a bridge encounters a packet, it reads the address contained in the frame
and compares that address with a table of all the stations on both segments. When it finds

INTERNETWORKING AND LAYERED MODELS 7

a match, it discovers to which segment the station belongs and relays the packet to that
segment only.

1.2.4 Routers

Routers operate in the physical, data link and network layers of the OSI model. The
Internet is a combination of networks connected by routers. When a datagram goes from
a source to a destination, it will probably pass through many routers until it reaches the
router attached to the destination network. Routers determine the path a packet should
take. Routers relay packets among multiple interconnected networks. In particular, an IP
router forwards IP datagrams among the networks to which it connects. A router uses the
destination address on a datagram to choose a next-hop to which it forwards the datagram.
A packet sent from a station on one network to a station on a neighbouring network goes
first to a jointly held router, which switches it over the destination network. In fact, the
easiest way to build the Internet is to connect two or more networks with a router. Routers
provide connections to many different types of physical networks: Ethernet, token ring,
point-to-point links, FDDI and so on.

• The routing module receives an IP packet from the processing module. If the packet
is to be forwarded, it should be passed to the routing module. It finds the IP address
of the next station along with the interface number from which the packet should
be sent. It then sends the packet with information to the fragmentation module. The
fragmentation module consults the MTU table to find the maximum transfer unit
(MTU) for the specific interface number.

• The routing table is used by the routing module to determine the next-hop address of
the packet. Every router keeps a routing table that has one entry for each destination
network. The entry consists of the destination network IP address, the shortest distance
to reach the destination in hop count, and the next router (next hop) to which the
packet should be delivered to reach its final destination. The hop count is the number
of networks a packet enters to reach its final destination. A router should have a
routing table to consult when a packet is ready to be forwarded. The routing table
should specify the optimum path for the packet. The table can be either static or
dynamic. A static table is one that is not changed frequently, but a dynamic table is
one that is updated automatically when there is a change somewhere in the Internet.
Today, the Internet needs dynamic routing tables.

• A metric is a cost assigned for passing through a network. The total metric of a
particular router is equal to the sum of the metrics of networks that comprise the
route. A router chooses the route with the shortest (smallest value) metric. The metric
assigned to each network depends on the type of protocol. The Routing Information
Protocol (RIP) treats each network as one hop count. So if a packet passes through 10
networks to reach the destination, the total cost is 10 hop counts. The Open Shortest
Path First protocol (OSPF) allows the administrator to assign a cost for passing through
a network based on the type of service required. A route through a network can have
different metrics (costs). OSPF allows each router to have several routing tables based
on the required type of service. The Border Gateway Protocol (BGP) defines the metric

8 INTERNET SECURITY

totally differently. The policy criterion in BGP is set by the administrator. The policy
defines the paths that should be chosen.

1.2.5 Gateways

Gateways operate over the entire range in all seven layers of the OSI model. Internet
routing devices have traditionally been called gateways. A gateway is a protocol converter
which connects two or more heterogeneous systems and translates among them. The
gateway thus refers to a device that performs protocol translation between devices. A
gateway can accept a packet formatted for one protocol and convert it to a packet formatted
for another protocol before forwarding it. The gateway understands the protocol used by
each network linked into the router and is therefore able to translate from one to another.

1.3 The OSI Model

The Ethernet, originally called the Alto Aloha network, was designed by the Xerox Palo
Alto Research Center in 1973 to provide communication for research and development
CP/M computers. When in 1976 Xerox started to develop the Ethernet as a 20 Mbps
product, the network prototype was called the Xerox Wire. In 1980, when the Digital,
Intel and Xerox standard was published to make it a LAN standard at 10 Mbps, Xerox
Wire changed its name back to Ethernet. Ethernet became a commercial product in 1980
at 10 Mbps. The IEEE called its Ethernet 802.3 standard CSMA/CD (or carrier sense
multiple access with collision detection). As the 802.3 standard evolved, it has acquired
such names as Thicknet (IEEE 10Base-5), Thinnet or Cheapernet (10Base-2), Twisted
Ethernet (10Base-T) and Fast Ethernet (100Base-T).

The design of Ethernet preceded the development of the seven-layer OSI model. The
Open System Interconnect (OSI) model was developed and published in 1982 by the
International Organisation for Standardisation (ISO) as a generic model for data com-
munication. The OSI model is useful because it is a broadly based document, widely
available and often referenced. Since modularity of communication functions is a key
design criterion in the OSI model, vendors who adhere to the standards and guidelines of
this model can supply Ethernet-compatible devices, alternative Ethernet channels, higher-
performance Ethernet networks and bridging protocols that easily and reliably connect
other types of data network to Ethernet.

Since the OSI model was developed after Ethernet and Signaling System #7 (SS7),
there are obviously some discrepancies between these three protocols. Yet the functions
and processes outlined in the OSI model were already in practice when Ethernet or SS7
was developed. In fact, SS7 networks use point-to-point configurations between signalling
points. Due to the point-to-point configurations and the nature of the transmissions, the
simple data link layer does not require much complexity.

The OSI reference model specifies the seven layers of functionality, as shown in
Figure 1.2. It defines the seven layers from the physical layer (which includes the network
adapters), up to the application layer, where application programs can access network ser-
vices. However, the OSI model does not define the protocols that implement the functions
at each layer. The OSI model is still important for compatibility, protocol independence

INTERNETWORKING AND LAYERED MODELS 9

Functionality
OSI

Layer
Layer

No.

• Provides user interface

• System computing and user application process

• Of the many application services, this layer provides support for
 services such as e-mail, remote file access and transfer, message
 handling services (X.400) to send an e-mail message, directory
 services (X.500) for distributed database sources and access for
 global information about various objects and services

Application7

• Administrative control of transmissions and transfers between
 nodes

• Dialogue control between two systems
• Synchronisation process by inserting checkpoints into data
 stream

Session5

• Data interpretation (compression, encryption, formatting and
 syntax selection) and code transformationsPresentation6

• Physical control of the actual data circuit (electrical, mechanical
 and optical)Physical1

• Framing, physical addressing, data flow control, access control
 and error controlData Link2

• Source-to-destination delivery of individual packets
• Routing or switching packets to final destination

• Logical addressing to help distinguish the source/destination
 systems

Network3

• Source-to-destination delivery of entire message
• Message segmentation at the sending layer and reassembling at
 the receiving layer

• Transfer control by either connectionless or connection-oriented
 mechanism for delivering packets

• Flow control for end-to-end services
• Error control based on performing end-to-end rather than a single
 link

Transport4

Figure 1.2 ISO/OSI model.

and the future growth of network technology. Implementations of the OSI model stip-
ulate communication between layers on two processors and an interface for interlayer
communication on one processor. Physical communication occurs only at layer 1. All
other layers communicate downward (or upward) to lower (or higher) levels in steps
through protocol stacks.

The following briefly describes the seven layers of the OSI model:

1. Physical layer. The physical layer provides the interface with physical media. The
interface itself is a mechanical connection from the device to the physical medium
used to transmit the digital bit stream. The mechanical specifications do not specify
the electrical characteristics of the interface, which will depend on the medium being
used and the type of interface. This layer is responsible for converting the digital

10 INTERNET SECURITY

data into a bit stream for transmission over the network. The physical layer includes
the method of connection used between the network cable and the network adapter,
as well as the basic communication stream of data bits over the network cable. The
physical layer is responsible for the conversion of the digital data into a bit stream
for transmission when using a device such as a modem, and even light, as in fibre
optics. For example, when using a modem, digital signals are converted into analogue
audible tones which are then transmitted at varying frequencies over the telephone
line. The OSI model does not specify the medium, only the operative functionality
for a standardised communication protocol. The transmission media layer specifies
the physical medium used in constructing the network, including size, thickness and
other characteristics.

2. Data link layer. The data link layer represents the basic communication link that exists
between computers and is responsible for sending frames or packets of data without
errors. The software in this layer manages transmissions, error acknowledgement and
recovery. The transceivers are mapped data units to data units to provide physical error
detection and notification and link activation/deactivation of a logical communication
connection. Error control refers to mechanisms to detect and correct errors that occur
in the transmission of data frames. Therefore, this layer includes error correction, so
when a packet of data is received incorrectly, the data link layer makes system send
the data again. The data link layer is also defined in the IEEE 802.2 logical link
control specifications.

Data link control protocols are designed to satisfy a wide variety of data link
requirements:

– High-level Data Link Control (HDLC) developed by the International Organisa-
tion for Standardisation (ISO 3309, ISO 4335);

– Advanced Data Communication Control Procedures (ADCCP) developed by the
American National Standards Institute (ANSI X3.66);

– Link Access Procedure, Balanced (LAP-B) adopted by the CCITT as part of its
X.25 packet-switched network standard;

– Synchronous Data Link Control (SDLC) is not a standard, but is in widespread
use. There is practically no difference between HDLC and ADCCP. Both LAP-B
and SDLC are subsets of HDLC, but they include several additional features.

3. Network layer. The network layer is responsible for data transmission across networks.
This layer handles the routing of data between computers. Routing requires some
complex and crucial techniques for a packet-switched network design. To accomplish
the routing of packets sending from a source and delivering to a destination, a path
or route through the network must be selected. This layer translates logical network
addressing into physical addresses and manages issues such as frame fragmentation
and traffic control. The network layer examines the destination address and determines
the link to be used to reach that destination. It is the borderline between hardware
and software. At this layer, protocol mechanisms activate data routing by provid-
ing network address resolution, flow control in terms of segmentation and blocking
and collision control (Ethernet). The network layer also provides service selection,

INTERNETWORKING AND LAYERED MODELS 11

connection resets and expedited data transfers. The Internet Protocol (IP) runs at
this layer.

The IP was originally designed simply to interconnect as many sites as possible
without undue burdens on the type of hardware and software at different sites. To
address the shortcomings of the IP and to provide more a reliable service, the Trans-
mission Control Protocol (TCP) is stacked on top of the IP to provide end-to-end
service. This combination is known as TCP/IP and is used by most Internet sites
today to provide a reliable service.

4. Transport layer. The transport layer is responsible for ensuring that messages are
delivered error-free and in the correct sequence. This layer splits messages into smaller
segments if necessary and provides network traffic control of messages. Traffic con-
trol is a technique for ensuring that a source does not overwhelm a destination with
data. When data is received, a certain amount of processing must take place before
the buffer is clear and ready to receive more data. In the absence of flow control, the
receiver’s buffer may overflow while it is processing old data. The transport layer,
therefore, controls data transfer and transmission. This software is called Transmis-
sion Control Protocol (TCP), common on most Ethernet networks, or System Packet
Exchange (SPE), a corresponding Novell specification for data exchange. Today most
Internet sites use the TCP/IP protocol along with ICMP to provide a reliable service.

5. Session layer. The session layer controls the network connections between the com-
puters in the network. The session layer recognises nodes on the LAN and sets up
tables of source and destination addresses. It establishes a handshake for each session
between different nodes. Technically, this layer is responsible for session connection
(i.e. for creating, terminating and maintaining network sessions), exception reporting,
coordination of send/receive modes and data exchange.

6. Presentation layer. The presentation layer is responsible for the data format, which
includes the task of hashing the data to reduce the number of bits (hash code) that will
be transferred. This layer transfers information from the application software to the
network session layer to the operating system. The interface at this layer performs data
transformations, data compression, data encryption, data formatting, syntax selection
(i.e. ASCII, EBCDIC or other numeric or graphic formats), and device selection and
control. It actually translates data from the application layer into the format used
when transmitting across the network. On the receiving end, this layer translates the
data back into a format that the application layer can understand.

7. Application layer. The application layer is the highest layer defined in the OSI model
and is responsible for providing user-layer applications and network management
functions. This layer supports identification of communicating partners, establishes
authority to communicate, transfers information and applies privacy mechanisms and
cost allocations. It is usually a complex layer with a client/server, a distributed
database, data replication and synchronisation. The application layer supports file
services, print services, remote login and e-mail. The application layer is the network
system software that supports user-layer applications, such as word or data processing,
CAD/CAM, document storage and retrieval and image scanning.

12 INTERNET SECURITY

1.4 TCP/IP Model

A protocol is a set of rules governing the way data will be transmitted and received over
data communication networks. Protocols are then the rules that determine everything about
the way a network operates. Protocols must provide reliable, error-free communication
of user data as well as a network management function. Therefore, protocols govern how
applications access the network, the way that data from an application is divided into
packets for transmission through cable, and which electrical signals represent data on a
network cable.

The OSI model, defined by a seven-layer architecture, is partitioned into a vertical set
of layers, as illustrated in Figure 1.2. The OSI model is based on open systems and peer-
to-peer communications. Each layer performs a related subset of the functions required to
communicate with another system. Each system contains seven layers. If a user or appli-
cation entity A wishes to send a message to another user or application entity B, it invokes
the application layer (layer 7). Layer 7 (corresponding to application A) establishes a peer
relationship with layer 7 of the target machine (application B), using a layer 7 protocol.

In an effort to standardise a way of looking at network protocols, the TCP/IP four-layer
model is created with reference to the seven-layer OSI model, as shown in Figure 1.3. The
protocol suite is designed in distinct layers to make it easier to substitute one protocol for
another. The protocol suite governs how data is exchanged above and below each protocol

Physical

Ethernet, token ring, FDDI, PPP,
X.25, frame replay, ATMNetwork access

Data link

IP, ICMP, IGMP, ARP, RARPInternetNetwork

Transport

TCP, UDPTransport

Session

Presentation

HTTP, FTP, TFTP, NFS, RPC, XDR, SMTP,
POP, IMAP, MIME, SNMP, DNS, RIP,
OSPF, BGP, TELNET, Rlogin

Application

Application

Internet protocol suite
TCP/IP model

(4 layers)
OSI model
(7 layers)

SSL, TLS, S/HTTP, IPsec, SOCKS V5,
PEM, PGP, S/MIME

E-cash, Mondex, Proton, Visa Cash, SET,
CyberCash, CyberCoin, E-check,
First Virtual

Internet securityElectronic payment system

Figure 1.3 The TCP/IP model and Internet protocol suite.

INTERNETWORKING AND LAYERED MODELS 13

layer. When protocols are designed, specifications set out how a protocol exchanges data
with a protocol layered above or below it.

Both the OSI model and the TCP/IP layered model are based on many similarities, but
there are philosophical and practical differences between the two models. However, they
both deal with communications among heterogeneous computers.

Since TCP was developed before the OSI model, the layers in the TCP/IP protocol
model do not exactly match those in the OSI model. The important fact is the hierarchical
ordering of protocols. The TCP/IP model is made up of four layers: application layer,
transport layer, Internet layer and network access layer. These will be discussed below.

1.4.1 Network Access Layer

The network access layer contains protocols that provide access to a communication
network. At this layer, systems are interfaced to a variety of networks. One function of
this layer is to route data between hosts attached to the same network. The services to
be provided are flow control and error control between hosts. The network access layer
is invoked either by the Internet layer or the application layer. This layer provides the
device drivers that support interactions with communications hardware such as the token
ring or Ethernet. The IEEE token ring, referred to as the Newhall ring, is probably the
oldest ring control technique and has become the most popular ring access technique in
the USA. The Fiber Distributed Data Interface (FDDI) is a standard for a high-speed ring
LAN. Like the IEEE 802 standard, FDDI employs the token ring algorithm.

1.4.2 Internet Layer

The Internet layer provides a routing function. Therefore, this layer consists of the pro-
cedures required within hosts and gateways to allow data to traverse multiple networks.
A gateway connecting two networks relays data between networks using an internetwork
protocol. This layer consists of the Internet Protocol (IP) and the Internet Control Message
Protocol (ICMP).

1.4.3 Transport Layer

The transport layer delivers data between two processes on different host computers. A
protocol entity at this level provides a logical connection between higher-level entities.
Possible services include error and flow controls and the ability to deal with control signals
not associated with a logical data connection. This layer contains the Transmission Control
Protocol (TCP) and the User Datagram Protocol (UDP).

1.4.4 Application Layer

This layer contains protocols for resource sharing and remote access. The application layer
actually represents the higher-level protocols that are used to provide a direct interface
with users or applications. Some of the important application protocols are File Transfer
Protocol (FTP) for file transfers, HyperText Transfer Protocol (HTTP) for the World Wide
Web, and Simple Network Management Protocol (SNMP) for controlling network devices.

14 INTERNET SECURITY

The Domain Naming Service (DNS) is also useful because it is responsible for converting
numeric IP addresses into names that can be more easily remembered by users. Many
other protocols dealing with the finer details of applications are included in this application
layer. These include Simple Mail Transport Protocol (SMTP), Post Office Protocol (POP),
Internet Mail Access Protocol (IMAP), Internet Control Message Protocol (ICMP) for e-
mail, Privacy Enhanced Mail (PEM), Pretty Good Privacy (PGP) and Secure Multimedia
Internet Mail Extensions (S/MIME) for e-mail security. All protocols contained in the
TCP/IP suite are fully described in Chapter 2.

2

TCP/IP Suite and Internet Stack
Protocols

The Internet protocols consist of a suite of communication protocols, of which the two best
known are the Transmission Control Protocol (TCP) and the Internet Protocol (IP). The
TCP/IP suite includes not only lower-layer protocols (TCP, UDP, IP, ARP, RARP, ICMP
and IGMP), but also specifies common applications such as www, e-mail, domain naming
service, login and file transfer. Figure 1.3 in Chapter 1 depicts many of the protocols of
the TCP/IP suite and their corresponding OSI layer.

It may not be important for the novice to understand the details of all protocols, but it
is important to know which protocols exist, how they can be used, and where they belong
in the TCP/IP suite.

This chapter addresses various layered protocols in relation to Internet security, and
shows which are available for use with which applications.

2.1 Network Layer Protocols

At the network layer in the OSI model, TCP/IP supports the IP. IP contains four supporting
protocols: ARP, RARP, ICMP and IGMP. Each of these protocols is described below.

2.1.1 Internet Protocol (IP)

The Internet Protocol (IP) is a network layer (layer 3 in the OSI model or the Internet
layer in the TCP/IP model) protocol which contains addressing information and some
control information to enable packets to be controlled. IP is well documented in RFC 791
and is the basic communication protocol in the Internet protocol suite.

IP specifies the exact format of all data as it passes across the Internet. IP software
performs the routing function, choosing the path over which data will be sent. IP includes
a set of rules that enbody the idea of unreliable packet delivery. IP is an unreliable

Internet Security. Edited by M.Y. Rhee
 2003 John Wiley & Sons, Ltd ISBN 0-470-85285-2

16 INTERNET SECURITY

and connectionless datagram protocol. The service is called unreliable because delivery
is not guaranteed. The service is called connectionless because each packet is treated
independently from all others. If reliability is important, IP must be paired with a reliable
protocol such as TCP. However, IP does its best to get a transmission through to its
destination, but carries no guarantees.

IP transports the datagram in packets, each of which is transported separately. Data-
grams can travel along different routes and can arrive out of sequence or be duplicated.
IP does not keep track of the routes taken and has no facility for reordering datagrams
once they arrive at their destination. In short, the packet may be lost, duplicated, delayed
or delivered out of order.

IP is a connectionless protocol designed for a packet switching network which uses the
datagram mechanism. This means that each datagram is separated into segments (packets)
and is sent independently following a different route to its destination. This implies that if
a source sends several datagrams to the same destination, they could arrive out of order.
Even though IP provides limited functionality, it should not be considered a weakness.
Figure 2.1 shows the format of an IP datagram. Since datagram processing occurs in
software, the content of an IP datagram is not constrained by any hardware.

2.1.1.1 IP Datagrams

Packets in the IP layer are called datagrams. Each IP datagram consists of a header (20
to 60 bytes) and data. The IP datagram header consists of a fixed 20-byte section and
a variable options section with a maximum of 40 bytes. The Internet header length is
the total length of the header, including any option fields, in 32-bit words. The minimum
value for the Internet header length is 5 (five 32-bit words or 20 bytes of the IPv4 header).
The maximum permitted length of an IP datagram is 65 536 bytes. However, such large

Options (If any) Padding

Destination IP address (32 bits)

Data

Source IP address (32 bits)

Header checksum
(16 bits)

Protocol
(8 bits)

Time to live
(8 bits)

Fragmentation offset
(13 bits)

Flags
(3 bits)

ID
(16 bits)

Overall length
(16 bits)

Service type
(8 bits)

Header
length
(4 bits)

Version
(4 bits)

H
ea

de
r

(2
0

by
te

s)

0 4 8 16 3119Bits
20

 H

ea
de

r

60
 b

yt
es

Figure 2.1 IP datagram format.

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 17

packets would not be practical, particularly on the Internet where they would be heavily
fragmented. RFC 791 states that all hosts must accept IP datagrams up to 576 bytes. An
IPv4 datagram consists of three primary components. The header is 20 bytes long and
contains a number of fields. The option is a variable length set of fields, which may or
may not be present. Data is the encapsulated payload from the higher level, usually a
whole TCP segment or UDP datagram. The datagram header contains the source and
destination IP addresses, fragmentation control, precedence, a checksum used to detect
transmission errors, and IP options to record routing information or gathering timestamps.
A brief explanation of each field in an IP datagram is described below.

• Version (VER, 4 bits): Version 4 of the Internet Protocol (IPv4) has been in use since
1981, but Version 6 (IPv6 or IPng) will soon replace it. The first four-bit field in a
datagram contains the version of the IP protocol that was used to create the datagram.
It is used to verify that the sender, receiver and any routers in between them agree on
the format of datagram. In fact, this field is an indication to the IP software running in
the processing machine that it is required to check the version field before processing
a datagram to ensure it matches the format the software expects.

• Header length (HLEN, 4 bits): This four-bit field defines the total length of the IPv4
datagram header measured in 32-bit words. This field is needed because the length of
the header varies between 20 to 60 bytes. All fields in the header have fixed lengths
except for the IP options and corresponding padding field.

• Type of service (TOS, 8 bits): This eight-bit field specifies how the datagram should be
handled by the routers. This TOS field is divided into two subfields: precedence (3 bits)
and TOS (5 bits) as shown in Figure 2.2. Precedence is a three-bit subfield with values
ranging from 0 (000 in binary, normal precedence) to 7 (111 in binary, network
control), allowing senders to indicate the importance of each datagram. Precedence
defines the priority of the datagram in issues such as congestion. If a router is congested
and needs to discard some datagrams, those datagrams with lowest precedence are
discarded first. A datagram in the Internet used for network management is much more
important than a datagram used for sending optional information to a group of users.
Many routers use a precedence value of 6 or 7 for routing traffic to make it possible
for routers to exchange routing information even when networks are congested. At

Precedence
(3 bits)

D T R C
unused
(1 bit)

0 1 2 3 4 5 6 7

TOS (4 bits)

D : Minimise delay (1000)

T : Maximise throughput (0100)

R : Maximise reliability (0010)

C : Minimise cost (0001)

Figure 2.2 The eight-bit service type field.

18 INTERNET SECURITY

present, the precedence subfield is not used in version 4, but it is expected to be
functional in future versions.

The TOS field is a five-bit subfield, each bit having a special meaning. Bits D, T,
R and C specify the type of transport desired for the datagram. When they are set, the
D bit requests low delay, the T bit requests high throughput, the R bit requests high
reliability and the C bit requires low cost. Of course, it may not be possible for the
Internet to guarantee the type of transport requested. Therefore, the transport request
may be thought of as a hint to the routing algorithms, not as a demand. Datagrams
carrying keystrokes from a user to a remote computer could set the D bit to request that
they be delivered as quickly as possible, while datagrams carrying a bulk file transfer
could have the T bit set requesting that they travel across the high-capacity path.

Although a bit in TOS bits can be either 0 or 1, only one bit can have the value 1
in each datagram. The bit patterns and their descriptions are given in Table 2.1.

In the late 1990s, the IETF redefined the meaning of the eight-bit service type field
to accommodate a set of differentiated services (DS). The DS defines that the first
six bits comprise a codepoint and the last two bits are left unused. A codepoint value
maps to an underlying service through an array of pointers. Although it is possible
to design 64 separate services, designers suggest that a given router will only have a
few services, and multiple codepoints will map to each service. When the last three
bits of the codepoint field contains zero, the precedence bits define eight broad classes
of service that adhere to the same guidelines as the original definition. When the last
three bits are zero, the router must map a codepoint with precedence 6 or 7 into the
higher-priority class and other codepoint values into the lower priority class.

• Overall length (16 bits): The IPv4 datagram format allots 16 bits to the total length
field, limiting the datagram to at most 65 535 bytes. This 16-bit field defines the total
length (header plus data) of the IP datagram in bytes. To find the data length coming
from the upper layer, subtract the header length from the total length. Since the
field length is 16 bits, the total length of the IP datagram is limited to 216 − 1 =
65 535 bytes, of which 20 to 60 bytes are the header and the rest are data from the
upper layer. In practice, some physical networks are unable to encapsulate a datagram
of 65 535 bytes in the process of fragmentation.

• Identification (ID, 16 bits): This 16-bit field specifies to identify a datagram originating
from the source host. The ID field is used to help a destination host to reassemble
a fragmented packet. It is set by the sender and uniquely identifies a specific IP
datagram sent by a source host. The combination of the identification and source

Table 2.1 Type of service (TOS)

TOS bit Description

0000 Normal (default)
0001 Minimise cost
0010 Maximise reliability
0100 Maximise throughput
1000 Minimise delay

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 19

IP address must uniquely define the same datagram as it leaves the source host. To
guarantee uniqueness, the IP protocol uses a counter to label the datagrams. When a
datagram is fragmented, the value in the identification field is copied in all fragments.
Hence, all fragments have the same identification number, which is the same as in the
original datagram. The identification number helps the destination in reassembling the
datagram. RFC 791 suggests that the ID number is set by the higher-layer protocol,
but in practice it tends to be set by IP.

• Flags (three bits): This three-bit field is used in fragmentation. The flag field is three
bits long. Bit 0: Reserved, Bit 1: May fragment or may not fragment, Bit 2: Last
fragment or more fragments. The first bit is reserved. The second bit is called the
‘don’t fragment’ bit. If its value is 1, don’t fragment the datagram. If it cannot pass
the datagram through any available physical network, it discards the datagram and
sends an ICMP error message to the source host. The third bit is called the ‘more
fragment’ bit. If its value is 1, it means the datagram is not the last fragment; there are
more fragments to come. If its value is 0, it means that it is the last or only fragment.

• Fragmentation offset (13 bits): The small pieces into which a datagram is divided are
called fragments, and the process of dividing a datagram is known as fragmentation.
This 13-bit field denotes an offset to a non-fragmented datagram, used to reassemble
a datagram that has become fragmented. This field shows the relative position of each
fragment with respect to the whole datagram. The offset states where the data in a
fragmented datagram should be placed in the datagram being reassembled. The offset
value for each fragment of a datagram is measured in units of eight bytes, starting at
offset zero. Since the length of the offset field is only 13 bits, it cannot represent a
sequence of bytes greater than 213 − 1 = 8191.

Suppose a datagram with a data size of x < 8191 bytes is fragmented into i frag-
ments. The bytes in the original datagram are numbered from 0 to (x − 1) bytes. If the
first fragment carries bytes from 0 to x1, then the offset for this fragment is 0/8 = 0.
If the second fragment carries (x1 + 1) bytes to x2 bytes, then the offset value for this
fragment is (x1 + 1)/8. If the third fragment carries bytes x2 + 1 to x3, then the offset
value for the third fragment is (x2 + 1)/8. Continue this process within the range under
8191 bytes. Thus, the offset value for these fragments is 0, (xi−1 + 1)/8, i = 2, 3,
Consider what happens if a fragment itself is fragmented. In this case the value of the
offset field is always relative to the original datagram.

Fragment size is chosen such that each fragment can be sent across the network in
a single frame. Since IP represents the offset of the data in multiples of eight bytes,
the fragment size must be chosen to be a multiple of eight. Of course, choosing the
multiple of eight bytes nearest to the network’s maximum transfer unit (MTU) does
not usually divide the datagram into equal-sized fragments; the last piece or fragment
is often shorter than the others. The MTU is the maximum size of a physical packet
on the network. If datagram, including the 20-byte IP header, to be transmitted is
greater than the MTU, then the datagram is fragmented into several small fragments.
To reassemble the datagram, the destination must obtain all fragments starting with
the fragment that has offset 0 through the fragment with the highest offset.

20 INTERNET SECURITY

• Time to live (TTL, 8 bits): A datagram should have a limited lifetime in its travel
through an Internet. This eight-bit field specifies how long (in number of seconds) the
datagram is allowed to remain in the Internet.

Routers and hosts that process datagrams must decrement this TTL field as time
passes and remove the datagram from the Internet when its time expires. Whenever
a host computer sends the datagram to the Internet, it sets a maximum time that the
datagram should survive. When a router receives a datagram, it decrements the value
of this field by one. Whenever this value reaches zero after being decremented, the
router discards the datagram and returns an error message to the source.

• Protocol (eight bits): This eight-bit field defines the higher-level protocol that uses the
services of the IP layer. An IP datagram can encapsulate data from several higher-level
protocols such as TCP, UDP, ICMP and IGMP. This field specifies the final desti-
nation protocol to which the IP datagram should be delivered. Since the IP protocol
multiplexes and demultiplexes data from different higher-level protocols, the value
of this field helps the demultiplexing process when the datagram arrives at its final
destination.

• Header checksum (16 bits): The error detection method used by most TCP/IP protocols
is called the checksum. This 16-bit field ensures the integrity of header values. The
checksum (redundant bits added to the packet) protects against errors which may occur
during the transmission of a packet.

At the sender, the checksum is calculated and the result obtained is sent with the
packet. The packet is divided into n-bit sections. These sections are added together
using arithmetic in such a way that the sum also results in n bits. The sum is then
complemented to produce the checksum.

At the receiver, the same calculation is repeated on the whole packet including the
checksum. The received packet is also divided into n-bit sections. The sum is then
complemented. The final result will be zero if there are no errors in the data during
transmission or processing. If the computed result is satisfactorily met, the packet is
accepted; otherwise it is rejected.

It is important to note that the checksum only applies to values in the IP header,
and not in the data. Since the header usually occupies fewer bytes than the data, the
computation of header checksums will lead to reduced processing time at routers.

Example 2.1 Consider a checksum calculation for an IP header without options. The
header is divided into 16-bit fields. All the fields are added and the sum is complemented
to obtain the checksum. The result is inserted in the checksum field.

4 5 0 28

1 0 0

4 17 0 (checksum)∗

10.12.14.5

12.6.7.9

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 21

4, 5, and 0: 01000101 00000000
28: 00000000 00011100
1: 00000000 00000001

0 and 0: 00000000 00000000
4 and 17: 00000100 00010001

0: 00000000 00000000
10.12: 00001010 00001100
14.5: 00001110 00000101
12.6: 00001100 00000110
7.9: 00000111 00001001

Sum: 01110100 01001110

∗Checksum: 10001011 10110001

• Source IP address (32 bits): This 32-bit field specifies the IP address of the sender of
the IP datagram.

• Destination IP address (32 bits): This 32-bit field designates the IP address of the host
to which this datagram is to be sent. Source and destination IP addresses are discussed
in more detail in Section 2.1.1.2, IP Addressing.

• Options (variable length): The IP header option is a variable length field, consisting
of zero, one or more individual options. This field specifies a set of fields, which may
or may not be present in any given datagram, describing specific processing that takes
place on a packet. RFC 791 defines a number of option fields with additional options
defined in RFC 3232. The most common options include:

– The security option tends not to be used in most commercial networks. Refer to
RFC 1108 for more details.

– A record route option is used to record the Internet routers that handle the data-
gram. Each router records its IP address in the option field, which can be useful
for tracing routing problems.

– The timestamp option is used to record the time of datagram processing by a
router. This option requests each router to record both the router address and the
time. This option is useful for debugging router problems.

– A source routing option is used by the source to predetermine a route for the
datagram as it travels through the Internet. This option enables a host to define
the routers the packet is to be transmitted through. Dictation of a route by the
source is useful for several reasons. The sender can choose a route with a specific
type of service, such as minimum delay or maximum throughput. It may also
choose a route that is safer or more reliable for the sender’s purpose. Because
the option fields are of variable length, it may be necessary to add additional
bytes to the header to make it a whole number of 32-bit words. Since the IP
option fields represent a significant overhead, they tend not to be used, especially
for IP routers. If required, additional padding bytes are added to the end of any
specific options.

22 INTERNET SECURITY

2.1.1.2 IP Addressing

Addresses belonging to three different layers of TCP/IP architecture are shown in Table 2.2
below.

• Physical (local or link) address: At the physical level, the hosts and routers are recog-
nised by their physical addresses. The physical address is the lowest-level address which
is specified as the node or local address defined by LAN or WAN. This local address
is included in the frame used by the network access layer. A local address is called a
physical address because it is usually (but not always) implemented in hardware. Ether-
net or token ring uses a six-byte address that is imprinted on the network interface card
(NIC) installed in the host or router. The physical address should be unique locally, but
not necessary universally. Physical addresses can be either unicast (one single recipi-
ent), multicast (a group of recipients), or broadcast (all recipients on the network). The
physical addresses will be changed as a packet moves from network to network.

• IP address: An IP address is called a logical address at the network level because it
is usually implemented in software. A logical address identifies a host or router at the
network level. TCP/IP calls this logical address an IP address. Internet addresses can be
either unicast, multicast or broadcast. IP addresses are essentially needed for universal
communication services that are independent of underlying physical networks. IP
addresses are designed for a universal addressing system in which each host can
be identified uniquely. An Internet address is currently a 32-bit address which can
uniquely define a host connected to the Internet.

• Port address: The data sequences need the IP address and the physical address to
move data from a source to the destination host. In fact, delivery of a packet to a
host or router requires two levels of addresses, logical and physical. Computers are
devices that can run multiple processes at the same time. For example, computer A
communicates with computer B using TELNET. At the same time, computer A can
communicate with computer C using File Transfer Protocol (FTP). If these processes
occur simultaneously, we need a method to label different processes. In TCP/IP archi-
tecture, the label assigned to a process is called a port address. A port address in
TCP/IP is 16 bits long.

The Internet Assigned Numbers Authority (IANA) manages the well-known port
numbers between 1 and 1023 for TCP/IP services. Ports between 256 and 1023 were
normally used by UNIX systems for UNIX-specific services, but are probably not
found on other operating systems.

Table 2.2 TCP/IP architecture and corresponding addresses

Layer TCP/IP Protocol Address

Application HTTP, FTP, SMTP
DNS and other protocols

Port address

Transport TCP, UDP —
Internet IP, ICMP, IGMP IP address
Network access Physical network Physical (link) address

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 23

Servers are normally known by their port number. For few examples, every TCP/IP
implementation that provides a File Transfer Protocol (FTP) server provides that ser-
vice on TCP port 21. Telnet is a TCP/IP standard with a port number of 23 and can
be implemented on almost any operating system. Hence, every Telnet server is on
TCP port 23. Every implementation of the Trivial File Transfer Protocol (TFTP) is
on UDP port 69. The port number for the Domain Name System is on TCP port 53.

Addressing schemes

Each IP address is made of two parts in such a way that the netid defines a
network and the hostid identifies a host on that network. An IP address is usually
written as four decimal integers separated by decimal points i.e. 239.247.135.93. If
this IP address changes from decimal-point notation to binary form, it becomes
11101111 11110111 10000111 01011101. Thus, we see that each integer gives the value
of one octet (byte) of the IP address.

IP addresses are divided into five different classes: A, B, C, D and E. Classes A, B
and C differ in the number of hosts allowed per network. Class D is used for multicasting
and class E is reserved for future use. Table 2.3 shows the number of networks and
hosts in five different IP address classes. Note that the binary numbers in brackets denote
class prefixes.

The relationship between IP address classes and dotted decimal numbers is summarised
in Table 2.4, which shows the range of values for each class. The use of leading bits as
class prefixes means that the class of a computer’s network can be determined by the
numerical value of its address.

A number of IP addresses have specific meanings. The address 0.0.0.0 is reserved
and 224.0.0.0 is left unused. Addresses in the range 10.0.0.0 through to 10.255.255.255
are available for use in private intranets. Addresses in the range 240.0.0.0 through to
255.255.255.255 are class E addresses and are reserved for future use when new protocols
are developed. Address 255.255.255.255 is the broadcast address, used to reach all systems

Table 2.3 Number of networks and hosts in each address class

Address
Class

Netid Hostid Number of
Networks and Hosts

Netid Hostid

A (0) First octet
(8 bits)

Three octets
(24 bits)

27 − 2 = 126 224 − 2 = 16 777 214

B (10) Two octets
(16 bits)

Two octets
(16 bits)

214 = 16 384 216 − 2 = 65 534

C (110) Three octets
(24 bits)

Last octet
(8 bits)

221 = 2 097 152 28 − 2 = 254

D (1110) — — No netid No hostid
E (1111) — — No netid No hostid

D (1110): Multicast address only
E (1111): Reserved for special use

24 INTERNET SECURITY

Table 2.4 Dotted decimal values corresponding to IP
address classes

Class Prefix Address range

Lowest Highest

A 0 0.0.0.0 127.255.255.255
B 10 128.0.0.0 191.255.255.255
C 110 192.0.0.0 223.255.255.255
D 1110 224.0.0.0 239.255.255.255
E 1111 240.0.0.0 255.255.255.255

on a local link. Although the multicast address of class D may extend from 224.0.0.0
to 239.255.255.255, address 224.0.0.0 is never used and 224.0.0.1 is assigned to the
permanent group of all IP hosts, including gateways. A packet addressed to 224.0.0.1
will reach all multicast hosts on the directly connected network. In addition, a hostid of
255 specifies all systems within a given subnet, and a subnetid of 255 specifies all subnets
within a network.

When an IP address is given, the address class can be determined. Once the address
class is determined, it is easy to extract the netid and hostid. Figure 2.3 shows how to
extract the netid and hostid by the octets and how to determine the number of networks
and hosts.

According to Table 2.3 or Figure 2.3, the two-layer hierarchy established in IP address
pairs (netid, hostid) lacks the flexibility needed for any sophisticated size of network.
To begin with, a class A network can contain 16 777 214 host identifiers (hostids). These
are too many identifiers to configure and manage as an address space. Many of these
hosts are likely to reside on various locally administered LANs, with different media and
data-link protocols, different access needs and, in all likelihood, different geographical
locations. In fact, the IP addressing scheme has no way to reflect these subdivisions within
a large organisation WAN. In addition, class A, B and C network identifiers (netids) are
a limited and scarce resource, whose use under the class addressing scheme was often
in efficient. In reality, many medium-sized organisations found class C hostids to be too
small, containing fewer than 256 hosts. On the other hand, they often requested class B
identifiers despite having far fewer than 65 534 hostids. As a result, many of the (netid,
hostid) pairs were allocated but unused, being superfluous to the network owner and
unusable by other organisations.

Subnetting and supernetting

The increasing number of hosts connected to the Internet and restrictions imposed by the
Internet addressing scheme led to the idea of subnetting and supernetting. In subnetting,
one large network is divided into several smaller subnetworks, and class A, B and C
addresses can be subnetted. In supernetting, several networks are combined into one large

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 25

Netid

32 bits

Hostid

Networks Hosts

Byte 1
(8 bits)

Byte 2
(8 bits)

Byte 3
(8 bits)

Byte 4
(8 bits)

Class A
Netid (8bits)

0xxxxxxx

Hostid (24 bits)

27 − 2 = 126 networks 224 − 2 = 16 777 214 hosts

xxxxxxxx xxxxxxxx xxxxxxxx

Class B
Netid (16 bits)

10xxxxxx xxxxxxxx

Hostid (16 bits)

216 − 2 = 65 534 hosts

xxxxxxxx xxxxxxxx

Class C
Netid (24 bits)

110xxxxx xxxxxxxx xxxxxxxx

Hostid (8 bits)

221 = 2 097 152 networks 28 − 2 = 254 hosts

xxxxxxxx

Class D
Multicast address (no Netid or Hostid)

1110xxxx xxxxxxxx xxxxxxxx xxxxxxxx

Class E
Reserved for future use

10

0

110

1110

7 bits

14 bits

21 bits

1110 (4 bits) defines Class D and remaining 28 bits define different multicast
addresses

1111

214 = 16 384 networks

Figure 2.3 The number of networks and hosts corresponding to IP address classes.

network, bringing several class C addresses to create a large range of addresses. Classes
A, B and C in IP addressing are designed by two levels of hierarchy such that a portion
of the address indicates a netid and a portion of address indicates a hostid on the network.

Consider an organisation with two-level hierarchical addressing. With this scheme, the
organisation has one network with many hosts because all of the hosts are at the same level.
Subnetting is accomplished by the further division of a network into smaller subnetworks.
When a network is subnetted, it has three portions: netid, subnetid and hostid. When the
datagram arrives at a router, it knows that the first two octets (bytes) denote netid and the
last two octets (bytes) define subnetid and hostid, respectively. For example, for a 32-bit
IP address of 141.14.5.23, the router uses the first two octets (141.14) as the netid, the
third octet (5) as the subnetid, and the fourth octet (23) as the hostid. Thus, the routing
of an IP datagram now involves three steps: delivery to the network site, delivery to the
subnetwork and delivery to the host.

26 INTERNET SECURITY

Example 2.2 Consider the IP address in decimal point notation (141.14.2.21).

Without subnetting (level 2 of the hierarchy)

netid hostid

141.14 · 2.21

Network access Host access

With subnetting (level 3 of the hierarchy)

netid subnetid hostid

141.14 · 2 · 21

Subnetwork access Host access

To accommodate the growth of address space, by 1993 the supernetting scheme had
begun to take an approach that is complementary to subnet addressing. Supernetting
allows addresses to assign a single organisation to span multiple classed prefixes. A
class C address cannot accommodate more than 254 hosts and a class B address has
sufficient bits to make subnetting convenient. Therefore, one solution to this is supernet-
ting. An organisation that needs 1000 addresses can be granted four class C addresses.
The organisation can then use these addresses in one supernetwork. Suppose an organ-
isation requests a class B address and intends to subnet using the third octet as a
subnet field. Instead of a single class B number, supernetting assigns the organisation
a block of 256 contiguous class C numbers that the organisation can then assign to
physical networks.

Mapping by mask

Masking is a process that extracts the physical network address from an IP address.
Masking can be accomplished regardless of whether it has subnetting or not. Consider
two cases in which a network is either subnetted or is not. With no subnetting, masking
extracts the network address from an IP address, while with subnetting, masking also
extracts the subnetwork address from an IP address. The masking operation can be done
by performing a 32-bit IP address on another 32-bit mask. A masking pattern consists of
a contiguous string of 1s and 0s. The contiguous mask means a string of 1s precedes a
string of 0s. To get either the network address or the subnet address, the logical AND
operation with the bit-by-bit basis must be applied on the IP address and the mask. An
example is shown below.

Example 2.3 Suppose a 32-bit IP address is 141.14.5.23 and the mask 255.255.0.0.
Find the network address and subnetwork address.

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 27

netid hostid

141.14 · 5.23 Without subnetting

Network access Host access

netid subnetid hostid

141.14 · 5 · 23 With subnetting

Subnetwork access Host access

(1) Without subnetting

IP address : 10001101 00001110 00000101 00010111

Mask : 11111111 11111111 00000000 00000000

Network address : 10001101 00001110 00000000 00000000

(2) With subnetting

IP address : 10001101 00001110 00000101 00010111

Mask : 11111111 11111111 11111111 00000000

Network address : 10001101 00001110 00000101 00000000

Mapping of a logical address to a physical address can be static or dynamic. Static map-
ping involves a list of logical and physical address correspondences, but maintenance of
the list requires high overhead. Address Resolution Protocol (ARP) is a dynamic mapping
method that finds a physical address given a logical address. An ARP request is broad-
cast to all devices on the network, while an ARP reply is unicast to the host requesting
the mapping. Reverse Address Resolution Protocol (RARP) is a form of dynamic map-
ping in which a given physical address is associated with a logical addresses. ARP and
RARP use unicast and broadcast physical addresses. These subjects will be discussed in
a later section.

2.1.1.3 IP Routing

In a connectionless packet delivery system, the basic unit of transfer is the IP datagram.
The routing problem is characterised by describing how routers forward IP datagrams and
deliver them to their destinations. In a packet switching system, ‘routing’ refers to the
process of choosing a path over which to send packets. Unlike routing within a single
network, the IP routing must choose the appropriate algorithm for how to send a datagram
across multiple physical networks. In fact, routing over the Internet is generally difficult
because many computers have multiple physical network connections.

To understand IP routing, a TCP/IP architecture should be reviewed completely. The
Internet is composed of multiple physical networks interconnected by routers. Each router
has direct connections to two or more networks, while a host usually connects directly

28 INTERNET SECURITY

to one physical network. However, it is possible to have a multihomed host connected
directly to multiple network.

Packet delivery through a network can be managed at any layer in the OSI stack model.
The physical layer is governed by the Media Access Control (MAC) address; the data
link layer includes the Logical Link Control (LLC); and the network layer is where most
routing takes place.

Delivery

The delivery of an IP packet to its final destination is accomplished by means of either
direct or indirect delivery. Direct delivery occurs when the source and destination of the
packet are located on the same physical network. The sender can easily determine whether
the delivery is direct or not by extracting the network (IP) address of the destination packet
and comparing this address with the addresses of the networks to which it is connected.
If a match is found, the delivery is direct. In direct delivery, the sender uses the senders
IP address to find the destination physical address. This mapping process can be done by
Address Resolution Protocol (ARP).

If the destination host is not on the same network as the source host, the packet will be
delivered indirectly. In an indirect delivery, the packet goes from router to router through
a number of networks until it reaches one that is connected to the same physical network
as its final destination. Thus, the last delivery is always a direct delivery, which always
occurs after zero or more indirect deliveries. In an indirect delivery, the sender uses the
destination IP address and a routing table to find the IP address of the next router to
which the packet should be delivered. The sender then uses the ARP to find the physical
address of the next router.

2.1.2 Address Resolution Protocol (ARP)

IP (logical) addresses are assigned independently from physical (hardware) addresses.
The logical address is called a 32-bit IP address, and the physical address is a 48-bit
MAC address in Ethernet and token ring protocols. The delivery of a packet to a host
or a router requires two levels of addressing, such as logical (IP) address and physical
(MAC) addresses. When a host or a router has an IP datagram forwarding to another host
or router, it must know the logical IP address of the receiver. Since the IP datagram is
encapsulated in a form to be passed through the physical network (such as a LAN), the
sender needs the physical MAC address of the receiver.

Mapping of an IP address to a physical address can be done by either static or dynamic
mapping. Static mapping means creating a table that associates an IP address with a
physical address. But static mapping has some limitations because table lookups are
inefficient. As a consequence, static mapping creates a huge overhead on the network.
Dynamic mapping can employ a protocol to find the other. Two protocols (ARP and
RARP) have been designed to perform dynamic mapping. When a host needs to find
the physical address of another host or router on its network, it sends an ARP query
packet. The intended recipient recognises its IP address and sends back an ARP response
which contains the recipient IP and physical addresses. An ARP request is broadcast to all
devices on the network, while an ARP reply is unicast to the host requesting the mapping.

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 29

Host
Server

(a) Request for the physical address by broadcast

Physical address

Host Server

(b) Reply for the physical address by unicast

H

H
ARP
reply

S

S

ARP
request

IP address

Physical
address

M1 M3M2

Figure 2.4 ARP dynamic mapping.

Figure 2.4 shows an example of simplified ARP dynamic mapping. Let a host or router
call a machine. A machine uses ARP to find the physical address of another machine by
broadcasting an ARP request. The request contains the IP address of the machine for which
a physical address is needed. All machines (M1, M2, M3, . . .) on the network receive an
ARP request. If the request matches a M2 machine’s IP address, the machine responds
by sending a reply that contains the requested physical address. Note that Ethernet uses
the 48-bit address of all 1’s (FFFFFFFFFFFF) as the broadcast address.

A proxy ARP is an ARP that acts on behalf of a set of hosts. Proxy ARP can be used
to create a subnetting effect. In proxy ARP, a router represents a set of hosts. When an
ARP request seeks the physical address of any host in this set, the router sends its own
physical address. This creates a subnetting effect. Whenever looking for the IP address of
one of these hosts, the router sends an ARP reply announcing its own physical address.

To make address resolution easy, choose both IP and physical addresses the same
length. Address resolution is difficult for Ethernet-like networks because the physical
address of the Ethernet interface is 48 bits long and the high-level IP address is 32 bits
long. In order for the 48-bit physical address to encode a 32-bit IP address, the next
generation of IP is being designed to allow 48-bit physical (hardware) addresses P to be
encoded in IP addresses I by the functional relationship of P = f (I). Conceptually, it will
be necessary to choose a numbering scheme that makes address resolution efficient by
selecting a function f that maps IP addresses to physical addresses.

As shown in Figure 2.5, the ARP software package consists of the following five
components:

30 INTERNET SECURITY

IP layer

IP packet

Request Request

Physical access layer

Transmission

Request Reply

Check entry
by entry

Output module

Cache
table Queues

Cache-control
module

Input module

ARP packet

ARP

Figure 2.5 Simplified ARP package.

• The cache table has an array of entries used and updated by ARP messages. It is
inefficient to use the ARP protocol for each datagram destined for the same host or
router. The solution is to use the cache table. The cache table is implemented as an
array of entries. When a host or router receives the corresponding physical address
for an IP datagram, the address can be saved in the cache table within the next few
minutes. However, mapping in the cache should not be retained for an unlimited time,
due to the limited cache space.

• A queue contains packets going to the same destination. The ARP package maintains
a set of queues to hold the IP packets, while ARP tries to resolve the physical address.
The output module sends unresolved packets to the corresponding queue. The input

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 31

module removes a packet from a queue and sends it to the physical access layer for
transmission.

• The output module takes an IP packet from the IP layer and sends it to a queue as
well as the physical access layer. The output module checks the cache table to find an
entry corresponding to the destination IP address of this packet. If the entry is found
and the state of the entry is resolved, the packet, along with the destination physical
address, is passed to the physical access layer (or data link layer) for transmission. If
the entry is found and the state of the entry is pending, the packet should wait until
the destination physical address is found. If no entry is found, the module creates
a queue and enqueues the packet. A new cache entry (‘pending’) is created for the
destination and the attempt field is set to 1. An ARP request is then broadcast.

• The input module waits until an ARP request or reply arrives. The input module
checks the cache table to find an entry corresponding to this packet (request or reply).

If the entry is found and the state of the entry is ‘pending’, the module updates
the entry by copying the target physical address in the packet to the physical address
field of the entry and changing the state to ‘resolved’. The module also sets the value
of the time-out for the entry and then dequeues the packets from the corresponding
queue, one by one, and delivers them along with the physical address to the physical
access layer for transmission.

If the entry is found and the state is ‘resolved’, the module still updates the entry.
This is because the target physical address could have been changed. The value of the
time-out field is also reset. If the entry is not found, the module creates a new entry
and adds it to the cache table.

Now the module checks to see if the arrived ARP packet is a request. If it is, the
input module immediately creates an ARP reply message and sends it to the sender.
The ARP reply packet is created by changing the value of the operation field from
request to reply and filling in the target physical address.

• The cache-control module is responsible for maintaining the cache table. It checks
the cache table periodically, entry by entry. If the entry is free, it continues to the
next entry. If the state is ‘pending’, the module increments the value of the attempts
field by 1. It then checks the value of the attempts field. If this value is greater than
the maximum number of attempts allowed, the state is changed to ‘free’ and the
corresponding queue is destroyed. However, if the number of attempts is less than the
maximum, the input module creates and sends another ARP request. If the state of
the entry is ‘resolved’, the module decrements the value of the ‘time-out’ field by the
amount of the time elapsed since the last check. If this value is less than or equal to
zero, the state is changed to free and the queue is destroyed.

2.1.3 Reverse Address Resolution Protocol (RARP)

To create an IP datagram, a host or a router needs to know its own IP address, which
is independent of the physical address. The RARP is designed to resolve the address
mapping of a machine in which its physical address is known, but its logical (IP) address
is unknown. The machine can get its physical address, which is unique locally. It can
then use the physical address to get the logical IP address using the RARP protocol. In

32 INTERNET SECURITY

Host Server

(a) Request for the physical address by broadcast

Host Server

(b) Reply IP address by unicast

H RARP
request

M1 M2 M3

S

H
RARP
reply S

Physical address
is given. Request
IP address

Reply IP
Address

IP address

Figure 2.6 RARP dynamic mapping.

reality, RARP is a protocol of dynamic mapping in which a given physical address is
associated with a logical IP address, as shown in Figure 2.6.

To get the IP address, a RARP request is broadcast to all systems on the network.
Every host or router on the physical network will receive the RARP request packet, but
the RARP server will only answer it as shown in Figure 2.6(b). The server sends a RARP
reply packet including the IP address of the requestor.

2.1.4 Classless Interdomain Routing (CIDR)

CIDR is the standard that specifies the details of both classless addressing and an asso-
ciated routing scheme. Accordingly, the name is slightly inaccurate designation because
CIDR specifies addressing as well as routing.

The original IPv4 model built on network classes was a useful mechanism for allocating
identifiers (netid and hostid) when the primary users of the Internet were academic and
research organisations. But, this mode proved insufficiently flexible and inefficient as
the Internet grew rapidly to include gateways into corporate enterprises with complex

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 33

networks. By September 1993, it was clear that the growth in Internet users would require
an interim solution while the details of IPv6 were being finalised. The resulting proposal
was submitted as RFC 1519 titled ‘Classless Inter-Domain Routing (CIDR): an Address
Assignment and Aggregation Strategy.’ CIDR is classless, representing a move away from
the original IPv4 network class model. CIDR is concerned with interdomain routing rather
than host identification. CIDR has a strategy for the allocation and use of IPv4 addresses,
rather than a new proposal.

2.1.5 IP Version 6 (IPv6, or IPng)

The evolution of TCP/IP technology has led on to attempts to solve problems that improve
service and extend functionalities. Most researchers seek new ways to develop and extend
the improved technology, and millions of users want to solve new networking problems
and improve the underlying mechanisms. The motivation behind revising the protocols
arises from changes in underlying technology: first, computer and network hardware
continues to evolve; second, as programmers invent new ways to use TCP/IP, additional
protocol support is needed; third, the global Internet has experienced huge growth in size
and use. This section examines a proposed revision of the Internet protocol which is one
of the most significant engineering efforts so far.

The network layer protocol is currently IPv4. IPv4 provides the basic communication
mechanism of the TCP/IP suite. Although IPv4 is well designed, data communication has
evolved since the inception of IPv4 in the 1970s. Despite its sound design, IPv4 has some
deficiencies that make it unsuitable for the fast-growing Internet. The IETF decided to
assign the new version of IP and to name it IPv6 to distinguish it from the current IPv4.
The proposed IPv6 protocol retains many of the features that contributed to the success of
IPv4. In fact, the designers have characterised IPv6 as being basically the same as IPv4
with a few modifications: IPv6 still supports connectionless delivery, allows the sender to
choose the size of a datagram, and requires the sender to specify the maximum number
of hops a datagram can make before being terminated. In addition, IPv6 also retains most
of IPv4’s options, including facilities for fragmentation and source routing.

IP version 6 (IPv6), also known as the Internet Protocol next generation (IPng), is the
new version of the Internet Protocol, designed to be a full replacement for IPv4. IPv6
has an 128-bit address space, a revised header format, new options, an allowance for
extension, support for resource allocation and increased security measures. However, due
to the huge number of systems on the Internet, the transition from IPv4 to IPv6 cannot
occur at once. It will take a considerable amount of time before every system in the
Internet can move from IPv4 to IPv6. RFC 2460 defines the new IPv6 protocol. IPv6
differs from IPv4 in a number of significant ways:

• The IP address length in IPv6 is increased from 32 to 128 bits.
• IPv6 can automatically configure local addresses and locate IP routers to reduce con-

figuration and setup problems.
• The IPv6 header format is simplified and some header fields dropped. This new header

format improves router performance and make it easier to add new header types.
• Support for authentication, data integrity and data confidentiality are part of the IPv6

architecture.

34 INTERNET SECURITY

• A new concept of flows has been added to IPv6 to enable the sender to request special
handling of datagrams.

IPv4 has a two-level address structure (netid and hostid) categorised into five classes (A,
B, C, D and E). The use of address space is inefficient. For instant, when an organisation
is granted a class A address, 16 million addresses from the address space are assigned
for the organisation’s exclusive use. On the other hand, if an organisation is granted a
class C address, only 256 addresses are assigned to this organisation, which may not be
enough. Soon there will be no addresses left to assign to any new system that wants to
be connected to the Internet.

Although the subnetting and supernetting strategies have alleviated some addressing
problems, subnetting and supernetting make routing more complicated. The encryption
and authentication options in IPv6 provide confidentiality and integrity of the packet.
However, no encryption or authentication is provided by IPv4.

2.1.5.1 IPv6 Addressing

In December 1995, the network working group of IETF proposed a longer-term solution
for specifying and allocating IP addresses. RFC 2373 describes the address space asso-
ciated with the IPv6. The biggest concern with Internet developers will be the migration
process from IPv4 to IPv6.

IPv4 addressing has the following shortcoming: IPv4 was defined when the Inter-
net was small and consisted of networks of limited size and complexity. It offered two
layers of address hierarchy (netid and hostid) with three address formats (class A, B
and C) to accommodate varying network sizes. Both the limited address space and the
32-bit address size in IPv4 proved to be inadequate for handling the increase in the
size of the routing table caused by the immense numbers of active hosts and servers.
IPv6 is designed to improve upon IPv4 in each of these areas. IPv6 allocates 128 bits
for addresses. Analysis shows that this address space will suffice to incorporate flexible
hierarchies and to distribute the responsibility for allocation and management of the IP
address space.

Like IPv4, IPv6 addresses are represented as string of digits (128 bits or 32 hex digits)
which are further broken down into eight 16-bit integers separated by colons (:). The
basic representation takes the form of eight sections, each two bytes in length.

xx:xx:xx:xx:xx:xx:xx:xx

where each xx represents the hexadecimal form of 16 bits of address. IPv6 uses hexadec-
imal colon notation with abbreviation methods.

Example 2.4 An IPv6 address consists of 16 bytes (octets) which is 128 bits long.
The IPv6 address consists of 32 hexadecimal digits, with every four digits separated by
a colon.

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 35

IPv6 address: flea:1075:fffb:110e:0000:0000:7c2d:a65f

Abbreviated address: f1ea:1075:fffb:110e::7c2d:a65f

Binary address: 1111000111101010 . . . 1010011001011111

Many of the digits in IPv6 addresses are zeros. In this case, the abbreviated address can be
obtained by omitting the leading zeros of a section (four hex digits between two colons),
but not the trailing zeros.

Example 2.5 Assume that the IPv6 address is given as

fedc:ab98:0052:4310:000f:bccf:0000:ff1f (unabbreviated)

Using the abbreviated form, 0052 can be written as 52, 000f as f, and 0000 as 0. But the
trailing zeros cannot be dropped, so that 4310 would not be abbreviated. Thus, the given
IP address becomes fedc:ab98:52:4310:f:bccf:0:ff1f (abbreviated).

Example 2.6 Consider an abbreviated address with consecutive zeros. When consecu-
tive sections are composed of zeros, further abbreviations are possible. We can remove
the zeros altogether and replace them with a double semicolon.

fedc:0:0:0:0:abf8:0:f75f (abbreviated)

fedc::abf8:0:f75f (more abbreviated)

IPv6 Address Types

IPv6 has identified three types of addresses:

• Unicast : To associate with a specific physical interface to a network. Packets sent to
a unicast address are delivered to the interface uniquely specified by the address.

• Anycast : To associate with a set of physical interfaces, generally on different modes.
Packets sent to an anycast address will be delivered to at least one interface specified
by the address.

• Multicast : To associate with a set of physical interfaces, generally on multiple hosts
(nodes). Packets sent to a multicast address will be delivered to all the interfaces to
which the address refers.

Figure 2.7 illustrates three address types.
IPv6 addresses divide the address space into two parts with the type prefix for each

type of address, rest of address, and the fraction of each type of address relative to the
whole address space. Table 2.5 illustrates the address space assignment for type prefixes.

36 INTERNET SECURITY

Host 1

Host 2

Host 3

Host 1

Host 2

Host 3

Host 4

Host 5

Host 1

Host 2

Host 3

Host 4

Host 5

Unicast

Anycast

Multicast

IP packet

or

or

and

and

Figure 2.7 IPv6 address types.

2.1.5.2 IPv6 Packet Format

The IPv6 protocol consists of two parts: the basic elements of the IPv6 header and IPv6
extension headers. The IPv6 datagram is composed of a base header (40 bytes) followed
by the payload. The payload consists of two parts: optional extension headers and data
from the upper layer. The extension headers and data packet from the upper layer usually

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 37

Table 2.5 Type prefixes for IPv6 addresses

Type prefix
(binary)

Type of address Fraction of
address space

0000 0000 Reserved 1/256
0000 0001 Reserved 1/256
0000 001 NSAP (Network Service Access

Point)
1/128

0000 010 IPX (Novell) 1/128
0000 011 Reserved 1/128
0000 100 Reserved 1/128
0000 101 Reserved 1/128
0000 110 Reserved 1/128
0000 111 Reserved 1/128
0001 Reserved 1/16
001 Reserved 1/8
010 Provider-based unicast addresses 1/8
011 Reserved 1/8
100 Geographic unicast addresses 1/8
101 Reserved 1/8
110 Reserved 1/8
1110 Reserved 1/16
1111 0 Reserved 1/32
1111 10 Reserved 1/64
1111 110 Reserved 1/128
1111 1110 0 Reserved 1/512
1111 1110 10 Link local addresses 1/1024
1111 1110 11 Site local addresses 1/1024
1111 1111 Multicast addresses 1/256

Prefix (variable)

128 bits

Rest of address (variable)

occupy up to 65 535 bytes of information. Figure 2.8 shows the base header with its eight
fields. Each IPv6 datagram begins with a base header. The IPv6 header has a fixed length
of 40 octets, consisting of the following fields:

• Version: This four-bit field defines the version number of the IP. For IPv6, the
value is 6.

• Priority : This four-bit priority field defines the priority of the packet with respect to
traffic congestion. So, this field is a measure of the importance of a datagram. The
IPv4 service class field has been renamed the IPv6 traffic class field.

• Flow label : This 24-bit field is designed to provide special handling for a particular
flow of data. This field contains information that routers use to associate a datagram
with a specific flow and priority.

38 INTERNET SECURITY

Version
(4 bits)

Priority
(4 bits)

Flow label
(24 bits)

Payload length
(16 bits)

Next header
(8 bits)

Hop limit
(8 bits)

Source IP address
(128 bits)

Destination IP address
(128 bits)

40 bytes

0 4 8 16 31

Figure 2.8 IPv6 base header with its eight fields.

• Payload length: This 16-bit payload length field defines the total length of the IP
datagram excluding the base header. A payload consists of optional extension headers
plus data from the upper layer. It occupies up to 216 − 1 = 65 535 bytes.

• Next header : The next header is an eight-bit field defining the header that follows the
base header in the datagram. The next header is either one of the optional extension
headers used by IP or a header for an upper-layer protocol such as UDP or TCP.
Extension headers add functionality to the IPv6 datagram.

Table 2.6 shows the values of next headers (i.e. IPv6 extension headers).
Six types of extension header have been defined. These are the hop-by-hop option,

source routing, fragmentation, authentication, encrypted security payload, and destina-
tion option. These are discussed below.

Hop-by-hop option: This option is used when the source needs to pass information to all
routers (in the path) visited by the datagram.

Table 2.6 Next header codes

Code Next header

0 Hop-by-hop option
2 ICMP
6 TCP

17 UDP
43 Source routing
44 Fragmentation
50 Encrypted security payload
51 Authentication
59 Null (no next header)
60 Destination option

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 39

Source routing : The source routing extension header combines the concepts of the strict
source route and the loose source route options of IPv4. The source routing extension is
used when the source wants to specify the transmission path.

The source routing header contains a minimum of seven fields which are expressed in
a unified form as follows:

– The next header and header length are identical to that of hop-by-hop extension header.
– The type field defines loose or strict routing.
– The address left field indicates the number of hops still needed to reach the destination.
– The strict/loose mask field determines the rigidity of routing.
– The destination address in source routing changes from router to router.

The fragmentation extension is used if the payload is a fragment of a message. The
concept of fragmentation is the same as that in IPv4 except that where fragmentation
takes place differs. In IPv4, the source or router is required to fragment if the size of
the datagram is larger than the MTU of the network. In IPv6, only the original source
can fragment using the Path MTU Discovery technique. If the source does not use this
technique, it should fragment the datagram to a size of 576 bytes or smaller, which is the
minimum size of MTU required for each network connected to the Internet.

Encrypted Security Payload (ESP): The ESP is an extension that provides confiden-
tiality between sender and receiver and guards against eavesdropping. The ESP format
contains the security parameter index field and the encrypted data field. The security
parameter index field is a 32-bit word that defines the type of encryption/decryption used.
The encrypted data field contains the data being encrypted along with any extra param-
eters needed by the algorithm. Encryption can be implemented in two ways: transport
mode and tunnel mode, as shown in Figure 2.9. The transport-mode method encrypts

TCP or UDP
Datagram

Encryption

Key

Encrypted data

SPI

Extension headers

Base header

(Encapsulated in an IPv6 packet)

(a) Transport-mode encryption

(b) Tunnel-mode encryption

IP
Datagram

Encryption Encrypted packet

Key

New IPv6 header

(Encapsulated in an IPv6 packet)

Extension headers

Base header

Figure 2.9 Encrypted security payload.

40 INTERNET SECURITY

a TCP segment or UDP user datagram first and then encapsulated along with its base
header, extension headers and security parameter index (SPI) as shown in Figure 2.9(a).
The tunnel-mode method encrypts the entire IP datagram together with its base header and
extension headers and then encapsulates it in a new IP packet as shown in Figure 2.9(b).

The authentication extension validates the sender of the message and protects the data
from hackers. The authentication extension field has a dual purpose: sender identification
and data integrity. The sender verification is needed because the receiver can be sure that
a message is from the genuine sender and not from an imposter. The data integrity is
needed to check that the data is not altered in transition by some hackers. The format
of authentication extension header consists of the security parameter index field and the
authentication data field. The former defines the algorithm used for authentication, and
the latter contains the actual data generated by the algorithm.

The destination extension passes information from the source to the destination exclu-
sively. This header contains optional information to be examined by the destination mode.
It is worth comparing the options in IPv4 with the extension headers in IPv6.

1. The record route option in IPv4 is not used in IPv6.
2. The timestamp option in IPv4 is not implemented in IPv6.
3. The source router option in IPv4 is called the source route extension header in IPv6.
4. The fragmentation fields in the base header section of IPv4 have moved to the frag-

mentation extension header in IPv6.
5. The encrypted security payload extension header is new in IPv6.

• Hop limit : This eight-bit hop limit field decrements by 1 each node that forwards
the packet. The packet is discarded if the hop limit is decremented to zero. This
field serves the same purpose as the TTL field in IPv4. IPv6 interprets the value as
giving a strict bound on the maximum number of hops a datagram can make before
being discarded.

• Source address: The source address field is a 128-bit originator address that identifies
the initial sender of the packet.

• Destination address: The destination address field specifies a 128-bit recipient address
that usually identifies the final destination of the datagram. However, if source routing
is used, this field contains the address of the next router.

To summarise, each IPv6 datagram begins with a 40-octet base header that includes
fields for the source and destination addresses, the maximum hop limit, the traffic class
(priority), the flow label and the type of the next header. Thus, an IPv6 datagram should
contain at least 40 octets in addition to the data.

2.1.5.3 Comparison between IPv4 and IPv6 Headers

Despite many conceptual similarities, IPv6 changes most of the protocol scopes. Most
important, IPv6 completely revises the datagram format by replacing IPv4’s variable-
length options field with a series of fixed-format headers. A comparison between IPv4
and IPv6 headers will be examined in the following section.

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 41

• The header length field is eliminated in IPv6 because the length of the header is fixed
in IPv6.

• The service type field is eliminated in IPv6. The priority and flow label fields together
take over the function of the service type field in IPv4.

• The total length field is eliminated in IPv6 and replaced by the payload length field.
• The identification, flag and offset fields in IPv4 are eliminated from the base header

in IPv6. They are included in the fragmentation extension header.
• The TTL field in IPv4 is called the hop limit in IPv6.
• The protocol field is replaced by the next header field.
• The header checksum field in IPv4 is eliminated because the checksum is provided

by upper level protocols. It is thereby not needed at this level.
• The option fields in IPv4 are implemented as extension headers in IPv6.

The length of the base header is fixed at 40 bytes. However, to give more functionality
to the IP datagram, the base header can be followed by up to six extension headers.

2.1.6 Internet Control Message Protocol (ICMP)

The ICMP is an extension to the Internet Protocol which is used to communicate between
a gateway and a source host, to manage errors and generate control messages.

The Internet Protocol (IP) is not designed to be absolutely reliable. The purpose of
control messages (ICMP) is to provide feedback about problems in the communication
environment, not to make IP reliable.

There are still no guarantees that a datagram will be delivered or a control message
will be returned. Some datagrams may still be undelivered without any report of their
loss. The higher-level protocols that use TCP/IP must implement their own reliability
procedures if reliable communication is required.

IP is an unreliable protocol that has no mechanisms for error checking or error control.
ICMP was designed to compensate for this IP deficiency. However, ICMP does not correct
errors, simply reports them. ICMP uses the source IP address to send the error message to
the source of the datagram. ICMP messages consist of error-reporting messages and query
messages. The error-reporting messages report problems that a router or a destination host
may encounter when it processes an IP packet. In addition to error reporting, ICMP can
diagnose some network problems through the query messages. The query messages (in
pairs) give a host or a network manager specific information from a router or another host.

2.1.7 Internet Group Management Protocol (IGMP)

The Internet Group Management Protocol (IGMP) is used to facilitate the simultaneous
transmission of a message to a group of recipients. IGMP helps multicast routers to
maintain a list of multicast addresses of groups. ‘Multicasting’ means sending of the
same message to more than one receiver simultaneously. When the router receives a
message with a destination address that matches one on the list, it forwards the message,
converting the IP multicast address to a physical multicast address. To participate in IP
on a local network, the host must inform local multicast routers. The local routers contact
other multicast routers, passing on the membership information and establishing route.

42 INTERNET SECURITY

IGMP has only two types of messages: report and query. The report message is sent
from the host to the router. The query message is sent from the router to the host. A router
sends in an IGMP query to determine if a host wishes to continue membership in a group.
The query message is multicast using the multicast address 244.0.0.1. The report message
is multicast using a destination address equal to the multicast address being reported. IP
addresses that start with 1110(2) are multicast addresses. Multicast addresses are class
D addresses.

The IGMP message is encapsulated in an IP datagram with the protocol value of two.
When the message is encapsulated in the IP datagram, the value of TTL must be one.
This is required because the domain of IGMP is the LAN.

The multicast backbone (MBONE) is a set of routers on the Internet that supports
multicasting. MBONE is based on the multicasting capability of IP. Today MBONE uses
the services of UDP at the transport layer.

2.2 Transport Layer Protocols

Two protocols exist for the transport layer: TCP and UDP. Both TCP and UDP lie between
the application layer and the network layer. As a network layer protocol, IP is responsible
for host-to-host communication at the computer level, whereas TCP or UDP is responsible
for process-to-process communication at the transport layer.

2.2.1 Transmission Control Protocol (TCP)

This section describes the services provided by TCP for the application layer. TCP pro-
vides a connection-oriented byte stream service, which means two end points (normally
a client and a server) communicating with each other on a TCP connection. TCP is
responsible for flow/error controls and delivering the error-free datagram to the receiving
application program.

TCP needs two identifiers, IP address and port number, for a client/server to make a
connection offering a full-duplex service. To use the services of TCP, the client socket
address and server socket address are needed for the client/server application programs.

The sending TCP accepts a datagram from the sending application program, creates seg-
ments (or packets) extracted from the datagram, and sends them across the network. The
receiving TCP receives packets, extracts data from them, orders them if they arrived out of
order, and delivers them as a byte stream (datagram) to the receiving application program.

TCP header

TCP data is encapsulated in an IP datagram as shown in Figure 2.10. The TCP packet (or
segment) consists of a 20–60-byte header, followed by data from the application program.
The header is 20 bytes if there is no option and up to 60 bytes if it contains some options.
Figure 2.11 illustrates the TCP packet format, whose header is explained in the following.

• Source and destination port numbers (16 bits each): Each TCP segment contains a
16-bit field each that defines the source and destination port number to identify the

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 43

IP
header

TCP
header

TCP
data

TCP segment

IP datagram

20 bytes 20 bytes

Figure 2.10 Encapsulation of TCP data in an IP datagram.

Padding (8 bits)

Urgent pointer(16 bits)

Code bits
(6 bits)

Sequence number (32 bits)

TCP option (24 bits)

Data

Checksum (16 bits)

Window size (16 bits)
Reserved
(6 bits)

Header
length
(4 bits)

Acknowledgement number (32 bits)

Destination port number (16 bits)Source port number (16 bits)

H
ea

de
r

0 4 10 16 3124Bits

Figure 2.11 TCP packet format.

sending and receiving application. These two port numbers, along with the source
and destination IP addresses in the IP header, uniquely identify each connection. The
combination of an IP address and a port number is sometimes called a socket. The
socket pair, consisting of the client IP address and port number and the server IP
address and port number, specifies two end points that uniquely identify each TCP
connection in the Internet.

• Sequence number (32 bits): This 32-bit sequence field defines the sequence number
assigned to the first byte of data stream contained in this segment. To ensure connec-
tivity, each byte to be transmitted is numbered. This sequence number identifies the
byte in the data stream from the sending TCP to the receiving TCP. Considering the
stream of bytes following in one direction between two applications, TCP will number
each byte with a sequence number. During connection establishment, each party uses
a random number generator to create an initial sequence number (ISN) that is usually

44 INTERNET SECURITY

different in each direction. The 32-bit sequence number is an unsigned number that
wraps back around to 0 after reaching 232 − 1.

• Acknowledgement number (32 bits): This 32-bit field defines the byte number that the
sender of the segment is expecting to receive from the receiver. Since TCP provides a
full-duplex service to the application layer, data can flow in each direction, independent
of the other direction. The sequence number refers to the stream flowing in the same
direction as the segment, while the acknowledgement number refers to the stream
flowing in the opposite direction from the segment. Therefore, the acknowledgement
number is the sequence number plus 1 of the last successfully received byte of data.
This field is only valid if the ACK flag is on.

• Header length (4 bits): This field indicates the number of four-byte words in the TCP
header. Since the header length is between 20 to 60 bytes, an integer value of this
field can be between 5 and 15, because 5 × 4 = 20 bytes and 15 × 4 = 60 bytes.

• Reserved (6 bits): This is a six-bit field reserved for future use.

• Code bits (6 bits): There are six flag bits (or control bits) in the TCP header. One or
more can be turned on at the same time. Below is a brief description of each flag to
determine the purpose and contents of the segment.

URG The urgent point field is valid.
ACK The acknowledgement number is valid.
PSH This segment requests a push.
RST Reset the connection.
SYN Synchronise sequence number to

initiate a connection.
FIN The sender is finished sending data.

• Window size (16 bits): This 16-bit field defines the size of window in bytes. Since the
window size of this field is 16 bits, the maximum size of the window is 216 − 1 =
65 535 bytes. TCP’s flow control is provided by each end, advertising a window size.
This is the number of bytes, starting with the one specified by the acknowledgement
number field, that the receiver is willing to accept.

• Checksum (16 bits): This 16-bit field contains the checksum. The checksum covers
the TCP segment, TCP header and TCP data. This is a mandatory field that must be
calculated and stored by the sender, and then verified by the receiver.

• Urgent pointer (16 bits): This 16-bit field is valid only if the URG flag is set. The
urgent point is used when the segment contains urgent data. It defines the number that
must be added to the sequence number to obtain the number of the last urgent byte
in the data section of the segment.

• Options (24 bits): The options field (if any) varies in length, depending on which
options have been included. The size of the TCP header varies depending on the
options selected. The TCP header can have up to 40 bytes of optional information.
The options are used to convey additional information to the destination or to align

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 45

other options. The options are classified into two categories: one-byte options contain
end of option and no operation; multiple-byte operations contain maximum segment
size, window scale factor and timestamp.

TCP is a connection-oriented byte stream transport layer protocol in the TCP/IP suite. TCP
provides a full duplex connection between two applications, allowing them to exchange
large volumes of data efficiently. Since TCP provides flow control, it allows systems of
widely varying speeds to communicate. To accomplish flow control, TCP uses a sliding
window protocol so that it can make efficient use of the network. Error detection is
handled by the checksum, acknowledgement and timeout. TCP is used by many popular
applications such as HTTP (World Wide Web), TELNET, Rlogin, FTP and SMTP for
e-mail.

2.2.2 User Datagram Protocol (UDP)

UDP lies between the application layer and IP layer. Like TCP, UDP serves as the interme-
diary between the application programs and network operations. UDP uses port numbers
to accomplish a process-to-process communication. The UDP provides a flow-and-control
mechanism at the transport level. In fact, it performs very limited error checking. UDP
can only receive a data unit from the process, and deliver it to the receiver unreliably.
The data unit must be small enough to fit in a UDP packet. If a process wants to send
a small message and does not care much about reliability, it will use UDP. UDP is a
connectionless protocol. It is often used for broadcast-type protocols, such as audio or
video traffic. It is quicker and uses less bandwidth because a UDP connection is not
continuously maintained. This protocol does not guarantee delivery of information, nor
does it repeat a corrupted transfer, as does TCP.

UDP header

UDP receives the data and adds the UDP header. UDP then passes the user datagram to
the IP with the socket addresses. IP adds its own header. The IP datagram is then passed
to the data link layer. The data link layer receives the IP datagram, adds its own header
and a trailer (possibly), and passes it to the physical layer. The physical layer encodes bits
into electrical or optical signals and sends it to the remote machine. Figure 2.12 shows
the encapsulation of a UDP datagram as an IP datagram. The IP datagram contains its
total length in bytes, so the length of the UDP datagram is this total length minus the
length of the IP header.

The UDP header is shown by the fields illustrated in Figure 2.13.

• Source port numbers (16 bits): This 16-bit port number identifies the sending process
running on the source host. Since the source port number is 16 bits long, it can range
from 0 to 65 656 bytes. If the source host is the client, the client program is assigned
a random port number called the ephemeral port number requested by the process
and chosen by the UDP software running on the source host. If the source host is the
server, the port number is a universal port number.

46 INTERNET SECURITY

IP
header

UDP
header

UDP data

UDP datagram

IP datagram

20 bytes 8 bytes

Figure 2.12 UDP encapsulation.

Source port number (16 bits) Destination port number (16 bits)

UDP length (16 bits) Checksum (16 bits)

Data (if any)

0 311615

Header
(8 bytes)

Figure 2.13 UDP header.

• Destination port numbers (16 bits): This is the 16-bit port number used by the process
running on the destination host. If the destination host is the server, the port number
is a universal port number, while if the destination host is the client, the port number
is an ephemeral port number.

• Length (16 bits): This is a 16-bit field that contains a count of bytes in the UDP
datagram, including the UDP header and the user data. This 16-bit field can define
a total length of 0 to 65 535 bytes. However, the minimum value for length is eight,
which indicates an UDP datagram with only header and no data. Therefore, the length
of data can be between 0 to 65 507 bytes, subtracting the total length 65 535 bytes from
20 bytes for an IP header and 8 bytes for an UDP header. The length field in a UDP
user datagram is redundant. The IP datagram contains its total length in bytes, so the
length of the UDP datagram is this total length minus the length of the IP header.

• Checksum (16 bits): The UDP checksum is used to detect errors over the entire user
datagram covering the UDP header and the UDP data. UDP checksum calculations
include a pseudoheader, the UDP header and the data coming from the application
layer. The value of the protocol field for UDP is 17. If this value changes during
transmission, the checksum calculation at the receiver will detect it and UDP drops
the packet.

The checksum computation at the sender is as follows:

1. Add the pseudoheader to the UDP datagram.

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 47

2. Fill the checksum field with zero.
3. Divide the total bits into 16-bit words.
4. If the total number of bytes is not even, add padding of all 0s.
5. Complement the 16-bit result and insert it in the checksum field.
6. Drop the pseudoheader and any added padding.
7. Deliver the UDP datagram to the IP software for encapsulation.

The checksum computation at the receiver is as follows:

1. Add the pseudoheader to the UDP datagram.
2. Add padding if needed.
3. Divide the total bits into 16-bit words.
4. Add all 16-bit sections using arithmetic.
5. Complement the result.
6. If the result is all 0s, drop the pseudoheader and any added padding and accept the

user datagram. Otherwise, discard the user datagram.

Multiplexing and demultiplexing

In a host running a TCP/IP suite, there is only one UDP but there may be several
processes that may want to use the services of UDP. To handle this situation, UDP needs
multiplexing and demultiplexing.

• Multiplexing : At the sender side, it may have several processes that need user data-
grams. But there is only one UDP. This is a many-to-one relationship and requires
multiplexing. UDP accepts messages from different processes, differentiated by their
assigned port numbers. After adding the header, UDP passes the user datagram to IP.

• Demultiplexing : At the receiver side, there is only one UDP. However, it may happen
to be many processes that can receive user datagrams. This is a one-to-many rela-
tionship and requires demultiplexing. UDP receives user datagrams from IP. After
error checking and dropping of header, UDP delivers each message to the appropriate
process based on the port numbers.

UDP is suitable for a process that requires simple request-response communication
with little concern for flow and error control. It is not suitable for a process that needs
to send bulk data, like FTP. However, UDP can be used for a process with internal flow
and error control mechanisms such as the Trivial File Transfer Protocol (TFTP) process.
UDP is also used for management processes such as SNMP.

2.3 World Wide Web

The World Wide Web (WWW) is a repository of information spread all over the world
and linked together. The WWW is a distributed client-server service, in which a client
using a browser can access a service using a server. The Web consists of Web pages that
are accessible over the Internet.

48 INTERNET SECURITY

The Web allows users to view documents that contain text and graphics. The Web grew
to be the largest source of Internet traffic since 1994 and continues to dominate, with a
much higher growth rate than the rest of the internet. By 1995, Web traffic overtook FTP
to become the leader. By 2001, Web traffic completely overshadowed other applications.

2.3.1 Hypertext Transfer Protocol (HTTP)

The protocol used to transfer a Web page between a browser and a Web server is known
as Hypertext Transfer Protocol (HTTP). HTTP operates at the application level. HTTP is
a protocol used mainly to access data on the World Wide Web. HTTP functions like a
combination of FTP and SMTP. It is similar to FTP because it transfers files, while HTTP
is like SMTP because the data transferred between the client and the server looks like
SMTP messages. However, HTTP differs from SMTP in the way that SMTP messages
are stored and forwarded; HTTP messages are delivered immediately.

As a simple example, a browser sends an HTTP GET command to request a Web
page from a server. A browser contacts a Web server directly to obtain a page. The
browser begins with a URL, extracts the hostname section, uses DNS to map the name
into an equivalent IP address, and uses the IP address to form a TCP connection to the
server. Once the TCP connection is in place, the browser and Web server use HTTP to
communicate. Thus, if the browser sends a request to retrieve a specific page, the server
responds by sending a copy of the page.

A browser requests a Web page, and the server transfers a copy to the browser. HTTP
also allows transfer from a browser to a server. HTTP allows browsers and servers to
negotiate details such as the character set to be used during transfers. To improve response
time, a browser caches a copy of each Web page it retrieves. HTTP allows a machine
along the path between a browser and a server to act as a proxy server that caches Web
pages and answers a browser’s request from its cache. Proxy servers are an important
part of the Web architecture because they reduce the load on servers.

In summary, a browser and server use HTTP to communicate. HTTP is an application-
level protocol with explicit support for negotiation, proxy servers, caching and persistent
connections.

2.3.2 Hypertext Markup Language (HTML)

The browser architecture is composed of the controller and the interpreters to display a
Web document on the screen. The controller can be one of the protocols such as HTTP,
FTP, Gopher or TELNET. The interpreter can be HTML or Java, depending on the type
of document.

The Hypertext Markup Language (HTML) is a language used to create Web pages. A
markup language such as HTML is embedded in the file itself, and formatting instructions
are stored with the text. Thus, any browser can read the instructions and format the text
according to the workstation being used. Suppose a user creates formatted text on a
Macintosh computer and stores it in a Web page, so another user who is on an IBM
computer is not able to receive the Web page because the two computers are using
different formatting procedures. Consider a case where different word processors use
different techniques or procedures to format text. To overcome these difficulties, HTML

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 49

uses only ASCII characters for both main text and formatting instructions. Therefore,
every computer can receive the whole document as an ASCII document.

Web page

A Web page consists of two parts: the head and body. The head is the first part of a
Web page. The head contains the file of the page and other parameters that the browser
will use. The body contains the actual content of a page. The body includes the text and
tags (marks). The text is the information contained in a page, whereas the tags define the
appearance of the document.

Tags

Tags are marks that are embedded into the text. Every HTML tag is a name followed by
an optional list of attributes. An attribute is followed by an equals sign (=) and the value
of the attribute. Some tags are used alone; some are used in pairs. The tags used in pairs
are called starting and ending tags. The starting tag can have attributes and values. The
ending tag cannot have attributes or values, but must have a slash before the name. An
example of starting and ending tags is shown below:

< TagName Attribute = Value Attribute = Value . . . > (Starting tag)

< Tag Name > (Ending tag)

A tag is enclosed in two angled brackets like <A> and usually comes in pairs as <A>

and . The starting tag starts with the name of the tag, and the ending tag starts with
a backslash followed by the name of the tag. A tag can have a list of attributes, each of
which can be followed by an equals sign and a value associated with the attribute.

2.3.3 Common Gateway Interface (CGI)

A dynamic document is created by a Web server whenever a browser requests the doc-
ument. When a request arrives, the Web server runs an application program that creates
the dynamic document. Common Gateway Interface (CGI) is a technology that creates
and handles dynamic documents. CGI is a set of standards that defines how a dynamic
document should be written, how the input data should be supplied to the program and
how the output result should be used. CGI is not a new language, but it allows program-
mers to use any of several languages such as C, C++, Bourne Shell, Korn Shell or Perl.
A CGI program in its simplest form is code written in one of the languages supporting
the CGI.

2.3.4 Java

Java is a combination of a high-level programming language, a run-time environment and
a library that allows a programmer to write an active document and a browser to run it.
It can also be used as a stand-alone program without using a browser. However, Java is
mostly used to create a small application program of an applet.

50 INTERNET SECURITY

2.4 File Transfer

The file transfer application allows users to send or receive a copy of a data file. Access
to data on remote files takes two forms: whole-file copying and shared online access.
FTP is the major file transfer protocol in the TCP/IP suite. TFTP provides a small, simple
alternative to FTP for applications that need only file transfer. NFS provides online shared
file access.

2.4.1 File Transfer Protocol (FTP)

File Transfer Protocol (FTP) is the standard mechanism provided by TCP/IP for copying
a file from one host to another. The FTP protocol is defined in RFC959. It is further
defined in RFC 2227, 2640, 2773 for updated documentation.

In transferring files from one system to another, two systems may have different ways
to represent text and data. Two systems may have different directory structures. All of
these problems have been solved by FTP in a very simple and elegant way.

FTP differs from other client–server applications in that it establishes two connections
between the hosts. One connection is used for data transfer (port 20), the other for control
information (port 21). The control connection port remains open during the entire FTP
session and is used to send control messages and client commands between the client and
server. A data connection is established using an ephemeral port. The data connection
is created each time a file is transferred between the client and server. Separation of
commands and data transfer makes FTP more efficient. FTP allows the client to specify
whether a file contains text (ASCII or EBCDIC character sets) or binary integers. FTP
requires clients to authorise themselves by sending a log name and password to the server
before requesting file transfers.

Since FTP is used only to send and receive files, it is very difficult for hackers to
exploit.

2.4.2 Trivial File Transfer Protocol (TFTP)

Trivial File Transfer Protocol (TFTP) is designed to simply copy a file without the need
for all of the functionalities of the FTP protocol. TFTP is a protocol that quickly copies
files because it does not require all the sophistication provided in FTP. TFTP can read or
write a file for the client. Since TFTP restricts operations to simple file transfer and does
not provide authentication, TFTP software is much smaller than FTP.

2.4.3 Network File System (NFS)

The Network File System (NFS), developed by Sun Microsystems, provides online shared
file access that is transparent and integrated. The file access mechanism accepts the request
and automatically passes it to either the local file system software or to the NFS client,
depending on whether the file is on the local disk or on a remote machine. When it
receives a request, the client software uses the NFS protocol to contact the appropriate
server on a remote machine and performs the requested operation. When the remote server
replies, the client software returns the results to the application program.

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 51

Since Sun’s Remote Procedure Call (RPC) and eXternal Data Representation (XDR) are
defined separately from NFS, programmers can use them to build distributed applications.

2.5 Electronic Mail

In this section, we consider electronic mail service and the protocols that support it. An
electronic mail (e-mail) facility allows users to send small notes or large voluminous
memos across the Internet. E-mail is popular because it offers a fast, convenient method
of transferring information and communicating.

2.5.1 Simple Mail Transfer Protocol (SMTP)

The Simple Mail Transfer Protocol (SMTP) provides a basic e-mail facility. SMTP is the
protocol that transfers e-mail from one server to another. It provides a mechanism for
transferring messages among separate servers. Features of SMTP include mailing lists,
return receipts and forwarding. SMTP accepts the incoming message and makes use of
TCP to send it to an SMTP module on another servers. The target SMTP module will
make use of a local electronic mail package to store the incoming message in a user’s
mailbox. Once the SMTP server identifies the IP address for the recipient’s e-mail server,
it sends the message through standard TCP/IP routing procedures.

Since SMTP is limited in its ability to queue messages at the receiving end, it’s usually
used with one of two other protocols, POP3 or IMAP, that let the user save messages
in a server mailbox and download them periodically from the server. In other words,
users typically use a program that uses SMTP for sending e-mail and either POP3 or
IMAP for receiving messages that have been received for them at their local server. Most
mail programs (such as Eudora) let you specify both an SMTP server and a POP server.
On UNIX-based systems, sendmail is the most widely-used SMTP server for e-mail.
Earlier versions of sendmail presented many security risk problems. Through the years,
however, sendmail has become much more secure, and can now be used with confidence.
A commercial package, sendmail, includes a POP3 server and there is also a version for
Windows NT.

Hackers often use different forms of attack with SMTP. A hacker might create a fake
e-mail message and send it directly to an SMTP server. Other security risks associated
with SMTP servers are denial-of-service attacks. Hackers will often flood an SMTP server
with so many e-mails that the server cannot handle legitimate e-mail traffic. This type
of flood effectively makes the SMTP server useless, thereby denying service to legiti-
mate e-mail users. Another well-known risk of SMTP is the sending and receiving of
viruses and Trojan horses. The information in the header of an e-mail message is easily
forged. The body of an e-mail message contains standard text or a real message. Newer
e-mail programs can send messages in HTML format. No viruses and Trojans can be
contained within the header and body of an e-mail message, but they may be sent as
attachments. The best defence against malicious attachments is to purchase an SMTP
server that scans all messages for viruses, or to use a proxy server that scans all incoming
and outgoing messages.

52 INTERNET SECURITY

SMTP is usually implemented to operate over TCP port 25. The details of SMTP are
in RFC 2821 of the Internet Engineering Task Force (IETF). An alternative to SMTP that
is widely used in Europe is X.400.

2.5.2 Post Office Protocol Version 3 (POP3)

The most popular protocol used to transfer e-mail messages from a permanent mailbox
to a local computer is known as the Post Office Protocol version 3 (POP3). The user
invokes a POP3 client, which creates a TCP connection to a POP3 server on the mailbox
computer. The user first sends a login and a password to authenticate the session. Once
authentication has been accepted, the user client sends commands to retrieve a copy of one
or more messages and to delete the message from the permanent mailbox. The messages
are stored and transferred as text files in RFC 2822 standard format.

Note that computers with a permanent mailbox must run two servers – an SMTP
server accepts mail sent to a user and adds each incoming message to the user’s permanent
mailbox, and a POP3 server allows a user to extract messages from the mailbox and delete
them. To ensure correct operation, the two servers must coordinate with the mailbox so
that if a message arrives via SMTP while a user extracts messages via POP3, the mailbox
is left in a valid state.

2.5.3 Internet Message Access Protocol (IMAP)

The Internet Message Access Protocol (IMAP) is a standard protocol for accessing e-
mail from your local server. IMAP4 (the latest version) is a client–server protocol in
which e-mail is received and held for you by your Internet server. You (or your e-mail
client) can view just the subject and the sender of the e-mail and then decide whether to
download the mail. You can also create, manipulate and delete folders or mailboxes on
the server, delete messages or search for certain e-mails. IMAP requires continual access
to the server during the time that you are working with your mail.

A less sophisticated protocol is Post Office Protocol 3 (POP3). With POP3, your mail is
saved for you in your mailbox on the server. When you read your mail, it is immediately
downloaded to your computer and no longer maintained on the server.

IMAP can be thought of as a remote file server. POP can be thought of as a ‘store-
and-forward’ service.

POP and IMAP deal with receiving e-mail from your local server and are not to be
confused with SMTP, a protocol for transferring e-mail between points on the Internet.
You send e-mail by SMTP and a mail handler receives it on your recipient’s behalf. Then
the mail is read using POP or IMAP.

2.5.4 Multipurpose Internet Mail Extension (MIME)

The Multipurpose Internet Mail Extension (MIME) is defined to allow transmission of
non-ASCII data via e-mail. MIME allows arbitrary data to be encoded in ASCII and then
transmitted in a standard e-mail message. SMTP cannot be used for languages that are
not supported by seven-bit ASCII characters. It cannot also be used for binary files or to
send video or audio data.

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 53

MIME is a supplementary protocol that allows non-ASCII data to be sent through
SMTP. MIME is a set of software functions that transforms non-ASCII data to ASCII
data and vice versa.

2.6 Network Management Service

This section takes a look at a protocol that more directly supports administrative functions.
RFC 1157 defines the Simple Network Management Protocol (SNMP).

2.6.1 Simple Network Management Protocol (SNMP)

The Simple Network Management Protocol (SNMP) is an application-layer protocol that
facilitates the exchange of management information between network devices. It is part
of the TCP/IP protocol suite. SNMP enables network administrators to manage network
performance, find and solve network problems and plan for network growth.

There are two versions of SNMP, v1 and v2. Both versions have a number of features
in common, but SNMP v2 offers enhancements, such as additional protocol operations.

SNMP version 1 is described in RFC 1157 and functions within the specifications of
the Structure of Management Information (SMI). SNMP v1 operates over protocols such
as the User Datagram Protocol (UDP), IP, OSI Connectionless Network Service (CLNS),
Apple-Talk Datagram-Delivery Protocol (DDP), and Novell Internet Packet Exchange
(IPX). SNMP v1 is widely used and is the de facto network management protocol in the
Internet community.

SNMP is a simple request–response protocol. The network management system issues
a request, and managed devices return responses. This behaviour is implemented using
one of four protocol operations: Get, GetNext, Set and Trap. The Get operation is used
by the network management system (NMS) to retrieve the value of one or more object
instances from an agent. If the agent responding to the Get operation cannot provide
values for all the object instances in a list, it provides no values. The GetNext operation
is used by the NMS to retrieve the value of the next object instance in a table or list
within an agent. The Set operation is used by the NMS to set the values of object instances
within an agent. The Trap operation is used by agents to asynchronously inform the NMS
of a significant event.

SNMP version 2 is an evolution of the SNMP v1. It was originally published as a set
of proposed Internet Standards in 1993. SNMP v2 functions within the specifications of
the Structure of Management Information (SMI) which defines the rules for describing
management information, using Abstract Syntax Notation One (ASN.1). The Get, GetNext
and Set operation used in SNMP v1 are exactly the same as those used in SNMP v2.
However, SNMP v2 adds and enhances some protocol operations. SNMP v2 also defines
two new protocol operations: GetBulk and Inform. The GetBulk operation is used by
the NMS to efficiently retrieve large blocks of data, such as multiple rows in a table.
GetBulk fills a response message with as much of the requested data as will fit. The
Inform operation allows one NMS to send trap information to another NMS and receive
a response.

54 INTERNET SECURITY

SNMP lacks any authentication capabilities, which results in vulnerability to a variety
of security threats. These include masquerading, modification of information, message
sequence and timing modifications and disclosure.

2.7 Converting IP Addresses

To identify an entity, TCP/IP protocols use the IP address, which uniquely identifies the
connection of a host to the Internet. However, users prefer a system that can map a name
to an address or an address to a name. This section considers converting a name to an
address and vice versa, mapping between high-level machine names and IP addresses.

2.7.1 Domain Name System (DNS)

The Domain Name System (DNS) uses a hierarchical naming scheme known as domain
names. The mechanism that implements a machine name hierarchy for TCP/IP is called
DNS. DNS has two conceptual aspects: the first specifies the name syntax and rules
for delegating authority over names, and the second specifies the implementation of a
distributed computing system that efficiently maps names to addresses.

DNS is a protocol that can be used in different platforms. In the Internet, the domain
name space is divided into three different sections: generic domain, country domain and
inverse domain. A DNS server maintains a list of hostnames and IP addresses, allowing
computers that query them to find remote computers by specifying hostnames rather than
IP addresses. DNS is a distributed database and therefore DNS servers can be configured
to use a sequence of name servers, based on the domains in the name being looked for.

2.8 Routing Protocols

An Internet is a combination of networks connected by routers. When a datagram goes
from a source to a destination, it will probably pass through many routers until it reaches
the router attached to the destination network. A router chooses the route with the shortest
metric. The metric assigned to each network depends on the type of protocol. The Routing
Information Protocol (RIP) is a simple protocol which treats each network as equals. The
Open Shortest Path First (OSPF) protocol is an interior routing protocol that is becoming
very popular. Border Gateway Protocol (BGP) is an inter-autonomous system routing
protocol which first appeared in 1989.

2.8.1 Routing Information Protocol (RIP)

The Routing Information Protocol (RIP) is a protocol used to propagate routing informa-
tion inside an autonomous system. Today, the Internet is so large that one routing protocol
cannot handle the task of updating the routing tables of all routers.

Therefore, the Internet is divided into autonomous systems. An Autonomous System
(AS) is a group of networks and routers under the authority of a single administration.
Routing inside an autonomous system is referred to as interior routing. RIP and OSPF are
popular interior routing protocols used to update routing tables in an AS. Routing between
autonomous systems is referred to as exterior routing. RIP is a popular protocol which

TCP/IP SUITE AND INTERNET STACK PROTOCOLS 55

belongs to the interior routing protocol. It is a very simple protocol based on distance
vector routing, which uses the Bellman–Ford algorithm for calculating routing tables. A
RIP routing table entry consists of a destination network address, the hop count to that
destination and the IP address of the next router. RIP uses three timers: the periodic timer
controls the advertising of the update message, the expiration timer governs the validity
of a route, and the garbage collection timer advertises the failure of a route. However,
two shortcomings associated with the RIP protocol are slow convergence and instability.

2.8.2 Open Shortest Path First (OSPF)

The Open Shortest Path First (OSPF) is a new alternative to RIP as an interior routing
protocol. It overcomes all the limitations of RIP. Link-state routing is a process by which
each router shares its knowledge about its neighbourhood with every other router in the
area. OSPF uses link-state routing to update the routing tables in an area, as opposed to
RIP which is a distance-vector protocol. The term distance-vector means that messages
sent by RIP contain a vector of distances (hop counts). In reality, the important difference
between two protocols is that a link-state protocol always converges faster than a distance-
vector protocol.

OSPF divides an autonomous system (AS) in areas, defined as collections of networks,
hosts and routers. At the border of an area, area border routers summarise information
about the area and send it to other areas. There is a special area called the backbone among
the areas inside an autonomous system. All the areas inside an AS must be connected to
the backbone whose area identification is zero. OSPF defines four types of links: point-
to-point, transient, stub and virtual. Point-to-point links between routers do not need an IP
address at each end. Unnumbered links can save IP addresses. A transient link is a network
with several routers attached to it. A stub link is a network that is connected to only one
router. When the link between two routers is broken, the administration may create a
virtual link between them using a longer path that probably goes through several routers.

A simple authentication scheme can be used in OSPF. OSPF uses multicasting rather
than broadcasting in order to reduce the load on systems not participating in OSPF.
Distance-vector Multicast Routing Protocol (DVMRP) is used in conjunction with IGMP
to handle multicast routing. DVMRP is a simple protocol based on distance-vector routing
and the idea of MBONE. Multicast Open Shortest Path First (MOSPF), an extension to
the OSPF protocol, adds a new type of packet (called the group membership packet) to the
list of link state advertisement packets. MOSPF also uses the configuration of MBONE
and islands.

2.8.3 Border Gateway Protocol (BGP)

BGP is an exterior gateway protocol for communication between routers in different
autonomous systems. BGP is based on a routing method called path-vector routing. Refer
to RFC 1772 (1991) which describes the use of BGP in the Internet. BGP version 3 is
defined in RFC 1267 (1991) and BGP version 4 in RFC 1467 (1993).

Path-vector routing is different from both distance-vector routing and link-state routing.
Path-vector routing does not have the instability nor looping problems of distance-vector
routing. Each entry in the routing table contains the destination network, the next router

56 INTERNET SECURITY

and the path to reach the destination. The path is usually defined as an ordered list of
autonomous systems that a packet should travel through to reach the destination.

BGP is different from RIP and OSPF in that BGP uses TCP as its transport protocol.
There are four types of BGP messages: open, update, keepalive and notification. BGP
detects the failure of either the link or the host on the other end of the TCP connection
by sending a keepalive message to its neighbour on a regular basis.

2.9 Remote System Programs

High-level services allow users and programs to interact with automated services on
remote machines and with remote users. This section describes programs that include
Rlogin (Remote login) and TELNET (TErminaL NETwork).

2.9.1 TELNET

TELNET is a simple remote terminal protocol that allows a user to log on to a computer
across an Internet. TELNET establishes a TCP connection, and then passes keystrokes
from the user’s keyboard directly to the remote computer as if they had been typed on a
keyboard attached to the remote machine. TELNET also carries output from the remote
machine back to the user’s screen. The service is called transparent because it looks as
if the user’s keyboard and display attach directly to the remote machine. TELNET client
software allows the user to specify a remote machine either by giving its domain name
or IP address.

TELNET offers three basic services. First, it defines a network virtual terminal that
provides a standard interface to remote systems. Second, TELNET includes a mechanism
that allows the client and server to negotiate options. Finally, TELNET treats both ends
of the connection symmetrically.

2.9.2 Remote Login (Rlogin)

Rlogin was designed for remote login only between UNIX hosts. This makes it a simpler
protocol than TELNET because option negotiation is not required when the operating
system on the client and server are known in advance. Over the past few years, Rlogin has
also ported to several non-UNIX environments. RFC 1282 specifies the Rlogin protocol.

When a user wants to access an application program or utility located on a remote
machine, the user performs remote login. The user sends the keystrokes to the terminal
driver where the local operating system accepts the characters but does not interpret
them. The characters are sent to the TELNET client, which transforms the characters into
a universal character set called Network Virtual Terminal (NVT) characters and delivers
them to the local TCP/IP stack.

The commands or text (in NVT form) travel through the Internet and arrive at the
TCP/IP stack at the remote machine. Here the characters are delivered to the operating
system and passed to the TELNET server, which changes the characters to the corre-
sponding characters understandable by the remote computer.

3

Symmetric Block Ciphers

This chapter deals with some important block ciphers that have been developed in the
past. They are IDEA (1992), RC5 (1995), RC6 (1996), DES (1977) and AES (2001). The
Advanced Encryption Standard (AES) specifies a FIPS-approved symmetric block cipher
which will soon come to be used in lieu of Triple DES or RC6.

3.1 Data Encryption Standard (DES)

In the late 1960s, IBM initiated a Lucifer research project, led by Horst Feistel, for
computer cryptography. This project ended in 1971 and LUCIFER was first known as a
block cipher that operated on blocks of 64 bits, using a key size of 128 bits. Soon after
this IBM embarked on another effort to develop a commercial encryption scheme, which
was later called DES. This research effort was led by Walter Tuchman. The outcome of
this effort was a refined version of Lucifer that was more resistant to cryptanalysis.

In 1973, the National Bureau of Standards (NBS), now the National Institute of
Standards and Technology (NIST), issued a public request for proposals for a national
cipher standard. IBM submitted the research results of the DES project as a possible
candidate. The NBS requested the National Security Agency (NSA) to evaluate the algo-
rithm’s security and to determine its suitability as a federal standard. In November 1976,
the Data Encryption Standard was adopted as a federal standard and authorised for use on
all unclassified US government communications. The official description of the standard,
FIPS PUB 46, Data Encryption Standard was published on 15 January 1977. The DES
algorithm was the best one proposed and was adopted in 1977 as the Data Encryption
Standard even though there was much criticism of its key length (which had changed from
Lucifer’s original 128 bits to 64 bits) and the design criteria for the internal structure of
DES, i.e., S-box. Nevertheless, DES has survived remarkably well over 20 years of intense
cryptanalysis and has been a worldwide standard for over 18 years. The recent work on
differential cryptanalysis seems to indicate that DES has a very strong internal structure.

Internet Security. Edited by M.Y. Rhee
 2003 John Wiley & Sons, Ltd ISBN 0-470-85285-2

58 INTERNET SECURITY

Since the terms of the standard stipulate that it be reviewed every five years, on
6 March 1987 the NBS published in the Federal Register a request for comments on the
second five-year review. The comment period closed on 10 December 1992. After much
debate, DES was reaffirmed as a US government standard until 1992 because there was
still no alternative for DES. The NIST again solicited a review to assess the continued
adequacy of DES to protect computer data. In 1993, NIST formally solicited comments
on the recertification of DES. After reviewing many comments and technical inputs, NIST
recommend that the useful lifetime of DES would end in the late 1990s. In 2001, the
Advanced Encryption Standard (AES), known as the Rijndael algorithm, became an FIPS-
approved advanced symmetric cipher algorithm. AES will be a strong advanced algorithm
in lieu of DES.

The DES is now a basic security device employed by worldwide organisations. There-
fore, it is likely that DES will continue to provide network communications, stored data,
passwords and access control systems.

3.1.1 Description of the Algorithm

DES is the most notable example of a conventional cryptosystem. Since it has been well
documented for over 20 years, it will not be discussed in detail here.

DES is a symmetric block cipher, operating on 64-bit blocks using a 56-bit key. DES
encrypts data in blocks of 64 bits. The input to the algorithm is a 64-bit block of plaintext
and the output from the algorithm is a 64-bit block of ciphertext after 16 rounds of
identical operations. The key length is 56 bits by stripping off the 8 parity bits, ignoring
every eighth bit from the given 64-bit key.

As with any block encryption scheme, there are two inputs to the encryption function:
the 64-bit plaintext to be encrypted and the 56-bit key. The basic building block of DES is
a suitable combination of permutation and substitution on the plaintext block (16 times).
Substitution is accomplished via table lookups in S-boxes. Both encryption and decryption
use the same algorithm except for processing the key schedule in the reverse order.

The plaintext block X is first transposed under the initial permutation IP, giving
X0 = IP(X) = (L0, R0). After passing through 16 rounds of permutation, XORs and sub-
stitutions, it is transposed under the inverse permutation IP−1 to generate the ciphertext
block Y. If Xi = (Li, Ri) denotes the result of the ith round encryption, then we have

Li = Ri−1

Ri = Li−1 ⊕ f (Ri−1, Ki)

The ith round encryption of DES algorithm is shown in Figure 3.1. The block diagram
for computing the f(R, K)-function is shown in Figure 3.2. The decryption process can
be derived from the encryption terms as follows:

Ri−1 = Li

Li−1 = Ri ⊕ f (Ri−1, Ki) = Ri ⊕ f (Li, Ki)

If the output of the ith round encryption be Li ||Ri , then the corresponding input to the
(16–i)th round decryption is Ri ||Li . The input to the first round decryption is equal to

SYMMETRIC BLOCK CIPHERS 59

f(Ri−1 , Ki)

Li−1 Ri−1

Ki

RiLi

Figure 3.1 The ith round of DES algorithm.

Ri−1 (32 bits)

E(Ri−1)

(48 bits)

(48 bits)

S1 S3S2 S4 S5 S6 S7 S8

P(Ωi)

f(Ri−1, Ki)

(32 bits)

Ki

Σ = Ωi (32 bits)| |

6 6 6 6 6 6 6 6

4 4 4 4 4 4 4 4

S-boxes

Γi = E(Ri−1) + Ki

Figure 3.2 Computation of the f-function.

60 INTERNET SECURITY

the 32-bit swap of the output of the 16th round encryption process. The output of the
first round decryption is L15||R15, which is the 32-bit swap of the input to the 16th round
of encryption.

3.1.2 Key Schedule

The 64-bit input key is initially reduced to a 56-bit key by ignoring every eighth bit. This
is described in Table 3.1. These ignored 8 bits, k8, k16, k24, k32, k40, k48, k56, k64 are used
as a parity check to ensure that each byte is of old parity and no errors have entered
the key.
After the 56-bit key was extracted, they are divided into two 28-bit halves and loaded into
two working registers. The halves in registers are shifted left either one or two positions,
depending on the round. The number of bits shifted is given in Table 3.2.
After being shifted, the halves of 56 bits (Ci , Di), 1 ≤ i ≤ 16, are used as the key input
to the next iteration. These halves are concatenated in the ordered set and serve as input
to the Permuted Choice 2 (see Table 3.3), which produces a 48-biy key output. Thus, a
different 48-bit key is generated for each round of DES. These 48-bit keys, K1, K2, . . . ,

K16, are used for encryption at each round in the order from K1 through K16. The key
schedule for DES is illustrated in Figure 3.3.
With a key length of 56 bits, these are 256 = 7.2 × 1016 possible keys. Assuming that, on
average, half the key space has to be searched, a single machine performing one DES
encryption per µs would take more than 1000 years to break the cipher. Therefore, a
brute-force attack on DES appears to be impractical.

Table 3.1 Permuted choice 1 (PC-1)

57 49 41 33 25 17 9 1 58 50 42 34 26 18
10 2 59 51 43 35 27 19 11 3 60 52 44 36
63 55 47 39 31 23 15 7 62 54 46 38 30 22
14 6 61 53 45 37 29 21 13 5 28 20 12 4

Table 3.2 Schedule for key shifts

Round
number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of
left shifts

1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Table 3.3 Permuted choice 2 (PC-2)

14 17 11 24 1 5 3 28 15 6 21 10
23 19 12 4 26 8 16 7 27 20 13 2
41 52 31 37 47 55 30 40 51 45 33 48
44 49 39 56 34 53 46 42 50 36 29 32

SYMMETRIC BLOCK CIPHERS 61

Key input (64 bits)

PC-1 56 bits

28 bits 28 bits

28 bits 28 bits

| |

28 bits 28 bits

PC-2K1

| |

28 bits 28 bits

PC-2K2

28 bits 28 bits

| | PC-2K16

C0

LS (1)

C1

LS (1)

C2

LS (2)

C3

C16

D0

LS (1)

D1

LS (1)

D2

LS (2)

D3

D16

48 bits

48 bits

48 bits

Figure 3.3 Key schedule for DES.

62 INTERNET SECURITY

Example 3.1 Assume that a 64-bit key input is K = 581fbc94d3a452ea, including 8
parity bits. Find the first three round keys only: K1, K2, and K3.

The register contents C0 (left) and D0 (right) are computed using Table 3.1:

C0 = bcd1a45

D0 = d22e87f

Using Table 3.2, the blocks C1 and D1 are obtained from the block C0 and D0 by shifting
one bit to the left as follows:

C1 = 79a348b

D1 = a45d0ff

The 48-bit key K1 is derived using Table 3.3 (PC-2) by inputting the concatenated block
(C1||D1) such that K1 = 27a169e58dda.

The concatenated block (C2||D2) is computed from (C1||D1) by shifting one bit to the
left as shown below:

(C2||D2) = f346916 48ba1ff

Using Table 3.3 (PC-2), the 48-bit key K2 at round 2 is computed as K2 = da91ddd7b748.
Similarly, (C3||D3) is generated from shifting (C2||D2) by two bits to the left as follows:

(C3||D3) = cd1a456 22e87fd

Using Table 3.3, we have

K3 = 1dc24bf89768

In a similar fashion, all the other 16-round keys can be computed and the set of entire
DES keys is listed as follows:

K1 = 27a169e58dda K2 = da91ddd7b748
K3 = 1dc24bf89768 K4 = 2359ae58fe2e
K5 = b829c57c7cb8 K6 = 116e39a9787b
K7 = c535b4a7fa32 K8 = d68ec5b50f76
K9 = e80d33d75314 K10 = e5aa2dd123ec
K11 = 83b69cf0ba8d K12 = 7c1ef27236bf
K13 = f6f0483f39ab K14 = 0ac756267973
K15 = 6c591f67a976 K16 = 4f57a0c6c35b

3.1.3 DES Encryption

DES operates on a 64-bit block of plaintext. After initial permutation, the block is split
into two blocks Li (left) and Ri (right), each 32 bits in length. This permuted plaintext

SYMMETRIC BLOCK CIPHERS 63

Table 3.4 Initial permutation (IP)

58 50 42 34 26 18 10 2
Li 60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1
Ri 59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

Table 3.5 E bit-selection table

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

(see Table 3.4) has bit 58 of the input as its first bit, bit 50 as its second bit, and so
on down to bit 7 as the last bit. The right half of the data, Ri , is expanded to 48 bits
according to Table 3.5 of an expansion permutation.

The expansion symbol E of E(Ri) denotes a function which takes the 32-bit Ri as input
and produces the 48-bit E(Ri) as output. The purpose of this operation is twofold – to
make the output the same size as the key for the XOR operation, and to provide a longer
result that is compressed during the S-box substitution operation.

After the compressed key Ki is XORed with the expanded block E(Ri−1) such that
Ŵi = E(Ri−1) ⊕ Ki for 1 ≤ i ≤ 15, this 48-bit Ŵi moves to substitution operations that
are performed by eight Si-boxes. The 48-bit Ŵi is divided into eight 6-bit blocks. Each
6-bit block is operated on by a separate Si-box, as shown in Figure 3.2. Each Si-box
is a table of 4 rows and 16 columns as shown in Table 3.6. This 48-bit input Ŵi to
the S-boxes are passed through a nonlinear S-box transformation to produce the 32-
bit output.
If each Si denotes a matrix box defined in Table 3.6 and A denotes an input block of 6
bits, then Si(A) is defined as follows: the first and last bits of A represent the row number
of the matrix Si , while the middle 4 bits of A represent a column number of Si in the
range from 0 to 15.

For example, for the input (101110) to S5-box, denote as S10
5 (0111), the first and last

bits combine to form 10, which corresponds to the row 2 (actually third row) of S5. The

64 INTERNET SECURITY

Table 3.6 S-boxes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

S1 1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

S2 1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

S3 1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
2 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

S4 1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

S5 1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
2 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3
0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

S6 1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

S7 1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12
0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

S8 1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

middle 4 bits combine to form 0111, which corresponds to the column 7 (actually the
eighth column) of the same S5-box. Thus, the entry under row 2, column 7 of S5-box is
computed as:

S10
5 (0111) = S2

5(7) = 8 (hexadecimal) = 1000 (binary)

Thus, the value of 1000 is substituted for 101110. That is, the four-bit output 1000 from
S5 is substituted for the six-bit input 101110 to S5. Eight four-bit blocks are the S-box
output resulting from the substitution phase, which recombine into a single 32-bit block �i

by concatenation. This 32-bit output �i of the S-box substitution are permuted according
to Table 3.7. This permutation maps each input bit of �i to an output position of P(�i).

SYMMETRIC BLOCK CIPHERS 65

Table 3.7 Permutation function P

16 7 20 21
29 12 28 17

1 15 23 26
5 18 31 10
2 8 24 14

32 27 3 9
19 13 30 6
22 11 4 25

Table 3.8 Inverse of initial permutation, IP−1

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

The output P(�i) are obtained from the input �i by taking the 16th bit of �i as the first
bit of P(�i), the seventh bit as the second bit of P(�i), and so on until the 25th bit of �i

is taken as the 32nd bit of P(�i). Finally, the permuted result is XORed with the left half
Li of the initial permuted 64-bit block. Then the left and right halves are swapped and
another round begins. The final permutation is the inverse of the initial permutation, and
is described in Table 3.8 IP−1. Note here that the left and right halves are not swapped
after the last round of DES. Instead, the concatenated block R16||L16 is used as the input
to the final permutation of Table 3.8 (IP−1). Thus, the overall structure for DES algorithm
is shown in Figure 3.4.

Example 3.2 Suppose the 64-bit plaintext is X = 3570e2f1ba4682c7, and the same key
as used in Example 3.1, K = 581fbc94d3a452ea is assumed again. The first two-round
keys are, respectively, K1 = 27a169e58dda and K2 = da91ddd76748.

For the purpose of demonstration, the DES encryption aims to limit the first two
rounds only. The plaintext X splits into two blocks (L0, R0) using Table 3.4 IP such that
L0 = ae1ba189 and R0 = dc1f10f4.

The 32-bit R0 is expanded to the 48-biy E(R0) such that E(R0) = 6f80fe8a17a9.
The key-dependent function Ŵi is computed by XORing E(R0) with the first round key

K1, such that

Ŵ1 = E(R0) ⊕ K1

= 4821976f9a73

66 INTERNET SECURITY

X 64 bits

32 bits 32 bits

48 bits
K1

32 bits

32 bits

48 bits

48 bits

K2

Plaintext input

IP

K 64 bits

28 bits

Key input

PC-1 56 bits

28 bits

K16

Y 64 bits

PC-2

PC-2

D0

LS

D1

LS

D2

LS

D3

C0

LS

C1

LS

C2

LS

C3

PC-2

R1 = P(Ω1) ⊕ L0

R2 = P(Ω2) ⊕ L1

32 bits

Ω1 (32 bits)

S1 S8

Γ1 = E(R0) ⊕ K1 (48 bits)

Γ2 = E(R1) ⊕ K2 (48 bits)

Ω2 (32 bits)

S1 S8

Γ16 = E(R15) ⊕ K16 (48 bits)

Ω16 (32 bits)

S1 S8

R0

E(R0)

E(R1)

P(Ω2)

P(Ω1)

E(R15)

P(Ω16)

L16 = R15

32 bits

R16 = P(Ω16) ⊕ L15

L0

L1 = R0

32 bits

L2 = R1

L15

R15

IP−1

Ciphertext output

Figure 3.4 Block cipher design of DES.

SYMMETRIC BLOCK CIPHERS 67

This 48-bit Ŵ1 is first divided into eight six-bit blocks, and then fed into eight Si-boxes.
The output �1 resulting from the S-box substitution phase is computed as �1 = a1ec961c.

Using Table 3.7, the permuted values of �1 are P(�1) = 2ba1536c. Modulo-2 addition
of P(�1) with L0 becomes

R1 = P(�1) ⊕ L0

= 85baf2e5

Since L1 = R0, this gives L1 = dc1f10f4.
Consider next the second-round encryption. Expanding R1 with the aid of Table 3.5

yields E(R1) = c0bdf57a570b. XORing E(R1) with K2 produces

Ŵ2 = E(R1) ⊕ K2

= 1a2c28ade043

The substitution operations with S-boxes yields the 32-bit output �2 such that �2 =
1ebcebdf. Using Table 3.7, the permutation P(�2) becomes P (�2) = 5f3e39f7. Thus, the
right-half output R2 after round two is computed as

R2 = P(�2) ⊕ L1

= 83212903

The left-half output L2 after round two is immediately obtained as

L2 = R1 = 85baf2e5

Concatenation of R2 with L2 is called the preoutput block in our two-round cipher system.
The preoutput is then subjected to the inverse permutation of Table 3.8. Thus, the output
of the DES algorithm at the end of the second round becomes the ciphertext Y:

Y = IP−1(R2||L2)

= d7698224283e0aea

3.1.4 DES Decryption

The decryption algorithm is exactly identical to the encryption algorithm except that the
round keys are used in the reverse order. Since the encryption keys for each round are
K1, K2, . . . , K16, the decryption keys for each round are K16, K15, . . . , K1. Therefore, the
same algorithm works for both encryption and decryption. The DES decryption process
will be explained in the following example.

Example 3.3 Recover the plaintext X from the ciphertext Y = d7698224283e0aea (com-
puted in Example 3.2). Using Table 3.4 in the first place, divide the ciphertext Y into the
two blocks:

68 INTERNET SECURITY

R2 = 83212903

L2 = 85baf2e5

Applying Table 3.5 to L2 yields E(L2) = c0bdf57a570b.
E(L2) is XORed with K2 such that

Ŵ2 = E(L2) ⊕ K2

= 1a2c28ade043

This is the 48-bit input to the S-boxes.
After the substitution phase of S-boxes, the 32-bit output �2 from the S-boxes is

computed as �2 = 1ebcebdf. From Table 3.7, the permuted values of �2 are P(�2) =
5f3e39f7.

Moving up to the first round, we have L1 = P(�2) ⊕ R2 = dc1f10f4.
Applying Table 3.5 for L1 yields E(L1) = 6f80fe8a17a9.

XORing E(L1) with K1, we obtain the 48-bit input to the S-boxes.

Ŵ1 = E(L1) ⊕ K1

= 4821976f9a73

The 32-bit output from the S-boxes is computed as:

�1 = a1ec961c

Using Table 3.7 for permutation, we have

P(�1) = 2ba1536c

The preoutput block can be computed as follows:

L0 = P(�1) ⊕ R1 = ae1ba189

R0 = L1 = dc1f10f4

L0||R0 = ae1ba189dc1f10f4 (preoutput block)

Applying Table 3.8 (IP−1) to the preoutput block, the plaintext X is restored as follows:

X = IP−1(L0||R0)

= 3570e2f1ba4682c7

Example 3.4 Consider the encryption problem of plaintext

X = 785ac3a4bd0fe12d with the original input key

K = 38a84ff898b90b8f.

SYMMETRIC BLOCK CIPHERS 69

The 48-bit round keys from K1 through K16 are computed from the 56-bit key blocks
through a series of permutations and left shifts, as shown below:

Compressed round keys

K1 = 034b8fccfd2e K2 = 6e26890ddd29
K3 = 5b9c0cca7c70 K4 = 48a8dae9cb3c
K5 = 34ec2e915e9a K6 = e22d02dd1235
K7 = 68ae35936aec K8 = c5b41a30bb95
K9 = c043eebe209d K10 = b0d331a373c7
K11 = 851b6336a3a3 K12 = a372d5f60d47
K13 = 1d57c04ea3da K14 = 5251f975f549
K15 = 9dc1456a946a K16 = 9f2d1a5ad5fa

The 64-bit plaintext X splits into two blocks (L0, R0), according to Table 3.4 (IP),
such that

L0 = 4713b8f4

R0 = 5cd9b326

The 32-bit R0 is spread out and scrambled in 48 bits, using Table 3.5, such that E(R0) =
2f96f3da690c.

The 48-bit input to the S-box, Ŵ1, is computed as:

Ŵ1 = E(R0) ⊕ K1

= 2cdd7c169422

The 32-bit output from the S-box is �1 = 28e8293b.
Using Table 3.7, P(�1) becomes

P(�1) = 1a0b2fc4

XORing P(�1) with L0 yields

R1 = P(�1) ⊕ L0

= 5d189730

which is the right-half output after round one.
Since L1 = R0, the left-half output L1 after round one is L1 = 5cd9b326. The first

round of encryption has been completed.
In similar fashion, the 16-round output block (Li, Ri), 2 ≤ i ≤ 16, can be computed

as follows:

70 INTERNET SECURITY

Table for encryption blocks (Li, Ri), 1 ≤ i ≤ 16

i Li Ri

1 5cd9b326 5d189730
2 5d189730 e0e7a039
3 e0e7a039 61123d5d
4 61123d5d a6f29581
5 a6f29581 c1fe0f05
6 c1fe0f05 8e6f6798
7 8e6f6798 6bc34455
8 6bc34455 ec6d1ab8
9 ec6d1ab8 d0d10423

10 d0d10423 56a0e201
11 56a0e201 b6c73726
12 b6c73726 6ff2ef60
13 6ff2ef60 f04bf1ad
14 f04bf1ad f0d35530
15 f0d35530 07b5cf74
16 07b5cf74 09ef5b69

The preoutput block (R16, L16) is the concatenation of R16 with L16. Using Table 3.8
(IP−1), the ciphertext Y, which is the output of the DES, can be computed as:

Y = fd9cba5d26331f38

Example 3.5 Consider the decryption process of the ciphertext
Y = fd9cba5d26331f38 which was obtained in Example 3.4. Applying Table 3.4 (IP)

to the 64-bit ciphertext Y, the two blocks (R16, L16) after swap yields

R16 = 07b5cf74,

L16 = 09ef5b69

Expansion of R16: E(R16) = 00fdabe5eba8

S-box input: Ŵ16 = E(R16) ⊕ K16

= 9fd0b1bf3e52

S-box output: �16 = 2e09ee9
Permutation of �16: P(�16) = f93c0e59
The left-half output R15 after round sixteen:

R15 = P(�16) ⊕ L16

= f0d35530

Since L15 = R16, the right-half output L15 is L15 = 07b5cf74.

SYMMETRIC BLOCK CIPHERS 71

Thus, the 16-th round decryption process is accomplished counting from the bot-
tomup. In a similar fashion, the rest of the decryption processes are summarised in the
following table.

Table for decryption blocks (Ri, Li), 15 ≤ i ≤ 0

i RI Li

15 F0d35530 0765cf74
14 F04bf1ad f0d35530
13 6ff2ef60 f04bf1ad
12 b6c73726 6ff2ef60
11 56a0e201 b6c73726
10 d0b10423 56a0e201
9 ec6d1ab8 d0b10423
8 6bc34499 ec6d1ab8
7 8e6f6798 6bc34499
6 c1fe0f05 8e6f6798
5 a6f29581 c1fe0f05
4 61125d5d a6f29581
3 e0e7a039 61125d5d
2 5d189730 e0e7a039
1 5cd9b326 5d189730
0 4713b8f4 5cd9b326

The preoutput block is (R0||L0) = 4713b8f45cd9b326.
Using Table 3.8 (IP−1), the plaintext is recovered as X = 785ac3a4bd0fe12d.

3.1.5 Triple DES

Triple DES is popular in Internet-based applications, including PGP and S/MIME. The
possible vulnerability of DES to a brute-force attack brings us to find an alternative
algorithm. Triple DES is a widely accepted approach which uses multiple encryption
with DES and multiple keys, as shown in Figure 3.5. The three-key triple DES is the
preferred alternative, whose effective key length is 168 bits.

Triple DES with two keys (K1 = K3, K2) is a relatively popular alternative to DES.
But triple DES with three keys (K1, K2, K3) is preferred, as it results in a great increase
in cryptographic strength. However, this alternative raises the cost of the known-plaintext
attack to 2168, which is beyond what is practical.

Referring to Figure 3.5, the ciphertext C is produced as

C = EK3[DK2[EK1(P)]]

The sender encrypts with the first key K1, then decrypts with the second key K2, and
finally encrypts with the third key K3. Decryption requires that the keys are applied in
reverse order:

P = DK1[EK2[DK3(C)]]

72 INTERNET SECURITY

E

D

D

E

E

D

(a) Encryption

(b) Decryption

K1 K2 K3

P

K1 K2 K3

P

C

Figure 3.5 Triple DES encryption/decryption.

The receiver decrypts with the third key K3, then encrypts with the second key K2,
and finally decrypts with the first key K1. This process is sometimes known as Encrypt-
Decrypt-Encrypt (EDE) mode.

Example 3.6 Using Figure 3.5, the triple DES computation is considered here.
Given three keys:

K1 = 0x260b152f31b51c68

K2 = 0x321f0d61a773b558

K3 = 0x519b7331bf104ce3

and the plaintext P = 0x403da8a295d3fed9
The 16-round keys corresponding to each given key K1, K2 and K3 are computed as

shown below.

Round K1 K2 K3

1 000ced9158c9 5a1ec4b60e98 03e4ee7c63c8
2 588490792e94 710c318334c6 8486dd46ac65
3 54882eb9409b c5a8b4ec83a5 575a226a8ddc
4 a2a006077207 96a696124ecf aab9e009d59b
5 280e26b621e4 7e16225e9191 98664f4f5421
6 e03038a08bc7 ea906c836569 615718ca496c
7 84867056a693 88c25e6abb00 4499e580db9c

SYMMETRIC BLOCK CIPHERS 73

Round K1 K2 K3

8 c65a127f0549 245b3af0453e 93e853d116b1
9 2443236696a6 76d38087dd44 cc4a1fa9f254

10 a311155c0deb 1a915708a7f0 27b30c31c6a6
11 0d02d10ed859 2d405ff9cc05 0a1ce39c0c87
12 1750b843f570 2741ac4a469a f968788e62d5
13 9e01c0a98d28 9a09b19d710d 84e78833e3c1
14 1a4a0dc85e16 9d2a39a252e0 521f17b28503
15 09310c5d42bc 87368cd0ab27 6db841ce2706
16 53248c80ee34 30258f25c11d c9313c0591e3

Encryption: Compute the ciphertext C through the EDE mode operation of P. Each stage
in the triple DES-EDE sequence is computed as:

First stage: EK1 = 0x7a39786f7ba32349

Second stage: DK2 = 0x9c60f85369113aea

Third stage: EK3 = 0xe22ae33494beb930 = C (ciphertext)

Decryption: Using the ciphertext C obtained above, the plaintext P is recovered as:

Forth stage: DK3 = 0x9c60f85369113aea

Fifth stage: EK2 = 0x7a39786f7ba32349

Final stage: DK1 = 0x403da8a295d3fed9 = P (plaintext)

3.1.6 DES-CBC Cipher Algorithm with IV

This section describes the use of the DES cipher algorithm in Cipher Block Chaining
(CBC) mode as a confidentiality mechanism within the context of the Encapsulating
Security Payload (ESP). ESP provides confidentiality for IP datagrams by encrypting the
payload data to be protected (see Chapter 7).

DES-CBC requires an explicit Initialisation Vector (IV) of 64 bits that is the same
size as the block size. The IV must be a random value which prevents the generation
of identical ciphertext. IV implementations for inner CBC must not use a low Hamming
distance between successive IVs. The IV is XORed with the first plaintext block before
it is encrypted. For successive blocks, the previous ciphertext block is XORed with the
current plaintext before it is encrypted.

DES-CBC is a symmetric secret key algorithm. The key size is 64 bits, but it is
commonly known as a 56-bit key. The key has 56 significant bits; the least significant bit
in every byte is the parity bit.

There are several ways to specify triple DES encryption, depending on the decision
which affects both security and efficiency. For using triple encryption with three different

74 INTERNET SECURITY

EK1

DK2

EK3

P1

C1

EK1

DK2

EK3

P2

C2

EK1

DK2

EK3

P3

C3

(IV)1

(IV)2

(IV)3

EK1

DK2

EK3

P1

C1

EK1

DK2

EK3

P2

C2

EK1

DK2

EK3

P3

C3

IV

(a) Inner CBC (b) Outer CBC

S0 T0 R0

S1 T1 R1

Figure 3.6 Triple DES-EDE in CBC mode.

keys, there are two possible triple-encryption modes (i.e. three DES-EDE modes): inner
CBC and outer CBC, as shown in Figure 3.6.

Inner CBC

This mode requires three different IVs.

S0 = EK1(P1 ⊕ (IV)1), T0 = EK1(P2 ⊕ S0), R0 = EK1(P3 ⊕ T0)

S1 = DK2(S0 ⊕ (IV)2), T1 = DK2(T0 ⊕ S1), R1 = DK2(R0 ⊕ T1)

C1 = EK3(S1 ⊕ (IV)3), C2 = EK3(T1 ⊕ C1), C3 = EK3(R1 ⊕ C2)

Outer CBC

This mode requires one IV.

C1 = EK3(DK2(EK1(P1 ⊕ IV)))

C2 = EK3(DK2(EK1(P2 ⊕ C1)))

C3 = EK3(DK2(EK1(P3 ⊕ C2)))

SYMMETRIC BLOCK CIPHERS 75

Example 3.7 Consider the triple DES-EDE operation in CBC mode being shown in
Figure 3.6(b).

Suppose three plaintext blocks P1, P2 and P3, and IV are given as:

P1 = 0x317f2147a6d50c38

P2 = 0xc6115733248f702e

P3 = 0x1370f341da552d79

and IV = 0x714289e53306f2e1

Assume that three keys K1, K2 and K3 used in this example are exactly the same keys
as those given in Example 3.6. The computation of ciphertext blocks (C1, C2, C3) at each
EDE stage is shown as follows:

(1) C1 computation with first EDE operation

P1 ⊕ IV = 0x403da8a295d3fed9

EK1(P1 ⊕ IV) = 0x7a39786f7ba32349

DK2(EK1(P1 ⊕ IV)) = 0x9c60f85369113aea

C1 = EK3(DK2(EK1(P1 ⊕ IV))) = 0xe22ae33494beb930

(2) C2 computation with second EDE operation

P2 ⊕ C1 = 0x243bb407b031c91e

EK1(P2 ⊕ C1) = 0xfeb7c33e747abf74

DK2(EK1(P2 ⊕ C1)) = 0x497f548f78af6e6f

C2 = EK3(DK2(EK1(P2 ⊕ C1))) = 0xe4976149de15ca176

(3) C3 computation with third EDE operation

P3 ⊕ C2 = 0x5a06e7dc3b098c0f

EK1(P3 ⊕ C2) = 0x0eb878e2680e7f78

DK2(EK1(P3 ⊕ C2)) = 0xc6c8441ee3b5dd1c

C3 = EK3(DK2(EK1(P3 ⊕ C2))) = 0xf980690fc2db462d

Thus, all three ciphertext blocks (C1, C2, C3) are obtained using the outer CBC mechanism.

3.2 International Data Encryption Algorithm (IDEA)

In 1990, Xuejia Lai and James Massey of the Swiss Federal Institute of Technology
devised a new block cipher. The original version of this block-oriented encryption algo-
rithm was called the Proposed Encryption Standard (PES). Since then, PES has been

76 INTERNET SECURITY

strengthened against differential cryptographic attacks. In 1992, the revised version of PES
appeared to be strong and was renamed as the International Data Encryption Algorithm
(IDEA). IDEA is a block cipher that uses a 128-bit key to encrypt 64-bit data blocks.

Pretty Good Privacy (PGP) provides a privacy and authentication service that can be
used for electronic mail and file storage applications. PGP uses IDEA for conventional
block encryption, along with RSA for public-key encryption and MD5 for hash coding.
The 128-bit key length seems to be long enough to effectively prevent exhaustive key
searches. The 64-bit input block size is generally recognised as sufficiently strong enough
to deter statistical analysis, as experienced with DES. The ciphertext depends on the
plaintext and key, which are largely involved in a complicated manner. IDEA achieves
this goal by mixing three different operations. Each operation is performed on two 16-bit
inputs to produce a single 16-bit output. IDEA has a structure that can be used for both
encryption and decryption, like DES.

3.2.1 Subkey Generation and Assignment

The 52 subkeys are all generated from the 128-bit original key. IDEA algorithm uses 52
16-bit key sub-blocks, i.e. six subkeys for each of the first eight rounds and four more
for the ninth round of output transformation.

The 128-bit encryption key is divided into eight 16-bit subkeys. The first eight subkeys,
labelled Z1, Z2, . . . , Z8 are taken directly from the key, with Z1 being equal to the first
16 bits, Z2 to the next 16 bits, and so on. The first eight subkeys for the algorithm
are assigned such that the six subkeys are for the first round, and the first two for the
second round. After that, the key is circularly shifted 25 bits to the left and again divided
into eight subkeys. This procedure is repeated until all 52 subkeys have been generated.
Since each round uses the 96-bit subkey (16 bit × 6) and the 128-bit subkey (16 bits × 8)
is extracted with each 25-bit rotation of the key, there is no way to expect a simple
shift relationship between the subkeys of one round and that of another. Thus, this key
schedule provides an effective technique for varying the key bits used for subkeys in the
eight rounds. Figure 3.7 illustrates the subkey generation scheme for making use of IDEA
encryption/decryption.

If the original 128-bit key is labelled as Z(1, 2, . . . , 128), then the entire subkey blocks
of the eight rounds have the following bit assignments (see Table 3.9).
Only six 16-bit subkeys are needed in each round, whereas the final transformation uses
four 16-bit subkeys. But eight subkeys are extracted from the 128-bit key with the left
shift of 25 bits. That is why the first subkey of each round is not in order, as shown in
Table 3.9.

Example 3.8 Suppose the 128-bit original key Z is given as

Z = (5a14 fb3e 021c 79e0 6081 46a0 117b ff03)

The 52 16-bit subkey blocks are computed from the given key Z as follows: for the first
round, the first eight subkeys are taken directly from Z. After that, the key Z is circularly
shifted 25 bits to the left and again divided into eight 16-bit subkeys. These shift-divide

SYMMETRIC BLOCK CIPHERS 77

Round 1

Round 2

Round 8

X1 X2 X3 X4

64-bit plaintext

64-bit ciphertext

X

Final Round

•
•
•

•
•
•

Y1 Y2 Y3 Y4

(Z1, Z2, •••, Z6)

(Z7, Z8, ••• , Z12)

(Z43, Z44, •••, Z48)

(Z49, Z50, Z51, Z52)

Round 1

Round 2

Round 8

Y1 Y2 Y3 Y4

64-bit ciphertext

64-bit plaintext

Y

Y X

Final Round

•
•
•

•
•
•

X1 X2 X3 X4

(Z49
−1, −Z50, •••, Z48)

(Z43
−1, −Z45, •••, Z42)

(Z7
−1, −Z9, •••, Z6)

(Z1
−1, −Z2, −Z3, Z4

−1)

Figure 3.7 IDEA encryption/decryption block diagrams.

procedures are repeated until all 52 subkeys are generated, as shown in Table 3.9. The
IDEA encryption key is computed as shown in Table 3.10.

3.2.2 IDEA Encryption

The overall scheme for IDEA encryption is illustrated in Figure 3.8. As with all block
ciphers, there are two inputs to the encryption function, i.e. the plaintext block and encryp-
tion key. IDEA is unlike DES (which relies mainly on the XOR operation and on nonlinear
S-boxes). In IDEA, the plaintext is 64 bits in length and the key size is 128 bits long.
The design methodology behind the IDEA algorithm is based on mixing three different
operations. These operations are:

⊕ Bit-by-bit XOR of 16-bit sub-blocks
+ Addition of 16-bit integers modulo 216

� Multiplication of 16-bit integers modulo 216 + 1

IDEA utilises both confusion and diffusion by using these three different operations. For
example, for the additive inverse modulo 216, −Zi + Zi = 0 where the notation −Zi

78 INTERNET SECURITY

Table 3.9 Generation of IDEA 16-bit subkeys

Round 1
Z1 = Z(1, 2, . . . , 16) Z4 = Z(49, 50, . . . , 64)

Z2 = Z(17, 18, . . . , 32) Z5 = Z(65, 66, . . . , 80)

Z3 = Z(33, 34, . . . , 48) Z6 = Z(81, 82, . . . , 96)

Round 2
Z7 = Z(97, 98, . . . , 112) Z10 = Z(42, 43, . . . , 57)

Z8 = Z(113, 114, . . . , 128) Z11 = Z(58, 59, . . . , 73)

Z9 = Z(26, 27, . . . , 41) Z12 = Z(74, 75, . . . , 89)

Round 3
Z13 = Z(90, 91, . . . , 105) Z16 = Z(10, 11, . . . , 25)

Z14 = Z(106, 107, . . . , 121) Z17 = Z(51, 52, . . . , 66)

Z15 = Z(122, 123, . . . , 128, 1, 2, . . . , 9) Z18 = Z(67, 68, . . . , 82)

Round 4
Z19 = Z(83, 84, . . . , 98) Z22 = Z(3, 4, . . . , 18)

Z20 = Z(99, 100, . . . , 114) Z23 = Z(19, 20, . . . , 34)

Z21 = Z(115, 116, . . . , 128, 1, 2) Z24 = Z(35, 36, . . . , 50)

Round 5
Z25 = Z(76, 77, . . . , 91) Z28 = Z(124, 125, . . . , 128, 1, 2, . . . , 11)

Z26 = Z(92, 93, . . . , 107) Z29 = Z(12, 13, . . . , 27)

Z27 = Z(108, 109, . . . , 123) Z30 = Z(28, 29, . . . , 43)

Round 6
Z31 = Z(44, 45, . . . , 59) Z34 = Z(117, 118, . . . , 128, 1, 2, 3, 4)

Z32 = Z(60, 61, . . . , 75) Z35 = Z(5, 6, . . . , 20)

Z33 = Z(101, 102, . . . , 115) Z36 = Z(21, 22, . . . , 36)

Round 7
Z37 = Z(37, 38, . . . , 52) Z40 = Z(85, 86, . . . , 100)

Z38 = Z(53, 54, . . . , 68) Z41 = Z(126, 127, 128, . . . , 1, 2, . . . , 13)

Z39 = Z(69, 70, . . . , 84) Z42 = Z(14, 15, . . . , 29)

Round 8
Z43 = Z(30, 31, . . . , 45) Z46 = Z(78, 79, . . . , 93)

Z44 = Z(46, 47, . . . , 61) Z47 = Z(94, 95, . . . , 109)

Z45 = Z(62, 63, . . . , 77) Z48 = Z(110, 111, . . . , 125)

Round 9 (final transformation stage)

Z49 = Z(23, 24, . . . , 38) Z51 = Z(55, 56, . . . , 70)

Z50 = Z(39, 40, . . . , 54) Z52 = Z(71, 72, . . . , 86)

denotes the additive inverse; for the multiplicative inverse modulo 216 + 1, Zi�Z−1
i = 1

where the notation Z−1
i denotes the multiplicative inverse.

In Figure 3.8, IDEA algorithm consists of eight rounds followed by a final output
transformation. The 64-bit input block is divided into four 16-bit sub-blocks, labelled
X1, X2, X3 and X4. These four sub-blocks become the input to the first round of IDEA
algorithm. The subkey generator generates a total of 52 subkey blocks that are all gener-
ated from the original 128-bit encryption key. Each subkey block consists of 16 bits. The

SYMMETRIC BLOCK CIPHERS 79

Table 3.10 Subkeys for encryption

Z1 = 5a14 Z27 = dff8
Z2 = fb3e Z28 = 1ad0
Z3 = 021c Z29 = a7d9
Z4 = 79e0 Z30 = f010
Z5 = 6081 Z31 = e3cf
Z6 = 46a0 Z32 = 0304
Z7 = 117b Z33 = 17bf
Z8 = ff03 Z34 = f035
Z9 = 7c04 Z35 = a14f
Z10 = 38f3 Z36 = b3e0
Z11 = c0c1 Z37 = 21c7
Z12 = 028d Z38 = 9e06
Z13 = 4022 Z39 = 0814
Z14 = f7fe Z40 = 6a01
Z15 = 06b4 Z41 = 6b42
Z16 = 29f6 Z42 = 9f67
Z17 = e781 Z43 = c043
Z18 = 8205 Z44 = 8f3c
Z19 = 1a80 Z45 = 0c10
Z20 = 45ef Z46 = 28d4
Z21 = fc0d Z47 = 022f
Z22 = 6853 Z48 = 7fe0
Z23 = ecf8 Z49 = cf80
Z24 = 0871 Z50 = 871e
Z25 = 0a35 Z51 = 7818
Z26 = 008b Z52 = 2051

first round makes use of six 16-bit subkeys (Z1, Z2, . . . , Z6), whereas the final output
transformation uses four 16-bit subkeys (Z49, Z50, Z51, Z52). The final transformation stage
also produces four 16-bit blocks, which are concatenated to form the 64-bit ciphertext.
In each round of Figure 3.8, the four 16-bit sub-blocks are XORed, added and multiplied
with one another and with six 16-bit key sub-blocks. Between each round, the second
and third sub-blocks are interchanged. This swapping operation increases the mixing of
the bits being processed and makes the IDEA algorithm more resistant to differential
cryptanalysis.

In each round, the sequential operations will be taken into the following steps:

(1) X1�Z1

(2) X2 + Z2

(3) X3 + Z3

(4) X4�Z4

(5) (X1�Z1) ⊕ (X3 + Z3) = (1) ⊕ (3)

(6) (X2 + Z2) ⊕ (X4�Z4) = (2) ⊕ (4)

(7) (X1�Z1) ⊕ (X3 + Z3)�Z5 = ((1) ⊕ (3))�Z5

80 INTERNET SECURITY

Seven more rounds

 Output
transformation

stage

Round 1

X1 X2 X4 X3

Z1 Z2 Z4Z3

Z5

Z6

Z49 Z52 Z51 Z50

Y1 Y2 Y3 Y4

•
•
•

•
•
•

•
•
•

•
•
•

Ciphertext Y = (Y1, Y2, Y3, Y4)

Plaintext X = (X1, X2, X3, X4)

Figure 3.8 IDEA encryption scheme.

(8) (((X2 + Z2) ⊕ (X4�Z4)) + (((X1�Z1) ⊕ (X3 + Z3))�Z5))

= ((2) ⊕ (4)) + (((1) ⊕ (3))�Z5)

(9) (8) � Z6

(10) (7) + (9) = (((1) ⊕ (3))�Z5) + ((8)�Z6)

(11) (X1�Z1) ⊕ ((8)�Z6) = (1) ⊕ (9)

(12) (X3 + Z3) ⊕ (9) = (3) ⊕ (9)

(13) (X2 + Z2) ⊕ (10) = (2) ⊕ (10)

(14) (X4�Z4) ⊕ (10) = (4) ⊕ (10)

SYMMETRIC BLOCK CIPHERS 81

The output of each round is the four sub-blocks that result from steps 11–14. The two
inner blocks (12) and (13) are interchanged before being applied to the next round input.
The final output transformation after the eighth round will involve the following steps:

(1) X1�Z49

(2) X2 + Z50

(3) X3 + Z51

(4) X4�Z52

where Xi, 1 ≤ i ≤ 4, represents the output of the eighth round. As you see, the final ninth
stage requires only four subkeys, Z49, Z50, Z51 and Z52, compared to six subkeys for each
of the first eight rounds. Note also that no swap is required for the two inner blocks at
the output transformation stage.

Example 3.9 Assume that the 64-bit plaintext X is given as

X = (X1, X2, X3, X4) = (7fa9 1c37 ffb3 df05)

In the IDEA encryption, the plaintext is 64 bits in length and the encryption key consists
of the 52 subkeys as computed in Example 3.8.

As shown in Figure 3.8, the four 16-bit input sub-blocks, X1, X2, X3 and X4, are
XORed, added and multiplied with one another and with six 16-bit subkeys. Following
the sequential operation starting from the first round through to the final transformation
stage, the ciphertext Y = (Y1, Y2, Y3, Y4) is computed as shown in Table 3.11.

Table 3.11 Ciphertext computation through IDEA encryption rounds

Plaintext Input X

7fa9 1c37 ffb3 df05
(X1) (X2) (X3) (X4)

Round Round output

1 C579 F2ff 0fbd 0ffc
2 D7a2 80cb 9a61 27c5
3 ab6c e2f9 f3be 36bd
4 ef5b 9cd2 6808 3019
5 7e09 2445 d223 d639
6 4a6e d7ac ac8c 8b09
7 244d 6f5c 4459 3a9c
8 0f86 7b0b 54df 759f

9 (final 106b dbfd f323 0876 ← Ciphertext Y
transformation) (Y1) (Y2) (Y3) (Y4)

82 INTERNET SECURITY

The ciphertext Y represents the output of the final transformation stage:

Y = (Y1, Y2, Y3, Y4) = (106b dbfd f323 0876)

3.2.3 IDEA Decryption

IDEA decryption is exactly the same as the encryption process, except that the key sub-
blocks are reversed and a different selection of subkeys is used. The decryption subkeys
are either the additive or multiplicative inverse of the encryption subkeys. The decryption
key sub-blocks are derived from the encryption key sub-blocks shown in Table 3.12.
Looking at the decryption key sub-blocks in Table 3.12, we see that the first four decryp-
tion subkeys at round i are derived from the first four subkeys at encryption round (10 − i),
where the output transformation stage is counted as round 9. For example, the first four
decryption subkeys at round 2 are derived from the first four encryption subkeys of round
8, as shown in Table 3.13.
Note that the first and fourth decryption subkeys are equal to the multiplicative inverse
modulo (216 + 1) of the corresponding first and fourth encryption subkeys. For rounds 2
to 8, the second and third decryption subkeys are equal to the additive inverse modulo 216

of the corresponding subkeys’ third and second encryption subkeys. For rounds 1 and 9,
the second and third decryption subkeys are equal to the additive inverse modulo 216 of

Table 3.12 IDEA encryption and decryption subkeys

Round Encryption subkeys Decryption subkeys

1 Z1 Z2 Z3 Z4 Z5 Z6 Z−1
49 − Z50 − Z51Z−1

52 Z47Z48

2 Z7 Z8 Z9 Z10 Z11 Z12 Z−1
43 − Z45 − Z44Z−1

46 Z41Z42

3 Z13 Z14 Z15 Z16 Z17 Z18 Z−1
37 − Z39 − Z38Z−1

40 Z35Z36

4 Z19 Z20 Z21 Z22 Z23 Z24 Z−1
31 − Z33 − Z32Z−1

34 Z29Z30

5 Z25 Z26 Z27 Z28 Z29 Z30 Z−1
25 − Z27 − Z26Z−1

28 Z23Z24

6 Z31 Z32 Z33 Z34 Z35 Z36 Z−1
19 − Z21 − Z20Z−1

22 Z17Z18

7 Z37 Z38 Z39 Z40 Z41 Z42 Z−1
13 − Z15 − Z14Z−1

16 Z11Z12

8 Z43 Z44 Z45 Z46 Z47 Z48 Z−1
7 − Z9 − Z8Z−1

10 Z5Z6

9 Z49 Z50 Z51 Z52 Z−1
1 − Z2 − Z3Z−1

4

Table 3.13 Decryption subkeys derived from encryption subkeys

Round i First four decryption
subkeys at i

Round (10 − i) First four encryption
subkeys at (10 − i)

1 Z−1
49 − Z50 − Z51Z−1

52 9 Z49 Z50 Z51 Z52

2 Z−1
43 − Z45 − Z44Z−1

46 8 Z43 Z44 Z45 Z46

· ·
· ·
· ·
8 Z−1

7 − Z9 − Z8Z−1
10 2 Z7 Z8 Z9 Z10

9 Z−1
1 − Z2 − Z3Z−1

4 1 Z1 Z2 Z3 Z4

SYMMETRIC BLOCK CIPHERS 83

the corresponding second and third encryption subkeys. Note also that, for the first eight
rounds, the last two subkeys of decryption round i are equal to the last two subkeys of
encryption round (9 − i) (see Table 3.12).

Example 3.10 Using Table 3.12, compute the decryption subkeys corresponding to the
encryption key sub-blocks obtained in Table 3.10. The IDEA decryption key is computed
as shown in Table 3.14.
IDEA decryption is exactly the same as the encryption process, but the decryption subkeys
are composed of either the additive or multiplicative inverse of the encryption subkeys,
as indicated in Table 3.12.

The IDEA decryption scheme for recovering plaintext is shown in Figure 3.9.

Example 3.11 Restore the plaintext X = (7fa9 1c37 ffb3 df05) using the cipher-
text Y = (106b dbfd f323 0876) that was computed in Example 3.9.

The recovering steps are shown by the round-after-round process as indicated in
Table 3.15.
Thus, the recovered plaintext is X = (X1, X2, X3, X4) = (7fa9 1c37 ffb3 df05).

Table 3.14 Subkey blocks for decryption

Z−1
49 = 9194 −Z26 = ff75

−Z50 = 78e2 Z−1
28 = 24f6

−Z51 = 87e8 Z23 = ecf8
Z−1

52 = 712a Z24 = 0871
Z47 = 022f Z−1

19 = 4396
Z48 = 7fe0 −Z21 = 03f3
Z−1

43 = a24c −Z20 = ba11
−Z45 = f3f0 Z−1

22 = dfa7
−Z44 = 70c4 Z17 = e781

Z−1
46 = 3305 Z18 = 8205

Z41 = 6b42 Z−1
13 = 18a7

Z42 = 9f67 −Z15 = f94c
Z−1

37 = c579 −Z14 = 0802
−Z39 = f7ec Z−1

16 = 9a13
−Z38 = 61fa Z11 = c0c1

Z−1
40 = bf28 Z12 = 028d

Z35 = a14f Z−1
7 = 55ed

Z36 = b3e0 −Z9 = 83fc
Z−1

31 = c53c −Z8 = 00fd
−Z33 = e841 Z−1

10 = 2cd9
−Z32 = fcfc Z5 = 6081

Z−1
34 = 3703 Z6 = 46a0

Z29 = a7d9 Z−1
1 = 0dd8

Z30 = f010 −Z2 = 04c2
Z−1

25 = cc14 −Z3 = fde4
−Z27 = 2008 Z−1

4 = 4fd0

84 INTERNET SECURITY

Seven more rounds

Round 1

Y1 Y2 Y4 Y3

Z49−1 −Z50 −Z51

Z47

Z48

−Z3−Z2

X1 X2 X3 X4

•
•
•

•
•
•

•
•
•

•
•
•

Plaintext X = (X1, X2, X3, X4)

Ciphertext Y = (Y1, Y2, Y3, Y4)

Z52−1

Z4−1Z1−1

 Output
transformation

stage

Figure 3.9 IDEA decryption scheme.

3.3 RC5 Algorithm

The RC5 encryption algorithm was designed by Ronald Rivest of Massachusetts Institute
of Technology (MIT) and it first appeared in December 1994. RSA Data Security, Inc.
estimates that RC5 and its successor, RC6, are strong candidates for potential successors
to DES. RC5 analysis (RSA Laboratories) is still in progress and is periodically updated
to reflect any additional findings.

SYMMETRIC BLOCK CIPHERS 85

Table 3.15 Plaintext computation through IDEA decryption steps

5069 fe98 dfd8
b4a0 75b2 0b77
e9e2 2749 00cc
4800 9d5d 9947
efcb 28e8 70f9
a415 78c9 bdca
8bc1 f202 48a6
01cf 1775 1734
1c37 ffb3 df05

Ciphertext Input Y

106b dbfd f323 0876
(Y1) (Y2) (Y3) (Y4)

Round Round output

1 24e4
2 ffb1
3 7420
4 124c
5 9c42
6 ed80
7 dca8
8 3649

9 (final 7fa9 → Recovered
Plaintext Xtransformation) (X1) (X2) (X3) (X4)

3.3.1 Description of RC5

RC5 is a symmetric block cipher designed to be suitable for both software and hardware
implementation. It is a parameterised algorithm, with a variable block size, a variable
number of rounds and a variable-length key. This provides the opportunity for great
flexibility in both performance characteristics and the level of security.

A particular RC5 algorithm is designated as RC5-w/r/b. The number of bits in a
word, w, is a parameter of RC5. Different choices of this parameter result in different
RC5 algorithms. RC5 is iterative in structure, with a variable number of rounds. The
number of rounds, r , is a second parameter of RC5. RC5 uses a variable-length secret
key. The key length b (in bytes) is a third parameter of RC5. These parameters are
summarised as follows:

w: The word size, in bits. The standard value is 32bits; allowable values are 16, 32 and
64. RC5 encrypts two-word blocks so that the plaintext and ciphertext blocks are
each 2w bits long.

r: The number of rounds. Allowable values of r are 0, 1, . . . , 255. Also, the expanded
key table S contains t = 2 (r + 1) words.

b: The number of bytes in the secret key K. Allowable values of b are 0, 1, . . . , 255.

K: The b-byte secret key; K[0], K[1], . . . , K[b − 1]

RC5 consists of three components: a key expansion algorithm, an encryption algorithm
and a decryption algorithm. These algorithms use the following three primitive operations:

1. + Addition of words modulo 2w

86 INTERNET SECURITY

2. ⊕ Bit-wise exclusive-OR of words
3. <<< Rotation symbol: the rotation of x to the left by y bits is denoted by x <<< y.

One design feature of RC5 is its simplicity, which makes RC5 easy to implement. Another
feature of RC5 is its heavy use of data-dependent rotations in encryption; this feature is
very useful in preventing both differential or linear cryptanalysis.

Example 3.12 Given RC5-32/16/10. This particular RC5 algorithm has 32-bit words,
16 rounds, a 10-byte (80-bit) secret key variable and an expanded key table S of t = 2(r +
1) = 2(16 + 1) = 34 words. Rivest proposed RC5-32/12/16 as a block cipher providing
a normal choice of parameters, i.e. 32-bit words, 12 rounds, 16-byte (128-bit) secret key
variable and an expanded key table of 26 words.

3.3.2 Key Expansion

The key-expansion algorithm expands the user’s key K to fill the expanded key table S,
so that S resembles an array of t = 2(r + 1) random binary words determined by K. It
uses two word-size magic constants Pw and Qw defined for arbitrary w as shown below:

Pw = Odd ((e − 2)2w)

Qw = Odd ((φ − 1)2w)

where

e = 2.71828 . . . (base of natural logarithms)
φ = (1 + √

5)/2 = 1.61803 . . . (golden ratio)
Odd(x) is the odd integer nearest to x.

First algorithmic step of key expansion: This step is to copy the secret key K[0, 1, . . . ,

b − 1] into an array L[0, 1, . . . , c − 1] of c = ⌈b/u⌉ words, where u = w/8 is the number
of bytes/word.

This first step will be achieved by the following pseudocode operation: for i = b − 1
down to 0 do L[i/u] = (L[i/u] <<< 8) + K[i]; where all bytes are unsigned and the
array L is initially zeroes.

Second algorithmic step of key expansion: This step is to initialise array S to a particular
fixed pseudo-random bit pattern, using an arithmetic progression modulo 2w determined
by two constants Pw and Qw.

S[0] = Pw:

for i = 1 to t − 1 do S[i] = S[i − 1] + Qw.

Third algorithmic step of key expansion: This step is to mix in the user’s secret key in
three passes over the arrays S and L. More precisely, due to the potentially different sizes

SYMMETRIC BLOCK CIPHERS 87

of S and L, the larger array is processed three times, and the other array will be handled
more after.

i = j = 0;

A = B = 0;

do 3∗ max (t, c) times:

A = S[i] = (S[i] + A + B) <<< 3

B = L[j] = (L[j] + A + B) <<< (A + B);

i = (i + 1) (mod t);

j = (j + 1) (mod c).

Note that with the key-expansion function it is not so easy to determine K from S, due
to the one-wayness.

Example 3.13 Consider RC5-32/12/16. Since w = 32, r = 12 and b = 16, we have

u = w/8 = 32/8 = 4 bytes/word

c = ⌈b/u⌉ = ⌈16/4⌉ = 4 words

t = 2(r + 1) = 2(12 + 1) = 26 words

The plaintext and the user’s secret key are given as follows:

Plaintext = eedba521 6d8f4b15

Key = 91 5f 46 19 be 41 b2 51 63 55 a5 01 10 a9 ce 91

1. Key expansion
Two magic constants

P32 = 3084996963 = 0xb7e15163

Q32 = 2654435769 = 0x9e3779b9

Step 1

For i = b − 1 down to 0 do L[i/u] = (L[i/u] <<< 8) + K[i] where b = 16, u = 4 and
L is initially 0.

L[i/4] = L[3] for i = 15, 14, 13 and 12.

L[3] = (L[3] <<< 8) + K[15] = 00 + 91 = 91
L[3] = (L[3] <<< 8) + K[14] = 9100 + ce = 91ce
L[3] = (L[3] <<< 8) + K[13] = 91ce00 + a9 = 91cea9

∗L[3] = (L[3] <<< 8) + K[12] = 91cea900 + 10 = 91cea910
L[i/4] = L[2] for i = 11, 10, 9 and 8.

L[2] = (L[2] <<< 8) + K[11] = 00 + 01 = 01

88 INTERNET SECURITY

L[2] = (L[2] <<< 8) + K[10] = 0100 + a5 = 01a5
L[2] = (L[2] <<< 8) + K[9] = 01a500 + 55 = 01a555

∗L[2] = (L[2] <<< 8) + K[8] = 01a55500 + 63 = 01a55563
L[i/4] = L[1] for i = 7, 6, 5 and 4.

L[1] = (L[1] <<< 8) + K[7] = 00 + 51 = 51
L[1] = (L[1] <<< 8) + K[6] = 5100 + b2 = 51b2
L[1] = (L[1] <<< 8) + K[5] = 51b200 + 41 = 51b241

∗L[1] = (L[1] <<< 8) + K[4] = 51b24100 + be = 51b241be
L[i/4] = L[0] for i = 3, 2, 1 and 0.

L[0] = (L[0] <<< 8) + K[3] = 00 + 19 = 19
L[0] = (L[0] <<< 8) + K[2] = 1900 + 46 = 1946
L[0] = (L[0] <<< 8) + K[1] = 194600 + 5f = 19465f

∗L[0] = (L[0] <<< 8) + K[0] = 19465f00 + 91 = 19465f91

Thus, converting the secret key from bytes to words (*) yields:

L[0] = 19465f91

L[1] = 51b241be

L[2] = 01a55563

L[3] = 91cea910

Step 2

S[0] = P32. For i = 1 to 25, do S[i] = S[i − 1] + Q32:

S[0] = b7e15163

S[1] = S[0] + Q32 = b7e15163 + 9e3779b9 = 5618cb1c

S[2] = S[1] + Q32 = 5618cb1c + 9e3779b9 = f45044d5

S[3] = S[2] + Q32 = f45044d5 + 9e3779b9 = 9287be8e

...
...

S[25] = S[24] + Q32 = 8f14babb + 9e3779b9 = 2b4c3474

When the iterative processes continue up to t − 1 = 2(r + 1) − 1 = 25, we can obtain the
expanded key table S as shown below:

S[0] = b7e15163 S[09] = 47d498e4 S[18] = d7c7e065
S[1] = 5618cb1c S[10] = e60c129d S[19] = 75ff5a1e
S[2] = f45044d5 S[11] = 84438c56 S[20] = 1436d3d7
S[3] = 9287be8e S[12] = 227b060f S[21] = b26e4d90
S[4] = 30bf3847 S[13] = c0b27fc8 S[22] = 50a5c749
S[5] = cef6b200 S[14] = 5ee9f981 S[23] = eedd4102

SYMMETRIC BLOCK CIPHERS 89

S[6] = 6d2e2bb9 S[15] = fd21733a S[24] = 8d14babb
S[7] = 0b65a572 S[16] = 9b58ecf3 S[25] = 2b4c3474
S[8] = a99d1f2b S[17] = 399066ac

Step 3

i = j = 0; A = B = 0;

3 × max(t, c) = 3 × 26 = 78 times

A = S[i] = (S[i] + A + B) <<< 3

B = L[j] = (L[j] + A + B) <<< (A + B)

i = i + 1(mod 26)

j = j + 1(mod 4)

A = S[0] = (b7e15163 + 0 + 0) <<< 3

= b7e15163 <<< 3 = bf0a8b1d

B = L[0] = (19465f91 + bf0a8b1d) <<< (A + B)

= d850eaae <<< bf0a8b1d = db0a1d55

A = S[1] = (5618cb1c + bf0a8b1d + db0a1d55) <<< 3

= f02d738e <<< 3 = 816b9c77

B = L[1] = (51b241be + 816b9c77 + db0a1d55) <<< (A + B)

= ae27fb8a <<< 5c75b9cc = 7fb8aae2

A = S[2] = (f45044d5 + 816b9c77 + 7fb8aae2) <<< 3

= f5748c2e <<< 3 = aba46177

B = L[2] = (01a55563 + aba46177 + 7fb8aae2) <<< (A + B)

= 2d0261bc <<< 2b5d0c59 = 785a04c3

A = S[3] = (9287be8e + aba46177 + 785a04c3) <<< 3

= b68624c8 <<< 3 = b4312645

B = L[3] = (91cea910 + b4312645 + 785a04c3) <<< (A + B)

= be59d418 <<< 2c8b2b08 = 59d418be

. . .

A = S[25] = (4e0d4c36 + f66a1aaf + 6d7f672f) <<< 3

= b1f6ce14, <<< 3 = 8fb670a5,

B = L[1] = (cdfc2657 + 8fb670a5 + 6d7f672f) <<< (A + B)

= cb31fe2b <<< fd35d7d4 = e2bcb31f

9
0

IN
T

E
R

N
E

T
S

E
C

U
R

IT
Y

Round Value Round Value

1 A = S[0] = bf0a8b1d, B = L[0] = db0a1d55 40 A = S[13] = 60e93e12, B = L[3] = 160c2277
2 A = S[1] = 816b9c77, B = L[1] = 7fb8aae2 41 A = S[14] = 8595c842, B = L[0] = c517db63
3 A = S[2] = aba46177, B = L[2] = 785a04c3 42 A = S[15] = 262d9406, B = L[1] = 3cc0d68d
4 A = S[3] = b4312645, B = L[3] = 59d418be 43 A = S[16] = 5d4e600c, B = L[2] = 1d9e8680
5 A = S[4] = f623ba51, B = L[0] = f8321580 44 A = S[17] = 9a469d73, B = L[3] = 33566f8a
6 A = S[5] = ea640e8d, B = L[1] = d9ddec49 45 A = S[18] = 16e6853d, B = L[0] = aa681507
7 A = S[6] = 8b813479, B = L[2] = 76e49617 46 A = S[19] = 98464d27, B = L[1] = ce2edfdb
8 A = S[7] = 6e5b8010, B = L[3] = 8a17729f 47 A = S[20] = 1309c416, B = L[2] = 54e3fdae
9 A = S[8] = 10808ed5, B = L[0] = 6f492ca1 48 A = S[21] = 652071c0, B = L[3] = b7be3b56

10 A = S[9] = 3cf2a2d6, B = L[1] = e0430cdd 49 A = S[22] = 1eafced6, B = L[0] = 61f3380d
11 A = S[10] = 1a0e1280, B = L[2] = 8e26b6ae 50 A = S[23] = a88500d9, B = L[1] = 29c63076
12 A = S[11] = 63c2ac21, B = L[3] = 6ab73e00 51 A = S[24] = 704825b0, B = L[2] = bc94f53b
13 A = S[12] = 87a78187, B = L[0] = d3f61430 52 A = S[25] = 255565cd, B = L[3] = a8965e99
14 A = S[13] = e280abf8, B = L[1] = b9cd0596 53 A = S[0] = 6d835afc, B = L[0] = 344f019e
15 A = S[14] = d9bd587f, B = L[2] = 98643622 54 A = S[1] = 7d15cd97, B = L[1] = f57b655f
16 A = S[15] = 7a180edb, B = L[3] = afa6705f 55 A = S[2] = 0942b409, B = L[2] = 530ea3bb
17 A = S[16] = 28bb616e, B = L[0] = fcbfb58a 56 A = S[3] = 32f9c923, B = L[3] = cba7b2dd
18 A = S[17] = f85bed22, B = L[1] = 8a842aee 57 A = S[4] = a811fb02, B = L[0] = d40457be
19 A = S[18] = d53fc3aa, B = L[2] = baf82824 58 A = S[5] = 64f121e8, B = L[1] = 9c37c14b
20 A = S[19] = 31ba2f60, B = L[3] = c58c7e39 59 A = S[6] = d1cc8b4e, B = L[2] = a98225e0
21 A = S[20] = 5bec0b80, B = L[0] = 863c707e 60 A = S[7] = e8873e6f, B = L[3] = 8b962ed8
22 A = S[21] = a4b64c74, B = L[1] = 9f82d5db 61 A = S[8] = 61399bbb, B = L[0] = 128e06a1
23 A = S[22] = a6f74cc4, B = L[2] = 80b92561 62 A = S[9] = f1b91926, B = L[1] = 3f708950
24 A = S[23] = b46d9938, B = L[3] = a5f56679 63 A = S[10] = ac661520, B = L[2] = c4509558
25 A = S[24] = 3bbdd367, B = L[0] = 67efaa5e 64 A = S[11] = a21a31c9, B = L[3] = e401ebf3
26 A = S[25] = 77cd91ce, B = L[1] = 012077f4 65 A = S[12] = d424808d, B = L[0] = cab47321
27 A = S[0] = bfc4a6f9, B = L[2] = c889c833 66 A = S[13] = fe118e07, B = L[1] = 368a7808
28 A = S[1] = 4dd05d18, B = L[3] = 7c5e25e2 67 A = S[14] = d18e728d, B = L[2] = fdb98d2f
29 A = S[2] = ae97238b, B = L[0] = 9e79725c 68 A = S[15] = abac9e17, B = L[3] = 5a05ce63
30 A = S[3] = 0a0de160, B = L[1] = 0a9a7cbb 69 A = S[16] = 18066433, B = L[0] = 6dcf3029
31 A = S[4] = 5660c360, B = L[2] = 714c2842 70 A = S[17] = 00e18e79, B = L[1] = 94ecdaaa
32 A = S[5] = 9087d17d, B = L[3] = bf190fd0 71 A = S[18] = 65a77305, B = L[2] = ed6f7c26
33 A = S[6] = d910ae36, B = L[0] = a8cc188d 72 A = S[19] = 5ae9e297, B = L[3] = 144be5a4
34 A = S[7] = 81c2369f, B = L[1] = 8cbe7352 73 A = S[20] = 11fc628c, B = L[0] = 78599417
35 A = S[8] = f809c630, B = L[2] = d8518713 74 A = S[21] = 7bb3431f, B = L[1] = 78223e6c
36 A = S[9] = 6a6f80c8, B = L[3] = 580ed0bd 75 A = S[22] = 942a8308, B = L[2] = d9af9bc3
37 A = S[10] = e463202e, B = L[0] = f04bc729 76 A = S[23] = b2f8fd20, B = L[3] = 07a3f43d
38 A = S[11] = c38c9bc1, B = L[1] = 5b58f102 77 A = S[24] = 5728b869, B = L[0] = c9902f75
39 A = S[12] = 34687255, B = L[2] = 35340975 78 A = S[25] = 30726d5a, B = L[1] = 6d9db912

SYMMETRIC BLOCK CIPHERS 91

3.3.3 Encryption

The input block to RC5 consists of two w-bit words given in two registers, A and B. The
output is also placed in the registers A and B. Recall that RC5 uses an expanded key
table, S[0, 1, . . . , t − 1], consisting of t = 2(r + 1) words. The key-expansion algorithm
initialises S from the user’s given secret key parameter K. However, the S table in RC5
encryption is not like an S-box used by DES. The encryption algorithm is given in the
pseudocode as shown below:

A = A + S[0];

B = B + S[1];

for i = 1 to r do

A = ((A ⊕ B) <<< B) + S[2i];

B = ((B ⊕ A) <<< A) + S[2i + 1];

The output is in the registers A and B.

Example 3.14 Consider again RC5-32/12/16. To encrypt the 64-bit input block, use of
the following steps:

1 Use the expanded key table S[0, 1, . . . , 25] already computed in Example 3.13.
2 Input the plaintext in two 32-bit registers, A and B.
3 Compute the ciphertext using the RC5 encryption algorithm according to Figure 3.10.

Encryption process

Round A B

0 5c5f001d eaa518ac
1 aacdcf78 073A31fa
2 b2c9dafc d0506098
3 362f2508 67cccf55
4 ace3d838 5f84483d
5 6ad30720 d77180e6
6 3cc6723c accd0d34
7 c2177344 9954851d
8 436ee2fe f7702871
9 fac6db42 91c5af63

10 6a180397 f63131f5
11 e07e082e 816fc2b3
12 ac13c0f7 52892b5b

Ciphertext = ac13c0f7 52892b5b

92 INTERNET SECURITY

3.3.4 Decryption

RC5 decryption is given in the pseudocode as shown below.
For i = r down to 1 do

B = ((B − S[2i + 1]) >>> A) ⊕ A

A = ((A − S[2i]) >>> B) ⊕ B

B = B − S[1]

A = A − S[0]

The decryption routine is easily derived from the encryption routine. The RC5 encryp-
tion/decryption algorithms are illustrated as shown in Figures 3.10 and 3.11, respectively.

Example 3.15 Consider the decryption problem of RC5-32/12/16. To decrypt the ci-
phertext obtained in Example 3.14, the output of round 11 is inputted into two 32-bit

A B

S[0] S[1]

S[2i + 1]

A B

S[2i]

Repeat for
i rounds

Figure 3.10 RC5 encryption algorithm.

SYMMETRIC BLOCK CIPHERS 93

A

A B

−S[0]

B

−S[2i + 1]

−S[2i]
Repeat for
i rounds

−S[1]

Figure 3.11 RC5 decryption algorithm.

registers, A and B, and the following steps are taken according to the RC5 decryption
algorithm.

Decryption process

Round A B

12 e07e082e 816fc2b3
11 6a180397 f63131f5
10 fac6db42 91c5af63
9 436ee2fe f7702871
8 c2177344 9954851d
7 3cc6723c accd0d34
6 6ad30720 d77180e6
5 ace3d838 5f84483d
4 362f2508 67cccf55
3 b2c9dafc d0506098
2 aacdcf78 073a31fa
1 5c5f001d eaa518ac

Deciphered plaintext = eedba521 6d8f4b15

94 INTERNET SECURITY

Example 3.16 Consider RC5-32/16/10. Since w = 32-bit words, r = 16 rounds and
b = 10-byte key, the parameters to compute are u = w/8 = 4 bytes/word, c = ⌈b/u⌉ = 3
words in key, and t = 2(r + 1) = 34 words in S.

Key mixing

S[0] = ce9e9457 S[1] = 9b2aa851 S[2] = 37cde42b S[3] = c74caeb7
S[4] = 12f39eef S[5] = 66ba64e2 S[6] = aec49188 S[7] = 4699fa2b
S[8] = 0f1e2ae7 S[9] = ae384da7 S[10] = 9ad0a8ed S[11] = 31200c4f
S[12] = f67fd8f0 S[13] = 8ddf1681 S[14] = 3a7c135e S[15] = 22d6c9ed
S[16] = 4516534e S[17] = 82472626 S[18] = 383c9ba7 S[19] = 1c2074e9
S[20] = 3e10bde0 S[21] = 4215fa75 S[22] = f8dfa01c S[23] = cda35bac
S[24] = a1d40dae S[25] = 8ef11ef1 S[26] = d4409560 S[27] = 043199d0
S[28] = e820a877 S[29] = 1899687c S[30] = 011db658 S[31] = 72062f23
S[32] = 7f05f007 S[33] = eef913ed

Encryption

Round A B

0 bd7a3978 08b9f366
1 a8c06bd8 85ed284f
2 b4bf3585 90fe1e28
3 eff03eac 28a2421b
4 cd58becc 5e05cc06
5 722d5b91 604e64a0
6 08e31821 5f3a0f83
7 f944d070 02ca706b
8 ba17322a f7542d09
9 be78e241 ae7a1379

10 ae30c3c2 43413d61
11 d3c39d63 51b85bc0
12 244fd451 ae140ae0
13 5e9c7411 02157ae0
14 44a9b768 d566f0c2
15 485ad502 e6f6c625
16 548854fc 8a20fd1a

Ciphertext = 548854fc 8a20fd1a

Decryption

Round A B

16 485ad502 e6f6c625
15 44a9b768 d566f0c2
14 5e9c7411 02157ae0

SYMMETRIC BLOCK CIPHERS 95

Round A B

13 244fd451 ae140ae0
12 d3c39d63 51b85bc0
11 ae30c3c2 43413d61
10 be78e241 ae7a1379
9 ba17332a f7542d09
8 f944d070 02ca706b
7 08e31821 5f3a0f83
6 722d5b91 604e64a0
5 cd58becc 5e05cc06
4 eff03eac 28a2421b
3 b4bf3585 90fe1e28
2 a8c06bd8 85ed284f
1 bd7a3978 08b9f366
0 eedba521 6d8f4615

Plaintext (deciphered text) = eedba52 6d8f4b15

3.4 RC6 Algorithm

RC6 is an improvement to RC5, designed to meet the requirements of increased security
and better performance. Like RC5, which was proposed in 1995, RC6 makes use of data-
dependent rotations. One new feature of RC6 is the use of four working registers instead
of two. While RC5 is a fast block cipher, extending it to act on 128-bit blocks using two
64-bit working registers. RC6 is modified its design to use four 32-bit registers rather
than two 64-bit registers. This has the advantage that it can be done two rotations per
round rather than the one found in a half-round of RC5.

3.4.1 Description of RC6

Like RC5, RC6 is a fully parameterised family of encryption algorithms. A version of
RC6 is also specified as RC6-w/r/b where the word size is w bits, encryption consists
of a number of rounds r , and b denotes the encryption key length in bytes.

RC6 was submitted to NIST for consideration as the new Advanced Encryption Stan-
dard (AES). Since the AES submission is targeted at w = 32 and r = 20, the parameter
values specified as RC6-w/r are used as shorthand to refer to such versions. For all vari-
ants, RC6-w/r/b operates on four w-bit words using the following six basic operations:

a + b: Integer addition modulo 2w

a − b: Integer subtraction modulo 2w

a ⊕ b: Bitwise exclusive-OR of w-bit words
a × b: Integer multiplication modulo 2w

a <<< b: Rotate the w-bit word a to the left by the amount given by the least
significant lg w bits of b

96 INTERNET SECURITY

a >>> b: Rotate the w-bit word a to the right by the amount given by the least signifi
cant lg w bits of b (where lg w denotes the base-two logarithm of w).

RC6 exploits data-dependent operations such that 32-bit integer multiplication is effi-
ciently implemented on most processors. Integer multiplication is a very effective dif-
fusion, and is used in RC6 to compute rotation amounts so that these amounts are
dependent on all of the bits of another register. As a result, RC6 has much faster diffusion
than RC5.

3.4.2 Key Schedule

The key schedule of RC6-w/r/b is practically identical to that of RC5-w/r/b. In fact,
the only difference is that in RC6-w/r/b, more words are derived from the user-supplied
key for use during encryption and decryption.

The user supplies a key of b bytes, where 0 ≤ b ≤ 255. Sufficient zero bytes are
appended to give a key length equal to a non-zero integral number of words; these key
bytes are then loaded into an array of c w-bit words L[0], L[1], . . . , L[c − 1]. The number
of w-bit words generated for additive round keys is 2r + 4, and these are stored in the
array S[0, 1, . . . , 2r + 3].

The key schedule algorithm is as shown below.

Key Schedule for RC6-w/r/b

Input: User-supplied b byte key preloaded into the c-word array L[0, 1, . . . , c − 1]
Number of rounds, r

Output: w-bit round keys S[0, 1, . . . , 2r + 3]
Key expansion:

Definition of the magic constants

Pw = Odd((e − 2)2w)

Qw = Odd((φ − 2)2w)

where

e = 2.71828182 . . . (base of natural logarithms)
φ = 1.618033988 . . . (golden ratio)

Converting the secret key from bytes to words

for i = b − 1 down to 0 do

L[i/u] = (L[i/u] <<< 8 + K[i]

Initialising the array S

S[0] = Pw

for i = 1 to 2r + 3 do

S[i] = S[i − 1] + Qw

SYMMETRIC BLOCK CIPHERS 97

Mixing in the secret key S

A = B = i = j = 0

v = 3 × max{c, 2r + 4}
for s = 1 to v do

{
A = S[i] = (S[i] + A + B) <<< 3

B = L[j] = (L[j] + A + B) <<< (A + B)

i = (i + 1) mod (2r + 4)

j = (j + 1) mod c

}

3.4.3 Encryption

RC6 encryption works with four w-bit registers A, B, C and D which contain the initial
input plaintext. The first byte of plaintext is placed in the least significant byte of A. The
last byte of plaintext is placed into the most significant byte of D. The arrangement of
(A, B, C, D) = (B, C, D, A) is like that of the paralleled assignment of values (bytes) on
the right to the registers on the left, as shown in Figure 3.12.

The RC6 encryption algorithm is shown below:

Encryption with RC6-w/r/b

Input: Plaintext stored in four w-bit input registers A, B, C, D

Number of rounds, r

w-bit round keys S[0, 1, . . . , 2r + 3]
Output: Ciphertext stored in A, B, C, D

Procedure :B = B + S[0]

D = D + S[1]

for i = 1 to r do

{
t = (B × (2B + 1)) <<< 1g w

u = (D × (2D + 1)) <<< 1g w

A = ((A ⊕ t) <<< u) + S[2i]

C = ((C ⊕ u) <<< t) + S[2i + 1]

(A, B, C, D) = (B, C, D, A)

}

98 INTERNET SECURITY

S[1]

A B C D

S[0]

lg w

S[2i + 1]

A B C D

ut

S[2i]

lg w

S[2i + 2] S[2i + 3]

ff

Repeat for
i rounds

Figure 3.12 RC6-w/r/b encryption scheme.

A = A + S[2r + 2]

C = C + S[2r + 3]

Example 3.17 Consider RC6-w/r/b where w = 32, r = 20 and b = 16. Suppose the
plaintext and user key are given as follows.

Plaintext: 02 13 24 35 46 57 68 79 8a 9b ac bd ce df e0 f1

Key: 01 23 45 67 89 ab cd ef 01 12 23 34 45 56 67 78

Key expansion

Parameters:

c = 4(number of words in key)

t = 44(number of words in S)

u = 4(number of bytes in word)

SYMMETRIC BLOCK CIPHERS 99

Magic constants:

Pw = b7e15163

Qw = 9e377969

Converting the secret key from bytes to words:

L[0] = 67452301 L[1] = efcdab89

L[2] = 34231201 L[3] = 78675645

Mixing in the secret key S

S[0] = 05479d38 S[1] = e4a3e582 S[2] = fbcc7a4b S[3] = e878faa4
S[4] = 8ed14980 S[5] = 5f5873fd S[6] = aec05ae6 S[7] = aafffe1d
S[8] = 6bf8b7e3 S[9] = 64e27682 S[10] = 23c4d46f S[11] = da521c4b
S[12] = 662b9392 S[13] = c51ae971 S[14] = be84587a S[15] = 473c1481
S[16] = ab246684 S[17] = b9770047 S[18] = 98327b6a S[19] = 529be229
S[20] = b992809a S[21] = 79c1fa56 S[22] = 617cd18d S[23] = 1bcb9a08
S[24] = 8babbbb3 S[25] = 0dd061bd S[26] = 8c1ec8a2 S[27] = 20f286d0
S[28] = faf8eff4 S[29] = 46b87c92 S[30] = c5096b01 S[31] = dbdcc9b0
S[32] = d1b212b4 S[33] = dd0f3d38 S[34] = 27c02df3 S[35] = 0fb21526
S[36] = 46e0faa6 S[37] = e9d9748f S[38] = e274fdcc S[39] = 09ae3f8e
S[40] = 95f85e40 S[41] = a9f90a40 S[42] = f0e51469 S[43] = 45f060d1

Encryption

Using Figure 3.12, compute the ciphertext of RC6-32/20/16.
Initial value in each register:

A = 35241302 B = 7eaff47e

C = bdac9b8a D = d684c550

Encryption process

Round A B C D

1 7eaff47e a17a48d4 d684c550 fdbc336a
2 a17a48d4 Fd35085f fdbc336a 8d81f7b9
3 fd35085f 9300620e 8d81f7b9 2d144999
4 9300620e 5013ef46 2d144999 53caa736
5 5013ef46 8c83dd52 53caa736 ef7cbe5d
6 8c83dd52 f8754ace ef7cbe5d 8cc61508
7 f8754ace 49dd0a20 8cc61508 0035d1db
8 49dd0a20 662fc8cb 0035d1db 7e9553f1
9 662fc8cb 8fde9634 7e9553f1 84ceecec

10 8fde9634 Ce5ac268 84ceecec 42aa5994

100 INTERNET SECURITY

Round A B C D

11 ce5ac268 4a1d83c3 42aa5994 31cdfe66
12 4a1d83c3 113537e5 31cdfe66 5db94923
13 113537e5 4b1b6674 5db94923 e3632504
14 4b1b6674 f60dd47f e3632504 0750ccfe
15 f60dd47f 95a4e7a0 0750ccfe b1e27064
16 95a4e7a0 442babe9 b1e27064 f229c1dc
17 442babe9 cb3a05f9 f229c1dc fadd06ef
18 cb3a05f9 4ce5dc7b fadd06ef a76a5ba6
19 4ce5dc7b 3e3439e9 a76a5ba6 f105f04e
20 3e3439e9 23c61547 f105f04e 183fa47e

Final value in each register:

A = 2f194e52 B = 23c61547

C = 36f6511f D = 183fa47e

Thus, the ciphertext is computed as:

52 4e 19 2f 47 15 c6 23 1f 51 f6 36 7e a4 3f 18

3.4.4 Decryption

RC6 decryption works with four w-bit registers A, B, C, D which contain the initial output
ciphertext at the end of encryption. The first byte of ciphertext is placed into the least
significant byte of A. The last byte of ciphertext is placed into the most significant byte
of D.

The RC6 decryption algorithm is illustrated as shown below:
Decryption with RC6-w/r/b

Input: Ciphertext stored in four w-bit input registers A, B, C, D

Number of rounds, r

w-bit round keys S[0, 1, . . . , 2r + 3]
Output: Plaintext stored in A, B, C, D

Procedure:C = C − S[2r + 3]

A = A − S[2r + 2]

for i = r down to 1 do

{
(A, B, C, D) = (D, A, B, C)

u = (D × (2D + 1)) <<< 1g w

t = (B × (2B + 1)) <<< 1g w

C = ((C − S[2i + 1] >>> t) ⊕ u

SYMMETRIC BLOCK CIPHERS 101

A = ((A − S[2i]) >>> u) ⊕ t

}
D = D − S[1]

B = B − S[0]

The decryption of RC6 is depicted as shown in Figure 3.13.

Example 3.18 Consider again RC6-32/20/16. Utilising Figure 3.13 for RC6 decryption,
the input is the ciphertext stored in four 32-bit input registers A, B, C and D.

A B C D

A B C D

−S[0]

t u

−S[1]

−S[2i + 3] −S[2i + 2]

−S[2i] −S[2i + 1]

lg w

lg w

f

f

Repeat for
i rounds

Figure 3.13 RC6-w/r/b decryption scheme.

102 INTERNET SECURITY

Initial value in each register:

A = 3e3439e9 B = 23c61547

C = f105f04e D = 183fa47e

Decryption process

Round A B C D

1 4ce5dc7b 3e3439e9 a76a5ba6 f105f04e
2 cb3a05f9 4ce5dc7b fadd06ef a76a5ba6
3 442babe9 cb3a05f9 f229c1dc fadd06ef
4 95a4e7a0 442babe9 b1e27064 f229c1dc
5 f60dd47f 95a4e7a0 0750ccfe b1e27064
6 4b1b6674 f60dd47f e3632504 0750ccfe
7 113537e5 4b1b6674 5db94923 e3632504
8 4a1d83c3 113537e5 31cdfe66 5db94923
9 ce5ac268 4a1d83c3 42aa5994 31cdfe66

10 8fde9634 ce5ac268 84ceecec 42aa5994
11 662fc8cb 8fde9634 7e9553f1 84ceecec
12 49dd0a20 662fc8cb 0035d1db 7e9553f1
13 f8754ace 49dd0a20 8cc61508 0035d1db
14 8c83dd52 f8754ace ef7cbe5d 8cc61508
15 5013ef46 8c83dd52 53caa736 ef7cbe5d
16 9300620e 5013ef46 2d144999 53caa736
17 fd35085f 9300620e 8d81f7b9 2d144999
18 a17a48d4 fd35085f fdbc336a 8d81f7b9
19 7eaff47e a17a48d4 d684c550 fdbc336a
20 35241302 7eaff47e bdac9b8a d684c550

Final value in each register

A = 35241302 B = 79685746

C = bdac9b8a D = f1e0dfce

Thus, the recovered plaintext is computed as:

02 13 24 35 46 57 68 79 8a 9b ac bd ce df e0 f1

Example 3.19 Consider RC6-32/20/16. Assume that the plaintext and user key are
given as follows.

Plaintext: b267af31 6d8259e7 b16ac385 f2a072be

User key: de 37 a1 fd 84 92 d8 ef e7 14 f1 b7 cc 78 3a ad

SYMMETRIC BLOCK CIPHERS 103

Converting the secret key from bytes to words:

L[0] = f2baabd4 L[1] = 73e727d4

L[2] = edc4db16 L[3] = 45c0de8b

Mixing in the secret key S:

S[0] = 62e429de S[1] = 3bdc27f1 S[2] = daf4e1c8 S[3] = 16c26209
S[4] = b22edecc S[5] = 509c1331 S[6] = 3487c3db S[7] = 2b8adb1e
S[8] = 5e4c1907 S[9] = 14458ba5 S[10] = 18da3591 S[11] = 8fcdd4b5
S[12] = 5a76c846 S[13] = 2085c465 S[14] = 78c44f1a S[15] = 344b8269
S[16] = cd810b25 S[17] = a4c787e8 S[18] = 4fcc683d S[19] = f0d0d987
S[20] = 1d1a587a S[21] = b55757dc S[22] = c3d68827 S[23] = bfcc8533
S[24] = 094a038c S[25] = 5c4b0c8e S[26] = 4aa837e7 S[27] = ae2430af
S[28] = 2e5e3577 S[29] = 305afc61 S[30] = 3e3b932a S[31] = 3db9bd11
S[32] = 9a891917 S[33] = 1982ee95 S[34] = eabbfb7a S[35] = 4da6c90
S[36] = 0b0945ad S[37] = 16059bf7 S[38] = a4fcfe21 S[39] = aa2c586f
S[40] = 3e05d045 S[41] = 5fbe7c05 S[42] = 974646ea S[43] = d4af0053

Encryption:
Compute the ciphertext of RC6-32/20/16.
Initial values in registers:

A = b267af31 B = 6d8a59e7

C = b16ac385 D = f2a072be

Encryption process

Round A B C D

1 d06e83c5 0fbe58ad 2e7c9aaf 82122047
2 0fbe58ad aebf8fe0 82122047 4c5209fc
3 aebf8fe0 1eea2af6 4c5209fc 671ab020
4 1eea2af6 4c0793b9 671ab020 7dcf4468
5 4c0793b9 d02f880f 7dcf4468 e1f57f20
6 d02f880f 76e50556 e1f57f20 040efeb0
7 76e50556 9226cc1b 040efeb0 6bc6f374
8 9226cc1b 06a119a3 6bc6f374 97683738
9 06a119a3 85830598 97683738 250fbfe5

10 85830598 1c28dc0a 250fbfe5 c89c019f
11 1c28dc0a adb7d6c6 c89c019f c28f0f4b
12 adb7d6c6 1911f356 c28f0f4b d547cb27
13 1911f356 8a0b16e8 d547cb27 2c1d3ae4
14 8a0b16e8 08ddf156 2c1d3ae4 bed49d1e

104 INTERNET SECURITY

Round A B C D

15 08ddf156 c77d14d5 bed49d1e 4fc7085f
16 c77d14d5 474b1fd6 4fc7085f 67ffbcff
17 474b1fd6 327894f2 67ffbcff 99d3105c
18 327894f2 438277f7 99d3105c 7351c0e7
19 438277f7 ff8422c8 7351c0e7 3e0b9530
20 ff8422c8 ce15ebd7 3e0b9530 f3ca4bd4

Final value in each register:

A = 96ca69b2 B = ce15ebd7

C = 12ba9583 D = f3ca4bd4

Thus, the ciphertext is computed as: A||B||C||D =

96ca69b2 ce15ebd7 12ba9583 f3ca4bd4

Decryption:
The initial values in registers A, B, C and D are output at round 19 at the end of encryption.

Decryption process

Round A B C D

1 438277f7 ff8422c8 7351c0e7 3e0b9530
2 327894f2 438277f7 99d3105c 7351c0e7
3 474b1fd6 327894f2 67ffbcff 99d3105c
4 c77d14d5 474b1fd6 4fc7085f 67ffbcff
5 08ddf156 c77d14d5 bed49d1e 4fc7085f
6 8a0b16e8 08ddf156 2c1d3ae4 bed49d1e
7 1911f356 8a0b16e8 d547cb27 2c1d3ae4
8 adb7d6c6 1911f356 c28f0f4b d547cb27
9 1c28dc0a adb7d6c6 c89c019f c28f0f4b

10 85830598 1c28dc0a 250fbfe5 c89c019f
11 06a119a3 85830598 97683738 250fbfe5
12 9226c1b 06a119a3 6bc6f374 97683738
13 76e50556 9226cc1b 040efeb0 6bc6f374
14 d02f880f 76e50556 e1f57f20 040efeb0
15 4c0793b9 d02f880f 7dcf4468 e1f57f20
16 1eea2af6 4c0793b9 671ab020 7dcf4468
17 aebf8fe0 1eea2af6 4c5209fc 671ab020
18 0fbe58ad aebf8fe0 82122047 4c5209fc
19 d06e83c5 0fbe58ad 2e7c9aaf 82122047
20 b267af31 d06e83c5 b16ac385 2e7c9aaf

SYMMETRIC BLOCK CIPHERS 105

The final decrypted plaintext is:

b267af31 6d8a59e7 b16ac385 f2a072be

Example 3.20 Consider RC6-32/20/24. Suppose the plaintext and user key are given
as follows:

Plaintext: 35241302 79685746 bdac9b8a f1e0dfce

User key: 01 23 45 67 89 ab cd ef
01 12 23 34 45 56 67 78
89 9a ab bc cd de ef f0

The user supplies a key of b = 24 bytes, where 0 ≤ b ≤ 255. From this key, 2r + 4 = 44
words are derived and stored in the array S[0, 1, . . . , 2r + 3]. This array is used in both
encryption and decryption.

Key array

S[0] = 4d80ade S[1] = c85296a3 S[2] = c7ca853c S[3] = d665bea0
S[4] = 4d34492f S[5] = e110bf65 S[6] = 9f4acf83 S[7] = ed85cb10
S[8] = f9f0f8eb S[9] = 2275ea3f S[10] = e5dc8714 S[11] = a1b4b8b4
S[12] = 1a28cd0a S[13] = 618fbe87 S[14] = 6fc1ede0 S[15] = 8eaf634d
S[16] = 7d213901 S[17] = bed7ab73 S[18] = 79ba092e S[19] = 6179bc8a
S[20] = aa35b6f6 S[21] = 0091b3ca S[22] = 65f970e9 S[23] = 687e9e94
S[24] = f17e5188 S[25] = 7ec55cf7 S[26] = fe2c8e93 S[27] = 2e7b3dae
S[28] = 56093cb8 S[29] = ed28fa03 S[30] = ab2eaaec S[31] = d049366f
S[32] = fcd4cbd3 S[33] = 84b3906f S[34] = 8eced9f1 S[35] = e02a2453
S[36] = 123b6e03 S[37] = a6192a81 S[38] = 8648252c S[39] = b29fbd04
S[40] = 735d2dc1 S[41] = 97447b58 S[42] = 362b46b2 S[43] = 7c310342

RC6 works with four 32-bit registers A, B, C and D which contain the initial input
plaintext as well as the output ciphertext at the end of encryption. Both encryption and
decryption using RC6-32/20/24 are processed as shown below.

Initial values in registers:

A = 35241302 B = 79685746

C = bdac9b8a D = f1e0dfce

Encryption with RC6-32/20/24

Round A B C D

0 35241302 7e406224 bdac9b8a ba337671
1 7e406224 bf73145b ba337671 ae7fec22
2 bf73145b 8223f9cc ae7fec22 d96ddcb2
3 8223f9cc 823d1be2 d96ddcb2 8ad786e7
4 823d1be2 30fa9e1e 8ad786e7 3439983d

106 INTERNET SECURITY

Round A B C D

5 30fa9e1e 69de30e7 3439983d 41340557
6 69de30e7 1e5076a4 41340557 5cbef6d9
7 1e5076a4 a3202136 5cbef6d9 90578218
8 a3202136 48cd17be 90578218 36536a30
9 48cd17be 89b9dc8a 36536a30 6f54b847

10 89b9dc8a e21b47ad 6f54b847 4927a4a1
11 e21b47ad 51ea2335 4927a4a1 21e33ea6
12 51ea2335 f6288913 21e33ea6 8dfa1819
13 f6288913 74cc2d40 8dfa1819 23c3a852
14 74cc2d40 3cfc9386 23c3a852 99050d00
15 3cfc9386 f0cd5501 99050d00 4f93af72
16 f0cd5501 f3d82818 4f93af72 096f38cb
17 f3d82818 1e600aa7 096f38cb 13e79bec
18 1e600aa7 f3af0e5c 13e79bec 38d4defa
19 f3af0e5c 99fe3cb6 38d4defa aeb84edc
20 99fe3cb6 0405e519 aeb84edc d49152f9

Thus, the output ciphertext at the end of encryption is:

d0298368 0405e519 2ae9521e d49152f9.

Decryption with RC6-32/20/24

Round A B C D

1 f3af0e5c 99fe3cb6 38d4defa aeb84edc
2 1e600aa7 f3af0e5c 13e79bec 38d4defa
3 f3d82818 1e600aa7 096f38cb 13e79bec
4 f0cd5501 f3d82818 4f93af72 096f38cb
5 3cfc9386 f0cd5501 99050d00 4f93af72
6 74cc2d40 3cfc9386 23c3a852 99050d00
7 f6288913 74cc2d40 8dfa1819 23c3a852
8 51ea2335 f6288913 21e33ea6 8dfa1819
9 e21b47ad 51ea2335 4927a4a1 21e33ea6

10 89b9dc8a e21b47ad 6f54b847 4927a4a1
11 48cd17be 89b9dc8a 36536a30 6f54b847
12 a3202136 48cd17be 90578218 36536a30
13 1e5076a4 a3202136 5cbef6d9 90578218
14 69de30e7 1e5076a4 41340557 5cbef6d9
15 30fa9e1e 69de30e7 3439983d 41340557
16 823d1be2 30fa9e1e 8ad786e7 3439983d
17 8223f9cc 823d1be2 d96ddcb2 8ad786e7
18 bf73145b 8223f9cc ae7fec22 d96ddcb2
19 7e406224 bf73145b ba337671 ae7fec22
20 35241302 7e406224 bdac9b8a ba337671

SYMMETRIC BLOCK CIPHERS 107

Thus, the final decrypted plaintext is:

35241302 79685746 bdac9b8a f1e0dfce.

3.5 AES (Rijndael) Algorithm

The Advanced Encryption Standard (AES) specified the Rijndael algorithm which is a
FIFS-approved cryptographic algorithm developed by Daemen and Rijmen as an AES
candidate algorithm in 1999. The Rijndael algorithm is a symmetric block cipher that can
process data blocks of 128 bits using cryptographic keys of 128, 192 and 256 bits.

In this section, we will cover the algorithm specification such as the key expansion
routine, encryption by cipher and decryption by inverse cipher.

3.5.1 Notational Conventions

• The cipher key for the Rijndael algorithm is a sequence of 128, 196 or 256 bits such
that the index attached to a bit falls in between the range 0 ≤ i ≤ 128, 0 ≤ i ≤ 192 or
0 ≤ i ≤ 256, respectively.

• All byte values of the AES Rijndael algorithm are presented by a vector notation
(b7, b6, b5, b4, b3, b2, b1, b0) which corresponds to a polynomial representation as:

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0 =
7

∑

i=0

bix
i

For example, (01001011) → x6 + x3 + x + 1.

• If there is an additional bit b8 to the left of an eight-bit byte, it will appear immediately
to the left of the left bracket such as 1(00101110) = 1(2e).

• Arrays of bytes, a0, a1, a2, . . . , a15 are defined from the 128-bit input sequence, ip0,
ip1, ip2, . . . , ip126, ip127, as follows:

a0 = (ip0, ip1, . . . , ip7)

a1 = (ip8, ip9, . . . , ip15)

...

a15 = (ip120, ip121, . . . , ip127)

where ipk denotes inputk for k = 0, 1, 2, . . . , 127.
In general, the pattern extended to longer sequence like 192- and 256-bit keys is

expressed as:

an = (ip8n, ip8n+1, . . . , ip8n+7), n ≤ 16.

108 INTERNET SECURITY

• The AES algorithm’s operations are internally performed on a two-dimensional array
of bytes called the state. The state consists of four rows of bytes. The state array Sr,c

has a row number r, 0 ≤ r < 4, and a column number c, 0 ≤ c < Nb, where Nb bytes
are the block length divided by 32.

The input-byte array (in0, in1, . . . , in15) at the cipher is copied into the state array
according to the following scheme:

Sr,c = in(r + 4c) for 0 ≤ r < 4 and 0 ≤ c < Nb

and at the inverse cipher, the state is copied into the output array as follows:

out (r + 4c) = Sr,c for 0 ≤ r < 4 and 0 ≤ c < Nb.

An individual byte of the state is referred to as either Sr,c or S(r, c). The cipher and
inverse cipher operations are conducted on the state array as illustrated in Figure 3.14.

For example, if r = 0 and c = 3, then in(0 + 12) = in(12) = S0,3; if r = 3 and
c = 2, then in(3 + 8) = in(11) = S3,2.

The four bytes in each column of the state form a 32-bit word, where the row
number r provides an index for the four bytes within each word, and the column
number c provides an index representing the column in this array.

3.5.2 Mathematical Operations

Finite field elements (all bytes in the AES algorithm) can be added and multiplied. The
basic mathematical operations will be introduced in the following.

Addition

The addition of two elements in a finite field is achieved by XORing the coefficients for
the corresponding powers in the polynomials for two elements. For example,

(x5 + x3 + x2 + 1) + (x7 + x5 + x + 1) = x7 + x3 + x2 + x (polynomial)

(00101101) ⊕ (10100011) = (10001110) (binary)

(2d) ⊕ (a3) = (8e) (hexadecimal)

in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

out0 out4 out8 out12

out1 out5 out9 out13

out2 out6 out10 out14

out3 out7 out11 out15

Cipher input (bytes) State array Cipher output (bytes)

Figure 3.14 State array input and output.

SYMMETRIC BLOCK CIPHERS 109

Multiplication

The polynomial multiplication in GF(28) corresponds to the multiplication of polyno-
mial modulo m(x) that an irreducible (or primitive) polynomial of degree 8 for the
AES algorithm:

m(x) = x8 + x4 + x3 + x + 1

Example 3.21 Prove (73) • (a5) = (e3)

(01110011) • (10100101)

(x6 + x5 + x4 + x + 1) • (x7 + x5 + x2 + 1)

= x13 + x12 + x10 + x9 + x6 + x4 + x3 + x2 + x + 1

The modular reduction by m(x) results in

x13 + x12 + x10 + x9 + x6 + x4 + x3 + x2 + x + 1 mod (x8 + x4 + x3 + x + 1)

= x7 + x6 + x5 + x + 1

= (11100011) = (e3)

Since the multiplication is associative, it holds that

a(x)(b(x) + c(x)) = a(x)b(x) + a(x)c(x)

The element (01) = (00000001) is called the multiplicative identity. For any polynomial
b(x) of degree less than 8, the multiplicative inverse of b(x), denoted by b−1(x), can be
found by using the extended euclidean algorithm such that

b(x)a(x) + m(x)c(x) = 1

from which b(x)a(x) mod m(x) ≡ 1. Thus, the multiplicative inverse of b(x) becomes

b−1(x) = a(x)modm(x).

The set of 256 possible byte values has the structure of the finite field GF(28) by means
of XOR used as both addition and multiplication.

Multiplication by x

Let the binary polynomial be b(x) =
∑7

i=0 bix
i . Multiplying b(x) by x results in xb(x) =

∑7
i=0 bix

i+1, but it can be reduced by modulo m(x).
If b7 = 1, the reduction is achieved by XORing m(x). It follows that implication by x

(i.e. (00000010)(2) = (02)(16)) can be implemented at the byte level with a left shift and
bitwise XOR with (1b). This operation on bytes is denoted by xtime(). Multiplication by
higher powers of x can be implemented by repeated application of xtime().

110 INTERNET SECURITY

Example 3.22 Compute (57) • (13) = (fe)

(57) = (01010111)

(57) • (02) = xtime(57) = (10101110) = (ae)

(57) • (04) = xtime(ae) = (01011100) ⊕ (00011011)

= (01000111) = (47)

(57) • (08) = xtime(47) = (10001110) = (8e)

(57) • (10) = xtime(8e) = (00011100) ⊕ (00011011) = (07)

Thus, it follows that

(57) • (13) = (57) • {(01) ⊕ (02) ⊕ (10)}
= (57) ⊕ (57) • (02) ⊕ (57) • (10)

= (57) ⊕ (ae) ⊕ (07)

= (01010111) ⊕ (10101110) ⊕ (00000111)

= (11111110) = (fe)

Polynomials with finite field elements in GF(28)

A polynomial a(x) with byte-coefficient in GF(28) can be expressed in word form as:

a(x) = a3x
3 + a2x

2 + a1x + a0 ⇔ a = (a0, a1, a2, a3)

To illustrate the addition and multiplication operations, let

b(x) = b3x
3 + b2x

2 + b1x + b0 ⇔ b = (b0, b1, b2, b3)

be a second polynomial.
Addition is performed by adding the finite field coefficients of like powers of x

such that

a(x) + b(x) = (a3 ⊕ b3)x
3 + (a2 ⊕ b2)x

2 + (a1 ⊕ b1)x + (a0 ⊕ b0)

This addition corresponds to an XOR operation between the corresponding bytes in each
of the words. Multiplication is achieved as shown below:

The polynomial product c(x) = a(x) • b(x) is expanded and like powers are collected
to give

c(x) = a(x) • b(x) = c6x
6 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x + c0

= (c6, c5, c4, c3, c2, c1, c0)

SYMMETRIC BLOCK CIPHERS 111

where

c0 = a0b0 c4 = a3b1 ⊕ a2b2 ⊕ a1b3

c1 = a1b0 ⊕ a0b1 c5 = a3b2 ⊕ a2b3

c2 = a2b0 ⊕ a1b1 ⊕ a0b2 c6 = a3b3

c3 = a3b0 ⊕ a2b1 ⊕ a1b2 ⊕ a0b3

The next step is to reduce c(x) mod (x4 + 1) for the AES algorithm, so that xi mod
(x4 + 1) = ximod4.

The modular product, a(x) ⊗ b(x), of two four-term polynomials a(x) and b(x), is
given by

d(x) = a(x) ⊗ b(x) = d3x
3 + d2x

2 + d1x + d0

where

d0 = a0b0 ⊕ a3b1 ⊕ a2b2 ⊕ a1b3

d1 = a1b0 ⊕ a0b1 ⊕ a3b2 ⊕ a2b3

d2 = a2b0 ⊕ a1b1 ⊕ a0b2 ⊕ a3b3

d3 = a3b0 ⊕ a2b1 ⊕ a1b2 ⊕ a0b3

Thus, d(x) in matrix form is written as:

d0

d1

d2

d3

=

a0a3a2a1

a1a0a3a2

a2a1a0a3

a3a2a1a0

b0

b1

b2

b3

The AES algorithm also defines the inverse polynomials as:

a(x) = (03)x3 + (01)x2 + (01)x1 + (02)

a−1(x) = (0b)x3 + (0d)x2 + (09)x1 + (0e)

3.5.3 AES Algorithm Specification

For the AES algorithm, Nb denotes the number of 32-bit words with respect to the 128-bit
block of the input, output, or state (128 = Nb × 32, from which Nb = 4).

Nk represents the number of 32-bit words with respect to the cipher-key length of 128,
192 or 256 bits:

128 = Nk × 32, Nk = 4
196 = Nk × 32, Nk = 6
256 = Nk × 32, Nk = 8

The number of rounds are 10, 12 and 14, respectively.

112 INTERNET SECURITY

Key expansion

The AES algorithm takes the cipher key K and performs a key expansion routine to
generate a key schedule. The key expansion generates a total of Nb(Nr + 1) words: an
initial set of Nb words for Nr = 0, and 2Nb for Nr = 1, 3Nb for Nr = 2, . . . , 11Nb for
Nr = 10. Thus, the resulting key schedule consists of a linear array of four-byte words
[wi], 0 ≤ i < Nb(Nr + 1).

RotWord() takes a four-byte input word [a0, a1, a2, a3] and performs a cyclic permu-
tation such as [a1, a2, a3, a0].

SubWord() takes a four-byte input word and applies the S-box (Figure 3.15) to each
of the four bytes to produce an output word.

Rcon[i] represents the round constant word array and contains the values given by
[xi−1, {00}, {00}, {00}] with xi−1 starting i at 1.

Example 3.23 Compute the round constant words Rcon [i]:

Rcon[i] = [xi−1, {00}, {00}, {00}]
Rcon[1] = [x0, {00}, {00}, {00}] = [{01}, {00}, {00}, {00}] = 01000000

y

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
x

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b db 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Figure 3.15 AES S-box (FIPS Publication, 2001).

SYMMETRIC BLOCK CIPHERS 113

Rcon[2] = [x1, {00}, {00}, {00}] = 02000000

Rcon[3] = [x2, {00}, {00}, {00}] = 04000000

Rcon[4] = [x3, {00}, {00}, {00}] = 08000000

Rcon[5] = [x4, {00}, {00}, {00}] = 10000000

Rcon[6] = [x5, {00}, {00}, {00}] = 20000000

Rcon[7] = [x6, {00}, {00}, {00}] = 40000000

Rcon[8] = [x7, {00}, {00}, {00}] = 80000000

Rcon[9] = [x8, {00}, {00}, {00}] = [x7 • x, {00}, {00}, {00}] = 1b000000

x7 • x = xtime(x7) = xtime(80) = {leftshift(80)} ⊕ {1b} = 1b

Rcon[10] = [x9, {00}, {00}, {00}] = [x8 • x, {00}, {00}, {00}] = 36000000

Rcon[11] = [x10, {00}, {00}, {00}] = [x9 • x, {00}, {00}, {00}] = 6c000000

Rcon[12] = [x11, {00}, {00}, {00}] = [x10 • x, {00}, {00}, {00}] = d8000000

Rcon[13] = [x12, {00}, {00}, {00}] = [x11 • x, {00}, {00}, {00}] = ab000000

x11 • x = xtime(x11) = xtime(d8) = {leftshift(d8)} ⊕ {1b} = ab

Rcon[i] is a useful component for the round constant ward array in order to compute the
key expansion routine.

The input key expansion into the key schedule proceeds as shown in Figure 3.16.

Example 3.24 Suppose the cipher key K is given as

K = 36 8a c0 f4 ed cf 76 a6 08 a3 b6 78 31 31 27 6e

The first four words of K for Nk = 4 results in w[0] = 368ac0f4, w[1] = edcf76a6,
w[2] = 08a3b678, w[3] = 3131276e.

Computation of w[4] for i = 4 is as follows:

Temp = w[3] = 3131276e

A cyclic permutation of w[3] by one byte produces

RotWord(w[3]) = 31276e31

Taking each byte of RotWord(w[3]) at a time and applying to the S-box yields

SubWord(31276e31) = c7cc9fc7

Compute a round constant Rcon[i/Nk]:

Rcon[4/4] = Rcon[1] = 01000000

XORing SubWord() with Rcon[1] yields

114 INTERNET SECURITY

Figure 3.16 Pseudocode for key expansion (FIPS Publication, 2001).

SubWord() ⊕Rcon[1] = c6cc9fc7

w[i − Nk] = w[0] = 368ac0f4

Finally, w[4] is computed as:

w[4] = c6cc9fc7 ⊕ 368ac0f4 = f0465f33.

Continuing in this fashion, the remaining w[i], 4 ≤ i ≤ 43, can be computed as shown in
Table 3.16.

Cipher

The 128-bit cipher input is fed in a column-by-column manner, comprising each column
with a four-byte word. In other words, the input is copied to the state array as shown in
Table 3.17.
The cipher is described in the pseudocode in Figure 3.17.

Individual transformations for the pseudocode computation consist of SubBytes(),
ShiftRows(), MixColumns() and AddRoundKey(). These transformations play a role in
processing the state and are briefly described below.

SYMMETRIC BLOCK CIPHERS 115

Table 3.16 AES key expansion

i Temp. After
RotWord

After
SubWord

Rcon[i/Nk] After XOR
with Rcon

w[i] = temp
⊕w[i − Nk]

4 3131276e 31276e31 c7cc9fc7 01000000 c6cc9fc7 f0465f33
5 f0465f33 1d892995
6 1d892995 152a9fed
7 152a9fed 241bb883
8 241bb883 1bb88324 af6cec36 02000000 ad6cec36 5d2ab305
9 5d2ab305 40a39a90

10 40a39a90 5589057d
11 5589057d 7192bdfe
12 7192bdfe 92bdfe71 4f7abba3 04000000 4b7abba3 165008a6
13 165008a6 56f39236
14 56f39236 037a974b
15 037a974b 72e82ab5
16 72e82ab5 e82ab572 9be5d540 08000000 93e5d540 85b5dde6
17 85b5dde6 d3464fd0
18 d3464fd0 d03cd89b
19 d03cd89b a2d4f22e
20 a2d4f22e d4f22ea2 4889313a 10000000 5889313a dd3cecdc
21 dd3cecdc 0e7aa30c
22 0e7aa30c de467b97
23 de467b97 7c9289b9
24 7c9289b9 9289b97c 4fa75610 20000000 6fa75610 b29bbacc
25 b29bbacc bce119c0
26 bce119c0 62a76257
27 62a76257 1e35ebee
28 1e35ebee 35ebee1e 96e92872 40000000 d6e92872 647292be
29 647292be d8938b7e
30 d8938b7e ba34e929
31 ba34e929 a40102c7
32 a40102c7 0102c7a4 7c77c649 80000000 fc77c649 980554f7
33 980554f7 4096df89
34 4096df89 faa236a0
35 faa236a0 5ea33467
36 5ea33467 a334675e 0a188558 1b000000 11188558 891dd1af
37 891dd1af c98b0e26
38 c98b0e26 33293886
39 33293886 6d8a0ce1
40 6d8a0ce1 8a0ce16d 7efef83c 36000000 48fef83c c1e32993
41 c1e32993 086827b5
42 086827b5 3b411f33
43 3b411f33 56cb13d2

116 INTERNET SECURITY

Table 3.17 A 16-byte cipher input array

Row No. Mapping of input block into
column-by-column array

0 a0 a4 a8 a12

1 a1 a5 a9 a13

2 a2 a6 a10 a14

3 a3 a7 a11 a15

Figure 3.17 Pseudocode for the cipher (FIPS Publication, 2001).

SubBytes() Transformation

The SubBytes() transformation is a nonlinear byte substitution that operates independently
on each byte of the state using a S-box (see Figure 3.18).

For example, if s2,1 = {8f}, then the substitution value is determined by the intersection
of the row with index 8 and the column with index f in Figure 3.15. The resulting s ′

2,1

would be a value of {73}.

Sr,c S′r,cS-box

0 ≤ r ≤ 3, 0 ≤ c ≤ Nb − 1

Figure 3.18 SubBytes() transformation by the S-box.

SYMMETRIC BLOCK CIPHERS 117

ShiftRows() Transformation

In the ShiftRows(), the first row (row 0) is not shifted and the remaining rows proceed
as follows:

s ′
r,c = s ′

r,(c+shift(r,Nb)) mod Nb, for 0 < r < 4 and 0 ≤ c < Nb

where the shift value shift(r, Nb) = shift(r, 4) depends on the row number r as follows:

shift(1, 4) = 1; shift(2, 4) = 2; shift(3, 4) = 3;

This has the effect of shifting the leftmost bytes around into the rightmost positions over
different numbers of bytes in a given row.

MixColumns() Transformation

The MixColumns() transformation operates on the state column-by-column, treating each
column as a four-term polynomial over GF(28) and multiplied modulo x4 + 1 with a fixed
polynomial a(x) as:

s ′(x) = a(x) ⊗ s(x)

where a(x) = {03}x3 + {01}x2 + {01}x + {02}, s(x) is the input polynomial and s ′(x) is
the corresponding polynomial after the MixColumns() transformation.

The matrix multiplication of s ′(x) is

s ′
0,c

s ′
1,c

s ′
2,c

s ′
3,c

=

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

s0,c

s1,c

s2,c

s3,c

for 0 ≤ c < Nb

The four bytes in a column after the matrix multiplication are

s ′
0,c = ({02} • s0,c) ⊕ ({03} • s1,c) ⊕ s2,c ⊕ s3,c

s ′
1,c = s0,c ⊕ ({02} • s1,c) ⊕ ({03} • s2,c) ⊕ s3,c

s ′
2,c = s0,c ⊕ s1,c ⊕ ({02} • s2,c) ⊕ ({03} • s3,c)

s ′
3,c = ({03} • s0,c) ⊕ s1,c ⊕ s2,c ⊕ ({02} • s3,c)

AddRoundKey() Transformation

In AddRoundKey() transformation, a round key is added to the state by a simple bitwise
XOR operation. Each round key consists of Nb words from the key schedule. These Nb

words are added into the columns of the state such that

[s ′
0,c, s ′

1,c, s ′
2,c, s ′

3,c] = [s0,c, s1,c, s2,c, s3,c] ⊕ [wround∗Nb+c]for 0 ≤ c < Nb

where [wi] are the key schedule words, and round is a value in the range 0 ≤ round ≤ Nr .
The initial round key addition occurs when round = 0, prior to the first application of the
round function. The application of the AddRoundKey() transformation to the Nr rounds
of the cipher occurs when 1 ≤ round ≤ Nr .

118 INTERNET SECURITY

Example 3.25 Assume that the input block and a cipher key whose length of 16 bytes
each are given as:

Plaintext = a3 c5 08 08 78 a4 ff d3 00 ff 36 36 28 5f 01 02

Cipherkey = 36 8a c0 f4 ed cf 76 a6 08 a3 b6 78 31 31 27 6e

Using the algorithm for the pseudocode computation described in Figure 3.17, the inter-
mediate values in the state array are given in the following table. The round key values
w[i] are taken from Example 3.24.

Cipher (Encrypt)

r Start of round After
SubByte

After
ShiftRows

After
MixColumns

After XOR
with w[]

a3 78 00 28 95 95 08 19
c5 a4 ff 5f 4f 6b 5c 6e

0
08 ff 36 01 c8 89 80 26
08 d3 36 02 fc 75 4e 6c

95 95 08 19 2a 2a 30 d4 2a 2a 30 d4 48 cd af ac b8 d0 ba 88
4f 6b 5c 6e 84 7f 4a 9f 7f 4a 9f 84 c8 0c ab 1a 8e 85 81 01

1
c8 89 80 26 e8 a7 cd f7 cd f7 e8 a7 24 5e d8 74 7b 77 47 cc
fc 75 4e 6c b0 9d 2f 50 50 b0 9d 2f 6c b8 06 1a 5f 2d eb 99

b8 d0 ba 88 6c 70 f4 c4 6c 70 f4 c4 34 70 8e a4 69 30 db d5
8e 85 81 01 19 97 0c 7c 97 0c 7c 19 4c 7a b7 1b 66 d9 3e 89

2
7b 77 47 cc 21 f5 a0 4b a0 4b 21 f5 89 a0 b9 0c 3a 3a bc b1
5f 2d eb 99 cf d8 e9 ee ee cf d8 e9 44 52 f1 72 41 c2 8c 8c

69 30 db d5 f9 04 b9 03 f9 04 b9 03 b7 8e 3e b7 a1 d8 3d c5
66 d9 3e 89 33 35 b2 a7 35 b2 a7 33 58 bb 52 9a 08 48 28 72

3
3a 3a bc b1 80 80 65 c8 65 c8 80 80 aa a3 6a 87 a2 31 fd ad
41 c2 8c 8c 83 25 64 64 64 83 25 64 88 6b bd 7e 2e 5d f6 cb

a1 d8 3d c5 32 61 27 a6 32 61 27 a6 d9 3a f8 82 5c e9 28 20
08 48 28 72 30 52 34 40 52 34 40 30 75 9c a5 d6 c0 da 99 02

4
a2 31 fd ad 3a c7 54 95 54 95 3a c7 e9 37 c7 c5 34 78 1f 37
2e 5d f6 cb 31 4c 42 1f 1f 31 4c 42 6e 60 8b 82 88 b0 10 ac

5c e9 28 20 4a 1e 34 b7 4a 1e 34 b7 3c 4b 0e d6 e1 45 d0 aa
c0 da 99 02 ba 57 ee 77 57 ee 77 ba 2e a8 15 cd 12 d2 53 5f

5
34 78 1f 37 18 bc c0 9a c0 9a 18 bc 2e 88 41 2b c2 2b 3a a2
88 b0 10 ac c4 e7 ca 91 91 c4 e7 ca 70 c5 e6 4b ac c9 71 f2

e1 45 d0 aa f8 6e 70 ac f8 6e 70 ac 26 5b 52 51 94 e7 30 4f
12 d2 53 5f c9 b5 ed cf b5 ed cf c9 9b 70 47 8e 00 91 e0 bb

6
c2 2b 3a a2 25 f1 80 3a 80 3a 25 f1 d6 5f 89 62 6c 46 eb 89
ac c9 71 f2 91 dd a3 89 89 91 dd a3 2f 5c db 8a e3 9c 8c 64

SYMMETRIC BLOCK CIPHERS 119

r Start of round After
SubByte

After
ShiftRows

After
MixColumns

After XOR
with w[]

94 e7 30 4f 22 94 04 84 22 94 04 84 76 bd a3 88 12 65 19 2c
00 91 e0 bb 63 81 e1 ea 81 e1 ea 63 58 ae e5 c8 2a 3d d1 c9

7
6c 46 eb 89 50 5a e9 a7 e9 a7 50 5a af 13 37 ff 3d 98 de fd
e3 9c 8c 64 11 de 64 43 43 11 de 64 88 c3 11 66 36 bd 38 a1

12 65 19 2c c9 4d d4 71 c9 4d d4 71 cf 89 92 97 57 c9 68 c9
2a 3d d1 c9 e5 27 3e dd 27 3e dd e5 92 c8 66 6d 97 5e c4 ce

8
3d 98 de fd 27 46 1d 54 1d 54 27 46 82 d4 c9 11 d6 0b ff 25
36 bd 38 a1 05 7a 07 32 32 05 7a 07 1e b7 69 3e e9 3e c9 59

57 c9 68 c9 5b dd 45 dd 5b dd 45 dd 83 a4 48 d4 0a 6d 7b b9
97 5e c4 ce 88 58 1c 8b 58 1c 8b 88 1a ba fb 76 07 31 d2 fc

9
d6 0b ff 25 f6 2b 16 3f 16 3f f6 2b 69 9d f4 7f b8 93 cc 73
e9 3e c9 59 1e b2 dd cb cb 1e b2 dd 2e 63 cd 7e 81 45 4b 9f

0a 6d 7b b9 67 3c 21 56 67 3c 21 56 a6 34 1a 00
07 31 d2 fc c5 c7 b5 b0 c7 b5 b0 c5 24 dd f1 0e

10
b8 93 cc 73 6c dc 4b 8f 4b 8f 6c dc 62 a8 73 cf
81 45 4b 9f 0c 6e b3 db db 0c 6e b3 48 b9 5d 61

Inverse cipher

The Cipher transformation can be implemented in reverse order to produce a Inverse
Cipher for the AES algorithm. The individual transformations used in the Inverse Cipher
are InvShiftRows(), InvSubBytes(), InvMixColumns() and AddRoundKey(). These inverse
transformations process the state as described in the following.

InvShiftRows() Transformation

InvShiftRows() is the inverse of the ShiftRows() transformation. The first row (Row 0)
is not shifted. The bytes in the last three rows (Row 1, Row 2, Row 3) are cyclically
shifted over different numbers of bytes as follows:

shift(r, Nb): shift values, where ris a row number and Nb = 4.

shift(1, 4) = 1, shift(2, 4) = 2, shift(3, 4) = 3, respectively.

Specifically, the InvShiftRows() transformation proceeds as:

s ′
r,(c+shift(r,Nb))modNb = sr,c, for 0 < r < 4 and 0 ≤ c < Nb

InvSubBytes() Transformation

InvSubBytes() is the inverse of the byte substitution transformation, in which the inverse
S-box is applied to each byte of the state. The inverse S-box used in the InvSubBytes()
transformation is presented in Figure 3.19.

120 INTERNET SECURITY

y
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
3 08 2e al 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9b 84
6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

x
7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

Figure 3.19 AES algorithm Inverse S-box (FIPS Publication, 2001).

InvMixColumns() Transformation

InvMixColumns() is the inverse of the MixColumns() transformation. This transformation
operates column-by-column on the state, treating each column as a four-term polynomial.
The columns are considered as polynomials over GF(28) and multiplied modulo x4 + 1
with a fixed polynomial a−1(x).

If the inverse state s ′(x) is written as a matrix multiplication, then it follows:

s ′(x) = a−1(x) ⊗ s(x)

where a−1(x) = {0b}x3 + {0d}x2 + {09}x + {0e}.
The matrix multiplication can be expressed as

s ′
0,c

s ′
1,c

s ′
2,c

s ′
3,c

=

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

s0,c

s1,c

s2,c

s3,c

for 0 ≤ c < Nb

This multiplication will result in four bytes in a column as follows:

s ′
0,c = ({0e} • s0,c) ⊕ ({0b} • s1,c) ⊕ ({0d} • s2,c) ⊕ ({09} • s3,c)

s ′
1,c = ({09} • s0,c) ⊕ ({0e} • s1,c) ⊕ ({0b} • s2,c) ⊕ ({0d} • s3,c)

s ′
2,c = ({0d} • s0,c) ⊕ ({09} • s1,c) ⊕ ({0e} • s2,c) ⊕ ({0b} • s3,c)

s ′
3,c = ({0b} • s0,c) ⊕ ({0d} • s1,c) ⊕ ({09} • s2,c) ⊕ ({0e} • s3,c)

SYMMETRIC BLOCK CIPHERS 121

Figure 3.20 Pseudocode for the inverse cipher (FIPS Publication, 2001).

Inverse of AddRoundKey() Transformation

AddRoundKey() is its own inverse because it only involves application of the XOR
operation.

For decrypting ciphertext, the Inverse Cipher is described in the pseudocode shown
in Figure 3.20.

Example 3.26 The input to the Inverse Cipher is the cipher encryption values obtained
from Example 3.25.

Ciphertext = a6 24 62 48 34 dd a8 b9 1a f1 73 5d 00 0e cf 61

Cipherkey = 36 8a c0 f4 ed cf 76 a6 08 a3 b6 78 31 31 27 6e

The round key values are the same as those used in Example 3.25. The following table
shows the values in the state array as the Inverse Cipher progresses.

Inverse Cipher (Decrypt)

r Start of round After
InvShiftRows

After
InvSubBytes

After XOR
with w[]

After
InvMixColumns

a6 34 1a 00 67 3c 21 56
24 dd f1 0e c7 b5 b0 c5

0
62 a8 73 cf 4b 8f 6c dc
48 b9 5d 61 db 0c 6e b3

67 3c 21 56 67 3c 21 56 0a 6d 7b b9 83 a4 48 d4 5b dd 45 dd
c7 b5 b0 c5 c5 c7 b5 b0 07 31 d2 fc 1a ba fb 76 58 1c 8b 88

1
4b 8f 6c dc 6c dc 4b 8f b8 93 cc 73 69 9d f4 7f 16 3f f6 2b
db 0c 6e b3 0c 6e b3 db 81 45 4b 9f 2e 63 cd 7e cb 1e b2 dd

122 INTERNET SECURITY

r Start of round After
InvShiftRows

After
InvSubBytes

After XOR
with w[]

After
InvMixColumns

5b dd 45 dd 5b dd 45 dd 57 c9 68 c9 cf 89 92 97 c9 4d d4 71
58 1c 8b 88 88 58 1c 8b 97 5e c4 ce 92 c8 66 6d 27 3e dd e5

2
16 3f f6 2b f6 2b 16 3f d6 0b ff 25 82 d4 c9 11 1d 54 27 46
cb 1e b2 dd 1e b2 dd cb e9 3e c9 59 1e b7 69 3e 32 05 7a 07

c9 4d d4 71 c9 4d d4 71 12 65 19 2c 76 bd a3 88 22 94 04 84
27 3e dd e5 e5 27 3e dd 2a 3d d1 c9 58 ae e5 c8 81 e1 ea 63

3
1d 54 27 46 27 46 1d 54 3d 98 de fd af 13 37 ff e9 a7 50 5a
32 05 7a 07 05 7a 07 32 36 bd 38 a1 88 c3 11 66 43 11 de 64

22 94 04 84 22 94 04 84 94 e7 30 4f 26 5b 52 51 f8 6e 70 ac
81 e1 ea 63 63 81 e1 ea 00 91 e0 bb 9b 70 47 8e b5 ed cf c9

4
e9 a7 50 5a 50 5a e9 a7 6c 46 eb 89 d6 5f 89 62 80 3a 25 f1
43 11 de 64 11 de 64 43 e3 9c 8c 64 2f 5c db 8a 89 91 dd a3

f8 6e 70 ac f8 6e 70 ac e1 45 d0 aa 3c 4b 0e d6 4a 1e 34 b7
B5 ed cf c9 c9 b5 ed cf 12 d2 53 5f 2e a8 15 cd 57 ee 77 ba

5
80 3a 25 f1 25 f1 80 3a c2 2b 3a a2 2e 88 41 2b c0 9a 18 bc
89 91 dd a3 91 dd a3 89 ac c9 71 f2 70 c5 e6 4b 91 c4 e7 ca

4a 1e 34 b7 4a 1e 34 b7 5c e9 28 20 d9 3a f8 82 32 61 27 a6
57 ee 77 ba ba 57 ee 77 c0 da 99 02 75 9c a5 d6 52 34 40 30

6
c0 9a 18 bc 18 bc c0 9a 34 78 1f 37 e9 37 c7 c5 54 95 3a c7
91 c4 e7 ca c4 e7 ca 91 88 b0 10 ac 6e 60 8b 82 1f 31 4c 42

32 61 27 a6 32 61 27 a6 a1 d8 3d c5 b7 8e 3e b7 b7 04 b9 03
52 34 40 30 30 52 34 40 08 48 28 72 58 bb 52 9a 9a b2 a7 33

7
54 95 3a c7 3a c7 54 95 a2 31 fd ad aa a3 6a 87 87 c8 80 80
1f 31 4c 42 31 4c 42 1f 2e 5d f6 cb 88 6b bd 7e 7e 83 25 64

b7 04 b9 03 f9 04 b9 03 69 30 db d5 34 70 8e a4 6c 70 f4 c4
9a b2 a7 33 33 35 b2 a7 66 d9 3e 89 4c 7a b7 1b 97 0c 7c 19

8
87 c8 80 80 80 80 65 c8 3a 3a bc b1 89 a0 b9 0c a0 4b 21 f5
7e 83 25 64 83 25 64 64 41 c2 8c 8c 44 52 f1 72 ee cf d8 e9

6c 70 f4 c4 6c 70 f4 c4 b8 d0 ba 88 48 cd af ac 2a 2a 30 d4
97 0c 7c 19 19 97 0c 7c 8e 85 81 01 c8 0c ab 1a 7f 4a 9f 84

9
a0 4b 21 f5 21 f5 a0 4b 7b 77 47 cc 24 5e d8 74 cd f7 e8 a7
ee cf d8 e9 cf d8 e9 ee 5f 2d eb 99 6c b8 06 1a 50 b0 9d 2f

2a 2a 30 d4 2a 2a 30 d4 95 95 08 19 a3 78 00 28
7f 4a 9f 84 84 7f 4a 9f 4f 6b 5c 6e c5 a4 ff 5f

10
cd f7 e8 a7 e8 a7 cd f7 c8 89 80 26 08 ff 36 01
50 b0 9d 2f b0 9d 2f 50 fc 75 4e 6c 08 d3 36 02

4
Hash Function, Message Digest and

Message Authentication Code

As digital signature technology becomes more widely understood and utilised, many
countries world-wide are competitively developing their own signature standards for their
use and applications.

Some electronic applications utilising digital signatures in electronic commerce (e-
commerce) include e-mail and financial transactions. E-mail may need to be digitally
signed, where sensitive information is being transmitted and security services such as
sender authentication, message integrity and non-repudiation are desired. Financial trans-
actions, in which money is being transferred directly or in exchange for services and
goods, could also benefit from the use of digital signatures. Signing the message digest
rather than the message often improves the efficiency of the process because the message
digest is usually much smaller than the message.

In e-commerce, it is often necessary for communication parties to verify each other’s
identity. One practical way to do this is with the use of cryptographic authentication
protocols employing a one-way hash function. Division into fixed-bit blocks can be accom-
plished by mapping the variable-length message on to the suitable-bit value by padding
with all zeros, including one bit flag and the original message length in hex. Appropriate
padding is needed to force the message to divide conveniently into certain fixed lengths.
Several algorithms are introduced in order to compute message digests by employing
several hash functions. The hash functions dealt with in this chapter are DMDC (1994),
MD5 (1992) and SHA-1 (1995).

4.1 DMDC Algorithm

DES-like Message Digest Computation (DMDC) uses a DES variant as a one-way hash
function. In 1994, this scheme was introduced to compute the 18-bit authentication data

Internet Security. Edited by M.Y. Rhee
 2003 John Wiley & Sons, Ltd ISBN 0-470-85285-2

124 INTERNET SECURITY

with CDMA cellular mobile communications system. DMDC divides messages into blocks
of 64 bits. The DMDC hash function generates message digests with variable sizes – 18,
32, 64 or 128 bits. This scheme is appropriate for the use of digital signatures and hence
it can be employed to increase Internet security.

The message to be signed is first divided into a sequence of 64-bit blocks:

M1, M2, . . . , Mt

Appropriate padding rules need to be devised for messages that do not divide conveniently.
The adjacent message blocks are hashed together with a self-generated key. A better
approach is to use one block (64 bits) of the correct message length as the key.

Figure 4.1 shows a typical scheme for hash code computation for M = 192 bits using
DMDC.

4.1.1 Key Schedule

One authentication problem in the CDMA mobile system is how to confirm the iden-
tity of the mobile station by exchanging information between a mobile station and base
station. When the authentication field of the access parameters message is set to ‘01’,
the mobile station attempts to register by sending a registration request message on
the access channel; and the authentication procedure will be performed. Computing the
authentication data of mobile station registrations, it is necessary to have a 152-bit mes-
sage value which complies with RAND (32 bits), ESN (32 bits), MIN (24 bits) and
SSD-A (64bits):

RAND: Authentication random challenge value
ESN: Electronic serial number
MIN: Mobile station identification number
SSD-A: Shared secret data to support the authentication procedure.

The 192-bit value is composed of 152-bit message length and 40-bit padding. Suppose
M1, M2 and M3 are decompositions of a 192-bit padded message. M1 = 64 bits will
be used as input to the key generation scheme in Figure 4.1. The Permuted Choice
2 operation will produce the 48-bit key that is arranged into a 6 × 8 array as shown
below:

Input (column by column)

⇓
1 7 13 19 25 31 37 43
2 8 14 20 26 32 38 44
3 9 15 21 27 33 39 45
4 10 16 22 28 34 40 46
5 11 17 23 29 35 41 47
6 12 18 24 30 36 42 48

HASH FUNCTION, MESSAGE DIGEST AND HMAC 125

M = 192 bits

M = 64 bits M = 64 bits M = 64 bits

C0 = 28 bits D0 = 28 bits

<<< 1 <<< 1

C1 D1

PC-1 (56 bits)

PC-2 (48 bits)

L1 = 32 bits R1 = 32 bits L1 = 32 bits R1 = 32 bits

E(L1) = 48 bits E(L1) = 48 bits E(L1) = 48 bits E(L1) = 48 bits

IP IP

<<< 3

<<< 1

RWP

CWP

<<< 2

<<< 5 <<< 10

Message digest (64 bits)

PC: Permuted choice

IP: Initial permutation

RWP: Row-wise permutation

CWP: Column-wise permutation

: Concatenation

: Addition of 32-bit integers
 module 232

: Multiplication of 32-bit integers
 module 232 + 1

K = 48 bits

K2

K3

K4

K1

Key
generation
scheme

Γ1 = E(L1)⊕K1 Γ2 = E(R1)⊕K2 Γ3 = E(L2)⊕K3 Γ4 = E(R2)⊕K4

(S-box)1 (S-box)2 (S-box)3 (S-box)4

Ω1 (32 bits) Ω2 (32 bits) Ω3 (32 bits) Ω4 (32 bits)

P(Ω1) (32 bits) P(Ω2) (32 bits) P(Ω3) (32 bits) P(Ω4) (32 bits)

Figure 4.1 DMDC algorithm for M = 192 bits.

126 INTERNET SECURITY

Row-wise permutation
5 11 17 23 29 35 41 47
1 7 13 19 25 31 37 43
3 9 15 21 27 33 39 45
6 12 18 24 30 36 42 48
2 8 14 20 26 32 38 44
4 10 16 22 28 34 40 46

Column-wise permutation

11 35 5 47 17 41 29 23
7 31 1 43 13 37 25 19
9 33 3 45 16 39 27 21

12 36 6 48 18 42 30 24
8 32 2 44 14 38 26 20

10 34 4 46 16 40 28 22

→ output (row by row)

Thus, a 48-bit key generation from M1 is computed as shown in Table 4.1.

Example 4.1 Assume that division of the 192-bit padded message into 64 bits con-
sists of:

M1 = 7a138b2524af17c3

M2 = 17b439a12f51c5a8

M3 = 51cb360000000000

Note that no one-bit flag and no message length in hex are inserted in this example.
The 48-bit key generation using row/column permutations is given below. Assume that
the first data block M1 is used as the key input. Using Table 3.1 (PC-1), M1 splits into
two blocks:

C0 = a481394, D0 = e778253

As shown in Table 3.2, C1 and D1 are obtained from C0 and D0 by shifting one bit to
the left, respectively.

C1 = 4902729, D1 = cef04a7

Table 4.1 A 48-bit key generation by row/column permutations

11 35 5 47 17 41 29 23 7 31 1 43 13 37 25 19
9 33 3 45 15 39 27 21 12 36 6 48 18 42 30 24
8 32 2 44 14 3/8 26 20 10 34 4 46 16 40 28 22

HASH FUNCTION, MESSAGE DIGEST AND HMAC 127

Using Table 3.3 (PC-2), the 48-bit compressed key is computed as:

K0 = 058c4517a7a2.

Finally, using Table 4.1, the 48-bit key with the row/column permutations is computed as:

K = 5458c42bcc07

This is the key block to be provided for M2 and M3, as shown in Example 4.2.

Example 4.2 Referring to Figure 4.1, M2 = 17b439a12f51c5a8 and
M3 = 51cb360000000000 are processed as follows:

Using Table 3.4, M2 and M3 are divided into

L1 = 6027537d, R1 = ca9e9411

and L2 = 03050403, R2 = 02040206.

Expansion of these four data blocks using Table 3.5 yields

E(L1) = b0010eaa6bfa, E(R1) = e554fd4a80a3

and E(L2) = 80680a808006 E(R2) = 00400800400c

The 48-bit key, K = 5458c42bcc07, obtained through row/column permutations, should
be shifted 0, 2, 1 and 3 bits to the left such that

K1 = 5458c42bcc07 (zero shift)

K2 = a8b18857970e (two shifts)

K3 = 516310af301d (one shift)

K4 = a2c6215e603a (three shifts)

These four keys are used for XORing with expanded blocks such that

Ŵ1 = E(L1) ⊕ K1 = e459ca81a7fd

Ŵ2 = E(R1) ⊕ K2 = b437ede5b0be

Ŵ3 = E(L2) ⊕ K3 = 28d982d71808

Ŵ4 = E(R2) ⊕ K4 = a286295e2036

These four Ŵi, 1 ≤ i ≤ 4, are inputs to the (S-box)i , respectively.

Using Table 3.6, the outputs �i of S-boxes are computed as:

�1 = a4064766

�2 = 1d1dabb8

�3 = f89d0b16

�4 = dabaae4d

128 INTERNET SECURITY

Applying the operation of Table 3.7 to each �i yields:

P(�1) = 00f63638

P(�2) = 9f2874d3

P(�3) = 96aab362

P(�4) = 5df889ee

These four data blocks resulting from Table 3.7 are used for the computation of message
digests (or hash codes), as shown in Example 4.3.

4.1.2 Computation of Message Digests

Example 4.3 Compute the hash codes as follows:
32-bit hash code computation:

Figure 4.2 shows the processing scheme for the computation of a 32-bit hash code. In
this figure, the following symbols are used:

� : Multiplication of 16-bit integers modulo 216 + 1 = 65537

+ : Addition of 16-bit integers modulo 216 = 65536

P(Ω1) P(Ω2) P(Ω3) P(Ω4)

4839

c6cc e99a fd20

h = (H1 || H2)

= 3beca1a3

Y1

Y2

Y3

Y4

H1 H2

X1 Z1 Z2 Z3 Z4X2 X3 X4

Figure 4.2 32-bit hash code computation scheme.

HASH FUNCTION, MESSAGE DIGEST AND HMAC 129

⊕ : Bit-by-bit XORing of 16-bit subblocks

: Concatenation

Since we have already calculated P(�i) in Example 4.2, the message digest of 32 bits is
ready to be computed from Figure 4.2:

Y1 = c6cc

Y2 = e99a

Y3 = fd20

Y4 = 4839

H1 = 3bec

H2 = a1a3

Concatenation of H1 with H2 results in the 32-bit hash code h such that

h = (H1||H2) = 3beca1a3

64-bit hash code computation:

Referring to Figure 4.3, the 64-bit message digest is computed as follows:

Y1 = 97a0e99a

Y2 = 371d4fc8

H1 = f41d3352

H2 = 753f20dc

The 64-bit hash code is thus computed as:

h = (H1||H2) = f41d3352753f20dc

Note that:

� : Multiplication of 32-bit blocks modulo 232 + 1 = 4294967297

+ : Addition of 32-bit blocks modulo 232 = 4294967296

<<< m : Shifting m bits to the left

18-bit hash code computation:

Utilising the 64-bit message digest h obtained above, the 18-bit hash code can be computed
from the decimation process as shown in Figure 4.4.

h = f41d3352753f20dc (64 bits)

130 INTERNET SECURITY

<<< 5

P(Ω1) P(Ω2) P(Ω3) P(Ω4)

<<< 10

| |

h = (H1 || H2) = f41d3352753f20dc

97a0e99a 371d4fc8

Y1

Y2

H1 H2

Figure 4.3 64-bit hash code computation scheme.

f41d3352753f20dc

Decimation

h = 001110011101110001

Figure 4.4 18-bit hash code computation scheme.

Discard six bits from both ends of the 64-bit message digest h and then pick one bit every
three bits by the rule of decimation such that

h = 001110011101110001 (18 bits)

128-bit hash code computation (using left shift):

Referring to Figure 4.5, each P(�i) is shifted m bits to the left. Then concatenating them
will produce the 128-bit message digest:

H1 = 7b1b1c00

H2 = a1d34e7c

HASH FUNCTION, MESSAGE DIGEST AND HMAC 131

P(Ω1)

<<< 7

| |

P(Ω2) P(Ω3) P(Ω4)

<<< 10 <<< 15 <<< 5

h = (H1 || H2 || H3 || H4) = 7b1b1c00 a1d34e7c 59b14b55 bf113dcb

7b1b1c00 a1d34e7c 59b14b55 bf113dcbH1 H4H2 H3

Figure 4.5 128-bit hash code computation using a shift left.

H3 = 59b14b55

H4 = bf113dcb

Thus, the 128-bit hash code will be

h = (H1||H2||H3||H4)

= 7b1b1c00a1d34e7c59b14b55bf113dcb

128-bit hash code computation (using inverse):

Based on Figure 4.6, another 128-bit message digest can be computed as follows:

X1 = 00f6 X2 = 3638 X3 = 9f28 X4 = 74d3

X−1
1 = 9b24 −X2 = c9c8 −X3 = 60d8 X−1

4 = 8e12
Z1 = 96aa Z2 = b362 Z3 = 5df8 Z4 = 89ee
Z−1

1 = bf34 −Z2 = 4c9e −Z3 = a208 Z−1
4 = b652

Thus, the 128-bit hash code is computed from the concatenation of inverse values:

h = (X−1
1 || − X2|| − X3||X−1

4 ||Z−1
1 || − Z2|| − Z3||Z−1

4)

= 9d24c9c860d88e12bf344c9ea208b652

128-bit hash code computation (using addition and multiplication):

Taking a look at Figure 4.7, computation for the 128-bit message digest proceeds as
follows:

P(�1) + P(�3) = 97a0e99a <<< 5 = f41d3352

P(�2)�P(�4) = 371d4fc8 <<< 10 = 753f20dc

132 INTERNET SECURITY

X1 X2

P(Ω1)

X1
−1 −X2

X3 X4

P(Ω2)

−X3 X4
−1

Z1 Z2

P(Ω3)

Z1
−1 −Z2

Z3 Z4

P(Ω4)

−Z3 Z4
−1

00f6 3638 9f28 74d3 96aa b362 5df8 89ee

9d24 c9c8 60d8 8e12 bf34 4c9e a208 b652

| |

9d24c9c8 60d88e12 bf344c9e a208b652

Figure 4.6 128-bit hash code computation using inverse operation.

<<< 5

P(Ω1) P(Ω2) P(Ω3) P(Ω4)

<<<10

| |

f41d3352 753f20dc a41fd83f 2405fd5b

128-bit hash code

97a0e99a
371d4fc8

<<<10 <<<5

56c9017f fd20fec1

Figure 4.7 128-bit hash code computation using addition and multiplication.

P(�1)�P(�3) = 56c9017f <<< 10 = 2405fd5b

P(�2) + P(�4) = fd20fec1 <<< 5 = a41fd83f

h = (P(�1) + P(�3)) <<< 5||(P(�2)�P(�4)) <<< 10||
(P(�2) + P(�4)) <<< 5||(P(�2)�P(�3)) <<< 10

= f41d3352 753f20dc a41fd83f 2405fd5b(128bits)

HASH FUNCTION, MESSAGE DIGEST AND HMAC 133

LSB : Least significant bit of input value

PK : 32-bit constant (ex. 0x000000AE)

<<< 1

LSB

0 or 1

PK

Sout

Sin

: multiplication

: Exclusive OR

F(r)

Figure 4.8 State transition function F(r) for PRBS generation.

This is the 128-bit hash code found. So far, we have discussed computation for the DMDC
without appending a one-bit flag and the message length in hex digits.

4.2 Advanced DMDC Algorithm

This section presents the secure DMDC algorithm for providing an acceptable level
of security.

4.2.1 Key Schedule

Figure 4.10 shows the newly devised key generation scheme. The 64-bit input key reshapes
to the 56-bit key sequence through Table 3.1 (PC-1). The 56-bit keys are loaded into two
28-bit registers (C0, D0). The contents of these two registers are shifted by the SL

i and SR
i

positions to the left. SL
r and SR

r are generated by the state transition function F(r) shown
in Figures 4.8 and 4.10. In Figure 4.10, the 64-bit input key is separated into two 32 bits.
Each becomes the input Sin to F(r). SL

r and SR
r are computed from Sout (mod 23). LFSR in

Figure 4.9 is the device for the generation of a pseudo-random binary sequence (PRBS),
whose characteristic function is:

f(x) = x32 + x7 + x5 + x3 + x2 + x + 1 of a period 232 − 1

The 64-bit input key is assumed to be 7a138b2524af17c5. Using Figure 4.11, entire round
keys are computed, as shown in Table 4.2.

134 INTERNET SECURITY

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D30 D31

x x2 x3 x4 x5 x6 x7 x8 x9 x32

Figure 4.9 LFSR with the primitive polynomial f(x) = 1 + x + x2 + x3 + x5 + x7 + x32 for PRBS
generation.

| |

64 bits32 bits

F(r): PRBS state change function

mod 23: modulo 23

<<<: Circular left shift

PC-1: Permuted choice 1

||: Concatenation

PC-2*: Permuted choice 2 and row/column wise permutation

F(r) F(r)

mod 23

mod 23

<<<

PC-2*

<<<

K1

| |

F(r) F(r)

mod 23

mod 23

<<<

PC-2*

<<<

K2

| |

F(r) F(r)

mod 23

mod 23

<<<

PC-2*

<<<

Kr

PC-1

Input key

F(r) F(r)

32 bits
64 bits

56 bits

28 bits28 bits

D0

C0

Repeat for
31 times

Repeat for all message sub-blocks

Round 1

Round 2

Round r

SL
1

SR
1

SL
2

SR
2

SL
r

SR
r

D1

C1

D2

C2

Dr

Cr

Figure 4.10 The newly devised DMDC key generation scheme.

HASH FUNCTION, MESSAGE DIGEST AND HMAC 135

IP : Initial permutation

: Concatenation

Kr

L1 = 32 bits R1 = 32 bits

E(L1) = 48 E(R1) = 48

IP

L2 = 32 bits R2 = 32 bits

E(L2) = 48 E(R2) = 48

IP

(S-box)1 (S-box)2 (S-box)3 (S-box)4

Ω1 (32 bits) Ω2 (32 bits) Ω3 (32 bits) Ω4 (32 bits)

<<< 3

<<< 1

<<< 2

K1

K2

K3

K4

| | | |

Mr0 Mr1 Mr2 Mr3A B C D

A B C D

Γ1 = E(L1)⊕K1 Γ2 = E(R1)⊕K2 Γ3 = E(L2)⊕K3 Γ4 = E(R2)⊕K4

Π(Ω1) (32 bits) Π(Ω2) (32 bits) Π(Ω3) (32 bits) Π(Ω4) (32 bits)

Figure 4.11 New DMDC algorithm for message digest.

136 INTERNET SECURITY

Table 4.2 Round key generation corresponding to (SL
r , SR

r)

rth round (SL
r , SR

r) Kr(rth round key)

1 (2, 21) 36320340397a
2 (14, 19) 9394d0aac24c
3 (0, 15) 91c2c6fcd01e
4 (7, 7) fcf6701c06a4
5 (21, 13) c38496e8c45e
6 (1, 20) 12f64d47235d
7 (7, 17) 174a16a3c335
...

...
...

332 (21, 2) 17320b413872
333 (19, 17) 9ad8226cd646
334 (1, 11) 961203c1315b
335 (2, 18) 125ec46f8a55
336 (2, 13) cd8d4610f0c4
337 (19, 9) 5e40db051358
338 (15, 8) 0414fc86b547

4.2.2 Computation of Message Digests

After the input message M of arbitrary length appends padding, divide the padded message
into the integer multiple of 128 bits such that M1, M2, . . . , ML. Each Mi again positions
to four 32-bit words as:

M10, M11, M12, M13, M20, M21, M22, M23, . . . , ML0, ML1, ML2, ML3

where Mr = (Mr0, Mr1, Mr2, Mr3) represents the rth round 128-bit message unit as shown
in Figure 4.11. A, B, C and D denote the four 32-bit buffers in which the data computed
at the (r − 1)th round is to be stored. Thus, Mr0 ⊕ A, Mr1 ⊕ B, Mr2 ⊕ C and Mr3 ⊕ D
will become the rth round input data. Notice that the output at each round is swapped
such that the data diffusion becomes very effective.

The following example demonstrates motivation, so that the reader can understand the
whole process at each round (Figure 4.11). The ASCII file structure for the input message
is assumed to be as shown below:

001: 12345678901234567890
002: 23456789012345678901
003: 34567890123456789012

...

198: 89012345678901234567
199: 90123456789012345678
200: 01234567890123456789

After receiving this ASCII file as input, the 128-bit divided blocks are expressed in
hexadecimal notation as follows:

HASH FUNCTION, MESSAGE DIGEST AND HMAC 137

3030313a 20313233 34353637 38393031
32333435 36373839 300d0a30 30323a20
32333435 36373839 30313233 34353637

.

3a203031 32333435 36373839 30313233
34353637 38398000 00000000 0000a8b0

In the last block, the last three words contain padding and message length. The message
length is 0xa8b0(43184 in decimal).

The swapped outputs A, B, C and D at each round are computed as shown in
Table 4.3.

Thus, the hash code computations applied to the new DMDC algorithm are listed in
Table 4.4.
The DMDC algorithm is a secure, compact and simple hash function. The security of
DMDC has never been mathematically proven, but it depends on the problem of F(r)
generating the PRBS sequence which makes each 28-bit key (left and right) shift to the

Table 4.3 The swapped output A, B, C and D at each round

Round A B C D

1 3b1b9ba3 d126ddbe bd3a26d1 67cfb0f3
2 f51e7b49 867a615d b2990b90 d49538dd
3 06b402c3 a6fd207f 256bdeb5 efdd2572
4 c549ff13b bceaa5a7 0d1cee9e a335cf90
5 68433a67 94f78e05 7c72e14f a32eae10
6 9e53f8b6 5d6b7335 4574651e 9b1b6489
.
..

.

..
.
..

.

..
.
..

333 0b4cbc7b 5abebd16 ccae2d5b b50606d1
334 36ae1c4b 03b94506 89304464 28457cce
335 c530fa5f f48260b2 1f8e5c7f 814a2152
336 487df0b3 e046c2c9 999e1066 f27ba5d3
337 58804c4c 223ee9ae fd265d3a 7894aa4c
338 ee0fd67d fda0da6a df5c7095 94287b6c

Table 4.4 Hash code values based on the new DMDC scheme

Hash code length Hash value

32 bits 5f79ee7e
64 bits ad88e2594fe4287a
18 bits 32064

using left shift 07eb3ef78369abf6384aefae850f6d92
using inverse ad88e2594fe4287a392abad213122695

128 bits
using addition and 10c62983026032634cdc8f6b6bd84085

multiplication

138 INTERNET SECURITY

left. The secure DMDC processes data sequentially block-by-block of a 128-bit unit when
computing the message digest. The computation uses four working registers labelled A,
B, C and D. These register contents are the swapped outputs at the end of each round.
The four 32-bit input unit are XORed with the register contents. This process offers good
performance and considerable flexibility.

4.3 MD5 Message-digest Algorithm

The MD5 message-digest algorithm was developed by Ronald Rivest at MIT in 1992.
This algorithm takes a input message of arbitrary length and produces a 128-bit hash
value of the message. The input message is processed in 512-bit blocks which can be
divided into 16 32-bit subblocks. The message digest is a set of four 32-bit blocks, which
concatenate to form a single 128-bit hash code. MD5 (1992) is an improved version of
MD4, but is slightly slower than MD4 (1990).

The following steps are carried out to compute the message digest of the input message.

4.3.1 Append Padding Bits

The message is padded so that its length (in bits) is congruent to 448 modulo 512. That
is, the padded message is just 64 bits short of being a multiple of 512. This padding
is formed by appending a single ‘ 1’ bit to the end of the message, and then ‘ 0’ bits
are appended as needed such that the length (in bits) of the padded message becomes
congruent to 448 (= 512 − 64), modulo 512.

4.3.2 Append Length

A 64-bit representation of the original message length is appended to the result of the
previous step. If the original length is greater than 264, then only the low-order 64 bits of
the length are used for appending two 32-bit words.

The length of the resulting message is an exact multiple of 512 bits. Equivalently, this
message has a length that is an exact multiple of 16 (32-bit) words. Let M[0 . . . N − 1]
denote the word of the resulting message, with N an integer multiple of 16.

4.3.3 Initialise MD Buffer

A four-word buffer represents four 32-bit registers (A, B, C and D). This 128-bit buffer
is used to compute the message digest. These registers are initialised to the following
values in hexadecimal (low-order bytes first):

A = 01 23 45 67

B = 89 ab cd ef

C = fe dc ba 98

D = 76 54 32 10

HASH FUNCTION, MESSAGE DIGEST AND HMAC 139

These four variables are then copied into different variables: A as AA, B as BB, C as CC
and D as DD.

4.3.4 Define Four Auxiliary Functions (F, G, H, I)

F, G, H and I are four basic MD5 functions. Each of these four nonlinear functions takes
three 32-bit words as input and produces one 32-bit word as output. They are, one for
each round, expressed as:

F(X, Y, Z) = (X•Y) + (X•Z)

G(X, Y, Z) = (X•Z) + (Y•Z)

H(X, Y, Z) = X ⊕ Y ⊕ Z

I(X, Y, Z) = Y ⊕ (X + Z)

where X•Y denotes the bitwise AND of X and Y; X + Y denotes the bitwise OR of X
and Y; X denotes the bitwise complement of X, i.e. NOT(X); and X ⊕ Y denotes the
bitwise XOR of X and Y.

These four nonlinear functions are designed in such a way that if the bits of X, Y
and Z are independent and unbiased, then at each bit position the function F acts as a
conditional: if X then Y else Z. The functions G, H and I are similar to the function F
in that they act in ‘bitwise parallel’ to their product from the bits of X, Y and Z. Notice
that the function H is the bitwise XOR function of its inputs.

The truth table for the computation of four nonlinear functions (F, G, H, I) is given in
Table 4.5.

4.3.5 FF, GG, HH and II Transformations for Rounds 1, 2, 3 and 4

If M[k], 0 ≤ k ≤ 15, denotes the kth sub-block of the message, and <<< s represents a
left shift s bits, the four operations are defined as follows:

FF(a, b, c, d, M[k], s, i) : a = b + ((a + F(b, c, d) + M[k] + T[i] <<< s)

GG(a, b, c, d, M[k], s, i) : a = b + ((a + G(b, c, d) + M[k] + T[i] <<< s)

Table 4.5 Truth table of
four nonlinear functions

XYZ FGHI

000 0001
001 1010
010 0110
011 1001
100 0011
101 0101
110 1100
111 1110

140 INTERNET SECURITY

HH(a, b, c, d, M[k], s, i) : a = b + ((a + H(b, c, d) + M[k] + T[i] <<< s)

II(a, b, c, d, M[k], s, i) : a = b + ((a + I(b, c, d) + M[k] + T[i] <<< s)

Computation uses a 64-element table T[i], i = 1, 2, . . . , 64, which is constructed from the
sine function. T[i] denotes the ith element of the table, which is equal to the integer part
of 4294967296 times abs(sin(i)), where i is in radians:

T[i] = integer part of [232 ∗ |sin(i)|]

where 0 ≤ |sin(i)| ≤ 1 and 0 � 232 ∗ |sin(i)| ≤ 232.
Computation of T[i] for 1 ≤ i ≤ 64 is shown in Table 4.6.

4.3.6 Computation of Four Rounds (64 Steps)

Each round consists of 16 operations. Each operation performs a nonlinear function on
three of A, B, C and D. Let us show FF, GG, HH and II transformations for rounds 1, 2,
3 and 4 in what follows.

Round 1

Let FF[a, b, c, d, M[k], s, i] denote the operation

a = b + ((a + F(b, c, d) + M[k] + T[i]) <<< s).

Then the following 16 operations are computed:

FF[a, b, c, d, M[0], 7, 1], FF[d, a, b, c, M[1], 12, 2], FF[c, d, a, b, M[2], 17, 3],
FF[b, c, d, a, M[3], 22, 4], FF[a, b, c, d, M[4], 7, 5], FF[d, a, b, c, M[5], 12, 6],

Table 4.6 Computation of T[i] For 1 ≤ i ≤ 64

T[1] = d76aa478 T[17] = f61e2562 T[33] = fffa3942 T[49] = f4292244
T[2] = e8c7b756 T[18] = c040b340 T[34] = 8771f681 T[50] = 432aff97
T[3] = 242070db T[19] = 265e5a51 T[35] = 69d96122 T[51] = ab9423a7
T[4] = c1bdceee T[20] = e9b6c7aa T[36] = fde5380c T[52] = fc93a039
T[5] = f57c0faf T[21] = d62f105d T[37] = a4beea44 T[53] = 655b59c3
T[6] = 4787c62a T[22] = 02441453 T[38] = 4bdecfa9 T[54] = 8f0ccc92
T[7] = a8304613 T[23] = d8a1e681 T[39] = f6bb4b60 T[55] = ffeff47d
T[8] = fd469501 T[24] = e7d3fbc8 T[40] = bebfbc70 T[56] = 85845dd1
T[9] = 698098d8 T[25] = 21e1cde6 T[41] = 289b7ec6 T[57] = 6fa87e4f
T[10] = 8b44f7af T[26] = c33707d6 T[42] = eaa127fa T[58] = fe2ce6e0
T[11] = ffff5bb1 T[27] = f4d50d87 T[43] = d4ef3085 T[59] = a3014314
T[12] = 895cd7be T[28] = 455a14ed T[44] = 04881d05 T[60] = 4e0811a1
T[13] = 6b901122 T[29] = a9e3e905 T[45] = d9d4d039 T[61] = f7537e82
T[14] = fd987193 T[30] = fcefa3f8 T[46] = e6db99e5 T[62] = bd3af235
T[15] = a679438e T[31] = 676f02d9 T[47] = 1fa27cf8 T[63] = 2ad7d2bb
T[16] = 49b40821 T[32] = 8d2a4c8a T[48] = c4ac5665 T[64] = eb86d391

HASH FUNCTION, MESSAGE DIGEST AND HMAC 141

a

b

c

d

F <<< s

M[k] T[i]

a = b + ((a + F(b, c, d) + M[k] + T[i]) <<< s)

Figure 4.12 Basic MD5 operation.

FF[c, d, a, b, M[6], 17, 7], FF[b, c, d, a, M[7], 22, 8], FF[a, b, c, d, M[8], 7, 9],
FF[d, a, b, c, M[9], 12, 10], FF[c, d, a, b, M[10], 17, 11], FF[b, c, d, a, M[11], 22, 12],
FF[a, b, c, d, M[12], 7, 13], FF[d, a, b, c, M[13], 12, 14], FF[c, d, a, b, M[14], 17, 15],
FF[b, c, d, a, M[15], 22, 16]

The basic MD5 operation for FF transformations of round 1 is plotted as shown in
Figure 4.12. GG, HH and II transformations for rounds 2, 3 and 4 are similarly sketched.

Round 2

Let GG[a, b, c, d, M[k], s, i] denote the operation

a = b + ((a + G(b, c, d) + M[k] + T[i]) <<< s).

Then the following 16 operations are computed:

GG[a, b, c, d, M[1], 5, 17], GG[d, a, b, c, M[6], 9, 18], GG[c, d, a, b, M[11], 14, 19],
GG[b, c, d, a, M[0], 20, 20], GG[a, b, c, d, M[5], 5, 21], GG[d, a, b, c, M[10], 9, 22],
GG[c, d, a, b, M[15], 14, 23], GG[b, c, d, a, M[4], 20, 24], GG[a, b, c, d, M[9], 5, 25],
GG[d, a, b, c, M[14], 9, 26], GG[c, d, a, b, M[3], 14, 27], GG[b, c, d, a, M[8], 20, 28],
GG[a, b, c, d, M[13], 5, 29], GG[d, a, b, c, M[2], 9, 30], GG[c, d, a, b, M[7], 14, 31],
GG[b, c, d, a, M[12], 20, 32],

Round 3

Let HH[a, b, c, d, M[k], s, i] denote the operation

a = b + ((a + H(b, c, d) + M[k] + T[i]) <<< s).

Then the following 16 operations are computed:

HH[a, b, c, d, M[5], 4, 33], HH[d, a, b, c, M[8], 11, 34], HH[c, d, a, b, M[11], 16, 35],
HH[b, c, d, a, M[14], 23, 36], HH[a, b, c, d, M[1], 4, 37], HH[d, a, b, c, M[4], 11, 38],

142 INTERNET SECURITY

HH[c, d, a, b, M[7], 16, 39], HH[b, c, d, a, M[10], 23, 40], HH[a, b, c, d, M[13], 4, 41],
HH[d, a, b, c, M[0], 11, 42], HH[c, d, a, b, M[3], 16, 43], HH[b, c, d, a, M[6], 23, 44],
HH[a, b, c, d, M[9], 4, 45], HH[d, a, b, c, M[12], 11, 46], HH[c, d, a, b, M[15], 16, 47],
HH[b, c, d, a, M[2], 23, 48],

Round 4

Let II[a, b, c, d, M[k], s, i] denote the operation

a = b + ((a + I(b, c, d) + M[k] + T[i]) <<< s).

Then the following 16 operations are computed:

II[a, b, c, d, M[0], 6, 49], II[d, a, b, c, M[7], 10, 50], II[c, d, a, b, M[14], 15, 51],
II[b, c, d, a, M[5], 21, 52], II[a, b, c, d, M[12], 6, 53], II[d, a, b, c, M[3], 10, 54],
II[c, d, a, b, M[10], 15, 55], II[b, c, d, a, M[1], 21, 56], II[a, b, c, d, M[8], 6, 57],
II[d, a, b, c, M[15], 10, 58], II[c, d, a, b, M[6], 15, 59], II[b, c, d, a, M[13], 21, 60],
II[a, b, c, d, M[4], 6, 61], II[d, a, b, c, M[11], 10, 62], II[c, d, a, b, M[2], 15, 63],
II[b, c, d, a, M[9], 21, 64],

After all of the above steps, A, B, C and D are added to their respective increments AA,
BB, CC and DD, as follows:

A = A + AA, B = B + BB

C = C + CC, D = D + DD

and the algorithm continues with the resulting block of data. The final output is the
concatenation of A, B, C and D.

Example 4.4 The message digest problem related to the CDMA cellular system will
be discussed in this example.

Set the initial buffer contents as follows:

A = 67452301 B = efcdab89

C = 98badcfe D = 10325476

The 512-bit padded message is produced from the 152-bit CDMA message by appending
the 360-bit padding as shown below.
Padded message (512bits) = Original message(152bits) + Padding(360bits):

7a138b25 24af17c3 17b439a1 2f51c5a8
8051cb36 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000098 00000000

I. Round 1 Computation for FF[a, b, c, d, M[k], s, i] a = b + ((a + F(b, c, d) + M[k] +
T[i]) <<< s) = b + U <<< s, 0 � k � 15, 1 � i � 16 where U <<< s denotes the 32-
bit value obtained by circularly shifting U left by s bit positions.

HASH FUNCTION, MESSAGE DIGEST AND HMAC 143

(1) First-word block process (M[0], T[1], s = 7)
Using Table 4.5, F(b, c, d) is computed as shown below:

b: 1110 1111 1100 1101 1010 1011 1000 1001
c: 1001 1000 1011 1010 1101 1100 1111 1110
d: 0001 0000 0011 0010 0101 0100 0111 0110

F(b, c, d): 1001 1000 1011 1010 1101 1100 1111 1110
9 8 b a d c f e

Compute U = (a + F(b, c, d) + M[0] + T[1]) <<< s, s = 7

a: 67452301
F(b, c, d): 98badcfe

M[0]: 7a138b25
T[1]: d76aa478

U: 517e2f9c

U′ = 517e2f 9c <<< 7

= (0101 0001 0111 1110 00410 1111 1001 1100) <<< 7

Since U <<< 7 denotes the circular shift of U to the left by 7 bits, the shifted U
value yields:

U′: 1011 1111 0001 0111 1100 1110 0010 1000
b f 1 7 c e 2 8

From a = b + U′, we have
b: efcdab89

U′: bf17ce28

a: aee579b1

Hence, FF[a, b, c, d, M(0), 7, 1] of NO.1 operation can be computed as aee579b1,
efcdab89, 98badcfe, 10325476.
(2) Second-word block process (M[1], T[2], s = 12)

Using the outcome from operation (1), the second-word block is processed as follows:

d: 10325476
F[a, b, c]: bedfadcf

M[1]: 24af17c3
T[2]: e8c7b756

U: dc88d15e

U′ = U <<< 12 : 8d15edc8
From d = a + U′, we have

a: aee57961
U′: 8d15edc8

d: 3bfb6779

144 INTERNET SECURITY

Hence, the result of operation (2) for the second-word block becomes FF[d, a, b, c, M[1],
12, 2] = (aee57961, efcdab89, 98badcfe, 3bfb6779).

All FF transformations for Round 1 are similarly computed, and consist of the following
results from the 16 operations:

[1] aee57961 efcdab89 98badcfe 10325476
[2] aee57961 efcdab89 98badcfe 3bfb6779
[3] aee57961 efcdab89 1e52ee63 3bfb6779
[4] aee57961 2279e391 1e52ee63 3bfb6779
[5] 65976331 2279e391 1e52ee63 3bfb6779
[6] 65976331 2279e391 1e52ee63 b766cf0e
[7] 65976331 2279e391 e776a653 b766cf0e
[8] 65976331 d4a89062 e776a653 b766cf0e
[9] 140e3c3d d4a89062 e776a653 b766cf0e

[10] 140e3c3d d4a89062 e776a653 59a02fdf
[11] 140e3c3d d4a89062 d62326dc 59a02fdf
[12] 140e3c3d 9d8eb345 d62326dc 59a02fdf
[13] 7dccd1ee 9d8eb345 d62326dc 59a02fdf
[14] 7dccd1ee 9d8eb345 d62326dc 0359415c
[15] 7dccd1ee 9d8eb345 bff77632 0359415c
[16] 7dccd1ee 10821d51 bff77632 0359415c

II. Round 2 Computation for GG
(1) First-word block operation:

a = b + ((a + G(b, c, d) + M[1] + T[17]) <<< s)

Let V = a + G(b, c, d) + M[1] + T[17] where a = 7dccd1ee, b = 10821d51,
c = bff77632, d = 0359415c,

M[1] = 24af17c3, and T[17] = f61e2562.

Using Table 4.5, G(b, c, d) is computed as follows:

b: 0001 0000 1000 0010 0001 1101 0101 0001
c: 1011 1111 1111 0111 0111 0110 0011 0010
d: 0000 0011 0101 1001 0100 0001 0101 1100

G(b, c, d): 1011 1100 1010 0110 0011 0111 0111 0010
b c a 6 3 7 7 2

Compute V = a + G(b, c, d) + M[1] + T[17]

a: 7dccd1ee
G(b, c, d): bca63772

M[1]: 24af17c3
T[17]: f61e2562

V: 55404685

HASH FUNCTION, MESSAGE DIGEST AND HMAC 145

V: 0101 0101 0100 0000 0100 0110 1000 0101
Since V′ = V <<< 5, V′ becomes

V′ = 1010 1000 0000 1000 1101 0000 1010 1010
a 8 0 8 d 0 a a

From a = b + V′, we have
b: 10821d51

V′: a808d0aa

a: b88aedfb

Thus, GG[a, b, c, d, M[1], T[17], 5] of operation (1) is computed as:

b88aedfb, 10821d51, bff77632, 0359415c

Through the 16 operations, GG transformation for round 2 can be accomplished as
shown below:

[1] b88aedfb 10821d51 bff77632 0359415c
[2] b88aedfb 10821d51 bff77632 f14f0cf3
[3] b88aedfb 10821d51 20aeb48b f14f0cf3
[4] b88aedfb 6b6c164c 20aeb48b f14f0cf3
[5] 80426a6a 6b6c164c 20aeb48b f14f0cf3
[6] 80426a6a 6b6c164c 20aeb48b 2ac992e7
[7] 80426a6a 6b6c164c f0263bcd 2ac992e7
[8] 80426a6a 719e1da6 f0263bcd 2ac992e7
[9] cbec5d78 719e1da6 f0263bcd 2ac992e7

[10] cbec5d78 719e1da6 f0263bcd 455ddcd7
[11] cbec5d78 719e1da6 a05494c9 455ddcd7
[12] cbec5d78 167849a5 a05494c9 455ddcd7
[13] 5b8a2ae8 167849a5 a05494c9 455ddcd7
[14] 5b8a2ae8 167849a5 a05494c9 af92e3c8
[15] 5b8a2ae8 167849a5 2e6d799d af92e3c8
[16] 5b8a2ae8 29e29554 2e6d799d af92e3c8

III. Round 3 Computation for HH
(1) First-word block operation:

a = b + ((a + H(b, c, d) + M[5] + T[33]) <<< 4)

where a = 5b8a2ae8, b = 29e29554, c = 2e6d799d, d = af92e3c8, M[5] = 00000000,
T[33] = fffa3942, and s = 4.

Using Table 4.5, H(b, c, d) is computed as follows:

b: 0010 1001 1110 0010 1001 0101 0101 0100
c: 0010 1110 0110 1101 0111 1001 1001 1101
d: 1010 1111 1001 0010 1110 0011 1100 1000

H(b, c, d): 1010 1000 0001 1101 0000 1111 0000 0001
a 8 1 d 0 f 0 1

146 INTERNET SECURITY

Compute W = a + H(b, c, d) + M[5] + T[33]

a: 5b8a2ae8
H(b, c, d): a81d0f01

M[5]: 00000000
T[33]: fffa3942

W: 03a1732b

W = 0000 0011 1010 0001 0111 0011 0010 1011
Since W′ = W <<< 4, we have

W′ = 0011 1010 0001 0111 0011 0010 1011 0000
3 a 1 7 3 2 b 0

From a = b + W′, a can be computed as

b: 29e29554
W′: 3a1732b0

a: 63f9c804

Thus, HH[a, b, c, d, M[5], T[33], 4] of operation (1) is obtained as 63f9c804 29e29554
2e6d799d af92e3c8. Through 16 operations, HH transformation for round 3 can be com-
puted as shown below:

[1] 63f9c804 29e29554 2e6d799d af92e3c8
[2] 63f9c804 29e29554 2e6d799d 3bf27cdf
[3] 63f9c804 29e29554 38408ad2 3bf27cdf
[4] 63f9c804 39049458 38408ad2 3bf27cdf
[5] bae75a5e 39049458 38408ad2 3bf27cdf
[6] bae75a5e 39049458 38408ad2 edcbf07c
[7] bae75a5e 39049458 02788da0 edcbf07c
[8] bae75a5e 279f19dc 02788da0 edcbf07c
[9] e292ec26 279f19dc 02788da0 edcbf07c

[10] e292ec26 279f19dc 02788da0 937294f5
[11] e292ec26 279f19dc 784ef22d 937294f5
[12] e292ec26 67e9dd0d 784ef22d 937294f5
[13] fbc16051 67e9dd0d 784ef22d 937294f5
[14] fbc16051 67e9dd0d 784ef22d 9fb3bb46
[15] fbc16051 67e9dd0d 14f356d2 9fb3bb46
[16] fbc16051 814dbccf 14f356d2 9fb3bb46

IV. Round 4 Computation for II
(1) First-word block operation:

a = b + ((a + I(b, c, d) + M[0] + T[49]) <<< 6)

where a = fbc16051, b = 814dbccf, c = 14f356d2, d = 9fb3bb46, M[0] = 7a138b25,
T[49] = f4292244, and s = 6.

HASH FUNCTION, MESSAGE DIGEST AND HMAC 147

Using Table 4.5, I(b, c, d) can be computed as follows:

b: 1000 0001 0100 1101 1011 1100 1100 1111
c: 0001 0100 1111 0011 0101 0110 1101 0010
d: 1001 1111 1011 0011 1011 1011 0100 0110

I(b, c, d): 1111 0101 1011 1110 1010 1010 0010 1101
f 5 b e a a 2 d

Compute Z = a + I(b, c, d) + M[0] + T[49]

a: fbc16051
I(b, c, d): f5beaa2d

M[0]: 7a138b25
T[49]: f4292244

Z : 5fbcb7e7

Z = 0101 1111 1011 1100 1011 0111 1110 0111

Since Z′ = Z <<< 6, we have

Z′ = 1110 1111 0010 1101 1111 1001 1101 0111
e f 2 d f 9 d 7

From a = b + Z′, a is computed as:

b: 814dbccf
Z′: ef2df9d7

a: 707bb6a6

Thus, operation (1) of II[a, b, c, d, M[0], T[49], 6] is obtained as:

707bb6a6 814dbccf 14f356d2 9fb3bb46

The results from 16 operations are listed in the following:

[1] 707bb6a6 814dbccf 14f356d2 9fb3bb46
[2] 707bb6a6 814dbccf 14f356d2 b374ac1a
[3] 707bb6a6 814dbccf 1dcb5424 b374ac1a
[4] 707bb6a6 ebc0a7cd 1dcb5424 b374ac1a
[5] e1adb47e ebc0a7cd 1dcb5424 b374ac1a
[6] e1adb47e ebc0a7cd 1dcb5424 2307ce67
[7] e1adb47e ebc0a7cd fc5d488d 2307ce67
[8] e1adb47e 65cbb221 fc5d488d 2307ce67
[9] 25173275 65cbb221 fc5d488d 2307ce67

[10] 25173275 65cbb221 fc5d488d e801a803
[11] 25173275 65cbb221 9da76743 e801a803
[12] 25173275 0f04df84 9da76743 e801a803
[13] d4921a8b 0f04df84 9da76743 e801a803
[14] d4921a8b 0f04df84 9da76743 400fe907

148 INTERNET SECURITY

[15] d4921a8b 0f04df84 f3d96b57 400fe907
[16] d4921a8b 24903b0e f3d96b57 400fe907

A buffer containing four 32-bit registers A, B, C and D is used to compute the 128-bit
message digest. These registers are initialised to the following values:

aa = 67452301, bb = efcdab89

cc = 98badcfe, dd = 10325476

The last operation of this transformation is:

a = d4921a8b, b = 24903b0e

c = f3d96b57, d = 400fe907

After this, the following additions are finally performed to produce the message digest.

A = a + aa

B = b + bb

C = c + cc

D = d + dd

The message digest produced as an output of A, B, C and D is the concatenation of A,
B, C and D.

a: d4921a8b b: 24903b0e
aa: 67452301 bb: efcdab89

A: 3bd73d8c B: 145de697

c: f3d96b57 d: 400fe907
cc: 98badcfe dd: 10325476

C: 8c944855 D: 50423d7d

The concatenation of the four outputs of A, B, C and D is the 128-bit message digest
such that A|| B|| C|| D = 3bd73d8c 145de697 8c944855 50423d7d

In CDMA cellular mobile communications, a shared secret data (SSD) is a 128-bit
pattern stored in semi-permanent memory in the mobile station. SSD is partitioned into two
64-bit distinct subsets, SSD-A and SSD-B. SSD-A is used to support the authentication
process, while SSD-B is used to support voice privacy and message confidentiality.

SSD data subsets are generated from the message digest as follows:

SSD-A: 3bd73d8c145de697,
SSD-B: 8c94485550423d7d.

HASH FUNCTION, MESSAGE DIGEST AND HMAC 149

4.4 Secure Hash Algorithm (SHA-1)

The Secure Hash Algorithm (SHA) was developed by the National Institute of Standards
and Technology (NIST) for use with the Digital Signature Algorithm (DSA) and published
as a Federal Information Processing Standards (FIPS PUB 180) in 1993. The Secure Hash
Standard (SHS) specifies a SHA-1 for computing the hash value of a message or a data
file. When a message of any length of less than 264 bits is input, the SHA-1 produces
a 160-bit output called a message digest (or a hash code). The message digest can then
be input to the DSA, which generates or verifies the signature for the message. Signing
the message digest rather than the message often improves the efficiency of the process
because the message digest is usually much smaller than the message.

The SHA-1 (FIPS 180-1, 1995) is a technical revision of SHA (FIPS 180, 1993).
The SHA-1 is secure because it is computationally impossible to find a message which
corresponds to a given message digest, or to find two different messages which produce
the same message digest. Any change to a message in transit will result in a different
message digest, and the signature will fail to verify. The SHA-1 is based on the MD4
message digest algorithm and its design is closely modelled on that algorithm.

4.4.1 Message Padding

The message padding is provided to make a final padded message a multiple of 512 bits.
The SHA-1 sequentially processes blocks of 512 bits when computing the hash value (or
message digest) of a message or data file that is provided as input. Padding is exactly the
same as in MD5. The following specifies how this padding is performed. As a summary,
first append a ‘1’ followed by as many ‘0’s as necessary to make it 64 bits short of
a multiple of 512 bits, and finally a 64-bit integer is appended to the end of the zero-
appended message to produce a final padded message of length n × 512 bits. The 64-bit
integer ‘I’ represents the length of the original message. Now, the padded message is then
processed by the SHA-1 as n × 512 bit blocks.

Example 4.5 Suppose the original message is the bit string

01100001 01100010 01100011

This message has length I = 24. After ‘1’ is appended, we have 01100001 01100010
011000111. The number of bits of this bit string is 25 because I = 24. Therefore, we
should append 423 ‘0’s and the two-word representation of 24, i.e. 00000000 00000018
(in hexs) for forming the final padded message as follows:

61626380 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000018

This final padded message consisting of one block contains 16 words = 16 × 8 × 4 = 512
bits for n = 1 in this case.

150 INTERNET SECURITY

4.4.2 Initialise 160-bit Buffer

The 160-bit buffer consists of five 32-bit registers (A, B, C, D and E). Before processing
any blocks, these registers are initialised to the following hexadecimal values:

H0 = 67 45 23 01
H1 = ef cd ab 89
H2 = 98 ba dc fe
H3 = 10 32 54 76
H4 = c3 d2 e1 f0

Note that the first four values are the same as those used in MD5. The only difference is
the use of a different rule for expressing the values, i.e. high-order octets first for SHA
and low-order octets first for MD5.

4.4.3 Functions Used

A sequence of logical functions f0, f1, . . . , f79 is used in SHA-1. Each function ft , 0 �

t � 79, operates on three 32-bit words B, C and D, and produces a 32-bit word as output.
Each operation performs a nonlinear operation of three of A, B, C and D, and then does
shifting and adding as in MD5. The set of SHA primitive functions, ft (B, C, D) is defined
as follows:

ft (B, C, D) = (B • C) + (B • D), 0 � t � 19

ft (B, C, D) = B ⊕ C ⊕ D, 20 � t � 39

ft (B, C, D) = (B • C) + (B • D) + (C · D), 40 � t � 59

ft (B, C, D) = B ⊕ C ⊕ D, 60 � t � 79

where B • C = bitwise logical ‘AND’ of B and C
B ⊕ C = bitwise logical XOR of B and C

B = bitwise logical ‘complement’ of B
+ = addition modulo 232

As you can see, only three different functions are used. For 0 ≤ t ≤ 19, the function ft
acts as a conditional: if B then C else D. For 20 ≤ t ≤ 39 and 60 ≤ t ≤ 79, the function
ft is true if two or three of the arguments are true. Table 4.7 is a truth table of these
functions.

4.4.4 Constants Used

Four distinct constants are used in SHA-1. In hexadecimal, these values are given by

Kt = 5a827999, 0 ≤ t ≤ 19

Kt = 6ed9eba1, 20 ≤ t ≤ 39

Kt = 8fbbcdc, 40 ≤ t ≤ 59

Kt = ca62c1d6, 60 ≤ t ≤ 79

HASH FUNCTION, MESSAGE DIGEST AND HMAC 151

Table 4.7 Truth table of four nonlinear functions for SHA-1

B C D f0,1,...,19 f20,21,...,39 f40,41,...,59 f60,61,...,79

0 0 0 0 0 0 0
0 0 1 1 1 0 1
0 1 0 0 1 0 1
0 1 1 1 0 1 0
1 0 0 0 1 0 1
1 0 1 0 0 1 0
1 1 0 1 0 1 0
1 1 1 1 1 1 1

4.4.5 Computing the Message Digest

The message digest is computed using the final padded message. To generate the message
digest, the 16-word blocks (M0 to M15) are processed in order. The processing of each
Mi involves 80 steps. That is, the message block is transformed from 16 32-bit words
(M0 to M15) to 80 32-bit words (W0 to W79) using the following algorithm.

Divide Mi into 16 words W0, W1, . . . , W15, where W0 is the leftmost word. For t = 0
to 15, Wt = Mt . For t = 16 to 79, Wt = S1(Wt−16 ⊕ Wt−14 ⊕ Wt−8 ⊕ Wt−3).

Let A = H0, B = H1, C = H2, D = H3, E = H4. For t = 0 to 79 do

TEMP = S5(A) + Ft (B, C, D) + E + Wt + Kt ;

E = D; D = C; C = S30(B); B = A; A = TEMP

where:

A, B, C, D, E: Five words of the buffer
t : Round number, 0 ≤ t ≤ 79

Si : Circular left shift by i bits
Wt : A 32-bit word derived from the current 512-bit input block
Kt : An additive constant
+ : Addition modulo 232

After all N 512-bit blocks have been processed, the output from the N th stage is the
160-bit message digest, represented by the five words H0, H1, H2, H3 and H4.

The SHA-1 operation looking at the logic in each of 80 rounds of one 512-bit block
is shown in Figure 4.13.

Example 4.6 Show how to derive the 32-bit words Wt , 0 � t � 79, from the 512-
bit message.

t Wt

0 W0 = M0

1 W1 = M1

.

152 INTERNET SECURITY

t Wt

15 W15 = M15

16 W16 = S1 (W0 ⊕ W2 ⊕ W8 ⊕ W13)
17 W17 = S1 (W1 ⊕ W3 ⊕ W9 ⊕ W14)
. .

30 W30 = S1 (W14 ⊕ W16 ⊕ W22 ⊕ W27)
31 W31 = S1 (W15 ⊕ W17 ⊕ W23 ⊕ W28)
. .

59 W59 = S1 (W43 ⊕ W45 ⊕ W51 ⊕ W56)
60 W60 = S1 (W44 ⊕ W46 ⊕ W52 ⊕ W57)
. .

78 W78 = S1 (W62 ⊕ W64 ⊕ W70 ⊕ W75)
79 W79 = S1 (W63 ⊕ W65 ⊕ W71 ⊕ W76)

B

C

D

E

S5

ft

Wt Kt

S30

A

B

C

D

E

A

Figure 4.13 SHA-1 operation.

Example 4.7 Let the original message be 1a7fd53b4c. Then, the final padded message
consists of the following 16 words:

1a7fd53b 4c800000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000028

The initial hex values of {Hi} are

H0 = 67452301

H1 = efcdab89

HASH FUNCTION, MESSAGE DIGEST AND HMAC 153

H2 = 98badcfe

H3 = 10325476

H4 = c392e1f0

The hex values of A, B, C, D and E after pass t (0 ≤ t ≤ 79) are computed as follows:

Register output
t A B C D E

0 ba346dee 67452301 7bf36ae2 98badcfe 10325476
1 f9be8ae4 ba346dee 59d148c0 7bf36ae2 98badcfe
2 84e1fdf6 f9be8ae4 ae8d1b7b 59d148c0 7bf36ae2
3 1b82edab 84e1fdf6 3e6fa2b9 ae8d1b7b 59d148c0
4 531f1a75 1b82edab a1387f7d 3e6fa2b9 ae8d1b7b
5 926052f7 531f1a75 c6e0bb6a a1387f7d 3e6fa2b9
6 c71cfaac 926052f7 54c7c69d c6e0bb6a a1387f7d
7 341b3a4b c71cfaac e49814bd 54c7c69d c6e0bb6a
8 79a59326 341b3a4b 31c73eab e49814bd 54c7c69d
9 d47fe3c4 79a59326 cd06ce92 31c73eab e49814bd

10 185db57b d47fe3c4 9e6964c9 cd06ce92 31c73eab
11 3569d479 185db57b 351ff8f1 9e6964c9 cd06ce92
12 6b01c842 3569d479 c6176d5e 351ff8f1 9e6964c9
13 5d3c5387 6b01c842 4d5a751e c6176d5e 351ff8f1
14 04434893 5d3c5387 9ac07210 4d5a751e c6176d5e
15 c1456f97 04434893 d74f14e1 9ac07210 4d5a751e
16 a44dbea6 c1456f97 c110d224 d74f14e1 9ac07210
17 ef0512e1 a44dbea6 f0515be5 c110d224 d74f14e1
18 f3c545ab ef0512e1 a9136fa9 f0515be5 c110d224
19 b78ca1cc f3c545ab 7bc144b8 a9136fa9 f0515be5
20 a3d6efd7 b78ca1cc fcf1516a 7bc144b8 a9136fa9
21 c3880afc a3d6efd7 2de32873 fcf1516a 7bc144b8
22 a25fd097 c3880afc e8f5bbf5 2de32873 fcf1516a
23 2263e9cb a25fd097 30e202bf e8f5bbf5 2de32873
24 cd820d01 2263e9cb e897f425 30e202bf e8f5bbf5
25 9824bad0 cd820d01 c898fa72 e897f425 30e202bf
26 59e04bcd 9824bad0 73608340 c898fa72 e897f425
27 b7581fd3 59e04bcd 26092eb4 73608340 c898fa72
28 7efb6e25 b7581fd3 567812f3 26092eb4 73608340
29 18d1583d 7efb6e25 edd607f4 567812f3 26092eb4
30 42659f77 18d1583d 5fbedb89 edd607f4 567812f3
31 22b4bfef 42659f77 4634560f 5fbedb89 edd607f4
32 a9390191 22b4bfef d09967dd 4634560f 5fbedb89
33 ffd2919f a9390191 c8ad2ffb d09967dd 4634560f
34 a0585c33 ffd2919f 6a4e4064 c8ad2ffb d09967dd

154 INTERNET SECURITY

Register output
t A B C D E

35 8fae2fc9 a0585c33 fff4a467 6a4e4064 c8ad2ffb
36 5337d670 8fae2fc9 e816170c fff4a467 6a4e4064
37 7044d0fe 5337d670 63eb8bf2 e816170c fff4a467
38 78304e61 7044d0fe 14cdf59c 63eb8bf2 e816170c
39 2c5ca6b0 78304e61 9c11343f 14cdf59c 63eb8bf2
40 f304b895 2c5ca6b0 5e0c1398 9c11343f 14cdf59c
41 e89d0d8b f304b895 b1729ac 5e0c1398 9c11343f
42 79f30210 e89d0d8b 7cc12e25 b1729ac 5e0c1398
43 f37223c6 79f30210 fa274362 7cc12e25 0b1729ac
44 f53bdd27 f37223c6 1e7cc084 fa274362 7cc12e25
45 b1cf753c f53bdd27 bcdc88f1 1e7cc084 fa274362
46 d9030e9b b1cf753c fd4ef749 bcdc88f1 1e7cc084
47 9bf173ff d9030e9b 2c73dd4f fd4ef749 bcdc88f1
48 bae46f3c 9bf173ff f640c3a6 2c73dd4f fd4ef749
49 e8be1481 bae46f3c e6fc5cff f640c3a6 2c73dd4f
50 4a0bb5b8 e8be1481 2eb91bcf e6fc5cff f640c3a6
51 6d99dcd5 4a0bb5b8 7a2f8520 2eb91bcf e6fc5cff
52 5e0e5623 6d99dcd5 1282ed6e 7a2f8520 2eb91bcf
53 422c7e52 5e0e5623 5b667735 1282ed6e 7a2f8520
54 e6ca43ae 422c7e52 d7839588 5b667735 1282ed6e
55 835bd439 e6ca43ae 908b1f94 d7839588 5b667735
56 32a7862d 835bd439 b9b290eb 908b1f94 d7839588
57 250ada00 32a7862d 60d6f50e b9b290eb 908b1f94
58 a46d627b 250ada00 4ca9e18b 60d6f50e b9b290eb
59 0588823a a46d627b 942b680 4ca9e18b 60d6f50e
60 2d9bba2e 588823a e91b589e 0942b680 4ca9e18b
61 8d8fb303 2d9bba2e 8162208e e91b589e 0942b680
62 860d6a4f 8d8fb303 8b66ee8b 8162208e e91b589e
63 14b64733 860d6a4f e363ecc0 8b66ee8b 8162208e
64 7f486fbe 14b34733 e1835a93 e363ecc0 8b66ee8b
65 7d3d3745 7f486fbe c52cd1cc e1835a93 e363ecc0
66 d17b4506 7d3d3745 9fd21bef c52cd1cc e1835a93
67 2e4967ee d17b4506 5f4f4dd1 9fd21bef c52cd1cc
68 cc1e45de 2e4967ee b45ed141 5f4f4dd1 9fd21bef
69 b3f80c20 cc1e45de 8b9259fb b45ed141 5f4f4dd1
70 f124837a b3f80c20 b3079177 8b9259fb b45ed141
71 56ed70b1 f124837a 2cfe0308 b3079177 8b9259fb
72 d8b0d990 56ed70b1 bc4920de 2cfe0308 b3079177
73 1d849b17 d8b0d990 55bb5c2c bc4920de 2cfe0308
74 84257988 1d849b17 362c3664 55bb5c2c bc4920de
75 9eec3055 84257988 c76126c5 362c3664 55bb5c2c
76 6240e72c 9eec3055 21095e62 c76126c5 362c3664

HASH FUNCTION, MESSAGE DIGEST AND HMAC 155

Register output
t A B C D E

77 8243ecda 6240e72c 67bb0c15 21095e62 c76126c5
78 a8342af0 8243ecda 189039cb 67bb0c15 21095e62
79 e1426096 a8342af0 a090fb36 189039cb 67bb0c15

After all 512-bit blocks have been processed, the output represented by the five words,
H0, H1, H2, H3 and H4 is the 160-bit message digest as shown below:

H0: 48878397

H1: 9801d679

H2: 394bd834

H3: 28c28e41

H4: 2b8dee05

The 160-bit message digest is then the data concatenation of {Hi}:

H0||H1||H2||H3||H4 = 488783979801d679394bd83428c28e412b8dee05

As discussed previously, the digitised document or message of any length can create a
160-bit message digest which is produced using the SHA-1 algorithm.

Any change to a digitised message in transit results in a different message digest. In
fact, changing a single bit of the data modifies at least half of the resulting digest bits.
Furthermore, it is computationally impossible to find two meaningful messages that have
the same 160-bit digest. On the other hand, given a 160-bit message digest, it is also
impossible to find a meaningful message with that digest.

4.5 Hashed Message Authentication Codes (HMAC)

The keyed-hashing Message Authentication Code (HMAC) is a key-dependent one-way
hash function which provides both data integrity and data origin authentication for files
sent between two users. HMACs have the same properties as the one-way hash functions
discussed earlier in this chapter, but they also include a secret key. HMACs can be
used to authenticate data or files between two users (data authentication). They can also
be used by a single user to determine whether or not his files have been altered (data
integrity).

To evaluate HMAC over the message or file, the following expression is required
to compute:

HMAC = H [(K ⊕ opad)||H [(K ⊕ ipad)||M]]

where ipad = inner padding
= 0 x 36 (repeated b times)

156 INTERNET SECURITY

= 00110110 (0 x 36) repeated 64 times (512 bits)
opad = outer padding

= 0 x 5c (repeated b times)
= 01011100 (0 x 5c) repeated 64 times (512 bits)

b: Block length of 64 bytes = 512 bits
h: Length of hash values, i.e. h = 16 bytes = 128 bits for MD5

and h = 20 bytes = 160 bits for SHA-1.
K: Secret key of any length up to b = 512 bits.
H : Hash function where message is hashed by iterating a basic key K.

The HMAC equation is explained as follows:

1. Append zeros to the end of K to create a b-byte string (i.e. if K = 160 bits in length
and b = 512 bits, then K should be appended with 352 zero bits or 44 zero bytes
0x00, resulting in K′ = (K||0x00)

2. XOR (bitwise exclusive-OR) K′ with ipad to produce the b-bit block computed in
step 1.

3. Append M to the b-byte string resulting from step 2.
4. Apply H to the stream generated in step 3.
5. XOR (bitwise exclusive-OR) K ′ with opad to produce the b-byte string computed in

step 1.
6. Append the hash result H from step 4 to the b-byte string resulting from step 5.
7. Apply H to the stream generated in step 6 and output the result.

Figure 4.14 illustrates the overall operation of HMAC, explaining the steps, listed above.

Example 4.8 Consider HMAC computation by using a hash function SHA-1. Assume
that the message (M), the key (K) and the initialisation vector (IV) are given as fol-
lows:

M: 0x1a7fd53b4c

K: 0x31fa7062c45113e32679fd1353b71264

IV: A = 0x67452301, B = 0xefcdab89, C = 0x98badcfe,

D = 0x10325476, E = 0xc3d2e1f0

Referring to Figure 4.14, the HMAC–SHA-1 calculation proceeds with the steps shown
below:

K ′ = K||(0x00 . . . 00)(512 bits)

= 31fa7062 c45113e3 2679fd13 53b71264
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

HASH FUNCTION, MESSAGE DIGEST AND HMAC 157

Padding

Padding

Hopad

ipad

HMAC(M)

K

H

M

IV

IV

…
bb b b

M

M||

||

K ′ = 512 bits

b = 512 bits b = 512 bits

Ωi Ωi M0 M1 ML−1

b = 512 bits

h′ = 512 bits

Ωo = 512 bits h = 160 bits (SHA-1)
 128 bits (MD5)

160 bits (SHA-1)
128 bits (MD5)

160 bits (SHA-1)
128 bits (MD5)

Ωi = K ′⊕ ipad ≡ b

Figure 4.14 Overall operation of HMAC computation using either MD5 or SHA-1 (message
length computation is based on �i ||M).

�i = K ′ ⊕ ipad = K ′ ⊕ (0x3636 . . . 36)

= 07cc4654 f26725d5 104fcb25 65812452
36363636 36363636 36363636 36363636
36363636 36363636 36363636 36363636
36363636 36363636 36363636 36363636

M ′ = 1a7fd53b 4c800000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000228

�i ||M ′ :

07cc4654 f26725d5 104fcb25 65812452
36363636 36363636 36363636 36363636
36363636 36363636 36363636 36363636
36363636 36363636 36363636 36363636
1a7fd53b 4c800000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000228

158 INTERNET SECURITY

h = H(M ′, IVi) = Inner SHA-1

= 9691eb0c d263a12f ab7e0e2f e60ced5f 546c857a

�o = K ′ ⊕ opad = K ′ ⊕ (0x5c5c . . . 5c)

= 6da62c3e 980d4fbf 7a25a14f 0feb4e38
5c5c5c5c 5c5c5c5c 5c5c5c5c 5c5c5c5c
5c5c5c5c 5c5c5c5c 5c5c5c5c 5c5c5c5c
5c5c5c5c 5c5c5c5c 5c5c5c5c 5c5c5c5c

h′ = 9691eb0c d263a12f ab7e0e2f e60ced5f
546c857a 80000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 000002a0

�o||h′ :

6da62c3e 980d4fbf 7a25a14f 0feb4e38
5c5c5c5c 5c5c5c5c 5c5c5c5c 5c5c5c5c
5c5c5c5c 5c5c5c5c 5c5c5c5c 5c5c5c5c
5c5c5c5c 5c5c5c5c 5c5c5c5c 5c5c5c5c
9691eb0c d263a12f ab7e0e2f e60ced5f
546c857a 80000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 000002a0

HMAC[�o||h′] = Outer SHA-1

= c19e1236 ae346195 16594259 4c5202b3 4a85c5e

The alternative operation for computation of either HMAC-MD5 or HMAC-SHA-1 is
based on the following expression:

HMAC = H [H [M, (IV)i], (IV)o]

(IV)i = f[(K ′ ⊕ ipad), IV]

(IV)o = f[(K ′ ⊕ opad), IV]

K ′ = K||(0x00 . . . 0) (512bits)

The procedure can be explained in words as follows:

1. Append zeros to K to create a b-bit string K ′, where b = 512 bits.
2. XOR K ′ (padding with zero) with ipad to produce the b-bit block.
3. Apply the compression function f(K ′⊕ ipad, IV) to produce (IV)i = 160 bits for

SHA-1.
4. Compute the hash code h with (IV)i and Mi.

HASH FUNCTION, MESSAGE DIGEST AND HMAC 159

5. Raise the hash value computed from step 4 to a b-bit string.
6. XOR K ′ (padded with zeros) with opad to produce the b-bit block.
7. Apply the compression function f(K ′⊕ opad, IV) to produce (IV)o = 160 bits for

SHA-1.
8. Compute the HMAC with (IV)o and the raised hash value resulted from step 5.

Figure 4.15 shows the alternative scheme based on the above steps.

Example 4.9 Consider the HMAC computation by the alternative method. Assume that
the message (M), the key (K) and the initialisation vector (IV) are given as follows:

M : 0x 1a7fd53b4c

K : 0x 31fa7062c45113e32679fd1353b71264

IV: A = 0x67452301, B = 0xefcdab89, C = 0x98badcfe,

D = 0x10325476, E = 0xc3d2e1f0.

Padding

Padding

H

opad

ipad

HMAC(M)

f

K

f

H

(IV)i

h = 160 bits (SHA-1)

h′ = 512 bits
(IV)o

IV

IV

K′ = 512 bits

M0 M1 ML−1· · ·

M

bbb

h′ = 512 bits

160 bits (SHA-1)

128 bits (MD5)

160 bits (SHA-1)

128 bits (MD5)

160 bits (SHA-1)

128 bits (MD5)

128 bits (MD5)

160 bits (SHA-1)

128 bits (MD5)

Ωi

Ωo

Mi, i = 0, 1, · · ·, L − 1

K′

Figure 4.15 Alternative operation of HMAC computation using MD5 or SHA-1 (message length
computation is based on M only).

160 INTERNET SECURITY

Referring to Figure 4.15, the HMAC-SHA-1 calculation proceeds in the steps shown
below:

K ′ = K||(0x00 . . . 00)(512bits)

= 31fa7062 c45113e3 2679fd13 53b71264
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

�i = K ′ ⊕ ipad = K ′ ⊕ (0x3636 . . . 36)

= 07cc4654 f26725d5 104fcb25 65812452
36363636 36363636 36363636 36363636
36363636 36363636 36363636 36363636
36363636 36363636 36363636 36363636

(IV)i = f(�i, IV)

= c6edf676 ef938cee 84dd1b00 5b3b8996 cb172ad4

M ′ = 1a7fd53b 4c800000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000028

h = H(M ′, IVi) = Inner SHA-1

= 613f6cbd b336740e 8af4b185 367b1773 d260afce

�o = K ′ ⊕ opad = K ′ ⊕ (0x5c5c . . . 5c)

= 6da62c3e 980d4fbf 7a25a14f 0feb4e38
5c5c5c5c 5c5c5c5c 5c5c5c5c 5c5c5c5c
5c5c5c5c 5c5c5c5c 5c5c5c5c 5c5c5c5c
5c5c5c5c 5c5c5c5c 5c5c5c5c 5c5c5c5c

(IV)o = f(�o, IV)

= A46e7eba 64c80ca4 c42317b3 dd2b4f1e 81c21ab0

Outer SHA-1 = H(h′, (IV)o)

= af625840 ed120ccd ba408de3 b259a95b d4d98eda

The HMAC is a cryptographic checksum with the highest degree of security against
attacks. HMACs are used to exchange information between two parties, where both have
knowledge of the secret key. A digital signature does not require any secret key to
be verified.

5

Asymmetric Public-key Cryptosystems

Public-key cryptography became public soon after Whitefield Diffie and Martin Hellman
(1976) proposed the innovative concept of an exponential key exchange scheme. Since
1976, numerous public-key algorithms have been proposed, but many of them have since
been broken. Of the many algorithms that are still considered to be secure, most are
impractical.

Only a few public-key algorithms are both secure and practical. Of these, only some
are suitable for encryption. Others are only suitable for digital signatures. Among these
numerous public-key cryptography algorithms, only four algorithms, RSA (1978) and
ElGamal (1985), Schnorr (1990) and ECC (1985) are considered to be suitable for both
encryption and digital signatures. Another public-key algorithm that is designed to only
be suitable for secure digital signatures is DSA (1991). The designer should bear in mind
that the security of any encryption scheme depends on the length of the key and the
computational work involved in breaking a cipher.

5.1 Diffie–Hellman Exponential Key Exchange

In 1976, Diffie and Hellman proposed a scheme using the exponentiation modulo q (a
prime) as a public key exchange algorithm. Exponential key exchange takes advantage of
easy computation of exponentials in a finite field GF(q) with a prime q compared with
the difficulty of computing logarithms over GF(q) with q elements {1, 2, . . . , q − 1}. Let
q be a prime number and α a primitive element of the prime number q. Then the powers
of α generate all the distinct integers from 1 to q − 1 in some order. For any integer Y

and a primitive element α of prime number q, a unique exponent X is found such that

Y ≡ αX (mod q), 1 � X � q − 1

Then X is referred to as the discrete logarithm of Y to the base α over GF(q):

X = log αY over GF(q), 1 � Y � q − 1

Internet Security. Edited by M.Y. Rhee
 2003 John Wiley & Sons, Ltd ISBN 0-470-85285-2

162 INTERNET SECURITY

Calculation of Y from X is comparatively easy, using repeated squaring, but computation
of X from Y is typically far more difficult.

Suppose the user i chooses a random integer Xi and the user j a random integer Xj .
Then the user i picks a random number Xi from the integer set {1, 2, . . . , q − 1}. The
user i keeps Xi secret, but sends

Yi ≡ αXi (mod q)

to the user j . Similarly, the user j chooses a random integer Xj and sends

Yj ≡ αXj (mod q)

to the user i.
Both users i and j can now compute:

Kij ≡ αXiXj (mod q)

and use Kij as their common key.
The user i computes Kij by raising Yj to the power Xi :

Kij ≡ Y Xi
j (mod q)

≡ (αXj)Xi (mod q)

≡ αXjXi ≡ αXiXj (mod q)

and the user j computes Kij in a similar fashion:

Kij ≡ Y
Xj

i (mod q)

≡ (αXi)Xj ≡ αXiXj (mod q)

Thus, both users i and j have exchanged a secret key. Since Xi and Xj are private, the
only available factors are the public values q, α, Yi and Yj . Therefore the opponent is
forced to compute a discrete logarithm which is considered to be unrealistic, particularly
for large primes. Figure 5.1 illustrates the Diffie–Hellman key exchange scheme.

When utilising finite field GF(q), where q is either a prime or q = 2k , it is necessary to
ensure the q − 1 factor has a large prime, otherwise it is easy to find discrete logarithms
in GF(q).

Example 5.1 Consider a prime field Zq where q is a prime modulus. If α is a primitive
root of the modulus q, then α generates the set of nonzero integer modulo q such that
α, α2, . . . , αq−1. These powers of α are all distinct and are all relatively prime to q. Given
α, 1 � α � q − 1, and q = 11, all the primitive elements of q are computed as shown in
Table 5.1.
For the modulus q = 11, the primitive elements are α = 2, 6, 7 and 8 whose order is 10,
respectively.

Example 5.2 Consider a finite field GF(q) of a prime q. Choose a primitive element
α = 2 of the modulus q = 11.

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 163

Generate secret
random integer

x

from the set {1, 2, ... , p − 1}

Compute a x (mod p)
and place it in
a public file

Compute key
(ay)x (mod p)

Common secret key
a xy (mod p)

a: A primitive element of
 the finite GF (p) (1 < a < p)

Compute key
(a x)y (mod p)

Compute a y (mod p)
and place it in
a public file

User A

Generate secret
random integer

y

from the set {1, 2, ... , p − 1}

User B

Figure 5.1 The Diffie–Hellman exponential key exchange scheme.

Table 5.1 Powers of primitive element α (over Z11)

α α2 α3 α4 α5 α6 α7 α8 α9 α10

1 1 1 1 1 1 1 1 1 1
2 4 8 5 10 9 7 3 6 1

3 9 5 4 1 3 9 5 4 1
4 5 9 3 1 4 5 9 3 1
5 3 4 9 1 5 3 4 9 1
6 3 7 9 10 5 8 4 2 1

7 5 2 3 10 4 6 9 8 1

8 9 6 4 10 3 2 5 7 1

9 4 3 5 1 9 4 3 5 1
10 1 10 1 10 1 10 1 10 1

164 INTERNET SECURITY

Compute:

2λ (1 � λ � 10): 21 22 23 24 25 26 27 28 29 210

2λ (mod 11) : 2 4 8 5 10 9 7 3 6 1

To initiate communication, the user i chooses Xi = 5 randomly from the integer set
2λ (mod 11) = {1, 2, . . . , 10} and keep it secret. The user i sends

Yi ≡ αXi (mod q)

≡ 25 (mod 11) ≡ 10

to the user j . Similarly, the user j chooses a random number Xj = 7 and sends

Yj ≡ αXj (mod q)

≡ 27 (mod 11) ≡ 7

to the user i.
Finally, compute their common key Kij as follows:

Kij ≡ Y Xi
j (mod q)

≡ 75 (mod 11) ≡ 10

and

Kji ≡ Y
Xj

i (mod q)

≡ 107 (mod 11) ≡ 10

Thus, each user computes the common key.

Example 5.3 Consider the key exchange problem in the finite field GF(2m) for m = 3.
The primitive polynonial p(x) of degree m = 3 over GF(2) is p(x) = 1 + x + x3. If α

is a root of p(x) over GF(2), then the field elements of GF(23) generated by p(α) =
1 + α + α3 = 0 are shown in Table 5.2.

Table 5.2 Field elements of GF(23)
for q = 7

Power Polynonial Vector

1 1 100
α α 010
α2 α2 001
α3 1 + α 110
α4 α + α2 011
α5 1 + α + α2 111
α6 1 + α2 101

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 165

Suppose users i and j select Xi = 2 and Xj = 5, respectively. Both Xi and Xj are
kept secret, but

Yi ≡ αXi (mod q) ≡ α2 (mod 7) ≡ 001

and Yj ≡ αXj (mod q) ≡ α5 (mod 7) ≡ 111

are placed in the public file. User i can communicate with user j by taking Yj = 111
from the public file and computing their common key Kij as follows:

Kij ≡ (Yj)
Xi (mod q)

≡ (α5)2 (mod 7) ≡ α10 (mod 7) ≡ α3 ≡ 110

User j computes Kij in a similer fashion:

Kij ≡ (Yi)
Xj (mod q) ≡ (α2)5 (mod 7) ≡ α10 (mod 7) ≡ α3 ≡ 110

Thus two users i and j arrive at a key Kij in common. These examples are extremely
small in size and are intended only to illustrate the technique. So far, we have shown
how to calculate the Diffie–Hellman key exchange, the security of which lies in the fact
that it is very difficult to compute discrete logarithms for large primes.

This pioneering work relating to the key-exchange algorithm introduced a new approach
to cryptography that met the requirements for public-key systems. The first response to the
challenge was the development of the RSA scheme which was the only widely accepted
approach to the public key encryption. The RSA cryptosystem will be examined in the
next section.

5.2 RSA Public-key Cryptosystem

In 1976, Diffie and Hellman introduced the idea of the exponential key exchange. In 1977
Rivest, Schamir and Adleman invented the RSA algorithm for encryption and digital sig-
natures which was the first public-key cryptosystem. Soon after the publication of the RSA
algorithm, Merkle and Hellman devised a public-key cryptosystem for encryption based
on the knapsack algorithm. The RSA cryptosystem resembles the D–H key exchange
system in using exponentiation in modula arithmetic for its encryption and decryption,
except that RSA operates its arithmetic over the composite numbers. Even though the
cryptanalysis was researched for many years for RSA’s security, it is still popular and
reliable. The security of RSA depends on the problem of factoring large numbers. It is
proved that 110-digit numbers are being factored with the power of current factoring
technology. To keep RSA’s level of security, more than 150-digit values for n will be
required. The speed of RSA does not beats DES, because DES is about 100 times faster
than RSA in software.

5.2.1 RSA Encryption Algorithm

Given the public key e and the modulus n, the private key d for decryption has to be found
by factoring n. Choose two large prime numbers, p and q, and compute the modulus n

166 INTERNET SECURITY

which is the product of two primes:

n = pq

Choose the encryption key e such that e and φ(n) are coprime, i.e. gcd (e, φ(n)) = 1, in
which φ(n) = (p − 1)(q − 1) is called Euler’s totient function.

Using euclidean algorithm, the private key d for decryption can be computed by taking
the multiplicative inverse of e such that

d ≡ e−1 (mod φ(n))

or ed ≡ 1 (mod φ(n))

The decryption key d and the modulus n are also relatively prime. The numbers e and n

are called the public keys, while the number d is called the private key.
To encrypt a message m, the ciphertext c corresponding to the message block can be

found using the following encryption formula:

c ≡ me (mod n)

To decrypt the ciphertext c, c is raised to the power d in order to recover the message m

as follows:

m ≡ cd (mod n)

It is proved that

cd ≡ (me)d ≡ med ≡ m (mod n)

due to the fact that ed ≡ 1 (mod φ(n)).
Because Euler’s formula is mφ(n) ≡ 1 (mod n), the message m is relatively prime to n

such that gcd (m, n) = 1. Since mλ φ(n) ≡ 1 (mod n) for some integer λ, it can be written
mλ φ(n)+1 ≡ m (mod n), because mλ φ(n)+1 ≡ mmλ φ(n) ≡ m (mod n). Thus, the message m

can be restored.
Figure 5.2 and Table 5.3 illustrate the RSA algorithm for encryption and decryption.
Using Table 5.3, the following examples are demonstrated.

Example 5.4 If p = 17 and q = 31 are chosen, then

n = pq = 17 × 31 = 527

φ(n) = (p − 1)(q − 1) = 16 × 30 = 480

If e = 7 is chosen, then compute:

d ≡ e−1 (mod φ(n)) ≡ 7−1 (mod 480) ≡ 343

This decryption key d is calculated using the extended euclidean algorithm.

ed ≡ 7 × 343 (mod 480) ≡ 2401 (mod 480) ≡ 1

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 167

E

Inverse

D

p q

e d

m

−1

m

Public key Private key

Message

d ≡ e−1 (mod j(n))

cd (mod n)c ≡ me (mod n)

n = pq (public module)

p − 1

q − 1

(p − 1)(q − 1) = j(n)

(e, j(n))

: Two large prime numbers
: Public key, randomly generated number
: Private key
: Relatively prime

p, q

e

d

Figure 5.2 RSA public-key cryptosystem for encryption/decryption.

Table 5.3 RSA encryption algorithm

Public key e:

n (product of two primes p and q (secret integers))
e (encryption key, relatively prime to φ(n) = (p − 1) (q − 1))

Private key d:

d (decryption key, d = e−1 (mod φ(n))
ed ≡ 1 (mod φ(n))

Encryption:

c ≡ me (mod n), where m is a plaintext.

Decryption:

m ≡ cd (mod n), where c is a ciphertext.

The public key (e, n) is required for encryption of m. If m = 2, then the message m is
encrypted as:

c ≡ me (mod n)

≡ 27 (mod 527) ≡ 128

168 INTERNET SECURITY

To decipher, the private key d is needed to compute the message as follows:

m ≡ cd (mod n)

≡ 128343 (mod 527) ≡ 2

Example 5.5 If p = 47 and q = 71, then compute

n = pq = 47 × 71 = 3337

φ(n) = (p − 1)(q − 1) = 46 × 70 = 3220

Choose the encryption key e = 79 randomly such that gcd (e, φ(n)) = gcd (79, 3220) = 1,
i.e. e and φ(n) are relatively prime. Using the extended euclidean algorithm (i.e. gcd
(e, φ(n)) = 1 = ed + φ(n)s), compute the decryption key d such that:

ed ≡ 1 (mod φ(n))

79d ≡ 1 (mod 3220)

3220 = 79 × 40 + 60

79 = 60 + 19

60 = 19 × 3 + 3

19 = 3 × 6 + 1 → gcd(79, 3220) = 1 (coprime)

1 = 19 − 3 × 6 = 19 − (60 − 19 × 3) × 6

= 19 × 19 − 60 × 6

1 = (79 − 60) × 19 − 60 × 6

= 79 × 19 − 60 × 25

1 = 79 × 19 − (3220 − 79 × 40) × 25

= 79 × 1019 − 3220 × 25

(79)(1019) ≡ 1 (mod 3220)

d = 1019 (privatekey)

To encrypt a message m = 688 with e = 79, compute:

c ≡ me (mod n) ≡ 68879 (mod 3337)

6882 (mod 3337) ≡ 2827, 6884 (mod 3337) ≡ 3151

6888 (mod 3337) ≡ 1226, 68816 (mod 3337) ≡ 1426

68832 (mod 3337) ≡ 1243, 68864 (mod 3337) ≡ 18

c ≡ 68879 (mod 3337) ≡ 68864+8+4+2+1

≡ 18 × 1426 × 3151 × 2827 × 688 (mod 3337)

≡ 1570 (mod 3337)

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 169

To decrypt a message, perform the same exponentiation process using the decryption key
d = 1019 such that:

m ≡ cd (mod n) ≡ 15701019 (mod 3337)

m = (1570)512 × (1570)256 × (1570)128 × (1570)64 × (1570)32

× (1570)16 × (1570)8 × (1570)2 × (1570)

= 3925000 (mod 3337) ≡ 688

Thus, the message is recovered.
To encrypt the message m, break it into a series of mi-digit blocks, 1 � i � n − 1.

Suppose each character in the message is represented by a two-digit number as shown in
Table 5.4.

Example 5.6 Encode the message ‘INFORMATION SECURITY’ using Table 5.4.

m = (0914061518130120091514001905032118092025)

Choose p = 47 and q = 71. Then

n = pq = 47 × 71 = 3337

φ(n) = (p − 1)(q − 1) = 46 × 70 = 3220

Break the message m into blocks of four digits each:

0914 0615 1813 0120 0915
1400 1905 0321 1809 2025

Choose the encryption key e = 79. Then the decryption key d becomes:

d ≡ e−1 (mod φ(n)) ≡ 79−1 (mod 3220) ≡ 1019

The first block, m1 = 914, is encrypted by raising it to the power e = 79 and dividing by
n = 3337 and taking the remainder c1 = 3223 as the first block of ciphertext:

c1 ≡ me
1 (mod n)

≡ 91479 (mod 3337)

≡ 3223

Table 5.4 Two-digit number representing each character

Blank 00 E 05 J 10 O 15 T 20 Y 25
A 01 F 06 K 11 P 16 U 21 Z 26
B 02 G 07 L 12 Q 17 V 22
C 03 H 08 M 13 R 18 W 23
D 04 I 09 N 14 S 19 X 24

170 INTERNET SECURITY

Thus, the whole ciphertext blocks ci , 1 � i � 10, are computed as:

3223 3155 1012 1712 1595
2653 0802 2360 0832 1369

To decrypt the first ciphertext c1 = 3223, use the decryption key, d = 1019, and compute:

m1 ≡ cd
1 (mod n)

≡ 32231019 (mod 3337) ≡ 914

m2 ≡ cd
2 (mod n)

≡ 31551019 (mod 3337) ≡ 615

...

The recreated message of this example is computed as:

0914 0615 1813 0120 0915
1400 1905 0321 1809 2025

5.2.2 RSA Signature Scheme

The RSA public-key cryptosystem can be used for both encryption and signatures. Each
user has three integers e, d and n, n = pq with p and q large primes. For the key pair
(e, d), ed ≡ 1 (mod φ(n)) must be satisfied. If sender A wants to send signed message c

corresponding to message m to receiver B, A signs it using A’s private key, computing
c ≡ mdA (mod nA). First A computes

ϕ(nA) ≡ lcm (pA − 1, qA − 1)

where lcm stands for the least common multiple. The sender A selects his own key pair
(eA, dA) such that

eA•dA ≡ 1 (mod ϕ(nA))

The modulus nA and the public key eA are published., Figure 5.3 illustrates the RSA
signature scheme.

Example 5.7 Choose p = 11 and q = 17. Then n = pq = 187.

Compute ϕ(n) = 1 cm (p − 1, q − 1)

= 1 cm (10, 16) = 80

Select eA = 27. Then eAdA ≡ 1 (mod ϕ(nA))

27dA ≡ 1 (mod 80)

dA = 3

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 171

D

dA

m

−1

m

Message

lcm
j(nA) = lcm(pA − 1, qA − 1)

User A

A′ private key

User B

A′ public keyeAdA ≡ 1 (mod j(nA))

ceA ≡ mdAeA (mod nA)
 ≡ m

c ≡ mdA (mod nA)

eA

E

nA

pA

pA −1

qA −1

qA

Figure 5.3 The RSA signature scheme.

Suppose m = 55. Then the signed message is

c ≡ mdA (mod 187)

≡ 553 (mod 187) ≡ 132

The message will be recreated as:

m ≡ ceA (mod n)

≡ 13227 (mod 187) ≡ 55

Thus, the message m is accepted as authentic.

Next, consider a case where the message is much longer. The larger m requires more com-
putation in signing and verification steps. Therefore, it is better to compute the message
digest using a appropriate hash function, for example, the SHA-1 algorithm. Signing
the message digest rather than the message often improves the efficiency of the process
because the message digest is usually much smaller than the message.

When the message is assumed to be m = 75 139, the message digest h of m is computed
using the SHA-1 algorithm as follows:

h ≡ H(m) (mod n)

≡ H(75 139) (mod 187)

172 INTERNET SECURITY

≡ 86a0aab5631e729b0730757b0770947307d9f597

≡ 768587753333627872847426508024461003561962698135

(mod 187) (decimal)

The message digest h is then computed as:

h ≡ H(75 139) (mod 187) ≡ 11

Signing h with A’s private key dA produces:

c ≡ hdA (mod n)

≡ 113 (mod 187) ≡ 22

Thus, the signature verification proceeds as follows:

h ≡ ceA (mod n)

≡ 2227 (mod 187) ≡ 11

which shows that verification is accomplished.
In hardware, RSA is about 1000 times slower than DES. RSA is also implemented

in smartcards, but these implementations are slower. DES is about 100 times faster than
RSA. However, RSA will never reach the speed of symmetric cipher algorithms.

It is known that the security of RSA depends on the problem of factoring large numbers.
To find the private key from the public key e and the modulus n, one has to factor n.
Currently, n must be larger than a 129 decimal digit modulus. Easy methods to break
RSA have not yet been found. A brute-force attack is even less efficient than trying to
factor n. RSA encryption and signature verification are faster if you use a low value for
e, but can be insecure.

5.3 ElGamal’s Public-key Cryptosystem

ElGamal proposed a public-key cryptosystem in 1985. The ElGamal algorithm can be
used for both encryption and digital signatures. The security of the ElGamal scheme
relies on the difficulty of computing discrete logarithms over GF(p) where p is a large
prime. Prime factorisation and discrete logarithms are required to implement the RSA and
ElGamal cryptosystems.

In the RSA cryptosystems, each user has three integers e, d and n, where n = pq with
two large primes p and q, and ed ≡ 1(mod φ(n)), φ being Euler’s totient function. User
A has a public key consisting of the pair (eA, nA) and a private key dA; similarly, user B

has (eB, nB) and dB . To encrypt the message m to B, A uses B’s public key for computing
the encrypted message (or ciphertext) such that c ≡ meB (mod nB). If A wants to send
the signed message to B, A signs the message m using his own private key dA such that
c ≡ mdA (mod nA).

To describe the ElGamal system, choose a prime number p and two random numbers,
g and x, such that both g < p and x < p, where x is a private key. The random number g

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 173

is a primitive root modulo p. The public key is defined by y, g and p. Then we compute
y ≡ gx (mod p). To encrypt the message m, 0 < m � p − 1, first pick a random number
k such that gcd (k, p − 1) = 1. The encrypted message (or ciphertext) can be expressed
by the pair (r, s) as follows:

r ≡ gk (mod p)

s ≡ (ykm (mod p)) (m (mod p − 1))

To decrypt m, divide s by rx such that s/rx ≡ m (mod p − 1). To sign a given message
m, first choose a random number k such that gcd (k, p − 1) = 1, and compute m ≡ xr +
ks (mod p − 1) using the extended euclidean algorithm to solve s. The basic technique
for encryption and signature using the ElGamal algorithm as a two-key cryptosystem is
described in the following section.

5.3.1 ElGamal Encryption

To generate a key pair, first choose a prime p and two random numbers g and x such
that g < p and x < p. Then compute

y ≡ gx (mod p)

The public key is (y, g, p) and the private key is x < p.
To encrypt the message m, 0 � m � p − 1, first choose a random number k such that

gcd (k, p − 1) = 1. The encrypted message (or ciphertext) is then the following pair (r, s):

r ≡ gk (mod p)

s ≡ (yk (mod p)) (m(mod p − 1))

Note that the size of the ciphertext is double the size of the message. To decrypt the
message, divide s by rx , as shown below:

rx ≡ (gk)x (mod p)

s/rx ≡ ykm/(gk)x ≡ (gx)km/(gk)x ≡ m (mod p − 1)

The ElGamal encryption scheme is plotted in Figure 5.4 and Table 5.5.

Example 5.8 Choose:

p = 11 (a prime)

g = 4 (a random number such thatg < p)

x = 8 (a private key such thatx < p)

Then compute:

y ≡ gx (mod p) ≡ 48 (mod 11) ≡ 9

174 INTERNET SECURITY

g

x

k

m

m

÷

m (mod p − 1)

y ≡ gx (mod p)

r ≡ gk (mod p)

s ≡ [yk (mod p)]

m ≡ (mod p)[m (mod p − 1)]
y k (mod p)

r x (mod p)

s

r x

Figure 5.4 The ElGamal encryption scheme.

Table 5.5 ElGamal encryption algorithm

Public key:

p (a prime number)
g, x < p (two random numbers)
y ≡ gx (mod p)

y, g and p: public key

Private key:

x < p

Enciphering:

k: a random number such that gcd (k, p − 1) = 1
r ≡ gk (mod p)

s ≡ (yk (mod p)) (m(mod p − 1))

Deciphering:

m ≡ s/rx (mod p), 0 � m � p − 1

The public key is y = 9, g = 4 and p = 11. The private key x = 8 is given above. To
encrypt the message m = 5, first choose a random number k = 7 such that gcd (k, p −
1) = gcd (7, 10) = 1 and compute:

r ≡ gk (mod p) ≡ 47 (mod 11) ≡ 5

s ≡ (yk (mod p)) (m (mod p − 1))

≡ (97 (mod 11)) (5 (mod 10) ≡ 4 × 5 ≡ 20

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 175

To decipher the message m, first compute:

rx (mod p) ≡ 58 (mod 11) ≡ 4

and take the ratio:

m = s/rx (mod p) ≡ 20/4 ≡ 5

It thus proves that the message m is completely restored using the ElGamal encryption
algorithm (see Table 5.5)

5.3.2 ElGamal Signatures

To sign a message m, first choose a random number k such that gcd (k, p − 1) = 1
(relatively prime). The public key is described by

y ≡ gx (mod p)

where the private key is x < p. Let m be a message to be signed, 0 � m � p − 1. Choose
first a random number k such that gcd (k, p − 1) = 1 (relatively prime). Then compute

r ≡ gk (mod p)

The signature for m is the pair (r, s), 0 � r , s < p − 1.

gm ≡ yrrs (mod p)

≡ (gx)r (gk)s (mod p)

≡ gxr+ks (mod p)

from which

m ≡ xr + ks (mod p − 1)

Use the extended euclidean algorithm to solve s. The signature for m is the pair (r, s).
The random number s should be kept secret. To verify a signature, confirm that:

yrrs (mod p) ≡ gm (mod p)

Figure 5.5 illustrates the ElGamal signature scheme based on Table 5.6.

Example 5.9 To sign a message m, first choose a prime p = 11 and two random num-
bers g = 7 and x = 3, where x < p is a private key.
Compute:

y ≡ gx (mod p) ≡ 73 (mod 11) ≡ 2

The public key is y = 2, g = 7 and p = 11.

176 INTERNET SECURITY

x

g

p

−1

= ?

No Yes

p − 1

m

s

Message m GF (p)
y ≡ gx (mod p)

r ≡ g k (mod p)

Extended
euclidean
algorithm

m ≡ rx + ks

(mod p − 1)

User A User B

x GF (p)∋ ∋

k

yr

yrr s (mod p)

r s

gm (mod p)

Figure 5.5 The ElGamal signature scheme.

Table 5.6 ElGamal signature algorithm

Public key:

p (a prime number)
g < p (a random number)
y ≡ gx (mod p) where x < p

Private key:

k: a random number
r ≡ gk (mod p)

s: compute from m ≡ xr + ks (mod p − 1)

Verifying:

Accept as valid if
yrrs (mod p) ≡ gm (mod p)

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 177

To authenticate m = 6, choose a random number k = 7 such that gcd (k, p − 1)

= gcd (7, 10) = 1. Compute:

r ≡ gk (mod p) ≡ 77 (mod 11) ≡ 6

m ≡ xr + ks (mod p − 1) (euclidean algorithm to solve for s)

6 ≡ 3 × 6 + 7s (mod 10)

7s ≡ −2 (mod 10) ≡ 28 (mod 10)

s ≡ 4 (mod 10)

The signature is the pair of r = 6 and s = 4.
To verify a signature, it must be confirmed that

yrrs (mod p) ≡ gm (mod p)

(26) (64) (mod 11) ≡ 76 (mod 11)

81 (mod 11) ≡ 15 (mod 11)

4 (mod 11) ≡ 4 (mod 11)

5.3.3 ElGamal Authentication Scheme

The ElGamal signature or authentication scheme looking at another angle is to describe
in the following.

The sender chooses a finite field GF(p) where p is a prime. Let g be a primitive
element of GF(p). First choose two random integers g and x such that g < p and x < p.
A key x is kept secret by both the sender and the receiver. Let m denote a message which
is relatively prime to p. Then compute:

u ≡ gm (mod p)

Let c denote a ciphertext such that gcd (c, p) = 1.
Using the extended euclidean algorithm, the following congruence is to solve for v:

c ≡ xu + mv (mod p − 1)

or v ≡ m−1 (c – xu) (mod p − 1)

To authenticate the ciphertext c, the signed cryptogram (c, u, v) is transmitted to the
receiver. Upon receipt of (c, u, v), the receiver computes

A ≡ (gx)uuv (mod p)

≡ gc−mv (gm)v (mod p)

≡ gc (mod p)

Thus, the ciphertext c is accepted as authentic if A ≡ gc (mod p). Once this ciphertext
has been accepted, the message m is recovered by:

m ≡ v−1 (c – xu) (mod p − 1)

178 INTERNET SECURITY

The ElGamal authentication scheme is shown in Figure 5.6. The ElGamal authentication
algorithm given in Table 5.7 is illustrated by the following example.

Example 5.10 Take the finite field GF(11). Then the set of primitive elements of GF(11)
is {2, 6, 7, 8}. Choose a primitive element g = 7 from the set. Define the public key

g

Extended
euclidean
algorithm

c ≡ xu + mv

= ?

x

Inverse

m

m

c

c − xu

v

v−1gx

uv

(g x)u

Yes

No

Private
key

u ≡ gm (mod p)

A ≡ (g x)uuv (mod p)

A ≡ g c (mod p)

Accepted as
authentic

Rejection of
 authenticity

Figure 5.6 The ElGamal authentication scheme.

Table 5.7 ElGamal authentication algorithm

Sender

p (a prime integer)
g < p (a primitive element of GF(p))
u ≡ gm (mod p) where m < p is a message.
x < p (a private key)
c (ciphertext)
c ≡ xu + mv : solve for v
(c, u, v): (the signed cryptogram to be transmitted)

Receiver

A ≡ (gx)uuv (mod p)

Verifying:

Accept as valid if and only if A ≡ gc (mod p)

Decryption:
m ≡ v−1(c − xu) (mod p − 1)

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 179

as (g, p) = (7, 11) and x = 5 as the chosen private key which is shared by both the
sender and the receiver. If the sender now wants to transmit a message m = 3 such that
gcd(m, p) = gcd(3, 11) = 1, then compute first:

u ≡ gm (mod p) ≡ 73 (mod 11) ≡ 2

Next, compute v by solving the following congruence:

c ≡ xu + mv (mod p − 1)

7 ≡ 5 × 2 + 3v (mod 10)

3v ≡ 7 (mod 10)

v ≡ 9 (mod 10)

where c = 7 is assumed.
Send the signed cryptogram (c, u, v) = (7, 2, 9) to the receiver. At the receiving end,

compute:

A ≡ (gx)uuv (mod p)

≡ (75)229(mod 11)

≡ (102)(29) (mod 11) ≡ 6

and A ≡ gc (mod p) ≡ 77 (mod 11) ≡ 6

Thus, the cryptogram (7, 2, 9) is accepted, and c = 7 is authentic. Finally, the message
is restored in the following manner:

m ≡ v−1 (c − xu) (mod p − 1)

≡ 9−1(7 − 5 × 2)(mod 10)

≡ (9−1) (7) (mod 10) ≡ 3

The message m = 3 has been completely recovered.

5.4 Schnorr’s Public-key Cryptosystem

In 1990, Schnorr introduced his authentication and signature schemes based on dis-
crete logarithms.

5.4.1 Schnorr’s Authentication Algorithm

First choose two primes, p and q, such that q (1 < q < p − 1) is a prime factor of
p − 1. To generate a public key, choose a = 1 such that a ≡ h(p−1)/q (mod p), that is,
aq ≡ hp−1 (mod p). If h is relatively prime to p, by Fermat’s theorem it can then be
written as hp−1 ≡ 1 (mod p). As a result, we have aq ≡ 1 (mod p), 1 < a < p − 1. All

180 INTERNET SECURITY

these numbers, p, q and a, can be freely published and shared with a group of users. To
generate a key pair, choose a random number s < q which is used as the private key.
Next, compute λ ≡ a−s (mod p) which is the public key.

Now, user A picks a random number r < q and computes x ≡ ar (mod p). User B
picks a random number t and sends it to the user A, where t ∈ (0, 1, 2, . . . , 2v − 1) indi-
cates the security level. Schnorr recommends the value of v = 72 for sufficient security.
User A computes y ≡ r + st (mod q) and sends it to user B. Thus, user B tests verification
of authenticity such that x ≡ ayλt (mod p). Figure 5.7 illustrates Schnorr’s authentication
scheme, and Table 5.8 shows the related algorithm.

Example 5.11 Choose two primes p = 23 and q = 11 such that q = 11 is a prime factor
of p − 1 = 22. Choose a = 3 satisfying aq ≡ 1 (mod p), i.e. 311 ≡ 1 (mod 23). Choose
s = 8 < q as the private key and compute the public key such that λ ≡ a−s (mod p) ≡
3−8 (mod 23). Compute the multiplicative inverse of a = 3: aa−1 ≡ 1 (mod p), 3a−1 ≡
1 (mod 23) from which a−1 = 8. Thus, λ ≡ 88 (mod 23) ≡ 4.

The sender picks r = 5 < q and computes:

x ≡ ar (mod p)

≡ 35 (mod 23) ≡ 13

The receiver sends t = 15 to the sender and the sender computes:

y ≡ r + st (mod q)

≡ (5 + 8 × 15)(mod 11)

≡ 125 (mod 11) ≡ 4

Table 5.8 Schnorr’s authentication algorithm

Preprocessing:

Choose two primes, p and q, such that q is a prime factor of p − 1.
Choose a such that aq ≡ 1 (mod p).

Key generation:

Choose a random number s < q (private key)
Compute λ ≡ a−s (mod p) (public key)

User A User B

Choose a random number r < q

Compute x ≡ ar (mod p) Pick a random number t such that 0 < t < 2v − 1
← Send t to user A

Compute y ≡ r + st (mod q)
Send y to user B → Verify that x ≡ ayλt (mod p)

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 181

= ?

p q r s −1

a

a−s

ay

a

st

t

No Yes

Authenticity
fails

Accept authentication
as true

Private
key Public

key

aq ≡ 1 (mod p)

x ≡ ar (mod p)

ay . lt (mod p)

y ≡ r + st (mod q)

ar (mod p)

l

lt

0 < t < 2v − 1

Figure 5.7 Schnorr’s authentication scheme.

To verify x ≡ ay · λt (mod p) ≡ 13, compute:

x ≡ (34)(415) (mod 23)

≡ 12 × 3 (mod 23) ≡ 13

Since ar (mod p) ≡ ayλt (mod p) ≡ 13, the authentication is accepted.

5.4.2 Schnorr’s Signature Algorithm

For a digital signature, user A concatenates the message m and x and computes the
hash code:

h ≡ H(m||x)

User A sends the signature (h, y) to user B. User B computes z ≡ ayλh (mod p) and
confirms whether hashing the concatenation of m and z yields:

h′ ≡ H(m||z)

If h = h′, then user B accepts the signature as valid.
For the same level of security, Schnorr’s signature algorithms are shorter than RSA

ones. Also, Schnorr’s signatures are much shorter than ElGamal signatures. Figure 5.8
and Table 5.9 illustrate Schnorr’s signature algorithm.

182 INTERNET SECURITY

= ?

p q r

−1s

No Yes

If no,
the signature
is not verified

If yes, user B
accepts
the signature to be true

m H

mHh′h

z

x

Private
key

Public
key

User A User B

p : Prime number
q : Prime factor of p − 1
r : Random number, less than q
l: Public key
s : Private key

(h, y): signature

h

a

aq ≡ 1 (mod p)

y ≡ r + sh (mod q)

ar (mod p) a−s

a y a y . lh (mod p)
s . h

l ≡ a−s
(mod p)

lh

Figure 5.8 Schnorr’s signature scheme.

Table 5.9 Schnorr’s signature algorithm

Preprocessing stage and the two key pair are the same.

User A User B

Choose r < q (a random number)
Compute x ≡ ar (mod p)
Concatenate m and x, i.e. m||x and hash
such that h = H(m||x)

Compute y = r + sh (mod q)

Send the signature (h, y) to user B → Compute z ≡ ayλh (mod p)
Concatenate m and z and hash:
h′ = H(m||z)
If the two hash values match (h = h′),
then user B accepts the
signature as valid

Example 5.12 First choose two primes p = 29 and q = 7 such that q|p − 1, i.e. q is
a prime factor of p − 1. Determine a = 7 in order to meet the requirement of aq ≡ 1
(mod p) such that 77 ≡ 823 543 ≡ 1 (mod 29). Pick a private key s = 4 such that s < q

and compute the public key as follows:

λ ≡ a−s (mod p)

≡ 7−4 (mod 29) ≡ 24

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 183

User A:
Choose a random number r = 5 < q and then compute:

x ≡ ar (mod p)

≡ 75 (mod 29) ≡ 16

Concatenate m and x and hash m||x such that

h ≡ H(m||x) = H(12 345||16)

where the message m = 12 345 is assumed., To produce the message digest h = H(m||x),
use the Secure Hash Algorithm (SHA) which is closely modelled on MD4. Utilising SHA
for h yields a 160-bit message digest as the output, as follows:

h ≡ H (m||x) (mod q) ≡ H(12 345||16) (mod 7)

= a11784b83ea003cd66491c7e1de07296d9d9242c (hexadecimal)

= 919671992759145855242593220263016201851705566252

(mod 7) (decimal)

≡ 5

User A computes y ≡ r + sh (mod q):

y ≡ (5 + 4 × 5) (mod 7) ≡ 25 (mod 7) ≡ 4

Send signature (h, y) = (5, 4) to user B. User B first computes:

z ≡ ay · λh (mod p)

≡ 74 × 245 (mod 29)

≡ (23 × 7) (mod 29)

≡ 16

Concatenate m = 12 345 and z and hash it as follows:

h′ ≡ H(m||z) (mod q)

≡ H(12 345||16) (mod 7)

≡ 5

which is identical to h. Therefore, user B accepts the signature as valid because h = h′.
The next example demonstrates how to solve the problem, making use of the MD5

algorithm in order to compute the 128-bit message digest. The source code of the MD5
program can be obtained from ftp.funet.fi:/pub/crypt/hash/mds/md5.

Example 5.13 If two primes p = 23 and q = 11 are given, then a = 9 is determined.
Choose a private key s = 4, a random number r = 7 and the message m = 135.

184 INTERNET SECURITY

Key generation

Private key: s = 4

Public key: λ ≡ a−s (mod p)

≡ 9−4 (mod 23) ≡ 4

User A

Compute x ≡ ar (mod p)

≡ 97 (mod 23) ≡ 4

Using the MD5 algorithm, compute the message digest:

h ≡ H(m||x) (mod q)

≡ H(135||4) (mod 11)

h ≡ af 4732711661056eadbf 798ba191272a (hexadecimal)

≡ 232984575419504758889249578349365372714 (mod 11)

≡ 0

Using h = 0, y ≡ r + sh (mod q) becomes y ≡ 7 (mod 11).

Send the signature (h, y) = (0, 7) to user B.

User B

When user B receives the signature (h, y), compute:

z ≡ ayλh (mod p)

≡ 97 (mod 23) ≡ 4

Applying MD5 to h′ ≡ H(m||z) (mod q) ≡ H (135||4) (mod 11), we have

h′ = af 4732711661056eadbf 798ba191272a

Thus, user B confirms verification of h′ (mod 11) ≡ h (mod 11) ≡ 0.

5.5 Digital Signature Algorithm

In 1991 The National Institute of Standards and Technology (NIST) proposed the Dig-
ital Signature Algorithm (DSA) for federal digital signature applications. The proposed
new Digital Signature Standard (DSS) uses a public-key signature scheme to verify to a
recipient the integrity of data received and the identity of the sender of the data.

DSA provides smartcard applications for digital signature. Key generation in DSA is
faster than in RSA. Signature generation has the same level of speed as RSA, but signature
verification is much slower than RSA.

Many software companies, such as IBM, Microsoft, Novell and Apple, that have
already licenced the RSA algorithm, protested against the DSS. Many companies wanted

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 185

NIST to adopt ISO/IEC 9796 for use instead of RSA as the international digital signature
standard.

The DSA is based on the difficulty of computing discrete logarithms, and originated
from schemes presented by ElGamal and Schnorr. The public key consists of three param-
eters, p, q and g, and is common to a group of users. Choose q of a 160-bit prime number
and select a prime number p with 512 < p < 1024 bits such that q is a prime factor of
p − 1. Next, choose g > 1 to be of the form h′(p−1)/q (mod p) such that h′ is an integer
between 1 and p − 1.

With these three numbers, each user chooses a private key x in the range 1 < x < q − 1
and the public key y is computed from x as y ≡ gx (mod p). Recall that determining x

is computationally impossible because the discrete logarithm of y to the base g (mod p)
is difficult to calculate.

To sign a message m, the sender computes two parameters, r and s, which are functions
of (p, q, g and x), the message digest H(m), and a random number k < q. At the receiver,
verification is performed as shown in Table 5.10. The receiver generates a quantity v that
is a function of parameters (x, y, r, s−1 and H(m)).

When a one-way hash function H operates on a message m of any length, a fixed-
length message digest (hash code) h can be produced such that h = H(m). The message
digest h to the DSA input computes the signature for the message m. Signing the message
digest rather than the message itself often improves the efficiency of the signature process,
because the message digest h is usually much smaller than the message m. The SHA is
called secure because it is designed to be computationally impossible to recover a message
corresponding to a given message digest. Any change to a message in transit will result
in a different message digest, and the signature will fail to verify. The structure of the
DSA algorithm is illustrated in Figure 5.9.

Example 5.14 Choose p = 23 and q = 11 such that q is a prime factor of p − 1.
Choose h′ = 16 < p − 1 such that g ≡ 162 (mod 23) ≡ 3 > 1. Choose the private key
x = 7 < q and compute the public key y ≡ gx (mod p) ≡ 37 (mod 23) ≡ 2.

Sender: (signing)
Choose k = 5 such that k < q = 11 and compute the signatures (r, s) as follows:

r ≡ (gk mod p) (mod q)

≡ (35 mod 23) (mod 11) ≡ 13 (mod 11) ≡ 2

Assume that h = H(m) = 10 and compute:

s ≡ k−1 (h + xr) (mod q)

≡ 5−1 (10 + 7 × 2) (mod 11) ≡ (9 × 24) (mod 11) ≡ 216 (mod 11) ≡ 7

where the multiplicative inverse k−1 is:

k · k−1 ≡ 1 (mod q)

5k−1 ≡ 1 (mod 11) from which k−1 = 9

186 INTERNET SECURITY

Table 5.10 DSA signatures

Key pair generation:

p: a prime number between 512 to 1024 bits long
q: a prime factor of p − 1, 160 bits long
g ≡ h′(p−1)/q (mod p) > 1, and h′ < p − 1
(p, q and g): public parameters
x < q: the private key, 160 bits long
y ≡ gx (mod p): the public key, 160 bits long

Signing process (sender):

k < q: a random number
r ≡ (gk mod p) (mod q)
s ≡ k−1 (h + xr) (mod q), h = H(m) is a one-way hash function of the

message m.
(r, s): signature

Verifying signature (receiver):

w ≡ s−1 (mod q)
u1 ≡ h × w (mod q)
u2 ≡ r × w (mod q)
v ≡ (gu1yu2 (mod p)) (mod q)

If v = r , then the signature is verified.

= ?

Signature
is verified

Signature
is rejected

Yes

No

m

1

p

÷

E k Inverse

E

x m r s Inverse

E

E

H

yE

(p − 1)/q

k−1

(mod q)
r ≡ (gk mod p)

s ≡ k−1 (h + rx)
 (mod q)

y ≡ gx (mod p)

g

h + rx

gu1

yu2
r

Public
key

Random

Originator Recipient

Private
key

(r, s): signature

h = H(m): hash value

q

H

h

h

h′

u1

u2

s−1 = w

v

Figure 5.9 DSA digital signature scheme.

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 187

Receiver: (verifying)
Compute:

w ≡ s−1 (mod q)

≡ 7−1 (mod 11) ≡ 8

u1 ≡ (h × w) (mod q)

≡ (10 × 8) (mod 11) ≡ 3

u2 ≡ (r × w) (mod q)

≡ (2 × 8) (mod 11) ≡ 5

v ≡ ((gu1 × yu2) mod p) (mod q)

≡ ((33 × 25) mod 23) (mod 11)

≡ (864 (mod 23)) (mod 11) ≡ 13 (mod 11) ≡ 2

Since v = r = 2, the signature is verified.

5.6 The Elliptic Curve Cryptosystem (ECC)

The Elliptic Curve Cryptosystem (ECC) was introduced by Neal Koblity and Victor Miller
in 1985. The elliptic curve discrete logarithm problem appears to be substantially more dif-
ficult than the existing discrete logarithm problem. Considering they have equal levels of
security, ECC uses smaller parameters than the conventional discrete logarithm systems.

In this section we first present the concept of an elliptic curve and then discuss its
applications to existing public-key algorithms. Finally, we will look at cryptographic
algorithms with elliptic curves over the prime or finite fields.

5.6.1 Elliptic Curves

Elliptic curves (ECs) have been studied for many years. Elliptic curves over the prime
field Zp or the finite field GF(2n) are particularly interesting because they provide a way of
constructing cryptographic algorithms. ECs have the potential to provide faster public-key
cryptosystem with smaller key sizes.

Elliptic curves over prime field Zp

Figure 5.10 shows the elliptic curve y2 = x3 + ax + b defined over Zp where a, b ∈ Zp · Zp

is called a prime field if and only if p > 3 is an odd prime. An elliptic curve (EC) can
be made into an abelian group with all points on an EC, including the point at infinity
O under the condition of 4a3 + 27b2 = 0 (mod p). If two distinct points P (x1, y1) and
Q(x2, y2) are on an elliptic curve, the third point R is defined as P + Q = R(x3, y3)

(see Figure 5.10). The third point R is defined as follows: first draw a line through P

188 INTERNET SECURITY

P

Q

−R

R

x

y

Figure 5.10 An elliptic curve.

and Q, find the intersection point −R on the elliptic curve, and finally determine the
reflection point R with respect to the x-axis, which is the sum of P and Q. If P (x, y)

is a point on an elliptic curve (EC), then P + P = R(x3, y3) (double of P) is defined
as follows: first draw a tangent line to the elliptic curve at P . This tangent line will
intersect the EC at a second point (−R). Then R(x3, y3) is the reflection point of −R

with respect to the x-axis, as depicted in Figure 5.11. If P (x, y) = O, it is defined as
−P (x, −y). Hence if Q = −P , it satisfies P + Q = O. Since all arithmetic operations
are written additively, P + P = 2P = O because slope {P (xi, 0)} ⊥ x-axis when yi = 0.
Subsequently, 3P = 2P + P = P , 4P = 2P + 2P = O, 5P = 4P + P = P, . . ., etc.

If the points on an elliptic curve y2 = x3 + ax + b over Zp are represented by the
points P (x1, y1), Q(x2, y2) and R(x3, y3) = P + Q, the following theorems will hold:

1. When P = Q, x3 = α2 − x1 − x2, y3 = −y1 + α (x1 − x3) when α = (y2 − y1)/(x2 −
x1). Consider the linear curve y = αx + λ passing through the points P and Q. Then
α and λ are written as α = (y2 − y1)/(x2 − x1) and λ = y1 − αx1, respectively. If
the point (x, y) = (x, αx + λ) on PQ meets the condition to be on EC, it should be
(αx + λ)2 = x3 + ax + b or x3 − α2x2 + (a − 2αλ)x + b − λ2 = 0 from which we
can obtain x1 + x2 + x3 = α2 with due regard to the relation between roots and coef-
ficients. Thus it proves to be:

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 189

P = Q

−R

R

x

y

Figure 5.11 The doubling of an elliptic curve point.

x3 =
(

y2 − y1

x2 − x1

)2

− x1 − x2 and y3 = −y1 +
(

y2 − y1

x2 − x1

)

(x1 − x3)

2. When P = Q (i.e. 2P (x3, y3)), x3 = β2 − 2x1, y3 = −y1 + β(x1 − x3) when β =
(3x2

1 + a)/(2y1).
Using y2 = x3 + ax + b, compute the slope at P .

2y

(

dy

dx

)

= 3x2 + a

or

(

dy

dx

)

= 3x2 + a

2y
= β

Thus:

x3 =
(

3x2
1 + a

2y1

)2

− 2x1 and y3 = −y1 +
(

3x2
1 + a

2y1

)

(x1 − x3)

Figure 5.11 shows a geometric description of the doubling of an EC point 2P =
R(x3, y3)).

3. When P = −Q, it is obvious that P + Q = O.

190 INTERNET SECURITY

Example 5.15 Let p = 17. Choose a = 1 and b = 5 such that the elliptic curve over
Z17 becomes y2 ≡ x3 + x + 5 (mod 17).

4a3 + 27b2 = 4 + 675 = 679 ≡ 16 (mod 17)

Hence the given equation is indeed an elliptic curve.

1. Let P = (3, 1) and Q = (8, 10) be two points on the EC. Then P + Q = R(x3, y3) is
computed as follows:

P + Q = (3, 1) + (8, 10)

x3 =
(

y2 − y1

x2 − x1

)2

− x1 − x2

=
(

9

5

)2

− 3 − 8

Since 9 × 5−1 (mod 17) = 9 × 7 (mod 17) = 12, it gives

x3 = (122 − 3 − 8) (mod 17) ≡ 14

y3 = −1 +
(

9

5

)

× (3 − 14) = −1 + 12 × (−11) = −133 (mod 17) ≡ 3

Hence P + Q = R(14, 3).

2. Let P = (3, 1). Then 2P = P + P = (x3, y3) is computed as follows:

2P = (3, 1) + (3, 1)

x3 =
(

3x2
1 + a

2y1

)2

− 2x1

=
(

27 + 1

2

)2

− 6

= 142 − 6 = 196 − 6 = 190(mod 17) ≡ 3

and

y3 = −y1 +
(

3x2
1 + a

2y1

)

(x1 − x3)

= −1 + 14(3 − 3) = −1(mod 17) ≡ 16

Hence 2P = (3, 16).
If P is an odd prime, 0 < z < p, and gcd(z, p) = 1, then z is called a quadratic residue

modulo p if and only if y2 ≡ z (mod p) has a solution for some y; otherwise z is called
a quadratic nonresidue.

For example, the quadratic residues modulo 13 are determined as follows:

Z∗
13 = {1, 2, 3, . . . , 12}

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 191

The square of the integers in Z∗
13 for modulo 13 is computed as:

{12, 22, 32, . . . , 112, 122} (mod 13) = {1, 3, 4, 9, 10, 12}

Hence the quadratic nonresidues modulo 13 are {2, 5, 6, 7, 8, 11}. Now you can see that
the set Z∗

13 = {1, 2, 3, . . . , 12} is equally divided into quadratic residues and nonresidues.
In general, there are precisely (p − 1)/2 quadratic residues and (p − 1)/2 quadratic non-
residues of p.

Euler’s criterion

Let p be an odd prime and gcd(z, p) = 1. Using Fermat’s theorem zp−1 ≡ 1 (mod p), or
zp−1 − 1 ≡ 0 (mod p), it gives (z(p−1)/2 − 1)(z(p−1)/2 + 1) ≡ 0 (mod p) from which z is
a quadratic residue of p if z(p−1)/2 ≡ 1 (mod p); and a quadratic nonresidue of p if and
only if z(p−1)/2 ≡ −1 (mod p).

Legendre symbol (z/p)

If p > 2 is a prime, 0 < z < p, and gcd(z, p) = 1, the Legendre symbol (z/p) is a char-
acteristic function of the set of quadratic residues modulo p as follows:

(

z

p

)

=
{

1 if z is a quadratic residue of p

−1 if z is a quadratic nonresidue of p

Example 5.16 Let p = 17, a = 6 and b = 5. Then the elliptic curve (EC) is defined as
y2 ≡ x3 + 6x + 5 over Z17. Note that 4a3 + 27b2 = 1539 (mod 17) ≡ 9, so the given EC
is indeed an elliptic curve. The points in EC(Z17) are {0} ∪ {(2, 5), (2, 12), . . . , (16, 10)}.
Let’s first determine the points on EC. Compute y2 = x3 + 6x + 5 (mod 17) for each
possible x ∈ Z17. It will be necessary to check whether or not z ≡ x3 + 6x + 5 (mod 17)
is a quadratic residue for a given value of x. If z is a quadratic residue, then y can be
computed by solving y2 ≡ z (mod 17).

For x = 0, then z = 5. Hence 5(p−1)/2 (mod z) ≡ 58 (mod 17) ≡ 16 (mod 17) ≡ −1
(quadratic nonresidue)
For x = 1, then z = 12. Hence 128 (mod 17) ≡ 16 (mod 17) ≡ −1 (quadratic nonresidue)
For x = 2, then z = 25. Hence 258 (mod 17) ≡ 1 (quadratic residue)

Then, solving y2 ≡ 25 (mod 17), we obtain y = 5 and y = 12.
Two points on the elliptic curve are found as (x, y): (2, 5) and (2, 12).
Check: 52 (mod 17) = 25 (mod 17) ≡ 8 and 122 (mod 17) = 144 (mod 17) ≡ 8.
Hence, y = 5 and y = 12 are checked as two solutions.

Continuing in this way, the quadratic residues and the remaining points on the EC can
be computed as shown in Table 5.11.
Let EC be an elliptic curve over Zp. Hasse states that the number of points on an ellip-
tic curve, including the point at infinity O, is #EC(Zp) = p + 1 − t where |t | � 2

√
p.

#EC(Zp) is called the order of EC and t is called the trace of EC.

192 INTERNET SECURITY

Table 5.11 Quadratic residues and points on EC y2 = x3 + 6x +
5 = z over Z17

x z (mod 17) Quadratic residue
z(p−1)/2 ≡ 1
or (z/p) = 1

Point (x, y) on EC

0 5 −1 —
1 12 −1 —
2 8 1 (2, 5) (2, 12)
3 16 1 (3, 4) (3, 13)
4 8 1 (4, 5) (4, 12)
5 7 −1 —
6 2 1 (6, 6) (6, 11)
7 16 1 (7, 4) (7, 13)
8 4 1 (8, 2) (8, 15)
9 6 −1 —

10 11 −1 —
11 8 1 (11, 2) (11, 15)
12 3 −1 —
13 2 1 (13, 6) (13, 11)
14 11 −1 —
15 2 1 (15, 6) (15, 11)
16 15 1 (16, 7) (16, 10)

Example 5.17 Let EC be the elliptic curve y2 ≡ x3 + x + 6 over Z11. All points on EC
can be determined as:

EC(Z11) = {(2, 4), (2, 7), (3, 5), (3, 6), (5, 2), (5, 9),

(7, 2), (7, 9), (8, 3), (8, 8), (10, 2), (10, 9)} ∪ {O}

Any point other than the point at infinity can be a generator G of EC. If we pick G = (8, 3)

as the generator, the multiples of G can be computed as follows:
When P = Q, 2G = (8, 3) + (8, 3). Using x3 = β2 − 2x1 and y3 = −y1 + β(x1 − x3)

where β = 3x2
1 + a

2y1
(mod p), 2G(x3, y3) is computed as follows:

Since β = 3 × 82 + 1

2 × 3
(mod 11) ≡ 1, x3 = 12 − 16 (mod 11) ≡ 7

and y3 = −3 + 1(8 − 7) (mod 11) ≡ 9.

Hence 2G = (7, 9).
For 3G = 2G + G = (7, 9) + (8, 3), it may be expressed as P = 2G and Q = G. Since
P = Q, we use x3 = β2 − x1 − x2 and y3 = −y1 + β(x1 − x3) where β = (y2 − y1)/(x2 −
x1). Compute β first as: β = 9 − 3

7 − 8
(mod 11) ≡ 5. Thus, x3 = 52 − 7 − 8 (mod 11) ≡ 10

and y3 = −9 + 5 (7 − 10) (mod 11) ≡ 9. Hence 3G = (10, 9).

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 193

Continuing in this way, the remaining multiples are computed as shown below:

G = (8, 3) 2G = (7, 9) 3G = (10, 9) 4G = (2, 4) 5G = (5, 2) 6G = (3, 6)

7G = (3, 5) 8G = (5, 9) 9G = (2, 7) 10G = (10, 2) 11G = (7, 2) 12G = (8, 8)

The generator G = (8, 3) is called a primitive element that generates the multiples.

Elliptic curve over finite field GF(2m)

An elliptic curve over GF(2m) is defined by the following equation:

y2 + xy = x3 + ax 2 + b

where a, b ∈ GF(2m) and b = 0. The set of EC over GF(2m) consists of all points
(x, y), x, y ∈ GF(2m), that satisfy the above defining equation, together with the point
of infinite O.

Addition

Adding points on an EC over GF(2m) will give a third EC point. The set of EC points
forms a group with O (point of infinity) serving as its identity. The algebraic formula for
the sum of two points and the doubling point are defined as follows:

1. If P ∈ EC(GF(2m)), then P + (−P) = O, where P = (x, y) and −P = (x, x + y)

are indeed the points on the EC.
2. If P and Q (but P = Q) are the points on the EC(GF(2m)), then P + Q = P (x1, y1) +

Q(x2, y2) = R(x3, y3), where x3 = λ2 + λ + x1 + x2 + a and y3 = λ(x1 + x3) + x3 +
y1, where λ = (y1 + y2)/(x1 + x2).

3. If P is a point on the EC (GF(2m)), but (P = −P), then the point of doubling is
2P = R(x3, y3), where

x3 = x2
1 + b

x2
1

and y3 = x2
1 +

(

x1 + y1

x1

)

x3 + x3

Example 5.18 Consider GF(24) whose primitive polynomial is p(x) = x4 + x + 1 of
degree 4. If α is a root of p(x), then the field elements of GF(24) generated by p(x)

are shown in Table 5.12. Since p(α) = α4 + α + 1 = 0, i.e. α4 = α + 1, the field ele-
ments of GF(24) are expressed by four-tuple vectors such as 1 = (1000), α = (0100), α2 =
(0010), . . . , α14 = (1001).
Choosing a = α4 and b = 1, the EC equation over GF(24) becomes

y2 + xy = x3 + α4x2 + 1

194 INTERNET SECURITY

Table 5.12 Field elements of GF(24) using α4 = α + 1

αi, 0 � i � 14 Polynomial expression Vector form

α0 1 1 0 0 0
α1 α 0 1 0 0
α2 α2 0 0 1 0
α3 α3 0 0 0 1
α4 1 + α 1 1 0 0
α5 α + α2 0 1 1 0
α6 α2 + α3 0 0 1 1
α7 1 + α + α3 1 1 0 1
α8 1 + α2 1 0 1 0
α9 α + α3 0 1 0 1
α10 1 + α + α2 1 1 1 0
α11 α + α2 + α3 0 1 1 1
α12 1 + α + α2 + α3 1 1 1 1
α13 1 + α2 + α3 1 0 1 1
α14 1 + + α3 1 0 0 1

Check whether one element (α3, α8) satisfies the EC equation over GF(24).

(α8)2 + (α3)(α8) = (α3)3 + α4(α3)2 + 1

α16 + α11 = α9 + α10 + 1

(0100) + (0111) = (0101) + (1110) + (1000)

(0011) = (0011)

Thus, the points on the EC(GF(24)) are O (point at infinity) and the following 15 elements:

(0, 1) (1, α6) (1, α13) (α3, α8), (α3, α13)

(α5, α3) (α5, α11) (α6, α8) (α6, α14) (α9, α10)

(α9, α13) (α10, α) (α10, α8) (α12, 0), (α12, α12)

Example 5.19 Consider the elliptic curve y2 + xy = x3 + α4x2 + 1 over GF(24) used
in Example 5.18. Then the point addition P (α6, α8) + Q(α3, α13) = R(x3, y3) is computed
as follows:

Since λ = α8 + α13

α6 + α3
= α, we have x3 = λ2 + λ + x1 + x2 + a = α2 + α + α6 + α3 +

α4 = 1 and y3 = λ(x1 + x3) + x3 + y1 = α(α6 + 1) + 1 + α8 = α(α13) + α2 = α13

Hence P + Q = R(1, α13).
Next, the point-doubling problem of 2P = P + P = R(x3, y3) is considered as shown

below:

x3 = x2
1 + b

x2
1

= α12 + 1

α12
= α12 + α3 = α10 (Take the inverse of αi to be α−i =

α−i+15 (mod15).

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 195

and y3 = x2
1 +

(

x1 + y1

x1

)

x3 + x3

= α12 +
(

α6 + α8

α6

)

α10 + α10

= α12 + α13 + α10 = (1010) = α8

Hence 2P = R(x3, y3) = (α10, α8)

5.6.2 Elliptic Curve Cryptosystem Applied to the ElGamal

Algorithm

As an application problem to ECC, consider the ElGamal public-key cryptosystem based
on the elliptic curve defined over the prime field Zp. The ElGamal crypto-algorithm is
based on the discrete logarithm problem. Referring to Table 5.5 for the ElGamal encryp-
tion algorithm, choose a prime p such that the discrete logarithm problem in Zp is
intractable, and let α be a primitive element of Z∗

p. The values of p, α and y are public,
and x is secret.

y ≡ αx (mod p)

Choose a random number k such that gcd(k, p − 1) = 1. Then the encryption process of
the message m, 0 � m � p − 1, is accomplished by the following pair (r, s):

r ≡ αk (mod p)

s ≡ (m (mod p − 1)) (yk (mod p))

For r, s ∈ Z∗
p , the decryption is defined as:

m ≡ s

rx
(mod p)

Elliptic curve cryptosystem by the ElGamal algorithm

User A User B

Let X be the plaintext and k a
random number. Choose X and k

← Generate B’s private key eB and a
public base point G. The public key
is represented by (G, eBG)

Compute Y = (x, y) where x = kG

and y = X + k(eBG)

→ Receive
Y = (x, y) = (kG, X + k(eBG))

Send Y to user B Decryption yields X = y − eBx

Many public-key algorithms, such as Diffie–Hellman, ElGamal and Schnorr, can be
implemented in elliptic curves over finite fields.

Example 5.20 Suppose user B generates a private key eB = 10 and picks a base point
G = (8, 3) as a generator on the EC y2 ≡ x3 + x + 6 over Z11. Then B’s public key
becomes (G, eBG) = ((8, 3), 10(8, 3)) = ((8, 3), (10, 2)).

196 INTERNET SECURITY

User A wishes to send the plaintext X = (2, 4) and chooses a random number k = 5.
Compute the ciphertext Y = (x, y), x, y ∈ EC

Where x = kG = 5(8, 3) = (5, 2),

y = X + k(eBG) = (2, 4) + 5(10, 2)

= (2, 4) + (7, 2) = (7, 9)

Send Y = (x, y) = ((5, 2), (7, 9)) to B.

B receives Y and decrypts it as follows:

X = y − eBx

= (7, 9) − 10(5, 2) = (7, 9) + (7, 9) = (2, 4)

Thus, the correct plaintext X is recovered by decryption.

5.6.3 Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm (ECDSA) was first proposed by Scott
Vanstone in 1992 and was accepted in 1999 as an ANSI standard and in 2000 as IEEE and
NIST standards. ECDSA is the elliptic curve analogue of DSA (see Section 5.5). Elliptic
Curve Cryptosystems (ECCs) are viewed as elliptic curve analogues to the conventional
discrete logarithm cryptosystems in which the subgroup of Z∗

p is replaced by the group of
points on an elliptic curve over a finite field. The security of elliptic curve cryptosystems is
based on the computational intractability of the elliptic curve discrete logarithm problem.
The ECDSA signature and verification algorithms are presented in this section.

Procedures for generating and verifying signatures using ECDSA are described in
the following.

Domain parameters

The domain parameters for ECDSA consist of a proper elliptic curve, EC, defined over a
prime field Zp of characteristic p, or an extension field GF(2m) of characteristic 2 and a
base point G ∈ EC(Zp). The order of the underline finite field Zp or GF(2m) is p or 2m.
A set of EC domain parameters is comprised of:

D = (q, FR, a, b, G, n, λ)

where q: A field size eitherp or 2m

FR: Field representation used for elements of Zp or GF(2m)

a, b ∈ Zp or GF(2m): Two field elements that define an elliptic
curve EC:

y2 = x3 + ax2 + b over Zp, p > 3

y2 + xy = x3 + ax2 + b over GF(2m), p = 2m

G: The base point,G < EC (Zp or GF(2m))

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 197

n: The order of the point G, with n > 2160 (ANSI X.9.62) and n > 4
√

q

λ: The cofactor is defined as λ = #EC(Zp or GF(2m))/n.

Generation and verification of a random elliptic curve

The method for verifiably generating an elliptic curve at random is presented here to give
some assurance regarding the possible future discovery of new and rare classes of weak
elliptic curves.

The Case Zp

Input: A field size p (an odd prime)
Output: A bit string E of length g � 160 bits and field elements a, b ∈ Zp that define an
elliptic curve EC: y2 = x3 + ax 2 + b over Zp.

ALGORITHM

1. Choose an arbitrary bit string E of length g � 160 bits.
2. Compute the hash code h = SHA-1(E) and let c0 be the bit stream of length v bits

obtained by taking the v rightmost bits of h, where v = t − 160 × s, t = ⌈log2 b⌉
and s = ⌊(t − 1)/160⌋.

3. W0 is the v-bit stream taken by setting the leftmost bit of c0 to zero.
4. The integer z whose binary expansion is the g-bit stream E.
5. For i from 1 to s: Let si be the g-bit string of the integer (z + i) mod 2g. Compute

Wi = SHA-1(si).
6. W is the bit string obtained by concatenation: W = W0||W1|| . . . ||Ws .
7. r is the integer whose binary expansion is W .
8. If r = 0 or 4r + 27 ≡ 0 (mod p), then go to step 1.
9. Choose a = 0, b = 0 ∈ Zp such that rb2 ≡ a3 (mod p). If this condition is met, then

accept; otherwise reject.
10. Output (E, a, b).
11. If the bit string is W ′ = W0||W1|| . . . ||Ws and r ′ is the integer whose binary expansion

is given by W ′, then the condition for acceptance is r ′b2 ≡ a3 (mod p). Other-
wise, reject.

The Case GF(2m)
Where GF(2m), s = ⌊(m − 1)/160⌋ and v = m − 160 × s are used.
Input: A field size 2m

Output: A bit string E of length g � 160 bits and field elements a, b ∈ GF(2m) that define
an elliptic curve EC: y2 + xy = x3 + ax 2 + b over GF(2m).

ALGORITHM

1. Choose an arbitrary bit string E of length g � 160 bits.
2. Compute the hash code h = SHA-1(E) and let b0 be the bit string of length v bits

obtained by taking the v rightmost bits of h.
3. Let z be the integer whose binary expansion is the g-bit stream E.
4. For i from 1 to s: Let si be the g-bit string of the integer (z + i) mod 2g . Compute

bi = SHA-1(si).

198 INTERNET SECURITY

5. Let b be the field element obtained by concatenation as b = b0||b1|| . . . ||bs .
6. If b = 0, then go to step 1.
7. Let a be an arbitrary element of GF(2m).
8. Output (E, a, b).
9. Let b′ be the field element such that b′ = b0||b1|| . . . ||bs .

10. If b′ = b then accept. Otherwise, reject.

Key pair generation

An ECDSA key pair is associated with a particular set of EC domain parameters D =
(q, FR, a, b, G, n, λ) that must be valid prior to key generation.

User A selects a random integer d for 1 � d � n − 1 and computes Q = dG where Q

is A’s public key and d is A’s private key.

• Choose Q = O.
• Check whether a public key Q = (xQ, yQ) is properly represented by the elements of

Zp over (0, p − 1) and m-bit string over GF(2m) of 2m.
• Check that Q lies on the elliptic curve defined by a and b.
• Check that nQ = O.
• If any check fails, then Q is invalid; otherwise Q is valid.

5.6.4 ECDSA Signature Computation

In 2001, Johnson, Menezes and Vanstone jointly presented a paper on the ECDSA. The
ECDSA algorithms on signature and verification are briefly introduced in this section.

User A: signature

To sign a message m, user A with EC domain parameters D and the key pair (d, Q) will
take the following steps for ECDSA signature generation.
Select a random integer k, 1 � k � n − 1.
Compute kQ = (x1, y1) and convert x1 to an integer x ′

1.
Compute the following steps:

• r ≡ x ′
1 (mod n). If r = 0, then go to the initial step.

• k−1 (mod n); and h = SHA-1(m) of m and convert this bit string to an integer e.

Compute s ≡ k−1(e + dr) (mod n). If s = 0, then go to the initial step.
A’s signature for the message m is (r, s).

User B: verification

To verify A’s signature (r, s) on m, the user B must obtain an authentic copy of A’s
domain parameters D and associated public key Q. Verify that r and s integers over
[1, n − 1].

ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS 199

Compute the message digest h = SHA-1(m) of the message m and convert this bit
string to an integer e.

Compute the following steps:

• w ≡ s−1 (mod n)
• u1 ≡ ew (mod n) and u2 ≡ rw (mod n)
• X = u1G + u2Q.

If X = O, reject the signature. Otherwise, convert the X coordinate x1 of x to an integer
x ′

1, and compute v ≡ x ′
1 (mod n). Finally, accept the signature if and only if v = r .

Example 5.21 User A uses the EC y2 ≡ x3 + x+ 6 over Z11. Choose the key pair
(d, Q) in which d = 2 (A’s private key), Q = (7, 9) (A’s public key) and k = 5 (a random
integer). G = (8, 3). Compute the following steps:

kQ = 5(7, 9) = (10, 2) from which r = x1 = 10.

k−1 = 8 is the multiplicative inverse of k ≡ 5 (mod 13).

Suppose the message digest h = SHA-1(m) = 8 is an converted integer e.

Compute s ≡ k−1(e + dr) (mod13)

≡ 8(8 + 2 × 10) (mod 13) ≡ 8(28) (mod 13) ≡ 3

Thus, A’s signature for m is (r, s) = (10, 3).

To verify A’s signature (r, s) on m, the following computations are required:

w ≡ s−1 ≡ 3−1 (mod 13) ≡ 9

u1 ≡ ew (mod 13) ≡ 8 × 9 (mod 13) ≡ 7

u2 ≡ rw (mod 13) ≡ 10 × 9 (mod 13) ≡ 12

X = u1G + u2Q = 7(8, 3) + 12(7, 2) = (3, 5) + (2, 7) = (10, 9)

Since v = 10 = r , the signature is accepted.

Section 5.6 has covered the conceptual, but unified, presentation of the elliptic curve
cryptosystems. It should be a helpful guide for the beginner to understand what the ECC
algorithms are all about.

6

Public-key Infrastructure

This chapter presents the profiles related to public-key Infrastructure (PKI) for the Internet.
The PKI manages public keys automatically through the use of public-key certificates.
It provides a basis for accommodating interoperation between PKI entities. A large-scale
PKI issues, revokes and manages digital signature public-key certificates to allow distant
parties to reliably authenticate each other. A sound digital signature PKI should provide
the basic foundation needed for issuing any kind of public-key certificate.

The PKI provides a secure binding of public keys and users. The objective is how to
design an infrastructure that allows users to establish certification paths which contain
more than one key. Creation of certification paths, commonly called chains of trust, is
established by Certification Authorities (CAs). A certification path is a sequence of CAs.
CAs issue, revoke and archive certificates. In the hierarchical model, trust is delegated
by a CA when it certifies a subordinate CA. Trust delegation starts at a root CA that is
trusted by every node in the infrastructure. Trust is also established between any two CAs
in peer relationships (cross-certification).

The CAs will certify a PKI entity’s identity (a unique name) and that identity’s pub-
lic key. A CA performs user authentication and is responsible for keeping the user’s
name and the associated public key. Hence, each CA must be a trusted entity, at least to
the extent described in the Policy Certification Authority (PCA) policies. The CAs will
need to certify public keys, create certificates, distribute certificates, and generate and
distribute Certificate Revocation Lists (CRLs). The PCA is a special purpose CA which
creates a policy-setting responsibility: that is, how the CA’s and PCA’s functions and
responsibilities are defined and how they interact to determine the nature of the infras-
tructure. Therefore, PKI tasks are centred on researching and developing these functions,
responsibilities and interactions.

This chapter presents the interoperability functional specifications that are carried out
by CA entities at all levels. It describes what the PAA, PCAs and CAs perform. It
also describes the role of an Organisational Registration Authority (ORA) that acts an
intermediary between the CA and a prospective certificate subject. In the long run, the

Internet Security. Edited by M.Y. Rhee
 2003 John Wiley & Sons, Ltd ISBN 0-470-85285-2

202 INTERNET SECURITY

goal of the Internet PKI is to satisfy the requirements of identification, authentication,
access control and authorisation functions.

6.1 Internet Publications for Standards

The Internet Activities Board (IAB) is the body responsible for coordinating Internet
design, engineering and management. The IAB has two subsidiary task forces:

• The Internet Engineering Task Force (IETF), which is responsible for short-term engi-
neering issues including Internet standards.

• The Internet Research Task Force (IRTF), which is responsible for long-term research.

The IETF working groups meet three times annually at large conventions to discuss
standards development, but the development process is conducted primarily via open e-
mail exchanges. Participants of IETF are individual technical contributors, rather than
formal organisational representatives.

The most important series of Internet publications for all standards specifications appear
in the Internet Request for Comments (RFCs) document series. Anyone interested in
learning more about current developments on Internet standards can readily track their
progress via e-mail. Another important series of Internet publications are the Internet
Drafts. These are working documents prepared by IETF, its working groups, or other
groups or individuals working on Internet technical topics. Internet Drafts are valid for
a maximum of six months and may be updated, replaced or rendered obsolete by other
documents at any time. Specifications that are destined to become Internet standards
evolve through a set of maturity level as the standards evolve, which has three recognised
levels: Proposed Standard, Draft Standard and Refined Standard.

To review the complete listing of current Internet Drafts, Internet standards associated
with PKI will be briefly summarised in the following.

A public directory service or repository that can distribute certificates is particularly
attractive. The X.500 standard specifies the directory service. A comprehensive online
directory service has been developed through the ISO/ITU standardisation processes.
These directory standards provide the basis for constructing a multipurpose distributed
directory service by interconnecting computer systems belonging to service providers,
governments and private organisations. In this way, the X.500 directory can act as a
source of information for private people, communications network components or com-
puter applications. When the X.500 standards were first developed in 1984–1988, the use
of X.500 directories for distributing public-key certificates was recognised. Therefore,
the standards include full specifications of data items required for X.500 to fulfil this
role. Since the X.500 technology is somewhat complex, adoption of X.500 was slower
than expected until the mid-1990s. Nevertheless, deployment of X.500 within large enter-
prises is increasing and some organisations are finding this repository a useful means of
public-key certificate distribution.

The Internet Lightweight Directory Access Protocol (LDAP) is a protocol which can
access information stored in a directory, including access to stored public-key certificates.

PUBLIC-KEY INFRASTRUCTURE 203

LDAP is an access protocol which is compatible with the X.500 directory standards.
However, LDAP is much simpler and more effective than the standard X.500 protocols.

The X.509 certificate format describes the authentication service using the X.500 direc-
tory. The certificate format specified in the Privacy-Enhanced Mail (PEM) standards is the
1988 version of the X.509 certificate format. The certificate format specified in the Amer-
ican National Standards Institute (ANSI) X9.30 standards is based on the 1992 version
of the X.509 certificate format. The ANSI X9.30 standard requires that the issuer unique
identifier field be filled in. This field will contain information that allows the private key
to sign the certificate and be uniquely identified.

The certificate format used with the Message Security Protocol (MSP) is also based on
the 1988 X.509 certificate format, but it does not include the issuer unique identifier or
the subject unique identifier fields that are found in the 1992 version of the X.509 format.

The ISO/IEC/ITU X.509 standard defines a standard CRL format. The X.509 CRL
format has evolved somewhat since first appearing in 1988. When the extension fields
were added to the X.509 v3 certificate format, the same type of mechanism was added
to the CRL to create the X.509 v2 CRL format. Of the various CRL formats studied,
the PEM CRL format best meets the requirements of the PKI CRL format. ITU-T X.509
(formerly CCITT X.509) and ANSI X9.30 CRL formats are compared with the PEM
CRL format to show where they differ. For example, the ANSI X9.30 CRL format is
based on the PEM format, but the former adds one reason code field to each certificate
entry within the list of revoked certificates.

All CAs are assumed to generate CRLs. The CRLs may be generated on a periodic
basis or every time a certificate revocation occurs. These CRLs will include certificates
that have been revoked because of key compromises, changes in a user’s affiliation, etc.
All entities are responsible for requesting the CRLs that they need from the directory,
but to keep querying the directory is impractical. Any CA which generates a CRL is
responsible for sending its latest CRL to the directory. However, CRL distribution is
the biggest cost driver associated with the operation of the PKI. CAs certifying fewer
users result in much smaller CRLs because each CRL requested carries far less unwanted
information. The delta CRL indicator is a critical CRL extension that identifies a delta
CRL. The use of delta CRLs can significantly improve processing time for applications
that store revocation information in a format other than the CRL structure. This allows
changes to be added to the local database while ignoring unchanged information that is
already in the local database.

6.2 Digital Signing Techniques

Since user authentication is so important for the PKI environment, it is appropriate to
discuss the concept of digital signature at an early stage in this chapter. Digital signing
techniques are employed to provide sender authentication, message integrity and sender
non-repudiation, provided that private keys are kept secret and the integrity of public keys
is preserved. Provision of these services is furnished with the proper association between
the users and their public/private key pairs.

When two users A and B communicate, they can use their public keys to keep their
messages confidential. If A wishes to hide the contents of a message to B, A encrypts

204 INTERNET SECURITY

User A

One-way
hash function

Signature
algorithm

M

Internet

Message (M)

Message digest

A’s private key

User B

Digital signature (S)

M

DecryptionHash function A’s public key

=

Message digest
Message digest
computed at B Comparison

Yes

RejectAccept

No

S

S

If the comparison is successful,
It is authentic.

If the comparison fails, the message
is tempered with.

?

Figure 6.1 Overall view of a typical digital signature scheme.

PUBLIC-KEY INFRASTRUCTURE 205

= ?

No Yes

Authentication
is verified

Authentication
fails

A (client) B (server)

CA

Session
key

RSA
encryption

DES

Plaintext

One-way
function

H

RSA
decryption

H

CA

h = H(m) hdA

dA

KeB
K

Y = EK(m)

eB (B’s public key)

eA (A′s public key)

(A′s private key)

(Certification Authority)

(Certification Authority)

Hash
function

Plaintext

m

dB (B′s private key)

H (m)

h h′C

Message
digest

RSA
encryption

(hdA)eA

Session
key

Session
key

K K

Ciphertext

m

m

DES
decryption

h′

Message
digest

MD5

C eA

Figure 6.2 Signature and authentication with DES/RSA/MD5 (compatible with PEM method).

it using B’s public key. If A wishes to sign a document, he or she must use the private
key available only to him or her. When B receives a digitally signed message from A,
B must verify its signature. B needs A’s public key for this verification. A should have
high confidence in the integrity of that key.

The scenario of a typical signature scheme is described in Figure 6.1. The following
example is presented to illustrate one practical system (Figure 6.2) applicable to the digital
signature computation for user authentication. The combination of SHA-1 (or MD5) and
RSA provides an effective digital signature scheme. As an alternative, signatures can also
be generated using DSS/SHA-1.

For digital signatures, the content of a message m is reduced to a message digest with
a hash function (such as MD5). An octet string containing the message digest is encrypted
with the RSA private key of the signer. The message and the encrypted message digest
are represented together to yield a digital signature. This application is compatible with
the Privacy-Enhanced Mail (PEM) method. For digital envelopes, the message is first
encrypted under a DES key with a DES algorithm and then the DES key (message-
encryption key) is encrypted with the RSA public key of the recipients of the message.
The encrypted message and the encrypted DES key are represented together to yield a
digital envelope. This application is also compatible with PEM methods.

Example 6.1 Utilizing the practical signature/authentication scheme shown in Fig-
ure 6.2, the analytic solution is as follows:

206 INTERNET SECURITY

Client A

1. DES encryption of message m:
The 64-bit message m is

m = 785ac3a4bd0fe12d

The 56-bit DES session key K is

K = ba0c2b3c484ff9 (hexadecimal)

The 64-bit ciphertext Y (output of 16-round DES) is

Y = a78791c0c8f0b444

2. RSA encryption of K:

K = 52367725502681081 (decimal)

Split K into blocks of two digits:

K = 05 23 67 72 55 02 68 10 81

Obtain B’s public key eB = 79 from CA and choose public modulo n = 3337.
Encrypt every two-bit block of K as follows:

579 (mod 3337) ≡ 270

2379 (mod 3337) ≡ 2524

...

8179 (mod 3337) ≡ 3198

Encrypted K = 0270 2524 1479 0285 1773 3139 2753 3269 3198
This encrypted symmetric key is called the digital envelope.
Send this encrypted key (digital envelope) K to B.

3. Computation of hash code using MD5:
Compute the hash value h of m:

h = H(m) = H(785ac3a4bd0f e12d)

= 6a26ee0ed9ce3963ec8b0f98ebda8476 (hexadecimal)

h = 141100303223912907143183747760118203510 (decimal)

Choose dA = 13 (A’s private key) and compute:

c = hdA

PUBLIC-KEY INFRASTRUCTURE 207

Let us break the hash code into two decimal numbers as follows:

h = 1 41 10 03 03 22 39 12 90 71
43 18 37 47 76 01 18 20 35 10

Using dA = 13 and n = 851, compute the RSA signature:

113 (mod 851) ≡ 1

4113 (mod 851) ≡ 545

...

1013 (mod 851) ≡ 333

c = hd
A = 001 669 084 400 400 091 348 719 157 303

635 439 333 047 089 001 439 520 466 084

Send c to B.

A → B

Send (ciphertext Y , encrypted value of K and signed hash code c) to B.

Server B

1. Decryption of secret session key K:
Received encryption key K:

K = 0270 2524 1479 0285 1773 3139 2753 3669 3198

Choose dB = 1019 (B’s private key) and decrypt K block by block:

2701019 (mod 3337) ≡ 5

25241019 (mod 3337) ≡ 23

...

31981019 (mod 3337) ≡ 81

K = 05 23 67 72 55 02 68 10 81

or

K = 52367725502681081 (decimal)

= ba0c2b3c484ff9 (hexadecimal)

2. Decryption of m using DES:

Ciphertext Y = a78791c0c8f0b444

Restored DES key K = ba0c2b3c484ff9

208 INTERNET SECURITY

Using Y and K, the message m can be recreated:

m = 785ac3a4bd0fe12d

3. Computation of hash code and verification of signature:
Apply MD5 algorithm to the restored message in order to compute the hash code:

h′ = H(m) = H(785ac3a4bd0fe12d)

= 6a26ee0ed9ce3963ec8b0f98ebda8476

Obtain A’s public key eA = 61 from CA and apply eA to the signed hash value c:

c = 001 669 084 400 400 091 348 719 157 303

635 439 333 047 089 001 439 520 466 084

Using eA, compute h = ceA as follows:

161 (mod 851) ≡ 1

66961 (mod 851) ≡ 41

...

08461 (mod 851) ≡ 10

Hence, h = 1 41 10 03 03 22 39 12 90 71

43 18 37 47 76 01 18 20 35 10

Convert it to the hexadecimal number:

h = 6a26ee0ed9ce3963ec8b0f98ebda8476

Thus, we can easily check h = h′.

Digital signing techniques are used in a number of applications. Since digital signa-
ture technology has grown in demand, its explosive utilisation and development will be
expected to continue in the future. Several applications are considered in the following.

• Electronic mail security : Electronic mail is needed to sign digitally, especially in
cases where sensitive information is being transmitted and security services such as
authentication, integrity and non-repudiation are desired. Signing an e-mail message
assures all recipients that the sender of the information is the person who he or she
claims to be, thus authenticating the sender. For example, the DSS is using MOSAIC
to provide security services for e-mail messages. The DSA has been incorporated into
MOSAIC and is used to digitally sign e-mails as well as public-key certificates. Pretty
Good Privacy (PGP) provides security services as well as data integrity services for
messages and data files by using digital signatures, encryption, compression (zip) and
radix-64 conversion (ASCII Armor). MIME defines a format for text messages being

PUBLIC-KEY INFRASTRUCTURE 209

sent using e-mail. MIME is actually intended to address some of the problems and
limitations of the use of SMTP. S/MIME is a security enhancement to the MIME
Internet e-mail format, based on technology from RSA Data Security. Although both
PGP and S/MIME are on an IETF standards track, it appears likely that PGP will
remain the choice for personal e-mail security for many users, while S/MIME will
emerge as the industry standard for commercial and organisational use.

• Financial transactions: This encompasses a number of areas in which money is being
transferred directly or in exchange for services and goods. One area of financial trans-
actions which could benefit especially from the use of digital signatures is Electronic
Funds Transfer (EFT). Digitally signing EFTs are a way of providing security services
such as authentication, integrity and non-repudiation.

Secure Electronic Transaction (SET) is the most important protocol relating to e-
commerce. SET introduced a new concept of digital signature called dual signatures.
A dual signature is generated by creating the message digest of two messages: order
digest and payment digest. The SET protocol for payment processing utilises cryptog-
raphy to provide confidentiality of information, ensure payment integrity and identity
authentication.

• Electronic filing : Contracting requirements expect certain mandated certificates to be
submitted from contractors. This requirement is often filed through the submission of a
written form and usually requires a handwritten signature. If filings are digitally signed
and electronically filed, digital signatures may be used to replace written signatures
and to provide authentication and integrity services.

One of the largest information submission processes is perhaps the payment of taxes
and the request for tax-related information will require signatures. In fact, the IRS in
the USA is converting many of these processes electronically and is considering use of
digital signatures. The IRS has several prototype under development that utilise digital
signatures generated by using DSA. At present, individuals send their tax forms to
the IRS in bulk transactions. The IRS will require them to sign the bulk transactions
digitally to provide added assurances. In future, the electronically generated tax returns
may be digitally signed. The taxpayer may send the digitally signed electronic form
to the IRS directly or through a tax accountant or adviser.

• Software protection: Digital signatures are also used to protect software. By signing the
software, the integrity of the software is assured when it is distributed. The signature
may be verified when the software is installed to ensure that it was not modified
during the distribution process.

• Signing and authenticating : Signing is the process of using the sender’s private key
to encrypt the message digest of a document. Anyone with the sender’s public key
can decrypt it. A person who wants to sign the data has only to encrypt the message
digest to ensure that the data originated from the sender. Authentication is provided
when the sender encrypts the hash value with the sender’s private key. This assures
the receiver that the message originated from the sender.

Digital signatures can be used in cryptography-based authentication schemes to
sign either the message being authenticated or the authentication challenge used in the

210 INTERNET SECURITY

scheme. The X.509 strong authentication is an example of an authentication scheme
that utilises digital signatures.

Careful selection and appropriate protection of the prime numbers p and q, of the
primitive element g of p and of the private and public components x and y of each key
are at the core of security in digital signatures. Therefore, whoever generates these keys
and their parameters is a vital concern for security. PCAs are responsible for defining
who should generate these numbers.

When generating the key for itself and its CA, each PCA needs to specify the acceptable
algorithms used to generate the prime numbers and parameters. For example, a larger p

means more security, but requires more computation in the signing and verification steps.
Thus, the size of p allows a trade-off between security and performance. Each PCA must
specify the range of p for itself, its CAs and its end users. The range of p is largest for
the PCA and smallest for the end user.

One-way hash functions and digital signature algorithms are used to sign certificates
and CRLs. They are used to identify OIDs for public keys contained in a certificate.
SHA-1 is the preferred one-way function for use in the Internet PKI. It was developed by
the US government for use with both the RSA and DSA signature algorithms. However,
MD5 is used in other legacy applications, but it is still reasonable to use MD5 to verify
existing signatures. RSA and DSA are the most popular signature algorithms used in the
Internet. They combine RSA with either MD5 or SHA-1 one-way hash functions; DSA
is used in conjunction with the SHA-1 one-way hash function. The signature algorithm
with the MD5 and RSA encryption algorithm is defined in PKCS#1 (RFC 2437). The
signature algorithm with the SHA-1 and RSA encryption algorithms is implemented using
the padding and encoding mechanisms also described in PKCS#1 (RFC 2437).

6.3 Functional Roles of PKI Entities

This section describes the functional roles of the whole entities at all levels within the
PKI. It also describes how the PAA, PCAs, CAs and ORAs perform.

6.3.1 Policy Approval Authority

The PAA is the root of the certificate management infrastructure. This authority is known
to all entities at all levels in the PKI and creates the overall guidelines that all users, CAs
and subordinate policy-making authorities must follow.

The PAA approves policies established on behalf of subclasses of users or communities
of interest. It is also responsible for supervising other policy-making authorities.

Figure 6.3 illustrates the PAA functions and their performances. Each PAA performs
the following functions:

• Publishes the PAA’s public key.
• Sets the policies and procedures that entities (PCAs, CAs, ORAs and users) of the

infrastructure should follow.
• Sets the policies and procedures, if any, for a new PCA to join the PKI.

PUBLIC-KEY INFRASTRUCTURE 211

PAA functions

Publication
of PAA’s

public key

Policy making
for all entities

Procedures
for joining a

new PCA

Generation of
PCA’s
certificates

Authentication
for revocation
request

Generation of CRLs
for all issuing
certification

Archiving of
certificates, CRLs
and PCA’s policies

Publication of all
PCA’s policies

Deposition of
certificates
and CRLs in
the directory

Locality
information
of PCAs

Specification
for revocation
of PCA’s
certificate

Authentication of
subordinate PCAs and
cross-certification of
international
infrastructure root

Figure 6.3 Illustration of PAA functions.

• Carries out identification and authentication of each of its subordinate PCAs and
national or international infrastructure roots and judges the proper measures to be
taken for cross-certification.

• Generates certificates of subordinate PCAs and of national or international infrastruc-
ture roots to be cross-certified.

• Publishes identification and locality of subordinate PCAs such as directory name,
e-mail address, postal address, phone number, fax number, etc.

• Receives and publishes policies of all subordinate PCAs.
• Specifies information required from subordinate PCAs for a revocation request of the

PCA’s certificate.
• Receives and authenticates revocation requests concerning certificates it has generated.
• Generates CRLs for all the certificates it has issued.
• Archives certificates, CRLs, audit files and PCA’s policies.
• Deposits the certificates and the CRLs it generates in the directory.

212 INTERNET SECURITY

6.3.2 Policy Certification Authority

PCAs are formed by all entities at the second level of the infrastructure. Each PCA
describes the users whom it serves. All PCAs have both policy and certification respon-
sibilities, and must publish their security policies, procedures, legal issues, fees, or any
other subjects they may consider necessary. For PCAs, the users may be people who are
affiliated to an organisation or part of a specific community, or a non-human entity. All
PCA security policies are published and stored on an end user’s local database. Each PCA
performs the following functions as illustrated in Figure 6.4.

• Publishes its identification and locality information, such as directory name, e-mail
address, postal address, phone number, fax number, etc.

PCA functions

Publication of its
identification and locality
information (directory
name, e-mail address, postal
address, phone number, fax
number, etc.)

Publication of the
identification
and locality
information of
its subordinate
CAs

Publication of the plans
for which it serves

Publication of its
security policy
and procedures
for related items

Carrier role of
identification and
authentication of its
subordinates

Generate and
manage certificates
of subordinate CAs

Delivery of its
own public key
and that of PAA to
its subordinates

Specification of
procedures and
information required to
validate certificate
revocation requests

Delivery of
certificates
and CRLs it
generates to
the directory

Archiving certificates,
CRLs, audit fields,
and its signed policy
if changed

Generation of CRLs for
all the certificates it has
issued

Receipt and
authentication of
revocation requests

Figure 6.4 Illustration of PCA functions.

PUBLIC-KEY INFRASTRUCTURE 213

• Publishes identification and locality information of its CAs.
• Publishes who it plans to serve.
• Publishes its security policy and procedures which specify the following items:

– Who generates key variables p, q, g, x and y.
– The ranges of allowed sizes of p for itself, its CAs and end users.
– Identification and authentication requirements for the PCA, CAs, ORAs and end

users.
– Security controls at the PCA and CA systems that generate certificates and CRLs.
– Security controls at ORA systems.
– Security controls for every user’s private key.
– The frequency of CRL issuance.
– The constraints it imposes on naming schemes.
– Audit procedures.

• Carries out identification and authentication of each of its subordinates.
• Generates and manages certificates of subordinate CAs.
• Delivers its own public key and that of PAA to its subordinates.
• Specifies procedures and information required to validate certificate revocation

requests.
• Receives and authenticates revocation requests concerning certificates it has generated.
• Generates CRLs for all the certificates it has issued.
• Archives certificates, CRLs, audit files, and its signed policy if changed.
• Delivers the certificates and CRLs it generates to the directory.

6.3.3 Certification Authority

CAs form the next level below the PCAs. The PKI contains many CAs with no policy-
making responsibilities. The majority are plain CAs. A few are CAs that are associated
with PCAs. A CA has any combination of users and ORAs whom it certifies.

The primary function of the CA is to generate, publish, revoke and archive the public-
key certificates that bind the user’s identity with the user’s public key. A better and trusted
way of distributing public keys is to use a CA. CAs are expected to certify the public keys
of users or of other CAs according to PCA and PAA policies. The CAs ensure that all
key parameters are in the range specified by the PCA. Thus, CAs either create key pairs
that satisfy the PCA regulations or they examine user-generated keys to ascertain whether
they fit within the required range assignment. Referring to Figure 6.5, a CA performs the
following functions:

• Publishes and augments PCA policy.
• Carries out identification and authentication of each of its subordinates.
• Generates and manages certificates of subordinates.
• Delivers its own public key and its predecessor’s public keys.
• Verifies ORA certification requests.
• Returns certificate creation confirmations or new certificates to requesting ORA.
• Receives and authenticates revocation requests concerning certificates it has generated.
• Generates CRLs for all the certificates it has issued.

214 INTERNET SECURITY

CA functions

Delivery of
PCA policy

Archiving of
certificates, CRLs
and audit files

Return of certficate
confirmations to
requesting ORA

Generation of
CRLs

Verification of
ORA certification
request

Carrier role of
identification or
authentication for
users

Receiving and
authenticating
revocation requests

Delivery of public
keys of issuing CA
and CA’s
predecessors

Issuance of
certificates
for users

Directory to store
certificate and CRLs

Figure 6.5 Functions of certificate authority (CA).

• Archives certificates, CRLs and audit files.
• Delivers the certificates and the CRLs it generates to the directory.

6.3.4 Organisational Registration Authority

The ORA is the interface between a user and a CA. The prime function that an ORA
performs is user identification and authentication on behalf of a CA and it delivers the
CA-generated certificate to the end user. After authenticating a user, an ORA transmits a
signed request for a certificate to the appropriate CA. In response to an ORA request for
key certification, the CA returns a certificate to the ORA. The ORA passes the certificate
on to the user. Thus, an ORA’s sole task is to help a user who is far from the user’s CA
to register with that CA and to obtain a public-key certificate. ORAs must pass certificate
revocation reports timely and accurately to a CA. In order to verify the signature on the
information at a future time, ORAs must archive the public key or the certificate associated
with the signer. The ORA uses a signed message to inform the CA of the need to revoke
the certificate and to issue a new one. Nowadays RA is preferred for simple use rather
than ORA. An ORA performs the following functions that are illustrated in Figure 6.6:

• Carries out identification and authentication of users.
• Sends user identification information and the user’s public key to the CA in a signed

message.
• Receives and verifies certificate creations or new certificates from the CA.

PUBLIC-KEY INFRASTRUCTURE 215

ORA functions

Carry out identification
and authentication of users

Send user’s identification
information and public key to
the CA

Receive and verify
certificate creations or new
certificates from the CA

Deliver CA’s public key and its
Predecessor’s public key to the user

Receive certificate revocation requests, verify the
validity of the requests, and if valid, send the request
to the CA

Figure 6.6 Illustration of ORA functions.

• Delivers the CA’s public key and its predecessor’s public keys as well as the certificate
to the user if returned.

• Receives certificate revocation requests, verifies the validity of the requests, and if
valid, sends the request to the CA.

6.4 Key Elements for PKI Operations

This section describes operational concepts of the PKI. In order to comprehend the overall
PKI operation, one must understand how it conducts its various activities. Each activity
is broken down into functional steps. The resources required for each functional step
within each activity must be defined. The resources required for an activity are presented
in relation to the entities such as User, KG, CA, ORA, PCA or Directory. The steps
associated with PKI activities are applied to all PKI relationships: User–CA, User–ORA,
ORA–CA, CA–PCA and PCA–PAA.

This section also presents the architectural structures for the PKI certificate manage-
ment infrastructure. These structures should allow users to establish chains of trust that
contain no more than a few certificates in length. The functions and responsibilities of the
CAs and PCAs are briefly reviewed and then how the CAs are interconnected to permit
establishment of reliable certification paths. Some major activities associated with the PKI
operations are presented subsequently.

216 INTERNET SECURITY

6.4.1 Hierarchical Tree Structures

Chains of trust follow a strict tree hierarchy with a root CA (PAA or PCA) to which all
trust is referenced. Each CA certifies the public keys of its users and the public key of the
root CA is distributed to all PKI entities. Thus every entity is linked to the root CA via a
unique trust path. Figure 6.7 depicts such a tree structure. A number of hierarchies may be
joined together by cross-certifying their root CA directly or using bridge CAs. Figure 6.8
illustrates a bridge-type scheme joining a hierarchical tree structure to a mesh structure.

PAA
(root CA)

PCA PCA

CACA CA CA

U1 U2 U3 U4 U5 U6 U7 U8

RA

Figure 6.7 Hierarchical tree structure.

RA

Bridge CA

Root
CA

Root
CA

CA CA

U1 U3

U4

CA CA

U8U7U6

CA

Hierarchical structure Mesh structure

U2

U9

U5

Figure 6.8 A mixed structure using a bridge CA.

PUBLIC-KEY INFRASTRUCTURE 217

With a mesh structure, entities may be connected via several chains of trust. PGP is
a PKI that uses a mesh structure, with every entity acting as their own CA. Gateway
structures are new structure appearing in VPN applications. In a gateway structure, each
domain is separated and relies on its gateway to provide external PKI services. Figure 6.9
depicts a gateway structure with three cross-certified gateways through which the trust of
the network is channelled. Horizontal structures offer improved robustness to penetration
by distributing the trust path horizontally. Multiple platform structures can be used to
introduce redundancy into a PKI structure and thus reduce risk. The public key of each
user is authenticated in each platform. This is a particular advantage with hierarchical
structures because it can remove a single point of failure.

6.4.2 Policy-making Authority

Chains of trust are based on appropriate policies at all levels in the infrastructure. Asso-
ciated with the entire PKI is a policy-establishing authority which will create the overall
guidelines and security policies that all users, CAs and subordinate policy-making author-
ities must follow.

• The PAA has the responsibility of supervising other policy-making authorities. The
PAA will approve policies established on behalf of subclasses of users or of commu-
nities of interest.

• The PCAs will create policy details that expand or extend the overall PAA policies.
Each PCA establishes policy for a single organisation or for a single community of
interest. PCAs must publish their security policies, procedures, any legal issues, any
fees or any other subjects that they consider necessary.

• The CAs are expected to certify the public key of end users or of other CAs in
accordance with PCA and PAA policies. The CA must ensure that all key parameters

Root CA

CA

CA

Gateway 1 Gateway 2

Gateway 3

U11 U12 U13 U14

U1 U2 U3 U4

Root CA

CA CA

CA

U8 U9

U7

U5

U6

U10

Figure 6.9 A gateway structure.

218 INTERNET SECURITY

are in the range specified by the PCA. Therefore, the CA either creates key pairs
according to the PCA regulations or examines the user-generated keys to ascertain
that they satisfy the requirements of the range. A few CAs are associated with PCAs,
but the majority are plain CAs at all points in the infrastructure.

• The ORA submits a certificate request on behalf of an authenticated entity. The CA
returns the signed certificate or an error message to the ORA. The ORA or certificate
holder requests revocation of a certificate to the issuing CA. The CA responds with
acceptance or rejection of the revocation request. Certificate Revocation Lists (CRLs)
contain all revoked certificates that CAs have issued and have not expired. The CA
returns the signed certificate and its certificate or an error message to the end user.
The CA posts a new certificate and CRL to the repository.

6.4.3 Cross-certification

Suppose the CA has its private/public-key pair and the X.509 certificate issued by the
CA. If a user knows the CA’s public key, then the user can decrypt the certificate with
the CA’s public key and verify the X.509 certificate signed by the CA. Thus the user can
recover his or her public key contained in the X.509 certificate; the user’s public key is
verified as illustrated in Figure 6.10.

CA

X.509
certificate

Signature

SHA-1

E

m
E

KSc

h

Ep RSA encryption

Dp Kd

Ke

KSc

RSA decryption

D KPcSHA-1E

h

Compare

D

E

(ID, KPu)

KPu

KSu

USER
(ID, KPu)

KPu : User’s public key
KSu : User’s private key

Ke : RSA public key

SHA-1 : One-way hash function
E/D : Public-key encryption/decryption
m : X.509 certificate

KPc : CA’s public key
KSc : CA’s private key

Kd : RSA private key
h : Certificate message digest

Ep/Dp : RSA encryption/decryption
ID : User ID

m

Figure 6.10 Certification of the user’s public key.

PUBLIC-KEY INFRASTRUCTURE 219

The signature algorithm and one-way hash function used to sign a certificate are indi-
cated by use of an algorithm identifier or OID. The one-way hash functions commonly
used are SHA-1 and MD5. RSA and DSA are the most popular signature algorithms used
in the X.509 Public-Key Infrastructure (PKIX).

Because no one can modify the certificate, it can be placed in a directory without any
special effort made to protect the certificate. A user can transmit his or her certificate
directly to other users. In the case when a CA encompasses several users, there must be
a common trust of that CA. These users’ certificates can be stored in the directory for
access by all users.

When all users in a large community subscribe to the same CA, it may not be prac-
tical for these users. With many users, it is more desirable to have a limited number of
participating CAs, each CA securely providing its public key to the subordinate users.
Since the CA signs the certificates, each user must have a copy of the CA’s public key
to verify signatures. The CA should provide its public key to each user in an absolutely
secure way so that the user has confidence in the associated certificates.

Suppose there are two users A and B. A certificate is defined in the following notation:

X << A >>

which means the certificate of user A issued by certification authority X. Consider Fig-
ure 6.11(a) which depicts a simple example, where X1 and X2 represent two CAs. User A
uses a chain of certificates to obtain user B’s public key. The chain of certificates is
expressed as:

X1 ≪ X2 ≫ X2 ≪ B ≫

Similarly, user B can obtain A’s public key with the reverse chain such that:

X2 ≪ X1 ≫ X1 ≪ A ≫

This scheme need not be limited to a chain of two certificates. An arbitrarily long path
of CAs can produce a chain. All the certificates of CAs by CAs need to appear in the
directory, and the user needs to know how they are linked to follow a path to another
user’s public-key certificate. X.509 suggests that CAs be arranged in a hierarchy so that
tracing is straightforward.

Figure 6.11(b) is an example of such a hierarchy. The connected ellipses circles indi-
cate the hierarchical relationship among CAs; the associated boxes indicate certificates
maintained in the directory for each CA entry. Four users are indicated by circles. In this
example, user A can acquire the following certificates from the directory to establish a
certification path to user B:

X ≪ Y ≫ Y ≪ W ≫ W ≪ U ≫ U ≪ V ≫ V ≪ B ≫

When A has obtained these certificates, A can unwrap the certification path in sequence
to recover a trusted copy of B’s public key. Using this public key, A can send encrypted
messages to B. If A wishes to receive encrypted messages back from B, or to sign

220 INTERNET SECURITY

(b)

(a)

X1 X2X2<<X1>> X1<<X2>>

A B

X1<<A>> X2<>

Z

W

Y U

X V

A C B D

X<<A>> X<<C>> V<> V<<D>>

Y<<X>>
X<<Y>>
X<<V>>

U<<V>>
V<<U>>
V<<X>>

W<<U>>
U<<W>>

W<<Y>>
Y<<W>>

Z<<W>>
W<<Z>>

Figure 6.11 X.509 hierarchical scheme for a chain of certificates.

messages sent to B, then B will require A’s public key, which can be obtained from the
following certification path:

V ≪ U ≫ U ≪ W ≫ W ≪ Y ≫ Y ≪ X ≫ X ≪ A ≫

B can obtain this set of certificates from the directory, or A can provide them as part
of the initial message to B.

CAs may issue certificates to other CAs with appropriate constraints. Each CA deter-
mines the appropriate constraints for path validation by its users. After obtaining the other
CA’s public key, the CA generates the certificate and posts it to the repository.

The procedure for certifying path validation for the PKIX describes the verification
process for binding both the subject distinguished name and the subject public key. The
binding is limited by constraints that are specified in the certificates which comprise
the path.

PUBLIC-KEY INFRASTRUCTURE 221

6.4.4 X.500 Distinguished Naming

X.509 v1 and v2 certificates employ X.500 names exclusively to identify subjects and
issuers. The information stored in X.500 directories comprises a set of entries. Each entry
is associated with a person, an organisation or a device which has a distinguished name
(DN). The directory entry for an object contains values of a set of attributes pertaining
to that object. For example, an entry for a person might contain values of attributes of
type common name, telephone number, e-mail address and job title. All X.500 entries
have the unambiguous naming structure called the Directory Information Tree (DIT) as
shown in Figure 6.12. The DIT has a single conceptual root and unlimited further vertices
with distinguished names. The DN for an entry is constructed by joining the DN of its
immediate superior entry in the tree with a relative distinguished name (RDN).

Suppose a staff member of the organisation has an X.500 name. If this person leaves
the corporation and a new staff member joins the corporation and is reassigned the same
X.500 name, this may cause authorisation ambiguities in the access control of X.500 data
objects. The idea of the unique identifier fields in the X.509 v2 certificate format is that
a new value could be put in this field whenever an X.500 name is reused. Unfortunately,
unique identifiers do not contribute a very reliable solution to this problem due to the
managing difficulty. A much better approach is to systematically ensure that all X.500

Root

C 2 OC 2 GC 1 G

C1

C 1 O

C2

RDN

RDN

RDN

Attribute

Attribute

Common name (CN) Telephone number

E-mail address

C1, C2: Name of country

G : Government of C1 or C2

O : An organisation in C1 or C2

CN : Common name

RDN : Relative distinguished name

Job title

Figure 6.12 The DIT example of X.500 naming.

222 INTERNET SECURITY

names are unambiguous. This can be achieved by an RDN and a new attribute value,
ensuring that employee numbers are not reused over time.

6.4.5 Secure Key Generation and Distribution

Each user must assure the integrity of the received key and must rely on the PKI to supply
the public keys generated from associated certificates.

Consider a scenario in which a user’s public/private-key pair can be generated, certified
and distributed. There are two ways to consider:

• The user generates his or her own public/private-key pair. In this way, the user is
responsible for ensuring that he or she used a good method for generating the key
pair. The user is also responsible for having his or her public key certified by a CA.
The advantage for the user of generating the key pair is that the user’s private key is
never released to another entity. This allows for the provision of true non-repudiation
services. The user must store his or her private key in a tamperproof secure location
such as on a smart card, floppy disk or PCMCIA card.

• A trusted third party generates the key pair for the user. This method assumes that
security measures are employed by the third party to prevent tampering. To obtain a
key pair from another entity such as a centralised Key Generator (KG), the user goes
to the KG and requests the KG to generate a key pair. This KG will be collocated
with either a CA or an ORA. The KG generates the key pair and gives the public and
private keys to the user. The private key must certainly be transmitted to the user in
a secure manner such as on a token which might be a smart card, a PCMCIA card or
an encrypted diskette. It is not appropriate for the KG to send the user’s public key
to the CA for certification. It must give the copy of the public key to the user so that
he or she can be properly identified during the certificate generating procedure. The
KG also automatically destroys the copy of the user’s private key once it has been to
the user.

If key generation is conducted by a trusted third party on behalf of the user, it is
necessary to assure the integrity of the public key and the confidentiality of the private key.
Therefore, the generation and distribution of key pairs must be done in a secure fashion.

CA keys are generated by the CA itself. Thus, the PAA, the PCAs and CAs all generate
their own key pairs. An ORA can generate its own key pair or have it generated by a
third party depending upon PCA policy. A PCA has its public key certified by the PAA.
At that time, it can obtain the PAA’s public key. A CA’s public key is certified by the
appropriate PCA.

Besides these elements, other important key elements for PKI operations are X.509
certificates, certificate revocation lists, and certification path validation. These subjects
are covered in the following three sections, respectively.

6.5 X.509 Certificate Formats

These formats are described in this section and an algorithm for X.509 certificate path
validation is also discussed. The specification profiles the format of certificates and cer-
tificate revocation lists for the Internet PKIX. Procedures are described for processing

PUBLIC-KEY INFRASTRUCTURE 223

certification paths in the Internet environment. Encryption and authentication rules are
provided with well-known cryptographic algorithms.

X.500 specifies the directory service. X.509 describes the authentication service using
the X.500 directory. A standard certificate format of X.509 which was defined by ITU-T
X.509 (formerly CCITT X.509) or ISO/IEC/ITU 9594-8 was first published in 1988 as
part of the X.500 directory recommendations. The certificate format in the 1988 standard
is called the version 1 (v1) format. When X.500 was revised in 1993, two more fields
were added, resulting in the version 2 (v2) format. These two fields are used to support
directory access control.

The Internet Privacy Enhanced Mail (PEM), published in 1993, includes specifications
for a PKI based on the X.509 v1 certificate (RFC 1422). Experience has shown that the
X.509 v1 and v2 certificate formats are not adequate enough in several aspects. It was
found that more fields were needed to contain necessary information for PEM design
and implementation. In response to these new requirements, ISO/IEC/ITU and ANSI X9
developed the X.509 v3 certificate format. It extends the v2 format by including additional
fields. Standardisation of the basic format of X.509 v3 was completed in June 1996.

The standard extensions for use in the v3 extensions field can convey data such as
subject identification information, key attribute information, policy information and cer-
tification path constraints. In order to develop interoperable implementations of X.509
v3 systems for Internet use, it is necessary to specify a profile for use of the X.509 v3
extensions for the Internet.

X.509 defines a framework for the provision of authentication services by the X.500
directory to its users. X.509 is an important standard because the certificate structure and
authentication protocols defined in X.509 are used in a various areas. The X.509 certificate
format is used in S/MIME for e-mail security, IPsec for network-level security, SSL/TLS
for transport-level security, and SET for secure payment systems.

6.5.1 X.509 v1 Certificate Format

As stated above, the X.509 certificate format has evolved through three versions: version 1
in 1988, version 2 in 1993 and version 3 in 1996. We start by describing the v1 format.

This format contains information associated with the subject of the certificate and
the CA who issued it. The certificate (value equals 0) contains a version number, a serial
number, the CA signature algorithm, the names of the subject and issuer, a validity period,
a public key associated with the subject, and a issuer’s signature. These basic fields are
as shown in Figure 6.13. The certificate fields are interpreted as follows:

• Version: In this field the format of the certificate is identified as the indicator of version
1, 2 or 3 format. The 1988 X.509 certificate v1 format is used only when basic fields
are present. The value of this field in a v1 format is assigned as ‘0’. The v2 certificate
format is assigned the value ‘1’. The value of this field is 2, signifying a v3 certificate.

• Serial number : This is an integer assigned by the CA to each certificate. In other
words, this field contains a unique identifying number for this certificate, assigned by
the issuing CA. The issuer must ensure that it never assigns the same serial number
to two distinct certificates.

224 INTERNET SECURITY

Certificate fields Interpretation of contents

Version Version of certificate format

Serial number Certificate serial number

Signature algorithm
Signature algorithm identifier
for certificate issuer’s signature

Issuer CA’s X.500 name

Validity period Start and expiry dates/times

Subject name Subject X.500 name

Subject public-key information
Algorithm identifier and subject public-
key value

Issuer’s signature Certificate Authority’s digital signature

Figure 6.13 X.509 version 1 certificate format.

• Signature: The algorithm used by the issuer in order to sign the certificate is specified.
The signature field contains the algorithm identifier for the algorithm used to sign the
certificate.

• Issuer : This field provides a globally unique identifier of the authority signing the
certificate. The syntax of the issuer name is an X.500 distinct name. This field contains
the X.500 name of the issuer that generated and signed the certificate. The DN is
composed of attribute type–attribute value pairs.

• Validity : This field denotes the start and expiry dates/times for the certificate. The
validity field indicates the dates on which the certificate becomes valid (not before)
and on which the certificate ceases to be valid (not after). In other words, it contains
two time and date indications that denote the start and the end of the time period for
which the certificate is valid. The validity field always uses UTCTime (Coordinated
Universal Time) which is expressed in Greenwich Mean Time (Zulu).

• Subject : The purpose of the subject field is to provide a unique identifier of the subject
of the certificate. The syntax of the subject name will be an X.500 DN. This field
contains the name of the entity for whom the certificate is being generated. The field
denotes the X.500 name of the holder of the private key, for which the corresponding
public key is being certified.

• Subject public-key information: This field contains the value of a public key of the
subject together with an identifier of the algorithm with which this public key is to
be used. It includes the subject public-key field and an algorithm identifier field with
algorithm and parameters subfields.

PUBLIC-KEY INFRASTRUCTURE 225

• Issuer’s signature: This field denotes the CA’s signature for which the CA’s private
key is used. The actual signature on the certificate is defined by the use of a sequence
of the data being signed, an algorithm identifier and a bit string which is the actual sig-
nature. The algorithm identifier is used to sign the certificate. Although this algorithm
identifier field includes a parameter field that can be utilised to pass the parameters
used by the signature algorithm, it is not itself a signed object. The parameter field
of the certificate signature is not to be used to pass parameters. When parameters
are used to validate a signature, they may be obtained from the subject public-key
information field of the issuing CA’s certificate.

Experience has shown that the X.509 v1 certificate format is deficient in several respects.
The v2 format extends the v1 format by including two more identifier fields.

6.5.2 X.509 v2 Certificate Format

RFC 1422 uses the X.509 v1 certificate format, which imposes several structural restric-
tions on clearly associating policy information and restricts the utility of certificates. The
X.509 v2 format imposed by RFC 1422 can be addressed using two more fields – issuer
and subject unique identifiers which are illustrated in Figure 6.14. These two added fields
are interpreted as follows:

• Issuer unique identifier : This field is present in the certificate to deal with the possi-
bility of reuse of issuer names over time. In this field, an optional bit string is used

Certificate fields

v1 = v2
(for seven fields)

Issuer unique identifier

Subject unique identifier

v1 = v2
(for the last field)

Interpretation of two more
added fields

Version, serial number, signature
algorithm, issuer, validity period,
 subject name, subject public-key
information

To handle the possibility of
reuse of issuer and/or subject names
through time

Issuer’s signature

Figure 6.14 X.509 version 2 certificate format.

226 INTERNET SECURITY

to make the issuer’s name unambiguous in the event that the same name has been
reassigned to different entities over time.

• Subject unique identifier : This field is present in the certificate to deal with the pos-
sibility of reuse of subject names over time. This field is an optional bit string used
to make the subject name unambiguous in the event that the same name has been
reassigned to different entities over time.

Submissive CAs do not issue certificates that include these unique identifiers. Submissive
PKI clients are not required to process certificates that include these unique identifiers.
However, if they do not process these fields, they are required to reject certificates that
include these fields.

6.5.3 X.509 v3 Certificate Format

The Internet PEM RFCs, published in 1993, include specifications for a PKI based on
X.509 v1 certificates. The experience gained from RFC 1422 indicates that the v1 and v2
certificate formats are deficient in several respects. In response to the new requirements
and to overcome the deficiencies, ISO/IEC/ITU and ANSI X9 developed the X.509 v3
certificate format. This format extends the v2 format by including provision for additional
extension fields. The addition of these extension fields is the principal change introduced
to the v3 certificate.

Although the revision to ITU-T X.509 that specifies the v3 format is not yet published,
the v3 format has been widely adopted and is specified in ANSI X 9.55–1995, and the
IETF’s Internet Public Key Infrastructure working document (PKIX1). In June 1996,
standardisation of the basic X.509 v3 was completed. The v3 certificate includes the
11 fields as shown in Figure 6.15. The version field describes the version of the encoded
certificate. The value of this field is 2, signifying a version 3 certificate.

ISO/IEC/ITU and ANSI X9 have also developed standard extensions for use in the
v3 extensions field. These extensions can convey data such as additional subject identi-
fication information, key attribute information, policy information and certification path
constraints. In order to develop interoperable implementations of X.509 v3 systems for
Internet use, it will be necessary to specify a profile for use of the v3 extensions tailored
for the Internet.

The extensions defined for the v3 certificates provide methods for associating additional
attributes with users or public keys and for managing the certification hierarchy. The v3
format also allows communities to define private extensions to carry information unique
to those communities.

Each extension includes an OID and an ASN.1 structure. When an extension appears
in a certificate, the OID appears as the field extnID and the corresponding ASN.1 encoded
structure is the value of the octet string extnValue.

Conforming CAs must support such extensions as authority and subject key identifiers,
key usage, certification policies, subject alternative name, basic constraint, and name and
policy constraints. The format and content of certificate extensions in the Internet PKI
are described in the following.

The standard extensions can be divided into the following groups:

PUBLIC-KEY INFRASTRUCTURE 227

Certificate fields

v1 = v2 = v3
(for seven fields)

v2 = v3
(for two fields)

Extensions
(v3)

v1 = v2 = v3
(for the last field)

Interpretation of contents

Version, serial number, signature
algorithm, issuer, validity period,
subject name, subject public-key
information

Issuer unique identifier
subject unique identifier

Key and policy information
Subject and issuer attributes
Certification path constraints
Extensions related to CRLs

Issuer’s signature

Figure 6.15 X.509 version 3 certificate format.

• Key and policy information
• Subject and issuer attributes
• Certification path constraints
• Extensions related to CRLs.

6.5.3.1 Key and Policy Information Extensions

The key and policy information extensions convey additional information about the subject
and issuer keys. The extensions also convey indicators of certificate policy. The extensions
facilitate the implementation of PKI and allow administrators to limit the purposes for
which certificates and certified keys are used.

Authority key identifier extension

The authority key identifier extension provides a mean of identifying the public key
corresponding to the private key used to sign a certificate. This extension is used where
an issuer has multiple signing keys. The identification is based on either the subject key
identifier in the issuer’s certificate or the issuer name and serial number.

228 INTERNET SECURITY

The key identifier field of the authority key identifier extension must be included in
all certificates generated by conforming CAs to facilitate chain building. The value of the
key identifier field should be derived from the public key used to verify the certificate’s
signature or a method that generates unique values. This field helps the correct certificate
for the next certification authority in the chain to be found.

Subject key identifier extension

The subject key identifier extension provides a means of identifying certificates that con-
tain a particular public key.

To facilitate chain building, this extension must appear in all conforming CA certifi-
cates including the basic constraints extension. The value of the subject key identifier
is the value placed in the key identifier field of the authority key identifier extension of
certificates issued by the subject of the certificate.

For CA certificates, subject key identifiers should be derived from the public key or a
method that generates unique values. Two common methods for generating key identifiers
from the public key are:

• The key identifier is composed of the 160-bit SHA-1 hash value of the bit string of
the subject public key.

• The key identifier is composed of a four-bit-type field with 0100 followed by the least
significant 60 bits of the SHA-1 hash value of the bit string of the subject public key.

For end entity certificates, the subject key identifier extension provides a means of iden-
tifying certificates containing the particular public key used in an application. For an
end entity which has obtained multiple certificates from multiple CAs, the subject key
identifier provides a mean to quickly identify the set of certificates containing a particular
public key.

Key usage extension

This extension defines the key usage for encryption, signature and certificate signing with
the key contained in the certificate. When a key which is used for more than one operation
is to be restricted, the usage restriction is required to be employed. An RSA key should be
used only for signing; the digital signature and/or non-repudiation bits would be asserted.
Likewise, when an RSA key is used only for key management, the key encryption bit
would be asserted. Bits in the key usage type are used as follows:

Key Usage :: = Bit String {
digital signature bit (0)
non-repudiation bit (1)
key encryption bit (2)
data encryption bit (3)
key certificate sign bit (4)
key agreement sign bit (5)

PUBLIC-KEY INFRASTRUCTURE 229

CRL sign bit (6)
encipher only bit (7)
decipher only bit (8) }

• The digital signature bit is asserted when the subject public key is used with a digital
signature mechanism to support security services other than non-repudiation (bit 1),
certificate signing (bit 5) or revocation information signing (bit 6). Digital signature
mechanisms are often used for entity authentication and data origin authentication
with integrity.

• The non-repudiation bit (bit 1) is asserted when the subject public key is used to
verify digital signatures used to provide a non-repudiation service. This service pro-
tects against the signing entity falsely denying some action, excluding certificate or
CRL signing.

• The key encryption bit (bit 2) is asserted when the subject public key is used for key
transport. For example, when an RSA key is used for key management, then this bit
will be asserted.

• The data encryption bit (bit 3) is asserted when the subject public key is used to
encipher user data, other than cryptographic keys.

• The key agreement bit (bit 4) is asserted when the subject public key is used for key
agreement. For example, when Diffie–Hellman exchange is used for key management,
then this bit will be asserted.

• The key certificate signing bit (bit 5) is asserted when the subject public key is used
to verify a signature on certificates. This bit is only asserted in CA certificates.

• The CRL sign bit (bit 6) is asserted when the subject public key is used to verify a
signature on revocation information.

• The encipher only bit (bit 7) is undefined in the absence of the key agreement bit.
When this bit is asserted and the key agreement bit is also set, the subject public key
can be used only to encipher data while performing key agreement.

• The decipher only bit (bit 8) is undefined in the absence of the key agreement bit.
When the decipher only bit is asserted and the key agreement bit is also set, the subject
public key can be used only to decipher data while performing key agreement.

This profile does not restrict the combinations of bits that may be set in an instantiation
of the key usage extension.

Private-key usage period extension

This extension allows the certificate issuer to specify a different validity period for the
private key than the certificate. The extension is intended for use with digital signature
keys and consists of two optional components, ‘not before’ and ‘not after’. The private
key associated with the certificate should not be used to sign objects before or after the
times specified by the two components, respectively. CAs conforming to this profile must
not generate certificates with private-key usage period extensions unless at least one of
the two components is present.

230 INTERNET SECURITY

Certificate policies extension

This extension contains a sequence of one or more policy information terms, each of which
consists of an object identifier (OID) and optional qualifiers. These policy information
terms indicate the policy under which the certificate has been issued and the purposes
for which it may be used. Optional qualifiers are not expected to change the definition of
the policy.

Applications with specific policy requirements are expected to list those policies which
they will accept and to compare the policy OIDs in the certificate with that list. If the
certificate policies extension is critical, the path validation software must be able to
interpret this extension, or must reject the certificate. To promote interoperability, this
profile recommends that policy information terms consist only of an OID.

Policy mappings extension

This extension is used in CA certificates. It lists one or more pairs of OIDs. Each pair
includes an issuer domain policy and a subject domain policy. The pairing indicates that
the issuing CA considers its issuer domain policy equivalent to the subject CA’s subject
domain policy. The issuing CA’s users may accept an issuer domain policy for certain
applications. The policy mapping tells the issuing CA’s users which policies associated
with the subject CA are comparable with the policy they accept. This extension may be
supported by CAs and/or applications, and it must be non-critical.

6.5.3.2 Subject and Issuer Attributes Extensions

These extensions support alternative names for certificate subjects and issuers. They can
also convey additional attribute information about the subject to help a certificate user
gain confidence that the certificate applies to a particular person, organisation or device.
These extensions are as follows.

Subject alternative name extension

This extension allows additional identities to be bound to the subject of the certificate.
Defined options include an Internet e-mail or EDI address, a DNS name, an IP address
and a uniform resource identifier (URI).

Whenever such identities are bound into a certificate, the subject alternative name (or
issuer alternative name) extension must be used.

Since the subject alternative name is considered to be definitively bound to the public
key, all parts of the subject alternative name must be verified by the CA.

Issuer alternative name extension

As with the previous section, this extension field contains one or more alternative names
for the certificate issuer. The name forms are the same as for the subject alternative name
extension. This extension is used to associate Internet-style identities with the certificate
issuer. This field provides for CAs that are accessed via the Web or e-mail.

PUBLIC-KEY INFRASTRUCTURE 231

Subject directory attributes extension

This extension field conveys any desired X.500 attribute values for the subject of the
certificate. It provides a general means of conveying additional identifying information
about the subject beyond what is conveyed in the name field. This extension is not
recommended as an essential part of this profile, but it may be used in local environments.
The extension must be non-critical.

6.5.3.3 Certification Path Constraints Extensions

These extensions help different organisations link their infrastructures together. When one
CA certifies another CA, it can include, in the certificate, information advising certificate
users of restrictions on the types of certification paths that can stem from this point. These
extensions are as follows:

Basic constraints extension

This indicates whether the certificate subject acts as a CA or is an end entity only. This
indicator is important to prevent end-users from fraudulently emulating CAs. If the subject
acts as a CA, a certification path length constraint may also be specified on how deep
a certification path may exist through that CA. For example, this extension field may
indicate that certificate users must not accept certification paths that extend more than
one certificate from this certificate.

Name constraints extension

This extension must be used only in a CA certificate. The extension indicates a name
space within which all subject names in subsequent certificates in a certification path
are located. Restrictions apply only when the specified name form, either the subject
distinguished name or subject alternative name, is present. In other words, if no name of
this type is in the certificate, the certificate is acceptable. Restrictions are defined in terms
of permitted or excluded name subtrees. Any name matching a restriction in the excluded
subtrees field is invalid regardless of the information appearing in the permitted subtrees.

For URIs, the constraint applies to a host or a domain. Examples would be ‘foo.bar.com’
and ‘.xyz.com’. When the constraint begins with a full stop, the constraint ‘.xyz.com’ can
be expanded with one or more subdomains such as ‘abc.xyz.com’ and ‘abc.def.xyz.com’.
When the constraint does not begin with a full stop, it specifies a host.

For a name constraint for Internet mail addresses, it specifies a particular mailbox,
all addresses at a particular host, or all mailboxes in a domain. To indicate a particular
mailbox, the constraint is the complete address. For example, ‘root@xyz.com’ indicates
the root mailbox on the host ‘xyz.com’. To indicate all Internet mail addresses on a
particular host, the constraint is specified as the host name.

DNS name restrictions are expressed as ‘foo.bar.com’. Any DNS name constructed by
simply adding to the left hand side of the name satisfies the name constraint. For example,
‘www.foo.bar.com’ would satisfy the constraint.

232 INTERNET SECURITY

Policy constraints extension

The policy constraints extension is used in certificates issued to CAs. This extension
constrains path validation in two ways:

• Inhibited policy-mapping field : This field can be used to prohibit policy mapping.
If the inhibited policy-mapping field is present, the value indicates the number of
additional certificates that may appear in the path before policy mapping is no longer
permitted. For example, a value of one indicates that policy mapping is processed in
certificates issued by the subject of this certificate, but not in additional certificates in
the path.

• Required explicit policy field : This field can be used to require that each certificate in
a path contain an acceptable policy identifier. If the required explicit policy field is
present, subsequent certificates will include an acceptable policy identifier. The value
of this explicit field indicates the number of additional certificates that may appear in
the path before an explicit policy is required. An acceptable policy identifier is the
identifier of a policy required by the user of the certification path or one which has
been declared equivalent through policy mapping.

Conforming CAs must not issue certificates where policy constraints form a null sequence.
At least one of the inhibited policy-mapping field or the required explicit policy field must
be present.

Extended key usage field

This field indicates one or more purposes for which the certified public key can be used
in place of the basic purposes in the key usage extension field. Key purposes can be
defined by any organisation. Object identifiers used to identify key purposes are assigned
in accordance with IANA or ISO/IEC/ITU 9834-1.

This extension at the option of the certificate issuer is either critical or non-critical.
If the extension is flagged as critical, then the certificate must be used only for one of
the purposes indicated. If the extension is flagged as non-critical, then it indicates the
intended purpose or purposes of the key and can be used to find the correct key/certificate
of an entity that has multiple keys/certificates. It is an advisory field and does not imply
that usage of the key is restricted by the CA to the purpose indicated.

If a certificate contains both a critical key usage field and a critical extended key usage
field, then both fields must be processed independently and the certificate must only be
used for a purpose consistent with both fields. If there is no purpose consistent with both
fields, then the certificate must not be used for any purpose.

CRL distribution points extension

The CRL distribution points extension identifies how CRL information is obtained. The
extension should be non-critical, but CAs and applications must support it. If this extension
contains a distribution point name of type URL, the URI is a pointer to the CRL. When

PUBLIC-KEY INFRASTRUCTURE 233

the subject alternative name extension contains a URI, the name must be stored in the
URI (an IA5String).

6.5.3.4 Private Internet Extensions

This section defines one new extension for use in the Internet PKI. This extension may be
used to direct applications to identify an online validation service supporting the issuing
CA. As the information may be available in multiple forms, each extension is a sequence
of IA5String values, each of which represents a URI. The URI implicitly specifies the
location and format of the information. It also specifies the method for obtaining the
information.

An object identifier is defined for the private extension. The object identifier associated
with the private extension is defined under the arc id-pe within the id-pkix name space.
Any future extensions defined for the Internet PKI will also be defined under the arc id-pe.

Authority information access extension

This extension indicates how to access CA information and services for the issuer of the
certificate in which the extension appears. Information and services may include online
validation services and CA policy data.

Each entry in this information access syntax describes the format and location of
additional information about the CA who issued the certificate. The information type and
format are specified by the access method field, while the access location field specifies
the location of the information. The retrieval mechanism may be implied by the access
method or specified by the access location.

This profile defines one OID for the access method. The id-ad-caIssuers OID is used
when the additional information lists CAs that have issued certificates superior to the CA
that issued the certificate containing this extension. The referenced CA issuers description
is intended to help certificate users select a certification path that terminates at a point
trusted by the certificate user.

When id-ad-caIssuers appears as the access information type, the access location field
describes the referenced description server and the access protocol to obtain the refer-
enced description. The access location field is defined as a general name, which can take
several forms.

Where the information is available via http, ftp or 1dap, the access location must be
a URI. Where the information is available via the Directory Access Protocol (dap), the
access location must be a directory name. When the information is available via e-mail,
the access location must be an RFC 2822 name.

6.6 Certificate Revocation List

CRLs are used to list unexpired certificates that have been revoked. Certificates may
be revoked for a variety of reasons, ranging from routine administrative revocations to
situations where the private key is compromised.

234 INTERNET SECURITY

CRLs are used in a wide range of applications and environments covering a broad spec-
trum of interoperability goals and an even broader spectrum of operational and assurance
requirements.

The ISO/IEC/ITU X.509 standard also defines the X.509 CRL format that, like the
certificate format, has evolved somewhat since first appearing in 1998. In fact, when the
extensions field was added to the certificate to create the X.509 v3 certificate format, the
same type of mechanism was added to the CRL to create the X.509 v2 CRL format.
The main elements of the X.509 v2 CRL are shown in Figure 6.16. The X.509 v2 CRL
format is augmented by several optional extensions, similar in concept to those defined
for certificates. CAs are able to generate X.509 v2 CRLs.

6.6.1 CRL Fields

The following items describe the use of the X.509 v2 CRL:

• Version: This optional field describes the version of the encoded CRLs. The integer
value of this field is 1, indicating a v2 CRL. When extensions are used, this field must
be present and must specify the v2 CRL.

Version (optional)

Signature

Issuer name

This update

Next update

Revoked certificates

CRL extensions

CRL entry extensions

CRL issuer’s digital signature

X.509 CRL format
This field is present only if extensions are used

For CRL issuer’s signature, signature algorithm
(RSA or DSA) and hash function (MD5 or SHA-1)

CRL issuer (X.500 distinguished name)

Issue the data of CRL (date/time)

Issue the CRLs with a next update time equal to
or later than all previous CRLs (date/Time)

A list of certificates that have been revoked:

Identify uniquely by certificate serial
number

Date on the revocation occurrence is
specified

Optional CRL entry extensions:
- Give the reason for revoked
 certificate
- State the data for invalidity
- State the name of CA issuing
 the revoked certificate

Authority key identifier
Issuer alternative name
CRL number, delta CRL indicator, issuing
distribution point

Reason code
Hold instruction code
Invalidity date Certificate issuer

Figure 6.16 X.509 v2 CRL format.

PUBLIC-KEY INFRASTRUCTURE 235

• Signature: This field contains the algorithm identifier for the algorithm used to sign
the CRL. The signature algorithm and one-way hash function used to sign a certificate
or CRL is indicated by use of an algorithm identifier. The algorithm identifier is an
OID, and possibly includes associated parameters. RSA and DSA are the most popular
signature algorithms used in the Internet PKI. The one-way hash functions commonly
used are MD5 and SHA-1.

• Issuer name: This identifies the entity which has signed and issued the CRL. The issuer
identity is carried in the issuer name field. Alternative name forms may also appear
in the issuer alternative name extension. The issuer name is an X.500 distinguished
name. The issuer name field is defined as the X.501 type name and must follow the
encoding rules for the issuer name field in the certificate.

• This update: This field indicates the issue date of the CRL. The update field may be
encoded as UTCTime or GeneralisedTime. CAs conforming to this field that issue
CRLs must encode this update as UTCTime for dates to the year 2049 and as Gener-
alisedTime for dates to the year 2050 or later. For this specification, where encoded
as UTCTime, the update field must be specified and interpreted as defined in the rules
for the certificate validity field.

• Next update: This field indicates the date by which the next CRL will be issued. It
could be issued before the indicated date, but it will not be issued any later than that
date. CAs should issue CRLs with a next update time equal to or later than all previous
CRLs. The next update field may be encoded as UTCTime or GeneralisedTime.

This profile requires inclusion of the next update field in all CRLs issued by con-
forming CAs. Note that the ASN.1 syntax of TBCCertList described this field as
optional, which is consistent with the ASN.1 structure defined in X.509. CAs con-
forming to this profile that issue CRLs must encode the next update as UTCTime for
dates to the year 2049 and as GeneralisedTime for dates to the year 2050 or later.
For this specification, the next update field should follow the rules for the certificate
validity field.

• Revoked certificates: This field is a list of the certificates that have been revoked.
Each revoked certificate listed contains the following:

– The revoked certificates are identified by their serial numbers. Certificates revoked
by the CA are uniquely identified by the certificate serial number.

– The date on which the revocation occurred is specified. The time for revocation
must be encoded as UTCTime or GeneralisedTime.

– The optional CRL entry extensions may give the reason why the certificate was
revoked, state the date when the invalidity is believed to have occurred, and
may state the name of the CA that issued the revoked certificate, which may be a
different CA from the one issuing the CRL. Note that the CA that issued the CRL
is assumed to be the one that issued the revoked certificate unless the certificate
issuer CRL entry extension is included.

6.6.2 CRL Extensions

The extensions defined by ANSI X9 and ISO/IEC/ITU for X.509 v2 CRLs provide meth-
ods for associating additional attributes with CRLs. The X.509 v2 CRL format also allows

236 INTERNET SECURITY

communities to define private extensions to carry information unique to those communi-
ties. Each extension in a CRL is designated as critical or non-critical. A CRL validation
must fail if it encounters a critical extension which it does not know how to process.
However, an unrecognised non-critical extension may be ignored. The extensions used
within Internet CRLs will be presented in the following:

• Authority key identifier : This extension provides a mean of identifying the public key
corresponding to the private key used to sign a CRL. The identification can be based
on either the key identifier or the issuer name and serial number. This extension
is particularly useful where an issuer has more than one signing key, either due to
multiple concurrent key pairs or due to changeover.

• Issuer alternative name: This extension is a non-critical CRL extension that allows
additional identities to be associated with the issuer of the CRL. Defined options
include an e-mail address, a DNS name, an IP address and a URI. Multiple instances
of a name and multiple name forms may be included. Whenever such identities are
used, the issuer alternative name extension must also be used. CAs are capable of
generating this extension in CRLs, but clients are not required to process it.

• CRL number : This field is a non-critical CRL extension which conveys a monotoni-
cally increasing sequence number for each CRL issued by a CA. This extension allows
users to easily determine when a particular delete CRL is replaced by another CRL.
CAs conforming to this profile must include this extension in all CRLs.

• Delta CRL indicator : This is a critical CRL extension that identifies a delta CRL. The
use of delta CRLs can significantly improve processing time for applications which
store revocation information in a format other than the CRL structure. This allows
changes to be added to the local database while ignoring unchanged information that
is already in the local database. When a delta CRL is issued, the CAs must also issue
a complete CRL.

The value of the base CRL number identifies the CRL number of the base CRL that
was used as the starting point in the generation of this delta CRL. The delta CRL
contains the changes between the base CRL and the current CRL issued along with
the delta CRL. It is the decision of a CA as to whether to provide delta CRLs. Again,
a delta CRL must not be issued without a corresponding complete CRL. The value of
the CRL number for both the delta CRL and the corresponding complete CRL must
be identical.

A CRL user constructing a locally held CRL from delta CRLs must consider the
constructed CRL as incomplete and unusable if the CRL number of the received delta
CRL is more than one greater than the CRL number of the delta CRL last processed.

• Issuing distribution point : The issuing distribution point is a critical CRL extension
that identifies the CRL distribution point for a particular CRL, and it indicates whether
the CRL covers revocation for end-entity certificates only, CA certificates only, or a
limited set of reason codes that have been revoked for a particular reason. Although
the extension is critical, conforming implementations are not required to support this
extension. The CRL is signed using the CA’s private key. CRL distribution points do

PUBLIC-KEY INFRASTRUCTURE 237

not have their own key pairs. If the CRL is stored in the X.500 directory, it is stored
in the directory entry corresponding to the CRL distribution point, which could be
different from the directory entry of the CA.

The reason codes associated with a distribution point are specified in onlySomeRea-
sons. A ReasonsFlag bit string indicates the reasons for which certificates are listed in
the CRL. If onlySomeReasons does not appear, the distribution point contains revo-
cations for all reason codes. CAs may use the CRL distribution point to partition the
CRL on the bases of compromise and routine revocation. The revocations with reason
code keyCompromise (used to indicate compromise or suspected compromise) and
cACompromise (used to indicate that the certificate has been revoked because of a
CA key compromise) appear in one distribution point, and the revocations with other
reason codes appear in another distribution point.

6.6.3 CRL Entry Extensions

The CRL entry extensions already defined by ANSI X9 and ISO/IEC/ITU for X.509 v2
CRLs provide methods for associating additional attributes with CRL entries. The X.509
v2 CRL format also allows communities to define private CRL entry extensions to carry
information unique to those communities. Each extension in a CRL entry is designated
as critical or non-critical. A CRL validation must fail if it encounters a critical CRL entry
extension which it does not know how to process. However, an unrecognised non-critical
CRL entry extension may be ignored. The following list presents recommended extensions
used within Internet CRL entries and standard locations for information.

All CRL entry extensions used in this specification are non-critical. Support for these
extensions is optional for conforming CAs and applications. However, CAs that issue CRLs
must include reason codes and invalidity dates whenever this information is available.

• Reason code: This is a non-critical CRL entry extension that identifies the reason for
revocation of the certificate. CAs are strongly encouraged to include meaningful reason
codes in CRL entries. However, the reason code CRL entry extension must be absent
instead of using the unspecified reason code value (0). The following enumerated
reasonCode values are defined:

– unspecified (0) should not be used.
– all keyCompromise (1) indicates compromise or suspected compromise.
– cACompromise (2) indicates that the certificate has been revoked because of a

CA key compromise. It is only used to revoke CA certificates.
– affiliationChanged (3) indicates that the certificate was revoked because of a

change of affiliation of the certificate subject.
– superseded (4) indicates that the certificate has been replaced by a more recent

certificate.
– cessationOfOperation (5) indicates that the certificate is no longer needed for the

purpose for which it was issued, but there is no reason to suspect that the private
key has been compromised.

238 INTERNET SECURITY

– certificateHold (6) indicates that the certificate will not be used at this time.
When clients process a certificate that is listed in a CRL with a reasonCode
of certificateHold, they will fail to validate the certification path.

– removeFromCRL (7) is used only with delta CRLs and indicates that an existing
CRL entry should be removed.

• Hold instruction code: This code is a non-critical CRL entry extension that provides
a registered instruction identifier. This identifier indicates the action to be taken after
encountering a certificate that has been placed on hold.

• Invalidity date: This is a non-critical CRL entry extension that provides the date on
which it is known or suspected that the private key was compromised or that the
certificate otherwise became invalid. The invalidity date is the date at which the CA
processed the revocation, but it may be earlier than the revocation date in the CRL
entry. When a revocation is first posted by a CA in a CRL, the invalidity date may
precede the date of issue of earlier CRLs. However, the revocation date should not
precede the date of issue of earlier CRLs. Whenever this information is available,
CAs are strongly encouraged to share it with CRL users. The generalised time values
included in this field must be expressed in Greenwich Mean Time (Zulu).

• Certificate issuer : This CRL entry extension identifies the certificate issuer associated
with an entry in an indirect CRL (i.e. a CRL that has the indirect CRL indicator
set in its issuing distribution point extension). If this extension is not present on the
first entry of an indirect CRL, the certificate issuer defaults to the CRL issuer. On
subsequent entries of an indirect CRL, if this extension is not present the certificate
issuer for the entry is the same as the issuer of the preceding CRL entry.

6.7 Certification Path Validation

The certification path validation procedure for the Internet PKI describes the verification
process for the binding between the subject distinguished name and/or subject alternative
name and subject public key. The binding is limited by constraints that are specified in
the certificates which comprise the path.

This section describes an algorithm for validating certification paths. For basic path
validation, all valid paths begin with certificates issued by a single most-trusted CA. The
algorithm requires the public key of the CA, the CA’s name, the validity period of the
public key, and any constraints upon the set of paths which may be validated using this
key. Depending on policy, the most-trusted CA could be a root CA in a hierarchical PKI,
the CA that issued the verifier’s own certificate, or any other CA in a network PKI. The
path validation procedure is the same regardless of the choice of the most-trusted CA.

This section also describes extensions to the basic path validation algorithm. Two
specific cases are considered: (1) the case where paths are begun with one of several
trusted CAs; and (2) where compatibility with the PEM architecture is required.

PUBLIC-KEY INFRASTRUCTURE 239

6.7.1 Basic Path Validation

It is assumed that the trusted public-key and related information is contained in a self-
signed certificate in order to simplify the description of the path processing procedure.
Note that the signature on the self-signed certificate does not provide any security services.

The goal of path validation is to verify the binding between a subject distinguished
name or subject alternative name and subject key, as represented in the end-entity certifi-
cate, based on the public key of the most-trusted CA. This requires obtaining a sequence
of certificates which support that binding.

A certification path is a sequence of n certificates where, for all x in {1, (n − 1)}, the
subject of certificate x is the issuer of certificate x + 1. Certificate x = 1 is the self-signed
certificate, and certificate x = n is the end-entity certificate.

The inputs that are provided to the path processing logic are assumed as follows:

• A certificate path of length n.
• A set of initial policy identifiers which identifies one or more certificate policies.
• The current date and time.
• The time T for which the validity of the path must be determined.

From the inputs, the procedure initialises five state variables:

• Acceptable policy set : A set of certificate policy identifiers comprising the policy or
policies recognised by the public-key user together with policies considered equivalent
through policy mapping.

• Constrained subtrees: A set of root names defining a set of subtrees within which all
subject names in subsequent certificates in the certification path will fall.

• Excluded subtrees: A set of root names defining a set of subtrees within which no
subject name in subsequent certificates in the certification path may fall.

• Explicit policy : An integer that indicates if an explicit policy identifier is required. The
integer indicates the first certificate in the path where this requirement is imposed.

• Policy mapping : An integer which indicates if policy mapping is permitted. The integer
indicates the last certificate on which policy mapping can be applied.

The actions performed by the path processing software for each certificate x = 1 to n

are described below. The self-signed certificate is x = 1 and the end-entity certificate
is x = n.

• Verify the basic certificate information:

– The certificate was signed using the subject public key from certificate x − 1. For
the special case x = 1, this step is omitted.

– The certificate validity period includes time T .
– The certificate had not been revoked at time T and is not currently on hold, a

status that commenced before time T .
– The subject and issuer names chain correctly; that is, the issuer of this certificate

was the subject of the previous certificate.

• Verify that the subject name and subject alternative name extension are consistent
with the constrained subtree state variables.

240 INTERNET SECURITY

• Verify that the subject name and subject alternative name extension are consistent
with the excluded subtree state variables.

• Verify that policy information is consistent with the initial policy set:

– If the explicit policy state variable is less than or equal to x, a policy identifier
in the certificate should be in the initial policy set.

– If the policy-mapping variable is less than or equal to x, the policy identifier may
not be mapped.

• Verify that policy information is consistent with the acceptable policy set:

– If the certificate policies extension is marked as critical, the intersection of the
policies extension and the acceptable policy set will be non-null.

– The acceptable policy set is assigned the resulting intersection as its new value.

• Verify that the intersection of the acceptable policy set and the initial policy set is
non-null.

• Recognise and process any other critical extension present in the certificate.
• Verify that the certificate is a CA certificate as specified in a basic constraints extension

or as verified out of band.
• If permittedSubtrees is present in the certificate, set the constrained subtree state

variable to the intersection of its previous value and the value indicated in the exten-
sion field.

• If excludedSubtrees is present in the certificate, set the excluded subtree state variable
to the union of its previous value and the value indicated in the extension field.

• If a policy constraints extension is included in the certificate, modify the explicit
policy and policy-mapping state variable as follows:

– If the required explicit policy is present and has value r , the explicit policy state
variable is set to the minimum of its current value and the sum of r and x.

– If the inhibited policy mapping, whose value is q, is present, the policy-mapping
state variable is set to the minimum of its current value and the sum of q and x.

• If a key usage extension is marked as critical, ensure the KeyCertSign bit is set.

If any one of the above checks fails, the procedure terminates, returning a failure indication
and an appropriate reason; if none of the above checks fail on the end-entity certificate,
the procedure terminates, returning a success indication together with the set of all policy
qualifier values encountered in the set of certificates.

6.7.2 Extending Path Validation

The path validation algorithm presented in Section 6.7.1 is based on a simplifying assump-
tion, i.e. a single trusted CA that starts all valid paths. This algorithm can be extended
for multiple trusted CAs by providing a set of self-signed certificates to the validation
module. In this case, a valid path could begin with any one of the self-signed certifi-
cates. Limitations in the trust paths for any particular key may be incorporated into the
self-signed certificate’s extensions. In this way, the self-signed certificates permit the path
validation module to automatically incorporate local security policy and requirements.

PUBLIC-KEY INFRASTRUCTURE 241

It is also possible to specify an extended version of the above certification path pro-
cessing procedure which results in a default behaviour identical to the rules of PEM of
REC 1422. In this extended version, additional inputs to the procedure are a list of one
or more PCA names and an indicator of the position in the certification path where the
PCA is expected. At the nominated PCA position, if the CA name is found, then a con-
straint of SubordinateToCA is implicitly assumed for the remainder of the certification
path and processing continues. If no valid PCA name is found, and if the certification
path cannot be validated on the basis of identified policies, then the certification path is
considered invalid.

The PKI scheme discussed in this chapter is chiefly embodied in the US scheme
of public-key infrastructure. After the appearance of the US version, several countries
devised their own PKI systems, mostly derived from many of the principles and system
architectures originating from the US PKI scheme. These systems are:

USA: Federal Public Key Infrastructure (FPKI)
Europe: European Trusted Service (ETS) and Internetworking Public Key

Certification of Europe (ICE-TEL)
Australia: Public Key Authentication Framework (PKAF)

Canada: Government of Canada Public Key Infrastructure (GoC-PKI)
Korea: GPKI for government sector and NPKI for Civilian sector

It will be worthwhile for readers to examine each country’s PKI system through its
Website.

7

Network Layer Security

TCP/IP communication can be made secure with the help of cryptography. Cryptographic
methods and protocols have been designed for different purposes in securing communica-
tion on the Internet. These include, for instance, the SSL and TLS for HTTP Web traffic,
S/MIME and PGP for e-mail and IPsec for network layer security. This chapter mainly
addresses security only at the IP layer and describes various security services for traffic
offered by IPsec.

7.1 IPsec Protocol

IPsec is designed to protect communication in a secure manner by using TCP/IP. The
IPsec protocol is a set of security extensions developed by the IETF and it provides
privacy and authentication services at the IP layer by using modern cryptography.

To protect the contents of an IP datagram, the data is transformed using encryption
algorithms. There are two main transformation types that form the basics of IPsec, the
Authentication Header (AH) and the Encapsulating Security Payload (ESP). Both AH and
ESP are two protocols that provide connectionless integrity, data origin authentication,
confidentiality and an anti-replay service. These protocols may be applied alone or in
combination to provide a desired set of security services for the IP layer. They are
configured in a data structure called a Security Association (SA).

The basic components of the IPsec security architecture are explained in terms of the
following functionalities:

• Security Protocols for AH and ESP
• Security Associations for policy management and traffic processing
• Manual and automatic key management for the Internet Key Exchange (IKE), the

Oakley key determination protocol and ISAKMP.
• Algorithms for authentication and encryption

Internet Security. Edited by M.Y. Rhee
 2003 John Wiley & Sons, Ltd ISBN 0-470-85285-2

244 INTERNET SECURITY

The set of security services provided at the IP layer includes access control, connection-
less integrity, data origin authentication, protection against replays and confidentiality. The
modularity which is designed to be algorithm independent permits selection of different
sets of algorithms without affecting the other parts of the implementation.

A standard set of default algorithms is specified to facilitate interoperability in the
global Internet. The use of these algorithms in conjunction with IPsec traffic protection
and key management protocols is intended to permit system and application developers
to deploy high-quality, Internet layer, cryptographic security technology. Thus, the suite
of IPsec protocols and associated default algorithms is designed to provide high-quality
security for Internet traffic.

An IPsec implementation operates in a host or a security gateway environment, afford-
ing protection to IP traffic. The protection offered is based on requirements defined
by a Security Policy Database (SPD) established and maintained by a user or system
administrator.

IPsec provides security services at the IP layer by enabling a system to select the
required security protocols, determine the algorithms to use for the services, and put in
place any cryptographic keys required to provide the requested service. IPsec can be used
to protect one or more paths between a pair of hosts, between a pair of security gateways
(routers or firewalls) or between a security gateway and a host.

7.1.1 IPsec Protocol Documents

This section will discuss the protocols and standards which apply to IPsec. The set of
IPsec protocols is divided into seven groups as illustrated in Figure 7.1.

In November 1998, the Network Working Group of the IETF published RFC 2411
for IP Security Document Roadmap. This document is intended to provide guidelines
for the development of collateral specifications describing the use of new encryption and
authentication algorithms used with the AH protocol as well as the ESP protocol. Both
these protocols are part of the IPsec architecture. The seven-group documents describing
the set of IPsec protocols are explained in the following:

• Architecture: The main architecture document covers the general concepts, security
requirements, definitions and mechanisms defining IPsec technology.

• ESP : This document covers the packet format and general issues related to the use
of the ESP for packet encryption and optional authentication. This protocol document
also contains default values if appropriate, and dictates some of the values in the
Domain of Interpretation (DOI).

• AH : This document covers the packet format and general issue related to the use of
AH for packet authentication. This document also contains default values such as the
default padding contents, and dictates some of the values in the DOI document.

• Encryption algorithm: This is a set of documents that describe how various encryption
algorithms are used for ESP. Specifically:

– Specification of the key sizes and strengths for each algorithm.
– Any available estimates on performance of each algorithm.
– General information on how this encryption algorithm is to be used in ESP.

NETWORK LAYER SECURITY 245

Main
architecture

ESP
protocol

Encryption
algorithm

AH
protocol

Authentication
algorithm

Key
management

DOI

Figure 7.1 Document overview that defines IPsec.

Features of this encryption algorithm to be used by ESP, including encryption
and/or authentication.

When these encryption algorithms are used for ESP, the DOI document has to indicate
certain values, such as an encryption algorithm identifier, so these documents provide
input to the DOI.

• Authentication algorithm: This is a set of documents that describe how various authen-
tication algorithms are used for AH and for the authentication option of ESP.
Specifically:

– Specification of operating parameters such as number of rounds, and input or
output block format.

– Implicit and explicit padding requirements of this algorithm.
– Identification of optional parameters/methods of operation.
– Defaults and mandatory ranges of the algorithm.
– Authentication data comparison criteria for the algorithm.

246 INTERNET SECURITY

• Key management : This is a set of documents that describe key management schemes.
These documents also provide certain values for the DOI. Currently the key manage-
ment represents the Oakley, ISAKMP and Resolution protocols.

• DOI : This document contains values needed for the other documents to relate each
other. These include identifiers for approved encryption and authentication algorithms,
as well as operational parameters such as key lifetime.

7.1.2 Security Associations (SAs)

An SA is fundamental to IPsec. Both AH and ESP make use of SAs. Thus, the SA is
a key concept that appears in both the authentication and confidentiality mechanisms for
IPsec. An SA is a simplex connection between a sender and receiver that affords security
services to the traffic carried on it. If both AH and ESP protection are applied to a traffic
stream, then two SAs are required for two-way secure exchange.

An SA is uniquely identified by three parameters as follows:

• Security Parameters Index (SPI): This is assigned to each SA, and each SA is identified
through an SPI. A receiver uses the SPI to identify the security association for a packet.
Before a sender uses IPsec to communicate with a receiver, the sender must know
the index value for a particular SA. The sender then places the value in the SPI field
of each outgoing datagram. The SPI is carried in AH and ESP headers to enable the
receiver to select the SA under which a received packet is processed. However, index
values are not globally specified. A combination of destination address and SPI is
needed to identify an SA.

• IP Destination Address: Because, at present, unicast addresses are only allowed by
IPsec SA management mechanisms, this is the address of the destination endpoint of
the SA. The destination endpoint may be an end-user system or a network system
such as a firewall or router.

• Security Protocol Identifier : This identifier indicates whether the association is an AH
or ESP security association.

There are two nominal databases in a general model for processing IP traffic relative to
SAs, namely, the Security Policy Database (SPD) and the Security Association Database
(SAD). To ensure interoperability and to provide a minimum management capability
that is essential for productive use of IPsec, some external aspects for the processing
standardisation are required.

The SPD specifies the policies that determine the disposition of all IP traffic inbound
or outbound from a host or security gateways, while the SAD contains parameters that
are associated with each security association.

Security policy database

The SPD, which is an essential element of SA processing, specifies what services are
to be offered to IP datagrams and in what fashion. The SPD is used to control the
flow of all traffic (inbound and outbound) through an IPsec system, including security
and key management traffic (i.e. ISAKMP). The SPD contains an ordered list of policy

NETWORK LAYER SECURITY 247

entries. Each policy entry is keyed by one or more selectors that define the set of all IP
traffic encompassed by this entry. Each entry encompasses every indication mechanism
for bypassing, discarding or IPsec processing. The entry for IPsec processing includes
SA (or SA bundle) specification, limiting the IPsec protocols, modes and algorithms to
be employed.

Security association database

The SAD contains parameters that are associated with each security association. Each SA
has an entry in the SAD. For outbound processing, entries are pointed to by entries in
the SPD. For inbound processing, each entry in the SAD is indexed by a destination IP
address, IPsec protocol type and SPI.

Transport mode SA

There are two types of SAs to be defined: a transport mode SA and a tunnel mode
SA. A transport mode provides protection primarily for upper-layer protocols, i.e. a TCP
packet or UDP segment or an Internet Control Message Protocol (ICMP) packet, operating
directly above the IP layer. A transport mode SA is a security association between two
hosts. When a host runs AH or ESP over IPv4, the payload is the data that normally
follows the IP header. For IPv6, the payload is the data that normally follows both the
IP header and any IPv6 extension headers. In the case of AH, AH in transport mode
authenticates the IP payload and the protection is also extended to selected portions of
the IP header, selected portions of IPv6 extension headers and the selected options.

In the case of ESP, ESP in transport mode primary encrypts and optionally authenticates
the IP payload but not the IP header. A transport mode SA provides security services only
for higher-layer protocols, not for the IP header or any extension headers proceeding the
ESP header.

Tunnel mode SA

Tunnel mode provides protection to the entire IP packet. A tunnel mode SA is essentially
an SA applied to an IP tunnel. Whenever either end of an SA is a security gateway, the
SA must be tunnel mode, as is an SA between a host and a security gateway. Note that
a host must support both transport and tunnel modes, but a security gateway is required
to support only tunnel mode. If a security gateway supports transport mode, it should be
used as an acting host. But in this case, the security gateway is not as acting a gateway.

When the entire inner (original) packet travels through a tunnel from one point of the
IP network to another, routers along the path are unable to examine the inner IP header
because the original inner packet is encapsulated. As a result, the new larger packet will
have totally different source and destination addresses. When the AH and ESP fields are
added to the IP packet, the entire packet plus security field (AH or ESP) is treated as the
new outer IP packet with a new outer IP header.

ESP in tunnel mode encrypts and optionally authenticates the entire inner IP packet,
including the inner IP header. AH in tunnel mode authenticates the entire inner IP packet
and selected portions of the outer IP header.

248 INTERNET SECURITY

7.1.3 Hashed Message Authentication Code (HMAC)

A mechanism that provides a data integrity check based on a secret key is usually called
the Message Authentication Code (MAC). An HMAC mechanism can be used with any
iterative hash functions in combination with a secret key. MACs are used between two
parties (e.g. client and server) that share a secret key in order to validate information
transmitted between them. An MAC mechanism based on a cryptographic hash function
is called HMAC. MD5 and SHA-1 are examples of such hash functions. HMAC uses
a secret key for computation and verification of the message authentication values. The
MAC mechanism should allow for easy replacement of the embedded hash function in
case faster or more secure hash functions are found or required. That is, if it is desired to
replace a given hash function in an HMAC implementation, all that is required is simply
to remove the existing hash function module and replace it with the new, more secure
module. HMAC can be proven as secure provided that the underlying hash function has
some reasonable cryptographic strengths.

Current candidates for secure hash functions include SHA-1, MD5 and RIPEMD-160.
Hash functions such as MD5 and SHA-1 are generally known to execute faster in software
than symmetric block ciphers such as DES-CBC. There has been a number of proposals
for the incorporation of a secret key into an existing hash function. MD5 has been recently
shown to be vulnerable to collision search attacks. Therefore, it seems that MD5 does
not compromise its use within HMAC because it does not rely on a secret key. However,
SHA-1 appears to be a cryptographically stronger function.

7.1.3.1 HMAC Structure

HMAC is a secret-key authentication algorithm which provides both data integrity and
data origin authentication for packets sent between two parties. Its definition requires a
cryptographic hash function H and a secret key K. H denotes a hash function where the
message is hashed by iterating a basic compression function on data blocks. Let b denote
the block length of 64 bytes or 512 bits for all hash functions such as MD5 and SHA-1.
h denotes the length of hash values, i.e. h = 16 bytes or 128 bits for MD5 and 20 bytes
or 160 bits for SHA-1. The secret key K can be of any length up to b = 512 bits.

To compute HMAC over the message, the HMAC equation is expressed as follows:

HMAC = H [(K ⊕ opad)||H [(K ⊕ ipad)||M]]

where

ipad = 00110110(0x36) repeated 64 times (512 bits)
opad = 01011100(0x5c) repeated 64 times (512 bits)
ipad is inner padding opad is outer padding

The following explains the HMAC equation:

1. Append zeros to the end of K to create a b-byte string (i.e. if K = 160 bits in length
and b = 512 bits, then K will be appended with 352 zero bits or 44 zero bytes 0x00).

NETWORK LAYER SECURITY 249

2. XOR (bitwise exclusive-OR) K with ipad to produce the b-bit block computed in
step 1.

3. Append M to the b-byte string resulting from step 2.
4. Apply H to the stream generated in step 3.
5. XOR (bitwise exclusive-OR) K with opad to produce the b-byte string computed in

step 1.
6. Append the hash result H from step 4 to the b-byte string resulting from step 5.
7. Apply H to the stream generated in step 6 and output the result.

Figure 7.2 illustrates the overall operation of HMAC–MD5.

Example 7.1

HMAC–MD5 computation using the RFC method:

Data: 0x 2143f501 f014a713 c1059e23 7123fd68

Key: 0x 31fa7062 c45113e3 2679fd13 53b71264

padding

Padding

Hopad

ipad

HMAC(M)

K

H

M

IV

IV

…
bb b b

M

M||

||

K' = 512 bits

b = 512 bits b = 512 bits

Ωi Ωi M0 M1 ML−1

b = 512 bits

b = 512 bits

b = 512 bits h = 160 bits (SHA-1)
 128 bits (MD5)

160 bits (SHA-1)
128 bits (MD5)

160 bits (SHA-1)
128 bits (MD5)

Ωo = K'⊕opad ≡ b

Ωi = K'⊕ipad ≡ b

Figure 7.2 Overall operation of HMAC computation using either MD5 or SHA-1 (message length
computation based on �i||M).

250 INTERNET SECURITY

A B C D

IV 67452301 efcdab89 98badcfe 10325476
H [(K ⊕ ipad)||M] 4f556d1d 62d021b7 6db31022 00219556
H [(K ⊕ opad)||
H [(K ⊕ ipad)||M]]

b1c3841c 73b63dff 1a22d4bd f468e7b4

HMAC–MD5 = 0 x b1c3841c 73b63dff 1a22d4bd f468e7b4

The alternative operation for computation of either HMAC–MD5 or HMAC–SHA-1
is described in the following:

1. Append zeros to K to create a b-bit string K ′, where b = 512 bits.
2. XOR K ′ (padding with zero) with ipad to produce the b-bit block.
3. Apply the compression function f(IV, K ′ ⊕ ipad) to produce (IV)i = 128 bits.
4. Compute the hash code h with (IV)i and Mi.
5. Raise the hash value computed from step 4 to a b-bit string.
6. XOR K ′ (padded with zeros) with opad to produce the b-bit block.
7. Apply the compression function f(IV, K’⊕opad) to produce (IV)0 = 128 bits.
8. Compute the HMAC with (IV)o and the raised hash value resulting from step 5.

Figure 7.3 shows the alternative scheme based on the above steps.

Example 7.2

HMAC–SHA-1 computation using alternative method:

Data: 0x 7104f218 a3192e65 1cf7025d 8011bf79 4a19

Key: 0x 31fa7062 c45113e3 2679fd13 53b71264

A B C D E

IV 67452301 efcdab89 98badcfe 10325476 c3d2e1f0
f [(K ⊕ ipad), IV] = (IV)i c6edf676 ef938cee 84dd1b00 5b3be996 cb172ad4
H [M, (IV)i] f75ebdde df6b486e 796daefd e9cadc38 6bb33c7d
f [(K ⊕ opad), IV] = (IV)o a46e7eba 64c80ca4 c42317b3 dd2b4f1e 81c21ab0
H [H [M, (IV)i], (IV)o] ee70e949 d7439e60 7865108b 6325235f e220024e

HMAC–SHA-1 = 0x ee70e949 d7439e60 7865108b 6325235f e220024e

7.2 IP Authentication Header

The IP AH is used to provide data integrity and authentication for IP packets. It also
provides protection against replays. The AH provides authentication for the IP header,
as well as for upper-level protocol (TCP, UDP) data. But some IP header fields may
change in transit and the sender may not be able to predict the value of these fields when

NETWORK LAYER SECURITY 251

Padding

Padding

H

opad

ipad

HMAC(M)

f

K

f

H

Mi, i = 0,1, ..., L−1

(IV)i

b = 512 bits
(IV)0

IV

IV

K′ = 512 bits

M0 M1 ML−1
...

M
b b b

b = 512 bits

K′

160 bits (SHA-1)
128 bits (MD5)

160 bits (SHA-1)
128 bits (MD5)

128 bits (MD5)
h = 160 bits (SHA-1)

160 bits (SHA-1)
128 bits (MD5)

160 bits (SHA-1)
128 bits (MD5)

Figure 7.3 Alternative operation of HMAC computation using either MD5 or SHA-1 (message
length computation based on M only).

the packet arrives at the receiver. Thus, the protection provided to the IP header by AH
is somewhat piecemeal. The AH can be used in conjunction with ESP or with the use
of tunnel mode. Security services can be provided between a pair of hosts, between a
pair of security gateway or between a security gateway and a host. The ESP provides
a confidentiality service. The primary difference between the authentication provided by
ESP and AH is the extent of the coverage. ESP does not protect any IP header fields
unless these fields are encapsulated by ESP (tunnel mode). The current key management
options required for both AH and ESP are manual keying and automated keying via
IKE. Authentication is based on the use of an MAC or the Integrity Check Value (ICV)
computation so that two hosts must share a secret key.

7.2.1 AH Format

The IPsec AH format is shown in Figure 7.4. The following six fields comprise the
AH format:

• Next header (8 bits): This field identifies the type of the next payload after the AH.
The value of this field is chosen from the set of IP numbers defined in the Internet
Assigned Number Authority (IANA).

252 INTERNET SECURITY

Next header
(8 bits)

Payload length
(8 bits)

Reserved
(16 bits)

Security Parameters Index (SPI)
(32 bits)

Sequence number
(32 bits)

Authentication data (variable)

Figure 7.4 IPsec AH format.

• Payload length (8 bits): This field specifies the length of the AH in 32-bit words,
minus 2. The default length of the authentication data field is 96 bits, or three 32-bit
words. With a three-word fixed header, there are a total of six words in the header,
and the payload length field has a value of 4.

• Reserved (16 bits): This field is reserved for future use. It must be set to ‘zero’.

• SPI (32 bits): This field uniquely identifies the SA for this datagram, in combination
with the destination IP address and security protocol (AH).

The set of SPI values in the range 1–255 is reserved by the IANA for future
use. The SPI value of zero (0) is reserved for local, implementation-specific use. A
key management implementation may use the zero SPI value to mean ‘No Security
Association Exists’ during the period when the IPsec implementation has requested
that its key management entity establish a new SA, but the SA has not yet been
established.

• Sequence number (32 bits): This field contains the monotonically increasing counter
value which provides an anti-replay function. Even if the sender always transmits this
field, the receiver need not act on it, i.e. processing of the sequence number field is
at the discretion of the receiver. The sender’s counter and the receiver’s counter are
initialised to zero when an SA is established. The first packet sent using a given SA
will have a sequence number of 1. The sender increments the sequence number for
this SA and inserts the new value into the sequence number field.

If anti-replay is enabled, the sender checks to ensure that the counter has not cycled
before inserting the new value in the sequence number field. If the counter has cycled,
the sender will set up a new SA and key. If the anti-replay is disabled, the sender
does not need to monitor or reset the counter. However, the sender still increments
the counter and when it reaches the maximum value, the counter rolls over to zero.

• Authentication data (variable): This field is a variable-length field that contains the
Integrity Check Value (ICV) or MAC for this packet. This field must be an integral

NETWORK LAYER SECURITY 253

multiple of 32-bit words. It may include explicit padding. This padding is included to
ensure that the length of AH is an integral multiple of 32 bits (IPv4) or 64 bits (IPv6).

7.2.2 AH Location

Either AH or ESP is employed in two ways: transport mode or tunnel mode. The transport
mode is applicable only to host implementations and provides protection for upper-layer
protocols. In the transport mode, AH is inserted after the IP header and before an upper-
layer protocol (TCP, UDP or ICMP), or before any other IPsec header that may have
already been inserted.

In the IPv4 context, AH is placed after the original IP header and before the upper-layer
protocol TCP or UDP. Note that an ICMP message may be sent using either the transport
mode or the tunnel mode. Authentication covers the entire packet, excluding mutable
fields in the IPv4 header that are set to zero for MAC computation. The positioning of
AH transport mode for an IPv4 packet is illustrated in Figure 7.5(a).

In the IPv6 context, AH should appear after hop-to-hop, routing and fragmentation
extension headers. The destination options extension header(s) could appear either before
or after AH, depending on the semantics desired. Authentication again covers the entire
packet, excluding mutable fields that are set to zero for MAC computation. The positioning
of AH transport mode for an IPv6 packet is illustrated in Figure 7.5(b).

Tunnel mode AH can be employed in either hosts or security gateways. When AH is
implemented in a security gateway to protect transit traffic, tunnel mode must be used. In
tunnel mode, the inner IP header carries the ultimate source and destination addresses,
while an outer IP header may contain different IP addresses (i.e. addresses of firewalls or
other security gateways). In tunnel mode, AH protects the entire inner IP packet, including
the entire inner IP header. The position of AH in tunnel mode, relative to the outer IP
header, is the same as for AH in transport mode. Figure 7.5(c) illustrates AH tunnel mode
positioning for typical IPv4 and IPv6 packets.

7.3 IP ESP

The ESP header is designed to provide security services in IPv4 and IPv6. ESP can be
applied alone, in combination with the IP AH or through the use of tunnel mode. Security
services are provided between a pair of hosts, between a pair of security gateways or
between a security gateway and a host.

The ESP header is inserted after the IP header and before the upper-layer protocol
header (transport mode) or before an encapsulated IP header (tunnel mode).

ESP is used to provide confidentiality (encryption), data authentication, integrity and
anti-replay service, and limited traffic flow confidentiality. Confidentiality could be selec-
ted independent of all other services. However, use of confidentiality without integrity/
authentication may subject traffic to certain forms of active attacks that undermine the con-
fidentiality service. Data authentication and integrity are joint services offered as an option
with confidentiality. The anti-replay service is chosen only if data origin authentication

254 INTERNET SECURITY

orig IP hdr
(any options)

TCP Data

orig IP hdr
ext hdrs
(if any) TCP Data

IPv4

IPv4

IPv6

IPv6

IPv4

IPv6

Before applying AH

Authenticated except for mutable fields

After applying AH

(a) AH transport mode for an IPv4 packet

Before applying AH

After applying AH

Authenticated except for mutable fields

(b) AH transport mode for an IPv6 packet

Authenticated except for mutable fields in the new IP hdr

Authenticated except for mutable fields in the new IP hdr and its extension headers

(c) AH tunnel mode for typical IPv4 and IPv6 packets

new IP hdr
ext

hdrs
AH

orig IP
header

ext
headers

TCP Data

new IP hdr AH orig IP hdr TCP Data

hop-by-hop, dest,
routing, fragmentorig IP hdr AH dest TCP Data

orig IP hdr
(any options)

TCP DataAH

Figure 7.5 Transport mode and tunnel mode for AH authentication.

is selected and the service is effective only if the receiver checks the sequence number.
The current key management options required for both AH and ESP are manual keying
and automated keying via IKE.

7.3.1 ESP Packet Format

Figure 7.6 shows the format of an ESP packet and the fields in the header format are
defined in the following.

NETWORK LAYER SECURITY 255

Security Parameters Index (SPI)
(32 bits)

Security number
(32 bits)

Payload data (variable)

Padding (0−255 bytes)

Pad length
Next header

(8 bits)

Authentication data (variable)

Plaintext =

Payload data || Padding ||

Pad length || Next header

= multiple number of 4 bytes

Figure 7.6 IPsec ESP format.

• SPI (32 bits): The SPI is an arbitrary 32-bit value that uniquely identifies an SA for
this datagram. The set of SPI values in the range 1–255 is reserved by the IANA for
future use. The SPI field in the ESP packet format is mandatory and always present.

• Sequence number (32 bits): This field contains a monotonically increasing counter
value. This provides an anti-replay function. It is mandatory and is always present
even if the receiver does not elect to enable the anti-replay service for a specific SA.
If anti-replay is enabled, the transmitted sequence number must not be allowed to
cycle. Thus, the sender’s counter and the receiver’s counter must be reset prior to the
transmission of the 232nd packet on an SA.

• Payload data (variable): This variable-length field contains data described by the next
header field. The field is an integral number of bytes in length. If the algorithm requires
an initialisation vector (IV) to encrypt payload, then this data may be carried explicitly
in the payload field. Any encryption algorithm that requires such IP data must indicate
the length, structure and location of this data by specifying how the algorithm is used
with ESP. For some IP-based modes of operation, the receiver treats the IP as the
start of the ciphertext, feeding it into the algorithm directly.

• Padding : This field for encryption requires several factors:

– If an encryption algorithm requires the plaintext to be a multiple number of bytes,
the padding field is used to fill the plaintext to the size required by the algorithm.
The plaintext consists of the payload data, pad length and next header field, as
well as the padding (see Figure 7.6)

– Padding is also required to ensure that the ciphertext terminates on a 32-bit
boundary. Specifically, the pad length and next header fields must be right aligned

256 INTERNET SECURITY

within a 32-bit word to ensure that the authentication data field is aligned on a
32-bit boundary.

The sender may add 0–255 bytes of padding. Inclusion of the padding field in
an ESP packet is optional, but all implementations must support the generation and
consumption of padding. For the purpose of ensuring that either the bits to be encrypted
are a multiple of the algorithm’s blocksize or the authentication data is aligned on a
32-bit boundary, the padding is applied to the payload data exclusive of the IV, the
pad length and next header fields.

The padding bytes are initialised with a series of integer values such that the first
padding byte appended to the plaintext is numbered 1, with subsequent padding bytes
following a monotonically increasing sequence: 1, 2, 3, When this padding scheme
is employed, the receiver should inspect the padding field. Any encryption algorithm
requiring padding must define the padding contents, while any required receiver must
process these padding bytes in specifying how the algorithm is used with ESP. In
such circumstances, the encryption algorithm and mode selected will determine the
content of the padding field. Subsequently, a receiver must inspect the padding field
and inform senders of how the receiver will handle the padding field.

• Pad length: This field indicates the number of pad bytes immediately preceding it.
The range of valid values is 0–255, where a value of 0 indicates that no padding
bytes are present. This field is mandatory.

• Next header (8 bits): This field identifies the type of data contained in the payload
data field, i.e. an extension header in IPv6 or an upper-layer protocol identifier. The
value of this field is chosen from the set of IP numbers defined by the IANA. The
next header field is mandatory.

• Authentication data (variable): This is a variable-length field containing an ICV com-
puted over the ESP packet minus the authentication data. The length of this field is
specified by the authentication function selected. The field is optional and is included
only if the authentication service has been selected for the SA in question. The authen-
tication algorithm must specify the length of the ICV and the comparison rules and
processing steps for validation.

7.3.2 ESP Header Location

Like AH, ESP is also employed in the two transport or tunnel modes. The transport mode
is applicable only to host implementations and provides protection for upper protocols,
but not the IP header. In the transport mode, ESP is inserted after the IP header and
before an upper-layer protocol (TCP, UDP or ICMP), or before any other IPsec headers
that have already been inserted.

In the IPv4 context, ESP is placed after the IP header, but before the upper-layer
protocol. Note that an ICMP message may be sent using either the transport mode or the
tunnel mode. Figure 7.7(a) illustrates ESP transport mode positioning for a typical IPv4
packet, on a before and after basis. The ESP trailer encompasses any padding, plus the
pad length, and next header fields.

NETWORK LAYER SECURITY 257

orig IP hdr
(any options)

TCP Data
ESP
hdr

orig IP hdr
ext hdrs
(if any)

TCP Data

orig IP hdr
hop-by-hop, dest,
routing, fragment

ESP
hdr

dest
opt

new IP hdr
(any options)

ESP
hdr

TCP Data

new IP hdr
ESP
hdr

orig
IP hdr

Data
new ext

hdrs
orig ext

hdrs

IPv4

IPv6

IPv6

IPv4

IPv6

Before applying ESP

Authenticated except for mutable fields

After applying ESP

(a) ESP transport mode for an IPv4 packet

Before applying ESP

After applying ESP

(b) ESP transport mode for an IPv6 packet

(c) ESP tunnel mode for typical IPv4 and IPv6 packets

ESP
Trailer

ESP
Auth

Encrypted

Authenticated

TCP Data
ESP

Trailer
ESP
Auth

Encrypted

Authenticated

orig IP hdr
(any options)

ESP
Trailer

ESP
Auth

Encrypted
Authenticated

TCP
ESP

Trailer
ESP
Auth

Encrypted
Authenticated

orig IP hdr
(any options)

TCP DataIPv4

Figure 7.7 Transport mode and tunnel mode for ESP authentication.

In the IPv6 context, the ESP appears after hop-by-hop, routing and fragmentation
extension headers. The destination options extension header(s) could appear either before
or after the ESP header depending on the semantics desired. However, since ESP protects
only fields after the ESP header, it is generally desirable to place the destination options
header(s) after the ESP header. Figure 7.7(b) illustrates ESP transport mode positioning
for a typical IPv6 packet.

Tunnel mode ESP can be employed in either hosts or security gateways. When ESP is
implemented in a security gateway to protect subscriber transit traffic, tunnel mode must
be used. In tunnel mode, the inner IP header carries the ultimate source and destination

258 INTERNET SECURITY

addresses, while an outer IP header may contain different IP addresses such as addresses
of security gateways. In tunnel mode, ESP protects the entire inner IP packet, including
the entire inner IP header. The position of ESP in tunnel mode, relative to the outer IP
header, is the same as for ESP in transport mode. Figure 7.7(c) illustrates ESP tunnel
mode positioning for typical IPv4 and IPv6 packets.

7.3.3 Encryption and Authentication Algorithms

ESP is applied to an outbound packet associated with an SA that calls for ESP process-
ing. The encryption algorithm employed is specified by the SA, as is the authentication
algorithm.

7.3.3.1 Encryption

ESP is designed for use with symmetric algorithms like a triple DES in CBC mode. How-
ever, a number of other algorithms have been assigned identifiers in the DOI document.
These algorithms for encryption are: RC5, IDEA, CAST and Blowfish.

For encryption to be applied, the sender encapsulates the ESP payload field, adds any
necessary padding, and encrypts the result (i.e. payload data, padding, pad length and
next header). The sender encrypts the fields (payload data, padding, pad length and next
header) using the key, encryption algorithm, algorithm mode indicated by the SA and an
IV (cryptographic synchronisation data). If the algorithm to be encrypted requires an IV,
then this data is carried explicitly in the payload field. The payload data field is an integral
number of bytes in length. Since ESP provides padding for the plaintext, encryption
algorithms employed by ESP exhibit either block or stream mode characteristics.

The encryption is performed before the authentication and does not encompass the
authentication data field. The order of this processing facilitates rapid detection and rejec-
tion of replayed or bogus packets by the receiver, prior to decrypting the packet. Therefore,
it will reduce the impact of service attacks. At the receiver, parallel processing of packets
is possible because decryption can take place in parallel with authentication. Since the
authentication data is not protected by encryption, a keyed authentication algorithm must
be employed to compute the ICV.

Referring to Figure 7.8, the 3DES–CBC mode requires an IV that is the same size
as the block size. The IV is XORed with the first plaintext block before it is encrypted.
For successive blocks, the previous ciphertext block is XORed with the current plaintext
before it is encrypted. Triple DES, known as DES–EDE3, processes each block three
times, each time with a different key. Therefore, the triple DES algorithm has 48 rounds.
In DES–EDE3-CBC, an IV is XORed with the first 64-bit plaintext block (P1).

Some cipher algorithms allow for a variable-sized key (RC5), while others only allow
a specific key size (DES, IDEA).

7.3.3.2 Decryption

The receiver decrypts the ESP payload data, padding, pad length and next header using the
key, encryption algorithm, algorithm mode and IV data. If explicit IV data is indicated, it

NETWORK LAYER SECURITY 259

E

D

E

P1

IV

K1

K2

K3

C1

E

D

E

P2

K1

K2

K3

E

D

E

P3

K1

K2

K3

C2 C3

Figure 7.8 DES–EDE3–CBC algorithm.

is taken from the payload field and input to the decryption algorithm. If implicit IV data is
indicated, a local version of the IV is constructed and input to the decryption algorithm.

The exact steps for reconstructing the original datagram depend on the mode (transport
or tunnel) and are described in the Security Architecture document. The receiver processes
any padding as given in the encryption algorithm specification. For transport mode, the
receiver reconstructs the original IP datagram from the original IP header plus the original
upper-layer protocol information in the ESP payload field. For tunnel mode, the receiver
reconstructs the tunnel IP header plus the entire IP datagram in the ESP payload field.

If authentication has been computed, verification and decryption are performed serially
or in parallel. If performed serially, then ICV or MAC verification should be performed
first. If performed in parallel, verification must be completed before the decrypted packet
is passed on for further processing. This order of processing facilitates rapid detection
and rejection of replayed or bogus packets by the receiver.

7.3.3.3 Authentication

The authentication algorithm employed for the ICV computation is specified by the SA.
For communication between two points, suitable authentication algorithms include Keyed
Message Authentication Codes (MACs) based on symmetric encryption algorithms (i.e.
DES) or on one-way hash function (i.e. MD5 or SHA-1). For multicast communication,
one-way hash algorithms combined with asymmetric signature algorithms are appropriate.

260 INTERNET SECURITY

If authentication is selected for the SA, the sender computes the ICV over the ESP
packet minus the authentication data. As stated previously, the fields of payload data,
padding, pad length and next header are all in ciphertext form because encryption is
performed prior to authentication. Thus, the SPI, sequence numbers and these four fields
are all encompassed by the ICV computation.

7.3.3.4 ICV

Once the SA selects the authentication algorithm, the sender computes the ICV over the
ESP packet minus the authentication data. The ICV is an MAC or a truncated value of a
code produced by an MAC algorithm. As with AH, ESP supports the use of an MAC with
a default length of 96 bits. The current specification for use of the HMAC computation
must support:

HMAC–MD5–96

HMAC–SHA-1–96

7.4 Key Management Protocol for IPsec

The key management mechanism of IPsec involves the determination and distribution of a
secret key. Key establishment is at the heart of data protection that relies on cryptography.
A secure key distribution for the Internet is an essential part of packet protection.

Prior to establishing a secure session, the communicating parties need to negotiate the
terms that are defined in the SA. An automated protocol is needed in order to establish
the SAs for making the process feasible on the Internet. This automated process is the
IKE. IKE combines ISAKMP with the Oakley key exchange.

We begin our discussion with an overview of Oakley and then look at ISAKMP.

7.4.1 OAKLEY Key Determination Protocol

The Diffie–Hellman key exchange algorithm provides a mechanism that allows two users
to agree on a shared secret key without requiring encryption. This shared key is immedi-
ately available for use in encrypting subsequent data transmission. Oakley is not only a
refinement of the Diffie–Hellman key exchange algorithm, but a method to establish an
authentication key exchange. The Oakley protocol is truly used to establish a shared key
with an assigned identifier and associated authenticated identities for the two parties. Oak-
ley can be used directly over the IP protocol or over UDP protocol using a well-known
port number assignment available.

It is worth to note that Oakley uses the cookies for two purposes: anti-clogging (denial
of service) and key naming. The anti-clogging tokens provide a form of source address
identification for both parties. The construction of the cookies prevents an attacker from
obtain a cookie using a real IP address and UDP port.

Creating the cookie is to produce the result of a one-way function applied to a secret
value, the IP source and destination addresses, and the UDP source and destination ports.
Protection against the anti-clogging always seems to be one of the most difficult to address.
A cookie or anti-clogging token is aimed for protecting the computing resources from

NETWORK LAYER SECURITY 261

attack without spending excessive CPU resources to determine its authenticity. Absolute
protection against anti-clogging is impossible, but this anti-clogging token provides a
technique for making it easier to handle.

Oakley employs nonces to ensure against replay attacks. Each nonce is a pseudorandom
number which is generated by the transmitting entity. The nonce payload contains this
random data used to guarantee liveness during a key exchange and protect against replay
attacks. If nonces are used by a particular key exchange, the use of the nonce payload
will be dictated by the key exchange. The nonces may be transmitted a part of the key
exchange data.

All the Oakley message fields correspond to ISAKMP message payloads. The relevant
payload fields are the SA payload, the authentication payload, the certification payload,
and the exchange payload. Oakley is the actual instantiation of ISAKMP framework for
IPsec key and SA generation. The exact mapping of Oakley message fields to ISAKMP
payloads is in progress at this time.

7.4.2 ISAKMP

ISAKMP defines a framework for SA management and cryptographic key establishment
for the Internet. This framework consists of defined exchange, payloads and processing
guidelines that occur within a given DOI. ISAKMP defines procedures and packet formats
to establish, negotiate, modify and delete SAs. It also defines payloads for exchanging key
generation and authentication data. These payload formats provide a consistent framework
for transferring key and authentication data which is independent of the key generation
technique, encryption algorithm and authentication mechanism.

ISAKMP is intended to support the negotiation of SAs for security protocols at all
layers of the network stack. By centralising the management of the SAs, ISAKMP reduces
the amount of duplicated functionality within each security protocol.

(I) ISAKMP Payloads

ISAKMP payloads provide modular building blocks for constructing ISAKMP messages.
The presence and ordering of payloads in ISAKMP is defined by and dependent upon the
Exchange Type Field located in the ISAKMP Header.

ISAKMP Header

The ISAKMP header fields are fined as shown in Figure 7.9.

� Initiator Cookie (64 bits)
This field is the cookie of entity that initiated SA establishment, SA notification, or
SA deletion.

� Responder Cookie (64 bits)
This field is the cookie of entity that is corresponded to an SA establishment request,
SA notification, or SA deletion.

� Next Payload (8 bits)
This field indicates the type of the first payload in the message.

262 INTERNET SECURITY

Initiator cookie
(64 bits)

Responder cookie
(64 bits)

Next payload
(8 bits)

Major
version
(4 bits)

Exchange type
(8 bits)

Flags
(8 bits)

Message ID
(32 bits)

Length
(32 bits)

1 bit

8 bytes

32 bit

8 bytes

Minor
version
(4 bits)

Figure 7.9 ISAKMP header format.

� Major Version (4 bits)
This field indicates the Major version of the ISAKMP protocol in use. Set the Major
version to 1 according to ISAKMP Internet-Draft.

� Minor Version (4 bits)
This field indicates the Minor version of ISAKMP protocol in use. Set the Minor
version to 0 according to implementations based on the ISAKMP Internet-Draft.

� Exchange Type (8 bits)
This field indicates the type of exchange being used. This dictates the message and
payload orderings in the ISAKMP exchanges.

� Flags (8 bits)
This field indicates specific options that are set for the ISAKMP exchange. The Flags
are specified in the Flags field beginning with the least significant bit: the encryption
bit is bit 0 of the Flags field, the commit bit is bit 1, and authentication only bit is
bit 2 of the Flags field. The remaining bits of the Flags field must be set to 0 prior to
transmission.

– All payloads following the header are encrypted using the encryption algorithm
identified in the ISAKMP SA. The encryption should begin after both parties have
exchanged Key Exchange payloads.

– The commit bit is used to signal key exchange synchronization. In addition to
synchronizing key exchange, the commit bit can be used to protect against loss
of transmissions over unreliable networks and guard against the need for multiple
retransmissions.

– Authentication only bit is intended for use with the information exchange with
a notify payload and will allow the transmission of information with integrity
checking, but no encryption.

NETWORK LAYER SECURITY 263

� Message ID (32 bits)
Message ID is used to identify protocol state during Phase 2 negotiations. This value
is randomly generated by the initiator of the phase 2 negotiation. During Phase 1
negotiation, this value must be set to 0.

� Length (32 bits)
Length of total message (header || payload) is 32 bits. Encryption can expand the size
of an ISAKMP message.

Generic Payload Header

Each ISAKMP payload begins with a generic header which provides a payload chaining
capability and clearly defines the boundaries of a payload.

The generic payload header fields in 32 bits are defined as follows:

� Next Payload (8 bits)
This field is identifier for the payload type of the next payload in the message. If the
current payload is the last in the message, then this field will be 0. This field provides
the chaining capability.

� Reserved (8 bits)
This field is not used and set to 0.

� Payload Length (16 bits)
This field indicates the length in bytes of the current payload, including the generic
payload header.

(II) Payload Types for ISAKMP

ISAKMP defines several types of payloads that are used to transfer information such as
SA data or key exchange data in DOI-defined formats. RFC 2408 presents by Maughan,
et al.is good coverage of ISAKMP payloads.

Security Association Payload

The Security Association Payload is used to negotiate security attirutes and to identify
the Domain of Interpretation (DOI, 32 bits) under which negotiation is taking place. A
DOI value of 0 during a Phase 1 exchange specifies a Generic ISAKMP which can be
used for any protocol during the Phase 2 exchange. A DOI value of 1 is assigned to the
IPsec DOI.

The Security Association Payloads are defined as follows:

The Next Payload field (8 bits) is the identifier for the payload type of the next payload
in the message. This field has a value of 0 if this is the last payload in the message.

The Reserved field (8 bits) is unused, set to 0.

The Payload Length field (16 bits) indicates the length in octets of the entire Security
Association payload, including the SA payload, all Proposal payloads, and all Transform
payloads associated with the proposed SA.

264 INTERNET SECURITY

The Situation field (variable length) is a DOI-specific field that identifies the situation
under which negotiation is taking a place. The Situation field defines policy decisions
regarding the security attributes being negotiated.

Proposal Payload

The Proposal Payload is used to build ISAKMP message for the negotiation and establish-
ment of SAs. The Proposal Payload field contains information used during SA negotiation
for securing the communications channel. The payload type for the Proposal Payload
is two(2).

The Proposal Payload fields are defined as follows:

The Next Payload field (8 bits) is the identifier for the payload type of the next payload
in the message. This field must only contain the value 2 or 0. This field will be 2 for
additional Proposal Payloads in the message and 0 when the current Proposal Payload is
the last within the SA proposal.

The Reserved field (8 bits) is set to 0 and is reserved it for the future use.

The Payload Length field (16 bits) is the length in octets of the entire Proposal pay-
load, including generic payload header, the Proposal Payload, and all Transform payloads
associated with this proposal.

The Proposal # field (8 bits) identifies the proposal number for the current payload.

The Protocol-id field (8 bits) specifies the protocol identifier for the current negotiation.
Examples might include IPsec ESP, IPsec AH, OSPF, TLS, etc.

The SPI Size (8 bits) denotes the length in octets of the SPI. In the case of ISAKMP, the
Initiator and Responder cookie pair from the ISAKMP Header is the ISAKMP SPI. The
SPI size may be from zero(0) to sixteen (16). If the SPI size is non-zero, the content of
the SPI field must be ignored. The DOI will dictate the SPI Size for other protocols.

of Transform (8 bits) specifies the number of transforms for the proposal. Each of these
is contained in a Transform Payload.

SPI field (variable) is the sending entity’s SPI. In the event of the SPI size is not a multiple
of 4 octets, there is no padding applied to the payload.

Transform Payload

The Transform Payload contains information used during Security Association negotiation.
The Transform Payload consists of a specific security mechanism to be used to secure the
communications channel. The Transform Payload also contains the security association
attributes associated with the specific transform. These SA attributes are DOI-specific.
The Transform Payload allows the initiating entity to present several possible supported
transforms for that proposed protocol.

The Transform Payload field s are defined as follows:

The Next Payload field (8 bits) is the identifier for the payload type of the next payload in
the message. This field must only contain the value 3 or 0. This field is 3 when there are

NETWORK LAYER SECURITY 265

additional Transform payloads in the proposal. This field is 0 when the current Transform
Payload is the last within the proposal.

The Reserved field (8 bits) is for unused, set to 0.

The Transform # field (8 bits) identifies the Transform number for the current payload.
If there is more than one transform within the Proposal Payload, then each Transform
Payload has a unique Transform number.

The Transform-id field (8 bits) specifies the Transform identifier for the protocol within
the current proposal.

The Reserved 2 field (16 bits) is for unused, set to 0.

The SA Attributes field (variable length) contains the security association (SA) attributes
as defined for the transform given in the Transform-id field. The SA Attributes should be
represented using the Data Attributes format. These Data Attributes are not an ISAKMP
payload, but are contained within ISAKMP payloads. The format of the Data Attributes
provides the flexibility for representation of many different types of information. There
may be multiple Data Attributes within a payload. The length of the Data Attributes
will either be 4 octets or defined by the Attribute Length field (16 bits). If the SA
Attributes are not aligned on 4-byte boundaries, then subsequent payloads will not be
aligned and any padding will be added at the end of the message to make th message
4-byte aligned.

The payload type for the Transform Payload is three (3).

Key Exchange Payload

The Key Exchange Payload supports a variety of key exchange techniques. Example
key exchanges are Oakley, Diffie-Hellman, the enhanced D-H key exchange, and the
RSA-based key exchange used by PGP.

The Key Exchange Payload fields are defined as follows:

The Next Payload field (8 bits) is the identifier for the payload type of the next payload
in the message. If the current payload is the last in the message, then this field will be 0.

The Reserved field (8 bits) is unused for the future use, set to 0.

The Payload Length field (16 bits) is the length in octets of the current payload, including
the generic payload header.

The Key Exchange Data field (variable length) is the data required to generate a ses-
sion key. The interpretation of this data is specified by the DOI and the associated Key
Exchange algorithm. This field may also contain pre-placed key indicators.

Identification Payload

The Identification Payload contains DOI-specific data used to exchange identification
information. This information is used for determining the identities of communication
partners and may be used for determining authenticity of information.

266 INTERNET SECURITY

The Identification Payload fields are described as follows:

The Next Payload field (8 bits) is the identifier for the payload type of the Next Payload
in the message. If the current payload is the last in the message, then this field will be 0.

The Reserved field (8 bits) is not used, but set to 0.

The Payload Length field (16 bits) is the length in octets of the current payload, including
the generic payload header.

The ID type field (8 bits) specifies the type of identification being used. This field is
DOI-dependent.

The DOI specific ID Data field (24 bits) contains DOI specific identification data. If
unused, then this field must be set to 0.

The Identification Data field (variable length) contains identity information. The values
for this field are DOI-specific and the format is specified by the ID Type field. Specific
details for the IETF IPsec DOI identification data are detailed in RFC 2407.

The payload type for the Identification Payload is five(5).

Certificate Payload

The Certificate Payload provides a mean to transport certificates via ISAKMP and can
appear in any ISAKMP message. Certificate payloads should be included in an exchange
whenever an appropriate directory service is not available to distribute certificates. The
Certificate payload must be accepted at any point during an exchange.

The Certificate Payload fields are defined as follows:

The Next Payload field (8 bits) is the identifier for the Payload type of the next payload
in the message. If the current payload is the last in the message, then this field will be 0.

The Reserved field (8 bits) is unused, set to 0.

The Payload Length field (16 bits) is the length in octets of the current payload, including
the generic payload header.

The Certificate Encoding field (8 bits) indicates the type of certificate or certificate-related
information contained in the Certificate Data field.

Certificate Type Value

NONE 0
PKCS #7 wrapped X.509 certificate 1
PGP Certificate 2
DNS Signed Key 3
X.509 Certificate-Signature 4
X.509 Certificate-Key Exchange 5
Kerberos Tokens 6
Certificate Revocation List (CRL) 7
Authority Revocation List (ARL) 8
SPKI Certificate 9
X.509 Certificate-Attribute 10
Reserved 11–255

NETWORK LAYER SECURITY 267

The Certificate Data field (variable length) denotes actual encoding of certificate data.
The type of certificate is indicated by the Certificate Encoding field.

The Payload type for the Certificate payload is six(6).

Certificate Request Payload

The Certificate Request Payload provides a mean to request certificate via ISAKMP
and can appear in any message. Certificate Request Payloads should be included in an
exchange whenever an appropriate directory service is not available to distribute certifi-
cates. The Certificate Request Payload must be accepted at any point during the exchange.
The responder to the Certificate Request payload must send its certificate, if certificates
are based on the values contained in the payload. If multiple certificates are required, then
multiple Certificate Request Payloads should be transmitted.

The Certificate Request Payload fields are defined as follows:

The Next Payload field (8 bits) is the identifier for the payload type of the next payload
in the message. If the current payload is the last in the message, then this field will be 0.

The Reserved field (8 bits) is not used, set to 0.

The Payload Length field (16 bits) is the length in octets of the current payload, including
the generic payload header.

The Certificate Type field (8 bits) contains an encoding of the type of certificate requested.
Acceptable values are listed in the Certificate Payload fields.

The Certificate Authority field (variable length) contains an encoding of an acceptable
certificate authority for the type of certificate requested. As an example, for an X.509
certificate this field would contain the Distinguished Name encoding of the Issuer Name
of an X.509 certificate authority acceptable to the sender of this payload. This may assist
the responder in determining how much of the certificate chain would need to be sent in
response to this request. If there is no specific certificate authority requested, this field
should not be included.

The payload type for the Certificate Request Payload is seven(7).

Hash Payload

The Hash Payload contains data generated by the hash function over some part of the
message and/or ISAKMP state. This payload possibly be used to verify the integrity of
the data in an ISAKMP message or for authentication of the negotiating entities.

The Hash Payload fields are defined as follows:

The Next Payload field (8 bits) is the identifier for the payload type of the next payload
in the message. If the current payload is the last in the message, then this field will be 0.

The Reserved field (8 bits) is not used, set to 0.

The Payload Length field (16 bits) is the length in octets of the current payload, including
the generic payload header.

268 INTERNET SECURITY

The Hash Data field (variable length) is the data that results from applying the hash
routine to the ISAKMP message and/or state.

The payload type for the Hash Payload is eight(8).

Signature Payload

The Signature Payload contains data generated by the digital signature function, over some
part of the message and/or ISAKMP state. This payload is used to verify the integrity of
the data in the ISAKMP message, and may be of use for non-repudiation services.

The Signature Payload fields are defined as follows:

The Next Payload field (8 bits) is the identifier for the payload type of the next payload
in the message. If the current payload is the last in the message, then this field will be 0.

The Reserved field (8 bits) is not used, but set to 0.

The Payload Length field (16 bits) is the length in octets of the current payload, including
the generic payload header.

The Signature Data field (variable length) is the data that results from applying the digital
signature function to the ISAKMP message and/or state.

The payload type for the Signature Payload is nine(9).

Nonce Payload

The Nonce Payload contains random data used to guarantee liveness during an exchange
and protect against replay attacks. If nonce are used by a particular key exchange, the use
of the Nonce Payload wil be dictated by the key exchange. The nonces may be transmitted
as part of the key exchange data, or as a separate payload. However, this is defined by
the key exchange, not by ISAKMP.

The Nonce Payload fields are defined as follows:

The Next Payload field (8 bits) is the identifier for the payload type of the next payload
in the message. If the current payload is the last in the message, then this field will be 0.

The Reserved field (8 bits) is unused, but set to 0.

The Payload Length field (16 bits) is the length in octets of the current payload, including
the generic payload header.

The Nonce Data field (variable length) contains the random data generated by the trans-
mitting entity.

The Payload type for the Nonce Payload is ten(10).

Notification Payload

The Notification Payload can contain both ISAKMP and DOI-specific data and is used
to transmit information data, such as error conditions to an ISAKMP peer. It is possible
to send multiple Notification Payloads in a single ISAKMP message. Notification which

NETWORK LAYER SECURITY 269

occurs during a Phase 1 negotiation is identified by the Initiator and Responder cookie
pair in the ISAKMP Header. Notification which occurs during a Phase 2 negotiation is
identified by the Initiator and Responder cookie pair in the ISAKMP header and the
Message ID and SPI associated with the current negotiation.

The Notification Payload fields are defined as follows:

The Next Payload field (8 bits) is the identifier for the payload type of the next payload
in the message. If the current payload is the last in the message, then this field will be 0.

The Reserved field (8 bits) is unused, but set to 0.

The Payload Length field (16 bits) is the length in octets of the current payload, including
the generic payload header.

The Domain of Interpretation field (32 bits) identifies the DOI under which this notification
is taking place. For ISAKMP this value is zero(0) and for the IPsec DOI it is one (1).

The Protocol-id field (8 bits) specifies the protocol identifier for the current notification.
Examples might include ISAKMP, IPsec ESP, IPsec AH, OSPF, TLS, etc.

The SPI Size field (8 bits) is the length in octets of the SPI as defined by the protocol-
id. In the case of ISAKMP, the Initiator and Responder cookie pair from the ISAKMP
Header is the ISAKMP SPI. Therefore, the SPI size is irrelevant and may be from zero(0)
to sixteen(16). If the SPI size is non-zero, the content of the SPI field must be ignored.
The Domain of Interpretation (DOI) will dictate the SPI size for other protocols.

The Notify Message Type field (16 bits) specifies the type of notification message. Addi-
tional text, if specified by the DOI, is placed in the Notification Data field.

The Security Parameter Index (SPI) field has the variable length. The length of this field
is determined by the SPI Size field and is not necessarily aligned to a 4-octet boundary.
During the SA establishment, a SPI must be generated. ISAKMP is designed to handle
variable sized SPIs. This is accomplished by using the SPI Size field within the Proposal
payload during SA establishment.

The Notification Data field (variable length) is informational or error data transmitted in
addition to the Notify Message Type. Values for this field are DOI-specific.

The payload type for the Notification Payload is eleven (11).

Delete Payload

The Delete Payload contains a protocol-specific security association identifier that the
sender has removed from its SA database. Therefore, the sender is no longer valid. It
is possible to send multiple SPIs in a Delete Payload. But each SPI must be for the
same protocol.

The Delete Payload fields are defined as follows:

The Next Payload field (8 bits) is the identifier for the payload type of the next payload
in the message. If the current payload is the last in the message, then this field will be 0.

The Reserved field (8 bits) is unused, but set to 0.

The Payload Length field (16 bits) is the length in octets of the current payload, including
the generic payload header.

270 INTERNET SECURITY

The Domain of Interpretation field (32 bits) identifies the DOI under which this deletion
is taking place. For ISAKMP this value is zero(0) and for the IPsec DOI it is one (1).

The Protocol-id field (8 bits) specifies that ISAKMP can establish SAs for various proto-
cols, including ISAKMP and IPsec. This field identifies which SA database to apply the
delete request.

The SPI Size field (8 bits) is the length in octets of the SPI as defined by the Protocol-id.
In the case of ISAKMP, the Initiator and Responder cookie pair is the ISAKMP SPI. In
this case, the SPI Size would be 16 bytes for each SPI being deleted.

The # of SPIs field (16 bits) is the number of SPIs contained in the Delete Payload. The
size of each SPI is defined by the SPI Size field.

The Security Parameter Indexes field (variable length) identifies the specific security
associations to delete. Values for this field are DOI and protocol specific. The length of
this field is determined by the SPI Size and # of SPIs fields.

The Payload type for the Delete Payload is twelve(12).

Vendor ID Payload

The Vendor ID Payload contains a vendor defined constant. The constant is used by ven-
dors to identify and recognize remote instances of their implementations. This mechanism
allows a vendor to experiment with new features while maintaining backwards compati-
bility. However, this is not a general extension facility of ISAKMP.

If a Vendor ID payload is sent, it must be sent during the Phase 1 negotiation. Reception
of a familiar Vendor ID Payload in the Phase 1 negotiation allows an implementation to
make use of Private Use payload numbers for vendor specific extension during Phase 2
negotiation.

The Vendor ID Payload fields are defined as follows:

The Next Payload field (8 bits) is the identifier for the payload type of the next payload
in the message. If the current payload is the last in the message, then this field will be 0.

The Reserved field (8 bits) is unused, but set to 0.

The Payload Length field (16 bits) is the length in octets of the current payload, including
the generic payload header.

The Vendor ID field (variable length) contains the choice of hash and text to hash. Vendors
could generate their vendor-id by taking a keyless hash of a string containing the product
name, and the version of the product.

The Payload type for the Vendor ID Payload is thirteen(13).

(III) ISAKMP Exchanges

ISAKMP supplies the basic syntax of a message exchange. ISAKMP allows the creation
of exchanges for SA establishment and key exchange. There are currently five default
Exchange Types defined for ISAKMP. Exchanges define the content and ordering of

NETWORK LAYER SECURITY 271

ISAKMP messages during communications between peers. Most exchanges includes all
the basic payload types: SA (Security Association Payload), KE (Key Exchange Payload),
ID (Identity Payload), SIG (Signature Payload), etc. The primary difference between
exchange types is the ordering of messages and the payload ordering within each message.

The defined exchanges are not meant to satisfy all DOI and key exchange protocol
requirements. If the defined exchanges meet the DOI requirements, then they can be used
as outlined. If the defined exchanges do not meet the security requirements defined by the
DOI, then the DOI must specify new exchange type(s) and the valid sequences of payloads
that make up a successful exchange, and how to build and interpret those payloads.

Base Exchange

The Base Exchange is designed to allow the Key Exchange and Authentication-related
information to be transmitted together. Combining the Key Exchange and Authentication-
related information into one message reduces the number of round-trips at the expense of
not providing identity protection.

Identity Protection Exchange

The Identity Protection Exchange is designed to separate the Key Exchange information
from the Identity and Authentication-related information. Separating the Key Exchange
from the Identity and Authentication-related information provides protection of the com-
municating identities at the expense of two additional messages. Identities are exchanged
under the protection of a previously established common shared secret.

Authentication Only Exchange

The Authentication Only Exchange is designed to allow only Authentication-related infor-
mation to be transmitted. The benefit of this exchange is the ability to perform only
authentication without the computational expense of computing keys. Using this exchange
during negotiation, none of the transmitted information will be encrypted. But the authen-
tication only exchange will be encrypted by the ISAKMP SA, negotiated in the first phase.

Aggressive Exchange

The Aggressive Exchange is designed to allow the Security Association, Key Exchange
and Authentication-related payloads to be transmitted together. Combining these SA, KE,
and Auth information into one message reduces the number of round-trips at the expense
of not providing identity protection. Identity protection is not provided because identities
are exchanged before a common shared secret has been established.

Informational Exchange

The Information Exchange is designed as a one-way transmittal of information that can
be used for security association management. If the Informational Exchange occurs prior

272 INTERNET SECURITY

to the exchange of keying material during an ISAKMP Phase 1 negotiation, there will
be no protection provided for the Information Exchange. Once keying material has been
exchanged or an ISAKMP SA has been established, the Informational Exchange must be
transmitted under the protection provided by the keying material or the ISAKMP SA.

(IV) ISAKMP Payload Processing

The ISAKMP payloads are used in the exchanges described in Part III above and can be
used in exchanges defined for a specific DOI. Part IV describes the processing for each
of the payloads.

General Message Processing

Every ISAKMP message has basic processing applied to insure protocol reliability and
to minimize threats such as denial of services and replay attacks. All processing should
include packet length checks to insure the packet received is at least as long as the
length given in the ISAKMP Header. If the ISAKMP message length and the value in the
Payload Length field of the ISAKMP Header are not the same, then ISAKMP message
must be rejected.

ISAKMP Header Processing

When an ISAKMP message is created at the transmitting entity, the initiator (transmitter)
must create the respective cookie, determine the relevant security characteristics of the
session, construct an ISAKMP Header with fields, and transmit the message to the desti-
nation host (responder).

When an ISAKMP is received at the receiving entity, the responder (receiver) must
verify the Initiator and Responder cookies, check the Next Payload field to confirm it is
valid, check the Major and Minor Version fields to confirm they are correct, check the
Exchange Type field to confirm it is valid, check the Flags field to ensure it contains
correct values, and check the Message ID field to ensure it contains correct values.

Thus, processing of the ISAKMP message continues using the value in the Next Pay-
load field.

Generic Payload Header Processing

When any of the ISAKMP Payloads are created, a Generic Payload Header is placed at
the beginning of these payloads.

When creating the Generic Payload Header, the transmitting entity (initiator) must
place the value of the Next Payload in the Next Payload field, place the value zero(0) in
the Reserved field, place the length (in octets) of the payload in the Payload Length field,
and construct the payloads.

When any of the ISAKMP Payloads are received, the receiving entity (responder) must
check the Next Payload field to confirm it is valid, verify the Reserved field contains the
value zero(0), and process the remaining payloads as defined by the Next Payload field.

NETWORK LAYER SECURITY 273

Security Association Payload Processing

When a Security Association Payload is created, the transmitting entity (initiator) must
determine the Domain of Interpretation (DOI) for which this negotiation is being pre-
formed, determine the situation within the determined DOI for which this negotiation is
being formed, determine the proposal(s) and transform(s) within the situation, construct a
Security Association payload, and transmit the message to the receiving entity (responder).

When a Security Association payload is received, the receiving entity (responder)
must determine if the DOI is supported, determine if the given situation can be protected,
and process the remaining payloads (Proposal, Transform) of the SA payload. If the SA
Proposal is not accepted, then the Invalid Proposal event may be logged in the appropriate
system audit file. An Information Exchange with a Notification payload containing the
No-Proposal-Chosen message type may be sent to the transmitting entity (initiator). This
action is dictated by a system security policy.

Proposal Paylaod Processing

When a Proposal Payload is created, the transmitting entity (initiator) must determine
the Protocol for this proposal, determine the number of proposals to be offered for this
proposal and the number of transform for each proposal, generate a unique pseudo-random
SPI, and construct a Proposal payload.

When a Proposal payload is received, the receiving entity (responder) must determine
if the proposal is supported and if the Protocol-ID field is invalid, determine whether the
SPI is valid or not, ensure whether or not proposals are formed correctly, and then process
the Proposal and Transform payloads as defined by the Next Payload field.

Transform Payload Processing

When creating a Transform Payload, the transmitting entity (initiator) must determine the
Transform # for this transform, determine the number of transforms to be offered for this
proposal, and construct a Transform payload.

When a Transform payload is received, the receiving entity (responder) must do as
follows: Determine if the Transform is supported. If the Transform-ID field contains an
unknown or unsupported value, then that Transform payload must be ignored. Ensure
Transforms are presented according to the details given in the Transform Payload and
Security Association Establishment. Finally, process the subsequent Transform and Pro-
posal payloads as defined by the Next Payload field.

Key Exchange Payload Processing

When creating a Key Exchange payload, the transmitting entity (initiator) must determine
the Key Exchange to be used as defined by the DOI, determine the usage of Key Exchange
Data field as defined by the DOI, and construct a Key Exchange payload. Finally, transmit
the message to the receiving entity (responder).

274 INTERNET SECURITY

When a Key Exchange payload is received, the receiving entity (responder) must
determine if the Key Exchange is supported. If the Key Exchange determination fails, the
message is discarded and the following actions are taken:

The event of Invalid Key Information may be logged in the appropriate system audit
file. An Informational Exchange with a Notification payload containing the Invalid-Key-
Information message type may be sent to the transmitting entity. This action is dictated
by a system security policy.

Identification Payload Processing

When an Identification Payload is created, the transmitting entity (initiator) must determine
the Identification information to be used as defined by the DOI, determine the usage of
the Identification Data field as defined by the DOI, construct an Identification payload,
and finally transmit the message to the receiving entity.

When an Identification payload is received, the receiving entity (responder) must
determine if the Identification Type is supported. This may be based on the DOI and
Situation. If the Identification determination fails, the message is discarded. An Infor-
mational Exchange with a Notification payload containing the Invalid-ID-Information
message type is sent to the transmitting entity (initiator).

Certificate Payload Processing

When a Certificate Payload is created, the transmitting entity (initiator) must determine the
Certificate Encoding which is specified by the DOI, ensure the existence of a certificate
formatted as defined by the Certificate Encoding, construct a Certificate payload, and then
transmit the message to the receiving entity (responder).

When a Certificate payload is received, the receiving entity (responder) must determine
if the Certificate Encoding is supported. If the Certificate Encoding is not supported,
the payload is discarded. The responder then process the Certificate Data field. If the
Certificate Data is improperly formatted, the payload is discarded.

Certificate Request Payload Processing

When creating a Certificate Request Payload, the transmitting entity (initiator) must deter-
mine the type of Certificate Encoding to be requested, determine the name of an acceptable
Certificate Authority, construct a Certificate Request payload, and then transmit the mes-
sage to the receiving entity (responder).

When a Certificate Request payload is received, the receiving entity (responder) must
determine if the Certificate Encoding is supported. If the Certificate Encoding is invalid,
the payload is discarded. The responder must determine if the Certificate Authority is
supported for the specified Certificate Encoding. If the Certificate Authority is improperly
formatted, the payload is discarded. Finally, the responder must process the Certificate
Request. If a requested Certificate Type with the specified Certificate Authority is not
available, then the payload is discarded.

NETWORK LAYER SECURITY 275

Hash Payload Processing

When creating a Hash Payload, the transmitting entity (initiator) must determine the Hash
function to be used as defined by the SA negotiation, determine the usage of the Hash
Data field as defined by the DOI, construct a Hash payload, and then transmit the message
to the receiving entity (responder).

When a Hash Payload is received, the receiving entity (responder) must determine if
the Hash is supported. If the Hash determination fails, the message is discarded. The
responder also performs the Hash function as outlined in the DOI and/or Key Exchange
protocol documents. If the Hash function fails, the message is discarded.

Signature Payload Processing

When a Signature Payload is created, the transmitting entity(initiator) must determine the
Signature function to be used as defined by the SA negotiation, determine the usage of
the Signature Data filed as defined by the DOI, construct a Signature payload, and finally
transmit the message to the receiving entity (responder).

When a Signature payload is received, the receiving entity must determine if the
Signature is supported. If the Signature determination fails, the message is discarded.
The responder must perform the Signature function as outlined in the DOI and/or Key
Exchange protocol documents. If the Signature function fails, the message is
discarded.

Nonce Payload Processing

When creating a Nonce Payload, the transmitting entity (initiator) must create a unique
random values to be used as a nonce, construct a Nonce payload, and transmit the message
to the receiving entity.

When a Nonce Payload is received, the receiving entity (responder) must do as follows:
There are no specific procedures for handling Nonce payloads. The procedures are defined
by the exchange types and possibly the DOI and Key Exchange descriptions.

Notification Payload Processing

During communications it is possible that errors may occur. The Information Exchange
with a Notify Payload provides a controlled method of informing a peer entity that occur
has occurred during protocol processing. It is recommended that Notify Payloads be
sent in a separate Information Exchange rather than appending a Notify Payload to an
existing exchange.

When a Notification Payload is created, the transmitting entity (initiator) must deter-
mine the DOI for this Notification, determine the Protocol-ID for this Notification, deter-
mine the SPI size based on the Protocol-ID field, determine the Notify Message Type
based on the error or status message desired, determine the SPI which is associated with
this notification, determine if additional Notification Data is to be included, construct a
Notification Payload, and finally transmit the messages to the receiving entity.

276 INTERNET SECURITY

When a Notification payload is received, the receiving entity (responder) must deter-
mine if the Informational Exchange has any protection applied to it by checking the
Encryption Bit and Authentication Only Bit in the ISAKMP Header, determine if the
Domain of Interpretation (DOI) is supported, determine if the protocol-ID is supported,
determine if the SPI is valid, determine if the Notify Message Type is valid, and then pro-
cess the Notification payload, including additional Notification Data, and take appropriate
action according to local security policy.

Delete Payload Processing

During communications it is possible that hosts may be compromised or that information
may be interrupted during transmission. If it is discovered that transmissions are being
compromised, then it is necessary to establish a new SA and delete the current SA.

When a Delete Payload is created, the transmitting entity (initiator) must determine
the DOI for this Deletion, determine the Protocol-ID for this Deletion, determine the
SPI size based on the Protocol-id field, determine the # of SPIs to be deleted for this
protocol, determine the SPI(s) which is (are) associated with this deletion, construct a
Delete payload, and then transmit the message to the receiving entity.

When a Delete payload is received, the receiving entity (responder) must do as follows:

� Since the Information Exchange is protected by authentication for an Auth-Only
SA and encryption for other exchange, the message must have these security
services applied using the ISAKMP SA. Any errors that occur during the Secu-
rity Service processing will be evident when checking information in the Delete
payload.

� Determine if the Domain of Interpretation (DOI) is supported.
� Delete if the Protocol-ID is supported.
� Determine if the SPI is valid for each SPI included in the Delete payload.
� Process the Delete payload and take appropriate action, according to local secu-

rity policy.

The Internet Security Association and Key Management Protocol (ISAKMP) is a well
designed protocol provided for Internet security services. ISAKMP provides the ability to
establish SAs for multiple security protocols and applications. ISAKMP establishes the
common base that allows all other security protocols to interoperate.

ISAKMP’s Security Association (SA) feature coupled with authentication and key
establishment provides the security and flexibility that will be needed for future growth
and security diversity. As the Internet grows and evolves, new payloads to support new
security functionality can be added without modifying the entire protocol.

8

Transport Layer Security:
SSLv3 and TLSv1

Secure Sockets Layer version 3 (SSLv3) was introduced by Netscape Communications
Corporation in 1995. SSLeay implements both SSLv2 and SSLv3 and TLSv1 as of the
release of SSLeay-0.9.0. SSLv3 was designed with public review and input from industry
and was published as an Internet-Draft document. After reaching a consensus of opinion to
Internet standardisation, the Transport Layer Security (TLS) Working Group was formed
within IETF in order to develop an initial version of TLS as an Internet standard. The
first version of TLS is very closely compatible with SSLv3. The TLSv1 protocol provides
communications privacy and data integrity between two communicating parties over the
Internet. Both the SSL and TLS protocols allow client/server applications to communicate
in such a way that they prevent eavesdropping, tampering or message forgery. The SSL
(or TLS) protocol is composed of two layers: the SSL (or TLS) Record Protocol and the
SSL (or TLS) Handshake Protocol.

This chapter is devoted to a full discussion of the protocols of both SSLv3 and TLSv1.

8.1 SSL Protocol

SSL is a layered protocol. It is not a single protocol but rather two layers of protocols.
At the lower level, the SSL Record Protocol is layered on top of some reliable transport
protocol such as TCP. The SSL Record Protocol is also used to encapsulate various higher-
level protocols. A higher-level protocol can layer on top of the SSL protocol transparently.
For example, the HyperText Transfer Protocol (HTTP), which provides a transfer service
for Web client/server interaction, can operate on top of the SSL Record Protocol.

The SSL Record Protocol takes the upper-layer application message to be transmitted,
fragments the data into manageable blocks, optionally compresses the data, applies an
MAC, encrypts, adds a header, and transmits the result to TCP. The received data is

Internet Security. Edited by M.Y. Rhee
 2003 John Wiley & Sons, Ltd ISBN 0-470-85285-2

278 INTERNET SECURITY

SSL
Handshake

Protocol

SSL Change
Cipher Spec

Protocol

SSL Alert
Protocol

HTTP

SSL Record Protocol

TCP

IP

Figure 8.1 Two-layered SSL protocols.

decrypted, verified, decompressed, reassembled, and then delivered to higher-level clients.
Figure 8.1 illustrates the overview of the SSL protocol stack.

8.1.1 Session and Connection States

There are two defined specifications: SSL session and SSL connection.

SSL session

An SSL session is an association between a client and a server. Sessions are created by the
Handshake Protocol. They define a set of cryptographic security parameters, which can be
shared among multiple connections. Sessions are used to avoid the expensive negotiation
of new security parameters for each connection. An SSL session coordinates the states
of the client and server. Logically the state is represented twice as the current operating
state and pending state. When the client or server receives a change cipher spec message,
it copies the pending read state into the current read state. When the client or server
sends a change cipher spec message, it copies the pending write state into the current
write state. When the handshake negotiation is completed, the client and server exchange
change cipher spec messages, and they then communicate using the newly agreed-upon
cipher spec.

The session state is defined by the following elements:

• Session identifier : This is a value generated by a server that identifies an active or
resumable session state.

• Peer certificate: This is an X.509 v3 certificate of the peer. This element of the state
may be null.

• Compression method : This is the algorithm used to compress data prior to encryption.
• Cipher spec: This specifies the bulk data encryption algorithm (such as null, DES,

etc.) and a hash algorithm (such as MD5 or SHA-1) used for MAC computation. It
also defines cryptographic attributes such as the hash size.

TRANSPORT LAYER SECURITY: SSLV3 AND TLSV1 279

• Master secret : This is a 48-byte secret shared between the client and server. It repre-
sents secure secret data used for generating encryption keys, MAC secrets and IVs.

• Is resumable: This designates a flag indicating whether the session can be used to
initiate new connections.

SSL connection

A connection is a transport (in the OSI layering model definition) that provides a suitable
type of service. For SSL, such connections are peer-to-peer relationships. The connections
are transient. Every connection is associated with one session.

The connection state is defined by the following elements:

• Server and client random: These are byte sequences that are chosen by the server and
client for each connection.

• Server write MAC secret : This indicates the secret key used in MAC operations on
data sent by the server.

• Client write MAC secret : This represents the secret key used in MAC operations on
data sent by the client.

• Server write key : This is the conventional cipher key for data encrypted by the server
and decrypted by the client.

• Client write key :
This is the conventional cipher key for data encrypted by the client and decrypted by

the server.
• Initialisation vectors: When a block cipher in CBC mode is used, an IV is maintained

for each key. This field is first initialised by the SSL Handshake Protocol. Thereafter
the final ciphertext block from each record is preserved for use as the IV with the
following record. The IV is XORed with the first plaintext block prior to encryption.

• Sequence numbers: Each party maintains separate sequence numbers for transmitted
and received messages for each connection. When a party sends or receives a change
cipher spec message, the appropriate sequence number is set to zero. Sequence num-
bers may not exceed 264 − 1.

8.1.2 SSL Record Protocol

The SSL Record Protocol provides basic security services to various higher-layer proto-
cols. Three upper-layer protocols are defined as part of SSL: the Handshake Protocol, the
Change Cipher Spec Protocol and the Alert Protocol. Two layers of SSL protocols are
shown in Figure 8.1. The SSL Record Layer receives data from higher layers in blocks
of arbitrary size.

The SSL Record Protocol takes an application message to be transmitted, fragments the
data into manageable blocks, optionally compresses the data, applies an MAC, encrypts,
adds a header, and transmits the result in a TCP segment. The received data is decrypted,
verified, decompressed, reassembled and then delivered to higher-level clients. The overall
operation of the SSL Record Protocol is shown in Figure 8.2.

• Fragmentation: A higher-layer message is fragmented into blocks (SSLPlaintext re-
cords) of 214 bytes or less.

280 INTERNET SECURITY

C

EK

Compress

Encrypt

SSL record
header

Transmit to TCP

H()

K

K : Shared sceret key

H() : Hash function (MD5 or SHA-1)

Fragment

Compressed
data

Encrypted data

C

MAC

Application data

FragmentFragment

EK

Figure 8.2 The overall operation of the SSL Record Protocol.

• Compression and decompression: All records are compressed using the compression
algorithm defined in the current session state. The compression algorithm translates
an SSLPlaintext structure into an SSLCompressed structure. Compression must be
lossless and may not increase the current length by more than 1024 bytes. If the decom-
pression function encounters an SSLCompressed.fragment that would decompress
to a length in excess of 214 = 16 348 bytes, it should issue a fatal decompression-
failure alert.

Compression is essentially useful when encryption is applied. If both compres-
sion and encryption are required, compression should be applied before encryption.
The compression processing should ensure that an SSLPlaintext structure is identical
after being compressed and decompressed. Compression is optionally applied in the
SSL Record Protocol, but, if applied, it must be done before encryption and MAC
computation.

• MAC : The MAC is computed before encryption. The computation of an MAC over the
compressed data is illustrated in Figure 8.3. Using a shared secret key, the calculation

TRANSPORT LAYER SECURITY: SSLV3 AND TLSV1 281

Compressed data

MAC-write-secret pad-1

H1

H

MD5 or SHA-1

MD5 or SHA-1

seq-num SSLCompressed.type SSLCompressed.length SSLCompressed.fragment

MAC-write-secret pad-2 H1

Hash algorithm

Hash algorithm

Figure 8.3 Computation of MAC over the compressed data.

is defined as follows:

H1 = hash(MAC-write-secret || pad-1 || seq-num || SSLCompressed.type ||
SSLCompressed.length || SSLCompressed.fragment)

H = hash(MAC-write-secret || pad-2 ||H1)

where

MAC-write-secret: Shared secret key
Hash (H1 and H): Cryptographic hash algorithm;

either MD5 or SHA-1
Pad-1: The byte 0x36 (0011 0110) repeated

48 times (384 bits) for MD5 and
40 times (320 bits) for SHA-1

Pad-2: The byte 0x5C (0101 1100) repeated
48 times for MD5 and
40 times for SHA-1

Seq-num: The sequence number for this message
SSLCompressed.type: The higher-level protocol used to

process this fragment
SSLCompressed.length: The length of the compressed

fragment

282 INTERNET SECURITY

SSLCompressed.fragment: The compressed fragment (the plaintext
fragment if not compressed)

||: concatenation symbol

The compressed message plus the MAC are encrypted using symmetric encryption.
The block ciphers being used as encryption algorithms are:

DES(56), Triple DES(168), IDEA(128),

RC5(variable) and Fortezza(80)

where the number inside the brackets indicates the key size. Fortezza is a PCMCIA
card that provides both encryption and digital signing.

For block encryption, padding is added after the MAC prior to encryption. The
total size of the data (plaintext plus MAC plus padding) to be encrypted must be
a multiple of the cipher’s block length. Padding is added to force the length of the
plaintext to be a multiple of the block cipher’s block length. Padding is formed by
appending a single ‘1’ bit to the end of the message and then ‘0’ bits are added, as
many as needed. The last 64 bits of the total size of padded data are reserved for the
original message length.

For stream encryption, the compressed message plus the MAC are encrypted. Since
the MAC is computed before encryption takes place, it is encrypted along with the
compressed plaintext.

• Append SSL record header : The final processing of the SSL Record Protocol is to
append an SSL record header. The composed fields consist of:

– Content type (8 bits): This field is the higher-layer protocol used to process the
enclosed fragment.

– Major version (8 bits): This field indicates the major version of SSL in use. For
SSLv3, the value is 3.

– Minor version (8 bits): This field indicates the minor version of SSL in use. For
SSLv3, the value is 0.

– Compressed length (16 bits): This field indicates the length in bytes of the plain-
text fragment or compressed fragment if compression is required. The maximum
value is 214 + 2048.

Figure 8.4 illustrates the SSL Record Protocol format.
The SSL-specific protocols consist of the Change Cipher Spec Protocol, the Alert

Protocol and the Handshake Protocol, as shown in Figure 8.1. The contents of these three
protocols are presented in what follows.

8.1.3 SSL Change Cipher Spec Protocol

The Change Cipher Spec Protocol is the simplest of the three SSL-specific protocols.
This protocol consists of a single message, which is compressed and encrypted under
the current CipherSpec. The message consists of a single byte of value 1. The change
cipher spec message is sent by both the client and server to notify the receiving party

TRANSPORT LAYER SECURITY: SSLV3 AND TLSV1 283

Content
type

Plaintext or compressed text

MAC(0, 16 byte(MD5), 20 byte(SHA-1))

Major
version

Minor
version

Compressed
length

To be
encrypted

Figure 8.4 SSL Record Protocol format.

that subsequent records will be protected under the just-negotiated CipherSpec and keys.
Reception of this message causes the pending state to be copied into the current state,
which updates the cipher suite to be used on this connection. The client sends a change
cipher spec message following handshake key exchange and certificate verify messages
(if any), and the server sends one after successfully processing the key exchange message
it received from the client.

8.1.4 SSL Alert Protocol

One of the content types supported by the SSL Record Layer is the alert type. Alert
messages convey the severity of the message and a description of the alert. Alert messages
consist of 2 bytes. The first byte takes the value warning or fatal to convey the seriousness
of the message. If the level is fatal, SSL immediately terminates the connection. In this
case, other connections on the same session may continue, but the session identifiers must
be invalidated, preventing the failed session from being used to establish new connections.
The second byte contains a code that indicates the specific alert. As with other applications
that use SSL, alert messages are compressed and encrypted, as specified by the current
connection state.

A specification of SSL-related alerts that are always fatal is listed in the following:

• unexpected-message: An inappropriate message was received. This alert is always
fatal.

• bad-record-mac: This alert is returned if a record is received with an incorrect MAC.
This message is always fatal.

• decompression-failure: The decompression function received improper input (i.e. data
that would expand to a length that is greater than the maximum allowable length).
This message is always fatal.

• no-certificate: This alert message may be sent in response to a certificate request if
no appropriate certificate is available.

284 INTERNET SECURITY

• bad-certificate: A received certificate was corrupt, i.e. contained a signature that did
not verify correctly.

• unsupported certificate: The type of the received certificate is not supported.
• certificate-revoked : A certificate has been revoked by its signer.
• certificate-expired : A certificate has expired or is not currently valid.
• certificate-unknown: This means some other unspecified issue arose in processing the

certificate, rendering it unacceptable.
• illegal-parameter : A field in the handshake was out of range or inconsistent with

other fields. This is always fatal.
• close-notify : This message notifies the recipient that the sender will not send any more

messages on this connection. The session becomes unresumable if any connection is
terminated without proper close-notify messages with level equal to warning. Each
party is required to send a close-notify alert before closing the write side of the
connection. Either party may initiate a close-notify alert. Any data received after a
closure alert is ignored.

8.1.5 SSL Handshake Protocol

The SSL Handshake Protocol being operated on top of the SSL Record Layer is the
most important part of SSL. This protocol provides three services for SSL connections
between the server and client. The Handshake Protocol allows the client/server to agree
on a protocol version, to authenticate each other by forming an MAC, and to negotiate
an encryption algorithm and cryptographic keys for protecting data sent in an SSL record
before the application protocol transmits or receives its first byte of data.

The Handshake Protocol consists of a series of messages exchanged by the client
and server. Figure 8.5 shows the exchange of handshake messages needed to establish
a logical connection between client and server. The contents and significance of each
message are presented in detail in the following sections.

8.1.5.1 Phase 1: Hello Messages for Logical Connection

The client sends a client hello message to which the server must respond with a server
hello message, or else a fatal error will occur and the connection will fail. The client hello
and server hello are used to establish security enhancement capabilities between client
and server. The client hello and server hello establish the following attributes: protocol
version, random values (ClientHello.random and ServerHello.random), session ID, cipher
suite and compression method.

Hello messages

The hello phase messages are used to exchange security enhancement capabilities between
client and server.

• Hello request : This message is sent by the server at any time, but may be ignored
by the client if the Handshake Protocol is already underway. A client who receives a
hello request while in a handshake negotiation state should simply ignore the message.

TRANSPORT LAYER SECURITY: SSLV3 AND TLSV1 285

1. Hello request

2. Client hello

3. Server hello

4. Server certificate*

5. Server key exchange*

6. Certificate request*

7. Server hello done

8. Client certificate*

9. Client key exchange

10. Certificate verify*

11. Change cipher spec

12. Finished

13. Change cipher spec

14. Finished

Client Server

Asterisks (*) are optional or situation-dependent
messages that are not always sent

Application data

Phase 1

Hello messages for
logical connection

Phase 2

Server authentication
and key exchange

Phase 3

Client authentication
and key exchange

Phase 4

End of secure
connection

Figure 8.5 SSL Handshake Protocol.

• Client hello: The exchange is initiated by the client. A client sends a client hello
message using the session ID of the session to be resumed. The server then checks
its session cache for a match. If a match is found, the server will send a server hello
message with the same session ID value. The client sends a client hello message with
the following parameters:

– Client version: This is the version of the SSL protocol in which the client wishes to
communicate during this session. This should be the most recent (highest-valued)
version supported by the client. The value of this version will be 3.0.

286 INTERNET SECURITY

– Random: This is a client-generated random structure with 28 bytes generated by
a secure random number generator.

– Session ID : This is the identity of a session when the client wishes to use this con-
nection. A nonzero value indicates that the client wishes to update the parameters
of an existing connection or create a new connection in this session. A zero value
indicates that the client wishes to establish a new connection in a new session.

– Cipher suites: This is a list of the cryptographic options supported by the client,
with the client’s first preference first. The single cipher suite is an element of a
list selected by the server from the list in ClientHello.cipher suites. For a resumed
session, this field is the value from the state of the session being resumed.

– Compression method : This is a list of the compression methods supported by the
client, sorted by client preference. If the session ID field is not empty, it must
include the compression method from that session.

• Server hello: The server will send the server hello message in response to a client hello
message when it has found an acceptable set of algorithms. If it is unable to find such
a match, it will respond with a handshake failure alert. The structure of this message
consists of: server version, random, session ID, cipher suite and compression method.

– Server version: This field will contain the lower-valued version suggested by the
client in the client hello and the highest-valued version supported by the server.
The value of this version is 3.0.

– Random: This structure is generated by the server and must be different from
ClientHello.random.

– Session ID : This field represents the identity of the session corresponding to this
connection. If the ClientHello.session id is non-empty, the server will look in its
session cache for a match. If a match is found and the server is willing to establish
the new connection using the specified session state, the server will respond with
the same value as was supplied by the client. This indicates a resumed session
and dictates that the parties must proceed directly to the finished messages.

– Cipher suite: This is the single cipher suite selected by the server from the list in
ClientHello.cipher suites. For a resumed session, this field is the value from the
state of the session being resumed.

– Compression method : This is the single compression algorithm selected by the
server from the list in ClientHello.compression methods. For a resumed sessions,
this field is the value from the resumed session state.

8.1.5.2 Phase 2: Server Authentication and Key Exchange

Following the hello messages, the server begins this phase by sending its certificate if it
needs to be authenticated. Additionally, a server key exchange message may be sent if it
is required. If the server is authenticated, it may request a certificate from the client, if
that is appropriate to the cipher suite selected. Then the server will send the server hello
done message, indicating that the hello message phase of the handshake is complete. The
server will then wait for a client response. If the server has sent a certificate request
message, the client must send the certificate message.

TRANSPORT LAYER SECURITY: SSLV3 AND TLSV1 287

• Server certificate: If the server is to be authenticated, it must send a certificate imme-
diately following the server hello message. The certificate type must be appropriate
for the selected cipher suite’s key exchange algorithm, and is generally an X.509 v3
certificate. It must contain a key which matches the key exchange method. The signing
algorithm for the certificate must be the same as the algorithm for the certificate key.

• Server key exchange message: The server key exchange message is sent by the server
only when it is required. This message is not used if the server certificate contains
Diffie–Hellman parameters, or RSA key exchange is to be used for a signature-
only RSA.

– params: the server’s key exchange parameters.
– signed-params: for non-anonymous key exchange, a hash of the corresponding

params value, with the signature appropriate to that hash applied.
As usual, a signature is created by taking the hash of the message and encrypting it
with the sender’s public key. Hence, the hash is defined as:

md5-hash : MD5(ClientHello.random||ServerHello.random||serverParams)

sha-hash : SHA(ClientHello.random||ServerHello.random||serverParams)

enum {anonymous, rsa, dsa} SignatureAlgorithm;

For a DSS signature, the hash is performed using the SHA-1 algorithm. In the case
of an RSA signature, both an MD5 and an SHA-1 hash are calculated, and the con-
catenation of the two hashes is encrypted with the server’s public key.

• Certificate request message: A non-anonymous server can optionally request a certifi-
cate from the client, if appropriate for the selected cipher suite. This message includes
two parameters, certificate type and certificate authorities. Its structure is as follows:

enum{
rsa_sign(1), des_sign(2), rsa_fixed_dh(3),
dss_fixed_dh(4),
rsa_ephemeral_dh(5), dss_ephemeral_dh(6),
fortezza_dms(20), (255)

} ClientCertificateType;
opaque DistinguishedName<1..216-1>;
struct {

ClientCertificateType certificate_types<1..28-1>;
DistinguishedName certificate_authorities<3..216-1>

} CertificateRequest;

– certificate types: This field is a list of the types of certificates requested, sorted
in order of the server’s preference.

– certificate authorities: This is a list of the distinguished names of acceptable cer-
tificate authorities. These distinguished names may specify a desired distinguished
name for a root CA or for a subordinate CA; thus, this message can be used to
describe both known roots and a desired authorization space.

288 INTERNET SECURITY

Note that DistinguishedName is derived from X.509 and that it is a fatal handshake
failure alert for an anonymous server to request client identification.

• Server hello done message: This message is sent by the server to indicate the end
of the server hello and associated messages. After sending this message, the server
will wait for a client response. This message means that server has finished sending
messages to support the key exchange, and the client can proceed with its phase of
the key exchange. Upon receipt of the server hello done message, the client should
verify that the server provided a valid certificate if required and check that the server
hello parameters are acceptable. If all is satisfactory, the client sends one or more
messages back to the server.

8.1.5.3 Phase 3: Client Authentication and Key Exchange

If the server has sent a certificate request message, the client must send the certificate
message. The client key exchange message is then sent, and the content of that message
will depend on the public key algorithm selected between the client hello and the server
hello. If the client has sent a certificate with signing ability, a digitally signed certificate
verify message is sent to explicitly verify the certificate.

• Client certificate message: This is the first message the client can send after receiv-
ing a server hello done message. This message is sent only when the server requests
a certificate. If no suitable certificate is available, the client should send a certifi-
cate message containing no certificates. If client authentication is required by the
server for the handshake to continue, it may respond with a fatal handshake failure
alert. The same message type and structure will be used for the client’s response to
a certificate request message. Note that a client may send no certificates if it does
not have an appropriate certificate to send in response to the server’s authentica-
tion request. The client’s Diffie–Hellman certificates must match the server-specified
Diffie-Hellman parameters.

• Client key exchange message: This message is always sent by the client. It will imme-
diately follow the client certificate message, if it is sent. Otherwise it will be the first
message sent by the client after it receives the server hello done message. With this
message, the premaster secret is set, either through direct transmission of the RSA-
encrypted secret, or by transmission of Diffie–Hellman parameters which will allow
each side to agree upon the same premaster secret. When the key exchange method
is DH–RSA or DH–DSS, client certification has been requested, and the client was
able to respond with a certificate which contained a Diffie–Hellman public key whose
parameters matched those specified by the server in its certificate; this message will
not contain any data.

• Certificate verify message: This message is used to provide explicit verification of a
client certificate. The message is only sent following any client certificate that has
signing capability (i.e. all certificates except those containing fixed Diffie–Hellman
parameters). When sent, it will immediately follow the client key exchange message.
This message signs a hash code based on the preceding messages, and its structure is
defined as follows:

TRANSPORT LAYER SECURITY: SSLV3 AND TLSV1 289

struct{
Signature signature;

} CertificateVerify;
CertificateVerify.signature.md5_hash

MD5(master_secret||pad2||MD5(handshake-message||
master_secret||pad1))

Certificate.signature.sha_hash
SHA(master_secret||pad2||SHA(handshake-message||

master_secret||pad1))

where pad1 and pad2 are the values defined earlier for the MAC, handshake-messages
refer to all Handshake Protocol messages sent or received starting at client-hello but
not including this message, and master secret is the calculated secret. If the user’s
private key is DSS, then it is used to encrypt the SHA-1 hash. If the user’s private
key is RSA, it is used to encrypt the concatenation of the MD5 and SHA-1 hashes.

8.1.5.4 Phase 4: End of Secure Connection

At this point, a change cipher spec message is sent by the client, and the client copies
the pending CipherSpec into the current CipherSpec. The client then immediately sends
the finished message under the new algorithms, keys and secrets. In response, the server
will send its own change cipher spec message, transfer the pending CipherSpec to the
current one, and then send its finished message under the new CipherSpec. At this point,
the handshake is complete and the client and server may begin to exchange application
layer data (see Figure 8.5).

• Change cipher spec messages: The client sends a change cipher spec message and
copies the pending CipherSpec in the current CipherSpec. This message is immediately
sent after the certificate verify message that is used to provide explicit verification of a
client certificate. It is essential that a change cipher spec message is received between
the other handshake messages and the finished message. It is a fatal error if a change
cipher spec message is not preceded by a finished message at the appropriate point in
the handshake.

• Finished message: This is always sent immediately after a change cipher spec message
to verify that the key exchange and authentication processes were successful. The
content of the finished message is the concatenation of two hash values:

MD5(master_secret||pad2||MD5(handshake_messages||Sender||
master_secret||pad1))

SHA(master_secret||pad2||SHA(handshake_messages||Sender||
master_secret||pad1))

where ‘Sender’ is a code that identifies that the sender is the client and ‘hand-
shake messages’ is code that identifies the data from all handshake messages up to
but not including this message.

290 INTERNET SECURITY

The finished message is first protected with just-negotiated algorithms, keys and
secrets. Recipients of finished messages must verify that the contents are correct. Once
a side has sent its finished message and received and validated the finished message
from its peer, it may begin to send and receive application data over the connection.
Application data treated as transparent data is carried by the Record Layer and is
fragmented, compressed and encrypted based on the current connection state.

8.2 Cryptographic Computations

The key exchange, authentication, encryption and MAC algorithms are determined by
the cipher suite selected by the server and revealed in the server hello message. The
compression algorithm is negotiated in the hello messages, and the random values are
exchanged in the hello messages. The creation of a shared master secret by means of the
key exchange and the generation of cryptographic parameters from the master secrete are
of interest to study as two further items.

8.2.1 Computing the Master Secret

For all key exchange methods, the same algorithm is used to convert the premaster secret
into the master secret. In order to create the master secret, a premaster secret is first
exchanged between two parties and then the master secret is calculated from it. The
master secret is always exactly 48 bytes (384 bits) shared between the client and server.
But the length of the premaster secret is not fixed and will vary depending on the key
exchange method. There are two ways for the exchange of the premaster secret:

• RSA: When RSA is used for server authentication and key exchange, a 48-byte pre-
master secret is generated by the client, encrypted with the server’s public key and
sent to the server. The server decrypts the ciphertext (of the premaster secret) using its
private key to recover the premaseter secret. Both parties then convert the premaster
secret into the master secret as specified below.

• Diffie–Hellman: A conventional Diffie–Hellman computation is performed. Both
client and server generate a Diffie-Hellman common key. This negotiated key is used
as the premaster secret and is converted into the master secret, as specified below.

The client and server then compute the master secret as follows:

master_secret = MD5(pre_master_secret||SHA(‘A’||
pre_master_secret||ClientHello.random||

ServerHello.random))||
MD5(pre_master_secret||SHA(‘BB’||
pre_master_secret||ClientHello.random||

ServerHello.random))||
MD5(pre_master_secret||SHA(‘CCC’||
pre_master_secret||ClientHello.random||

ServerHello.random))

TRANSPORT LAYER SECURITY: SSLV3 AND TLSV1 291

premaster_secret

ClientHello.random ServerHello.random

1

2 3

1 2 3

‘A’ 1 2 3 ‘BB’ 1 2 3 ‘CCC’ 1 2 3

SHA-1 SHA-1 SHA-1

MD5 MD5 MD5

H11 H21 H31

master_secret
(48 bytes)

H3H2H1

Figure 8.6 Computation of the master secret.

where ClientHello.random and ServerHello.random are the two nonce values exchanged
in the initial hello messages.

The generation of the master secret from the premaster secret is shown in Figure 8.6.

8.2.2 Converting the Master Secret into Cryptographic

Parameters

CipherSpec specifies the bulk data encryption algorithm and a hash algorithm used for
MAC computation, and defines cryptographic attributes such as the hash size.

To generate the key material, the following is computed:

292 INTERNET SECURITY

key_block = MD5(master_secret||SHA(‘A’||master_secret||
ServerHello.random||ClientHello.random))||

MD5(master_secret||SHA(‘BB’||master_secret||
ServerHello.random||ClientHello.random))||

MD5(master_secret||SHA(‘CCC’||master_secret||
ServerHello.random||ClientHello.random))||. . .

until enough output has been generated. Note that the generation of the key block from
the master secret uses the same format for generation of the master secret from the
premaster secret. Figure 8.7 illustrates the steps for generation of the key block from the
master secret.

master_secret

ServerHello.random ClientHello.random

1

2 3

1 2 3

‘A’ 1 2 3 ‘BB’ 1 2 3 ‘CCC’ 1 2 3

SHA-1 SHA-1 SHA-1

MD5 MD5 MD5

H11 H21 H31

key_block

H3H2H1

Figure 8.7 Generation of key block.

TRANSPORT LAYER SECURITY: SSLV3 AND TLSV1 293

8.3 TLS Protocol

The TLSv1 protocol itself is based on the SSLv3 protocol specification as published by
Netscape. Many of the algorithm-dependent data structures and rules are very close so
that the differences between TLSv1 and SSLv3 are not dramatic. The current work on
TLS is aimed at producing an initial version as an Internet standard. It is recommended
that readers examine the comparative studies between the TLSv1 of RFC 2246 and SSLv3
of Netscape. In this section, we will not repeat every detailed step of identical protocol
contents, but only highlight the differences.

8.3.1 HMAC Algorithm

A Keyed-hashing Message Authentication Code (HMAC) is a secure digest of some data
protected by a secret. Forging the HMAC is infeasible without knowledge of the MAC
secret. HMAC can be used with a variety of different hash algorithms, namely MD5 and
SHA-1, denoting these as HMAC MD5(secret, data) and HMAC SHA-1(secret, data).

There are two differences between the SSLv3 and TLSMAC schemes. TLS makes use
of the HMAC algorithm defined in RFC 2104. HMAC was fully discussed in Chapters 4
and 7 and defined as:

HMAC = H [(K ⊕ opad)||H [(K ⊕ ipad)||M]]

where

ipad = 00110110(0x36) repeated 64 times (512 bits)
opad = 01011100(0x5c) repeated 64 times (512 bits)

H = one-way hash function for TLS (either MD5 or SHA-1)
M = message input to HMAC
K = padded secret key equal to the block length of the hash code

(512 bits for MD5 and SHA-1)

The following explains the HMAC equation:

1. Append zeros to the end of K to create a b-byte string (i.e. if K = 160 bits in length
and b = 512 bits, then K will be appended with 352 zero bits or 44 zero bytes 0x00).

2. XOR (bitwise exclusive-OR) K with ipad to produce the b-bit block computed in
step 1.

3. Append M to the b-byte string resulting from step 2.
4. Apply H to the stream generated in step 3.
5. XOR (bitwise exclusive-OR) K with opad to produce the b-byte string computed in

step 1.
6. Append the hash result H from step 4 to the b-byte string resulting from step 5.
7. Apply H to the stream generated in step 6 and output the result.

294 INTERNET SECURITY

Padding

Padding

Hopad

ipad

HMAC(M)

K

H

M

IV

IV

…
bb b b

M

M||

||

K ' = 512 bits

b = 512 bits b = 512 bits

Ωi Ωi M0 M1 ML−1

b = 512 bits

b = 512 bits

b = 512 bits h = 160 bits (SHA-1)
 128 bits (MD5)

160 bits (SHA-1)
128 bits (MD5)

160 bits (SHA-1)
128 bits (MD5)

Ωi = K '⊕ipad ≡ b

Figure 8.8 Overall operation of HMAC computation using either MD5 or SHA-1 (message length
computation based on �i||M).

Figure 8.8 illustrates the overall operation of HMAC–MD5 or HMAC–SHA-1.

Example 8.1 HMAC–SHA-1 computation using RFC method:

Data : 0x 7104f218 a3192e65 1cf7025d 8011bf79 4a19

Key : 0x 31fa7062 c45113e3 2679fd13 53b71264

– A B C D E

IV 67452301 efcdab89 98badcfe 10325476 c3d2e1f0
H [(K ⊕ ipad)||M] 8efeef30 f64b360f 77fd8236 273f0784 613bbd4b
H [(K ⊕ opad)||H [(K ⊕

ipad)||M]]
31db10b8 ed346850 d0f0b7dd 50fd71f4 2dacd24c

HMAC–SHA-1 = 0x 31 db10b8 ed346850 d0f0b7dd 50fd71f4 2dacd24c

The alternative operation for computation of either HMAC–MD5 or HMAC–SHA-1
is described in the following:

TRANSPORT LAYER SECURITY: SSLV3 AND TLSV1 295

Hopad

HMAC(M)

f

f

H

Mi

Mi

(IV)i

(IV)0

128 bits

128 bits

IV

IV

Padding

ipad

K

K ' = 512 bits

b = 512 bits

b = 512 bits

b = 512 bits

b = 512 bits

Mi||Ωi …
bb b b

M

Ωi M0 M1 ML−1

Padding

h = 128 bits

128 bits128 bits

Ωi

Ωi = K '⊕ipad ≡ b

Figure 8.9 Alternative operation of HMAC computation using MD5 (message length computation
is based on M only).

1. Append zeros to K to create a b-bit string K ′, where b = 512 bits.
2. XOR K ′ (padding with zero) with ipad to produce the b-bit block.
3. Apply the compression function f(IV, K ′⊕ ipad) to produce (IV)i = 128 bits.
4. Compute the hash code h with (IV)i and Mi .
5. Raise the hash value computed from step 4 to a b-bit string.
6. XOR K ′ (padded with zeros) with opad to produce the b-bit block.
7. Apply the compression function f(IV, K ′⊕ opad) to produce (IV)o = 128 bits.
8. Compute the HMAC with (IV)o and the raised hash value resulting from step 5.

Figure 8.9 illustrates the overall operation of HMAC–MD5.

Example 8.2 HMAC-MD5 computation using alternative method:

Data : 0x 2143f501 f014a713 c1059e23 7123fd68

Key : 0x 31fa7062 c45113e3 2679fd13 53b71264

296 INTERNET SECURITY

– A B C D

IV 67452301 efcdab89 98badcfe 10325476
f[(K ⊕ ipad), IV] = (IV)i 13fbaf34 034879ab 35e73505 526a8d28
H [M, (IV)i] 90c6d9b0 0f281bc8 94d04b33 7f0f4265
f[(K ⊕ opad), IV] = (IV)o 5f8647d7 fa8e9afa bffa4989 3cd471d1
H [H [M, (IV)i], (IV)o] 2c47cd5b 68830268 7d255059 45c7bef0

HMAC–MD5 = 0x 2c47cd5b 68830268 7d255059 45c7bef0

For TLS, the MAC computation encompasses the fields indicated in the following
expression:

HMAC_hash(MAC_write_secret, seq_num||TLScompressed.type||
TLSCompressed.version||TLSCompressed.length||
TLSCompressed.fragment)

Note that the MAC calculation includes all of the fields covered by the SSLv3 com-
putation, plus the field TLSCompressed.version, which is the version of the protocol
being employed.

8.3.2 Pseudo-random Function

TLS utilizes a pseudo-random function (PRF) to expand secrets into blocks of data for
the purposes of key generation or validation. The PRF takes relatively small values such
as a secret, a seed and an identifying label as input and generates an output of arbitrary
longer blocks of data.

The data expansion function, P hash(secret, data), uses a single hash function to expand
a secret and seed into an arbitrary quantity of output. The data expansion function is
defined as follows:

P_hash(secret, seed) = HMAC_hash (secret, A(1)||seed) ||
HMAC_hash (secret, A(2)||seed) ||
HMAC_hash (secret, A(3)||seed) ||. . .

where A() is defined as:

A(0) = seed
A(i) = HMAC hash(secret, A(i-1)) and || indicates concatenation.

Applying A(i), i = 0, 1, 2, . . . , to P hash, the resulting sketch can be depicted as shown
in Figure 8.10. As you can see, P hash is iterated as many times as necessary to pro-
duce the required quantity of data. Thus the data expansion function makes use of the
HMAC algorithm with either MD5 or SHA-1 as the underlying hash function. As an
example, consider SHA-1 whose value is 20 bytes (160 bits). If P SHA-1 is used to cre-
ate 64 bytes (512 bits) of data, it will have to be iterated four times up to A(4), creating

TRANSPORT LAYER SECURITY: SSLV3 AND TLSV1 297

HMAC

HMAC HMAC

HMAC HMAC

HMAC

Seed(A(0))

Secret

A(1)

A(2)

A(3)

A(1) = HMAC_hash (secret, A(0))

A(2) = HMAC_hash (secret, A(1))

A(3) = HMAC_hash (secret, A(2))

data expansion unit
by hashing

. . .

. . .

Figure 8.10 TLS data expansion mechanism using P hash(secret,seed).

20 × 4 = 80 bytes (640 bits) of output data. Hence, the last 16 bytes (128 bits) of the
final iteration A(4) must be discarded, leaving (80 − 16) = 64 bytes of output data. On
the other hand, MD5 produces 16 bytes (128 bits). In order to generate an 80-byte output,
P MD5 should exactly be iterated through A(5), while P SHA-1 will only iterate through
A(4) as described above. In fact, alignment to a shared 64-byte output will be required
to discard the last 16 bytes from both P SHA-1 and P MD5.

TLS’s PRF is created by splitting the secret into two halves (S1 and S2) and using
one half to generate data with P MD5 and the other half to generate data with P SHA-1.
These two results are then XORed to produce the output. S1 is taken from the first half of
the secret and S2 from the second half. Their length is respectively created by rounding
up the length of the overall secret divided by 2. Thus, if the original secret is an odd

number of bytes long, the last bytes of S1 will be the same as the first byte of S2:

L S = length in bytes of secret

L S1 = L S2 = ceil(L S/2)

298 INTERNET SECURITY

The PRF is then defined as the result of mixing the two pseudo-random streams by
XORing them together. The PRF is defined as:

PRF(secret, label, seed) = P MD5(S1, label||seed) ⊕ P SHA − 1(S2, label||seed)

The label is an ASCII string. Figure 8.11 illustrates the PRF generation scheme to
expand secrets into blocks of data.

Example 8.3 Refer to Figure 8.11. Suppose the following parameters are given:

seed = 0x 80 af 12 5c 7e 36 f3 21

label = rocky mountains = 0x 72 6f 63 6b 79 20 6d 6f 75 6e 74 61 69 6e 73

secret = 0x 35 79 af 12 c4

Then

label||seed = 0x 72 6f 63 6b 79 20 6d 6f 75 6e 74 61 69 6e 73 80 af 12 5c 7e 36 f3 21

= A(0)

S1 = 0x 35 79 af for P MD5, S2 = 0x af 12 c4 for P SHA − 1

Data expansion by P MD5 :

A(1) = HMAC MD5(S1, A(0))

= d0 de 36 53 79 78 04 a0 21 b8 6f f8 29 60 d5 f7

| |

seed

label

P_MD5 P_SHA-1S1 S2

+

PRF(secret, label, seed)

S1: First half of the secret
S2: Second half of the secret

P_MD5: Data expansion function to expand a secret
 S1 and (seed| | secret) using MD5
P_SHA-1: Data expansion function to expand a secret
 S2 and (seed| | secret) using SHA-1

Figure 8.11 A pseudo-random function (PRF) generation scheme.

TRANSPORT LAYER SECURITY: SSLV3 AND TLSV1 299

HMAC MD5(S1, A(1)||A(0))

= 32 fd b3 70 eb 36 11 70 a4 3b 50 a9 fb ea 2a ec

A(2) = HMAC MD5(S1, A(1))

= 8c ce 5b 50 02 af 75 91 e7 20 cd 86 d9 3e 67 9d

HMAC MD5(S1, A(2)||A(0))

= 1f a8 4c af 5d e1 20 01 ea b0 38 6a a5 76 f9 8e

A(3) = HMAC MD5(S1, A(2))

= 45 48 5d 00 4e 64 07 45 eb 2c 18 60 7c e6 fa 1f

HMAC MD5(S1, A(3)|| A(0))

= f0 23 29 d9 5e 89 4b 70 cc 45 f8 aa 1f 58 8e 55

A(4) = HMAC MD5(S1, A(3))

= 87 39 c6 d3 7a b f8 e3 29 79 3a ae 63 24 6a ff

HMAC MD5(S1, A(4)|| A(0))

= 2e 0c 27 26 d0 b4 78 85 09 a2 69 1c 1b 1b d7 8d

A(5) = HMAC MD5(S1, A(4))

= 3a 2c aa d8 b3 ec 2e 5d 40 1c 39 bd 3e 48 1a d9

HMAC MD5(S1, A(5)|| A(0))

= 92 f2 63 5d 88 3a dd bf 8d ec e1 cf 0c 5c 8f 4c

where S1 = 0x 35 79 af = first half of the secret, and

A(0) = label||seed

Thus, P MD5 equals:

32 fd b3 70 eb 36 11 70 a4 3b 50 a9 fb ea 2a ec
1f a8 4c af 5d e1 20 01 ea b0 38 6a a5 76 f9 8e
f0 23 29 d9 5e 89 4b 70 cc 45 f8 aa 1f 58 8e 55
2e 0c 27 26 d0 b4 78 85 09 a2 69 1c 1b 1b d7 8d
92 f2 63 5d 88 3a dd bf 8d ec e1 cf 0c 5c 8f 4c (80 bytes)

Data expansion by P SHA-1 :

A(1) = HMAC SHA1(S2, A(0))

= aa ea 46 1b a6 ad 43 34 51 f8 c6 ef 70 dd f4 60 ca b9 40 2f

HMAC SHA1(S2, A(1)|| A(0))

= d0 8a d5 07 e0 b8 30 78 70 d9 c8 bb dd ba f5 a3 d0 77 49 e8

A(2) = HMAC SHA1(S2, A(1))

= 33 fd 23 41 01 ce 06 f8 c0 2b b3 e6 54 21 1c f4 6c 88 ab da

300 INTERNET SECURITY

HMAC SHA1(S2, A(2)|| A(0))

= 64 b5 cc 3f 79 31 5b 5d e6 e4 4f eb 98 a8 bf 3f 97 13 38 e1

A(3) = HMAC SHA1(S2, A(2))

= 86 1f a3 a5 37 58 41 71 f1 9f a5 f3 48 2e 5d 84 7c a8 b6 52

HMAC SHA1(S2, A(3)|| A(0))

= 03 26 11 02 ce 69 74 4a 21 f4 76 55 13 af 77 80 2d fb 2f 36

A(4) = HMAC SHA1(S2, A(3))

= 9c 4d 01 3a 8c 48 54 42 68 07 4d f1 f0 a9 78 c3 6f ab d8 b4

HMAC SHA1(S2, A(4)|| A(0))

= 48 56 04 b5 b4 5f 9b d8 c7 2f 28 f6 9e 1d 8a c4 72 9a b9 32

where S2 = 0x af 12 c4 = second half of the secret, and

A(0) = label||seed

Thus, P SHA1 equals:

d0 8a d5 07 e0 b8 30 78 70 d9 c8 bb dd ba f5 a3
d0 77 49 e8 64 b5 cc 3f 79 31 5b 5d e6 e4 4f eb
98 a8 bf 3f 97 13 38 e1 03 26 11 02 ce 69 74 4a
21 f4 76 55 13 af 77 80 2d fb 2f 36 48 56 04 b5
b4 5f 9b d8 c7 2f 28 f6 9e 1d 8a c4 72 9a b9 32 (80 bytes)

Finally, P MD5 ⊕ P SHA − 1 equals:

e2 77 66 77 0b 8e 21 08 d4 e2 98 12 26 50 df 4f
cf df 05 47 39 54 ec 3e 93 81 63 37 43 92 b6 65
68 8b 96 e6 c9 9a 73 91 cf 63 e9 a8 d1 31 fa 1f
0f f8 51 73 c3 1b 0f 05 24 59 46 2a 53 4d d3 38
26 ad f8 85 4f 15 f5 49 13 f1 6b 0b 7e c6 36 7e (80 bytes)

8.3.3 Error Alerts

The Alert Protocol is classified into the closure alert and the error alert. One of the content
types supported by the TLS Record Layer is the alert type. Alert messages convey the
severity of the message and a description of the alert. Alert messages with a fatal level
result in the immediate termination of the connection.

The client and the server must share knowledge that the connection is ending in order
to avoid a truncation attack. Either party may initiate a close by sending a close notify
alert. This message notifies the recipient that the sender will not send any more messages
on this connection.

Error handling in the TLS Handshake Protocol is very simple. When an error is
detected, the detecting party sends a message to the other party. Upon transmission or
receipt of a fatal alert message, both parties immediately close the connection.

TRANSPORT LAYER SECURITY: SSLV3 AND TLSV1 301

TLS supports all of the error alerts defined in SSLv3 with the exception of additional
alert codes defined in TLS. The additional error alerts are described in the following:

• decryption failed: A TLS ciphertext is decrypted in an invalid way: either it was not an
even multiple of the block length or its padding values, when checked, were incorrect.
This message is always fatal.

• record overflow: A TLS record was received with a ciphertext whose length exceeds
214 + 2048 bytes, or the ciphertext decrypted to a TLS compressed record with more
than 214 + 1024 bytes. This message is always fatal.

• unknown ca: A valid certificate chain or partial chain was received, but the certificate
was not accepted because the CA certificate could not be located or could not be
matched with a known, trusted CA. This message is always fatal.

• access denied: A valid certificate was received, but when access control was applied,
the sender decided not to proceed with the negotiation. This message is always fatal.

• decode error: A message could not be decoded because a field was out of its specified
range or the length of the message was incorrect. This message was incorrect. It is
always fatal.

• decrypt error: A handshake cryptographic operation failed, including being unable to
verify a signature, decrypt a key exchange or validate a finished message.

• export restriction: A negotiation not in compliance with export restrictions was
detected; for example, attempting to transfer a 1024-bit ephemeral RSA key for the
RSA EXPORT handshake method. This message is always fatal.

• protocol version: The protocol version the client has attempted to negotiate is recog-
nised but not supported due to the fact that old protocol versions might be avoided
for security reasons. This message is always fatal.

• insufficient security: Returned instead of hanshake failure when a negotiation has
failed specifically because the server requires ciphers more secure than those supported
by the client. This message is always fatal.

• internal error: An internal error unrelated to the peer or the correctness of the protocol,
such as a memory allocation failure, makes it impossible to continue. This message
is always fatal.

• user canceled: This handshake is being cancelled for some reason unrelated to a pro-
tocol failure. If the user cancels an operation after the handshake is complete, just
closing the connection by sending a close notify is more appropriate. This alert should
be followed by a close notify. This message is generally a warning.

• no renegotiation: This is sent by the client in response to a hello request or by the
server in response to a client hello after initial handshaking. Either of these messages
would normally lead to renegotiation, but this alert indicates that the sender is not
able to renegotiate. This message is always a warning.

For all errors where an alert level is not explicitly specified, the sending party may
determine at its discretion whether this is a fatal error or not; if an alert with a level of
warning is received, the receiving party may decide at its discretion whether to treat this
as a fatal error or not. However, all messages which are transmitted with a level of fatal
must be treated as fatal messages.

302 INTERNET SECURITY

8.3.4 Certificate Verify Message

Recall that the hash computations for SSLv3 are included with the master secret, the
handshake message and pads. In the TLS certificate verify message, the MD5 and SHA-1
hashes are calculated only over handshake messages as shown below:

CertificateVerify.signature.md5_hash
MD5(handshake_message)

CertificateVerify.signature.sha_hash
SHA(handshake_message)

Here handshake messages refer to all handshake messages sent or received starting at
client hello up to, but not including, this message, including the type and length fields of
the handshake messages.

8.3.5 Finished Message

A finished message is always sent immediately after a change cipher spec message to
verify that the key exchange and authentication processes were successful. It is essential
that a change cipher spec message be received between the other handshake messages
and the finished message. As with the finished message in SSLv3, the finished message in
TLS is a hash based on the shared master secret, the previous handshake messages, and
a label that identifies client and server. However, the TLS computation for verify data is
somewhat different from that of the SSL calculation as shown below:

PRF(master_secret, finished_label, MD5(handshake_message)||
SHA-1(handshake_message))

where

• The finished label indicates either the string ‘client finished’ sent by the client or the
string ‘server finished’ sent by the server, respectively.

• The handshake message includes all handshake messages starting at client hello up
to, but not including, this finished message. This is only visible at the handshake layer
and does not include record layer headers. In fact, this is the concatenation of all
the handshake structures exchanged thus far. This may be different from handshake
messages for SSL because it would include the certificate verify message. Also, the
handshake message for the finished message sent by the client will be different from
that for the finished message sent by the server.

Note that change cipher spec messages, alters and any other record types are not
handshake messages and are not included in the hash computations.

8.3.6 Cryptographic Computations (for TLS)

In order to begin connection protection, the TLS Record Protocol requires specifica-
tion of a suite of algorithms, a master secret, and the client and server random values.

TRANSPORT LAYER SECURITY: SSLV3 AND TLSV1 303

The authentication, encryption and MAC algorithms are determined by the cipher suite
selected by the server and revealed in the server hello message. The compression algo-
rithm is negotiated in the hello messages, and the random values are exchanged in the
hello messages.

All that remains is to compute the master secret and the key block. The premaster secret
for TLS is calculated in the same way as in SSLv3. The presmater secret should be deleted
from memory once the master secret has been computed. As in SSLv3, the master secret
in TLS in calculated as a hash function of the premaster secret and two hello random
numbers. The TLS master secret computation is different from that of SSLv3 and is
defined as follows:

master_secret = PRF(premaster_secret, ‘‘master secret’’,
ClientHello.random||ServerHello.random)

The master secret is always exactly 48 bytes (384 bits) in length. The length of the
premaster secret will vary depending on key exchange method:

• RSA: When RSA is used for server authentication and key exchange, a 48-byte pre-
master secret is generated by the client, encrypted with the server’s public key, and
sent to the server. The server uses its private key to decrypt the premaster secret. Both
parties then convert the premaster secret into the master secret, as specified above.

• Diffie–Hellman: A conventional Diffie–Hellman computation is performed. The nego-
tiated key Z is used as the premaster secret, and is converted into the master secret,
as specified above.

The computation of the key block parameters (MAC secret keys, session encryption
keys and IVs) is defined as follows:

key_block = PRF(master_secret, ‘‘key expansion’’,
SecurityParameters.server_random||

SecurityParameters.client_random)

until enough output has been generated. As with SSLv3, key block is a function of the
master secret and the client and server random numbers, but for TLS the actual algorithm
is different.

On leaving this chapter, it is recommended that readers search for and find any other
small differences between SSL and TLS.

9

Electronic Mail Security:
PGP, S/MIME

Pretty Good Privacy (PGP) was invented by Philip Zimmermann who released version
1.0 in 1991. Subsequent versions 2.6.x and 5.x (or 3.0) of PGP have been implemented
by an all-volunteer collaboration under the design guidance of Zimmermann. PGP is
widely used in the individual and commercial versions that run on a variety of platforms
throughout the computer community. PGP uses a combination of symmetric secret-key
and asymmetric public-key encryption to provide security services for electronic mail
and data files. It also provides data integrity services for messages and data files by
using digital signature, encryption, compression (zip) and radix-64 conversion (ASCII
Armor). With the explosively growing reliance on e-mail and file storage, authentication
and confidentiality services have become increasing demands.

MIME is an extension to the RFC 2822 framework which defines a format for text
messages being sent using e-mail. MIME is actually intended to address some of the
problems and limitations of the use of SMTP. Secure/Multipurpose Internet Mail Exten-
sion (S/MIME) is a security enhancement to the MIME Internet e-mail format standard,
based on technology from RSA Data Security.

Although both PGP and S/MIME are on an IETF standards track, it appears likely that
PGP will remain the choice for personnel e-mail security for many users, while S/MIME
will emerge as the industry standard for commercial and organisational use. Two schemes
of PGP and S/MIME are discussed in this chapter.

9.1 PGP

Before looking at the operation of PGP in detail, it is convenient to confirm the notation.
In the forthcoming analyses for security and data integrity services, the following symbols
are generally used:

Internet Security. Edited by M.Y. Rhee
 2003 John Wiley & Sons, Ltd ISBN 0-470-85285-2

306 INTERNET SECURITY

Ks = session key H = hash function
KPa = public key of user A KPb = public key of user B
KSa = private key of user A KSb = private key of user B
E = conventional encryption D = conventional decryption
Ep = public-key encryption Dp = public-key decryption
Z = compression using zip algorithm Z−1 = decompression
|| = concatenation

9.1.1 Confidentiality via Encryption

PGP provides confidentiality by encrypting messages to be transmitted or data files to be
stored locally using a conventional encryption algorithm such as IDEA, 3DES or CAST-
128. In PGP, each symmetric key, known as a session key, is used only once. A new
session key is generated as a random 128-bit number for each message. Since it is used
only once, the session key is bound to the message and transmitted with it. To protect
the key, it is encrypted with the receiver’s public key. Figure 9.1 illustrates the sequence,
which is described as follows:

• The sender creates a message.
• The sending PGP generates a random 128-bit number to be used as a session key for

this message only.
• The session key is encrypted with RSA, using the recipient’s public key.
• The sending PGP encrypts the message, using CAST-128 or IDEA or 3DES, with the

session key. Note that the message is also usually compressed.
• The receiving PGP uses RSA with its private key to decrypt and recover the ses-

sion key.
• The receiving PGP decrypts the message using the session key. If the message was

compressed, it will be decompressed.

M M

KPb KSb

Ks Ep Dp

DEZ Z−1
Z(M)

EKPb
(Ks)

EKs
[Z(M)]

Sender A Receiver B

Z(M)

Ks

Figure 9.1 PGP confidentiality computation scheme with compression/decompression Algorithms.

ELECTRONIC MAIL SECURITY: PGP, S/MIME 307

Instead of using RSA for key encryption, PGP may use a variant of Diffie–Hellman
(known as ElGamal) that does provide encryption/decryption. In order for the encryption
time to reduce, the combination of conventional and public-key encryption is used in
preference to simply using RSA or ElGamal to encrypt the message directly. In fact,
CAST-128 and other conventional algorithms are substantially faster than RSA or ElGa-
mal. Since the recipient is able to recover the session key that is bound to the message,
the use of the public-key algorithms solves the session key exchange problem. Finally,
to the extent that the entire scheme is secure, PGP should provide the user with a range
of key size options from 768 to 3072 bits.

Both digital signature and confidentiality services may be applied to the same message.
First, a signature is generated from the message and attached to the message. Then the
message plus signature are encrypted using a symmetric session key. Finally, the session
key is encrypted using public-key encryption and prefixed to the encrypted block.

9.1.2 Authentication via Digital Signature

The digital signature uses a hash code of the message digest algorithm, and a public-key
signature algorithm. Figure 9.2 illustrates the digital signature service provided by PGP.
The sequence is as follows:

• The sender creates a message.
• SHA-1 is used to generate a 160-bit hash code of the message.
• The hash code is encrypted with RSA using the sender’s private key and a digital

signature is produced.
• The binary signature is attached to the message.
• The receiver uses RSA with the sender’s public key to decrypt and recover the

hash code.
• The receiver generates a new hash code for the received message and compares it

with the decrypted hash code. If the two match, the message is accepted as authentic.

The combination of SHA-1 and RSA provides an effective digital signature scheme.
As an alternative, signatures can be generated using DSS/SHA-1. The National Institute

M

KPa

KSa

Ep

Dp

H Z −1

EKSa
[H(M)]

M

Sender A Receiver B

H

?
=

YES

NO

Authentic

Failed

Z Z
M

EKSa
[H(M)]

Figure 9.2 PGP authentication computation scheme using compression algorithm.

308 INTERNET SECURITY

of Standards and Technology (NIST) has published FIPS PUB 186, known as the Digital
Signature Standard (DSS). The DSS uses an algorithm that is designed to provide only
the digital signature function. Although DSS is a public-key technique, it cannot be used
for encryption or key exchange. The DSS approach for generating digital signatures was
fully discussed in Chapter 5. The DSS makes use of the secure hash algorithm (SHA-1)
described in Chapter 4 and presents a new digital signature algorithm (DSA).

9.1.3 Compression

As a default, PGP compresses the message after applying the signature but before encryp-
tion. The placement of Z for compression and Z−1 for decompression is shown in
Figures 9.1 and 9.2. This compression algorithm has the benefit of saving space both
for e-mail transmission and for file storage. However, PGP’s compression technique will
present a difficulty.

Referring to Figure 9.1, message encryption is applied after compression to strengthen
cryptographic security. In reality, cryptanalysis will be more difficult because the com-
pressed message has less redundancy than the original message.

Referring to Figure 9.2, signing an uncompressed original message is preferable
because the uncompressed message together with the signature are directly used for future
verification. On the other hand, for a compressed message, one may consider two cases,
either to store a compressed message for later verification or to recompress the message
when verification is required. Even if a recompressed message were recovered, PGP’s
compression algorithm would present a difficulty due to the fact that different trade-offs
in running speed versus compression ratio produce different compressed forms.

PGP makes use of a compression package called ZIP which is functionally equivalent
to PKZIP developed by PKWARE, Inc. The zip algorithm is perhaps the most commonly
used cross-platform compression technique.

Two main compression schemes, named after Abraham Lempel and Jakob Ziv, were
first proposed by them in 1977 and 1978, respectively. These two schemes for text com-
pression (generally referred to as lossless compression) are broadly used because they are
easy to implement and also fast.

In 1982 James Storer and Thomas Szymanski presented their scheme, LZSS, based
on the work of Lempel and Ziv. In LZSS, the compressor maintains a window of size
N bytes and a lookahead buffer. Sliding-window-based schemes can be simplified by
numbering the input text characters mod N , in effect creating a circular buffer. Variants
of sliding-window schemes can be applied for additional compression to the output of the
LZSS compressor, which include a simple variable-length code (LZB), dynamic Huffman
coding (LZH) and Shannon–Fano coding (ZIP 1.x). All of them result in a certain degree
of improvement over the basic scheme, especially when the data is rather random and the
LZSS compressor has little effect.

Recently an algorithm was developed which combines the idea behind LZ77 and LZ78
to produce a hybrid called LZFG. LZFG uses the standard sliding window, but stores the
data in a modified tree data structure and produces as output the position of the text in the
tree. Since LZFG only inserts complete phrases into the dictionary, it should run faster
than other LZ77-based compressors.

ELECTRONIC MAIL SECURITY: PGP, S/MIME 309

Huffman compression is a statistical data compression technique which reduces the
average code length used to represent the symbols of an alphabet. Huffman code is an
example of a code which is optimal when all symbols probabilities are integral powers
of 1/2. A technique related to Huffman coding is Shannon–Fano coding. This coding
divides the set of symbols into two equal or almost equal subsets based on the probability
of occurrence of characters in each subset. The first subset is assigned a binary 0, the
second a binary 1. Huffman encoding always generates optimal codes, but Shannon–Fano
sometimes uses a few more bits.

Decompression of LZ77-compressed text is simple and fast. Whenever a (position,
length) pair is encountered, one goes to that position in that window and copies length

bytes to the output.

9.1.4 Radix-64 Conversion

When PGP is used, usually part of the block to be transmitted is encrypted. If only
the signature service is used, then the message digest is encrypted (with the sender’s
private key). If the confidentiality service is used, the message plus signature (if present)
are encrypted (with a one-time symmetric key). Thus, part or all of the resulting block
consists of a stream of arbitrary 8-bit octets. However, many electronic mail systems only
permit the use of blocks consisting of ASCII text. To accommodate this restriction, PGP
provides the service of converting the raw 8-bit binary octets to a stream of printable
7-bit ASCII characters, called radix-64 encoding or ASCII Armor. Therefore, to transport
PGP’s raw binary octets through unreliable channels, a printable encoding of these binary
octets is needed.

The scheme used for this purpose is radix-64 conversion. Each group of three octets
of binary data is mapped into four ASCII characters. This format also appends a CRC to
detect transmission errors. This radix-64 conversion is a wrapper around the binary PGP
messages, and is used to protect the binary messages during transmission over non-binary
channels, such as Internet e-mail.

Table 9.1 shows the mapping of 6-bit input values to characters. The character set
consists of the upper- and lower-case letters, the digits 0–9, and the characters ‘+’ and
‘/’. The ‘=’ character is used as the padding character. The hyphen ‘-’ character is
not used.

Thus, a PGP text file resulting from ASCII characters will be immune to the modifi-
cations inflicted by mail systems. It is possible to use PGP to convert any arbitrary file to
ASCII Armor. When this is done, PGP tries to compress the data before it is converted
to Radix-64.

Example 9.1 Consider the mapping of a 24-bit input (a block of three octets) into a
four-character output consisting of the 8-bit set in the 32-bit block.

Suppose the 24-bit raw text is:

10110010 01100011 00101001

The hexadecimal representation of this text sequence is b2 63 29.

310 INTERNET SECURITY

Table 9.1 Radix-64 encoding

6-bit
value

Character
encoding

6-bit
value

Character
encoding

6-bit
value

Character
encoding

6-bit
value

Character
encoding

0 A 16 Q 32 g 48 w
1 B 17 R 33 h 49 x
2 C 18 S 34 i 50 y
3 D 19 T 35 j 51 z
4 E 20 U 36 k 52 0
5 F 21 V 37 l 53 1
6 G 22 W 38 m 54 2
7 H 23 X 39 n 55 3
8 I 24 Y 40 o 56 4
9 J 25 Z 41 p 57 5

10 K 26 a 42 q 58 6
11 L 27 b 43 r 59 7
12 M 28 c 44 s 60 8
13 N 29 d 45 t 61 9
14 O 30 e 46 u 62 +
15 P 31 f 47 v 63 /

(pad) =

Arranging this input sequence in blocks of 6 bits yields:

101100 100110 001100 101001

The extracted 6-bit decimal values are 44, 38, 12, 41.
Referring to Table 9.1, the radix-64 encoding of these decimal values produces the fol-
lowing characters:

smMp

If these characters are stored in 8-bit ASCII format with zero parity, we have them in
hexadecimal as follows:

73 6d 4d 70

In binary representation, this becomes:

01110110 01101101 01001101 01110000

9.1.4.1 ASCII Armor Format

When PGP encodes data into ASCII Armor, it puts specific headers around the data, so
PGP can construct the data later. PGP informs the user about what kind of data is encoded
in ASCII Armor through the use of the headers.

Concatenating the following data creates ASCII Armor: an Armor head line, Armor
headers, a blank line, ASCII-Armored data, Armor checksum and Armor tail. Specifically,
an explanation for each item is as follows:

ELECTRONIC MAIL SECURITY: PGP, S/MIME 311

• An Armor head line: This consists of the appropriate header line text surrounded by
five dashes (‘-’, 0x2D) on either side of the header line text. The header line text is
chosen based upon the type of data that is being encoded in Armor, and how it is
being encoded. Header line texts include the following strings:

– BEGIN PGP MESSAGE – used for signed, encrypted or compressed files.
– BEGIN PGP PUBLIC KEY BLOCK – used for armouring public keys.
– BEGIN PGP PRIVATE KEY BLOCK – used for armouring private keys.
– BEGIN PGP MESSAGE, PART X/Y – used for multipart messages, where the

armour is divided amongst Y parts, and this is the Xth part out of Y.
– BEGIN PGP MESSAGE, PART X – used for multipart messages, where this is

the Xth part of an unspecified number of parts; requires the MESSAGE-ID Armor
header to be used.

– BEGIN PGP SIGNATURE – used for detached signatures, PGP/MIME signatures
and natures following clear-signed messages. Note that PGP 2.xs BEGIN PGP
MESSAGE is used for detached signatures.

• Armor headers: There are pairs of strings that can give the user or the receiving
PGP implementation some information about how to decode or use the message. The
Armor headers are a part of the armour, not a part of the message, and hence are not
protected by any signatures applied to the message. The format of an Armor header
is that of a (key, value) pair. A colon (‘:’ 0x38) and a single space (0x20) separate
the key and value. PGP should consider improperly formatted Armor headers to be
corruptions of ASCII Armor. Unknown keys should be reported to the user, but PGP
should continue to process the message.

Currently defined Armor header keys include:

– Version: This states the PGP version used to encode the message.
– Comment : This is a user-defined comment.
– MessageID : This defines a 32-character string of printable characters. The string

must be the same for all parts of a multipart message that uses the ‘PART X’
Armor header. MessageID string should be unique enough that the recipient of the
mail can associate all the parts of a message with each other. A good checksum
or cryptographic hash function is sufficient.

– Hash: This is a comma-separated list of hash algorithms used in the message.
This is used only in clear-signed messages.

– Charset : This is a description of the character set that the plaintext is in. PGP
defines text to be in UTF-8 by default. An implementation will get the best results
by translating into and out of UTF-8 (see RFC 2279). However, there are many
instance where this is easier said than done. Also, there are communities of users
who have no need for UTF-8 because they are all satisfied with a character set
like ISO Latin-5 or a Japanese one. In such instances, an implementation may
override the UTF-8 default by using this header key.

• A blank line: This indicates zero length or contains only white space.
• ASCII-Armoured data: An arbitrary file can be converted to ASCII-Armoured data by

using Table 9.1.

312 INTERNET SECURITY

• Armor checksum: This is a 24-bit CRC converted to four characters of radix-64 encod-
ing by the same MIME base 64 transformation, preceded by an equals sign (=). The
CRC is computed by using the generator 0x864cfb and an initialisation of 0xb704ce.
The accumulation is done on the data before it is converted to radix-64, rather than
on the converted data. The checksum with its leading equals sign may appear on the
first line after the base 64 encoded data.

• Armor tail : The Armor tail line is composed in the same manner as the Armor header
line, except the string ‘BEGIN’ is replaced by the string ‘END’.

9.1.4.2 Encoding Binary in Radix-64

The encoding process represents three 8-bit input groups as output strings of four encoded
characters. These 24 bits are then treated as four concatenated 6-bit groups, each of which
is translated into a single character in the radix-64 alphabet. Each 6-bit group is used as
an index. The character referenced by the index is placed in the output string.

Special processing is performed if fewer than 24 bits are available at the end of the
data being encoded. There are three possibilities:

1. The last data group has 24 bits (three octets). No special processing is needed.
2. The last data group has 16 bits (two octets). The first two 6-bit groups are processed

as above. The third (incomplete) data group has two zero-value bits added to it, and
is processed as above. A pad character (=) is added to the output.

3. The last data group has 8 bits (one octet). The first 6-bit group is processed as above.
The second (incomplete) data group has four zero-value bits added to it, and is
processed as above. Two pad characters (=) are added to the output.

Radix-64 printable encoding of binary data is shown in Figure 9.3.

8 8 8

6 6 6 6

88 8 8

R-64 R-64R-64R-64

24 bits

Three 8-bit input groups

Four concatenated 6-bit groups
used as indexes

Radix-64 encoding

Four characters (32 bits)
stored in 8-bit ASCII format

Four characters (32 bits)

Figure 9.3 Radix-64 printable encoding of binary data.

ELECTRONIC MAIL SECURITY: PGP, S/MIME 313

Example 9.2 Consider the encoding process from 8-bit input groups to the output
character string in the radix-64 alphabet.

1. Input raw text: 0x 15 d0 2f 9e b7 4c

8-bit octets: 00010101 11010000 00101111 10011110 10110111 01001100

6-bit index: 000101 011101 000000 101111 100111 101011 011101 001100

Decimal: 5 29 0 47 39 43 29 12

Output character: F d A v n r d M
(radix-64 encoding)

ASCII format (0x): 46 64 41 76 6e 72 64 4d

Binary: 01000110 01100100 01000001 01110110

01101110 01110010 01100100 01001101

2. Input raw text: 0x 15 d0 2f 9e b7

8-bit octets: 00010101 11010000 00101111 10011110 10110111

6-bit index: 000101 011101 000000 101111 100111 101011 011100

Pad with 00 (=)

Decimal: 5 29 0 47 39 43 28

Output character: F d A v n r c =
3. Input raw text: 0x 15 d0 2f 9e

8-bit octets: 00010101 11010000 00101111 10011110

6-bit index: 000101 011101 000000 101111 100111 100000

Pad with 0000 (==)

Decimal: 5 29 0 47 39 32

Output character: F d A v n g = =

9.1.5 Packet Headers

A PGP message is constructed from a number of packets. A packet is a chunk of data
which has a tag specifying its meaning. Each packet consists of a packet header of variable
length, followed by the packet body.

The first octet of the packet header is called the packet tag as shown in Figure 9.4. The
MSB is ‘bit 7’ (the leftmost bit) whose mask is 0x80 (10000000) in hexadecimal. PGP
2.6.x only uses old format packets. Hence, software that interoperates with PGP 2.6.x
must only use old format packets. These packets have 4 bits of content tags, but new
format packets have 6 bits of content tags.

9.1.5.1 Packet Tags

The packet tag denotes what type of packet the body holds. The defined tags (in deci-
mal) are:

0–Reserved
1–Session key packet encrypted by public key

314 INTERNET SECURITY

7 6 5 4 3 2 1 0

Packet length

Length
type

Content tag
(6 bits)

Old format packets: content tag (bits 5, 4, 3, 2); length type (bits 1,0)

New format packets: content tag (bits 5, 4, 3, 2, 1, 0)

MSB

1

2

1

2

Packet tag

Content tag
(4 bits)

Figure 9.4 Packet header.

2–Signature packet
3–Session key packet encrypted by symmetric key
4–One-pass signature packet
5–Secret-key packet
6–Public-key packet
7–Secret-subkey packet
8–Compressed data packet
9–Symmetrically encrypted data packet
10–Marker packet
11–Literal data packet
12–Trust packet
13–User ID packet
14–Public subkey packet
60 ∼ 63–Private or experimental values

9.1.5.2 Old-Format Packet Lengths

The meaning of the length type in old-format packets is:

0–The packet has a one-octet length. The header is two octets long.
1–The packet has a two-octet length. The header is three octets long.
2–The packet has a four-octet length. The header is five octets long.
3–The packet is of indeterminate length. An implementation should not use indeterminate

length packets except where the end of data will be clear from the context. It is better
to use a new-format header described below.

9.1.5.3 New-Format Packet Lengths

New-format packets have four possible ways of encoding length:

ELECTRONIC MAIL SECURITY: PGP, S/MIME 315

• One-octet lengths: A one-octet body length header encodes packet lengths from 0 to
191 octets. This type of length header is recognised because the one-octet value is
less that 192. The body length is equal to:

bodyLen = 1st octet

• Two-octet lengths : A two-octet body length header encodes a length from 192 to 8383
octets. It is recognised because its first octet is in the range 192 to 223. The body
length is equal to:

bodyLen = ((1st octet − 192) ≪ 8) + (2nd octet) + 192

• Five-octet lengths: A five-octet body length header encodes packet lengths of up to
4 294 967 295 (0xffffffff) octets in length. This header consists of a single octet holding
the value 255, followed by a four-octet scalar. The body length is equal to:

bodyLen = (2nd octet ≪ 24)|(3rd octet ≪ 16)|(4th octet ≪ 8)|5th octet

• Partial body lengths: A partial body length header is one octet long and encodes
the length of only part of the data packet. This length is a power of 2, from 1 to
1 073 741 824 (2 to the 30th power). It is recognised by its one-octet value that is
greater than or equal to 224, and less than 255. The partial body length is equal to:

partialBodyLen = 1 ≪ (1st octet & 0x1f)

Each partial body length header is followed by a portion of the packet body data. The
header specifies this portion’s length. Another length header (of one of the three types:
one octet, two octet or partial) follows that portion. The last length header in the packet
must not be a partial body length header. The latter headers may only be used for the
non-final parts of the packet.

Example 9.3 Consider a packet with length 100. Compute its length encoded in one octet.
Now:

100 (decimal) = 26 + 25 + 22 = 01100100(binary) = 0x64 (hex)

Thus, a packet with length 100 may have its length encoded in one octet: 0x64. This
header is followed by 100 octets of data. Similarly, a packet with length 1723 may have
its length encoded in two octets: 0xc5, 0xfb. This header is followed by the 1723 octets
of data. A packet with length 100000 may have its length encoded in five octets: 0xff,
0x00, 0x01, 0x86, 0xa0.

9.1.6 PGP Packet Structure

A PGP file consists of a message packet, a signature packet and a session key packet.

9.1.6.1 Message Packet

This packet includes the actual data to be transmitted or stored as well as a header that
includes control information generated by PGP such as a filename and a timestamp. A

316 INTERNET SECURITY

timestamp specifies the time of creation. The message component consists of a single
literal data packet.

9.1.6.2 Signature Packet (Tag 2)

This packet describes a binding between some public key and some data. The most
common signatures are a signature of a file or a block of text, and a signature that is a
certification of a user ID.

Two versions of signature packets are defined. PGP 2.6.x only accepts version 3
signature. Version 3 provides basic signature information, while version 4 provides an
expandable format with subpackets that can specify more information about the signa-
ture. It is reasonable to create a v3 signature if an implementation is creating an encrypted
and signed message that is encrypted with a v3 key.

At first, version 3 for basic signature information will be presented in the following.
The signature packet is the signature of the message component, formed using a hash code
of the message component and sender a’s public key. The signature component consists
of single signature packet.

The signature includes the following components:

• Timestamp: This is the time at which the signature was created.
• Message digest (or hash code): A hash code represents the 160-bit SHA-1 digest,

encrypted with sender a’s private key. The hash code is calculated over the signa-
ture timestamp concatenated with the data portion of the message component. The
inclusion of the signature timestamp in the digest protects against replay attacks. The
exclusion of the filename and timestamp portion of the message component ensures
that detached signatures are exactly the same as attached signatures prefixed to the
message. Detached signatures are calculated on a separate file that has none of the
message component header fields.

If the default option of compression is chosen, then the block consisting of the literal
data packet and the signature packet is compressed to form a compressed data packet:

• Leading two octets of hash code: These enable the recipient to determine if the correct
public key was used to decrypt the hash code for authentication, by comparing the
plaintext copy of the first two octets with the first two octets of the decrypted digest.
Two octets also serve as a 16-bit frame-check sequence for the message.

• Key ID of sender’s public key : This identifies the public key that should be used to
decrypt the hash code and hence identifies the private key that was used to encrypt
the hash code.

The message component and signature component (optional) may be compressed using
ZIP and may be encrypted using a session key.

There are a number of possible meanings of a signature, which are specified in
signature-type octets as shown below:

0x00: Signature of a binary document
0x01: Signature of a canonical text document

ELECTRONIC MAIL SECURITY: PGP, S/MIME 317

0x02: Stand-alone signature
0x10: Generic certification of a user ID and public-key packet

(All PGP key signatures are of this type of certification.)
0x11: Personal certification of a user ID and public-key packet

(The issuer has not carried out any verification of the claim.)
0x12: Casual certification of a user ID and public-key packet

(The issuer has carried out some casual verification of the identity claim.)
0x13: Positive certification of a user ID and public-key packet

(The issuer has carried out substantial verification of the identity claim.)
0x18: Subkey binding signature

(This signature is a statement by the top-level signing key indicating that it owns
the subkey.)

0x1f: Signature directly on a key
(This signature is calculated directly on a key. It binds the information in the signature

subpackets to the key.)
0x20: Key revocation signature

(This signature is calculated directly when the key is revoked. A revoked key is not
to be used.)

0x28: Subkey revocation signature
(This signature is calculated directly when the subkey is revoked. A revoked subkey

is not to be used.)
0x30: Certification revocation signature

(This signature revokes an earlier user ID certification signature. It should be issued
by the same key that issued the revoked signature or an authorised revocation key.)

0x40: Timestamp signature
(This signature is only meaningful for the timestamp contained in it.)

The contents of the signature packets of version 3 (V3) and version 4 (V4) are illustrated
in Table 9.2.

The signature calculation for version 4 signature is based on a hash of the signed data.
The data being signed is hashed, and then the signature data from the version number to
the hashed subpacket data is hashed. The resulting hash value is what is signed. The left
16 bits of the hash are included in the signature packet to provide a quick test to reject
some invalid signatures.

9.1.6.3 Session Key Packets (Tag 1)

This component includes the session key and the identifier of the receiver’s public key
that was used by the sender to encrypt the session key. A public-key-encrypted session
key packet, EKPb

(Ks), holds the session key used to encrypt a message. The symmetrically
encrypted data packets are preceded by one public-key-encrypted session key packet for
each PGP 5.x key to which the message is encrypted. The message is encrypted with the
session key, and the session key is itself encrypted and stored in the encrypted session
key packet. The recipient of the message finds a session key that is encrypted to its public
key, decrypts the session key, and then uses the session key to decrypt the message.

318 INTERNET SECURITY

Table 9.2 Signature packet format of version 3 and version 4

Content Length in octets

V3 V4

Version number: V3(3), V4(4) 1 1

Signature type 1 1

Creation time 4

Signer’s key ID 8

Public-key algorithm 1 1

Hash algorithm 1 1

Field holding left 16 bits of
signed hash value

2 2

One or more MPIs comprising
the signature

Algorithm specific∗ Algorithm specific

Scalar octet count for hashed
subpacket data

2

Hashed subpacket data Zero or more
subpackets

Scalar octet count for all of the
unhashed subpackets

2

Unhashed subpacket data Zero or more
subpackets

∗Algorithm-specific fields for RSA signature: MPI of RSA signature value md ; algorithm-
specific fields for DSA signature: MPI of DSA value r , MPI of DSA value s. (MPI =
Multiprecision Integer)

The body of this session key component consists of:

• A one-octet version number which is 3.
• An eight-octet key ID of the public key that the session key is encrypted to.
• A one-octet number giving the public key algorithm used.
• A string of octets that is the encrypted session key. This string’s contents are dependent

on the public-key algorithm used:

– Algorithm-specific fields for RSA encryption: multiprecision integer (MPI) of
RSA encrypted value me-mod n.

– Algorithm-specific fields for ElGamal encryption: MPI of ElGamal value gk mod
p; MIP of ElGamal value myk mod p. The value ‘m’ is derived from the ses-
sion key.

If compression has been used, then conventional encryption is applied to the com-
pressed data packet format from the compression of the signature packet and the literal
data packet. Otherwise, conventional encryption is applied to the block consisting of the

ELECTRONIC MAIL SECURITY: PGP, S/MIME 319

M T FN H(M)
Leading two

octets of H(M)
Key ID
of KPa

T
Key ID
of KPb

Signature
packet

Session key
packet

EKSa
EKPb

KS

Radix-64 conversion function

Content

M : Data T : Timestamp

FN : Filename H(M) : Message digest

KS : Session key EKSa : Encryption with user a’s private key

EKPb
 : Encryption with user b’s public key

Operation

EKS

ZIP

Message
packet

Figure 9.5 PGP message format.

signature packet and the literal data packet. In either case, the ciphertext is referred to as
a conventional-key-encrypted data packet.

As shown in Figure 9.5, the entire block of PGP message is usually encoded with
radix-64 encoding.

9.1.7 Key Material Packet

A key material packet contains all the information about a public or private key. There
are four variants of this packet type and two versions.

9.1.7.1 Key Packet Variants

There are:

• Public-key packet (tag 6): This packet starts a series of packets that forms a PGP
5.x key.

• Public subkey packet (tag 14): This packet has exactly the same format as a public-
key packet, but denotes a subkey. One or more subkeys may be associated with a

320 INTERNET SECURITY

top-level key. The top-level key provides signature services, and the subkeys provide
encryption services. PGP 2.6.x ignores public-subkey packets.

• Secret-key packet (tag 5): This packet contains all the information that is found in a
public-key packet, including the public-key materials, but also includes the secret-key
material after all the public-key fields.

• Secret-subkey packet (tag 7): A secret-subkey packet is the subkey analogous to the
secret-key packet and has exactly the same format.

9.1.7.2 Public-key Packet Formats

There are two variants of version 3 packets and version 2 packets. Version 3 packets were
originally generated by PGP 2.6. Version 2 packets are identical in format to version 3
packets, but are generated by PGP 2.5. However, v2 keys are deprecated and they must
not be generated. PGP 5.0 introduced version 4 packets, with new fields and semantics.
PGP 2.6.x will not accept key-material packets with versions greater than 3. PGP 5.x
(or PGP3) implementation should create keys with version 4 format, but v4 keys correct
some security deficiencies in v3 keys.

A v3 key packet contains:

• A one-octet version number (3).
• A four-octet number denoting the time that the key was created.
• A two-octet number denoting the time in days that this key is valid.
• A one-octet number denoting the public-key algorithm of this key.
• A series of multiprecision integers (MPIs) comprising the key material: an MPI of

RSA public module n; an MPI of RSA public encryption exponent e.

A key ID is an eight-octet scalar that identifies a key. For a v3 key, the eight-octet
key ID consists of the low 64 bits of the public modulus of the RSA key. The fingerprint

of a v3 key is formed by hashing the body (excluding the two-octet length) of the MPIs
that form the key material with MD5.

Note that MPIs are unsigned integers. An MPI consists of two parts: a two-octet scalar
that is the length of the MPI in bits followed by a string of octets that contain the
actual integer.

Example 9.4 Suppose the string of octets [0009 01ff] forms an MPI. The length of the
MPI in bits is [00000000 00001001] or 9 (= 23 + 20) in octets. The actual integer value
of the MPI is:

[01ff] = 28 + 27 + 26 + 25 + 24 + 23 + 22 + 21 + 20 = 511

The MPI size is:

((MPI.length + 7)/8) + 2 = ((9 + 7)/8) + 2 = 4 octets

which checks the given size of the MPI string.
The v4 format is similar to the v3 format except for the absence of a validity period.

Fingerprints of v4 keys are calculated differently from v3 keys. A v4 fingerprint is the

ELECTRONIC MAIL SECURITY: PGP, S/MIME 321

160-bit SHA-1 hash of the one-octet packet tag, followed by the two-octet packet length,
followed by the entire public-key packet starting with the version field. The key ID is the
low-order 64 bits of the fingerprint.

A v4 key packet contains:

• A one-octet version number (4).
• A four-octet number denoting the time that the key was created.
• A one-octet number denoting the public-key algorithm of this key.
• A series of MPIs comprising the key material:

– Algorithm-specific fields for RSA public keys: MPI of RSA public modulus n;
MPI of RSA public encryption exponent e.

– Algorithm-specific fields for DSA public keys: MPI of DSA prime p; MPI of
DSA group order q (q is a prime divisor of p − 1); MPI of DSA group generator
g; MPI of DSA public key value y = gx where x is secret.

– Algorithm-specific fields for ElGamal public keys: MPI of ElGamal prime p;
MPI of ElGamal group generator g; MPI of ElGamal public key value y = gx

where x is secret.

9.1.7.3 Secret-key Packet Formats

The secret-key and secret-subkey packets contain all the data of public-key and public-
subkey packets in encrypted form, with additional algorithm-specific key data appended.

The secret-key packet contains:

• A public-key or public-subkey packet, as described above.
• One octet indicating string-to-key (S2K) usage conventions: 0 indicates that the secret-

key data is not encrypted; 255 indicates that an S2K specifier is being given. Any
other value specifies a symmetric-key encryption algorithm.

• If the S2K usage octet was 255, a one-octet symmetric encryption algorithm (optional).
• If the S2K usage octet was 255, an S2K specifier (optional). The length of the S2K

specifier is implied by its type, as described above.
• If secret data is encrypted, an eight-octet IV (optional).
• Encrypted MPIs comprising the secret-key data. These algorithm-specific fields are as

described below.
• A two-octet checksum of the plaintext of the algorithm-specific portion (sum of all

octets, mod 216 = mod 65 536):

– Algorithm-specific fields for RSA secret keys: MPI of RSA secret exponent d;
MPI of RSA secret prime value p; MPI of RSA secret prime value q (p < q);
MPI of u, the multiplicative inverse of p, mod q.

– Algorithm-specific fields for DSA secret keys: MPI of DSA secret exponent x.
– Algorithm-specific fields for ElGamal secret keys: MPI of ElGamal secret expo-

nent x.

322 INTERNET SECURITY

Simple S2K directly hashes the string to produce the key data:

Octet 0: 0x00
Octet 1: hash algorithm

It also hashes the passphrase to produce the session key. The hashing process to be done
depends on the size of the session key and the size of the hash algorithm’s output. If the
hash size is greater than or equal to the session key size, the higher-order (leftmost) octets
of the hash are used as the key. If the hash size is less than the key size, multiple instances
are preloaded with 0, 1, 2, . . . octets of zeros in order to produce the required key data.

S2K specifiers are used to convert passphrase strings into symmetric-key encryp-
tion/decryption keys. They are currently used in two ways: to encrypt the secret part
of private keys in the private keyring, and to convert passphrases to encryption keys for
symmetrically encrypted messages.

Secret MPI values can be encrypted using a passphrase. If an S2K specifier is given, it
describes the algorithm for converting the passphrase to a key, otherwise a simple MD5
hash of the passphrase is used. The cipher for encrypting the MPIs is specified in the
secret-key packet.

Encryption/decryption of the secret data is done in CFB (Cipher Feedback) mode using
the key created from the passphrase and IV from the packet. A different mode is used
with v3 keys (which are only RSA) than with other key formats. With v3 keys, the prefix
data (the first two octets) of the MPI is not encrypted; only the MPI non-prefix data is
encrypted. Furthermore, the CFB state is resynchronised at the beginning of each new
MPI value, so that the CFB block boundary is aligned with the start of the MPI data. With
v4 keys, a simpler method is used: all secret MPI values are encrypted in CFB mode,
including the MPI bitcount prefix.

The 16-bit checksum that follows the algorithm-specific portion is the algebraic sum,
mod 65 536, of the plaintext of all the algorithm-specific octets (including the MPI prefix
and data). With v4 keys, the checksum is encrypted like the algorithm-specific data. This
value is used to check that the passphrase was correct.

Besides simple S2K, there are two more S2K specifiers currently supported:

• Salted S2K : This includes a salt value in the simple S2K specifier that hashes the
passphrase to help prevent dictionary attacks:

Octet 0: 0x01
Octet 1: hash algorithm
Octets 2–9: eight-octet salt value

Salted S2K is exactly like simple S2K, except that the input to the hash function
consists of the eight octets of salt from the S2K specifier, followed by the passphrase.

• Iterated and salted S2K : This includes both a salt and octet count. The salt is combined
with the passphrase and the resulting value is hashed repeatedly. This further increases
the amount of work an attacker would have to do.

Octet 0: 0x03
Octet 1: hash algorithm

ELECTRONIC MAIL SECURITY: PGP, S/MIME 323

Octets 2–9: eight-octet salt value
Octet 10: count, a one-octet, coded value. (The count is coded into a one-octet number.)

Iterated–salted S2K hashes the passphrase and salt data multiple times. The total
number of octets to be hashed is given in the encoded count in the S2K specifier. But
the resulting count value is an octet count of how many octets will be hashed, not an
iteration count. The salt followed by the passphrase data is repeatedly hashed until
the number of octets specified by the octet count has been hashed. Implementations
should use salted or iterated–salted S2K specifiers because simple S2K specifiers are
more vulnerable to dictionary attacks.

9.1.8 Algorithms for PGP 5.x

This section describes the algorithms used in PGP 5.x.

9.1.8.1 Public-Key Algorithms

ID Algorithm

1 RSA (encrypt or sign)

2 RSA encryption only

3 RSA sign only

16 ElGamal (encrypt only)

17 DSA (DSS)

18 Reserved for elliptic curve

19 Reserved for ECDSA

20 ElGamal (encrypt or sign)

21 Reserved for Diffie–Hellman

100–110 Private/experimental algorithm

9.1.8.2 Symmetric-Key Algorithms

ID Algorithm

0 Plaintext or unencrypted data

1 IDEA

2 Triple DES (DES–EDE)

3 CAST 5 (128-bit key)

4 Blowfish (128-bit key, 16 rounds)

5 SAFER-SK128 (13 rounds)

6 Reserved for DES/SK

324 INTERNET SECURITY

ID Algorithm

7 Reserved for AES (128-bit key)

8 Reserved for AES (192-bit key)

9 Reserved for ASE (256-bit key)

100–110 Private/experimental algorithm

9.1.8.3 Compression Algorithm

ID Algorithm

0 Uncompressed

1 ZIP (RFC 1951)

2 ZLIB (RFC 1950)

100–110 Private/experimental algorithm

9.1.8.4 Hash Algorithms

ID Algorithm

1 MD5

2 SHA-1

3 RIPE-MD/160

4 Reserved for double-width SAH (experimental)

5 MD2

6 Reserved for TIGER/192

7 Reserved for HAVAL (5 pass, 160-bit)

100–110 Private/experimental algorithm

These tables are not an exhaustive list. An implementation may utilise an algorithm
not on these lists.

9.2 S/MIME

Secure/Multipurpose Internet Mail Extension (S/MIME) provides a consistent means to
send and receive secure MIME data. S/MIME, based on the Internet MIME standard, is a
security enhancement to cryptographic electronic messaging. Further, S/MIME not only
is restricted to e-mail, but can be used with any transport mechanism that carries MIME
data, such as HTTP. As such, S/MIME takes advantage of allowing secure messages
to be exchanged in mixed-transport systems. Therefore, it appears likely that S/MIME

ELECTRONIC MAIL SECURITY: PGP, S/MIME 325

will emerge as the industry standard for commercial and organisational use. This section
describes a protocol for adding digital signature and encryption services to MIME data.

9.2.1 MIME

SMTP is a simple mail transfer protocol by which messages are sent only in NVT (Net-
work Virtual Terminal) 7-bit ASCII format. NVT normally uses what is called NVT
ASCII. This is an 8-bit character set in which the seven lowest-order bits are the same as
ASCII and the highest-order bit is zero.

MIME was defined to allow transmission of non-ASCII data through e-mail. MIME
allows arbitrary data to be encoded in ASCII and then transmitted in a standard e-mail mes-
sage. It is a supplementary protocol that allows non-ASCII data to be sent through SMTP.
However, MIME is not a mail protocol and cannot replace SMTP; it is only an extension
to SMTP. In fact, MIME does not change SMTP or POP3, neither does it replace them.

The MIME standard provides a general structure for the content type of Internet mes-
sages and allows extensions for new content-type applications. To accommodate arbitrary
data types and representations, each MIME message includes information that tells the
recipient the type of the data and the encoding used. The MIME standard specifies that
a content-type declaration must contain two identifiers, a content type and a subtype,
separated by a slash.

9.2.1.1 MIME Description

MIME transforms non-ASCII data at the sender’s site to NVT ASCII data and delivers
it to the client SMTP to be sent through the Internet. The server SMTP at the receiver’s
site receives the NVT ASCII data and delivers it to MIME to be transformed back to the
original non-ASCII data. Figure 9.6 illustrates a set of software functions that transforms
non-ASCII data to ASCII data and vice versa.

9.2.1.2 MIME Header

MIME defines five headers that can be added to the original SMTP header section:

• MIME Version
• Content Type

User A MIME

Client
SMTP

Server
SMTP

User BMIME

Non-ASCII
data

7-bit
NVT ASCII

7-bit
NVT ASCII

7- bit
NVT ASCII

Non-ASCII
data

Figure 9.6 MIME showing a set of transforming functions.

326 INTERNET SECURITY

Original header

MIME header
MIME Version: 1.1
Content Type: type/subtype
Content Transfer Encoding: encoding type
Content ID: message ID
Content Description: textual explanation of non-textual contents

Mail message body

Figure 9.7 MIME header.

• Content Transfer Encoding
• Content Id
• Content Description

The MIMI header is shown in Figure 9.7 and described below.

MIME Version

This header defines the version of MIME used. The current version is 1.0.

Content Type

This header defines the type of data used in the message body. The content type and the
content subtype are separated by a slash. MIME allows seven different types of data:

• Text : The original message is in 7-bit ASCII format.
• Multipart : The body contains multiple, independent parts. The multipart header needs

to define the boundary between each part. Each part has a separate content type and
encoding.

The multipart/signed content type specifies how to support authentication and
integrity services via digital signature.

Definition of multipart/signed:

– MIME type name: multipart
– MIME subtype name: signed.
– Required parameters: boundary, protocol and micalg
– Optional parameters: none
– Security considerations: must be treated as opaque while in transit.

The multipart/signed content type contains exactly two body parts. The first body
part is the one over which the digital signature was created, including its MIME
headers. The second body part contains the control information necessary to verify
the digital signature.

ELECTRONIC MAIL SECURITY: PGP, S/MIME 327

Definition of multipart/encrypted:

– MIME type name: multipart
– MIME subtype name: encrypted
– Required parameters: boundary and protocol
– Optional parameters: none
– Security considerations: none.

The multipart/encrypted content type contains exactly two body parts. The first
body part contains the control information necessary to decrypt the data in the sec-
ond body part and is labelled according to the value of the protocol parameter.
The second body part contains the data which was encrypted and is always labelled
application/octet-stream.

• Message: In the message type, the body is itself a whole mail message, a part of a mail
message or a pointer to the message. Three subtypes are currently used: RFC 2822,
partial or external body. The subtype RFC 2822 is used if the body is encapsulating
another message. The subtype partial is used if the original message has been frag-
mented into different mail messages and this mail message is one of the fragments.
The fragments must be reassembled at the destination by MIME. Three parameters
must be added: ID, number and total. The id identifies the message and is present in
all the fragments. The number defines the sequence order of the fragment. The total

defines the number of fragments that comprise the original message.

• Image: The original message is a stationary image, indicating that there is no anima-
tion. The two subtypes currently used are Joint Photographic Experts Group (JPEG),
which uses image compression, and Graphics Interchange Format (GIF).

• Video: The original message is a time-varying image (animation). The only subtype
is Motion Picture Experts Group (MPEG). If the animated image contains sound, it
must be sent separately using the audio content type.

• Audio: The original message contains sound. The only subtype is basic, which uses
8 kHz standard audio data.

• Application: The original message is a type of data not previously defined. There are
only two subtypes used currently: octet-stream and PostScript. Octet-stream is used
when the data represents a sequence of binary data consisting of 8-bit bytes. PostScript
is used when the data is in Adobe PostScript format for printers that support PostScript.

Content Transfer Encoding

This header defines the method to encode the messages into ones and zeros for transport.
There are the five types of encoding: 7 bit, 8 bit, binary, Base64 and Quoted-printable.
Table 9.3 describes the Content Transfer Encoding by the five types.

Note that lines in the header identify the type of the data as well as the encoding used.

• 7 bit : This is 7-bit NVT ASCII encoding. Although no special transformation is
needed, the length of the line should not exceed 1000 characters.

328 INTERNET SECURITY

Table 9.3 Five types of encoding

Type Description

7 bit NVT ASCII characters and short lines

8 bit Non-ASCII characters and short lines

Binary Non-ASCII characters with
unlimited-length lines

Base64 6-bit blocks of data encoded into
8-bit ASCII characters

Quoted-printable Non-ASCII characters encoded as an
equals sign followed by an ASCII
code

• 8 bit : This is 8-bit encoding. Non-ASCII characters can be sent, but the length of the
line still should not exceed 1000 characters. Since the underlying SMTP is able to
transfer 8-bit non-ASCII characters, MIME does not do any encoding here. Base64
(or radix-64) and quoted-printable types are preferable.

• Binary : This is 8-bit encoding. Non-ASCII characters can be sent, and the length of the
line can exceed 1000 characters. MIME does not do any encoding here; the underlying
SMTP must be able to transfer binary data. Therefore, it is not recommended. Base64
(or radix-64) and quoted-printable types are preferable.

• Base64 : This is a solution for sending data made of bytes when the highest bit is not
necessarily zero. Base64 transforms this type of data of printable characters which
can be sent as ASCII characters.

• Quoted-printable: Base64 is a redundant encoding scheme. The 24-bit non-ASCII data
becomes four characters consisting of 32 bits. We have an overhead of 25%. If the
data consists of mostly ASCII characters with a small non-ASCII portion, we can use
quoted-printable encoding. If a character is ASCII, it is sent as it is; if a character is
not ASCII it is sent as three characters.

Content Id

This header uniquely identifies the whole message in a multiple message environment:

Content Id: id = <content id>

Content Description

This header defines whether the body is image, audio or video:
Content Description: <description>

Example 9.5 Consider an MIME message that contains a photograph in standard GIF
representation. This GIF image is to be converted to 7-bit ASCII using Base64 encoding
as follows:

ELECTRONIC MAIL SECURITY: PGP, S/MIME 329

From: myrhee@tsp.snu.ac.kr
To: kiisc2@kornet.net
MIME Version: 1.1
Content Type: image/gif
Content Transfer Encoding: Base64

. . . data for the gif image . . .

In this example, MIME Version declares that the message was composed using version
1.1 of the MIME protocol. The MIME standard specifies that a Content Type declaration
must contain two identifiers, a content type and a subtype, separated by a slash. In this
example, image is the content type, and gif is the subtype. Therefore, the Content Type
declares that the data is a GIF image. For the Content Transfer Encoding, the header
declares that Base64 encoding was used to convert the image to ASCII. To view the
image, a receiver’s mail system must first convert from Base64 encoding back to binary,
and then run an application that displays a GIF image on the user’s screen.

9.2.1.3 MIME Security Multiparts

An Internet e-mail message consists of two parts: the headers and the body. The headers
form a collection of field/value pairs, while the body is defined according to the MIME
format. The basic MIME by itself does not specify security protection. Accordingly, a
MIME agent must provide security services by employing a security protocol mecha-
nism, by defining two security subtypes of the MIME multipart content type: signed and
encrypted. In each of the security subtypes, there are exactly two related body parts: one
for the protected data and one for the control information. The type and contents of the
control information body parts are determined by the value of the protocol parameter of
the enclosing multipart/signed or multipart/encrypted content type. A MIME agent should
be able to recognise a security multipart body part and to identify its protected data and
control information body part.

The multipart/signed content type specifies how to support authentication and integrity
services via digital signature. The multipart/singed content type contains exactly two body
parts. The first body part is the one over which the digital signature was created, including
its MIME headers. The second body part contains the control information necessary to
verify the digital signature. The Message Integrity Check (MIC) is the quantity computed
over the body part with a message digest or hash function, in support of the digital signa-
ture service. The multipart/encrypted content type specifies how to support confidentiality
via encryption. The multipart/encrypted content type contains exactly two body parts. The
first body part contains the control information necessary to decrypt the data in the second
body part. The second body part contains the data which was encrypted and is always
labeled application/octet-stream.

9.2.1.4 MIME Security with OpenPGP

This subsection describes how the OpenPGP message format can be used to provide
privacy and authentication using the MIME security content type. The integrating work

330 INTERNET SECURITY

on PGP with MIME suffered from a number of problems, the most significant of which
was the inability to recover signed message bodies without parsing data structures specific
to PGP. RFC 1847 defines security multipart formats for MIME. The security multiparts
clearly separate the signed message body from the signature.

PGP can generate either ASCII Armor or a stream of arbitrary 8-bit octets when
encrypting data, generating a digital signature, or extracting public-key data. The ASCII
Armor output is the required method for data transfer. When the data is to be transmitted
in many parts, the MIME message/partial mechanism should be used rather than the
multipart ASCII Armor OpenPGP format.

Agents treat and interpret multipart/signed and multipart/encrypted as opaque, which
means that the data is not to be altered in any way. However, many existing mail gateways
will detect if the next hop does not support MIME or 8-bit data and perform conversion
to either quoted-printable or Base64. This presents serious problems for multipart/signed
where the signature is invalidated when such an operation occurs. For this reason all data
signed according to this protocol must be constrained to 7 bits.

Before OpenPGP encryption, the data is written in MIME canonical format (body and
headers). OpenPGP encrypted data is denoted by the multipart /encrypted content type,
described in Section 9.2.1.3, and must have a protocol parameter value of ‘application/pgp-
encrypted’. The multipart/encrypted MIME body must consist of exactly two body parts,
the first with content type ‘application/pgp-encrypted’. This body contains the control
information. The second MIME body part must contain the actual encrypted data. It must
be labelled with a content type of ‘application/octet-stream’.

OpenPGP signed messages are denoted by the multipart/signed content type, described
in Section 9.2.1.3, with a protocol parameter which must have a value of ‘application/pgp-
signature’. The micalg parameter for the ‘application/pgp-signature’ protocol must contain
exactly one hash symbol of the format ‘pgp-<hash-identifier>’ where <hash-identifier>
identifies the MIC algorithm used to generate the signature. Hash symbols are contracted
from text names or by converting the text name to lower case and prefixing it with the four
characters ‘pgp-’. Currently defined values are ‘pgp-md5’, ‘pgp-sha1’, ‘pgp-ripemd160’,
‘pgp-tiger192’ and ‘pgp-haval-5-160’. The multipart/signed body must consist of exactly
two parts. The first part contains the signed data in MIME canonical format, including a
set of appropriate content headers describing the data. The second part must contain the
OpenPGP digital signature. It must be labelled with a content type of ‘application/pgp-
signature’.

When the OpenPGP digital signature is generated:

• The data to be signed must first be converted to its content-type specific canoni-
cal form.

• An appropriate Content Transfer Encoding is applied. In particular, line endings in
the encoded data must use the canonical <CR><LF> sequence where appropriate.

• MIME content headers are then added to the body, each ending with the canonical
<CR><LF> sequence.

• Any trailing white space must be removed from the signed material.
• The digital signature must be calculated over both the data to be signed and its set of

content headers.

ELECTRONIC MAIL SECURITY: PGP, S/MIME 331

• The signature must be generated as detached from the signed data so that the process
does not alter the signed data in any way.

Note that the accepted OpenPGP convention is for signed data to end with a
<CR><LF> sequence.

Upon receipt of a signed message, an application must:

• Convert line endings to the canonical <CR><LF> sequence before the signature can
be verified.

• Pass both the signed data and its associated content headers along with the OpenPGP
signature to the signature verification service.

Sometimes it is desirable both to digitally sign and then to encrypt a message to be sent.
This encrypted and signed data protocol allows for two ways of accomplishing this task:

• The data is first signed as a multipart/signature body, and then encrypted to form
the final multipart/encrypted body. This is most useful for standard MIME-compliant
message forwarding.

• The OpenPGP packet format describes a method for signing and encrypting data in
a single OpenPGP message. This method is allowed in order to reduce processing
overheads and increase compatibility with non-MIME implementations of OpenPGP.
The resulting data is formatted as a ‘multipart/encrypted’ object. Messages which
are encrypted and signed in this combined fashion are required to follow the same
canonicalisation rules as multipart/singed object. It is explicitly allowed for an agent
to decrypt a combined message and rewrite it as a multipart/signed object using the
signature data embedded in the encrypted version.

A MIME body part of the content type ‘application/pgp-keys’ contains ASCII-Armour-
ed transferable public-key packets as defined in RFC 2440.

Signatures of a canonical text document as defined in RFC 2440 ignore trailing white
space in signed material. Implementations which choose to use signatures of canonical
text documents will not be able to detect the addition of white space in transit.

9.2.2 S/MIME

S/MIME provides a way to send and receive 7-bit MIME data. S/MIME can be used
with any system that transports MIME data. It can also be used by traditional mail
user agents (MUAs) to add cryptographic security services to mail that is sent, and to
interpret cryptographic security services in mail that is received. In order to create S/MIME
messages, an S/MIME agent has to follow the specifications discussed in this section, as
well as the specifications listed in the cryptographic message syntax (CMS).

The S/MIME agent represents user software that is a receiving agent, a sending agent,
or both. S/MIME version 3 agents should attempt to have the greatest interoperability
possible with S/MIME version 2 agents. S/MIME version 2 is described in RFC 2311 to
RFC 2315 inclusively.

332 INTERNET SECURITY

Before using a public key to provide security services, the S/MIME agent must certify
that the public key is valid. S/MIME agents must use the Internet X.509 Public-Key Infras-
tructure (PKIX) certificates to validate public keys as described in the PKIX certificate
and CRL profile.

9.2.2.1 Definitions

The following definitions are to be applied:

• ASN.1 : Abstract Syntax Notation One, as defined in ITU-T X.680– 689.
• BER: Basic Encoding Rules for ASN.1, as defined in ITU-T X.690.
• DER: Distinguished Encoding Rules for ASN.1, as defined in ITU-T X.690.
• Certificate: A type that binds an entity’s distinguished name to a public key with a

digital signature. This type is defined in the PKIX certificate and CRL profile. The
certificate also contains the distinguished name of the certificate issuer (the signer),
an issuer-specific serial number, the issuer’s signature algorithm identifier, a validity
period and extensions also defined in that certificate.

• CRL: The Certificate Revocation List that contains information about certificates
whose validity the issuer has prematurely revoked. The information consists of an
issuer name, the time of issue, the next scheduled time of issue, a list of certificate
serial numbers and their associated revocation times, and extensions as defined in
Chapter 6. The CRL is signed by the issuer.

• Attribute certificate: An X.509 AC is a separate structure from a subject’s PKIX
certificate. A subject may have multiple X.509 ACs associated with each of its
PKIX certificates. Each X.509 AC binds one or more attributes with one of the
subject’s PKIXs.

• Sending agent : Software that creates S/MIME CMS objects, MIME body parts that
contains CMS objects, or both.

• Receiving agent : Software that interprets and processes S/MIME CMS objects, MIME
parts that contain CMS objects, or both.

• S/MIME agent : User software that is a receiving agent, a sending agent, or both.

9.2.2.2 Cryptographic Message Syntax (CMS) Options

CMS allows for a wide variety of options in content and algorithm support. This sub-
section puts forth a number of support requirements and recommendations in order to
achieve a base level of interoperability among all S/MIME implementations. CMS pro-
vides additional details regarding the use of the cryptographic algorithms.

DigestAlgorithmIdentifier

This type identifies a message digest algorithm which maps the message to the mes-
sage digest. Sending and receiving agents must support SHA-1. Receiving agents should
support MD5 for the purpose of providing backward compatibility with MD5-digested
S/MIME v2 SignedData objects.

ELECTRONIC MAIL SECURITY: PGP, S/MIME 333

SignatureAlgorithmIdentifier

Sending and receiving agents must support id-dsa defined in DSS. Receiving agents should
support rsaEncryption, defined in PRCS-1.

KeyEncryptionAlgorithmIdentifier

This type identifies a key encryption algorithm under which a content encryption key can
be encrypted. A key-encryption algorithm supports encryption and decryption operations.
The encryption operation maps a key string to another encrypted key string under the
control of a key encryption key.

Sending and receiving agents must support Diffie–Hellman key exchange. Receiving
agents should support rsaEncryption. Incoming encrypted messages contain symmetric
keys which are to be decrypted with a user’s private key. The size of the private key is
determined during key generation. Sending agents should support rsaEncryption.

General syntax

The syntax is to support six different content types: data, signed data, enveloped data,
signed-and-enveloped data, digested data and encrypted data. There are two classes of
content types: base and enhanced. Content types in the base class contain just data with
no cryptographic enhancement, categorised as the data content type. Content types in the
enhanced class contain content of some type (possibly encrypted), and other cryptographic
enhancements. These types employ encapsulation, giving rise to the terms outer content
containing the enhancements and inner content being enhanced.

CMS defines multiple content types. Of these, only the data, signed data and enveloped
data types are currently used for S/MIME.

• Data content type: This type is arbitrary octet strings, such as ASCII text files. Such
strings need not have any internal structure.

The data content type should have ASN.1 type Data:

Data ::= OCTET STRING

Sending agents must use the id-data content-type identifier to indicate the message
content which has had security services applied to it.

• Signed-data content type: This type consists of any type and encrypted message digests
of the content for zero or more signers. Any type of content can be signed by any
number of signers in parallel. The encrypted digest for a signer is a digital signature
on the content for that signer. Sending agents must use the signed-data content type
to apply a digital signature to a message or in a degenerate case where there is
no signature information to convey certificates. The syntax has a degenerate case in
which there are no signers on the content. This degenerate case provides a means to
disseminate certificates and certificate-revocation lists.

The process to construct signed data is as follows. A message digest is computed
on the content with a signer-specific message digest algorithm. A digital signature is

334 INTERNET SECURITY

formed by taking the message digest of the content to be signed and then encrypting
it with the private key of the signer. The content plus signature are then encoded
using Base64 encoding. A recipient verifies the signed-data message by decrypting
the encrypted message digest for each signer with the signer’s public key, then com-
paring the recovered message digest to an independently computed message digest.
The signer’s public key is either contained in a certificate included in the signer
information, or referenced by an issuer distinguished name and an issuer-specific
serial number that uniquely identify the certificate for the public key.

• Enveloped-data content type: An application/prcs7-mime subtype is used for the en-
veloped-data content type. This content type is used to apply privacy protection to a
message. The type consists of encrypted content of any type and encrypted-content
encryption keys for one or more recipients. The combination of encrypted content
and encrypted content-encryption key for a recipient is called a digital envelope for
that recipient. Any type of content can be enveloped for any number of recipients in
parallel. If a sending agent is composing an encrypted message to a group of recipients,
that agent is forced to send more than one message.

The process by which enveloped data is constructed involves the following:

– A content-encryption key (a pseudo-random session key) is generated at random
and is encrypted with the recipient’s public key for each recipient.

– The content is encrypted with the content-encryption key. Content encryption
may require that the content be padded to a multiple of some block size.

– The recipient-specific information values for all the recipients are combined with
the encrypted content into an EnvelopedData value. This information is then
encoded into Base64.

To cover the encrypted message, the recipient first strips off the Base64 encod-
ing. The recipient opens the envelope by decrypting one of the encrypted content-
encryption keys with the recipient’s private key and decrypting the encrypted content
with the recovered content-encryption key (the session key).

A sender needs to have access to a public key for each intended message recipient
to use this service. This content type does not provide authentication.

• Digested-data content type: This type consists of content of any type and a message
digest of the content. A typical application of the digested-data content type is to add
integrity to content of the data content type, and the result becomes the content input
to the enveloped-data content type. A message digest is computed on the content with
a message digest algorithm. The message digest algorithm and the message digest are
combined with the content into a DigestedData value.

A recipient verifies the message digest by comparing the message digest to an
independently computed message digest.

• Encrypted-data content type: This type consists of encrypted content of any type.
Unlike the enveloped-data content type, the encrypted-data content type has neither
recipients nor encrypted content-encryption keys. Keys are assumed to be managed
by other means.

ELECTRONIC MAIL SECURITY: PGP, S/MIME 335

It is expected that a typical application of the encrypted-data content type will
be to encrypt content of the data content type for local storage, perhaps where the
encryption key is a password.

9.2.3 Enhanced Security Services for S/MIME

The security services described in this section are extensions to S/MIME version 3. Some
of the features of each service use the concept of a triple wrapped message. A triple
wrapped message is one that has been signed, then encrypted and then signed again. The
signers of the inner and outer signatures may be different entities or the same entity. The
S/MIME specification does not limit the number of nested encapsulations, so there may
be more than three wrappings.

The inside signature is used for content integrity, non-repudiation with proof of origin,
and binding attributes to the original content. These attributes go from the originator to
the recipient, regardless of the number of intermediate entities such as mail list agents that
process the message. Signed attributes can be used for access control to the inner body.
The encrypted body provides confidentiality, including confidentiality of the attributes
that are carried in the inside signature.

The outside signature provides authentication and integrity for information that is pro-
cessed hop by hop, where each hop is an intermediate entity such as a mail list agent.
The outer signature binds attributes to the encrypted body. These attributes can be used
for access control and routing decisions.

9.2.3.1 Triple Wrapped Message

The steps to create a triple wrapped message are as follows:

1. Start with the original content (a message body).
2. Encapsulate the original content with the appropriate MIME content-type headers.
3. Sign the inner MIME headers and the original content resulting from step 2.
4. Add an appropriate MIME construct to the signed message from step 3. The resulting

message is called the inside signature.

– If it is signed using multipart/signed, the MIME construct added consists of a
content type of multipart/signed with parameters, the boundary, the step 2 result,
a content type of application/pkcs7-signature, optional MIME headers, and a
body part that is the result of step 3.

– If it is instead signed using application/pkcs7-mime, the MIME construct added
consists of a content type of application/pkcs7-mime with parameters, optional
MIME headers and the result of step 3.

5. Encrypt the step 4 result as a single block, turning it into an application/pkcs7-
mime object.

6. Add the appropriate MIME headers: a content type of application/pkcs7-mime with
parameters, and optional MIME headers such as Content-Transfer-Encoding and
Content-Disposition.

7. Sign the step 6 result (the MIME headers and the encrypted body) as a single block.

336 INTERNET SECURITY

8. Using the same logic as in step 4, add an appropriate MIME construct to the signed
message from step 7. The resulting message is called the outside signature, and is
also the triple wrapped message.

A triple wrapped message has many layers of encapsulation. The structure differs
depending on the choice of format for the signed portions of the message. Because of the
way that MIME encapsulates data, the layers do not appear in order, and the notion of
layers becomes vague.

There is no need to use the multipart/signed format in an inner signature because
it is known that the recipient is able to process S/MIME messages. A sending agent
might choose to use the multipart/signed format in the outer layer so that a non-S/MIME
agent could see that the next inner layer is encrypted. Because many sending agents
always use multipart/signed structures, all receiving agents must be able to interpret either
multipart/signed or application/pkcs7-mime signature structures.

9.2.3.2 Security Services with Triple Wrapping

This subsection briefly describes the relationship of each service with triple wrapping. If
a signed receipt is requested for a triple wrapped message, the receipt request must be in
the inside signature, not in the outside signature. A secure mailing list agent may change
the receipt policy in the outside signature of a triple wrapped message when the message
is processed by the mailing list.

A security label is included in the signed attributes of any SignedData object. A security
label attribute may be included in either the inner signature or the outer signature, or both.

The inner security label is used for access control decisions related to the original
plaintext content. The inner signature provides authentication and cryptographically pro-
tects the integrity of the original signer’s security label that is in the inside body. The
confidentiality security service can be applied to the inner security label by encrypting the
entire inner SignedData block within an EnvelopedData block. The outer security label
is used for access control and routing decisions related to the encrypted message.

Secure mail list message processing depends on the structure of S/MIME layers present
in the message sent to the mail list agent. The agent never changes the data that was hashed
to form the inner signature, if such a signature is present. If an outer signature is present,
then the agent will modify the data that was hashed to form that outer signature.

Contain attributes should be placed in the inner or outer SignedData message. Some
attributes must be signed, while signing is optional for others, and some attributes must
not be signed.

Some security gateways sign messages that pass through them. If the message is of
any type other than a SignedData type, the gateway has only one way to sign the message
by wrapping it with a SignedData block and MIME headers. If the message to be signed
by the gateway is a SignedData message already, the gateway can sign the message by
inserting SignerInfo into the SignedData block.

9.2.3.3 Signed Receipts

Returning a signed receipt provides to the originator proof of delivery of a message,
and allows the originator to demonstrate to a third party that the recipient was able to

ELECTRONIC MAIL SECURITY: PGP, S/MIME 337

verify the signature of the original message. This receipt is bound to the original message
through the signature. Consequently, this service may be requested only if a message is
signed. The receipt sender may optionally also encrypt a receipt to provide confidentiality
between the sender and recipient of the receipt.

The originator of a message may request a signed receipt from the message’s recipients.
The request is indicated by adding a receiptRequest attribute to the signedAttributes field
of the SignerInfo object for which the receipt is requested. The receiving user agent
software should automatically create a signed receipt when requested to do so, and return
the receipt in accordance with mailing list expansion options, local security policies and
configuration options.

Receipts involve the interaction of two parties: the sender and the receiver. The sender
is the agent that sent the original message that includes a request for a receipt. The receiver
is the party that received that message and generated the receipt.

The interaction steps in a typical transaction are:

1. Sender creates a signed message including a receipt request attribute.
2. Sender transmits the resulting message to the recipient(s).
3. Recipient receives message and determines if there are a valid signature and receipt

request in the message.
4. Recipient creates a signed receipt.
5. Recipient transmits the resulting signed receipt message to the sender.
6. Sender receives the message and validates that it contains a signed receipt for the

original message.

9.2.3.4 Receipt Request Creation

Multilayer S/MIME messages may contain multiple SignedData layers. Receipts are
requested only for the innermost SignedData layer in a multilayer S/MIME message
such as a triple wrapped message. Only one receipt request attribute can be included in
the signedAttributes of SignerInfo.

10

Internet Firewalls for Trusted Systems

A firewall is a device or group of devices that controls access between networks. A
firewall generally consists of filters and gateway(s), varying from firewall to firewall. It
is a security gateway that controls access between the public Internet and an intranet
(a private internal network) and is a secure computer system placed between a trusted
network and an untrusted internet. A firewall is an agent which screens network traffic in
some way, blocking traffic it believes to be inappropriate, dangerous, or both. The security
concerns that inevitably arise between the sometimes hostile Internet and secure intranets
are often dealt with by inserting one or more firewalls in the path connecting the Internet
and the internal network. In reality, Internet access provides benefits to individual users,
government agencies and most organisations. But this access often creates a threat as a
security flaw. The protective device that has been widely accepted is the firewall. When
inserted between the private intranet and the public Internet it establishes a controlled
link and erects an outer security wall or perimeter. The aim of this wall is to protect
the intranet from Internet-based attacks and to provide a choke point where security can
be imposed.

Firewalls act as an intermediate server in handling SMTP and HTTP connections in
either direction. Firewalls also require the use of an access negotiation and encapsulation
protocol such as SOCKS to gain access to the Internet, the intranet, or both. Many
firewalls support tri-homing, allowing use of a DMZ network. It is possible for a firewall
to accommodate more than three interfaces, each attached to a different network segment.

Firewalls can be classified into three main categories: packet filters, circuit-level gate-
ways and application-level gateways.

10.1 Role of Firewalls

The firewall imposes restrictions on packets entering or leaving the private network. All
traffic from inside to outside, and vice versa, must pass through the firewall, but only
authorised traffic will be allowed to pass. Packets are not allowed through unless they

Internet Security. Edited by M.Y. Rhee
 2003 John Wiley & Sons, Ltd ISBN 0-470-85285-2

340 INTERNET SECURITY

conform to a filtering specification, or unless there is negotiation involving some sort of
authentication. The firewall itself must be immune to penetration.

Firewalls create checkpoints (or choke points) between an internal private network and
an untrusted Internet. Once the choke points have been clearly established, the device can
monitor, filter and verify all inbound and outbound traffic.

The firewall may filter on the basis of IP source and destination addresses and TCP port
number. Firewalls may block packets from the Internet side that claim a source address
of a system on the intranet, or they may require the use of an access negotiation and
encapsulation protocol like SOCKS to gain access to the intranet.

The means by which access is controlled relate to using network layer or transport
layer criteria such as IP subnet or TCP port number, but there is no reason that this must
always be so. A growing number of firewalls control access at the application layer, using
user identification as the criterion. In addition, firewalls for ATM networks may control
access based on the data link layer criteria.

The firewall also enforces logging, and provides alarm capacities as well. By plac-
ing logging services at firewalls, security administrators can monitor all access to and
from the Internet. Good logging strategies are one of the most effective tools for proper
network security.

Firewalls may block TELNET or RLOGIN connections from the Internet to the intranet.
They also block SMTP and FTP connections to the Internet from internal systems not
authorised to send e-mail or to move files.

The firewall provides protection from various kinds of IP spoofing and routing attacks.
It can also serve as the platform for IPsec. Using the tunnel mode capability, the firewall
can be used to implement Virtual Private Networks (VPNs). A VPN encapsulates all the
encrypted data within an IP packet.

A firewall can limit network exposure by hiding the internal network systems and
information from the public Internet.

The firewall is a convenient platform for security-unrelated events such as a network
address translator (which maps local addresses to Internet addresses) and has a network
management function that accepts or logs Internet usage.

The firewall certainly has some negative aspects: it cannot protect against internal
threats such as an employee who cooperates with an external attacker; it is also unable to
protect against the transfer of virus-infected programs or files because it is impossible for it
to scan all incoming files, e-mail and messages for viruses. However, since a firewall acts
as a protocol endpoint, it may use an implementation methodology designed to minimise
the likelihood of bugs.

A firewall can effectively implement and control the traversal of IP multicast traffic.
Some firewall mechanisms such as SOCKS are less appropriate for multicast because they
are designed specifically for unicast traffic.

10.2 Firewall-Related Terminology

To design and configure a firewall, some familiarity with the basic terminology is required.
It is useful for readers to understand the important terms commonly applicable to firewall
technologies.

INTERNET FIREWALLS FOR TRUSTED SYSTEMS 341

10.2.1 Bastion Host

A bastion host is a publicly accessible device for the network’s security, which has a
direct connection to a public network such as the Internet. The bastion host serves as a
platform for any one of the three types of firewalls: packet filter, circuit-level gateway or
application-level gateway.

Bastion hosts must check all incoming and outgoing traffic and enforce the rules
specified in the security policy. They must be prepared for attacks from external and
possibly internal sources. They should be built with the least amount of hardware and
software in order for a potential hacker to have less opportunity to overcome the firewall.
Bastion hosts are armed with logging and alarm features to prevent attacks.

The bastion host’s role falls into the following three common types:

• Single-homed bastion host : This is a device with only one network interface, normally
used for an application-level gateway. The external router is configured to send all
incoming data to the bastion host, and all internal clients are configured to send
all outgoing data to the host. Accordingly, the host will test the data according to
security guidelines.

• Dual-homed bastion host : This is a firewall device with at least two network interfaces.
Dual-homed bastion hosts serve as application-level gateways, and as packet filters
and circuit-level gateways as well. The advantage of using such hosts is that they
create a complete break between the external network and the internal network. This
break forces all incoming and outgoing traffic to pass through the host. The dual-
homed bastion host will prevent a security break-in when a hacker tries to access
internal devices.

• Multihomed bastion host : Single-purpose or internal bastion hosts can be classified
as either single-homed or multihomed bastion hosts. The latter are used to allow
the user to enforce strict security mechanisms. When the security policy requires all
inbound and outbound traffic to be sent through a proxy server, a new proxy server
should be created for the new streaming application. On the new proxy server, it
is necessary to implement strict security mechanisms such as authentication. When
multihomed bastion hosts are used as internal bastion hosts, they must reside inside
the organisation’s internal network, normally as application gateways that receive
all incoming traffic from external bastion hosts. They provide an additional level of
security in case the external firewall devices are compromised. All the internal network
devices are configured to communicate only with the internal bastion host.

• A tri-homed firewall connects three network segments with different network
addresses. This firewall may offer some security advantages over firewalls with two
interfaces. An attacker on the unprotected Internet may compromise hosts on the DMZ
but still not reach any hosts on the protected internal network.

10.2.2 Proxy Server

Proxy servers are used to communicate with external servers on behalf of internal clients.
A proxy service is set up and torn down in response to a client request, rather than

342 INTERNET SECURITY

existing on a static basis. The term proxy server typically refers to an application-level
gateway, although a circuit-level gateway is also a form of proxy server. The gateway
can be configured to support an application-level proxy on inbound connections and a
circuit-level proxy on outbound connections. Application proxies forward packets only
when a connection has been established using some known protocol. When the connection
closes, a firewall using application proxies rejects individual packets, even if they contain
port numbers allowed by a rule set. In contrast, circuit proxies always forward packets
containing a given port number if that port number is permitted by the rule set. Thus, the
key difference between application and circuit proxies is that the latter are static and will
always set up a connection if the DUT/SUT’s rule set allows it. Each proxy is configured
to allow access only to specific host systems.

The audit log is an essential tool for detecting and terminating intruder attacks. There-
fore, each proxy maintains detailed audit information by logging all traffic, each connec-
tion and the duration of each connection.

Since a proxy module is a relatively small software package specifically designed for
network security, it is easier to check such modules for security flaws.

Each proxy is independent of other proxies on the bastion host. If there is a problem
with the operation of any proxy, or if future vulnerability is discovered, it is easy to replace
the proxy without affecting the operation of the proxy’s applications. If the support of a
new service is required, the network administrator can easily install the required proxy
on the bastion host.

A proxy generally performs no disk access other than to read its initial configuration
file. This makes it difficult for an intruder to install Trojan horse sniffers or other dangerous
files on the bastion host.

10.2.3 SOCKS

The SOCKS protocol version 4 provides for unsecured firewall traversal for TCP-based
client/server applications, including HTTP, TELNET and FTP. The new protocol extends
the SOCKS version 4 model to include UDP, and allows the framework to include pro-
vision for generalised strong authentication schemes, and extends the addressing scheme
to encompass domain name and IPv6 addresses. The implementation of the SOCKS pro-
tocol typically involves the recompilation or relinking of TCP-based client applications
so that they can use the appropriate encapsulation routines in the SOCKS library (refer
to RFC 1928).

When a TCP-based client wishes to establish a connection to an object that is reachable
only via a firewall, it must open a TCP connection to the appropriate SOCKS port on the
SOCKS server system. The SOCKS service is conventionally located at TCP port 1080. If
the connection request succeeds, the client enters negotiation for the authentication method
to be used, authenticates with the chosen method, and then sends a relay request. The
SOCKS server evaluates the request, and either establishes the appropriate connection
or denies it. In fact, SOCKS defines how to establish authenticated connections, but
currently it does not provide a clear-cut solution to the problem of encrypting the data
traffic. Since the Internet at large is considered a hostile medium, encryption by using
ESP is also assumed in this scenario. An ESP transform that provides both authentication
and encryption could be used, in which case the AH need not be included.

INTERNET FIREWALLS FOR TRUSTED SYSTEMS 343

10.2.4 Choke Point

The most important aspect of firewall placement is to create choke points. A choke
point is the point at which a public internet can access the internal network. The most
comprehensive and extensive monitoring tools should be configured on the choke points.
Proper implementation requires that all traffic be funnelled through these choke points.
Since all traffic is flowing through the firewalls, security administrators, as a firewall
strategy, need to create choke points to limit external access to their networks. Once
these choke points have been clearly established, the firewall devices can monitor, filter
and verify all inbound and outbound traffic.

Since a choke point is installed at the firewall, a prospective hacker will go through
the choke point. If the most comprehensive logging devices are installed in the firewall
itself, all hacker activities can be captured. Hence, this will detect exactly what a hacker
is doing.

10.2.5 De-militarised Zone (DMZ)

The DMZ is an expression that originates from the Korean War. It meant a strip of land
forcibly kept clear of enemy soldiers. In terms of a firewall, the DMZ is a network that
lies between an internal private network and the external public network. DMZ networks
are sometimes called perimeter networks. A DMZ is used as an additional buffer to further
separate the public network from the internal network.

A gateway is a machine that provides relay services to compensate for the effects of a
filter. The network inhabited by the gateway is often called the DMZ. A gateway in the
DMZ is sometimes assisted by an internal gateway. The internal filter is used to guard
against the consequences of a compromised gateway, while the outside filter can be used
to protect the gateway from attack.

Many firewalls support tri-homing, allowing use of a DMZ network. It is possible
for a firewall to accommodate more than three interfaces, each attached to a different
network segment.

10.2.6 Logging and Alarms

Logging is usually implemented at every device in the firewall, but these individual
logs combine to become the entire record of user activity. Packet filters normally do
not enable logging by default so as not to degrade performance. Packet filters as well
as circuit-level gateways log only the most basic information. Since a choke point is
installed at the firewall, a prospective hacker will go through the choke point. If so, the
comprehensive logging devices will probably capture all hacker activities, including all
user activities as well. The user can then tell exactly what a hacker is doing, and have
such information available for audit. The audit log is an essential tool for detecting and
terminating intruder attacks.

Many firewalls allow the user to preconfigure responses to unacceptable activities. The
firewall should alert the user by several means. The two most common actions are for
the firewall to break the TCP/IP connection, or to have it automatically set off alarms.

344 INTERNET SECURITY

10.2.7 VPN

Some firewalls are now providing VPN services. VPNs are appropriate for any organ-
isation requiring secure external access to internal resources. All VPNs are tunnelling
protocols in the sense that their information packets or payloads are encapsulated or tun-
nelled into the network packets. All data transmitted over a VPN is usually encrypted
because an opponent with access to the Internet could eavesdrop on the data as it trav-
els over the public network. The VPN encapsulates all the encrypted data within an IP
packet. Authentication, message integrity and encryption are very important fundamen-
tals for implementing a VPN. Without such authentication procedures, a hacker could
impersonate anyone and then gain access to the network. Message integrity is required
because the packets can be altered as they travel through the Internet. Without encryption,
the information may become truly public. Several methods exist to implement a VPN.
Windows NT or later versions support a standard RSA connection through a VPN. Spe-
cialised firewalls or routers can be configured to establish a VPN over the Internet. New
protocols such as IPsec are expected to standardise on a specific VPN solution. Several
VPN protocols exist, but the Point-to-Point Tunnelling Protocol (PPTP) and IPsec are the
most popular.

10.3 Types of Firewalls

As mentioned above, firewalls are classified into three common types: packet filters,
circuit-level gateways and application-level gateways. We examine each of these in turn.

10.3.1 Packet Filters

Packet filters are one of several different types of firewalls that process network traffic on
a packet-by-packet basis. A packet filter’s main function is to filter traffic from a remote
IP host, so a router is needed to connect the internal network to the Internet. A packet
filter is a device which inspects or filters each packet at a screening router for the content
of IP packets. The screening router is configured to filter packets from entering or leaving
the internal network, as shown in Figure 10.1. The routers can easily compare each IP
address to a filter or a series of filters. The type of router used in a packet-filtering firewall
is known as a screening router.

Internet

Screening router

Inside net 1

Inside net 2

Inside net 3

Figure 10.1 A screening router for packet filtering.

INTERNET FIREWALLS FOR TRUSTED SYSTEMS 345

Packet filters typically set up a list of rules that are sequentially read line by line.
Filtering rules can be applied based on source and destination IP addresses or network
addresses, and TCP or UDP ports. Packet filters are read and then treated on a rule-by-rule
basis. A packet filter will provide two actions, forward or discard. If the action is in the
forward process, the action takes place to route the packet as normal if all conditions
within the rule are met. The discard action will block all packets if the conditions in the
rule are not met. Thus, a packet filter is a device that inspects each packet for predefined
content. Although it does not provide an error-correcting ability, it is almost always the
first line of defence. When packets are filtered at the external filter, it is usually called a
screening router.

Since a packet filter can restrict all inbound traffic to a specific host, this restriction may
prevent a hacker from being able to contact any other host within the internal network.
However, the significant weakness with packet filters is that they cannot discriminate
between good and bad packets. Even if a packet passes all the rules and is routed to the
destination, packet filters cannot tell whether the routed packet contains good or malicious
data. Another weakness of packet filters is their susceptibility to spoofing. In IP spoofing,
an attacker sends packets with an incorrect source address. When this happen, replies
will be sent to the apparent source address, not to the attacker. This might seem to be
a problem.

10.3.1.1 Packet-Filtering Rules

A packet filter applies a set of rules to each incoming IP packet and then forwards or
discards the packet. The packet filter typically sets up a list of rules which may match
fields in the IP or TCP header. If there is a match to one of the rules, that rule is able
to determine whether to forward or discard the packet. If there is no match to any rule,
then two default actions (forward and discard) will be taken.

TELNET packet filtering

TELNET is a simple remote terminal access that allows a user to log onto a computer
across an internet. TELNET establishes a TCP connection, and then passes keystrokes
from the user’s keyboard directly to the remote computer as if they had been typed on a
keyboard attached to the remote machine. TELNET also carries output from the remote
machine back to the user’s screen. TELNET client software allows the user to specify a
remote machine either by giving its domain name or IP address.

TELNET can be used to administer a UNIX machine. Windows NT does not provide a
TELNET serve with the default installation, but a third-party service can be easily added.
TELNET sends all user names and passwords in plaintext. Experienced hackers can hijack
a TELNET session in progress. TELNET should only be used when the user can verify
the entire network connecting the client and server, not over the Internet. All TELNET
traffic should be filtered at the firewall. TELNET runs on TCP port 23.

For example, to disable the ability to TELNET into internal devices from the Internet,
the information listed Table 10.1 tells the router to discard any packet going to or coming
from TCP port 23. TELNET for remote access application runs on TCP port 23. It runs

346 INTERNET SECURITY

Table 10.1 Telnet packet-filtering example

Rule
number

Action Source
IP

Source
port

Destination
IP

Destination
port

Protocol

1 Discard * 23 * * TCP
2 Discard * * * 23 TCP

completely in open non-encryption, with no authentication other than the user name and
password that are transmitted in clear. An asterisk (*) in a field indicates any value in
that particular field. The packet-filtering rule sets are executed sequentially, from top
to bottom.

If a packet is passed through the filter and has a source port of 23, it will immediately
be discarded. If a packet with a destination port of 23 is passed through this filter, it is
discarded only after rule 2 has been applied. All other packets will be discarded.

FTP packet filtering

If the FTP service is to apply the same basic rule as applied to TELNET, the packet filter
to allow or block FTP would look like Table 10.2. The FTP service is typically associated
with using TCP ports 20 and 21.

One approach to handling FTP connections is explained with the following rule set.
Rule 1 allows any host with the network address 192.168.10.0 to initiate a TCP session
on any destination IP address on port 21. Rule 2 blocks any packet originating from any
remote address with a source port of 20 and contacting a host with a network address
192.168.10.0 on any port less than 1024. Rule 3 allows any remote address that has a
source port of 20 and is contacting any host with a network address of 192.168.10.0 on
any port. Once a connection is set up, the ACK flag (ACK = 1) of a TCP segment is set
to acknowledge segments sent from the other side. If any packet violates rule 2, it will
be immediately discarded, and rule 3 will never be executed.

With FTP, two TCP connections are used: a control connection to set up the file transfer
and a data connection for the actual file transfer. The data connection uses a different port
number to be assigned for the transfer. Remember that most servers live on low-numbered
ports, but most outgoing calls tend to use higher-numbered ports, typically above 1024.

FTP is the first protocol for transferring or moving files across the Internet. Like many
of the TCP/IP protocols, FTP was not designed with security in mind. It communicates

Table 10.2 FTP packet-filtering example

Rule
number

Action Source
IP

Source
port

Destination
IP

Destination
port

Protocol

1 Allow 192.168.10.0 * * 21 TCP
2 Block * 20 192.168.10.0 <1024 TCP
3 Allow * 20 192.168.10.0 * TCP

ACK = 1

INTERNET FIREWALLS FOR TRUSTED SYSTEMS 347

with the server on two separate TCP ports 20 and 21. Each FTP server has a command

channel, where the requests for data and directory listings are issued, and a data channel,
over which the requested data is delivered.

FTP operates in two different modes (active and passive). In active mode, an FTP
server receives commands on TCP/IP port 21 and exchanges data with the client. When
a client contacts an FTP server in active mode and wants to send or receive data, the
client picks an unused local TCP port between 1024 and 65 535, tells the server over the
command channel, and listens for the server to connect on the chosen port. The server
opens a connection from TCP port 20 to the specified port on the client machine. Once
the connection is established, the data is passed across.

In passive mode, the command channel is still port 21 on the server, but the traditional
data channel on port 20 is not used. Instead, when the client requests passive mode, the
server picks an unused local TCP port between 1024 and 65 535 and tells the client.
The client opens a connection to that port on the server. The server is listening on that
port for the inbound connection from the client. Once the connection is established,
the data flows across. Thus, since the client is initiating both the command and data
channel connections to the server, most modern browsers use passive mode FTP for
data accessing.

SMTP packet filtering

The sending and transmission of mail is the responsibility of a Mail Transport Agent
(MTA). The protocol behind nearly all MTAs is SMTP and its extension ESMTP. On
the Internet, e-mail exchanges between mail servers are handled with SMTP. It is the
protocol that transfers e-mail from one server to another, and it provides a basic e-mail
facility for transferring messages among separate hosts. A host’s SMTP server accepts
mail and examines the destination IP address to decide whether to deliver the mail locally
or to forward it to some other machine.

SMTP is a store/forward system, and such systems are well suited to firewall appli-
cations. SMTP receivers use TCP port 25; SMTP senders use a randomly selected port
above 1023.

Most e-mail messages are addressed with hostnames instead of IP addresses, and the
SMTP server uses DNS (Directory and Naming Services) to determine the matching IP
address. If the same machines handle internal and external mail delivery, a hacker who
can spoof DNS information may be able to cause mail that was intended for internal
destinations to be delivered to an external host. A hacker who can manipulate DNS
responses can redirect mail to a server under the control of the hacker. That server can
then copy the mail and return it. This will introduce delays and will usually leave a trail
in the log or message headers. Therefore, if it is desired to avoid situations where internal
and external mail delivery are handled on the machine and internal names are resolved
through DNS, it will be good practice to have the best configuration in which there is an
external mail server and a separate internal mail server. The external mail server has the
IP address of the internal mail server configured via a host file.

Sendmail (www.sendmail.org/) is the mailer commonly used on UNIX systems. Send-
mail is very actively supported on security issues, and has both an advantage and a
disadvantage. Table 10.3 displays some examples of SMTP packet-filtering rule sets.

348 INTERNET SECURITY

Table 10.3 SMTP packet-filtering examples

Case Action Source
host

Source
port

Destination
host

Destination
port

Protocol

A Allow Source gateway 25 * * TCP
B Allow * * * 25 TCP
C Allow Internal host * * 25 TCP
D Allow * 25 * * TCP ACK flag

Case A: Connection to source SMTP port. Port 25 is for SMTP incoming. Inbound mail is allowed, but only
to a gateway host.

Case B: Connection to destination SMTP port. This rule set is intended to specify that any source host can
send mail to the destination. A TCP packet with a destination port 25 is routed to the SMTP server
on the destination machine.

Case C: This rule set achieves the intended result that was not achieved in B. The rule takes advantage of a
feature of TCP connection. This rule set states that it allows IP packets where the source IP address
is one of a list of designated internal hosts and the destination TCP port 25.

Case D: This rule takes advantage of a feature of TCP connections. Once a connection is set up, the ACK flag
of a TCP segment is set to acknowledge segments sent from the destination. It also allows incoming
packets with a source port number of 25 that include that ACK flag in the TCP segment.

Packet filters offer their services at the network, transport and session layers of the OSI
model. Packet filters forward or deny packets based on information in each packet’s
header, such as the IP address or TCP port number. A packet-filtering firewall uses a
rule set to determine which traffic should be forwarded and which should be blocked.
Packet filters are then composed of rules that are read and treated on a rule-by-rule basis.
Therefore, packet filtering is defined as the process of controlling access by examining
packets based on the content of packet headers.

The following two subsections outline the specific details with relation to the circuit-
level and application-level gateways for respective proxy services. Proxying provides
Internet access for a single host or a small number of hosts. The proxy server eval-
uates requests from the client and decides which to pass on and which to disregard.
If a request is approved, the proxy server talks to the real server on behalf of the
client and proceeds to relay requests from the client to the real server, and to relay
the real server’s answers back to the client. The concept of proxies is very important
to firewall application because a proxy replaces the network IP address with another
contingent address.

Proxies are classified into two basic forms:

• Circuit-level gateway
• Application-level gateway

Both circuit and application gateways create a complete break between the internal
premises network and external Internet. This break allows the firewall system to examine
everything before passing it into or out of the internal network. Each of these gateways
will be examined in turn in the following.

INTERNET FIREWALLS FOR TRUSTED SYSTEMS 349

10.3.2 Circuit-Level Gateways

The circuit-level gateway represents a proxy server that statically defines what traffic will
be forwarded. Circuit proxies always forward packets containing a given port number
if that port number is permitted by the rule set. A circuit-leval gateway operates at the
network level of the OSI model. This gateway acts as an IP address translator between
the Internet and the internal system. The main advantage of a proxy server is its ability
to provide Network Address Translation (NAT). NAT hides the internal IP address from
the Internet. NAT is the primary advantage of circuit-level gateways and provides secu-
rity administrators with great flexibility when developing an address scheme internally.
Circuit-level gateways are based on the same principles as packet filter firewalls. When
the internal system sends out a series of packets, these packets appear at the circuit-level
gateway where they are checked against the predetermined rules set. If the packets do not
violate any rules, the gateway sends out the same packets on behalf of the internal system.
The packets that appear on the Internet originate from the IP address of the gateway’s
external port which is also the address that receives any replies. This process efficiently
shields all internal information from the Internet. Figure 10.2 illustrates the circuit-level
gateway for setting up two TCP connections.

10.3.3 Application-Level Gateways

The application-level gateway represents a proxy server, performing at the TCP/IP appli-
cation level, that is set up and torn down in response to a client request, rather than
existing on a static basis. Application proxies forward packets only when a connection
has been established using some known protocol. When the connection closes, a fire-
wall using application proxies rejects individual packets, even if the packets contain port
numbers allowed by a rule set.

The application gateway analyses the entire message instead of individual packets
when sending or receiving data. When an inside host initiates a TCP/IP connection, the
application gateway receives the request and checks it against a set of rules or filters.
The application gateway (or proxy server) will then initiate a TCP/IP connection with the
remote server. The server will generate TCP/IP responses based on the request from the
proxy server. The responses will be sent to the proxy server (application gateway) where
the responses are again checked against the proxy server’s filters. If the remote server’s
response is permitted, the proxy server will then forward the response to the inside host.

Inside
connection

Outside
connection

TCP user on
outside host

TCP user on
inner host An IP address translator

Circuit-level
gateway

Figure 10.2 Circuit-level gateway for setting up two TCP connections.

350 INTERNET SECURITY

Private
networkInternet

Outside
host

Inside host

A relay of application-level
traffic

Application-level
gateway

FTP
TELNET

DNS
SMTP
HTTP

Figure 10.3 Application-level gateway for acting as a relay of application-level traffic.

Certain transport layer protocols work better than others. For example, TCP can easily
be used through a proxy server because it is a connection-based protocol, while each UDP
packet should be treated as an individual message because UDP is connectionless. The
proxy server must analyse each UDP packet and apply it to the filters separately, which
slows down the proxy process. ICMP programs are nearly impossible to proxy because
ICMP messages do not work through an application-level gateway. For example, HTTP
traffic is often used in conjunction with proxy servers, but an internal host could not ping
a remote host through the proxy server. Application gateways (proxy servers) are used
as intermediate devices when routing SMTP traffic to and from the internal network and
the Internet.

The main advantage of a proxy server is its ability to provide NAT for shielding the
internal network from the Internet. Figure 10.3 illustrates the application-level gateway
acting as a relay of the application-level traffic.

10.4 Firewall Designs

This section concerns how to implement a firewall strategy. The primary step in designing
a secure firewall is obviously to prevent the firewall devices from being compromised
by threats. To provide a certain level of security, the three basic firewall designs are
considered: a single-homed bastion host, a dual-homed bastion host and a screened subnet
firewall. The first two options are for creating a screened host firewall, and the third option
contains an additional packet-filtering router to achieve another level of security.

To achieve the most security with the least amount of effort is always desirable. When
building firewall devices, the bastion host should keep the design simple with the fewest
possible components, both hardware and software. A bastion host is a publicly accessible
device. When Internet users attempt to access resources on the Internet network, the first
device they encounter is a bastion host. Fewer running services on the bastion host will
give a potential hacker less opportunity to overcome the firewall. Bastion hosts must
check all incoming and outgoing traffic and enforce the rules specified in the security
policy. Bastion hosts are armed with logging and alarm features to prevent attacks. When

INTERNET FIREWALLS FOR TRUSTED SYSTEMS 351

creating a bastion host, it must be kept in mind that its role will help to decide what is
needed and how to configure the device.

10.4.1 Screened Host Firewall (Single-Homed Bastion Host)

The first type of firewall is a screened host which uses a single-homed bastion host
plus a packet-filtering router, as shown in Figure 10.4. Single-homed bastion hosts can
be configured as either circuit-level or application-level gateways. When using either of
these two gateways, each of which is called a proxy server, the bastion host can hide the
configuration of the internal network.

NAT is essentially needed for developing an address scheme internally. It is a critical
component of any firewall strategy. It translates the internal IP addresses to IANA-
registered addresses to access the Internet. Hence, using NAT allows network admin-
istrators to use any internal IP address scheme.

The screened host firewall is designed such that all incoming and outgoing information
is passed through the bastion host. The external screening router is configured to route
all incoming traffic directly to the bastion host as indicated in Figure 10.4. The screening
router is also configured to route outgoing traffic only if it originates from the bastion host.
This kind of configuration prevents internal clients from bypassing the bastion host. Thus,
the bastion host is configured to restrict unacceptable traffic and proxy acceptable traffic.

A single-homed implementation may allow a hacker to modify the router not to forward
packets to the bastion host. This action would bypass the bastion host and allow the hacker
directly into the network. But such a bypass usually does not happen because a network
using a single-homed bastion host is normally configured to send packets only to the
bastion host, and not directly to the Internet.

10.4.2 Screened Host Firewall (Dual-Homed Bastion Host)

The configuration of the screened host firewall using a dual-homed bastion host adds
significant security, compared with a single-homed bastion host. As shown in Figure 10.5,
a dual-homed bastion host has two network interfaces. This firewall implementation is
secure due to the fact that it creates a complete break between the internal network and

Internal network
host

Server
(Web and FTP)

Internet

Bastion host

Packet-filtering
router

Figure 10.4 Screened host firewall system (single-homed bastion host).

352 INTERNET SECURITY

Internal network
hosts

Server (Web and FTP)

Internet

Bastion host

Packet-filtering
router

Figure 10.5 Screened host firewall system (dual-homed bastion host).

the external Internet. As with the single-homed bastion, all external traffic is forwarded
directly to the bastion host for processing. However, a hacker may try to subvert the
bastion host and the router to bypass the firewall mechanisms. Even if a hacker could
defeat either the screening router or the dual-homed bastion host, the hacker would still
have to penetrate the other. Nevertheless, a dual-homed bastion host removes even this
possibility. It is also possible to implement NAT for dual-homed bastion hosts.

10.4.3 Screened Subnet Firewall

The third implementation of a firewall is the screened subnet, which is also known as
a DMZ. This firewall is the most secure one among the three implementations, simply
because it uses a bastion host to support both circuit- and application-level gateways. As
shown in Figure 10.6, all publicly accessible devices, including modem and server, are

Bastion host

Packet-filtering
router (External)

Server
(Web and FTP)

Packet-filtering
router (Internal)

Internet

Internal
network

Modem

De-militarised zone

Figure 10.6 Screened subnet firewall system.

INTERNET FIREWALLS FOR TRUSTED SYSTEMS 353

placed inside the DMZ. This DMZ then functions as a small isolated network positioned
between the Internet and the internal network. The screened subnet firewall contains
external and internal screening routers. Each is configured such that its traffic flows
only to or from the bastion host. This arrangement prevents any traffic from directly
traversing the DMZ subnetwork. The external screening router uses standard filtering to
restrict external access to the bastion host, and rejects any traffic that does not come from
the bastion host. This router also uses filters to prevent attacks such as IP spoofing and
source routing. The internal screening router also uses rules to prevent spoofing and source
routing. Like its external counterpart, this internal router rejects incoming packets that do
not originate from the bastion host, and sends only outgoing packets to the bastion host.

The benefits of the screened subnet firewall are based on the following facts. First, a
hacker must subvert three separate tri-homed interfaces when he or she wants to access the
internal network. But it is almost infeasible. Second, the internal network is effectively
invisible to the Internet because all inbound/outbound packets go directly through the
DMZ. This arrangement makes it impossible for a hacker to gain information about
the internal systems because only the DMZ is advertised in the routing tables and other
Internet information. Third, internal users cannot access the Internet without going through
the bastion host because the routing information is contained within the network.

11

SET for E-commerce Transactions

The Secure Electronic Transaction (SET) is a protocol designed for protecting credit
card transactions over the Internet. It is an industry-backed standard that was formed by
MasterCard and Visa (acting as the governing body) in February 1996. To promote the SET
standard throughout the payments community, advice and assistance for its development
have been provided by IBM, GTE, Microsoft, Netscape, RSA, SAIC, Terisa and Verisign.

SET relies on cryptography and X.509 v3 digital certificates to ensure message confi-
dentiality and security. SET is the only Internet transaction protocol to provide security
through authentication. It combats the risk of transaction information being altered in transit
by keeping information securely encrypted at all times and by using digital certificates to
verify the identity of those accessing payment details. The specifications of and ways to
facilitate secure payment card transactions on the Internet are fully explored in this chapter.

11.1 Business Requirements for SET

This section describes the major business requirements for credit card transactions by
means of secure payment processing over the Internet. They are listed below:

1. Confidentiality of information (provide confidentiality of payment and order informa-

tion): To meet these needs, the SET protocol uses encryption. Confidentiality reduces
the risk of fraud by either party to the transaction or by malicious third parties. Card-
holder account and payment information should be secured as it travels across the
network. It should also prevent the merchant from learning the cardholder’s credit
card number; this is only provided to the issuing bank. Conventional encryption by
DES is used to provide confidentiality.

2. Integrity of data (ensure the integrity of all transmitted data): SET combats the risk
of transaction information being altered in transit by keeping information securely
encrypted at all times. That is, it guarantees that no changes in message content
occur during transmission. Digital signatures are used to ensure integrity of payment

Internet Security. Edited by M.Y. Rhee
 2003 John Wiley & Sons, Ltd ISBN 0-470-85285-2

356 INTERNET SECURITY

information. RSA digital signatures, using SHA-1 hash codes, provide message inte-
grity. Certain messages are also protected by HMAC using SHA-1.

3. Cardholder account authentication (provide authentication that a cardholder is a legit-

imate customer of a branded payment card account): Merchants need a way to verify
that a cardholder is a legitimate user of a valid account number. A mechanism that
links the cardholder to a specific payment card account number reduces the incidence
of fraud and the overall cost of payment processing. Digital signatures and certifi-
cates are used to ensure authentication of the cardholder account. SET uses X.509 v3
digital certificates with RSA signatures for this purpose.

4. Merchant authentication (provide authentication that a merchant can accept credit

card transactions through its relationship with an acquiring financial institution): Mer-
chants have no way of verifying whether the cardholder is in possession of a valid
payment card or has the authority to be using that card. There must be a way for the
cardholder to confirm that a merchant has a relationship with a financial institution
(acquirer) allowing it to accept the payment card. Cardholders also need to be able to
identify merchants with whom they can securely conduct electronic commerce. SET
provides for the use of digital signatures and merchant certificates to ensure authen-
tication of the merchant. SET uses X.509 v3 digital certificates with RSA signatures
for this purpose.

5. Security techniques (ensure the use of the best security practices and system design

techniques to protect all legitimate parties in an electronic commerce transaction):
SET utilises two asymmetric key pairs for the encryption/decryption process and
for the creation and verification of digital signatures. Confidentiality is ensured by
the message encryption. Integrity and authentication are ensured by the use of dig-
ital signatures. Authentication is further enhanced by the use of certificates. The
SET protocol utilises cryptography to provide confidentiality of message informa-
tion, ensure payment integrity and insure identity authentication. For authentication
purposes, cardholders, merchants and acquirers will be issued with digital certificates
by their sponsoring CAs. Thus, SET is a well-tested specification based on highly
secure cryptographic algorithms and protocols.

6. Creation of brand-new protocol (create a protocol that neither depends on transport

security mechanisms nor prevents their use): SET is an end-to-end protocol whereas
SSL provides point-to-point encryption. SET does not interfere with the use of other
security mechanisms such as IPsec and SSL/TLS. Even though both technologies
address the issue of security, they work in different ways and provide different levels
of security. SET was specifically developed for secure payment transactions.

7. Interoperability (facilitate and encourage interoperability among software and net-

work providers): SET uses specific protocols and message formats to provide inter-
operability. The specification must be applicable on a variety of hardware and software
platforms and must not include a preference for one over another. Any cardholder
with compliant software must be able to communicate with any merchant software
that also meets the defined standard.

SET FOR E-COMMERCE TRANSACTIONS 357

11.2 SET System Participants

The participants in the SET system interactions are described in this section. A discrepancy
is found between an SET transaction and a retail or mail order transaction: in a face-to-
face retail transaction, electronic processing begins with the merchant or the acquirer, but,
in an SET transaction, the electronic processing begins with the cardholder.

• Cardholder : In the electronic commerce environment, consumers or corporate pur-
chasers interact with merchants on personal computers over the Internet. A cardholder
is an authorised holder of a payment card that has been issued by an issuer. In the card-
holder’s interactions, SET ensures that the payment card account information remains
confidential.

• Issuer : An issuer is a financial institution (a bank) that establishes an account for a
cardholder and issues the payment card. The issuer guarantees payment for authorised
transactions using the payment card.

• Merchant : A merchant is a person or organisation that offers goods or services for sale
to the cardholder. Typically, these goods or services are offered via a Website or by
e-mail. With SET, the merchant can offer its cardholders secure electronic interactions.
A merchant that accepts payment cards must have a relationship with an acquirer (a
financial institution).

• Acquirer : An acquirer is the financial institution that establishes an account with
a merchant and processes payment card authorisation and payments. The acquirer
provides authentication to the merchant that a given card account is active and that
the proposed purchase does not exceed the credit limit. The acquirer also provides
electronic transfer of payments to the merchant’s account. Subsequently, the acquirer
is reimbursed by the issuer over some sort of payment network for electronic funds
transfer (EFT).

• Payment gateway : A payment gateway acts as the interface between a merchant and
the acquirer. It carries out payment authorisation services for many card brands and
performs clearing services and data capture. A payment gateway is a device operated
by the acquirer or a designated third party that processes merchant payment messages,
including payment instructions from cardholders. The payment gateway functions as
follows: it decrypts the encoded message, authenticates all participants in a transaction,
and reformats the SET message into a format compliant with the merchant’s point of
sale system. Note that issuers and acquirers sometimes choose to assign the processing
of payment card transactions to third-party processors.

• Certification Authority : A CA is an entity that is trusted to issue X.509 v3 public-
key certificates for cardholders, merchants and payment gateways. The success of
SET will depend on the existence of a CA infrastructure available for this purpose.
The primary functions of the CA are to receive registration requests, to process and
approve/decline requests, and to issue certificates. A financial institution may receive,
process and approve certificate requests for its cardholders or merchants, and forward
the information to the appropriate payment card brand(s) to issue the certificates.
An independent Registration Authority (RA) that processes payment card certificate

358 INTERNET SECURITY

Root CA

CA CA CA

Issuer

Cardholder

Acquirer

Payment
network

Merchant

Internet Internet

Payment gateway

Brand CA

Figure 11.1 The SET hierarchy indicating the relationships between the participants.

requests and forwards them to the appropriate issuer or acquirer for processing. The
financial institution (issuer or acquirer) forwards approved requests to the payment
card brand to issue the certificates.

Figure 11.1 illustrates the SET hierarchy which reflects the relationships between the
participants in the SET system, described in the preceding paragraphs. In the SET envi-
ronment, there exists a hierarchy of CAs. The SET protocol specifies a method of trust

chaining for entity authentication. This trust chain method entails the exchange of digital
certificates and verification of the public keys by validating the digital signatures of the
issuing CA. As indicated in Figure 11.1, this trust chain method continues all the way up
to the root CA at the top of the hierarchy.

11.3 Cryptographic Operation Principles

SET is the Internet transaction protocol providing security by ensuring confidentiality,
data integrity, authentication of each party and validation of the participant’s identity. To
meet these requirements, SET incorporates the following cryptographic principles:

• Confidentiality : This is ensured by the use of message encryption. SET relies on
encryption to ensure message confidentiality. In SET, message data is encrypted with
a random symmetric key which is further encrypted using the recipient’s public key.
The encrypted message along with this digital envelope is sent to the recipient. The
recipient decrypts the digital envelope with a private key and then uses the symmetric
key in order to recover the original message.

SET FOR E-COMMERCE TRANSACTIONS 359

• Integrity : This is ensured by the use of a digital signature. Using the public/private-
key pair, data encrypted with either key can be decrypted with the other. This allows
the sender to encrypt a message using the sender’s private key. Any recipient can
determine that the message came from the sender by decrypting the message using
the sender’s public key. With SET, the merchant can be assured that the order it
received is what the cardholder entered. SET guarantees that the order information is
not altered in transit. Note that the roles of the public and private keys are reversed
in the digital signature process where the private key is used to encrypt for signature
and the public key is used to decrypt for verification of signature.

• Authentication: This is also ensured by means of a digital signature, but it is further
strengthened by the use of a CA. When two parties conduct business transactions,
each party wants to be sure that the other is authenticated. Before a user B accepts a
message with a digital signature from a user A, B wants to be sure that the public key
belongs to A. One way to secure delivery of the key is to utilise a CA to authenticate
that the public key belongs to A. A CA is a trusted third party that issues digital
certificates. Before it authenticates A’s claims, a CA could supply a certificate that
offers a high assurance of personal identity. This CA may require A to confirm his
or her identity prior to issuing a certificate. Once A has provided proof of his or
her identity, the CA creates a certificate containing A’s name and public key. This
certificate is digitally signed by the CA. It contains the CA’s identification information,
as well as a copy of the CA’s public key. To get the most benefit, the public key of the
CA should be known to as many people as possible. Thus, by trusting a single key,
an entire hierarchy can be established in which one can have a high degree of trust.

The SET protocol utilises cryptography to provide confidentiality of information,
ensure payment integrity and ensure identity authentication. For authentication purposes,
cardholders, merchants and acquirers (financial institutions) will be issued with digital
certificates by their sponsoring CAs. The certificates are digital documents attesting to
the binding of a public key to an individual user. They allow verification of the claim
that a given public key does indeed belong to a given individual user.

11.4 Dual Signature and Signature Verification

SET introduced a new concept of digital signature called dual signatures. A dual signature is
generated by creating the message digest of two messages: order digest and payment digest.
Referring to Figure 11.2, the customer takes the hash codes (message digests) of both the
order message and payment message by using the SHA-1 algorithm. These two hashes, ho

and hp, are then concatenated and the hash code h of the result is taken. Finally, the customer
encrypts (via RSA) the final hash code with his or her private key, Ksc, creating the dual
signature. Computation of the dual signature (DS) is shown as follows:

DS = EKsc
(h)

where h = H(H(OM)||H(PM))

= H(ho||hp)

EKsc
(= dc) is the customer’s private signature key.

360 INTERNET SECURITY

OM
OM

PM
PM

H
H

H
H

H
H

H
H

H
H

E
E

D
D

D
D

H
H

H
H

II

IIII

Compare Compare

Order message Payment message

h

hpho

hpho

hpho

Customer

Kpc Ksc Kpc

Merchant Bank

OM : Order message
PM : Payment message
 H : Hash function (SHA-1)
 || : Concatenation
 E : Encryption (RSA)
 D : Decryption (RSA)

ho: OM message digest
hp: PM message digest
h = H(ho||hp) : Order / payment digest
Ksc: Customer’s private key
Kpc: Customer’s public key

Dual signature

Figure 11.2 Dual signature and order/payment message authentication.

Example 11.1 Computation of dual signature:
Assume that the order message (OM) and the payment message (PM) are given, respec-

tively, as follows:

OM = 315a46e51283f7c647

PM = 1325f47568

Since SHA-1 sequentially processes blocks of 512 bits, i.e. 16 32-bit words, the message
padding must attach to the message block to ensure that a final padded message becomes
a multiple of 512 bits. The 160-bit message digest can be computed from hashing the
512-bit padded message by the use of SHA-1. The padded OM and PM messages are,
respectively,

Padded OM (512 bits):

315a46e5 1283f7c6 47800000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000048

SET FOR E-COMMERCE TRANSACTIONS 361

Padded PM (512 bits):

1325f475 68800000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000028

Referring to Figure 11.3, H(OM) = ho and H(PM) = hp each are obtained as follows:

ho: c4511d95 4556f627 fa491c85 a5a8cf0c 6af4f62c (160 bits)
hp: 6e94de9c ab3cb005 35d792ca 05aac971 76a17d65 (160 bits)

Concatenating these two hash codes and appending pads yields (ho||hp):

c4511d95 4556f627 fa491c85 a5a8cf0c
6af4f62c 6e94de9c ab3cb005 35d792ca
05aac971 76a17d65 80000000 00000000
00000000 00000000 00000000 00000140

Taking the hash (SHA-1) of this concatenated message digests results in:

H(ho||hp) = h

= ee3e 9a3d ba2d da59 c663 1a58 1c7c dd9e 1bec 3e99 (hexadecimal)

Kpc Ksc Kpc

HEX : EE3E8A2D BA29DA59 C6631A58 1C7CDD9E 1BEC3E99
INTEGER : 1360134486714001519823723727533031546268859252377

INTEGER:
3044018001682013330813613420039503951740

0977022706040082090003630103

1360134486714001519823723727533031546268859252377 1360134486714001519823723727533031546268859252377

Customer

OM

H

Merchant
Result

C4511D95 4556f627
FA491C85 A5A8CF0C

6AF4F62C

Result
6E94DE9C AB3CB005
35D792CA 05AAC971

76A17D65

| |
| |

| |
H

D

DS

ho hp

H H

H

D

H

H

E

h

SHA-1 SHA-1 SHA-1 SHA-1

PM

Order message
order message: 31 5a 46 e5 12 83 f7 c6 47

Payment message
payment message: 13 25 f4 75 68

Bank

Figure 11.3 Computational analysis for the dual signature relating to Example 11.1.

362 INTERNET SECURITY

Transforming this resulting hash into decimal numbers yields:

H(ho||hp) = 1360134484714001519823723727533031546268859285377 (decimal)

The concatenated two hashes become the input to the SHA-1 hash function. Thus, the
resulting hash code h is RSA-encrypted with the customer’s private key Ksc = dc in order
to obtain the dual signature.

To generate the public and private keys, choose two random primes, p and q, and
compute the product n = pq. For a short example demonstration, choose p = 47 and q =
73; then n = 3431 and φ(n) = (p − 1)(q − 1) = 3312. If the merchant has the customer’s
public key ec = Kpc = 79 that is taken from the customer’s certificate, then the customer’s
private key dc is computed using the extended Euclidean algorithm such that:

dc ≡ e−1
c (mod φ(n))

≡ 79−1(mod 3312) ≡ 2767

In the digital signature process, the roles of the public and private keys are reversed,
where the private key is used to encrypt (sign) and the public key is used to decrypt for
verification of the signature.

To encrypt the final hash value h with dc, first divide h into numerical blocks hi and
encrypt block after block such that:

DS = h
dc

i (modn)

This is the dual-signature formula. Now, the dual signature represented in RSA-encrypted
decimals can be computed as:

DS = 3044 0180 0168 2013 3308 1361 3420 0395 0395
1740 0977 0227 0604 0082 0900 0363 0103

• Merchant’s signature verification: Since the merchant has the customer’s public key
Kpc = ec = 79, the merchant can decrypt the dual signature by making use of Kpc = ec

as follows:

DKpc
[DS] = ĥ

= 1360134484714001519823723727533031546268859285377 (decimal)

= ee3e 9a3d ba2d da59 c663 1a58 1c7c dd9e 1bec 3e99 (hexadecimal)

Now assume that the merchant is in possession of the order message (OM) and the
message digest for the payment message hp = H(PM). Then the merchant can compute
the following quantity:

hM = H(H(OM)||hp)

= ee3e 9a3d ba2d da59 c663 1a58 1c7c dd9e 1bec 3e99 (hexadecimal)

Since hM = ĥ is proved, the merchant has received OM and verified the signature.

SET FOR E-COMMERCE TRANSACTIONS 363

• Bank’s signature verification: Similarly, if the bank is in possession of DS, PM, the
message digest ho for OM, and the customer’s public key Kpc, then it can compute
the following quantity:

hB = H(ho||H(PM))

= ee3e 9a3d ba2d da59 c663 1a58 1c7c dd9e 1bec 3e99 (hexadecimal)

Since these two quantities are equal, hB = ĥ, then the bank has verified the signature
upon received PM.

Thus, it is verified completely that the customer has linked the OM and PM and
can prove the linkage.

11.5 Authentication and Message Integrity

When user A wishes to sign the plaintext information and send it in an encrypted message
(ciphertext) to user B, the entire encryption process is as configured in Figure 11.4. The
encryption/decryption processes for message integrity consist of the following steps.

1. Encryption process:
• User A sends the plaintext through a hash function to produce the message digest

that is used later to test the message integrity.
• A then encrypts the message digest with his or her private key to produce the

digital signature.
• Next, A generates a random symmetric key and uses it to encrypt the plaintext,

A’s signature and a copy of A’s certificate, which contains A’s public key. To
decrypt the plaintext later, user B will require a secure copy of this temporary
symmetric key.

• B’s certificate contains a copy of his or her public key. To ensure secure transmis-
sion of the symmetric key, A encrypts it using B’s public key. The encrypted key,
called the digital envelope, is sent to B along with the encrypted message itself.

• A sends a message to B consisting of the DES-encrypted plaintext, signature and
A’s public key, and the RSA-encrypted digital envelope.

2. Decryption process:
• B receives the encrypted message from A and decrypts the digital envelope with

his or her private key to retrieve the symmetric key.
• B uses the symmetric key to decrypt the encrypted message, consisting of the

plaintext, A’s signature and A’s public key retrieved from A’s certificate.
• B decrypts A’s digital signature with A’s public key that is acquired from A’s

certificate. This recovers the original message digest of the plaintext.
• B runs the plaintext through the same hash function used by A and produces a

new message digest of the decrypted plaintext.
• Finally, B compares his or her message digest to the one obtained from A’s digital

signature. If they are exactly the same, B confirms that the message content has
not been altered during transmission and that it was signed using A’s private key.
If they are not the same, then the message either originated somewhere else or
was altered after it was signed. In that case, B discards the message.

364 INTERNET SECURITY

E A’s certificate

A’s private key

Message
digest

Digital
signature

HPlaintext

Random
symmetric

key

Plaintext Signature A’s public key

E

E

Encrypted message

D

User A

User B

Symmetric
key

B’s public
key

B’s private key D

Plaintext Signature A’s public key

D

Message
digest

H

Message
digest

Compare

B’s certificate

Digital
envelope

Message contents
= Plaintext + Signature

+ A’s public key

Figure 11.4 Encryption/Decryption overview for message integrity.

SET FOR E-COMMERCE TRANSACTIONS 365

Example 11.2 Message Integrity Check:

User A

Assume that the plaintext P is given as:

P = 0x135af247c613e815

The 160-bit message digest is computed from hashing the 512-bit padded plaintext by the
use of SHA-1 as follows:

h = 0x8d9af6616e6063f2900833c2dcafefd1ed08f459

User A picks two random primes p = 487 and q = 229. Compute the product n = pq =
111 523 and φ(n) = 110 808. Suppose the A’s public key is eA = 53 063 = 0xcf47. Then
A’s private key dA is computed using the extended euclidean algorithm as:

dA ≡ e−1
A (mod φ(n)) ≡ 53 063−1(mod 110 808) ≡ 71 = 0x47

A’s private key is used to sign (encrypt) the 160-bit message digest h to produce the
digital signature SA:

SA = 0x087760f9030ca3805ff419f4505e700cf3b18bec00d0d0cce80c9ab140dd057021a968

Now, the message contents consist of the plaintext P, signature SA and A’s public key
eA as follows:

Message contents = 135af247c613e815087760f9030ca3805ff419f4505e700cf3b18bec

00d0d0cce80c9ab140dd057021a968cf47

A generates a random symmetric key K:

K = 0x13577ca2f8e63d79

Using this symmetric key, A encrypts the concatenated message contents as:

Encrypted message = 0x9adaff892d7c4db7f7911eacba780a6b1c6444d771f289f5a

12340aa1ccec658077f5521daddf1d78282aa96f4738426

and then sends them to user B.

User B

User B chooses two random primes p = 313 and q = 307, which give n = 96 091 and
φ(n) = 95 784, respectively.

Assume that B’s public key, eB = 109 = 0x6d, is obtained from B’s certificate. The
symmetric key K is encrypted with B’s public key to generate the digital envelope, which
is computed as:

DE = 0x009d100c5207c1313376156091606c

366 INTERNET SECURITY

B’s private key dB is computed using the extended euclidean algorithm as:

dB = 7745 = 0x1e41

The symmetric key K is recovered by decrypting the digital envelope with B’s private
key dB.

K = 0x13577ca2f8e63d79

Using the recovered symmetric key, the encrypted message contents are decrypted to
obtain the message contents (Plaintext + Signature + A’s public key). The message digest
is computed by decrypting the recovered signature with A’s public key, and it results in:

ĥ = 0x8d9af6616e6063f2900833c2dcafefd1ed08f459

Next, the message digest is obtained using the SHA-1 hash function of the recovered
plaintext. It results in the following message digest:

ĥ = 0x8d9af6616e6063f2900833c2dcafefd1ed08f459

Thus, the MIC is completely accomplished because these two message digests are iden-
tical. Figure 11.5 gives full details of the MIC relating to this example.

11.6 Payment Processing

This section describes several transaction protocols needed to securely conduct payment
processing by utilising the cryptographic concepts introduced in Sections 11.3–11.5. The
best detailed overview of SET specification appears in Book 1: Business Description issued
in May 1997 by MasterCard and Visa. The following descriptions of secure payment
processing are largely based on this book of the SET specification.

Figure 11.6 shows an overview of secure payment processing and it is worth looking
at the outlines of several transaction protocols prior to reading the detailed discussion
which follows.

11.6.1 Cardholder Registration

The cardholder must register with a CA before sending SET messages to the merchant. The
cardholder needs a public/private-key pair for use with SET. The scenario of cardholder
registration is described in the following.

1. Registration request/response processes:
The registration process can be started when the cardholder requests a copy of the
CA certificate. When the CA receives the request, it transmits its certificate to the
cardholder. The cardholder verifies the CA certificate by traversing the trust chain
to the root key. The cardholder holds the CA certificate to use later during the
registration process.
• The cardholder sends the initiate request to the CA.

SET FOR E-COMMERCE TRANSACTIONS 367

Plaintext H E

A’s private key

Plaintext Signature A’s public key

Message
digest

A’s certificate

E

E

D

User A

User B

B’s private key
Symmetric

key

B’s public
key

D

Plaintext Signature A’s public key

D

Message digest

H

Message digest

Compare

B’s certificate

0x135af247c613e815

8d9 af6 616 e60 63f 290 083 3c2 dca fef d1e d08 f45 9

d = 71
= 0x47

08776 0f903 0ca38 05ff4 19f45

05e70 0cf3b 18bec 00d0d 0cce8

0c9ab 140dd 05702 1a968

e = 53 063 = 0xcf47

K = 0x 135 77c a2f 8e6 3d7 9

009d1 00c52 07c13

13376 15609 1606c

d = 7745 = 0x1e41 0x13577ca2f8e63d79

0x8d9af661 6e6063f2 900833

c2 dcafefd1 ed08f459

Encrypted message =

 9adaff892d7c4db7

f7911eacba780a6b

1c6444d771f289f5

a12340aa1ccec658

077f5521daddf1d7

8282aa96f4738426

Message contents

e = 53 063 = 0xcf47

8d9 af6 616 e60 63f 290 083 3c2 dca fef d1e d08 f45 9

encryption

Message contents =

135af247c613e815

087760f9030ca380

5ff419f4505e700c

f3b18bec00d0d0cc

e80c9ab140dd0570

21a968cf47

Message contents
= Plaintext + signature
 + A’s public key

Digital
signature

Random
symmetric

key

Digital e = 109 = 0x6d
envelope

Figure 11.5 Message integrity check relating to Example 11.2.

368 INTERNET SECURITY

Initiate request

Initiate response

Certificate request

Certificate return

Registration form request

Registration form supply

Registration form supply

Registration form return

Certificate request

Certificate return

Authorisation request

Payment gateway

Capture request

and capture token

Capture response

and gateway certificate

Authorisation response

Cardholder (consumer)
Certificate Authority

(CA)

Cardholder
registration

Purchase
request

for
order process

Purchase
response

for
order process

Merchant
registration

Payment
authorisation

Payment
capture

Merchant

CA

(1) Initial request
(2) Initial response
(3) Purchase request
(4) Purchase response

(1) (2) (3) (4)

Issuer’s response

Merchant’s
financial

institution

Cardholder’s
bank

Issuer

Acquirer

Figure 11.6 Overall picture of payment processing.

• Once the initiate request is received from the cardholder, the CA generates the
response and digitally signs it by generating a message digest of the response and
encrypting it with the CA’s private key.

• The CA sends the initiate response along with the CA certificate to the cardholder.
• The cardholder receives the initiate response and verifies the CA certificate by

traversing the trust chain to the root key.

SET FOR E-COMMERCE TRANSACTIONS 369

• The cardholder verifies the CA certificate by decrypting it with the CA’s pub-
lic key and comparing the result with a newly generated message digest of the
initiate response.

It is worth depicting this registration process as shown in Figure 11.7.

2. Registration form process:
• The cardholder generates the registration form request.

Cardholder
(CH)

Certification
Authority

(CA)

D

CAC MD

Verify by
traversing

to the root key

Compare

Kpc
(CA’s public key)

Ksc
(CA’s private

 key)

Kpc
(CA’s public key)

D

Initiate request (IRq)

E

CAC
(x.509)

Initiate response
(IRs)

SHA-1

H(IRs) = MD:
Message digest

EKsc(MD):
Digital signature

IRs

H

E

| |

EKsc (CAC)

EKsc (CAC) EKsc (MD)

IRq : Initiate request
IRs : Initiate response
CAC : CA certificate (X.509)
H : Hash function
H(IRs) = MD : Message digest of the response
EKsc(MD) = EKsc(H(IRS)) : Digital signature
EKsc(CAC) : Digital signature of certificate

Ksc : CA’s private key
Kpc : CA’s public key

Figure 11.7 Registration request/response processes.

370 INTERNET SECURITY

• The cardholder encrypts the SET message with a random symmetric key (No. 1).
The DES key, along with the cardholder’s account number, is then encrypted with
the CA’s public key.

• The cardholder transmits the encrypted registration form request to the CA.
• The CA decrypts the symmetric DES key (No. 1) and cardholder’s account num-

ber with the CA’s private key. The CA then decrypts the registration form request
using the symmetric DES key (No. 1).

• The CA determines the appropriate registration form and digitally signs it by
generating a message digest of the registration form and encrypting it with the
CA’s private key.

• The CA sends the registration form and the CA certificate to the cardholder.
• The cardholder receives the registration form and verifies the CA certificate by

traversing the trust chain to the root key.
• The cardholder verifies the CA’s signature by decrypting it with the CA’s pub-

lic key and comparing the result with a newly generated message digest of the
registration form. The cardholder then completes the registration form.

The registration form process is depicted as shown Figure 11.8.

3. Certificate request/response processes:
• The cardholder generates the certificate request, including the information entered

into the registration form.
• The cardholder creates a message with request, the cardholder’s public key and

a newly generated symmetric key (No. 2), and digitally signs it by generating a
message digest of the cardholder’s private key.

• The cardholder encrypts the message with a randomly generated symmetric key
(No. 3). This symmetric key, along with the cardholder’s account information, is
then encrypted with the CA’s public key.

• The cardholder transmits the encrypted certificated request messages to the CA.
• The CA decrypts the No. 3 symmetric key and cardholder’s account information

with the CA’s private key, and then decrypts the certificate request using this
symmetric key.

• The CA verifies the cardholder’s signature by decrypting it with the cardholder’s
public key and comparing the result with a newly generated message digest of
the certificate requested.

• The CA verifies the certificate request using the cardholder’s account information
and information from the registration form.

• Upon verification the CA creates the cardholder certificate, digitally signing it
with the CA’s private key.

• The CA generates the certificate response and digitally signs it by generating a
message digest of the response and encrypting it with the CA’s private key.

• The CA encrypts the certificate response with the No. 2 symmetric key from the
cardholder request.

• The CA transmits the certificate response to the cardholder.
• The cardholder verifies the certificate by traversing the trust chain to the root key.

SET FOR E-COMMERCE TRANSACTIONS 371

Cardholder
(CH)

RFR

E DES KEY(1)

DES KEY(1) CANE(RFR)
K(1)

D

D

D

E

CAC MD

Verify by
traversing to
the root key.

Compare

CA

RFR

D

E

E

H

EKSC
(CAC)

EKSC
(MD) : Digital
 signature

EKSC
(CAC)

EKSC
(CAC) + EKSC

(MD)

EKSC
(MD) : digital

signature

DES Key(1) CAN

EKSC
(MD)

KPC

KSC

KSC

(CA’s public key)

(CA’s public key)
(KPC)

(CA’s private key)

CAC Reg. form

MD = H(R.F)
(CA’s private key)

CAN : Cardholder’s Account Number
RFR : Registration Form Request
KPC : CA’s public key
KSC : CA’s private key
MD : Message Digest
DES KEY(1) = Key(1)

Figure 11.8 Registration form process.

• The cardholder decrypts the response using the symmetric key (No. 2) saved from
the cardholder request process.

• The cardholder verifies the CA’s signature by decrypting it with the CA’s pub-
lic key and comparing the result with a newly generated message digest of
the response.

• The cardholder stores the certificate and information from the response for future
e-commerce use.

11.6.2 Merchant Registration

Merchants must register with a CA before they can receive SET payment instructions
from cardholders. In order to send SET messages to the CA, the merchant must have a

372 INTERNET SECURITY

copy of the CA’s public key which is provided in the CA certificate. The merchant also
needs the registration form from the acquirer. The merchant must identify the acquirer
to the CA. The merchant registration process consists of five steps as follows: (1) The
merchant requests the registration form; (2) the CA processes this request and sends the
registration form; (3) the merchant requests certificates after receiving the registration
certificates; (4) the CA creates certificates; (5) the merchant receives certificates.

The detailed steps for the merchant registration are described in what follows.

1. Registration form process:
The registration process starts when the merchant requests the appropriate registration
form.

• The merchant sends the initiate request of the registration form to the CA. To
register, the merchant fills out the registration form with information such as the
merchant’s name, address and ID.

• The CA receives the initiate request.
• The CA selects an appropriate registration form and digitally signs it by gener-

ating a message digest of the registration form and encrypting it with the CA’s
private key.

• The CA sends the registration form along with the CA certificate to the merchant.
• The merchant receives the registration form and verifies the CA certificate by

traversing the trust chain to the root key.
• The merchant verifies the CA’s signature by decrypting it with the CA’s public

key and comparing the result with a newly computed message digest of the
registration form.

• The merchant creates two public/private-key pairs for use with SET: key encryp-
tion and signature.

Thus, the merchant completes the registration form. The merchant takes the regis-
tration information (name, address and ID) and combines it with the public key in a
registration message. The merchant digitally signs the registration message. Next the
merchant’s software generates a random symmetric key. This random key is used to
encrypt the message. The key is then encrypted into the digital envelope using the
CA’s public key. Finally, the merchant transmits all of these components to the CA.

2. Certificate request/create process:
The merchant starts with the certificate request. When the CA receives the merchant’s
request, it decrypts the digital envelope to obtain the symmetric encryption key, which it
uses to decrypt the registration request.

• The merchant generates the certificate request.
• The merchant creates the message with request and both merchant public keys

and digitally signs it by generating a message digest of the certificate request and
encrypting it with the merchant’s private key.

• The merchant encrypts the message with a random symmetric key (No. 1). This
symmetric key, along with the merchant’s account data, is then encrypted with
the CA’s public key.

• The merchant transmits the encrypted certificate request message to the CA.

SET FOR E-COMMERCE TRANSACTIONS 373

• The CA decrypts the symmetric key (No. 1) and the merchant’s account data
with the CA’s private key, and then decrypts the message using the symmetric
key (No. 1).

• The CA verifies the merchant’s signature by decrypting it with the merchant’s
public key and comparing the result with a newly computed message digest of
the certificate request.

• The CA confirms the certificate request using the merchant information.
• Upon verification, the CA creates the merchant certificate digitally signing the

certificate with the CA’s private key.
• The CA generates the certificate response and digitally signs it by generating a

message digest of the response and encrypting it with the CA’s private key.
• The CA transmits the certificate response to the merchant.
• The merchant receives the certificate response from the CA. The merchant decrypts

the digital envelope to obtain the symmetric key. This key is used to decrypt the
registration response containing the certificates.

• The merchant verifies the certificates by traversing the trust chain to the root key.
• The merchant verifies the CA’s signature by decrypting it with the CA’s public

key and comparing the result with a newly computed message digest of the
certificate response.

• The merchant stores the certificates and information from the response for use in
future e-commerce transactions.

11.6.3 Purchase Request

The purchase request exchange should take place after the cardholder has completed
browsing, selecting and ordering. Before the end of this preliminary phase occurs, the
merchant sends a completed order form to the cardholder (customer). In order to send SET
messages to a merchant, the cardholder must have a copy of the certificates of the merchant
and the payment gateway. The message from the cardholder indicates which payment card
brand will be used for the transaction. The purchase request exchange consists of four
messages: initiate request, initiate response, purchase request and purchase response. The
detailed discussions that follow describe each step fully.

1. Initiate request:
• The cardholder sends the initiate request to the merchant.
• The merchant receives the initiate request.
• The merchant generates the response and digitally signs it by generating a message

digest of the response and encrypting it with the merchant’s private key.
• The merchant sends the response along with the merchant and payment gateway

certificates to the cardholder.

2. Initiate response:
• The cardholder receives the initiate response and verifies the certificates by travers-

ing the trust chain to the root key.
• The cardholder verifies the merchant’s signature by decrypting it with the mer-

chant’s public key and comparing the result with a newly computed message
digest of the response.

374 INTERNET SECURITY

• The cardholder creates the order message (OM) using information from the shop-
ping phase and payment message (PM). At this step the cardholder completes
payment instructions.

3. Purchase request:
• The cardholder generates a dual signature for the OM and PM by computing the

message digests of both, concatenating the two digests, computing the message
digest of the result and encrypting it using the cardholder’s private key.

• The cardholder generates a random symmetric key (No. 1) and uses it to encrypts
the PM. The cardholder then encrypts his or her account number as well as the
random symmetric key used to encrypt the PM in a digital envelope using the
payment gateway’s key.

• The cardholder transmits the OM and the encrypted PM to the merchant.
• The merchant verifies the cardholder certificate by traversing the trust chain to

the root key.
• The merchant verifies the cardholder’s dual signature on the OM by decrypting it

with the cardholder’s public key and comparing the result with a newly computed
message digest of the concatenation of the message digests of the OM and PM.

• The merchant processes the request, including forwarding the PM to the payment
gateway for authorisation.

4. Purchase response:
• The merchant creates the purchase response including the merchant signature

certificate and digitally signs it by generating a message digest of the purchase
response and encrypting it with the merchant’s private key.

• The merchant transmits the purchase response to the cardholder.
• If the transaction was authorised, the merchant fulfils the order to the cardholder.
• The cardholder verifies the merchant signature certificate by traversing the trust

chain to the root key.
• The cardholder verifies the merchant’s digital signature by decrypting it with the

merchant’s public key and comparing the result with a newly computed message
digest of the purchase response.

• The cardholder stores the purchase response.

11.6.4 Payment Authorisation

During the processing of an order from a cardholder, the merchant authorises the trans-
action. The authorisation request and the cardholder payment instructions are then trans-
mitted to the payment gateway.

1. Authorisation request:
• The merchant creates the authorisation request.
• The merchant digitally signs an authorisation request by generating a message

digest of the authorisation request and encrypting it with the merchant’s pri-
vate key.

• The merchant encrypts the authorisation request using a random symmetric key
(No. 2), which in turn is encrypted with the payment gateway public key.

SET FOR E-COMMERCE TRANSACTIONS 375

• The merchant transmits the encrypted authorisation request and the encrypted PM
from the cardholder purchase request to the payment gateway.

• The gateway verifies the merchant certificate by traversing the trust chain to the
root key.

• The payment gateway decrypts the digital envelope of the authorisation request
to obtain the symmetric encryption key (No. 2) with the gateway private key. The
gateway then decrypts the authorisation request using the symmetric key (No. 2).

• The gateway verifies the merchant’s digital signature by decrypting it with the
merchant’s public key and comparing the result with a newly computed message
digest of the authorisation request.

• The gateway verifies the cardholder’s certificate by traversing the trust chain to
the root key.

• The gateway decrypts the symmetric key (No. 1) and the cardholder account
information with the gateway private key. It uses the symmetric key to decrypt
the PM.

• The gateway verifies the cardholder’s dual signature on the PM by decrypting it
with the cardholder’s public key and comparing the result with a newly computed
message digest of the concatenation of the message digest of the OM and the PM.

• The gateway ensures consistency between the merchant’s authorisation request
and the cardholder’s PM.

• The gateway sends the authorisation request through a financial network to the
cardholder’s financial institution (issuer).

2. Authorisation response:
• The gateway creates the authorisation response message and digitally signs it by

generating a message digest of the authorisation response and encrypting it with
the gateway’s private key.

• The gateway encrypts the authorisation response with a new randomly generated
symmetric key (No. 3). This key is then encrypted with the merchant’s public key.

• The gateway creates the capture token and digitally signs it by generating a mes-
sage digest of the capture token and encrypting it with the gateway’s private key.

• The gateway encrypts the capture token with a new symmetric key (No. 4). This
key and the cardholder account information are then encrypted with the gateway’s
public key.

• The gateway transmits the encrypted authorisation response to the merchant.
• The merchant verifies the gateway certificate by traversing the trust chain to the

root key.
• The merchant decrypts the symmetric key (No. 3) with the merchant’s pri-

vate key and then decrypts the authorisation response using the symmetric key
(No. 3).

• The merchant verifies the gateway’s digital signature by decrypting it with the
gateway’s public key and comparing the result with a newly computed message
digest of the authorisation response.

• The merchant stores the encrypted capture token and envelope for later cap-
ture processing.

376 INTERNET SECURITY

• The merchant then completes processing of the purchase request and the card-
holder’s order by shipping the goods or performing the services indicated in
the order.

11.6.5 Payment Capture

After completing the processing of an order from a cardholder, the merchant will request
payment. The merchant generates and signs a capture request, which includes the final
amount of the transaction, the transaction identifier from the OM, and other information
about the transaction. A merchant’s payment capture process will be described in detail
in the following.

1. Capture request:
• The merchant creates the capture request.
• The merchant embeds the merchant certificate in the capture request and digitally

signs it by generating a message digest of the capture request and encrypting it
with the merchant’s private key.

• The merchant encrypts the capture request with a randomly generated symmetric
key (No. 5). This key is then encrypted with the payment gateway’s public key.

• The merchant transmits the encrypted capture request and encrypted capture token
previously stored from the authorisation response to the payment gateway.

• The gateway verifies the merchant certificate by traversing the trust chain to the
root key.

• The gateway decrypts the symmetric key (No. 5) with the gateway’s private key
and then decrypts the capture request using the symmetric key (No. 5).

• The gateway verifies the merchant’s digital signature by decrypting it with the
merchant’s public key and comparing the result with a newly computed message
digest of the capture request.

• The gateway decrypts the symmetric key (No. 4) with the gateway’s private key
and then decrypts the capture token using the symmetric key (No. 4).

• The gateway ensures consistency between the merchant’s capture request and the
capture token.

• The gateway sends the capture request through a financial network to the card-
holder’s issuer (financial institution).

2. Capture response:
• The gateway creates the capture response message, including the gateway signa-

ture certificate, and digitally signs it by generating a message digest of the capture
response and encrypting it with the gateway’s private key.

• The gateway encrypts the capture response with a newly generated symmetric
key (No. 6). This key is then encrypted with the merchant’s public key.

• The gateway transmits the encrypted capture response to the merchant.
• The merchant verifies the gateway certificate by traversing the trust chain to the

root key.
• The merchant decrypts the symmetric key (No. 6) with the merchant’s private

key and then decrypts the capture response using the symmetric key (No. 6).

SET FOR E-COMMERCE TRANSACTIONS 377

MD

H
DES
K#5

H

Payment gateway

E

MD

E

DES
K#6

E

D

D

DES
K#5

EK#5(CRq)

EK#6(CRs)

E
K#4

(CT) E

E

E

D

D

D

D

CT

DES
K#6

Kpg
Kpm

CRq

Ksg

Ksg

Kpg

Ksm

CRsCRs

Merchant

Capture request
(CRq)

Capture response
(CRs)

M’s
cert

G’s
cert

DES
K#4

CT

Compare
Gateway digital signature

Newly generated
digital signature

Kpm : merchant's public key

Ksm : merchant's private key

Kpg : payment gateway's public key

Ksg : payment gateway's private key

Figure 11.9 Payment capture process.

• The merchant verifies the gateway’s digital signature by decrypting it with the
gateway’s public key and comparing the result with a newly generated message
digest of the capture response.

Figure 11.9 shows an overview of payment capture consisting of the merchant’s capture
request and the gateway’s capture response.

Acronyms

ADCCP Advanced Data Communication Control Procedures
AES Advanced Encryption Standard (Rijndael)
AH Authentication Header
ANSI American National Standards Institute
ARP Address Resolution Protocol
AS Autonomous System
ASN.1 Abstract Syntax Notation One
ATM Asynchronous Transfer Mode
BER Basic Encoding Rules
BGP Border Gateway Protocol
CA Certification Authority
CBC Cipher Block Chaining
CDMF Commercial Data Masking Facility
CERT Centre for Emergency Response Team
CGI Common Gateway Interface
CIDR Classless Inter-Domain Routing
CLNS Connectionless Network Service
CMS Cryptographic Message Syntax
CRC Cyclic Redundancy Check
CRL Certificate Revocation List
CSMA/CD Carrier Sense Multiple Access with Collision Detection
DAC Discretionary Access Control
DARPA Defense Advanced Research Projects Agency
DDP apple-Talk Datagram-Delivery Protocol
DER Distinguished Encoding Rules
DES Data Encryption Standard
DH Diffie–Hellman
DIT Directory Information Tree
DMDC DES-like Message Digest Computation
DMZ De-Militarised Zone
DN Distinguished Name
DNS Domain Name Service or Domain Name System
DOI Domain of Interpretation

380 INTERNET SECURITY

DS Dual Signature
DSA Digital Signature Algorithm
DSS Digital Signature Standard
DVMRP Distance Vector Multicast Routing Protocol
EBCDIC Extended Binary Coded Decimal Interchange Code
EC Elliptic Curve
ECC Elliptic Curve Cryptosystems
ECDSA Elliptic Curve Digital Signature Algorithm
EFT Electronic Funds Transfer
ESP Encapsulating Security Payload
ESP Encrypted Security Payload
FDDI Fibre Distributed Data Interconnect
FIPS Federal Information Processing Standards
FTP File Transfer Protocol
GASAPI Generic Audit Service Application Program Interface
GSSAPI Generic Security Service Application Program Interface
HDLC High-level Data Link Control
HMAC Hashed Message Authentication Codes
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IAB Internet Architecture Board
IANA Internet Assigned Numbers Authority
ICB International Cooperation Board
ICCB Internet Configuration Control Board
ICMP Internet Control Message Protocol
ICV Integrity Check Value
IDEA International Data Encryption Algorithm
IESG Internet Engineering Steering Group
IETF Internet Engineering Task Force
IGMP Internet Group Management Protocol
IMAP Internet Message Access Protocol
Inter NIC Internet Network Information Centre
IP Internet Protocol
IPRA Internet Policy Registration Authority
IPsec Internet Protocol Security
IPX Novell Internet Packet Exchange
IRTF Internet Research Task Force
ISAKMP Internet Security Association Key Management Protocol
ISN Initial Sequence Number
ISO International Organization for Standardization
ITU-T International Telecommunication Union – Telecommunication Section
IV Initialisation Vector
KDC Key Distribution Centre
LAN Local Area Network
LDAP Lightweight Directory Access Protocol

ACRONYMS 381

LEAF Law Enforcement Access Field
LLC Logical Link Control
MAC Media Access Control
MAC Message Authentication Code
MBONE Multicast Backbone
MD5 Message Digest, version 5
MIC Message Integrity Code or Message Integrity Check
MIME Multipurpose Internet Mail Extension
MOSPF Multicast Open Shortest Path First
MSP Message Security Protocol
MTU Maximum Transfer Unit
NBS National Bureau of Standards
NCSA National Computer Security Association
NFS Network File System
NIC Network Interface Card
NIST National Institute of Standards and Technology
NMS Network Management System
NNTP Network News Transfer Protocol
NSA National Security Agency
NSAP Network Service Access Point
NVT Network Virtual Terminal
ORA Organisational Registration Authority
OSI Open Systems Interconnect
OSPF Open Shortest Path First
PAA Policy Approval Authority
PCA Policy Certification Authority
PCMCIA Personal Computer Memory Card International Association
PCT Private Communication Technology
PEM Privacy Enhanced Mail
PGP Pretty Good Privacy
PKCS Public-Key Cryptography Standards
PKC Public-Key Certificate
PKI Public-Key Infrastructure
POP Post Office Protocol
PPD Port Protection Devices
PPP Point-to-Point Protocol
PRBS Pseudo-Random Binary Sequence
PSRG Privacy and Security Research Group
QR Quadratic Residue
RARP Reverse Address Resolution Protocol
RDN Relative Distinguished Name
RFC Request for Comments
RIP Routing Information Protocol
RPC Remote Procedure Call
RSA Rivest, Shamir and Adleman

382 INTERNET SECURITY

SA Security Association
SAD Security Association Database
SATAN Security Administrator Tool for Analog Network
SDLC Synchronous Data Link Control
SEAL Screening External Access Link
SET Secure Electronic Transactions
SHA Secure Hash Algorithm
SHS Secure Hash Standard
S-HTTP Secure HyperText Transfer Protocol
SLIP Serial Line Internet Protocol
SMI Structure of Management Information
S/MIME Secure/Multipurpose Internet Mail Extension
SMTP Simple Message Transfer Protocol or Standard Mail Transfer Protocol
SNMP Simple Network Management Protocol
SPD Security Policy Database
SPE System Packet Exchange
SPI Security Parameter Index
SPKI Simple Public-Key Infrastructure
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TFTP Trivial File Transfer Protocol
TIS Trusted Information System
TLS Transport Layer Security
TS Time Stamp
UDP User Datagram Protocol
URI Universal Resource Identifier
URL Uniform Resource Locator
VPN Virtual Private Network
WAIS Wide Area Information Service
WAN Wide Area Network
WWW World Wide Web
XOR eXclusive OR

Bibliography

1. Aboba, B., and D. Simon, ‘PPP EAP TLS Authentication Protocol’, RFC 2716,
October 1999.

2. Abrams, M., and H. Podell, Computer and Network Security. Los Alamitos, CA:
IEEE Computer Society Press, 1987.

3. Adams, C., and S. Farrell, ‘Internet X.509 Public Key Infrastructure Certificate
Management Protocols’, Internet Draft, December 2001.

4. Almquist, P., ‘Type of Service in the Internet Protocol Suite’, RFC 1349, July
1992.

5. Atkinson, R., ‘Security Architecture for the Internet Protocol’, RFC 1825, August
1995.

6. Atkinson, R., ‘IP Authentication Header’, RFC 1826, August 1995.
7. Atkinson, R., ‘IP Encapsulation Security Payload (ESP)’, RFC 1827, August 1995.
8. Ballardie, A., ‘Core Based Trees (CBT) Multicast Routing Architecture’, RFC

2201, September 1997.
9. Bellovin, S., ‘Firewall-Friendly FTP’, RFC 1579, February 1994.

10. Bellovin, S., and W. Cheswick, ‘Network Firewalls’, IEEE Communications Mag-

azine, September 1994.
11. Berners-Lee, T., and D. Connolly, ‘Hypertext Markup Language – 2.0’, RFC 1866,

November 1995.
12. Berners-Lee, T., R. Fielding and H. Nielsen, ‘Hypertext Transfer Protocol – HTTP/

1.0’, RFC 1945, May 1996.
13. Blakley, B., ‘Architecture for Public-Key Infrastructure’, Internet Draft, November

1996.
14. Boeyen, S., R. Housley, T. Howes, M. Myers and P. Richard, ‘Internet Public Key

Infrastructure Part 2: Operational Protocols’, Internet Draft, March 1997.
15. Borenstein, N., and N. Freed, ‘MIME (Multipurpose Internet Mail Extensions) Part

One: Mechanisms for Specifying and Describing the Format of Internet Message
Bodies’, RFC 1521, September 1993.

16. Borman, D., ‘TELNET Authentication: Kerberos Version 4’, RFC 1411, January
1993.

Internet Security. Edited by M.Y. Rhee
 2003 John Wiley & Sons, Ltd ISBN 0-470-85285-2

384 INTERNET SECURITY

17. Borman, D., ‘TELNET Authentication Option’, RFC 1416, February 1993.
18. Borman, D., and C. Hedrick, ‘TELNET Remote Flow Control Option’, RFC 1372,

October 1992.
19. Borman, D., R. Braden and V. Jacobson, ‘TCP Extensions for High Performance’,

RFC 1323, May 1992.
20. Bradley, T., and C. Brown, ‘Inverse Address Resolution Protocol’, RFC 1293, June

1987.
21. Bradner, S., and A. Mankin, IPng: Internet Protocol Next Generation. Reading,

MA: Addison-Wesley, 1996.
22. Callaghan, B., B. Pawlowski and P. Staubach, ‘NFS Version 3 Protocol Specifica-

tion’, RFC 1813, June 1995.
23. Case, J., K. McCloghrie, M. Rose and S. Waldbusser, ‘Management Information

Base for version 2 of the Simple Network Management Protocol (SNMPv2)’, RFC
1907, January 1996.

24. Case, J., K. McCloghrie, M. Rose and S. Waldbusser, ‘Structure of Management
Information for version 2 of the Simple Network Management Protocol (SNMPv2)’,
RFC 1442, May 1993.

25. Case, J., K. McCloghrie, M. Rose and S. Waldbusser, ‘Protocol Operations for ver-
sion 2 of the Simple Network Management Protocol (SNMPv2)’, RFC 1448, May
1993.

26. Case, J., K. McCloghrie, M. Rose and S. Waldbusser, ‘Textual Conventions for
version 2 of the Simple Network Management Protocol (SNMPv2)’, RFC 1903,
January 1996.

27. Chapman, D., and E. Zwicky, Building Internet Firewalls. Sebastopol, CA: O’Reilly,
1995.

28. Cheng, P., et al.., ‘A Security Architecture for the Internet Protocol’, IBM Systems

Journal, Number 1, 1998.
29. Cheng, P., and R. Glenn, ‘Test Cases for HMAC-MD5 and HMAC-SHA-1’, RFC

2202, September 1997.
30. Cheswick, W., and S. Bellovin, Firewalls and Internet Security: Repelling the Wily

Hacker. Reading, MA: Addison-Wesley, 1994.
31. Chokhani, S., and W. Ford, ‘Internet Public Key Infrastructure Part IV: Certificate

Policy and Certification Practices Framework’, Internet Draft, March 1997.
32. Cole, R., D. Shur and C. Villamizar, ‘IP over ATM: A Framework Document’,

RFC 1932, April 1996.
33. Comer, D., Internetworking with TCP/IP , Volume 1: Principles, Protocols and

Architecture. Upper Saddle River, NJ: Prentice Hall, 1995.
34. Crawford, M., ‘Transmission of IPv6 Packets Over FDDI’, RFC 2019, October

1996.
35. Daemen, J., and V. Rijmen, ‘AES Proposal: Rijndael, AES Algorithm Submission’,

3 September, 1999.
36. Davin, J., J. Galvin and K. McCloghrie, ‘SNMP Security Protocols’, RFC 1352,

July 1992.

BIBLIOGRAPHY 385

37. Deering, S., and R. Hinden, ‘Internet Protocol, Version 6 (IPv6) Specification’,
RFC 1883, January 1996.

38. Deering, S., and R. Hinden, ‘Internet Protocol, Version 6 (IPv6) Specification’,
RFC 2460, December 1998.

39. deSouza, O., and M. Rodrigues, ‘Guidelines for Running OSPF Over Frame Relay
Networks’, RFC 1586, March 1994.

40. Dierks, T., and C. Allen, ‘The TLS Protocol Version 1.0’, RFC 2246, January 1999.
41. Diffie, W., and M. Hellman, ‘New Directions in Cryptography’, IEEE Transactions

on Information Theory, November 1976.
42. ElGamal, T., ‘A Public-Key Cryptosystem and a Signature Scheme based on Dis-

crete Logarithms’, IEEE Transactions on Information Theory, July 1985.
43. Faltstrom, P., D. Crocker and E. Fair, ‘MIME Content Type for Encoded Files’,

RFC 1741, December 1994.
44. Farrell, S., and C. Adams, ‘Internet Public Key Infrastructure Part III: Certificate

Management Protocols’, Internet Draft, December 1996.
45. Fielding, R., J. Gettys, J. Mogul, H. Frystyk and T. Berners-Lee, ‘Hypertext Transfer

Protocol – HTTP1.1’, RFC 2068, January 1997.
46. Finlayson, R., ‘IP Multicast and Firewalls’, RFC 2588, May 1999.
47. Finlayson, R., T. Mann, J. Mogul and M. Theimer, ‘Reverse Address Resolution

Protocol’, RFC 903, June 1984.
48. FIPS Publication ZZZ, ‘Announcing the Advanced Encryption Standard (AES)’,

US DoC/NIST, 2001.
49. Forouzan, B. A., TCP/IP Protocol Suite, New York: McGraw-Hill, 2000.
50. Fox, B., and B. Gleeson, ‘Virtual Private Networks Identifier’, RFC 2685, Septem-

ber 1999.
51. Freed, N., ‘Behavior of and Requirements for Internet Firewalls’, RFC 2979, Octo-

ber 2000.
52. Freier, A. O., P. Karlton and P. C. Kocher, ‘The SSL Protocol Version 3.0’, Inter-

net Draft, Netscape Communications Corporation, March 1996.
53. Fuller, V., T. Li, J. Yu and K. Varadhan, ‘Classless Inter-Domain Routing (CIDR):

an Address Assignment and Aggregation Strategy’, RFC 1519, September 1993.
54. Galvin, J., and K. McCloghrie, ‘Security Protocols for version 2 of the Simple

Network Management Protocol (SNMPv2)’, RFC 1446, May 1993.
55. Galvin, J., S. Murphy, S. Crocker and N. Freed, ‘Security Multiparts for MIME:

Multipart/Signed and Multipart/Encrypted’, RFC 1847, October 1995.
56. Garfinkel, S., and G. Spafford, Web Security & Commerce. Cambridge, MA: O’Reilly,

1997.
57. Gasser, M., Building a Secure Computer System. New York: Van Nostrand Rein-

hold, 1988.
58. Gleeson, B., A. Lin, J. Heinanen, G. Armitage and A. Malis, ‘A Framework for

IP Based Virtual Private Networks’, RFC 2764, February 2000.
59. Goldsmith, D., and M. Davis, ‘Using Unicode with MIME’, RFC 1641, July 1994.

386 INTERNET SECURITY

60. Harkins, D., and D. Carrel, ‘The Internet Key Exchange (IKE)’, RFC 2409, Novem-
ber 1998.

61. Haskin, D., and E. Allen, ‘IP Version 6 over PPP’, RFC 2023, October 1996.
62. Hedrick, C., ‘Routing Information Protocol’, RFC 1058, June 1988.
63. Heinanen, J., ‘Multiprotocol Encapsulation over ATM’, RFC 1483, July 1993.
64. Hinden, R., and S. Deering, ‘IP Version 6 Addressing Architecture’, RFC 1884,

January 1996.
65. Hinden, R., and J. Postel, ‘IPv6 Testing Address Allocation’, RFC 1897, January

1996.
66. Hodges, J., R. Morgan and M. Wahl, ‘Lightweight Directory Access Protocol (v3):

Extension for Transport Layer Security’, RFC 2830, May 2000.
67. Hoffman, P., ‘Enhanced Security Services for S/MIME’, RFC 2634, June 1999.
68. Hoffman, P., ‘SMTP Service Extension for Secure SMTP over TLS’, RFC 2487,

January 1999.
69. Horning, C., ‘Standard for the Transmission of IP Datagrams over Ethernet Net-

works’, RFC 894, April 1984.
70. Housley, R., W. Ford, W. Pok and D. Solo, ‘Internet X.509 Public Key Infrastruc-

ture Certificate and CRL Profile’, Internet Draft, September 1998.
71. Huitema, C., ‘An Experiment in DNS Based IP Routing’, RFC 138 3, December

1992.
72. Huitema, C., IPv6: The New Internet Protocol. Upper Saddle River, NJ: Prentice

Hall, 1998.
73. Jacobson, V., ‘Compressing TCP/IP Headers for Low-speed Serial Links’, RFC

1144, February 1990.
74. Johnson, D., Menezes A and Vanstone, S, ‘The Elliptic Curve Digital Signature

Algorithm’, Berlin and Heidelberg: Springer-Verlag, pp. 36–63, July 2001.
75. Kantor, B., and P. Lapsley, ‘Network News Transfer Protocol: A Proposed Stan-

dard for the Stream-Based Transmission of News’, RFC 977, February 1986.
76. Kastenholz, E., ‘The Definitions of Managed Objects for the Security Protocols of

the Point-to-Point Protocol’, RFC 1472, June 1993.
77. Kats, D., ‘A Proposed Standard for the Transmission of IP Datagrams over FDDI

Networks’, RFC 1188, October 1990.
78. Kent, S., and R. Atkinson, ‘Security Architecture for the Internet Protocol’, RFC

2401, November 1998.
79. Kent, S., and R. Atkinson, ‘IP Authentication Header’, RFC 2402, November 1998.
80. Kent, S., and R. Atkinson, ‘IP Encapsulating Security Payload (ESP)’, RFC 2406,

November 1998.
81. Khare, R., and S. Lawrence, ‘Upgrading to TLS Within HTTP/1.1’, RFC 2817,

May 2000.
82. Klensin, J., N. Freed, M. Rose, E. Stefferud and D. Crocker, ‘SMTP Service Ex-

tension for 8-bit MIME transport’, RFC 1652, July 1994.
83. Klensin, J., N. Freed, M. Rose, E. Stefferud and D. Crocker, ‘SMTP Service Ex-

tension’, RFC 1869, November 1995.
84. Koblitz, N., ‘Elliptic Curves Cryptosystems’, Mathematics of Computing, 48,

No. 177, pp. 203–209, 1987.

BIBLIOGRAPHY 387

85. Koblitz, N., ‘Constructing Elliptic Curves Cryptosystems in Characteristic 2’,
Advances in Cryptology–Crypt ’91. Berlin and Heidelberg: Springer-Verlag,
pp. 156–167, 1991.

86. Krawczyk, H., M. Bellare and R. Canetti, ‘HMAC: Keyed-Hashing for Message
Authentication’, RFC 2104, February 1997.

87. Lai, X., and J. Massey, ‘A Proposal for a New Block Encryption Standard’, Pro-

ceedings, EUROCRYPT ’90, Berlin and Heidelberg: Springer-Verlag, pp. 389–404,
1991.

88. Laubach, M., ‘Classical IP and ARP over ATM’, RFC 1577, January 1994.
89. Leech, M., ‘Username/Password Authentication for SOCKS V5’, RFC 1929, March

1996.
90. Leech, M., M. Ganis, Y. Lee, R. Kuris, D. Koblas and L. Jones, ‘SOCKS Proto-

col Version 5’, RFC 1928, March 1996.
91. Lercier, R., and F. Morain, ‘Counting the Number of Points on Elliptic Curves over

Finite Fields’, Lecture Notes in Computer Science, No. 921. Berlin and Heidelberg:
Springer-Verlag, pp. 79–94, 1995.

92. Lloyd, B., and W. Simpson, ‘PPP Authentication Protocols’, RFC 1334, October
1992.

93. Lodin, S., and C. Schuba, ‘Firewalls Fend Off Invasions from the Net’, IEEE Spec-

trum, February 1998.
94. Lougheed, K., and Y. Rekhter, ‘A Border Gateway Protocol 3 (BGP-3)’, RFC

1267, October 1991.
95. Macgregor, R., C. Ezvan, L. Liguori and J. Han, Secure Electronic Transactions:

Credit Card Payment on the Web in Theory and Practice. IBM RedBook SG24-
4978-00, 1997. Available at www.redbooks.ibm.com/SG244978.

96. Madson, C., and N. Doraswamy, ‘The ESP DES-CBC Cipher Algorithm With
Explicit IV’, RFC 2405, November 1998.

97. Madson, C., and R. Glenn, ‘The Use of HMAC-MD5-96 within ESP and AH’,
RFC 2403, November 1998.

98. Madson, C., and R. Glenn, ‘The Use of HMAC-SHA-1-96 within ESP and AH’,
RFC 2404, November 1998.

99. Malkin, G., ‘RIP Version 2 Carrying Additional Information’, RFC 1723, Novem-
ber 1994.

100. Malkin, G., and A. Harkin, ‘TFTP Option Extension’, RFC 1782, March 1995.
101. Mastercard and Visa, ‘SET Secure Electronic Transaction Specification Book 1:

Business Description’, May 1997.
102. Maughan, D., M. Schertler, M. Schneider and J. Turner, ‘Internet Security Asso-

ciation and Key Management Protocol (ISAKMP)’, RFC 2408, November 1998.
103. McCloghrie, K., ‘An Administrative Infrastructure for SNMPv2’, RFC 1910, Feb-

ruary 1996.
104. Medvinsky, A., and M. Hur, ‘Addition of Kerberos Cipher Suites to Transport

Layer Security (TLS)’, RFC 2712, October 1999.
105. Menezes, A. J., and S. A. Vanstone, ‘Elliptic Curve Cryptosystems and their Imple-

mentation’, Journal of Cryptology, vol. 6, No. 4, pp. 209–224, 1993.

388 INTERNET SECURITY

106. Metzger, P., and W. Simpson, ‘IP Authentication using Keyed MD5’, RFC 1828,
August 1995.

107. Metzger, P., P. Karn and W. Simpson, ‘The ESP DES-CBC Transform’, RFC 1829,
August 1995.

108. Mockapetris, P., ‘Domain Names – Implementation and Specification’, RFC 1035,
November 1987.

109. Mogul, J., and S. Deering, ‘Path MTU Discovery’, RFC 1191, November 1990.
110. Montenegro, G., and V. Gupta, ‘Sun’s SKIP Firewall Traversal for Mobile IP’,

RFC 2356, June 1998.
111. Moore, K., ‘SMTP Service Extension for Delivery Status Notifications’, RFC 1891,

January 1996.
112. Moy, J., ‘OSPF Version 2’, RFC 1583, March 1994.
113. Moy, J., ‘Multicast Extensions to OSPF’, RFC 1584, March 1994.
114. Myers, J., ‘POP3 Authentication Command”, RFC 1734, December 1994.
115. Myers, J., and M. Rose, ‘Post Office Protocol – Version 3’, RFC 1725, November

1994.
116. Newman, D., ‘Using TLS with IMAP, POP3 and ACAP’, RFC 2595, June 1999.
117. Newman, D., ‘Benchmarking Terminology for Firewall Performance’, RFC 2647,

August 1999.
118. NIST, ‘The Secure Hash Algorithm (SHA)’, FIPS PUB 180-1, 1995.
119. Oppliger, R., ‘Internet Security: Firewalls and Beyond’, Communications of the

ACM, May 1997.
120. Orman, H., ‘The OAKLEY Key Determination Protocol’, RFC 2412, November

1998.
121. Partridge, C., ‘Mail Routing and the Domain System’, RFC 974, January 1986.
122. Pereira, R., and R. Adams, ‘The ESP CBC-Mode Cipher Algorithms’, RFC 2451,

November 1998.
123. Pfleeger, C., Security in Computing. Upper Saddle River, NJ: Prentice Hall, 1997.
124. Piper, D., ‘The Internet IP Security Domain of Interpretation for ISAKMP’, RFC

2407, November 1998.
125. Piscitello, D., ‘FTP Operation Over Big Address Records (FOOBAR)’, RFC 1639,

June 1994.
126. Postel, J., ‘User Datagram Protocol’, RFC 768, August 1980.
127. Postel, J., ‘Internet Protocol’, RFC 791, September 1981.
128. Postel, J., ‘Transmission Control Protocol’, RFC 793, September 1981.
129. Postel, J., ‘Simple Main Transfer Protocol’, RFC 821, August 1982.
130. Postel, J., ‘Standard for the Transmission of IP Datagrams over Experimental Eth-

ernet networks’, RFC 895, April 1984.
131. Postel, J., and J. Reynolds, ‘TELNET Protocol Specification’, RFC 854, May 1983.
132. Postel, J., and J. Reynolds, ‘TELNET Option Specifications’, RFC 855, May 1983.
133. Postel, J., and J. Reynolds, ‘File Transfer Protocol’, RFC 959, October 1985.
134. Postel, J., and J. Reynolds, ‘Standard for the Transmission of IP Datagrams over

IEEE 802 Networks’, RFC 1042, February 1988.
135. Ramsdell, B., ‘S/MIME Version 3 Certificate Handling’, RFC 2632, June 1999.
136. Rand, D., ‘PPP Reliable Transmission’, RFC 1663, July 1994.

BIBLIOGRAPHY 389

137. Rekhter, Y., ‘Experience with the BGP Protocol’, RFC 1268, October 1991.
138. Rekhter, Y., and P. Gross, ‘Application of the Border Gateway Protocol in the

Internet’, RFC 1772, March 1995.
139. Rekhter, Y., and T. Li, ‘An Architecture for IP Address Allocation with CIDR’,

RFC 1518, September 1993.
140. Rekhter, Y., and T. Li, ‘A Border Gateway Protocol 4 (BGP-4)’, RFC 1771, March

1995.
141. Rescorla, E., ‘HTTP over TLS’, RFC 2818, May 2000.
142. Rhee, M. Y., ‘Message Digest Computation Using the DMDC Algorithm’, Pro-

ceedings, WISA 2000 , November 2000.
143. Rivest, R., ‘The Md5 Message-Digest Algorithm’, RFC 1321, April 1992.
144. Rivest, R., ‘The RC5 Encryption Algorithm’, MIT Lab. for Computer Science,

1995.
145. Rivest, R., A. Shamir, and L. Adleman, ‘A Method for Obtaining Digital Signa-

tures and Public Key Cryptosystems’, Communications of the ACM, February 1978.
146. Rivest, R., M. J. B. Robshaw, R. Sidney and Y. L. Yin, ‘The RC6 Block Cipher’,

MIT Lab. for Computer Science, 1996.
147. Romao, A., ‘Tools for DNS Debugging’, RFC 1713, November 1994.
148. Rubin, A., D. Geer and M. Ranum, Web Security Sourcebook. New York: Wiley,

1997.
149. Schnorr, C., ‘Efficient Signatures for Smart Card’, Journal of Cryptology, No. 3,

1991.
150. Schoffstall, M., M. Fedor, J. Davin and J. Case, ‘A Simple Network Management

Protocol (SNMP)’, RFC 1157, May 1990.
151. Shacham, A., R. Monsour, R. Pereira and M. Thomas, ‘IP Payload Compression

Protocol (IPComp)’, RFC 2393, December 1998.
152. Simpson, W., ‘The Point-to-Point Protocol (PPP) for the Transmission of Multi-

protocol Datagrams over Point-to-Point Links’, RFC 1331, May 1992.
153. Simpson, W., ‘The Point-to-Point Protocol (PPP)’, RFC 1661, July 1994.
154. Simpson, W., ‘PPP in HDLC-like Framing’, RFC 1662, July 1994.
155. Sollins, K., ‘The TFTP Protocol (Revision 2)’, RFC 1350, July 1992.
156. Stallings, W., Data and Computer Communications, Fifth Edition . Upper Saddle

River, NJ: Prentice Hall, 1997.
157. Stevens, W., TCP/IP Illustrated , Volume 1: The Protocols. Reading, MA: Addison-

Wesley, 1994.
158. Sun Microsystems, Inc., ‘NFS: Network File System Protocol Specification’, RFC

1094, March 1989.
159. Thayer, R., N. Doraswamy and R. Glenn, ‘IP Security Document Roadmap’, RFC

2411, November 1998.
160. Thomson, S., and C. Huitema, ‘DNS Extensions to Support IP version 6’, RFC

1886, January 1996.
161. Thomson, S., and T. Narten, ‘Ipv6 Stateless Address Autoconfiguration’, RFC

2462, December 1998.
162. Touch, J., ‘Report on MD5 Performance’, RFC 1810, June 1995.

390 INTERNET SECURITY

163. Wijnen, B., G. Carpenter, K. Curran, A. Sehgal and G. Waters, ‘Simple Net-
work Management Protocol Distributed Protocol Interface Version 2.0’, RFC 1592,
March 1994.

164. Yergeau, F., G. Nicol, G. Adams and M. Deurst, ‘Internationalization of the Hy-
pertext Markup Language’, RFC 2070, January 1997.

165. Zweig, J., and C. Partridge, ‘TCP Alternate Checksum Options’, RFC 1146, March
1990.

INDEX

Abstract Syntax Notation One 332
acceptable policy identifier 232
acceptable policy set 239, 240
access control 244
access location field 233
access method field 233
access-denied 301
ACK flag 44, 346
acknowledgement number 44
acquirer 356, 357, 359, 372
ADCCP 10
additive inverse 77
address mapping 31
address resolution 29
Address Resolution Protocol 27, 28
AddRoundKey() 114, 117, 119
Advanced Data Communication Control

Procedure 10
Advanced Encryption Standard 57, 58, 107
AES 57, 58, 107
AES algorithm 109, 111, 119
AES key expansion 115
AES S-box 112
aggressive exchange 271
AH 243, 244, 246
alarm 343
American National Standards Institute 10
animation 328
ANSI X9.30 CRL format 203
ANSI X9.30 standard 203
ANSI 3
ANSI X3.66 10
anti-clogging 260
anti-clogging token 261

anti-replay service 243, 252, 253
anycast address 35
Apple-Talk Datagram-Delivery Protocol 53
application layer 8, 11, 13
application proxy 342, 349
application/pgp-signature protocol 330
application-level gateway 339, 341, 342,

348, 349
application-level proxy
Armor checksum 310, 312
Armor tail 310, 312
ARP 15, 27, 28
ARP reply 29, 31
ARPANET 1
AS 54, 55
ASCII 11
ASCII Armor 208, 309, 310

Armor head line 311, 312
Armor headers 310, 311
Armor headers 310, 311

ASCII character 49, 309
ASCII-Amoured data 311
ASN.1 332
asymmetric key pairs
asynchronous modem link 3
Asynchronous Transfer Mode 4
ATM 4
ATM network 5
attenuation 6
Attribute certificate 332
attribute 221
audit 343
audit log 342, 343
authentication 33, 34, 341, 344, 355

Internet Security. Edited by M.Y. Rhee
 2003 John Wiley & Sons, Ltd ISBN 0-470-85285-2

392 INDEX

Authentication Header 243
authentication only exchange 271
Auth-Only SA 276
Authority information access extension 233
authority key identifier extension 227, 228
authorization request 374, 375
authorization response 375, 376
Autonomous System 54, 55

backbone 55
bank’s signature verification 363
Base 64 encoding 327, 328, 329, 334
base exchange 271
basic constraints extension 231, 240
Basic Encoding Rule 332
basic path validation algorithm 238, 239
bastion host 341, 342, 350, 353
BER 332
BGP 7, 54, 55, 56
bit stream 10
bitwise parallel 139
bogus packet 259
Border Gateway Protocol 7, 54, 55, 56
Bourne Shell 49
branded payment card account
broadcast 32
broadcast-type protocol 45
browser 48
brute-force attack 60, 71, 172
buffer 11
bugs 340

CA 201, 210, 213, 217, 219, 229
CA certificate 240, 370, 372
CA name 241
CA’s private key 370, 372
CA’s public key 370, 372, 373
CA’s signature 370, 373
cache table 30
cache-control module 31
CAD/CAM 11
capture request 376
capture response 376
capture token 375, 376
cardholder 337, 356, 359, 368
cardholder account 355, 375
cardholder account authentication 356
cardholder certificate 374
cardholder credit card number 355
cardholder payment instruction 374

cardholder purchase request 375
cardholder registration 366
cardholder’s account information 370
cardholder’s account number 370
cardholder’s issuer 376
cardholder’s private key 370, 374
cardholder’s public key 370, 374, 375
cardholder’s signature 370
Carrier Sense Multiple Access with Collision

Detection 2
cashing 48
CAST-128 306, 307
CBC mode 73
CDMA cellular system 124, 142, 148
cell 2, 4
certificate authority 357
certificate authority field 267, 274
certificate data field 266
certificate encoding field 266, 274
certificate path validation 220, 222
certificate payload 266, 267, 273
certificate policies extension 230, 240
certificate policy identifier 239
certificate request message 287, 288
certificate request payload 267, 274
certificate request 370, 372, 373
certificate response 370, 373
Certificate Revocation List 201, 218, 222,

233
certificate revocation request 213, 215, 218,

220
certificate verify message 288
Certification Authority 201, 219
certification path 201, 219, 231, 239
certification path constrain 223
certification path constraints extension 231
certification path length constraint 231
certification path validation 238
certification revocation signature 317
CGI 49
chain of certificate 219
chain of trust 215, 216
change cipher spec message 278, 279, 289
Cheapernet 8
checksum 44
choke point 339, 340, 343
CIDR 32
cipher 107, 108
cipher key 107, 112, 113

INDEX 393

Cipher-Block Chaining mode 73
ciphertext 67, 82, 99, 100, 103, 166
circuit proxy 342, 349
circuit-level gateway 339, 341, 342, 343, 348
classless addressing 32
Classless Interdomain Routing 32
client certificate message 288
client key exchange message 288
client socket address 42
ClientHello.random 290, 291
CLNS 53
closure alert 300
CMS 331, 332, 333
coaxial cable 2
code bits 44
codepoint 18
column-wise permutation 126
command channel 347
Common Gateway Interface 49
community operation 1
compressed message 308
compression algorithm 308
compression(zip) 208
concatenation 129, 130
confidentiality 355, 356, 358
congestion 17
congruence 138
connecting devices 5

bridge 5, 6
gateway 5, 8, 13
repeater 5, 6
router 5, 7
switch 5

connection reset 11
connectionless integrity 244
Connectionless Network Service 53
connectionless protocol 45
connection-oriented cell switching network 5
constrained subtree 239
constrained subtree state variable 240
constraint 220
connectionless delivery 33
content tag 313
contiguous mask 26
contiguous string 26
cookie 260
coprime 166
CRC 4
credit card transaction 355, 356

credit limit 357
critical extended key usage field 232
CRL 201, 203, 211, 218, 233, 235, 236, 238
CRL distribution points extension 232
CRL entry extensions 237

certificate issuer 238
Greenwich Mean Time (Zulu) 238
hold instruction code 238
invalidity date 238
reason code 237

CRL extensions 235
authority key identifier extension 236
CRL number field 236
delta CRL indicator 236
issuer alternative name extension 236
issuing distributing point 236, 238

CRL sign bit 229
cryptographic checksum 160
cryptographic message syntax 331, 332
CSMA/CD 2
current read state 278
current write state 278
Cyclic Redundancy Check 4

DARPA 1
data capture 357
data channel
data compression 11
data confidentiality 33
data content type 333
data diffusion 136
data encryption bit 229
Data Encryption Standard 57, 58
data expansion function 296
data formatting 11
data integrity 33, 40, 155
data link control protocol 10
data link layer 4, 10
data origin authentication 155, 243, 244
DDP 53
decimation process 129, 130
decipher only bit 229
decode-error 301
decrypt-error 301
decryption 58, 67, 107
decryption key 67, 71, 73, 168
decryption key sub-blocks 82
decryption-failed 301
Defense Advanced Research Project Agency

1

394 INDEX

delete payload 269, 275, 276
delta CRL indicator 203
DeMilitarized Zone 341, 343
demultiplexing 20, 47
dequeue 31
DER 332
DES 57, 58, 60, 62, 67
DES-CBC 73, 248
DES-like Message Digest Computation 123
destination address 3, 10, 40
destination extension 40
destination host 28
destination IP address 16, 21
destination physical address 28
destination port number 42, 43
DH-DSS 288
DH-RSA 288
differential cryptanalysis 86
differentiated services 18
Diffie-Hellman key exchange scheme 162
Diffie-Hellman parameters 287, 288
diffusion 77
digested-data content type 334
digital certificate 359
digital envelope 205, 206, 334, 358, 363,

365
digital signature 161, 205, 356, 358, 359,

363
Digital Signature Algorithm 149, 184
digital signature bit 229
Digital Signature Standard 184
direct delivery 28
Directory Access Protocol 233
Directory Information Tree 221
discrete logarithm 161, 162, 172, 179, 185
Distance-vector Multicast Routing Protocol

55
distance-vector routing 55
Distinguished Encoding Rule 332
DIT 221
DMDC 123, 133
DMZ network 339, 343, 353
DNS 14, 23, 48, 54, 347, 352
DNS name 230, 231
DOI 244, 246, 261, 268, 270, 273, 275
Domain Name System 23, 54
Domain Naming Service 14
Domain of Interpretation 244
doubling point 188, 193

DSA 149, 161, 184, 185, 208, 209, 210
DSS 184, 308
dual ring 3
dual signature 209, 359, 362, 374
dual-homed bastion host 341, 350, 351
DUT/SUT rule set 342
DVMRP 55
dynamic mapping 27. 28
dynamic table 7

eavesdropping 277
EBCDIC 11
EC 187, 188, 190, 191, 193, 197
EC domain parameter 198
ECC 187, 195
ECDSA 196, 198
ECDSA signature generation 198
EDE mode 72, 73
EDI address 230
electronic commerce 1
electronic funds transfer (EFT) 357
Electronic Funds Transfer 209
ElGamal 307
ElGamal authentication scheme 177
ElGamal encryption algorithm 173, 174, 195
ElGamal public-key cryptosystem 172, 195
ElGamal signature algorithm 175, 176
elliptic curve 187, 188, 190, 191, 193, 197
Elliptic Curve Cryptosystem 187, 196, 199
Elliptic Curve Digital Signature Algorithm

196
Encapsulating Security Payload 73, 243
encapsulation 47
encapsulation protocol 339, 340
encipher only bit 229
Encrypt-Decrypt-Encrypt mode 72
encrypted certificate request message
encrypted-data content type 334
encryption 34, 58, 67, 99, 104, 107, 161
encryption key 67, 73, 168
encryption key sub-blocks 82
end-entity certificate 239
end-to-end protocol
enveloped-data content type 334
ephemeral port 50
error alert 300
error control 10
error reporting message 41
ESMTP 347
ESP 73, 243, 244, 246

INDEX 395

ESP header 253, 257
ESP payload data 258
ESP tailer 256
ESP transport mode 256
ESP tunnel mode 257
Ethernet 2, 8
Eudora 51
Euler’s criterion 191
Euler’s formula 166
Euler’s totient function 166, 172
excluded subtree state variable 240
excluded subtree 239
expanded key table 86, 88, 91
expiration timer 55
explicit policy identifier 239
explicit policy state variable 240
export-restriction 301
extended Euclidean algorithm 168, 173, 175,

177, 365
extended key usage field 232
exterior routing 54
external bastion host 341
eXternal Data Representation 51
external mail server 347
external screening router 351, 353

Fast Ethernet 8
fatal handshake failure alert 288
FDDI 2, 3
Federal Information Processing Standard

107, 149
Fermat’s theorem 179, 191
Fibre Distributed Data Interface 2, 3
fibre-optic cable 2
File Transfer Protocol 13, 22, 23, 50
File Transfer Protocol server 23
finished message 289, 290
finished-label 302
finite field 108, 162, 187
FIPS 107, 149
firewall 339, 342
flag field 19
flow control 5
flow label 37
four MD5 nonlinear functions 139
fragment size 19
fragmentation 33
fragmentation module 7
fragmentation offset field 19
frame 2, 6

frame fragmentation 10
Frame Relay 4
FTP 22, 45, 48, 50, 340, 342, 346
FTP active mode
FTP packet filtering 346
FTP passive mode
full-duplex service 42, 44

garbage collection timer 55
gateway authorisation request 375
gateway authorisation response 375
gateway capture response 377
gateway digital signature 375, 377
gateway private key 376
gateway public key 375, 376, 377
gateway signature certificate 376
gateway’s certificate
generic certification of user ID and public-key

packet 317
generic payload header 263, 266, 267, 268,

269, 270
GetBulk operation 53
GetNext operation 53
GIF 327, 328, 329
Gopher 48
Graphics Interchange Format 327

hacker 51, 341, 343, 345, 347, 351
hash code 11, 128, 129, 149, 185, 197
hash function 123, 205
hash payload 267, 274
Hashed Message Authentication Code 248
HDLC 10
head length 44
header 5, 6
header checksum 20
header length field (HLEN) 17
heterogeneous platform 1
hexadecimal colon 34
hierarchical tree structure 216
higher-numbered port
High-level Data Link Control 10
HMAC 155, 248, 293
HMAC-MD5 249, 250, 293
HMAC-SHA-1 250, 293
hop count 7
hop limit 40
hostid 23, 24, 25, 34
HTML 48

396 INDEX

HTML tag 49
ending tag 49
starting tag 49

HTTP 13, 45, 48, 339, 342
HTTP GET command 48
HyperText Markup Language 48
HyperText Transfer Protocol 13, 48

IA5String 233
IAB 1
IANA 22, 251
IANA-registered address 351
ICB 1
ICCB 1
ICMP 11, 13, 14, 15, 41
ICMP error message 19
ICV 251, 252, 259, 260
IDEA 75, 76, 306
IDEA decryption 82
IDEA encryption 77
IDEA encryption key 77
identification field 18
identification payload 266
identity authentication 359
identity protection exchange 271
IEEE token ring 13
IESG 1
IETF 1
IGMP 15, 41
IKE 243, 251, 254, 260
image scanning 11
IMAP 14, 51, 52
inbound traffic 341
indirect delivery 28
Inform operation 53
information acquisition 1
inhibited policy mapping 240
inhibited policy-mapping field 232
initial policy identifier 239
initial policy set 240
Initialisation Vector 73, 156, 159
initiate request 366, 368, 372, 373
initiate response 368, 369, 373
initiator and responder cookie pair 269, 272
Inner CBC 74
inner IP header 253, 257
inner padding 155, 156, 248
input module 31

input-byte array 108
inside signature 335, 336
insufficient-security 301
integer multiplication 96
integrated-salted S2K 322
integrity 355, 359
Integrity Check Value 251
interdomain routing 33
interior routing 54, 55
internal bastion host 341
internal mail server 347
internal screening router 353
internal-error 301
International Cooperation Board 1
International Data Encryption Algorithm 75,

76
International Organisation for Standardisation

8
Internet Activities Board 1, 202
Internet Architecture Board 1
Internet Assigned Numbers Authority 22,

251
Internet Configuration Control Board 1
Internet Control Message Protocol 11, 13, 41
Internet Draft 202
Internet Engineering Steering Group 1
Internet Engineering Task Force 1, 202
Internet Group Management Protocol 41
Internet Key Exchange 243
Internet layer 13
Internet Lightweight Directory Access

Protocol 202
Internet Mail Access Protocol (IMAP) 14
Internet Message Access Protocol 52
Internet Protocol 11, 13
Internet Protocol next generation 33
Internet Protocol version 4 (IPv4) 17
Internet Request for Comments 202
Internet Research Task Force 1, 202
Internet Society 1
Internet transaction protocol 355, 358
interoperability 256
intranet 339, 341
inverse cipher 107, 108, 119, 121
inverse S-box 119, 120
InvMixColumns() 119, 120
InvShiftRows() 119
InvSubBytes() 119

INDEX 397

IP 11, 13, 15
IP address 22, 23, 24, 26, 28, 29, 42
IP address class 23, 24
IP address translator 349
IP addressing 22, 24, 25
IP authentication header 250
IP datagram 16, 42, 43, 45
IP destination address 246, 340
IP header 16, 20, 43, 44, 247, 253
IP header option 21
IP host 344
IP multicast traffic 340
IP packet 7
IP router 7
IP routing 27
IP security document roadmap 244
IP source address 340
IP spoofing 340, 345, 353
IP subnet 340
ipad 155, 156, 248
IPng 33
IPsec AH Format 251

authentication data 252
next header 251
payload length 252
sequence number 252, 254
SPI 251

IPsec AH 264, 268
IPsec DOI 270
IPsec ESP format 254, 264, 268

authentication data 256
next header 256
pad length 256
padding 255
payload data 255
sequence number 255
SPI 255

IPv4 17, 33
IPv4 addressing 34
IPv4 context 256
IPv4 datagram 16
IPv4 header 16
IPv6 33
IPv6 addressing 34
IPv6 context 257
IPv6 extension headers 36
IPv6 header 36, 37
IPv6 header format 33
IPv6 packet format 36

IPX 53
IRTF 1
ISAKMP 243, 246, 260, 261, 266, 269
ISAKMP exchanges 270
ISAKMP header 261, 269, 271, 275

exchange type 262
flags field 262

authentication only bit 262
commit bit 262
encryption bit 262

initiator cookie 261
length 263
major version 262
message ID 263
minor version 262
next payload 261
responder cookie 261

ISAKMP message 263, 265, 267, 268
ISAKMP payload 261, 265, 272
ISAKMP payload processing 272

authentication only bit 276
certificate payload processing 274
certificate request payload processing 274
delete payload processing 276
general message processing 272
generic payload header processing 272
hash payload processing 275
identification data field 274
identification payload processing 274
ISAKMP header processing 272
key exchange payload processing 274
nonce payload processing 275
notification payload processing 275
notify message type 275
proposal payload processing 273
security association payload processing

273
signature data field 275
signature payload processing 275
transform payload processing 273

ISAKMP SA 276
ISAKMP SPI 269
ISO 8
ISO Latin-5 311
issuer 357
issuer alternative name extension 230
issuer domain policy 230
ITU-T 3
IV 73

398 INDEX

Java 48, 49
Joint Photographic Experts Grout 327
JPEG 327

key agreement bit 229
key attribute information 223
key certificate signing bit 229
key encryption bit 229
key exchange method 287, 288, 290
key exchange payload 265
key expansion algorithm 85, 86, 91, 96
key expansion routine 107, 112, 113
key generation scheme 133
key identifier field 228
key material packet 319

key packet variant 319
public-key packet format 320
secret-key packet format 321

key revocation signature 317
key schedule algorithm 96
key usage extension 228, 232
Keyed-hashing Message Authentication Code

155, 248, 293
known-plaintext attack 71
Korn Shell 49

LAN 2, 42
LAP-B 10
LDAP 202, 203
legal issue 212
Legendre symbol 191
Link Access Procedure, Balanced 10
link activation 10
link address 22
link deactivation 10
link-state routing 55
literal data packet 318, 319
LLC 28
Local Area Network 2
log name 50
Logging 340, 341, 342, 343, 350
logging service 340
logging strategy 340
logical address 22, 28
logical function 150
Logical Link Control 28
logical network addressing 10
low-numbered port
LUCIFER 57
LZ77 309

LZFG 308
LZSS 308

MAC (Media Access Control address) 28
MAC (Message Authentication Code) 248
magic constants 86, 96
magic contents 99
mail order transaction
Mail Transport Agent 347
masking 26
masking pattern 26
master secret 290, 292, 302
Maximum Transfer Unit 7
MBONE 42
MD5 76, 248
MD5 algorithm 138, 183
Media Access Control address 28
merchant 356, 357
merchant account data 372, 373
Merchant Authentication 356, 375
merchant authorisation request 375
merchant capture request 377
merchant payment capture 376
merchant private key 372, 374, 375, 376
merchant public key 373, 374, 375
merchant purchase request 376
merchant registration 371, 372
merchant signature 373, 374
merchant’s point of sale system 357
merchant’s signature certificate 374
Message Authentication Code 248
message confidentiality
message contents
message digest 128, 129, 138, 148, 149,

151, 185, 205, 359, 366
message forgery 277
message integrity 344, 363
message integrity check 329, 365, 367
message padding 149, 360
Message Security Protocol 203
metric 7
MIC 329, 330
MIME 52, 53, 208, 305, 324, 325
MIME security content type 329
MixColumns() 114, 117
mobile station registration 124
modem 10
modular reduction 109
MOSAIC 208
MOSPF 55

INDEX 399

Motion Picture Experts Group 327
MPEG 327
MPI 320, 321
MSP 203
MTU 7, 19, 39
MTU table 7
multicast 22
multicast address 23, 24, 35, 41, 42
multicast backbone 42
multicast host 24
Multicast Open Shortest Path First 55
multicast routers 41
multi-homed bastion host 341
multihomed host 28
multipart/encrypted content type 330, 331
multipart/signed content type 326, 329, 330,

331
multiplexing 20, 47
multiplication inverse 166
multiplicative identity 109
multiplicative inverse 78
Multipurpose Internet Mail Extension 52,

53, 305

name constraints extension 231
name subtree 231
Naming and Directory Services
NAT 340, 349, 351
National Bureau of Standards 57
National Institute of Standard and Technology

57
National Security Agency 57
NBS 57
netid 23, 24, 25, 34
network access layer 13
network address resolution 10
network address translator 340, 349
Network File System 50
network interface card 22
network layer 4, 10
network layer protocol 33
network management function
Network Management System 53
Network Virtual Terminal 56
Newhall ring 13
next header 38

authentication 40
encrypted security payload 39
fragmentation 39
hop-by-hop option 38

security parameter index 40
source routing 39

NFS 50
NIC 22
NIST 57
NMS 53
nonce data field 268
nonce payload 261, 268, 275
nonces 261, 268, 275
non-repudiation bit 229
no-renegotiation 301
notification payload 268, 275
Novell Internet Packet Exchange 53
NSA 57
of SPIs field 270, 275
of transform 264
NVT ASCII data 325
NVT 325
NVT 56

Oakley key determination protocol 243, 246,
260

object identifier 226, 230, 233
octet-stream 327
offset value 19
OID 226, 230, 233
opad 156, 248
Open PGP message format 329, 330
Open Shortest Path First protocol 7, 54, 55
Open System Interconnect model 8
OpenPGP digital signature 330, 331
options 44
ORA 201, 213, 214, 218
order digest 359
order information 359
order message 359, 374
Organisational Registration Authority 201,

214
OSI model 4, 8
OSPF 7, 54, 55
outbound traffic 341
Outer CBC 74, 75
outer IP header 253, 258
outer padding 156, 248
output module 31
outside signature 336
overall length field 18

PAA 210, 213, 217
packet 2, 6

400 INDEX

packet filter 339, 341, 343, 344, 345
packet filtering router 351
packet filtering rule 346
packet header 348
packet length 314
packet mode terminal 4
packet tag 313
packet-by-packet basis
packet-filtering firewall 344, 349
packet-switching network 5, 16
packet-switching protocol 4
padded message 138
parity bit 58
passphrase 322
path validation algorithm 240
path validation module 240
Path-vector routing 55
payload length 38
payment authorization 374
payment authorization service 357
payment capture 376
payment card 356
payment card account 357
payment card authorisation 357
payment card brand 356
payment card certificate 357
payment card transaction 357
payment digest 359
payment gateway 357, 373, 374
payment gateway public key 376
payment gateway’s key 374
payment integrity 359
payment message 359, 374
payment processing
PCA name 241
PCA 201, 210, 211, 212, 213, 217
PCMCIA card 222
peer-to-peer communication 12
PEM CRL format 203
pending read state 278
pending write state 278
perimeter 339
perimeter network 343
periodic timer 55
Perl 49
PGP 14, 71, 76, 208, 305, 306, 308, 310
PGP 5.x 323
PGP 5.x key 319
PGP packet structure 315

message packet 315, 319
session key packet 317, 318, 319
signature packet 316, 318, 319

phase 1 exchange 263, 270
P-hash 296
physical address 10, 22, 28
physical layer 4, 9, 10
PKI 201, 210
PKIX 219, 222, 332
plaintext 58
P-MD5 297
point at infinity 191, 192, 193
point-to-point encryption
Point-to-Point Protocol 3
Point-to-Point Tunnelling Protocol 344
Policy Approval Authority 210, 217
Policy Certification Authority 201
policy constrains extension 232, 240
policy mapping extension 230, 232, 239
policy-making state variable 240
polynomial modulo 109
POP3 14, 51, 52, 325
port number 42
Post Office Protocol 14
Post Office Protocol version 3 52
PostScript 327
PPP 3
PPP frame 3
PPTP 344
PRBS state transition function 133
precedence 17, 18
premaster secret 288, 290, 292
preoutput block 68, 70
presentation layer 11
Pretty Good Privacy 14, 76, 208, 305
PRF 296
primary ring 3
prime factor 179, 182, 185
Prime factorisation 172
prime field 162, 187
prime number 161, 165
primitive element 161
priority 37
Privacy Enhanced Mail(PEM) 14
private key 166, 172, 198
private-key usage period extension 229
proposal # field 264
proposal payload 264
proposal-id field 264

INDEX 401

protocol suite 12
protocol-id field 269, 272, 275, 276
protocol-version 301
proxy ARP 29
proxy module 342
proxy server 48, 51, 341, 342, 348, 349
pseudocode 92, 114, 116, 118, 121
pseudo-random binary sequence 133
pseudo-random function 296
P-SHA-1 297
public key 166, 172, 198
public-key algorithm 161
public-key certificate 201, 213, 214
public-key Infrastructure 201
public-key packet 319
purchase request 373, 374
purchase response 373, 374

quadratic nonresidue 190, 191
quadratic residue 190, 191
query message 41, 42
queue 30, 31
Quoted-printable 327, 328

RA 201, 213, 214, 218
radix-64 conversion 208, 309
radix-64 encoding 310, 312, 319
Random symmetric key 370, 371, 372, 374
RARP 15, 27, 31
RC5 decryption algorithm 92, 93
RC5 encryption algorithm 84, 91
RC6 decryption algorithm 100
RC6 encryption algorithm 97
Rcon[i] 112
RDN 221
recompressed message 308
record route option 21
record-overflow 301
Registration Authority 201, 214
registration authority 357
registration form 372
registration form process 370, 372
registration form request 370
registration information (name, address and

ID) 372
registration request 366, 372
registration request process 366
registration response process 366, 373
relative distinguished name 221
relatively prime 162, 166, 168

remote access 13
Remote Login 56
remote server 349
repository 202, 218, 220
required explicit policy field 232
Reserve Address Resolution Protocol 27, 31
resource sharing 13
RFC 202
Rijndael algorithm 58, 107
RIP 7, 54
RIPEMD-16 248
Rlogin 45, 56, 340
root CA 201, 216, 287, 358
RotWord() 112
round constant word array 112, 113
round key 133, 136
router 27, 28, 29
Routing Information Protocol 7, 54
routing module 7
routing table 7, 28, 34, 353
row/column-wise permutations 126, 127
row-wise permutation 126
RPC 50
RSA encryption algorithm 165
RSA public-key cryptosystem 165
RSA signature scheme 170

S/MIME 14, 71, 209, 223, 305, 324
S/MIME version 3 agents 331
S2K specifier 322, 323
SA 243, 246, 247, 252, 259, 260, 261
SA attributes field 265
SAD 246, 247
salted S2K 322
S-box 58, 63, 64, 67
Schnorr’s authentication algorithm 179, 180
Schnorr’s public-key cryptosystem 179
Schnorr’s signature algorithm 181
screened host firewall 350, 351
screened subnet firewall 350, 353
screening router 344, 345, 352, 353
SDLC 10
secondary ring 3
secret key parameter 91
secret-key packet 320
Secure Electronic Transaction 209, 355, 357
Secure Hash Algorithm 149, 165, 183
Secure Hash Standard 149
Secure Multimedia Internet Mail

Extension(S/MIME) 14

402 INDEX

secure payment processing 355, 366
secure payment transaction 356
Secure Socket Layer version 3 277
Secure/Multipurpose Internet Mail Extension

305, 324
Security Association 243, 246
Security Association Database 246, 247
security association payload 263
security gateway 244, 247, 253
security multiparts 330
security option 21
Security Parameter Index 246
Security Policy Database 244, 246
security protocol identifier 246
self-signed certificate 239, 240
sendmail 51, 347
sequence number 43
server certificate 287
server hello done message 286, 288
server key exchange message 256, 287
server socket address 42
Serverhello.random 290, 291
session layer 11
session state 278

cipher spec 278
compression method 278
is resumable 279
master secret 279
peer certificate 278
session identifier 278

SET 209, 223
SET payment instruction
SHA 183, 210
SHA primitive functions 150
SHA-1 149, 155, 248
SHA-1 algorithm 171
shared secret data 148
ShiftRows() 114, 117
SHS 149
Signaling System #7 8
signature payload 268, 274
signed-data content type 333
Simple Mail Transfer Protocol 14, 51, 347
Simple Network Management Protocol 13,

53
single-homed bastion host 341, 350, 351
sliding window protocol 45
SMI 53
SMTP 14, 45, 48, 51, 325, 339, 340, 347

SMTP packet filtering 347
SMTP server 51, 347
SNMP 13, 47, 53
socket address 45
socket pair 43
SOCKS 339, 340
tri-homing
SOCKS port 342
SOCKS protocol version 4 342
SOCKS server 342
source address 40
source host 28
source IP address 16, 19, 21
source port number 42, 43
source routing 33, 353
source routing option 21
SPD 244, 246
SPE 11
SPI 246, 247, 252, 255, 260, 264
SPI field 264, 269
SPI size 264, 269
SS7 8
SSD 148
SSL Alert Protocol 279, 283

bad-certificate 284
bad-record-mac 283
certificate-expired 284
certificate-revoked 284
certificate-unknown 284
close-notify 284
decompression-failure 283
illegal-parameter 284
no-certificate 283
unexpected-message 283
unsupported certificate 284

SSL Change Cipher Spec Protocol 279, 282
change cipher spec message 283
current state 283
padding state 283

SSL connection 279
client write key 279
client write MAC secret 279
initialisation vectors 279
sequence numbers 279
server and client random 279
server write key 279
server write MAC secret 279

SSL Handshake Protocol 279, 284, 285
cipher suites 286

INDEX 403

client hello message 284
client hello 285
client version 285
ClientHello.cipher-suite 286
ClientHello.compression-method 286
ClientHello.session-id 286
compression method 286
handshake failure alert 286
hello request 284
server hello message 284, 285, 290
server hello message 286, 287
server version 286
session ID 286

SSL Record Protocol 277, 279, 284
appended SSL record header 282
compression and decompression 280
Fragmentation 279
MAC 280

SSL session 278
SSL v3 277
SSL v3 protocol 293
SSL/TLS 223
stand-alone signature 317
state 108, 114, 117, 119
state array 108, 114, 118
static mapping 27, 28
static table 7
string-to-key (S2K) 321
Structure of Management Information 53
stub link 55
SubBytes() 114, 116
subject alternative name 239
subject directory attributes extension 231
subject distinguished name 239
subject domain policy 230
subject identification information 223
subject key identifier 227, 228
subject key identifier extension 228
subkey 76
subkey binding signature 317
subnet 24
subnet addressing 26, 34
subnetid 24, 25
subnetting 24, 25, 26, 34
SubWord() 112
Sun’s Remote Procedure Call 50
supernetting 24, 25, 26, 34
swapped output 137
swapping operation 79

switching mechanisms 5
circuit switching 5, 6
message switching 5, 6
packet switching 5, 6

symmetric block cipher 58, 107
Synchronous Data Link Control 10
syntax selection 11
System Packet Exchange 11

tampering 277
TCP 11, 13, 15, 42
TCP data 42, 43, 44
TCP header 43, 44
TCP packet format 42, 43
TCP port 345
TCP port 20 347
TCP port 21 347
TCP port 23 245
TCP port 25 347
TCP port number 340
TCP segment 42, 43, 44
TCP/IP four-layer model 12
TCP/IP protocol 11
TELNET 22, 45, 56
TELNET packet filtering 345
Telnet server 23
TFTP 23, 47, 50
Thicknet 8
Thinnet 8
Time to live (TTL) 20
timestamp option 21
timestamp signature 317
TLS certificate verify message 302
TLS change cipher spec message 302
TLS finished message 302
TLS handshake protocol 300
TLS handshake-message 302
TLS master-secret 303
TLS premaster-secret 303
TLS record layer 300
TLS record protocol 302
TLS server hello message 303
TLS v1 277
TLS v1 protocol 293
token 1
Token Ring 2
ToS field 18
trace 191
traffic control 10
transaction protocol 366

404 INDEX

transform # field 264, 273
transform payload 264
transform-id field 265, 273
Transmission Control Protocol 11, 13, 42
transparent data 290
Transport Layer Protocols 42
Transport Layer Security version 1 277
transport layer 4, 11, 13
transport mode 253, 256, 259
transport mode SA 247, 251
tri-homed firewall 341
triple DES 71, 72, 258
3DES 306
3DES-CBC mode 258
triple DES-EDE mode 73, 74
triple wrapped message 335, 336
triple wrapping 336
Trivial File Transfer Protocol 23, 47, 50
Trojan horse 51
Trojan horse sniffer 342
trust chain to the root key 366, 370, 372,

373, 375
trust chaining 358
truth table 139, 150
TTL 20, 41, 42
tunnel mode 251, 253, 256, 259
tunnel mode SA 247, 251,
tunneling protocol, Point-to-Point Tunneling

Protocol (PPTP)
Twisted Ethernet 8
twisted-pair cable 2
two-key cryptosystem 173
Type of service (ToS) 17

UDP 13, 15, 42, 45, 342
UDP header 45

Destination port number 46
ephemeral port number 45, 46
pseudoheader 46, 47
source port number 45
UDP checksum 46
UDP length 46
universal port number 46

UDP packet 45
UDP port 345
uncompressed message 308
unicast 22
unicast address 35
uniform resource identifier 230

universal addressing system 22
unknown-ca 301
URG flag 44
urgent pointer 44
URI 230, 231, 232, 233
URL 48
user authentication 205
User Datagram Protocol 13, 45
user key 102, 105
user-canceled 301
UTF-8 311

v3 key fingerprint 320
v4 key fingerprint 320
variable number of rounds 85
variable-length secret key 85
VCI 5
vendor ID payload 270
version 37
version 2 packet 320
version 3 packet 320
version 4 packet 320
version field(VER) 17
Virtual Channel Identifier 5
Virtual Path Identifier 5
Virtual Private Network 340
virus 51, 340
virus-infected programs or files 340
VPI 5
VPN 340, 344
VPN protocol 344

WAN 2, 3
Web page 47, 48. 49
Web server 48, 49
Web traffic 48
Website 1
Wide Area Network 2, 3
window NT 344
window scale factor 45
window size 44
word size 85
World Wide Web 13, 47
WWW 13, 47

X.25 4
X.400 52
X.500 directory 223
X.500 name 202, 221, 224
X.509 AC 332

INDEX 405

X.509 certificate format 223
certification path constraint 227
extensions related to CRL 227
issuer 224
issuer unique identifier 225
issuer’s signature 225
key and policy information 226, 227
serial number 223
signature algorithm 224
subject and issuer attribute 227
subject name 224
subject public-key information 224
subject unique identifier 226
validity period 224
version number 223

X.509 certificate 218
X.509 certificate format 203, 222
X.509 CRL format 203, 233
X.509 Public-Key Infrastructure 219
X.509 v1 certificate 221, 223
X.509 v2 certificate 221, 225
X.509 v2 CRL format 203, 234, 235, 237

issuer name field 235
UTC Time, Generalised Time 235
X.509 distinguished name 235
X.509 type name 235

next update field 235
revoked certificates field 235
signature field 235

algorithm identifier 235
hash functions – MD5 and SHA-1 235
signature algorithm – RSA and DSA

235
this update field 235

issue date of CRL 235
version field (optional) 234, 235, 237

X.509 v3 certificate 203, 223, 226, 287
X.509 v3 certificate format 234
X.509 v3 public-key certificate 357
XDR 51
Xerox Wire 8
xtime() 109

ZIP algorithm 308, 316

	Internet Security : Cryptographic Principles, Algorithms and Protocols
	Cover

	Contents
	Author biography
	Preface
	1 Internetworking and Layered Models
	1.1 Networking Technology
	1.1.1 Local Area Networks (LANs)
	1.1.2 Wide Area Networks (WANs)

	1.2 Connecting Devices
	1.2.1 Switches
	1.2.2 Repeaters
	1.2.3 Bridges
	1.2.4 Routers
	1.2.5 Gateways

	1.3 The OSI Model
	1.4 TCP/IP Model
	1.4.1 Network Access Layer
	1.4.2 Internet Layer
	1.4.3 Transport Layer
	1.4.4 Application Layer

	2 TCP/IP Suite and Internet Stack Protocols
	2.1 Network Layer Protocols
	2.1.1 Internet Protocol (IP)
	2.1.2 Address Resolution Protocol (ARP)
	2.1.3 Reverse Address Resolution Protocol (RARP)
	2.1.4 Classless Interdomain Routing (CIDR)
	2.1.5 IP Version 6 (IPv6, or IPng)
	2.1.6 Internet Control Message Protocol (ICMP)
	2.1.7 Internet Group Management Protocol (IGMP)

	2.2 Transport Layer Protocols
	2.2.1 Transmission Control Protocol (TCP)
	2.2.2 User Datagram Protocol (UDP)

	2.3 World Wide Web
	2.3.1 Hypertext Transfer Protocol (HTTP)
	2.3.2 Hypertext Markup Language (HTML)
	2.3.3 Common Gateway Interface (CGI)
	2.3.4 Java

	2.4 File Transfer
	2.4.1 File Transfer Protocol (FTP)
	2.4.2 Trivial File Transfer Protocol (TFTP)
	2.4.3 Network File System (NFS)

	2.5 Electronic Mail
	2.5.1 Simple Mail Transfer Protocol (SMTP)
	2.5.2 Post Office Protocol Version 3 (POP3)
	2.5.3 Internet Message Access Protocol (IMAP)
	2.5.4 Multipurpose Internet Mail Extension (MIME)

	2.6 Network Management Service
	2.6.1 Simple Network Management Protocol (SNMP)

	2.7 Converting IP Addresses
	2.7.1 Domain Name System (DNS)

	2.8 Routing Protocols
	2.8.1 Routing Information Protocol (RIP)
	2.8.2 Open Shortest Path First (OSPF)
	2.8.3 Border Gateway Protocol (BGP)

	2.9 Remote System Programs
	2.9.1 TELNET
	2.9.2 Remote Login (Rlogin)

	3 Symmetric Block Ciphers
	3.1 Data Encryption Standard (DES)
	3.1.1 Description of the Algorithm
	3.1.2 Key Schedule
	3.1.3 DES Encryption
	3.1.4 DES Decryption
	3.1.5 Triple DES
	3.1.6 DES-CBC Cipher Algorithm with IV

	3.2 International Data Encryption Algorithm (IDEA)
	3.2.1 Subkey Generation and Assignment
	3.2.2 IDEA Encryption
	3.2.3 IDEA Decryption

	3.3 RC5 Algorithm
	3.3.1 Description of RC5
	3.3.2 Key Expansion
	3.3.3 Encryption
	3.3.4 Decryption

	3.4 RC6 Algorithm
	3.4.1 Description of RC6
	3.4.2 Key Schedule
	3.4.3 Encryption
	3.4.4 Decryption

	3.5 AES (Rijndael) Algorithm
	3.5.1 Notational Conventions
	3.5.2 Mathematical Operations
	3.5.3 AES Algorithm Specification

	4 Hash Function, Message Digest and Message Authentication Code
	4.1 DMDC Algorithm
	4.1.1 Key Schedule
	4.1.2 Computation of Message Digests

	4.2 Advanced DMDC Algorithm
	4.2.1 Key Schedule
	4.2.2 Computation of Message Digests

	4.3 MD5 Message-digest Algorithm
	4.3.1 Append Padding Bits
	4.3.2 Append Length
	4.3.3 Initialise MD Buffer
	4.3.4 Define Four Auxiliary Functions (F, G, H, I)
	4.3.5 FF, GG, HH and II Transformations for Rounds 1, 2, 3 and 4
	4.3.6 Computation of Four Rounds (64 Steps)

	4.4 Secure Hash Algorithm (SHA-1)
	4.4.1 Message Padding
	4.4.2 Initialise 160-Bit Buffer
	4.4.3 Functions Used
	4.4.4 Constants Used
	4.4.5 Computing the Message Digest

	4.5 Hashed Message Authentication Codes (HMAC)

	5 Asymmetric Public-key Cryptosystems
	5.1 Diffie–Hellman Exponential Key Exchange
	5.2 RSA Public-key Cryptosystem
	5.2.1 RSA Encryption Algorithm
	5.2.2 RSA Signature Scheme

	5.3 ElGamals Public-key Cryptosystem
	5.3.1 ElGamal Encryption
	5.3.2 ElGamal Signatures
	5.3.3 ElGamal Authentication Scheme

	5.4 Schnorr's Public-key Cryptosystem
	5.4.1 Schnorr's Authentication Algorithm
	5.4.2 Schnorr's Signature Algorithm

	5.5 Digital Signature Algorithm
	5.6 The Elliptic Curve Cryptosystem (ECC)
	5.6.1 Elliptic Curves
	5.6.2 Elliptic Curve Cryptosystem Applied to the ElGamal Algorithm
	5.6.3 Elliptic Curve Digital Signature Algorithm
	5.6.4 ECDSA Signature Computation

	6 Public-key Infrastructure
	6.1 Internet Publications for Standards
	6.2 Digital Signing Techniques
	6.3 Functional Roles of PKI Entities
	6.3.1 Policy Approval Authority
	6.3.2 Policy Certification Authority
	6.3.3 Certification Authority
	6.3.4 Organisational Registration Authority

	6.4 Key Elements for PKI Operations
	6.4.1 Hierarchical Tree Structures
	6.4.2 Policy-making Authority
	6.4.3 Cross-certification
	6.4.4 X.500 Distinguished Naming
	6.4.5 Secure Key Generation and Distribution

	6.5 X.509 Certificate Formats
	6.5.1 X.509 v1 Certificate Format
	6.5.2 X.509 v2 Certificate Format
	6.5.3 X.509 v3 Certificate Format

	6.6 Certificate Revocation List
	6.6.1 CRL Fields
	6.6.2 CRL Extensions
	6.6.3 CRL Entry Extensions

	6.7 Certification Path Validation
	6.7.1 Basic Path Validation
	6.7.2 Extending Path Validation

	7 Network Layer Security
	7.1 IPsec Protocol
	7.1.1 IPsec Protocol Documents
	7.1.2 Security Associations (SAs)
	7.1.3 Hashed Message Authentication Code (HMAC)

	7.2 IP Authentication Header
	7.2.1 AH Format
	7.2.2 AH Location

	7.3 IP ESP
	7.3.1 ESP Packet Format
	7.3.2 ESP Header Location
	7.3.3 Encryption and Authentication Algorithms

	7.4 Key Management Protocol for IPsec
	7.4.1 OAKLEY Key Determination Protocol
	7.4.2 ISAKMP

	8 Transport Layer Security: SSLv3 and TLSv1
	8.1 SSL Protocol
	8.1.1 Session and Connection States
	8.1.2 SSL Record Protocol
	8.1.3 SSL Change Cipher Spec Protocol
	8.1.4 SSL Alert Protocol
	8.1.5 SSL Handshake Protocol

	8.2 Cryptographic Computations
	8.2.1 Computing the Master Secret
	8.2.2 Converting the Master Secret into Cryptographic Parameters

	8.3 TLS Protocol
	8.3.1 HMAC Algorithm
	8.3.2 Pseudo-random Function
	8.3.3 Error Alerts
	8.3.4 Certificate Verify Message
	8.3.5 Finished Message
	8.3.6 Cryptographic Computations (For TLS)

	9 Electronic Mail Security: PGP, S/MIME
	9.1 PGP
	9.1.1 Confidentiality via Encryption
	9.1.2 Authentication via Digital Signature
	9.1.3 Compression
	9.1.4 Radix-64 Conversion
	9.1.5 Packet Headers
	9.1.6 PGP Packet Structure
	9.1.7 Key Material Packet
	9.1.8 Algorithms for PGP 5.x

	9.2 S/MIME
	9.2.1 MIME
	9.2.2 S/MIME
	9.2.3 Enhanced Security Services for S/MIME

	10 Internet Firewalls for Trusted Systems
	10.1 Role of Firewalls
	10.2 Firewall-Related Terminology
	10.2.1 Bastion Host
	10.2.2 Proxy Server
	10.2.3 SOCKS
	10.2.4 Choke Point
	10.2.5 De-militarised Zone (DMZ)
	10.2.6 Logging and Alarms
	10.2.7 VPN

	10.3 Types of Firewalls
	10.3.1 Packet Filters
	10.3.2 Circuit-level Gateways
	10.3.3 Application-level Gateways

	10.4 Firewall Designs
	10.4.1 Screened Host Firewall (Single-homed Bastion Host)
	10.4.2 Screened Host Firewall (Dual-homed Bastion Host)
	10.4.3 Screened Subnet Firewall

	11 SET for E-commerce Transactions
	11.1 Business Requirements for SET
	11.2 SET System Participants
	11.3 Cryptographic Operation Principles
	11.4 Dual Signature and Signature Verification
	11.5 Authentication and Message Integrity
	11.6 Payment Processing
	11.6.1 Cardholder Registration
	11.6.2 Merchant Registration
	11.6.3 Purchase Request
	11.6.4 Payment Authorisation
	11.6.5 Payment Capture

	Acronyms
	Bibliography
	Index
	Team DDU

