

Data Hiding

http://avaxhome.ws/blogs/ChrisRedfield

This page is intentionally left blank

AMSTERDAM•BOSTON•HEIDELBERG•LONDON
NEWYORK•OXFORD•PARIS•SANDIEGO

SANFRANCISCO•SINGAPORE•SYDNEY•TOKYO

SyngressisanImprintofElsevier

Michael Raggo

Chet Hosmer

Wesley McGrew, Technical Editor

Data Hiding
Exposing Concealed Data

in Multimedia, Operating

Systems, Mobile Devices

and Network Protocols

Acquiring Editor: Steve Elliot

Development Editor: Heather Scherer

Project Manager: Mohanambal Natarajan

Designer: Joanne Blank

Syngress is an imprint of Elsevier

225 Wyman Street, Waltham, MA 02451, USA

Copyright©2013Elsevier,Inc.Allrightsreserved.

Nopartof thispublicationmaybe reproducedor transmitted inany formorby
any means, electronic or mechanical, including photocopying, recording, or any
informationstorageand retrieval system,withoutpermission inwriting fromthe
publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePub-
lisher’spermissionspoliciesandourarrangementswithorganizationssuchasthe
CopyrightClearanceCenterandtheCopyrightLicensingAgency,canbe foundat
ourwebsite:www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under
copyrightbythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisieldareconstantlychanging.Asnewresearchand
experiencebroadenourunderstanding,changes inresearchmethodsorprofessional
practices, may become necessary. Practitioners and researchers must always rely on
theirownexperienceandknowledgeinevaluatingandusinganyinformationormeth-
odsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindful
of theirownsafetyandthesafetyofothers, includingparties forwhomtheyhavea
professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or
editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa
matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof
anymethods,products,instructions,orideascontainedinthematerialherein.

Library of Congress Cataloging-in-Publication Data

Applicationsubmitted

British Library Cataloguing-in-Publication Data

AcataloguerecordforthisbookisavailablefromtheBritishLibrary.

ISBN:978-1-59749-743-5

PrintedintheUnitedStatesofAmerica
13 14 15 16 17 10 9 8 7 6 5 4 3 2 1

ForinformationonallSyngresspublicationsvisitourwerbsiteatwww.syngress.com

V

Dedication

Mike Raggo Dedication

For my Dad (Joe), whose hard work and determination
taught me that anything is achievable. Thank you for
helping me fulfill my destiny. Also dedicated to the United
States Armed Forces and the American Red Cross.

Chet Hosmer Dedication

For my Dad, who shared his stories of using morse code to
transfer coded messages onboard the U.S.S. Neosho while
serving in the U.S. Navy. After that I was hooked.

..-. --- .-. -- -.-- -.. .- -.. --..-- .-- --- - .-. . -..

.. - --- .-. --- ..-. ..- -. --. -- --- .-. -.-.
--- -.. . - --- - .-. .- -.-. . .-. -.-. --- -.. . -.. --- --. .
... --- -. -... --- .- .-. -.. -- .-.-.--.-.--.-.- -. . ---
.... --- .---..-. ...- .. -. --. .. -. -- .-.-.- ...
.-.-.- -. .- ...- -.-- .-.-.- .- ..-. - . .-. -- - .. .-- .-
--- --- -.- . -.. .-.-.-

This page is intentionally left blank

VII

Raggo Acknowledgments

Mike would like to thank the following people and organizations for their
inspiration, mentorship, friendship, faith, motivation, and support: Coach
Konopka, Warren Bartley, The entire Gibbons Family, Steven Jones, David
Thomas, Frank Castaneira, Bill Niester, Taylor Banks and DC404, Michael
Hamelin,GabeDeale,ArnoldHarden,BSA,RonnieJamesDio,ReneeBeck-

loff, Jim Christy, Richard Rushing, James Foster, Stratton Sclavos, Michael
Schenker,JoelHart,ToddNightingale,AmberSchroader,AmitSinha,Robert
Strain, Adam Geller, Fran Rosch, Mark Tognetti, RB Smith, Angelina Ward,
MaxxRedwine,BlackHat,DefCon,MISTI,NAISGAtlanta,ISSA,OWASP,PFIC,
andThePentagon.

AbigthankyoutoRobertWesleyMcGrew,HeatherScherer,SteveElliot,and
everyoneatSyngress.

AndChetHosmerforhisdedication,support,passion,andcreativenessinco-
authoringthebookwithme.Icouldn’thavedoneitwithoutyou,thankyou.

AndveryspecialthankstomywifeLinda,daughterSara,andmymomfortheir
unwaveringsupport.

InmemoryofJosephKugler,MaxxRedwine,JohnMills,andChrisBlanchard

This page is intentionally left blank

IX

Hosmer Acknowledgments

Mysincerethanksgoto:

MikeRaggoco-authoronthisbookwhobroughtuniqueinsightsalongwithhis
organicapproachtodevelopingandinvestigatingnewdatahidingmethods.

MywholeteamatWetStone/Allenwhoassistedinthevalidationandexperi-
mentationofthelatestdatahidingthreats.MattDavis,RaghuMenon,Jacob
Benjamin,JamesBettke,TaylorHanson,AustinBrowder,BillFanelliandCarl-
tonJeffcoat.

A special thanks to the entire team at Syngress especially Steve Elliot and
Heather Scherer without their assistance we could have never made this
happen.

and,inallytomywifeJanetwhoalwaysprovidesmedailyinspirationnomat-
terhowcrazymyideasmightbe!

This page is intentionally left blank

XI

Contents

Chapter 1 History of Secret Writing ... 1

 Introduction .. 1

 Cryptology .. 2

 Substitution Cipher .. 3

 Transposition Cipher ... 8

 The Difference Between Substitution Ciphers and

Transposition Ciphers ... 10

 Steganography ... 10

 Cardano’s Grille .. 11

 Summary ... 17

 References .. 17

Chapter 2 Four Easy Data Hiding Exercises 19

 Hiding Data in Microsoft Word ... 20

 Image Metadata ... 26

 Mobile Device Data Hiding .. 29

 File Compression Tool Data Hiding .. 33

 Summary ... 38

 References .. 39

Chapter 3 Steganography ... 41

 Introduction .. 41

 Steganographic Techniques .. 42

 Insertion Methods .. 43

 Modification .. 46

 Hiding in PDFs (Insertion Meets LSB) 49

 Hiding in Executables (Hydan) ... 52

DEDICATION V

RAGGO ACKNOWLEDGMENTS VII

HOSMER ACKNOWLEDGMENTS IX

ABOUT THE AUTHORS XV

ABOUT THE TECHICAL EDITOR XVII

PREFACE XIX

 Hiding in HTML ... 54

 Steganalysis .. 55

 Anomalous Analysis .. 58

 Steganalysis Tools.. 59

 Freeware Tools ... 59

 Summary ... 66

 References .. 67

Chapter 4 Multimedia Data Hiding .. 69

 Multimedia Overview .. 69

 Data Hiding in Digital Audio ... 70

 Simple Audio File Embedding (Imperceptible

Approach) ... 70

 Data hiding in a .wav file... 73

 StegAnalysis of LSB Wave Data Hiding 78

 Advanced Audio File Embedding ... 79

 Audio Summary .. 79

 Data Hiding in Digital Video ... 80

 MSU Stego .. 80

 TCStego .. 83

 Summary ... 89

 References .. 90

Chapter 5 Data Hiding Among Android Mobile Devices 91

 Android Overview .. 91

 Android ImgHid and Reveal App .. 91

 Analysis of the Resulting ImgHid Data Hiding Operation 95

 Android My Secret App ... 98

 Stego Analysis of the Resulting My Secret Images 100

 Summary ... 101

 StegDroid .. 102

 Using the Android Application ... 103

 Summary ... 106

 References .. 106

Chapter 6 Apple iOS Data Hiding .. 107

 Introduction .. 107

 Mobile Device Data Hiding Applications 107

 Spy Pix Analysis ... 110

 Stego Sec Analysis ... 116

 InvisiLetter Analysis .. 125

 Summary ... 130

 References .. 131

ContentsXII

Contents

Chapter 7 Operating System Data Hiding ... 133

 Windows Data Hiding .. 135

 Alternate Data Streams Reviewed ... 135

 Stealth Alternate Data Streams .. 138

 Volume Shadowing .. 140

 Linux Data Hiding .. 150

 Linux Filename Trickery .. 150

 Extended Filesystem Data Hiding .. 151

 TrueCrypt ... 157

 References ...166

Chapter 8 Virtual Data Hiding.. 167

 Introduction .. 167

 Hiding a Virtual Environment ... 168

 Getting Started ... 168

 A Review of Virtual Environments ... 171

 VMware Files ... 172

 Hiding Data in a VMware Image .. 172

 Summary ... 179

 References .. 179

Chapter 9 Data Hiding in Network Protocols 181

 Introduction .. 181

 VoIP Data Hiding .. 184

 Delayed Packet Modification Method ... 187

 IP Layer Data Hiding, The TTL Field .. 188

 Investigating Protocol Data Hiding .. 190

 Summary ... 191

 References .. 191

Chapter 10 Forensics and Anti-Forensics ... 193

 Introduction .. 193

 Anti-Forensics—Hiding your tracks ... 194

 Data Hiding Passwords ... 194

 Hiding Your Tracks .. 195

 Forensics ... 197

 Looking for Data Hiding Software .. 198

 Finding Remaining Artifacts ... 199

 Identifying and View Cached Images (Cache

Auditing Tools) ... 203

 Evidence in Thumbnails .. 204

 Searching for Hidden Directories and Files 208

 Network IDS ... 209

XIII

 Summary ... 211

 References .. 211

Chapter 11 Mitigation Strategies ... 213

 Forensic Investigation ... 213

 Step 1 Steganography Use Discovery 213

 Step 2 Steganography Carrier Discovery 215

 Step 3 Hidden Content Extraction .. 215

 Mitigation .. 216

 Network Technologies for detecting Data

Hiding ... 219

 Endpoint Technologies for detecting Data Hiding 223

 Summary ... 225

 References .. 227

Chapter 12 Futures ... 229

 The Future, and the Past ... 229

 Future Threats.. 230

 Steganography as a Countermeasure 233

 Current and Futuristic Combined Threats 235

 Summary ... 236

Index ... 237

ContentsXIV

XV

MICHAEL T. RAGGO

Michael T. Raggo (CISSP, NSA-IAM, CCSI, SCSA, ACE, CSI) applies over
20yearsofsecuritytechnologyexperienceandevangelismtothetechnical
delivery of Security Solutions. Mr. Raggo’s technology experience includes
penetrationtesting,wirelesssecurityassessments,complianceassessments,
irewallandIDS/IPSdeployments,mobiledevicesecurity,incidentresponse
andforensics,andsecurityresearch,andisaformersecuritytrainer.Inad-

dition,Mr.RaggoconductsongoingindependentresearchonvariousData
Hiding techniques including steganography. Mr. Raggo has presented on
various security topics atnumerous conferences around theworld (Black-

Hat,DefCon,SANS,DoDCyberCrime,OWASP,InfoSec,etc.)andhaseven
briefedthePentagononSteganographyandSteganalysistechniques.

CHET HOSMER

ChetHosmeristheChiefScientist&Sr.VicePresidentatAllenCorporationand
aco-founderofWetStoneTechnologies,Inc.Chethasbeenresearchingandde-

velopingtechnologyandtrainingsurroundingdatahiding,steganographyand
watermarkingforoveradecade.Hehasmadenumerousappearancestodiscuss
thethreatsteganographyposesincludingNationalPublicRadio’sKojoNnamdi
show,ABC’sPrimetimeThursday,NHKJapan,CrimeCrimeTechTVandABC
NewsAustralia.Hehasalsobeenafrequentcontributortotechnicalandnews
storiesrelatingtosteganographyandhasbeeninterviewedandquotedbyIEEE,
The New York Times, The Washington Post, Government Computer News,
Salon.comandWiredMagazine.ChetalsoservesasavisitingprofessoratUtica
CollegewhereheteachesintheCybersecurityGraduateprogram.Chetdelivers
keynoteandplenarytalksonvariouscybersecurityrelatedtopicsaroundthe
worldeachyear.

About the Authors

This page is intentionally left blank

XVII

About the Technical Editor

Wesley McGrew isaresearchassociateatMississippiStateUniversity,where
hedevelopscoursewareandteachesdigitalforensicstowoundedveteransand
membersoflawenforcementaspartoftheNationalForensicsTrainingCenter.
Hedevelopsnewoffensivesecurityanddigitalforensictechniquesandtools
inbothhisday job,andinprivateconsultancyasMcGrewSecurity.Hehas
presentedatBlackHatUSAandDefcon,andhasbeeninvitedtogivetalksat
many other conferences and events on topics surrounding digital forensics,
offensivesecurity,andhackerculture.

This page is intentionally left blank

XIX

It’s 4 AM at Spika, a small cramped Internet Café in downtown Prague.
Ayoungstudentissippingacoffeeinthebackcornerofthecafé.Heentersa
blogandpostsaphotographwiththecaptionZhelayuvsegokhoroshegoor
(wishingyouthebest).Atprecisely6A.M.dozensofBotnetoperatorsvisit
thesameblogpageautomaticallyretrievingthephotographpostedasinstruct-
ed. The operators have repeated this operation for months, as done many
timesbefore, thebotoperators save the imageandcopydown thecaption.
Theyextract theirst8Fibonaccicharacters fromthecaptionZhelayuvsego
khoroshego (1,1,2,3,5,8,13,21) that yield “ZZhea oh”. Next they load the
image into a steganography program named JPHS, and use the Fibonacci
extractedpassphrase“ZZheaoh”.However,unlikedaysbefore,theprogram
asks for thenameofaile tostore thehiddencontents.Normally it rudely
reportsincorrectpassphrase….Butnottoday.

As instructed thebotoperator’s type in “attack.txt” andpressEnter. Theile
“attack.txt”isthencreated.Itcontainsasimplelistof2,047IPaddressesalong
withthedateofMay9,2007.Thebotoperatorsactivatetheirteamofzombies
thatare spreadacross theglobedutifullyawaitingorders. Theyprovide the
attacklistandsettheattackdatetoMay9th,2007.OnthemorningofMay9th,
oneofthemostwiredcountriesinEuropehasinstantlybecomeandisland,as
100,000+zombiessurgicallyattacktheircountry’sinfrastructurewitharelent-
lessdistributedDenialofServiceattackthatlastsoveraweek,therebyisolating
thissmallcountry300mileseastofStockholm.Mostofusinthewesternworld
haveneverheardofthiscountry,butit’sonewewon’tsoonforget.

Thezombiesarenowasleep,butthebotoperatorscontinuetowaitfornew
imageswithlistsofthenextvictimstoattackwiththeirevenlargerarmyof
zombies.

Obviously,thisisafactiousandsensationalizedrenderingofhowthecyber
attacksonthissmallbutnowwell-knowncountryofEstoniabegan.Orisit?

Preface

Preface

Theuseofsteganographyandhiddencodeshasbeenpartofwarfareforover
3,000yearsnow. Thesuccessor failureofmissions inmanycasesdepends
ontheabilitytosecurelyandcovertlycommand,controlandcommunicate.
When the mission is international espionage, communication with agents
abroad, communication within criminal and/or terrorist organizations, or
advancedpersistentcyberthreats,therequirementforthistypeofcommuni-
cationonlyincreases. Thegoalsofcovertcommunicationshaven’tchanged
muchinthelast3,000years,however,themethodsandtechniquescontinue
toevolveasnewmeansofhidingdataappear.

Over thepastdecadedatahidinghassteadilymovedfromdigital images to
multimediailes,thentonetworkprotocols,andnowSmartmobiledevices.
As the capabilities of our computing platforms and the bandwidth of our
networksincreases,andthemobilityofourcommunicationdeviceofchoice
accelerates, sodoes themeans to leak informationorcovertlycommunicate
anywhereandanytime.

Taking a snap-shot in time, this book examines the trends, latest threats,
methodsandtechniquesemployedbythosehidingdataandcovertlycom-

municating.Thebookalsoexaminesmethodstodetect,analyzeanduncover
suchmethods,whilelookingtowardthefuturetoextrapolatewhatmightbe
next.

XX

Data Hiding.

Copyright © 2013 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00001-8

1

CHAPTER 1

History of Secret Writing

CONTENTS

Introduction1

Cryptology2
Substitution Cipher3

Caesar ... 3

Coded Radio Messages and

Morse Code 5

Vigenere Cipher 6

Transposition Cipher8

Spartan Scytale 9

The Difference Between

Substitution Ciphers and

Transposition Ciphers10

Steganography10
Cardano’s Grille11

Invisible Ink 13

Microdots 13

Printer Tracking Dots 14

Watermarks 16

Summary17

References17

n Introduction

n Cryptology

n Steganography

INFORMATION IN THIS CHAPTER:

INTRODUCTION

Data Hiding transcends nearly every aspect of our daily lives, whether it be for

good intent or evil. It stemmed from secret writing thousands of years ago, as

cited by David Kahn and many historians. It originated in Egyptian civilization

in the form of hieroglyphs, intended as symbolic representations of historical

timelines for particular lords. Other cultures of the time, such as the Chinese,

took a more physical approach to hiding messages by writing them on silk or

paper, rolling it into ball, and covering it with wax to communicate political

or military secrets. For added security measures, the ball was even be swal-

lowed during transit. As civilization evolved, forms of covert communications

became more sophisticated and cryptograms and anagrams advanced.

David Kahn’s The Codebreakers is arguably the most comprehensive historical

book about Secret Communications through the ages. Below is a timeline of

some of the most notable innovations over the centuries dating back to Egypt

and China (see Figure 1.1).

As evident throughout history, secret writing evolved from the need for covert

communications. And what is used by our own militaries today to protect us

from evil intent, is also used by our enemies to attack our well being. As tech-

nology has evolved, so have the ways in which data hiding is used. Today, it is

commonly used in corporate espionage, spy communication, malware, child

exploitation, and terrorism. Malicious data hiding occurs daily all around us,

and many times undetected.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00001-8

CHAPTER 1: History of Secret Writing2

In this book we hope to enlighten you, the reader, with information about

the many ways in which data hiding is used, from physical mediums to digital

mediums. Although there is the ongoing threat of criminal activity, data hiding

is actually a very interesting and fun hobby and for some people, a career. Let’s

begin by reviewing the history behind what brought us to digital data hiding,

by reviewing many of the techniques of our ancestors and the basis behind

cryptography and steganography.

CRYPTOLOGY

Cryptograms and anagrams are commonly found in newspapers and puzzle

books. Cryptograms substitute one character for another. In terms of the alpha-

bet, one letter is substituted for another. The goal of the cryptogram is for the

FIGURE 1.1 Data Hiding, Concealment, and Steganography Timeline

Cryptology 3

individual to determine what letters are substitutes for others, and use this

substitution to reveal the original message. In anagrams, the characters that

make-up a message are rearranged rather than substituted.

In either case, the message is made secret by the method or algorithm used to

scramble it. There is typically also a key known only to the sender and receiver,

such that no one else can read or decipher the message. This secret message is

commonly referred to as a cipher text. An eavesdropper cannot read the mes-

sage unless they determine the algorithm and key. The process of decoding the

message is referred to as cryptanalysis (see Figure 1.2).

Substitution Cipher

In cryptography, a substitution cipher is a method of encryption in which

plaintext is substituted with cipher text using a particular method or algorithm.

The plaintext can be replaced by letters, numbers, symbols, etc. The algorithm

defines how the substitution will occur and is based upon a key. Therefore,

the recipient of the message must know the algorithm and the key (or keying

mechanism) in order to decipher the message. When the recipient receives the

encrypted message, he/she will use this known substitution algorithm, to deci-

pher the message to reveal the plaintext message.

Caesar

Julius Caesar (100–44 B.C.) initially created a substitution cipher for military

purposes that involved substituting Greek letters for Roman letters, thereby

FIGURE 1.2 Cryptography

CHAPTER 1: History of Secret Writing4

making the message unreadable to the enemy. Caesar later created the more

commonly known Shift Cipher. Caesar simply shifted the letters of the alpha-

bet by a specified amount. This shifted alphabet was then used for the substitu-

tion cipher. In both cases, the original alphabet was substituted by a different

character substitution, also referred to as a cipher alphabet or monoalphabetic

cipher. For example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

Using the cipher alphabet we can generate a ciphertext message:

Plaintext Message = STEGANOGRAPHY RULES

Ciphertext Message = XYJLFILWFUMD WZQJX

Although considered a weak cipher by today’s standards with the computing

power available today, it still exists today primarily in the form of entertainment

from everything from newspaper cryptograms to children’s secret decoder rings.

For example, one of the promotional items from the Johnny Quest cartoon was

a secret decoder ring. Children could use the ring to encode secret messages in

a substitution cipher format. A little known fact about the decoder ring is that

it also included a secret compartment, as well as a sun flasher (see Figure 1.3).

Caesar’s language substitution cipher approach was also used in WWII by the

Navajo code talkers. At the time, the Navajo Indians spoke in a dialect unfa-

miliar to most other people, including other Indian tribes. As a result, the 29

Navajos were recruited into the Marine Corps to support the war effort. The

Marine Corps used the Navajo Code as a secure means of translating English to

Navajo for communications while on the battlefield. Since Navajo speak was

FIGURE 1.3 Johnny Quest Decoder Ring.1

1 Johnny quest ring. Stephen A. Kallis, Jr. & Metro Washington Old Time Radio Club.

Cryptology 5

unknown to anyone except Navajo tribe members and a handful of Americans,

it was practically impossible to impersonate.

Coded Radio Messages and Morse Code

In the 1830s, Samuel Morse created a code for sending messages over telegraph.

Morse substituted a series of dots and dashes to represent each letter of the

alphabet. This code commonly known today as Morse code, was a simple substi-

tution of a character for a letter of the alphabet and punctuation (see Figure 1.4).

An example of the Morse code substitution cipher is used in the Rush song

“YYZ.” Interestingly enough YYZ is the airport code for Toronto, Canada,

Rush’s home town. In Morse code, the letter Y is “-. - -” and the letter Z is “-

-. .” Coverting YYZ to Morse code you have: YYZ = “-. - - -. - - - -. .” or “dash

dot dash dash dash dot dash dash dash dash dot dot.” Unbeknownst to most

people, this is the basis for the intro to the song.

Some argue that Morse code is not a substitution cipher, because its intentions

were not to hide the message, but rather use it as a form of communications at

a time when telephone was yet to be invented. Yet it is a form of substitution

FIGURE 1.4 Morse Code Table

CHAPTER 1: History of Secret Writing6

and represents a form of code substitution. And transposition forms of it were

used during the last few wars. In fact, most people listening to the song YYZ

have no idea that it even begins with Morse code, thereby making this a form

of message hiding (steganography).

Vigenere Cipher

The Vigenere cipher was originally created by a group of intellectuals but was

finally organized into a cipher by the fellow whose name it acquired Blaise

de Vigenere. Rather than base the substitution on a single alphabet of letters,

Vigenere created it based on 26 alphabets (see Figure 1.5).

Using only one column in the Vigenere table would be the equivalent of the Cae-

sar Shift Cipher. Therefore the Vigenere table is designed such that multiple rows

FIGURE 1.5 Vigenere Cipher.2

2 Fields, B. T. Vigenere cipher photo. Public domain (original author).

Cryptology 7

are used. A different row is used for each letter to be ciphered. This is performed by

assigning a keyword to the ciphering approach. For example, if we chose a keyword

of “combo” and use the Vigenere table we could cipher the following message:

Message: thekeyisunderthedoormat

Keyword: combo

Ciphertext: vvqlsawevbfsduvgamu

This form of substitution cipher is known as polyalphabetic, because it uses

multiple alphabets to perform the ciphering, as opposed to the monoalpha-

betic Caesar Shift Cipher. When released, the Vigenere cipher was impenetra-

ble. For example, the Caesar Shift Cipher could be cracked by a cryptanalyst

using frequency analysis, whereby certain letters such as e and n are more com-

monly found in words, whereas x and z not. Understanding this flaw allowed

cryptanalysts to decrypt a message. Figure 1.6 outlines English language letter

frequency from highest frequency to lowest frequency of occurrence.

In addition to frequency analysis, cryptanalysts also used linguistic characteris-

tics to decipher messages. For example, the combination of “io” appears quite

commonly in a word in the English language, whereas the combination of “oi”

is rare. Ancient cryptanalysts would actually use lists of letters that are never

found together in a word, thus allowing certain combinations to be eliminated

immediately. But this assumes that you know the language that the message is

written in, which is not always the case. Could it be Spanish, French, or some-

thing else? This distinction is critical to the cryptanalyst.

The Vigenere cipher had far more keys in its substitution implementation,

making it practically impossible to crack using frequency analysis or linguistic

analysis. Vigenere also included the complexity of the vast number of possible

keys and key lengths. It is for this reason that the Vigenere cipher endured

hundreds of years of secure use until 1854 when Charles Babbage was credited

with performing successful cryptanalysis on the Vigenere cipher.3 Many tools

exist today on the web for enciphering messages using the Vigenere cipher.

These tools are commonly found on the Internet, thus allowing virtually any-

one the ability to encode a message (see Figure 1.7).

3 The Code Book, by Simon Singh, p. 78.

FIGURE 1.6 English Language Letter Frequency

CHAPTER 1: History of Secret Writing8

Even though the Vigenere cipher is considered inherently weak by today’s

standards and computing power, it is still found in many ciphering imple-

mentations. For example, a hybrid of the Vigenere cipher is used in the Cisco

IOS found on routers and other networking devices. Although MD5 (Mes-

sage Digest Algorithm) hashing is a supported option within the IOS, many

Cisco devices still use the Password 7 hashing (a hybrid of the Vigenere

cipher). There are a plethora of tools available for decoding the Password

7 hashing for the Cisco IOS. Therefore it is highly recommended that net-

work administrators change the default hashing mechanism from Password

7 to MD5, since the weaknesses in the Vigenere cipher are well known (see

Figure 1.8).

Transposition Cipher
Another form of enciphering technique is known as a transposition cipher.

This involves rearranging the letters of a plaintext message. The letters them-

selves remain intact, but are rather simply repositioned. Transposition ciphers

are also commonly found in newspapers and puzzle magazines and are com-

monly referred to as “jumbles” or anagrams. For example,

Hiddenmessage => dihegassemned

These types of transposition ciphers can be relatively easy to crack. So let’s take

a look at some more complex implementations of transposition ciphers.

FIGURE 1.7 Internet-based Vigenere Ciphering Tool

Cryptology 9

Spartan Scytale

Probably one of the oldest known implementations of the transposition cipher

was the Spartan Scytale (also commonly spelled as Skytale). In ancient Greece

(around 475 B.C.), the Spartan army commanders created a Scytale, a device

they designed for sending secret messages (Figure 1.9). The army command-

ers would wrap a strip of parchment or leather around the Scytale wooden

staff. They would then write the secret message along the length of the staff.

The message would then be unwound from the staff and delivered to another

commander. If intercepted by the enemy, the message would be meaningless

without the correct size wooden staff, and would appear as a jumble of letters.

The receiving commander would then take his identical Scytale and would

wrap the message strip around it to reveal the secret message. This reposition-

ing technique is one of the earliest known transposition ciphers.

FIGURE 1.8 Online Cisco Password Decrypter.4

4 Cisco password decrypter—http://www.hope.co.nz/projects/tools/ciscopw.php.

FIGURE 1.9 Spartan Scytale.5

5 Gualtieri, D. M. Spartan Scytale—http://www.devgualtieri.com.

http://www.hope.co.nz/projects/tools/ciscopw.php
http://www.devgualtieri.com

CHAPTER 1: History of Secret Writing10

Repeatedly running a message through a transposition cipher is one way of

increasing the complexity of cracking the message, effectively a transposition

of a transposition, or as it is commonly known, a Double Transposition.

The Difference Between Substitution Ciphers and
Transposition Ciphers
Substitution ciphers differ from transposition ciphers. In a transposition

cipher, the plaintext is repositioned, but the letters are left unchanged. In con-

trast, a substitution cipher maintains the same sequence of the plaintext and

modifies the letters themselves. As demonstrated earlier, transposition ciphers

are limited by their limited principle of repositioning. There’s simply only so

many ways you can reposition the letters of a message, therefore most of these

techniques can be cracked by hand without the necessity for a computer. Sub-

stitution ciphers have literally thousands of different implementations, some

of which include serious complexity.

Today, the complexity of substitution ciphers has increased tremendously since

the creation of the computer. This computing power also allows the ease of

combining substitution and transposition into one ciphering technique. For

example, Data Encryption Standard (DES) “applies 16 cycles of transposition

and substitution to each group of eight letters.”6 Impractical hundreds of years

ago, brute-force attacks on keys are also commonplace with today’s computing

power. Today, the computer is a cryptanalyst’s strongest weapon.

STEGANOGRAPHY

Commonly people confuse or overlap the definitions of cryptography and

steganography. People commonly refer to steganography as hidden or secret

writing , but that’s technically incorrect. The difference comes about from the

definitions of the Greek word “crypt” versus the greek word “steganos.” Or in

English terms, the difference between hidden writing versus covered writing. In

cryptography, hidden writing refers to scrambled text that is visible to the naked

eye or observer, but unintelligible without analysis. Steganography is writing

that is not visible to the naked eye or observer, also known as covered or invis-

ible writing.

The confusion could be from the English definition of hidden, which according

to The Random House College Dictionary means “concealed, obscure, covert.”7

As a result, it’s understandable why there have been misappropriations of defini-

tions by people when describing cryptography and steganography. This English

6 Cryptography Decrypted by H.X. Mel and Doris Baker, p. 24.
7 Random House College Dictionary, 1979.

Steganography 11

definition would imply an overlap between cryptography and steganography,

which is simply not the case. When deciphering the differences between cryp-

tography and steganography, ask yourself “is the message scrambled or invis-

ible?” If it’s scrambled it’s cryptography, if it’s invisible it’s steganography.

Cardano’s Grille
Italian (actually Milanese) Girolamo Cardano is credited with creating the first

known grille cipher. It involves using a stiff sheet of paper, metal, or otherwise,

with windows cut into random, yet planned, locations of the sheet. This sheet

is known as a grill. An otherwise visibly normal message would actually have

strategically placed letters that within itself make up another message, hidden

within the visible message. The example in Figure 1.10 at first glance appears

as a normal message.

But if the intended recipient knew to look for a hidden message contained

with the normal message, he could use his Cardano Grill to identify the rel-

evant letters that makeup the hidden message. By taking the sheet or grill with

strategic holes cutout, he could lay the sheet over top of the message to reveal

the hidden message. In this case the message reveals that “Troops arrive Mon-

day” as illustrated in Figure 1.11.

The Cardano Grille cipher is still used today. For example, the Spam Mimic

website uses this technique. But rather than use a grille to reveal the message, a

program performs the hiding (encoding) as well as the decoding (Figure 1.12).

The goal here is to create what appears to be a spam message, but is actually a

message encoded within another message. People receive countless spam mes-

sages every day. Unless some knew that a particular spam message contained

FIGURE 1.10 Cardano Grille with Hidden Message

CHAPTER 1: History of Secret Writing12

an encoded message, they would simply pass it off as another spam message.

But intended recipient though could go to the Spam Mimic site, input their

message, and decode the hidden message.

FIGURE 1.11 Cardano Grille with Overlay Revealing Hidden Message

FIGURE 1.12 Spam Mimic Encoding

Steganography 13

Invisible Ink

One of the first written accounts of secret ink dates back to the first century A.D.

where Pliny the Elder wrote about his discovery that the milk of the tithymalus

plant (a type of cactus) could be used for invisible writing.8 This is noted as

one of the first accounts of science around hiding the existence of a message

(steganography).

Probably one of the most common forms of invisible ink is lemon juice. It can

be used to write a message on a piece of paper, and when it dries it’s invisible

to the naked eye. But put the paper to warm source such as a light bulb, and the

message will slowly appear. Many other acid based substances will oxidize and

reveal themselves when exposed to heat include; urine, vinegar, wine, onion

juice, milk, and even rain water combined with sulfuric acid.

Samuel Rubin’s 1987 book, “The Secret Science of Covert Inks”9 is probably

the most comprehensive book on the subject. It details supposedly secret CIA

invisible ink techniques which have been largely disclosed by the non-profit

organization known as the “James Madison Project.” For a list of these recipes,

see the James Madison Project website http://www.jamesmadisonproject.org.

It should be noted that the specific government agencies believe that some of

these “formulas must remain hidden from the public,”10 which is why they’re

not reproduced in this book.

Microdots

It’s difficult to approach the subject of steganography without discussing

microdots. It’s mentioned in practically every book that discusses steganogra-

phy or secret writing. It involves shrinking a photograph to the size of a period

on a typed page. The dot could be a period, or a dot in a dotted “i”, or hidden

in a variety of other ways on the page.

Although the idea of microphotographs dates back to Paris in 1870, the

F.B.I. got a tip from a double agent in 1940 that the Germans had perfected

the technique to create a microdot.11 It took them until 1941 to detect their

first microdot on an envelope intercepted from a suspected German agent.

Soon after, tiny strips of film were discovered under stamps. It was later

discovered that the technology was being used for espionage. A variety of

stolen information was discovered including uranium design information,

production statistics, building plans, schematics, etc. At the time, the small

Minox Camera was commonly used by spies to take pictures of documents

(see Figure 1.13).

8 The Puzzle Palace by James Branford, pp. 503–504.
9 Samuel Rubin’s 1987 book “The Secret Science of Covert Inks.”
10 http://www.jamesmadisonproject.org/ocdpage.html.
11 The Code-Breakers by David Kahn, p. 525.

http://www.jamesmadisonproject.org
http://www.jamesmadisonproject.org

CHAPTER 1: History of Secret Writing14

The process of creating the microdot involved take the thumbnail sized print

from the camera and photographing again through a reverse microscope. This

would shrink it to a diameter of 0.05 inches. It was then developed and a hypo-

dermic needle was used to lift the dot and drop it over a period in a typed letter.

The dot was then affixed in place using collodion (a common photography

chemical).13 Various magnification tools could be used by the recipient to view

the contents of the microdot.

The only problem with using microdots was that the special ink they were

written with was very shiny; a letter suspected of containing microdots could

be held up to a light and viewed at eye-level, looking across the page. Held in a

certain way, the microdot ink would shine while normal ink would not.

Although the specific inventor of microdot steganography is unknown, it is

commonly credited to someone named Professor Zapp, inventor of the Minox

subminiature camera. Thus, World War II microdot kits were often called Zapp

outfits by British intelligence.

It also is important to note that microdot technology is more useful for send-

ing an entire document, versus invisible ink which is more useful for sending

a short message. The microdot could be used for documents that included dia-

grams & drawings, something invisible ink was just not capable of. Microdots

are commonly used today by casinos for marking chips as well as automobile

manufacturers for marking the authenticity of cars.

Printer Tracking Dots

Back in 2004, PCWorld14 published an article raising awareness that printer

manufacturers were printing hidden yellow dots to every page printed.

13 The Puzzle Palace by James Branford, p. 503–504.
14 Government uses color laser printer technology to track documents—http://www.pcworld.

com/article/118664/government_uses_color_laser_printer_technology_to_track_documents.

html.

FIGURE 1.13 Minox “Spy” Camera.12

12 CIA Minox Camera—http://www.flickr.com/photos/ciagov/5416180501/in/photostream.

http://www.pcworld.com/article/118664/government_uses_color_laser_printer_technology_to_track_documents.html
http://www.pcworld.com/article/118664/government_uses_color_laser_printer_technology_to_track_documents.html
http://www.pcworld.com/article/118664/government_uses_color_laser_printer_technology_to_track_documents.html
http://www.flickr.com/photos/ciagov/5416180501/in/photostream

Steganography 15

The Electronic Frontier Foundation (EFF) picked up the story and cracked the

codes for the DocuColor (Xerox) printers. EFF discovered that the yellow dots

represented the serial number for the printer, as well as the time and date the

document was printed. Interestingly enough, the dots are not visible to the

naked eye. But with blue light and magnification, one can reveal the hidden

dots (see Figure 1.14). The EFF then deciphered the grid to reveal the cipher

behind the dots shown in Figure 1.15.

FIGURE 1.14 Printer Tracking Dots

FIGURE 1.15 EFF DocuColor Dots Deciphering Program

CHAPTER 1: History of Secret Writing16

It is strongly believed that these were designed for law enforcement forensics

purposes. The EFF maintains a list of printers known to print these dots. The

list can be found here, http://www.eff.org/pages/list-printers-which-do-or-

do-not-display-tracking-dots. And if your printer is not listed, you can take

your own printed page and use their online decoder to decipher the dots

(Figure 1.15).

Watermarks
Watermarking is a technique with similarities to steganography. It has been

around for centuries and is commonly used in money and stamps to assist in

identifying counterfeiting. The idea behind watermarking is to create a trans-

lucent image on the paper to provide authenticity. Since mailing letters was far

more expensive centuries back, it was common for people to use counterfeit

stamps on their mail. For example, a translucent elephant watermark was used

on stamps in India to deter counterfeiting.

Various watermarks are also added to money at the time of manufacture. For

example, many denominations of paper money in the United States contain a

watermark of the individual printed on the money. For example, on the $100

dollar bill, you will find a watermark of Benjamin Franklin if you illuminate

the bill from behind (see Figure 1.16).

Digital watermarking is used to maintain ownership and authenticity of digital

media such as music and videos.

It is important to note that although watermarking has many similarities to

steganography in terms of embedding data, but the intent of watermarking is

not to make it difficult to detect that embedded data, but rather make it dif-

ficult to remove the embedded data so as to prevent the unauthorized reuse of

the file.

FIGURE 1.16 $100 Bill Translucent Watermark

http://www.eff.org/pages

References 17

SUMMARY

Secret communications encompass an interesting history throughout civi-

lizations, wars, and cultures. Many of the highlighted cryptographic and

 steganographic secret communication methods are replicated in digital form

today. Join us in this journey of digital data hiding as we explore many of

the latest data hiding techniques across operating systems, mobile devices,

 multimedia, and other digital formats.

References

Branford, J. (1983a). Invisible Ink. The puzzle palace (1st ed., pp. 503–504). Brandford Books (Sep-

tember 29).

Branford, J. (1983b). Collodion. The puzzle palace (1st ed., pp. 503–504). Branford Books (Septem-

ber 29).

CIA – Minox Camera. <http://www.flickr.com/photos/ciagov/5416180501/in/photostream>.

CIAPhoto Stream – German Microdot. <http://www.flickr.com/photos/ciagov/with/5416242829/

#photo_5416242829>.

Cisco password decrypter. <http://www.hope.co.nz/projects/tools/ciscopw.php>.

Fratini, S. (2002). Cardano’s Grille. Encryption using a variant of the turning-grille method.

Mathematics Magazine, 75(5), 389–396. 398. Article Stable URL: <http://www.jstor.org/

stable/3219071>.

Government uses color laser printer technology to track documents. <http://www.pcworld.com/

article/118664/government_uses_color_laser_printer_technology_to_track_documents.

html>.

James Madison Project. <http://www.jamesmadisonproject.org>.

Johnny quest ring. Stephen A. Kallis, Jr. & Metro Washington Old Time Radio Club.

Kahn, D. (1967). Microdot. The codebreakers (p. 525). Scribner (revised and updated, 1996).

Luciano, D., & Prichett, G. (1987). Caesar cipher. Cryptology: From Caesar ciphers to public-key

cryptosystems. The College Mathematics Journal, 18(1), 2–4. Article Stable URL: <http://wwww.

maa.org/pubs/Calc_articles/ma079.pdf>.

Mel, H. X., & Baker, D. (2000). DES. Cryptography decrypted (1st ed., p. 24). Addison-Wesley Profes-

sional (December 31).

Microdot Mark IV camera. <https://www.cia.gov/cia/information/artifacts/markiv.jpg>.

Samuel Rubin’s 1987 book “The Secret Science of Covert Inks”. Breakout Publications, January

1987.

Singh, S. (1999). The code book. Anchor Books, A Division of Random House, Inc.. (p. 78).

Gualtieri, D. M. Spartan Scytale. <http://www.devgualtieri.com/>.

Fields, B. T. (1979). Vigenere cipher photo. Public domain (original author). Random House

Dictionary.

http://www.flickr.com/photos/ciagov/5416180501/in/photostream
http://www.flickr.com
http://www.flickr.com
http://www.hope.co.nz
http://www.jstor.org
http://www.jstor.org
http://www.pcworld.com
http://www.pcworld.com
http://www.pcworld.com
http://www.jamesmadisonproject.org
http://wwww.maa.org
http://wwww.maa.org
https://www.cia.gov
http://www.devgualtieri.com

This page is intentionally left blank

Data Hiding

Copyright © 2013 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00002-X

19

CHAPTER 2

Four Easy Data Hiding Exercises

CONTENTS

Hiding Data in
Microsoft Word20

Image Metadata26

Mobile Device
Data Hiding29

File Compression
Tool Data Hiding33

Summary38

References39

n Hiding Data in Microsoft Word

n Image Metadata

n Mobile Device Data Hiding

n File Compression Tool Data Hiding

INFORMATION IN THIS CHAPTER:

1Much of the software we use on a daily basis contain feature that allow one

to hide data. For example, in Microsoft Word a user can edit the Properties

to insert an Author Name, Company, keywords, tag, and a variety of other

data. This is commonly referred to as metadata. If the document is then

sent to another user, that user may also edit the document. As this process

occurs, Microsoft Word will track the ownership of the document, date of

creation, change control, etc. This is additional metadata that is automati-

cally added to the document. Many times these documents are then sent

outside of the organization or posted on a website. This presents a security

concern because information about individuals and the company are now

inadvertently exposed to individuals outside of the organization. Would

you be concerned if your name, company, phone number, Email address,

and perhaps other sensitive information were exposed to anyone on the

Internet?

The US Government is concerned about such exposures and has published

multiple processes and procedures for properly cleansing documents of

1 Understanding Metadata. http://www.niso.org/publications/press/Understanding Metadata.

pdf.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00002-X
http://www.niso.org/publications/press/UnderstandingMetadata.pdf
http://www.niso.org/publications/press/UnderstandingMetadata.pdf

CHAPTER 2: Four Easy Data Hiding Exercises20

metadata before publishing them. For example, the NSA published “Hid-

den Data and Metadata in Adobe PDF Files: Publication Risks and Coun-

termeasures.2” It outlines procedures for sanitizing PDFs before posting to

websites or sending to other organizations. This includes not only meta-

data, but also hidden layers used for engineering documents, obscured text

and images, etc.

At Defcon 17 and 18, the guys from Informatica64 presented their tool called

FOCA (Fingerprinting Organizations and Collected Archives).3 The tool allows

you to scan websites and online services to look for files and documents that

contain interesting data such as metadata. The presentation exposed the enor-

mous amount of information that is leaked by posting Word documents,

Adobe PDFs, as well as web pages that comprise numerous websites. Many

publishing tools allow the user to insert an Author, Reviewers, Company name,

Company details, title, tags, etc. All of this information can be harvested using

tools like FOCA to perform reconnaissance on target companies and govern-

ment entities. Many organizations are unknowingly leaking this data to any-

one on the Internet.

In this chapter we’ll explore some common programs that allow data to be eas-

ily hidden from the casual viewer.

HIDING DATA IN MICROSOFT WORD

Microsoft Word remains the predominant word processor standard. In fact,

many people using a Mac also use Microsoft Word as their word processor.

Therefore it serves us well to begin our exploration by investigating the many

ways in which data can be hidden within your standard Microsoft Word

document.

Microsoft Word, Excel, and PowerPoint 2007 and 2010 provide a variety of

ways to hide data within the document. These include comments, personal

information, watermarks, invisible content, hidden content, and custom XML

data. Using the Hidden Text font options provides an easy yet amazingly effec-

tive way to hide data. First, type a standard document, and additionally input

the data you’d like to hide (see Figure 2.1).

2 NSA “Hidden Data and Metadata in Adobe PDF Files: Publication Risks and Countermea-

sure” http://www.nsa.gov/ia/_files/app/pdf_risks.pdf.
3 FOCADefCon17.http://www.slideshare.net/chemai64/defcon-17-tactical-fingerprinting-

using-foca.

http://www.nsa.gov/ia/_files/app/pdf_risks.pdf
http://www.slideshare.net/chemai64/defcon-17-tactical-fingerprinting-using-foca
http://www.slideshare.net/chemai64/defcon-17-tactical-fingerprinting-using-foca

Hiding Data in Microsoft Word 21

Then highlight the content you’d like to hide, and right-click and choose

Font. You will notice in newer version of Microsoft Word a new checkbox

labeled “Hidden.” By selecting Hidden and then Save, you will notice that

the highlighted text will be hidden from normal viewing (see Figures 2.2

and 2.3).

By default, hidden text is also not printed when printing the document. In

order for an average user to know if there is hidden text they would need to go

to File, Options, and select Display. Selecting the “Hidden Text” checkbox will

enable formatting marks to alert a user to hidden text, and “Print Hidden Text”

to determine if there is any hidden text (see Figure 2.4).

Another way to identify hidden text is to use the Inspect Document option in

File => Info => Check for Issues => Inspect Document. The Inspect Docu-

ment is actually a great way to identify a variety of metadata hidden within

the document such as authors, comments, and possibly other personal iden-

tifiable information (PII). In addition it can be used to identify hidden text

(see Figure 2.5).

FIGURE 2.1 Inputting Data into a Microsoft Word Document to be Hidden

CHAPTER 2: Four Easy Data Hiding Exercises22

FIGURE 2.3 Microsoft Word Document after Hiding the Second Sentence

FIGURE 2.2 Using the Hidden Option in Microsoft Word

Hiding Data in Microsoft Word 23

FIGURE 2.4 Microsoft Word Display Options for Identifying Hidden Text

FIGURE 2.5 Using Document Inspector to Find Hidden Text and Other Metadata

CHAPTER 2: Four Easy Data Hiding Exercises24

Select Inspect to have the Document Inspector identify the metadata and create

a report of results. In this example, the Document Inspector correctly identifies

the Hidden Text and allows the user to remove it if they desire. The interesting

thing here is that most people never check for the existence of Hidden Text and

therefore have no idea it’s there (see Figure 2.6).

It is important to note that the only Hidden Text identified is text hidden using

the Font dialog box. For example, if text is hidden from viewing using the

white text on the white background, the Document Inspector will not identify

this hidden text.

The ability to hide data in the document is practical if you want to print two

versions of the same document, one with the hidden data and one without.

This is common for PowerPoint presentations when an individual may print

the slides for the audience and print the slides with notes for the presenter.

There are a variety of other things that can be hidden within Microsoft Word 2010

Properties section, including tags, author’s name, comment, etc. (see Figure 2.7).

FIGURE 2.6 Document Inspector Identified Hidden Text in the Document

Hiding Data in Microsoft Word 25

In addition, the Properties drop-down allows access to the Advanced Proper-

ties where customs fields may be added as well (see Figure 2.8).

FIGURE 2.7 Microsoft Word Properties and Metadata

FIGURE 2.8 Custom Tab in Microsoft Word Advanced Properties

CHAPTER 2: Four Easy Data Hiding Exercises26

It’s important to note that these are not displayed in the main Properties view,

and therefore must be viewed by manually opening the Custom Tab in the

Advanced Properties window.

IMAGE METADATA

Agencies such as the FBI and law enforcement use metadata to track and capture

criminals. When criminals transmit pictures or post them to websites, the meta-

data stored in the picture can reveal a criminal’s location and the device from

which the picture was taken. The “BTK” killer (Dennis Rader) murdered more than

a dozen people over a 30 year period while taunting local police and media with

clues and evidence from the murders.4 The key to linking the evidence to the serial

killer stemmed from a floppy disk that was received. The digital forensic examiner

analyzed the deleted data on the disk and found a deleted Microsoft Word file with

metadata. This metadata indicated that the file was originally created on a com-

puter at the nearby church and created by a person named Dennis. Coincidentally,

this was also the church where Dennis Rader served as president of the church’s

congregation council! Further investigation linked other evidence, including DNA,

to Dennis Rader eventually leading to a conviction of 10 life sentences.5

There are numerous tools for viewing and modifying metadata within pic-

tures, especially JPEG formats. Since JPEG is the most common format used

on mobile devices and cameras today, we’ll focus on that for our analysis. EXIF

stands for Exchangeable Image File Format and is a standard for many media

formats including JPEG, TIFF, etc.6 The format outlines tags or header formats

for a file that can be used by cameras, scanners, and other products to embed

metadata in the media file. These EXIF headers are also a way to hide data

from casual viewers, and escape detection by many network security tools.

Google’s Picasa is a free download available for multiple platforms including

Windows and Mac. The image editing software allows the metadata within

the EXIF header to be viewed and modified. When an image is opened for

editing within Picasa, the Properties pane on the right allows you to view the

EXIF header information. This may include Camera data, such as the type

of Camera (or mobile device with camera), data/time the picture was taken,

and other identifiable information. Some people choose to cleanse this data

before posting it online or sharing it with others, as sometimes the picture

4 Dennis Rader—Biography. http://www.biography.com/people/dennis-rader-241487?page=2.
5 How Computer Forensics Solved the BTK Killer Case. http://precisioncomputerinvestigations.

wordpress.com/2010/04/14/how-computer-forensics-solved-the-btk-killer-case/.
6 Exif—MIT. http://www.media.mit.edu/pia/Research/deepview/exif.html.

http://www.biography.com/people/dennis-rader-241487?page=2
http://precisioncomputerinvestigations.wordpress.com/2010/04/14/how-computer-forensics-solved-the-btk-killer-case/
http://precisioncomputerinvestigations.wordpress.com/2010/04/14/how-computer-forensics-solved-the-btk-killer-case/
http://www.media.mit.edu/pia/Research/deepview/exif.html

Image Metadata 27

may also include GPS location data revealing where the picture was taken. For

privacy reasons, some users prefer to remove this hidden data (see Figure 2.9).

Picasa also allows you to edit the Caption (tag) in the photo, which is really

another EXIF header data field. As mentioned earlier, this also makes for a simple

location in which to hide data from casual viewers or security detection products.

Simply click the Show/Hide Caption button to edit the Caption (see Figure 2.10).

FIGURE 2.9 Viewing and Editing Properties and EXIF Headers in Google’s Picasa

FIGURE 2.10 Adding Caption to Photo and EXIF Header

CHAPTER 2: Four Easy Data Hiding Exercises28

Microsoft Windows 7 also provides an easy way to view and modify the EXIF

header data or metadata within an image (see Figure 2.11).

Also, by right-clicking on the image, you can modify the EXIF headers. In the

following example, we can change the Camera maker from HTC to Motorola

(see Figure 2.12).

FIGURE 2.11 Viewing Image Metadata in Windows 7

FIGURE 2.12 Changing the Camera Maker Metadata from HTC to Motorola

Mobile Device Data Hiding 29

Although this may be a rudimentary way to hide data in a photograph, it’s

easy for most people to do, and as a result can be an efficient way to hide data

and disseminate it to other individuals. Unknowing users also leave behind

traces of their identity with pictures as well. Law enforcement commonly uses

this metadata, especially GPS data to locate the whereabouts of an individual

at the time the photo was taken, and from what device the photo was taken

from.

MOBILE DEVICE DATA HIDING

The Google Android mobile platform, based on the Linux kernel, is supported

across a wide range of devices. This proliferation has resulted in a plethora of

applications written for the Android operating system. Specific security fea-

tures have been built into the based platform from which the individual hard-

ware manufacturers build from to create their own “flavor” of Android for their

hardware. But there are a number of consistencies including the Dalvik virtual

machines to create an application sandbox.7

Some data hiding applications allow the native Linux functionality to

be leveraged for hiding data. The Hide it Pro application available from

Google Play (Android Marketplace) provides a number of stealthy features

to evade detection from the casual or nosey observer. Hide it Pro is designed

to allow the user to hide files and folders from other users or the Android

smartphone.

The application hides itself behind a faux application called “Audio Manager”

also deployed during the install. By pressing the Audio Image for a few sec-

onds, it will then bring up Hide it Pro. This provides a clever way to provide

some security through obscurity (see Figure 2.13).

In addition, access to the application can be protected using a PIN or pass-

word, and is chosen the first time you run the application as a second layer of

security before access is allowed to the application (see Figure 2.14).

Hide it Pro creates a separate directory for storing the files, and also

renames the files with an arbitrary extension. This directory is found on the

SD card under /mnt/sdcard in ProgramData/Android/Language. Normally,

Linux directory names and file names created with a dot “.” are hidden.

Therefore, Hide it Pro uses this to further disguise itself on the SD card,

by creating a hidden directory in this case “.fr” in the Language directory.

7 Hoog, A. Android forensics (p. 87), Syngress Publishing.

CHAPTER 2: Four Easy Data Hiding Exercises30

FIGURE 2.14 Hide it Pro PIN or Passcode Entry

FIGURE 2.13 Hide it Pro

Mobile Device Data Hiding 31

This is intentional as Android Gallery ignores files with filenames that are

prepended with a “.”. Hide it Pro uses this technique to hide files from a

casual user looking for multimedia files. When the install is complete, the

user can hide multimedia files through Hide it Pro. Simply choose your

file within your Android Gallery and select Menu and then Share. Audio

Manager will appear in the menu along with Email, Messaging, Facebook,

etc. (see Figure 2.15).

A file manager window will pop-up allowing you to create or select a folder

and move the file to Audio Manager (Hide it Pro) (see Figure 2.16).

Files saved in Hide it Pro are renamed with a *.bin extension. A Linux direc-

tory listing reveals the aforementioned hidden directories and renamed files,

as shown in Figure 2.17.

Once hidden within Hide it Pro, the multimedia files are removed from the

Android Gallery. But of course the files can still be accessed through Hide it Pro

FIGURE 2.15 Viewing a Picture in Gallery and Sharing with Audio Manager

CHAPTER 2: Four Easy Data Hiding Exercises32

by pressing and holding Audio Manager for 5 s, and entering your password

into Hide it Pro (see Figure 2.18).

FIGURE 2.16 Hide it Pro Create or Select a Folder

FIGURE 2.17 Directories and Files Created by Hide it Pro

File Compression Tool Data Hiding 33

FILE COMPRESSION TOOL DATA HIDING

WinRAR is one of many compression and archive utilities, similar to WinZip.

WinRAR is supported on Linux, Mac OS, and Microsoft Windows (www.win-

rar.com). One interesting feature is that it can self-heal a corrupt archive. This

feature can also be circumvented to allow one to hide an archive within a car-

rier file. The recipient can then run the carrier file through WinRAR, allow it to

self-heal or repair the archive, and reveal the hidden archive.

We begin by creating an archive that contains the data we want to hide. We start

with a text file called “mike.txt” with our hidden message (see Figure 2.19).

FIGURE 2.18 Accessing Your Hidden Files in Hide it Pro

FIGURE 2.19 Hidden Message File

http://www.win-rar.com
http://www.win-rar.com

CHAPTER 2: Four Easy Data Hiding Exercises34

Next we create an archive called mike.rar archive with mike.txt within it. This

involves downloading and installing WinRAR for your platform (Windows,

Linux, Mac OS X, etc.) from the website at www.rarlab.com. When you start up

WinRAR select Add to add our hidden message file (mike.txt) to create a new

archive (see Figure 2.20).

Under the Files tab, and in the “Files to add” dialog box select our mike.txt file

with the hidden message. And then select OK to create our mike.rar archive

(see Figures 2.21 and 2.22).

FIGURE 2.20 Run WinRAR and Click Add

FIGURE 2.21 Add mike.txt to Archive and Click OK

http://www.rarlab.com

File Compression Tool Data Hiding 35

Next we hide the archive in a JPEG file. In this example, we choose an innocu-

ous JPEG file “Class.JPG” as our carrier. Using the copy command in DOS, we

add the /b option to treat the file as a binary file. Additionally we use the “+”

symbol to combine two files. In this case we’re combining our carrier file “Class.

JPG” with the archive file we want to hide “mike.rar,” and specify an output file

“newimage.JPG.”

c:\sandbox>copy /b class.jpg + mike.rar newimage.jpg

class.JPG

mike.rar

1 file(s) copied.

This technique allows you to actually append the WinRAR archive to the JPEG,

beyond the EOF (End of File) marker. This approach allows the JPEG to appear

normally in a viewer, as the viewer will normally ignore data beyond the EOF

marker, make this a nice place to hide data.

C:\sandbox>dir

Directory of C:\sandbox

04/27/2012 11:43 AM <DIR> .

04/27/2012 11:43 AM <DIR> ..

03/10/2012 10:59 AM 4,940,676 class.JPG

03/21/2012 01:48 PM 89 mike.rar

03/21/2012 01:48 PM 17 mike.txt

03/21/2012 01:50 PM 4,940,765 newimage.jpg

FIGURE 2.22 mike.rar Archive Created

CHAPTER 2: Four Easy Data Hiding Exercises36

We now have our hidden message, compressed in WinRAR, and hidden

within a JPEG image. At this point it could be transmitted to our recipient.

Next, let’s review how the recipient can now extract and reveal the hidden

message.

Upon receipt, the recipient takes the JPEG and renames it with a *.RAR exten-

sion as follows:

c:\sandbox>copy newimage.jpg newimage.rar

1 file(s) copied.

c:\sandbox>dir

Directory of C:\sandbox

04/27/2012 11:43 AM <DIR> .

04/27/2012 11:43 AM <DIR> ..

03/21/2012 01:50 PM 4,940,765 newimage.jpg

03/21/2012 01:50 PM 4,940,765 newimage.rar

WinRAR provides a Repair feature for repairing damaged archives. It can also

be used to extract the hidden message. Within WinRAR we select “Repair Dam-

aged Archive” and choose the newly created *.RAR file. WinRAR will detect

that the JPEG carrier file has a RAR archive within it. Repair will repair the

damaged archive and will extract the RAR archive from the JPEG (see Figure

2.23).

This will create a “rebuilt” RAR file and also alerts us that it contains a “mike.

txt” within the rebuilt archive. This creates a file called “rebuilt.newimage.rar”

(see Figure 2.24).

FIGURE 2.23 WinRAR Repairing the Archive

File Compression Tool Data Hiding 37

Using the “Extract To” option, the recipient can now extract the mike.txt file

from the rebuilt WinRAR archive rebuilt.newimage.rar, thus allowing the recipi-

ent to reveal the hidden message (see Figure 2.25).

FIGURE 2.24 Rebuilt File rebuilt.newimage.rar

FIGURE 2.25 Using Extract To for Extracting the Archive and Revealing mike.txt

CHAPTER 2: Four Easy Data Hiding Exercises38

We can now open mike.txt to reveal the original hidden message (see Figure 2.26).

SUMMARY

In this chapter we explored some common data hiding tools and techniques.

Microsoft Word, Adobe PDF, and Image editing tools provide many ways to

create or modify metadata in files, thus providing a plethora of options for

hiding data in files. Additionally, many programs can be exploited to provide

a covert way to hide data using methods not intended by the program, as was

the case with WinRAR.

As we move toward examining “true” steganography we will investigate

methods that will hide payloads under the cover of a digital carrier using

sophisticated algorithms. For professional steganography to be effective, it

must evade detection through the normal manner in which we use them.

For example, viewing an original photograph side by side with the imposter

must not reveal any defects that could be noticed even by a keen observer.

For audio files, the original recording when played must be indistinguish-

able from that of the imposter. More sophisticated embedding algorithms

will leave only subtle statistical traces or artifacts when examining the origi-

nal versus imposter, which without the aid of the original would be nearly

impossible to identify in the wild. For network protocols, variations would

be difficult if not impossible to detect without generating an overwhelming

number of false positives. We’ll be performing deeper analysis of many of

FIGURE 2.26 Opening mike.txt to Reveal the Hidden Message

References 39

these techniques in the chapters that follow, but next let’s review some steg-

anography fundamentals.

References

Dennis Rader—Biography. <http://www.biography.com/people/dennis-rader-241487?page=2>.

Exif—MIT. <http://www.media.mit.edu/pia/Research/deepview/exif.html>.

FOCA DefCon 17. <http://www.slideshare.net/chemai64/defcon-17-tactical-fingerprinting-using-foca>.

Hoog, A. Android forensics (p. 87).

How Computer Forensics Solved the BTK Killer Case. <http://precisioncomputerinvestigations.

wordpress.com/2010/04/14/how-computer-forensics-solved-the-btk-killer-case/>.

NSA “Hidden Data and Metadata in Adobe PDF Files: Publication Risks and Countermeasure”

<http://www.nsa.gov/ia/_files/app/pdf_risks.pdf>.

Understanding Metadata. <http://www.niso.org/publications/press/UnderstandingMetadata.pdf>.

http://www.biography.com
http://www.media.mit.edu
http://www.slideshare.net
http://precisioncomputerinvestigations.wordpress.com
http://precisioncomputerinvestigations.wordpress.com
http://www.nsa.gov/ia/_files/app/pdf_risks.pdf
http://www.niso.org

This page is intentionally left blank

Data Hiding.

Copyright © 2013 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00003-1

41

CHAPTER 3

Steganography

n Introduction

n Steganographic Techniques

n Steganalysis

INFORMATION IN THIS CHAPTER:

INTRODUCTION

Operation Shady RAT was believed to be the largest corporate espionage attack

ever, occurring from 2006 and continuing through 2011, and was targeted at

stealing intellectual property from the most prominent government agencies

and government contractors. The attackers used steganographic techniques

to hide command and control messages in digital photographs and within

 website HTML pages. But how did the attack happen? And how were the files

distributed? This requires a closer look at the analysis performed by McAfee

and Symantec researchers, who combined, broke the story.1

Specific users at these agencies and government contractors were sent targeted

E-mails containing attachments such as Microsoft Word or Excel documents,

as well as Adobe PDF files. These files were titled with specially crafted names

 citing relevant information to that particular agency or contractor. These

 unsuspecting users then opened the file causing a Trojan to be dropped and

installed onto their computer. These Trojans then reached out to URLs pointing

to image or HTML files embedded with hidden commands.

Symantec determined that these images contained hidden commands that

caused these infected computers to reach out to “Command & Control”

 servers on the Internet, thereby allowing information to be syphoned from

1 Revealed: Operation Shady RAT McAfee—www.mcafee.com/us/resources/white.../wp-opera-

tion-shady-rat.pdf.

CONTENTS

Introduction41

Steganographic Tech-
niques42
Insertion Methods43

Append Insertion 43

Prepend Insertion 44

Modification46

LSB .. 46

Hiding in PDFs (Insertion

Meets LSB)49

Hiding in Executables

(Hydan)52

Hiding in HTML54

Steganalysis55
Anomalous Analysis58

File Properties 58

Steganalysis Tools59

Freeware Tools59

StegSpy 60

Stegdetect 62

Summary66

References67

http://dx.doi.org/10.1016/B978-1-59-749743-5.00003-1
http://www.mcafee.com/us/resources/white.../wp-operation-shady-rat.pdf
http://www.mcafee.com/us/resources/white.../wp-operation-shady-rat.pdf

CHAPTER 3: Steganography42

these computers. Symantec also determined that the commands were hidden

in the files using steganographic techniques.2 Since most firewalls and web

 application filters allow images and HTML to pass, the files were transported

back to the user undetected.

Attackers are becoming more sophisticated about how they use steganography.

Historically, digital steganography has been used for covert communications

and hiding sensitive data. The following diagram highlights some key events

during the digital steganography era: (see Figure 3.1)

Over the past five years there has been an increase in steganographic techniques

in malware. This approach allows malware attackers to distribute malicious

software through firewalls, web application filters, intrusion prevention

 systems, and other layers of defense without being detected. Let’s take a look

at the fundamental approaches to hiding data in carrier files such as digital

images, HTML pages, and other common file types.

STEGANOGRAPHIC TECHNIQUES

As outlined in Chapter 1, steganography is covered or invisible writing. In digital

steganography, the user typically uses a program to hide a message or file within

a carrier file, then sends that carrier file to the recipient or posts it on a site for

2 The Truth Behind the Shady RAT—Symantec—http://www.symantec.com/connect/blogs/

truth-behind-shady-rat.

FIGURE 3.1 Advancements in Digital Steganography

http://www.symantec.com/connect/blogs/truth-behind-shady-rat
http://www.symantec.com/connect/blogs/truth-behind-shady-rat

Steganographic Techniques 43

download. Then the recipient receives the file and uses the same program to

reveal the hidden message or file. For further protection, some hiding programs

may also password protect the hidden message while other data hiding pro-

grams may encrypt and password protect the hidden contents.

There are various techniques and methods for hiding digital data divided into

two main categories:

Insertion: Insertion involves inserting additional content. This content

may include the hidden message, as well as file markers as identifiers to

the steganography program indicating the location of the hidden payload.

Insertion usually takes advantage of unused space within the file format.

Substitution: Substitution involves changing or swapping the existing bytes

such that nothing new is inserted into the carrier file, but rather existing

bytes are tweaked or changed to make them unnoticeable visibly or audibly.

One such example is Least Significant Bit (LSB) substitution, whereby the

steganography program modifies the Least Significant Bit of a series of bytes

in the file, by changing those bits from a 0 to a 1, or a 1 to a 0.

Insertion Methods
In a way, insertion could be considered a form of modification, but for the

 purposes of steganography, it’s important to distinguish the two. In stegan-

ography, it is important to think in terms of the existing data or virgin carrier

file. With insertion, the existing data is not changed, but rather additional

data is added to the file. In modification, the existing data is changed without

the addition of additional data. In terms of the overall file, in both cases the

file has been modified, but in terms of the data, insertion adds data, whereas

modification changes the existing data. But as we will soon discover, many

 steganography programs use a combination of both.

Append Insertion

Appending data to the end of a file is probably one of the most common

and simplest forms of digital steganography. Many file types allow data to be

appended to them, without any corruption of the file. The following file is an

unmodified JPEG file viewed in WinHex (Figure 3.2). WinHex is a hexadeci-

mal (hex) editor. It allows files to be viewed in their raw form, but unlike a

text editor, all of the data is displayed including carriage-return characters and

executable code. All data is displayed in its two-digit hexadecimal notation.

This is displayed in the middle column. The left-hand column is the counter or

offset allowing you to track the location within the file. The right-hand column

displays the data in ASCII format. Due to the limitations of ASCII, not all data

has an ASCII representation.

CHAPTER 3: Steganography44

A normal JPEG file has an End of Image (EOI) marker as indicated by 0xFF

0xD9. We can scroll to the end of the file to validate this EOI marker as dem-

onstrated in Figure 3.2.

In the next file, the steganography program JPEGX3 was used to hide data. We

can open the newly modified file in WinHex to view the data appended to the

end of the file as shown in Figure 3.3. Note that this data immediately follows

the EOI marker 0xFF 0xD9.

Typically data hidden beyond the EOI marker is typically ignored when view-

ing the file, but usually an indication of a modified file with hidden data.

Prepend Insertion

Any type of file that provides comment fields provides the opportunity for

inserting content without any effect to the visual image. For example, HTML

files and JPEGs are particularly vulnerable to these techniques. In the case of

3 JPEGX http://www.nerdlogic.org.

FIGURE 3.2 Unmodified JPEG File

http://www.nerdlogic.org

Steganographic Techniques 45

JPEGs, up to 65,533 bytes of comment data can be inserted into the file, which

is invisible when the JPEG is viewed.4

JPEG files are partitioned with file markers, with each marker represented by

a 0xFF. These have specific relevance to the image layout, format, and other

details as shown in Table 3.1.

4 http://www.findarticles.com/p/articles/mi_zdpcm/is_200409/ai_n7184572/pg_2.

FIGURE 3.3 JPEG File with Appended Data

Table 3.1 JFIF (JPEG File Image Format)

Marker Value (Hex) Size (bytes) Details

SOI FF D8 2 Start of Image

APP0 FF E0 2 App Marker (file details)

SOF0 FF C0 2 Start of Frame (width, height, etc.)

SOS FF DA 2 Start of Scan (image itself)

EOI FF D9 2 End of Image/End of File (EOF)

http://www.findarticles.com/p/articles/mi_zdpcm/is_200409/ai_n7184572/pg_2

CHAPTER 3: Steganography46

With all of the data fields available in the JPEG file format available at the begin-

ning of the file, there are numerous areas in which hide data. The foll owing

demonstrates an unmodified file compared to one modified using JPHideand-

Seek5 (See Figure 3.4). Notice the insertion and modification of the data between

the JPEG App marker 0xFF 0xE0 and Start of Frame marker 0xFF 0xC0.

The comment fields in JPEGs allow numerous data to be hidden with mini-

mal sophistication. Although the comment field in a JPEG could allow up to

65,533 bytes of comment data, it must be at least a minimum of 2 bytes. In the

case of the APP0 marker, any metadata not recognized by the Decoder (viewing

program) are skipped, making this a perfect location for hiding data.

Modification

The most common form of steganographic modification involves modifying

the Least Significant Bit (LSB) of one or more bytes within a file. Essentially the

bit is changed from a 0 to a 1, or a 1 to a 0. It renders the resulting modified file.

These bits when reassembled reveal the original hidden message. It is almost

impossible for a human to detect the modifications visually or audibly.

LSB

I find when teaching students that they struggle with understanding the LSB

modification technique. I think the reason is that many books describe the con-

cept accurately, but unfortunately in a very technical way that many students

find hard to understand. Let’s start with the basics.

For example, Least Significant Bit (LSB) modification takes advantage of

24-bit color palettes. In a 24-bit color palette you have three representations;

Red, Green, and Blue (RGB). This is similar to the video representation in

5 Latham. A. JPHideandSeek. http://linux01.gwdg.de/~alatham/stego.html.

FIGURE 3.4 Prepending Data to a JPEG File

http://linux01.gwdg.de/~alatham/stego.html

Steganographic Techniques 47

component video with your television, where you have a Red, Green, and Blue

cable delivering the video signal to your television.

In an image’s 24-bit color palette, 8-bits are assigned to each of the three colors,

essentially providing 256 shades of Red, 256 shades of Green, and 256 shades

of Blue, as represented in Figure 3.5.

Since our eyes can only interpret Red, Green, and Blue, it is the combination of

these three colors that provides the color for each pixel that makes up the 24-bit

image. Viewing the contents of an image, you will have three hexadecimal

numbers (triplets) that represent the Red, Green, and Blue.

In LSB modification, the last bit (or least significant bit) of each 8-bit color

 representation is modified from a 0 to 1, or 1 to 0, or is unchanged (Figure 3.6).

Each of these individual LSBs combined represent the inserted content. In the

case of a text message, the LSBs are recombined to create the 8-bit representation

of an ASCII character (Figure 3.7).

FIGURE 3.5 24-Bit Color Palette

FIGURE 3.7 Least Significant Bit Example

FIGURE 3.6 Modification of LSB

CHAPTER 3: Steganography48

It provides a method of hiding that is virtually undetectable through normal

visual means, making it a respectable covert method. Usually only through statis-

tical analysis can it be detected in its standalone form. The example in Figure 3.8

compares the colors created from Figure 3.5 and Figure 3.6. The difference

between the original and the LSB modified is practically invisible to the naked

eye.

The following example (Figure 3.9) shows before and after images. It’s virtually

impossible for the human eye to detect differences between the two files.

Distributing these Least Significant Bits throughout a file provides a covert

method of storing a message, while possibly not even changing the size of

the file! File comparisons between the original file and the modified file can

detect the modification, but that’s assuming you have the original virgin

file.

This type of modification works on 24-bit image files such as JPEGs and 24-bit

BMP files. These types of files (RGB) are also called “True Color” file formats.

LSB modification also works with 8-bit BMP images files as well, as is the case

with ImageHide. Common programs that use this type of hiding technique

include:

n S-Tools.

n ImageHide.

n Steganos.

FIGURE 3.9 Comparison of Original File and File With Modified LSBs

FIGURE 3.8 Comparing the Two Colors Before and After LSB Modification

Steganographic Techniques 49

Hiding in PDFs (Insertion Meets LSB)

wbStego4open6(http://wbstego.wbailer.com) is a steganography open source

tool supported on Windows and Linux platforms. wbStego4open allows files

to be hidden in BMP, TXT, HTM, and PDF files without an visually detectable

changes. You can also create a so-called Copyright file that can be embedded

and hidden in the file as well. There are very few steganography programs that

allow a user to hide data in PDFs. We begin by kicking off the program and

choosing our PDF file (Figure 3.10).

The program takes advantage of the PDF headers to add additional informa tion

that is irrelevant when the PDF is viewed in the Adobe Acrobat Reader

 (Figure 3.11). In addition, when wbStego inserts data (in this case copyright

 non-encrypted data), it leverages both insertion and LSB methods.

It starts by converting each ASCII character of the insertion data to its binary

form. Then wbStego4open represents each binary digit as a hexadecimal 20 or

09, with 20 representing a binary 0, and 09 representing a binary 1. For exam-

ple, within the wbStego4open Copyright Manager we entered an address that

included the word “Oblivion.” wbStego4open converts the ASCII characters to

their binary equivalents, and represents each binary digit as a 0x20 or 0x09 as

shown in Figure 3.12.

6 wbStego4open—http://wbstego.wbailer.com.

FIGURE 3.10 wbStego4open Wizard

http://wbstego.wbailer.com
http://wbstego.wbailer.com

CHAPTER 3: Steganography50

All of these hexadecimal equivalents are then embedded into the PDF file.

Scanning the contents of a file modified by wbStego4open we reveal a file rid-

dled with octets consisting or 20s and 09s (Figure 3.13).

FIGURE 3.12 wbStego4open Conversion

FIGURE 3.11 Inserting Copyright Info Using wbStego4open

Steganographic Techniques 51

Taking each of the octets and extracting their LSBs, the LSBs can then be com-

bined to identify the ASCII character in binary representation. Converting the

binary back to ASCII reveals the original message contents.

wbStego4open certainly supports files not commonly supported by other

programs, in this case Adobe PDFs. In fact, the previous example was

actually performed on a password-protected Adobe PDF file. Note that

although it was password protected, we were still allowed to modify the

PDF. Arguably this is not considered a vulnerability, but it does reveal

the need for stronger protection, such as signing the PDF with a digital

signature, thus notifying the receiver that the file has been modified. Pass-

word-protected Adobe PDF files protect primarily against printing and/or

copying content. A digital certificate would protect against content modifi-

cation. It would allow content to be modified, but would alert the receiver

that the document has been modified, and therefore should not be trusted

(Figure 3.14).

FIGURE 3.13 A PDF File Modified Using wbStego4open

CHAPTER 3: Steganography52

Hiding in Executables (Hydan)
Hydan (http://www.crazyboy.com/hydan)7 is a tool that allows data to be hid-

den in an executable. It is written by Rakan El-Khalil who has presented at

many conferences including CodeCon and BlackHat. Hydan uses reverse engi-

neering of binary code to determine the best places to hide data in the execut-

able. To perform this it leverages Mammon’s libdisasm, an x86 disassembly

library. Binaries allow very little room for hiding data. Where the ration may

be one byte of hidden data for every 17 bytes in a JPEG image, an executable

may only allow one byte for every 150 bytes of code. Of course, it’s a careful

procedure of modifying the file so as to not break the host executable file.

Hydan runs under many flavors of Linux and FreeBSD. In this example, we use

the “tar” binary to hide a message:

7 Rakan, E-K. Hydan—http://www.crazyboy.com/hydan.

FIGURE 3.14 The Result of Changing a Digitally Signed Adobe PDF

http://www.darkside.com.au/snow/
http://www.darkside.com.au/snow/

Steganographic Techniques 53

[root@localhost hydan]# ls -al

total 2760

drwx------ 5 1000 users 4096 Jun 9 17:42 .

drwxr-xr-x 3 root root 4096 Jun 9 17:42 ..

-rw-r--r-- 1 root root 7 Jun 9 17:36 message.txt

-rwxr-xr-x 1 root root 150252 Jun 9 16:40 tar

[root@localhost hydan]# ./hydan tar message.txt > tar.steg

Password:

Done. Embedded 16/16 bytes out of a total possible 561 bytes.

Encoding rate: 1/201

[root@localhost hydan]# ls -al

total 2760

drwx------ 5 1000 users 4096 Jun 9 17:42 .

drwxr-xr-x 3 root root 4096 Jun 9 17:42 ..

-rw-r--r-- 1 root root 7 Jun 9 17:36 message.txt

-rwxr-xr-x 1 root root 150252 Jun 9 16:40 tar

-rwxr-xr-x 1 root root 150252 Jun 9 17:43 tar.steg

[root@localhost hydan]# ./hydan-decode tar.steg

Password:

hideme

[root@localhost hydan]# ./tar.steg -xvf hydan-0.13.tar

hydan/

hydan/CVS/

hydan/CVS/Root

hydan/CVS/Repository

hydan/CVS/Entries

hydan/msg

hydan/TODO

hydan/Makefile

.

.

.

As you can see, a new “tar” binary (tar.steg) is created. Testing it’s function-

ality with the hidden data, it operates exactly the same as the legitimate tar

binary. Rakan’s tool demonstrates not only the effectiveness of hiding data in

an executable, but how easy it really is. In addition, the tool can be used for

attaching digital signatures, embedding watermarks, and modifying malware

to evade antivirus detection.

CHAPTER 3: Steganography54

Hydan may sometimes introduce executable runtime errors so it’s not fool-

proof, but it does work fairly well. Hydan is not as efficient as other techniques

used for hiding content in images or sound files. There is less opportunity and

therefore less room for hiding content in executables, so the ratio of available

bytes is far less than that of image files. Nonetheless it’s a unique method of

data hiding that could be overlooked by the casual or well-trained investigator.

It is also important to note that many steganalysis programs (open source and

commercial) fail to look at executables altogether.

Hiding in HTML

Snow (www.darkside.com.au/snow/)8 is a program written by Matthew Kwan

to allow data to be hidden in ASCII text at the end of lines by using tabs and

spaces which are not visible when viewed in viewers. The program allows the

use of ICE (Information Concealment Engine) encryption. It was originally

written for DOS and the program is now open source.

As stated in the man page,9 “the data is concealed in the text file by appending

sequences of up to seven spaces, interspersed with tabs. This usually allows

3 bits to be stored every eight columns.”

OPTIONS

 -C Compress the data if concealing, or uncompress it if

extracting.

 -Q Quiet mode. If not set, the program reports statistics

 such as compression percentages and amount of available

 storage space used.

 -S Report on the approximate amount of space available for

 hidden message in the text file. Line length is taken

 into account, but other options are ignored.

 -p password

 If this is set, the data will be encrypted with this

 password during concealment, or decrypted during

 extraction.

 -l line-len

 When appending whitespace, snow will always produce

 lines shorter than this value. By default it is set to 80.

 -f message-file

 The contents of this file will be concealed in the

 Input text file.

8 Snow—www.darkside.com.au/snow/.
9 Snow man page—http://www.darkside.com.au/snow/manual.html.

http://www.darkside.com.au/snow/
http://www.darkside.com.au/snow/
http://www.darkside.com.au/snow/manual.html

Steganalysis 55

 -m message-string

 The contents of this string will be concealed in the

 input text file. Note that, unless a newline is

 somehow included in the string, a newline will not be

 printed when the message is extracted.

The tool is run from the command line:

C:\>snow.exe -C -m "aaaaaaaaaaaaaaaa" -p "zzzzzzzz" SpyHunter.htm

SpyHunterwithsnow.htm

Compressed by 50.00%

Message used approximately 4.18% of available space.

Comparing the original HTML file and the file with the hidden content, we see

no visible differences (Figure 3.15).

In fact, viewing the file in an HTML editor, there are no obvious indications

that additional data has been hidden. Only if we perform file comparisons can

we find an indication that data has been hidden. Strings of tabs and spaces are

evident throughout the file (Figure 3.16).

There is an online version of the tool to encrypt and decrypt HTML files with

snow at http://fog.misty.com/perry/ccs/snow/snow/snow.html (Figure 3.17).

STEGANALYSIS

Digital steganalysis is the process of detecting the evidence of hidden data

 created by a steganographic technique or program, and when possible extract

that hidden payload. If the hidden payload is also encrypted, cryptanalysis

FIGURE 3.15 HTML Documents Before and After Using SNOW

http://fog.misty.com/perry/ccs/snow/snow/snow.html

CHAPTER 3: Steganography56

is required to decipher the payload. This is an important delineation and is

commonly confused. Typically, one must first perform Steganalysis before per-

forming Cryptanalysis when working with steganography (see Figure 3.18).

Ideally investigators want to reveal the hidden payload, but one must note that

this may require a two-step process each requiring very different techniques.

One cannot typically decipher the payload without first knowing if a hidden

payload exists.

FIGURE 3.17 Online Version of Snow Tool

FIGURE 3.16 Using WinHex to Compare HTML Files Modified by Snow Before and After

Steganalysis 57

The methods of steganalysis depend on the hiding technique. For example, the

hidden data may be dispersed throughout the carrier file, but in addition to

hiding the data, the steganography program may also leave behind additional

trace data. The programmer may do this intentionally or unintentionally. Usu-

ally this is done so that when the same steganography program is used by

the recipient to extract the hidden data, the program itself can determine first

if hidden data even exists. This flaw is a definite advantage to the investiga-

tor. For example, the steganography program Hiderman appends three ASCII

 characters “CDN” to the end of carrier file.

This trace data is commonly referred to as a signature. Exploits and worms

 typically have a string of characters synonymous with their respective exploit

technique. These strings are commonly used to create Instruction Detection

System signatures. When the malicious code or virus passes over the wire an

IDS can detect and alert the administrator. The same can be said for stegan-

ography signatures. Steganalysis scanners maintain a database of these strings

and map them to known steganography programs. This provides a quick

and efficient way of scanning all of the files on a suspect machine for hidden

 content within a file.

Scanners also exist for scanning a machine for evidence of an installed

 steganography program that is installed or once was installed. This could be

the program executable itself, installation files, or registry entries. It is impor-

tant to note that this is another form of detection, but arguably not a form of

steganalysis (see Figure 3.19). Steganalysis is a process of identifying hidden

content, not the process of identifying steganography programs that may be

installed on a machine.

FIGURE 3.18 Steganography Analysis Process

FIGURE 3.19 Forms of Steganography Detection

CHAPTER 3: Steganography58

With over 200 documented steganography programs in the wild, it can be very

difficult to reach our goal of extraction. The reason for this is that each stegan-

ography program uses its own technique for hiding, encrypting, and password

protecting its content. Although there are a handful of baseline methods used

to hide content, the method by which this is implemented can vary greatly

across all of the available programs. Many of the same baseline methods used

for hiding the content can be reversed to identify the hidden content and

 perform the steganalysis.

Anomalous Analysis

Anomalous analysis involves techniques used to identify differences between

two similar files. It also involves analysis techniques that identify other oddi-

ties when no other file is available to compare it to.

File Properties

File property differences can easily be identified if one has both the modified

file as well as the original virgin carrier file. Visually, it’s impossible to detect

the differences between the two pictures in Figure 3.20, but through some

simple checksums and directory listings we can quickly determine differences.

Through a simple directly listing, we determine that there are discrete differ-

ences between the two files:

D:\dir

04/04/2012 05:25p 240,759 helmetprototype.jpg

04/04/2012 05:26p 235,750 helmetprototype.jpg

We note that the file sizes and creation times are different.

A simple checksum also allows us to determine that the content of the files are

also different:

FIGURE 3.20 Original File and File with Hidden Data

Steganalysis 59

C:\GNUTools>cksum a:\before\helmetprototype.jpg 3241690497 240759 a:\

before\helmetprototype.jpg

C:\GNUTools>cksum a:\after\helmetprototype.jpg 3749290633 235750 a:\

after\helmetprototype.jpg

It’s important to note that there are some steganography programs which allow

content to be hidden in a file, but keep the file size and creation time the

same. Running a checksum on the two files, will quickly allow you determine

a difference between the two files.

Steganalysis Tools

There are a variety of freeware and commercial tools that allow an investi-

gator to perform steganalysis. Many of the freeware tools only detect a very

limited set of steganography programs. The commercial tools are far more

 comprehensive and detect a plethora of steganography programs.

But aside from the comprehensiveness of the tool, they all have a common

theme, which is to detect something about the file that may indicate that

 hidden content is contained within. These suspect files are then parked for a

deep-dive analysis. This second phase can be part automated and part man-

ual. The most advanced tools will also allow for manual human-in-the-loop

 analysis to represent the data visually to assist in detecting anomalies.

Steganography programs vary in the techniques they use for hiding data. In

addition, these techniques can change with different versions of the Stegan-

ography program. This complicates the steganalysis process. To add to the

 complexity, some programs even use different encryption techniques when

hiding the data. They can also support various file types. All of these variants

must be distinguishable in the analysis so that the investigator can accurately

identify the correct program and its version. By knowing both the program

and its version, the investigator can proceed to reverse engineering the hiding

technique to ultimately reveal the hidden message.

This chapter also covers the strengths and weaknesses of each of the tools

mentioned. It is common when performing steganalysis that the investiga-

tor typically uses multiple tools. The reason is that false positives and false

negatives are a common occurrence. Therefore, leveraging multiple toolsets

allows the investigator to perform more accurate analysis. A collaboration of

the following programs can be assembled into a comprehensive steganalysis

toolkit.

Freeware Tools
Most of the freeware and open source steganalysis tools are not updated nearly

as frequently as the commercial tools on the market. In addition, they are

CHAPTER 3: Steganography60

 typically more point solutions effective at detecting a limited number of steg-

anography programs and carrier files with hidden payloads. But each has their

place in the investigator’s toolkit. Let’s look at a few.

StegSpy

URL: http://www.spy-hunter.com10

Description

StegSpy is a signature analysis program designed to detect the evidence of hid-

den content. Back in 2002, I spent a significant amount of time performing

signature analysis of files with hidden content. I started by downloading and

installing steganography programs and analyzing their behavior. I noticed a

common trend among many steganography programs. Many programs would

hide not only the message, but would embed some form of a fingerprint or

string unique to the steganography program. One such example was Hiderman

which (as mentioned earlier) appends three ASCII characters “CDN” to the end

of the carrier file. Using this signature technique I began to build a library of the

signatures, and eventually wrote a program to automate the signature analysis.

Installation

StegSpy is available as freeware from my research website: http://www.spy-

hunter.com. It is written in Visual Basic and is supported on most Windows

platforms (Windows 9x/ME/2000/XP). Installation is simple, it is intended to

be a self-contained executable, therefore copy the executable to your machine

and run the executable, thus kicking off the program as show in Figure 3.20.

Using StegSpy

When StegSpy runs it will analyze the suspect file by comparing it to a list of

predefined signatures to identify hidden content. If hidden content is detected

it will report what steganography program used to hide the content, and will

also report where the hidden content begins within the file. This file marker

is consistent with Hex editors such as WinHex. Figure 3.21 demonstrates the

output of analyzing a suspect file with hidden content from the Masker steg-

anography program.

Next, we can then open the suspect file in a hex editor to further analyze the

content. The file markers reported by StegSpy are consistent with the file mark-

ers in a hex editor, making it simple to identify the location of the hidden con-

tent and focus the efforts on extracting the hidden content. Armed with this

knowledge, we analyze the suspect file in a hex editor to review the content.

10 Raggo, Michael—http://www.spyhunter.org.

http://www.spy-hunter.com
http://www.spy-hunter.com
http://www.spy-hunter.com
http://www.spyhunter.org

Steganalysis 61

In this example, StegSpy identified hidden content beginning at marker posi-

tion 240208. If we analyze the file in a hex editor, for example WinHex, we

will see three columns (Figure 3.22). The left column is a file marker position

or offset. Each character in the file represents one marker position and incre-

ments as you scroll from the beginning of the file to the end. The middle of the

screen shows the file data in hexadecimal format. And the right-hand side of

the screen shows the file data in text or ASCII format, same as if you viewed the

file contents in Microsoft Notepad.

StegSpy detected content hidden by the Masker steganography program. In

addition, it provided the marker position 240208 as the location of the begin-

ning of the hidden content (this also indicated in Figure 3.22). This is helpful

to the investigator when attempting to extract and reveal the hidden content.

Identifying the location of the hidden content is only one step of the process.

If the content is also encrypted, the investigator must still discover the pass-

word used to hide the content, or reverse engineer the encrypted data. For

now we’ve succeeded in our Steganalysis—we have identified the existence of

hidden content. In fact, we’ve also determined what program was used to hide

it, and the location of the hidden content. This is particularly useful because if

we know the program used to hide the data as we can use known techniques

for extracting the data.

FIGURE 3.21 StegSpy Program

CHAPTER 3: Steganography62

Stegdetect

URL: http://www.outguess.org/download.php11

Description: Stegdetect was developed by Neils Provos, highly regarded as one of

the leaders in Steganalysis research having written one of the first open source

steganalysis tools. He has performed extensive steganalysis research following

the 9/11 attacks and has published his research in numerous articles as well

as on his website. Interestingly enough, Michigan State Law has outlawed his

steganography research, therefore Neils has been the center of much contro-

versy. As a result, his research site has moved to the Netherlands. His research

site can be accessed at http://niels.xtdnet.nl/stego/.

Neils Provos’ steganography research is based on statistical analysis and his

Stegdetect program is primarily designed to analyze JPEG files. Therefore, Steg-

detect can detect content hidden by the following steganography programs:

JSteg, JPHide, OutGuess, Invisible Secrets, F5, appendX, and Camouflage.

JPEG and MPEG formats use the discrete cosine transform (DCT) function to

compress an image. This image compression focuses on reducing the number of

11 Provos. N. Stegdetect—http://www.outguess.org/download.php.

FIGURE 3.22 StegSpy Output After Detecting Masker Steganography Program

http://www.outguess.org/download.php
http://niels.xtdnet.nl/stego/
http://www.outguess.org/download.php

Steganalysis 63

bits needed to represent an image, by identifying duplication between adjacent

pixels for every 8 ×8 pixel block (or in the case of MPEGs, duplication in adja-

cent frames in a sequence of images) and reducing this redundancy by making a

mathematical approximation. Therefore, DCT can be thought of as an approxi-

mation calculation for performing compression. This image compression tech-

nique is known as a lossy compression technique since some data is lost, but

is not typically intrusive to the visual representation of the picture (or video).

The tool is designed to evaluate the frequencies of the DCT coefficients of JPEG

files. Stegdetect compares what it expects to be the normal frequencies for a JPEG

versus what is observed in the suspect JPEG file. This of course requires some

modeling and prior knowledge. Therefore, much of Neils analysis is built into his

statistical algorithm. This type of analysis is also referred to as chi-square analysis.

A large deviation in the comparison signifies an anomaly. This anomaly repre-

sents an above-average probability and perhaps the existence of steganography.

Installation: The Stegdetect Windows binary or source code can be downloaded

from the outguess.org website. The zip file or tar includes both the command

line and GUI versions of the program. In addition, Stegdetect is also found in

BackTrack (https://www.backtrack-linux.com/forensics-auditor/).

Using Stegdetect

The stegdetect utility analyzes image files for steganographic content. It runs

statistical tests to determine if steganographic content is present. In addition, it

attempts to identify what steganography program has been used to embed the

hidden information.

The significant options are as follows:

q - only reports images that are likely to have steganographic content.

n - enables checking of JPEG header information to surpress false

positives. If enabled, all JPEG images that contain comment fields

will be treated as negatives. OutGuess checking will be disabled if

the JFIF marker does not match version 1.1.

s - changes the sensitivity of the detection algorithms. Their results

are multiplied by the specified number. The higher the number the

more sensitive the test will become. The default is 1.

d - num Prints debug information.

t - sets the tests that are being run on the image (default is "jopi).

The following characters are understood:

j - tests if information has been embedded with jsteg.

o - tests if information has been embedded with outguess.

p - tests if information has been embedded with jphide.

i - tests if information has been hidden with invisible secrets.

https://www.backtrack-linux.com/forensics-auditor/

CHAPTER 3: Steganography64

If there is a positive result, the tools indicate the level of confidence with stars

next to the result, ranging from one to three stars, with three starts representing

a high level of confidence that there is hidden content. Ongoing analysis has

shown that stegdetect is more successful with high-quality digital images, such

as images from a digital camera.

The following example demonstrates using Stegdetect to scan all of the JPEG

files in the current directory to determine if hidden content exists, and if so,

what programs were used to embed the hidden data. In this example, the

 sensitivity has been increased from 1 to 10.

D:\>stegdetect -tjopi -s10.0 *.jpg

 bobhelmetcollwithhidden.jpg: jphide(**)

 Corrupt JPEG data: 30 extraneous bytes before marker 0xdb

 bobhelmetprototype.jpg: error: Quantization table 0x00 was not

defined

 Corrupt JPEG data: 30 extraneous bytes before marker 0xdb

 bobhelmetprototype_withdifferentfileanddifferentpassword.jpg: error:

Quantization table 0x00 was not defined

 bobhelmetprototypewithanotherhidden.jpg: jphide(**)

 Corrupt JPEG data: 26 extraneous bytes before marker 0xd9

 bobhelmetprototypewithhidden.jpg: jphide(**)

 familyonthecouchnormalpost.jpg: jphide(***)

 securitdaemonlogowithhiddenfile.jpg: skipped (false positive likely)

 securitydaemonlogo.jpg: invisible[4](***) skipped (false positive

likely)

The output lists the analysis for each JPEG file in the directory. The stegdetect

utility indicates the accuracy of the detection with a number of stars next to the

detected steganography program. In the previous example, stegdetect detected

jphide invisible in some of the images. It also indicated the probability for

some files with two asterix and others with three.

The Stegdetect tarball or zip also includes a GUI version of the program called

XSteg. All of the options are the same, so the only useful reason for using the

GUI version is for the command line impaired. The next example (Figure 3.23)

demonstrates a scan against the same directory of JPEG files, using all of the

default switch options.

Since the defaults were left unchanged, the sensitivity was left at a value of 1. Be

sure to crank the sensitivity, otherwise there will be a high occurrence of nega-

tives as demonstrated in Figure 3.23. Changing the sensitivity from 1.00 to

10.00 produces far more accurate results as demonstrated in the next example

in Figure 3.24.

Steganalysis 65

FIGURE 3.23 Suspect File Analyzed Within WinHex

FIGURE 3.24 Xsteg Run With a Sensitivity Value of 1.

CHAPTER 3: Steganography66

In all three previous examples, the directory chosen included numerous JPEG

files, all of which contained embedded hidden content using various steganogra-

phy programs. Stegdetect generated a reasonable number of false negatives and

false positives. Due to the complex compression techniques employed by the

JPEG format, JPEGS are particularly difficult to analyze. In addition, some JPEG

steganography programs do not embed a fingerprint or signature associated with

the steganography program. Therefore, in these situations Stegdetect is a unique

and effective tool for analyzing JPEG files of unknown origin (see Figure 3.25).

SUMMARY

In this chapter, we reviewed the history of digital steganography from the mid

1990s to current day. Common steganography techniques and programs

were reviewed outlining a variety of steganography methods. These meth-

ods involved hiding data in images, HTML files, and executables. As we con-

tinue our journey into data hiding we will look at many of the new ways in

which data is being hidden in operating systems, multimedia, and on mobile

devices.

FIGURE 3.25 Xsteg Run With the Sensitivity Value Changed to 10.

References 67

References

JPEGX. <http://www.nerdlogic.org>.

JPEG—<http://www.findarticles.com/p/articles/mi_zdpcm/is_200409/ai_n7184572/pg_2>.

Latham. A. JPHideandSeek. <http://linux01.gwdg.de/~alatham/stego.html>.

Provos. N. Stegdetect. <http://www.outguess.org/download.php>.

Rakan, E-K. Hydan. <http://www.crazyboy.com/hydan>.

Raggo. M. StegSpy. <www.spyhunter.org>.

Revealed: Operation Shady RAT McAfee—www.mcafee.com/us/resources/white.../wp-operation-

shady-rat.pdf.

Snow man page—http://www.darkside.com.au/snow/manual.html.

Snow. <www.darkside.com.au/snow/>.

The Truth Behind the Shady RAT—Symantec—http://www.symantec.com/connect/blogs/

truth -behind-shady-rat.

wbStego4open. <http://wbstego.wbailer.com>.

http://www.nerdlogic.org
http://www.findarticles.com/p/articles/mi_zdpcm/is_200409/ai_n7184572/pg_2
http://linux01.gwdg.de/~alatham/stego.html
http://www.outguess.org/download.php
http://www.crazyboy.com/hydan
http://www.spyhunter.org
http://www.darkside.com.au/snow/manual.html
http://www.darkside.com.au/snow/
http://www.symantec.com/connect/blogs/truth-behind-shady-rat
http://www.symantec.com/connect/blogs/truth-behind-shady-rat
http://wbstego.wbailer.com

This page is intentionally left blank

Data Hiding

Copyright © 2013 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00004-3

69

CHAPTER 4

Multimedia Data Hiding

n Multimedia Overview

n Data Hiding in Digital Audio

n Data Hiding in Digital Video

INFORMATION IN THIS CHAPTER:

MULTIMEDIA OVERVIEW

Digital music, podcasts, live and recorded webinars, video calls, and stream-

ing video have changed the way in which we communicate, and have become

ubiquitous in virtually every organization. We employ these methods to con-

vey ideas, train our employees, engage our customers, and of course entertain.

The question is, does digital multimedia pose a threat? Could these channels

be used to communicate information covertly, exfiltrate intellectual property,

share insider information, be used to convey command and control infor-

mation, or provide the needed enabling technology for advanced persistent

threats? Additionally, since the size of multimedia files are typically much

larger than a single digital photo, does this mean that larger payloads of hid-

den information could be exchanged or leaked by exploiting weaknesses inher-

ent in multimedia carriers? Or, on the contrary, is the human auditory system

(HAS) sensitive to even small changes in multimedia information such that

we could detect anomalies caused by embedding hidden information in such

streams?

In this chapter, we will then cover some of the earliest and simplest forms of

data hiding in digital multimedia and then move to some of the latest innova-

tions in order to provide insight into these questions.

CONTENTS

Multimedia
Overview69

Data Hiding in Digital
Audio70
Simple Audio File

Embedding

(Imperceptible

Approach)70

Data hiding in a .wav

file73

StegAnalysis of LSB

Wave Data Hiding78

Advanced Audio File

Embedding79

Audio Summary79

Data Hiding in
Digital Video80
MSU Stego80

TCStego84

Summary89

References90

http://dx.doi.org/10.1016/B978-1-59-749743-5.00004-3

CHAPTER 4: Multimedia Data Hiding70

DATA HIDING IN DIGITAL AUDIO

A significant amount of research has been conducted that targets digital images

as the carrier of hidden information. The HAS can make embedding more dif-

ficult due to the acute sensitivity of our hearing. According to Bender, Gruhl, and

Morimoto (1996), “While the HAS has a large dynamic range, it has a fairly small

differential range. As a result, loud sounds tend to mask out quiet sounds. Addi-

tionally, the HAS is unable to perceive absolute phase, only relative phase.” These

limitations provide the basis for the data hiding methods employed to fool our

hearing. There are a couple of additional advantages as well:

1. The carrier files tend to be much larger, providing the potential to hide

enormous payloads (for example, we have successfully hidden the entire

works of Shakespeare in a single 8 min song).

2. The proliferation and common everyday use of mp3 files and the advent

of the iPod and other music players have created an enormous haystack

of digital audio files that are exchanged all over the world. I once com-

pared finding files containing hidden information to finding a needle in

a haystack. A colleague pointed out that finding a needle in the haystack

would be easy. A better analogy would be trying to find a piece of straw in

a haystack.

Some of the early attempts at multimedia audio data hiding focused solely on

making the embedding imperceptible rather than undetectable. These meth-

ods are quite good at fooling our senses when the altered files are played. How-

ever, when we attack these simpler forms of imperceptible data hiding with

statistical methods, our ability to detect them is quite effective. The big ques-

tion, however, is anyone looking?

Simple Audio File Embedding (Imperceptible Approach)

One of the earliest methods of multimedia data hiding targeted raw audio

files such as .wav. The most common method of digitizing audio is based on

the early work of Dr. Harry Nyquist. While working at Bell Labs in the early

1920s, Nyquist determined it was not necessary to capture the complete analog

waveform. Rather, samples of the analog signal could be taken and stored (see

Figure 4.1). Then utilizing these samples allows for the regeneration of the

original audio signal or wave.

Nyquist also determined that in order to create a quality reproduction of the

original analog signal the sampling rate needed to be twice the bandwidth

of the original analog wave. The fundamentals of these discoveries became

the foundation of the pulse code modulation standard (PCM) to convert ana-

log sound to digital data. This meant that a typical 4 KHz voice signal would

Data Hiding in Digital Audio 71

be sampled 8000 times a second. To reproduce a high quality audio music

recording that would fill the full Human Audio Range (22.5 Khz) the signal

would need to be sampled 44,100 times per second. Since music is typically

recorded in stereo (each of the two channels of audio are sampled at 44,100

samples per second. This means for every one second of stereo music 88,200

digital samples are recorded. Once recorded the original analog signal can be

reproduced (approximately) through digital to analog conversion. However,

these sample values can also be targeted for data hiding activities, providing a

rich set of possibilities. Making this even more attractive, each of the 88,200

samples per second are typically recorded as a 16 bit signed integer values,

−32,768–+32,767. Thus modification of the Least Significant Bit (LSB) will

make only slight changes to the analog rendering, making this an ideal candi-

date for data hiding.

The resulting wave file (.wav) has a very specific and defined format that it

is quite flexible and is still relied upon today for digital recording and trans-

mission. Most .wav files we utilize have a slightly simplified format that only

require a format segment and a data segment. In Figure 4.2, we have annotated

an actual audio recording. We defined the length of each field, provided a short

description of the field, and then noted the endian of each value, so we can

determine how to interpret them.

Important header values include:

Audio Type: WAVE.

Modulation method: In this example PCM is specified.

FIGURE 4.1 Analog Wave with Discrete Samples

CHAPTER 4: Multimedia Data Hiding72

Number of Channels: 2. This is what we typically see for the majority of

music files.

The Sampling Rate: 44,100 for each channel (based on Nyquist’s theorem).

The Number of bytes for each sample and the number of bits utilized.

Next the start of the continuous data is marked, and the length of the data is

specified. The length is defined as a 4 byte hexadecimal value 04-5C-67-00.

To derive the number of samples per channel, we first convert 04-5C-67-00

hex value from little endian to big endian by swapping both bytes and words,

obtaining the length equal to 00-67-5C-04 Hex or 6,737,476 Decimal. Since

there are two channels defined in this example we divide this value by two

resulting in 3,386,882 bytes for each channel. Each recorded sample requires

16 bits or 2 bytes yielding 1,693,441 samples per channel. Note the audio clip

chosen for this example is 38 s in length. We could have also arrived at this

sample count by multiplying 38 s × 44,100 samples per second (see Figure

4.3).

Next, we examine the individual data values. We break the first few samples

into Left and Right channels. We then convert the little endian values to big

FIGURE 4.2 Example Wave File Header

Data Hiding in Digital Audio 73

endian, and take the 2s complement of each 16 bit value, preserving the most

significant bit as the sign. If the most significant bit is 1, then the value is con-

sidered negative. We further decoded the sample and derive the first four Right

channel values as −1, −42, −93, and −125. If we render the wave form in

StegoAnalyst we can see the waveform generated by the entire 38 s music clip

(see Figure 4.4).

By electing to view just a portion of the waveform, (in this case values 1 to 4)

(see Figure 4.5) we can see that the individual samples match the values we

extracted and converted manually from the raw data.

Data hiding in a .wav file

Now that we have a firm grasp on how .wav files are constructed, we under-

stand the basic principles of Nyquist theorem and how this theorem was the

driving force behind pulse code modulation, and we also understand that

sample values are stored as alternating signed 16 bit integers; we are now ready

to hide information in the .wav file. As you may have already guessed, we can

modify the Least Significant Bit (LSB) of the 16 bit integer values to encode a

FIGURE 4.3 Example Wave Sample Data

CHAPTER 4: Multimedia Data Hiding74

hidden message. In Figure 4.5, we have extracted the first eight right channel

samples for the .wav used in our illustration. We then converted the sample

values from little endian to big endian and substituted the LSB value for each

FIGURE 4.5 Wave Audio File with Left (Top) and Right (Bottom) Channels First 4 Samples

FIGURE 4.4 Wave Audio File with Left (Top) and Right (Bottom) Channels All Samples

Data Hiding in Digital Audio 75

bit of the binary representation of the ASCII capital ‘A’. This illustration results

in two important observations:

1. The substitution of one 8 bit ASCII character requires the use of eight

sample values from the Wave data.

2. Note that in this example only five of the eight values actually changed, as

three of the LSB values were already in the right state. Therefore the substi-

tution causes no perceptible change to the associated LSB. For typical LSB

substitutions when random data is inserted (most data hiding/steganog-

raphy programs first compress then encrypt the data prior to embedding,

thus creating pseudorandomness) the substitution rate will be approxi-

mately 50%. If you need to hide 8000 bytes the hiding will likely only

modify ∼ 32,000 samples not 64,000 (see Figure 4.6).

Now let’s examine the operation of an audio steganography application in

action. We are going to use S-TOOLS version 4.0. The first step is to select a

.wav file to use as the carrier file. We will choose the same file we have been

examining manually Sample Wave.wav. In Figure 4.7 below, we have dragged

the Sample Wav.wav file into the S-TOOLS window, and S-TOOLS displays a

graphical representation of the waveform. Notice in the bottom right, S-TOOLS

has calculated the maximum payload that this specific .wav file can hold,

423,352 bytes. This value is the available space after compression. This is the

total number of bytes that can be hidden. Recall previously we calculated the

FIGURE 4.6 Least Significant Bit Substitution of Wave Samples

CHAPTER 4: Multimedia Data Hiding76

total sample values (for both channels) as 3,386,882. Thus, if we divide this by

8 (the number of samples needed to encode each 8 bit byte), we get 423,360.

This would leave eight 16 bit values unmodified or unavailable for embedding.

The S-TOOLS program reserves these unmodified values for program usage.

As shown in Figure 4.8, prior to the data hiding operation S-TOOLS provides

the ability to perform encryption using a password-based key. You may select

from several encryption algorithms for this example. We choose Triple DES.

Once the data hiding has been accomplished, S-TOOLS provides a display of

the two waveforms (see Figure 4.9 below) side by side to permit a cursory

FIGURE 4.8 STOOLS v 4.0 with Sample Wave, Triple DES Encryption Selected

FIGURE 4.7 STOOLS v 4.0 with Sample Wave Ready for Data Hiding

Data Hiding in Digital Audio 77

check that the embedding did not make major waveform adjustments during

the hiding process. You may also listen to each of the samples to compare the

audio quality of each recording and attempt to discern any differences.

Now let’s examine the before and after image with StegAnalyst and take a close

look at the modifications that were made. In Figure 4.10, we are taking a close

look at the first eight samples in order to examine the modifications that were

made to the original. We have highlighted the values recorded for the third

sample. In the original, the sample value was −125 and the value has changed

to −126 demonstrating the LSB substitution.

FIGURE 4.9 STOOLS v 4.0 after Data Hiding Wave Form Comparison

FIGURE 4.10 Analysis of the Original vs. Data Hiding Waveform

CHAPTER 4: Multimedia Data Hiding78

Finally, in Figure 4.11 below we have included the Hex dump of the header and

the first 16 sample values of both the left and right channel. By close examina-

tion you can identify each LSB substitution that was made by S-TOOLS.

StegAnalysis of LSB Wave Data Hiding

LSB Data Hiding in wave files provides excellent imperceptible data hiding. In

other words, by listening to the original wave and then the stego’d wave even

a highly trained ear could not discern the difference. If one had the original

recording and could compare the two files it would be easy to identify the

changes. Based on the changes between the two waves, one could deduce that

LSB data hiding had been applied. However, in most cases we only have the

modified or stego’d wave file to examine. In this case, our approach must be to

determine that LSB modification has been made without the assistance of the

original recording. In other words, what would prevent LSB embedding from

being undetectable vs. imperceptible. The basic fundamental is the LSB values

of the original samples contained information not random noise. For example,

if we were to extract out the LSB values of each sample the values would con-

tain some remnant of the music. Therefore, the key to detecting LSB Wave file

embedding is to determine if the LSB’s values in the Wave file under exami-

nation contain information or simply random noise. A common method for

making this determination is to estimate the compressibility of the resulting

bit stream. In the case of wave audio files you would extract the LSB of each

channel and then perform a statistical analysis test for example (Mauer, 1990).

The Maurer test was originally developed to evaluate the quality of random

number generators used in cryptographic applications and provides the “qual-

ity of the randomness.” We can use this to then determine how random the

data contain in the LSB of audio wave file is.

FIGURE 4.11 Analysis of the Original vs. Data Hiding Hex Data

Data Hiding in Digital Audio 79

One way to defeat LSB audio data hiding would be to employ an active Warden.

The Warden would then zero the LSB values of a specific number of samples.

This would not cause perceptible changes in the audio playback, but would

effectively render the channel useless.

Advanced Audio File Embedding
Moving ahead a decade in time, the advancements in audio embedding have

been slow to develop. Even today only a handful of data hiding and stegan-

ography programs exist that support common compressed audio files such as

MP3 or AAC. The most notable is MP3Stego which utilizes a special quanti-

zation method and then hides the data within the parity blocks of an MP3

File. The MP3 Encoder takes a .wav file as input along with a payload file to

hide and generates a resulting .mp3 file. Significant limitations exist in the

size of the payload file. For example, a sample full spectrum audio wave file of

just under 6 megabytes can hide a payload of less than 6 Kilobytes, or approxi-

mately 0.1% (see Figure 4.12).

Audio Summary
The evolution of audio data hiding has been slow yet steady, moving from

simple LSB embedding that provides large payload capabilities with impercep-

tibility to the HAS to MP3 encoding that provides little in the way of payload

capacity, but can provide both imperceptibility and challenges to detection.

The bigger thrust today is the application of advanced audio hiding methods

that work on smartphones, providing steganography/data hiding on the go.

We will discuss this in more depth in the Android Data Hiding Chapter as the

FIGURE 4.12 MP3Stego Command Line MP3 Encoder

CHAPTER 4: Multimedia Data Hiding80

evolution of data hiding methods is moving to Android SmartPhone-based

technologies that employ advanced echo-based data hiding that improves

upon payload size over other compressed audio embedding and also increases

the difficulty in detection.

We expect to see improvements in the robustness of LSB embedding that relies

on spread- spectrum methods, advanced randomization schemes, and targeted

hiding approaches that will make entropy detection more difficult while main-

tain the payload size advantages. We also expect improvement in hiding meth-

ods that focus on AAC and MP3 files that will make slight modification to the

encoded compressed data that will increase payload capacity without sacrific-

ing robustness.

Finally, we will see additional audio methods that are deployed to which

smart mobile devices. These will provide data hiding or steganography on

the go applications for criminals and others with new weapons for covert

communications.

DATA HIDING IN DIGITAL VIDEO

Digital video-based data hiding or steganography has significant potential as a

primary covert communication channel. This is mainly due to the larger size,

the sheer number of videos that are streamed today and the ubiquitous nature

of virtual video exchange over the Internet or via the cloud. This medium is

and will continue to be a target of those wishing to cloak and conceal their

communications. Digital video has two basic forms, compressed and uncom-

pressed. We will first examine MSUStego with uncompressed frames from an

AVI video. We will then examine compressed video. The most popular form

of compressed video is the Motion Compensated Compressed Video Format

or MPEGx. MPEG achieves high compression rates by eliminating statistical

redundancies (both temporal and spatial). The resulting video bit stream is

made up of variable length codes that represent the video through various

segmentation methods.

MSU Stego

Overview of MSU StegoVideo:

MSU StegoVideo is a free non-open source steganography program available

from Moscow State University in Russia. The key features of this application

include:

1. The ability to hide information in full motion video.

2. The information hidden by MSU Stego is redundantly embedded through-

out frames of movie. This makes the resulting Audio Video Interleave

Data Hiding in Digital Video 81

FIGURE 4.13 MSU Stego Usage Hiding Example

FIGURE 4.14 MSU Stego Usage Hiding Example

CHAPTER 4: Multimedia Data Hiding82

(AVI) file resilient to data loss (for example,

if packets were lost during a streaming

transmission) [Microsoft].

3. MSU Stego provides imperceptible changes

to the video when viewing in normal or

high definition modes.

4. The embedding method attempts to keep

the changes to each video frame small in

order to attempt stealthy or undetectable

data hiding.

In Figure 4.13, we demonstrate the simple

usage of the MSU data hiding process:

1. First, we define whether we intend to hide

or extract data.

2. Next, we specific the three files that MSU

Stego requires:

a. The input file or original video (this

must be in an AVI container).

b. The output file where you would like

the resulting video to be stored.

c. The information you would like to hide

(currently this must be a text .txt file

containing only ASCII data).

In our example, we are using a video clip

that we extracted from the Disney

Movie Tron. The clip that we are using

is only 32 s in length. MSU Stego tells

us the maximum size of the payload file

is 2177 bytes and we have constructed

a randomly generated text file with

exactly 2177 bytes.

3. Next, we specify the noise level and data

redundancy level. The data redundancy

level will determine how many duplicates

of the data that will be inserted to aid in

recovery due to lost or corrupted frames.

4. Finally, produce the new AVI file.

In Figure 4.14 below, we reverse the process and extract hidden information.

In order to analyze the effectiveness of the data hiding activities, we must examine each individual

frame of the video (before and after). In Figure 4.15 below, we have extracted a sequence of frames

FIGURE 4.15 MSU Stego Before and After Fame Comparison

Data Hiding in Digital Video 83

from the video and compared them. As you can see we have extracted eight

frames of the video and to the naked eye they look identical. Even in Figure

4.16 we have zoomed in on only a single frame and the before and after are

indistinguishable.

In Figure 4.17, we have used StegAnalyst to render only the LSB of the resulting

color data, White areas indicate a value of ‘1’ for the LSB of that pixel, while

Black represent pixels with a LSB value of ‘0’. MSU Stego is known to target ‘0’

value LSB’s. As shown in the StegAnalyst screen shot, we have zoomed in 2000

times in order to examine the video frame at the pixel level. The image on the

right depicts the frame that contains the hidden data, while the image on the

left is the original. We have illustrated the individual pixels that were modified

by MSU Stego to hide the text payload.

FIGURE 4.16 MSU Stego Before and After Fame Comparison with Zoom

CHAPTER 4: Multimedia Data Hiding84

TCStego

One of the latest weapons is a new technology that combines the power of

TrueCrypt® (one of the best known and easy to use encryption programs) with

a steganography twist. This latest advancement hides a TrueCrypt container

inside an existing MP4 or QuickTime multimedia file.

The software application tcsteg.py is referred to as; TrueCrypt real steganogra-

phy tool by the developer Martin J. Fiedler. The application is a straightforward

python script and provided to the world under an open source license with

some restrictions. The python application is simple to use and works with both

QuickTime and MP4 multimedia containers.

The tcsteg.py application combines an existing MP4 or QuickTime multime-

dia file with a TrueCrypt file container in such a manner that the resulting file

operates as both as a standard multimedia file or as a mountable TrueCrypt

volume.

This operation allows one to covertly embed a TrueCrypt container inside an

existing QuickTime or MP4 movie, without affecting the operational char-

acteristics of the movie. In other words the movie still plays, the size of the

movie does increase slightly based on the hidden container, but nothing that

would be noticed through casual inspection. It is quite difficult to detect the

presence of the embedded TrueCrypt container without specialized detection

FIGURE 4.17 MSU Stego Before and After LSB pixel examination 2000 X Zoom

Data Hiding in Digital Video 85

technology (if anyone is actually looking for information hidden in such a

manner). Even when the hidden TrueCrypt container is detected, the ability to

extract the hidden information is nearly impossible without knowledge of the

key used to encrypt the hidden TrueCrypt volume.

With the rapid increase in movie files exchanged over the Internet (YouTube,

etc.) a huge haystack to hide or exchange covert information exists right now

today, and this is predicted to increase exponentially over the next decade.

Clearly this provides a new method for pedophiles to exchange their content

through innocuous sharing of benign looking digital media, and for criminals

or worse to continually exchange large amounts of clandestine information.

In Figure 4.18, you see a simplified structure of a typical Movie File (I stress

simplified as a detailed description would require a whole book). The Media

Data (MDAT) and the Sample Table Chunk Offset (STOC) are the key com-

ponents of the existing multimedia that are used to facilitate the hiding. The

MDAT contains the actual raw audio / video data. The MDAT chunks can vary

in length and are not required to be in any particular order. The STCO is a

table of references that allows for the MDAT to exist in a non-ordered man-

ner. STCO block contains pointers to the starting positions of chunks within

the MDAT. This flexibility has many advantages including: quick editing,

FIGURE 4.18 Movie File Basic Structure

CHAPTER 4: Multimedia Data Hiding86

seeking, local playback, and capabilities for video streaming. Reordering

of samples can be done swiftly and easily by simply changing a pointer in

the STCO. Thus, any seeking in the file requires consultation of the STCO

for the correct MDAT chunk locations. When playing a movie this is what

allows us to seek to specific portions of the movie, fast forward, rewind, or

remember where we were when we press pause. Through the manipulation

of the MDAT and STCO, tcsteg.py can embed a chunk that does not actually

contain raw video or audio, but rather contains the content of the TrueCrypt

hidden volume.

As you can see in Figure 4.19, the structure of the movie file is slightly altered

by tcsteg.py. In order for this to work, the TrueCrypt container must contain

both an outer and hidden volume. The outer volume is thrown away during

FIGURE 4.19 Movie File with Hidden TrueCrypt Container

Data Hiding in Digital Video 87

the process of embedding to further disguise the hiding, but the inner or hid-

den volume remains intact. TCTSTEG also adds some spoofed data to make

MDAT seem legitimate. Thus if you were to view the media file with a hex

editor, you would not find anything suspicious about the MDAT. At this point

the media file will play and operate as you would expect, but if you attempt to

mount the media file using TrueCrypt (see Figure 4.20) and supply the correct

password it operates correctly as a hidden container.

As you would suspect, discovering such hybrid media/TrueCrypt files can

be accomplished programmatically, if you are looking of course. The dis-

covery involves analyzing the ‘STCO’ and the ‘MDAT’ section of the mul-

timedia file. By examining each Chunk Offset contained in the STCO all

of the data contained in the MDAT should be accounted for. An orphaned

region is an obvious anomaly because the decoder would never attempt to

play or seek to that region. By identifying the gap created by the insertion

of the TrueCrypt container we can also then estimate the size of the orphan

region.

FIGURE 4.20 Successful TrueCrypt Mounting of a .mp4 Movie

CHAPTER 4: Multimedia Data Hiding88

The simple python script below will detect such anomalies.

Data Hiding in Digital Video 89

Source Code—1 Python script for identifying structural anomolies within

QuickTime or MPEG Movie Files such as TCStego.

SUMMARY

Hiding information in video files such as uncompressed AVI and compressed

MPEGx is not only possible today, but can provide a significantly sized con-

tainer that would allow for continuous transmission of hidden data. With

CHAPTER 4: Multimedia Data Hiding90

current and future innovations in error correction and data redundancy that

will allow for the hidden data to survive under even noisy line conditions,

streaming of hiding information would certainly enter a new level of threat.

The Stego Analyst then has the arduous task of detection or at least jamming

these covert channels to prevent against covert communications, exfiltration

of intellectual property or the use of streaming channels for command and

control of other malicious code that could accelerate / facilitate advanced per-

sistent threats.

References

Bender, W., Gruhl, D., & Morimoto, N. (1996). Techniques for data hiding. IBM Systems Journal,

35(3&4), 893–896. 55

Mauer, U. M. A universal statistical test for random bit generators. Institute for Theoretical Computer

Science, ETH Ziirich, CH-8092 Ziirich, Switzerland 2 April 1990 and revised 23 June 1991.

Data Hiding

Copyright © 2013 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00005-5

91

CHAPTER 5

Data Hiding Among Android Mobile Devices

n Android Overview

n Android ImgHid and Reveal App

n Android My Secret App

n StegDroid

INFORMATION IN THIS CHAPTER:

ANDROID OVERVIEW

In this chapter, we will utilize two specific images, one as the carrier and one as

the hidden payload. As illustrated in Figures 5.1 and 5.2.

For the examples in this chapter, we are using a Droid X device containing

Android OS version: 2.3 and associated data hiding applications. All the

selected apps have been downloaded from the Android Marketplace.

Many data hiding applications exist on the plethora of Android OS related

devices and in examining the techniques and characteristics of each, we have

selected just a few to include in this chapter that demonstrate unique data hid-

ing techniques. They include:

1. ImgHid and reveal.

2. My Secret.

3. StegDroid.

ANDROID IMGHID AND REVEAL APP

The Android Image Hide (ImgHid) and Reveal App provides the capability to

insert one photo inside another. This application, like most of the image-based

data hiding Android apps, prefers the use of JPEG files. This differs from the

CONTENTS

Android Overview91

Android ImgHid
and Reveal App91
Analysis of the Resulting

ImgHid Data Hiding

Operation95

Android My Secret
App98
Stego Analysis of the

Resulting My Secret

Images100

Summary.........................101

StegDroid102
Using the Android

Application103

Summary106

References106

http://dx.doi.org/10.1016/B978-1-59-749743-5.00005-5

CHAPTER 5: Data Hiding Among Android Mobile Devices92

iPhone apps that prefer PNG files as data hiding targets. Since development of

Java-based apps on Android is both popular and straightforward and due to

the plethora of Java-based JPEG algorithms and manipulation capabilities, this

has made this a popular choice.

Image Hide and Reveal Details

Application Name ImgHid and Reveal

Developer/creator actfor-j

Carrier format JPEG

Last release July 2011

As with most Android and iPhone apps, the interface and operation is easy.

The ImgHid navigation screen is displayed in Figure 5.3. We will be selecting

the ImgHid option to get started with the data hiding operation.

For ImgHid you first must define what image or photograph you wish to hide,

in other words the secret image. In Figure 5.4, you can see we selected the guns

and ammo image we plan to hide.

FIGURE 5.1 Android Carrier Image

FIGURE 5.2 Standard Payload Image

Android ImgHid and Reveal App 93

Using the Gallery (Figure 5.5) again, we also select the standard Snow Owl

image as our cover or the carrier of the hidden payload. Now both the gun and

ammo image and the Snow Owl image results are shown in Figure 5.6.

At this point, we are ready to combine the images. ImgHid performs the data

hiding operation and the secret image (gun and ammo) is successfully hidden

inside the Snow Owl image as seen in Figure 5.7.

At this point, we simply return to the navigation bar where you can utilize your

E-mail client to distribute the resulting image that contains the hidden image,

as shown in Figure 5.8.

Now we are ready to analyze the result.

FIGURE 5.3 ImgHid Navigation Screenshot

FIGURE 5.4 ImgHid Selection of Secret Image Screenshot

CHAPTER 5: Data Hiding Among Android Mobile Devices94

FIGURE 5.6 ImgHid Secret and Carrier

FIGURE 5.7 ImgHid Successful Comple-

tion of the Data Hiding Operation

FIGURE 5.8 ImgHid Execution of Data

Hiding Screenshot

FIGURE 5.5 ImgHid Gallery Screenshot

Android ImgHid and Reveal App 95

Analysis of the Resulting ImgHid Data Hiding Operation

In order to examine the method and sophistication of ImgHid, we first take a

look at the resulting image and compare it to the original Snow Owl image we

started with. In Figure 5.9, we can see several dramatic differences before and

after. The original Snow Owl image is on the left and the image containing the

hidden gun and ammo image is on the right.

Differences:

1. Image dimensions have been scaled down considerably.

2. The size of the stego’d image is also smaller.

Taking a closer look at the header of the image file in Figure 5.10, we see that all the

metadata that was included in the original Snow Owl image has been removed.

FIGURE 5.9 Basic Before and After Image Details

FIGURE 5.10 Snow Owl Before and After Metadata Examination

CHAPTER 5: Data Hiding Among Android Mobile Devices96

Next, we examine the common JPEG markers to determine if any anomalies

exist. We see in Figure 5.11 immediately that the original image on the left has

the proper end of image marker FF D9 at the end of the file. This marker signi-

fies the end of the data and should be last content of a properly formed JPEG.

As you can see the same FF D9 marker does exist in the stego’d image on the

right, however, additional data is written after the end marker signifying data

appending.

Now that we have determined that the steganography method employed by

ImgHid is one of the Data Appending after the JPEG End Marker we compare

two ImgHid stego’d images. Both Images started with exactly the same Snow

Owl image but used different payloads. In Figure 5.12, we compare the two

Snow Owls with only different payloads. The image on the left used a ribbons

payload and the image on the right attempted to hide the guns and ammo

image. As you can see the resulting image characteristics are almost exactly the

same in all cases, size, geometry, used colors, etc.

Taking a close look at the content of the two stego’d images reveals a pattern

that will not only allow us to detect that data hiding exists for these two images,

but also determine the source of the data hiding is ImgHid. As you can see in

Figure 5.13, the two stego’d images both start with hex bytes after the FF D9:

55 45 73 44 42 42 51 41 43 41 67 49

And they both end with:

41 41 41 41 3D 3D

FIGURE 5.11 Snow Owl Before and After End of File Marker Examination

Android ImgHid and Reveal App 97

For all the images and payloads we tested the patterns were the same.

The content and data between these beginning and end markers contains

a proprietary encoding of the hidden image file, in our case the guns and

ammo image. What is important to note is the resulting payload, once

extracted, has also been reduced significantly in resolution and dimension-

ally changed through the data hiding processes. Figure 5.14 depicts the orig-

inal guns and ammo image alongside the extract hidden payload from the

Snow Owl.

In summary, the ImgHid Android app, is simple to use and provides good

basic data hiding characteristics, in other words the image looks good under

FIGURE 5.13 ImgHid Hex JPEG Marker Comparison of Two Stego’d Images

FIGURE 5.12 ImgHid Comparable Stego’d Images

CHAPTER 5: Data Hiding Among Android Mobile Devices98

normal rendering. However, detailed examination reveals the common data

 appending method which is easy to identify and traces back to the ImgHid app.

ANDROID MY SECRET APP

Android My Secret App Details

Application Name My Secret

Developer/creator Tipspedia Ro

Carrier format JPEG

Last release September 2011

As with the previous iPhone and Android Apps My Secret offers ease of use, so

we will move quickly through the application operational sequence in order to

get to the analysis of the data hiding method.

The navigation screen depicted in Figure 5.15, provides selections to create or

read secret images.

By selecting Create Secret, we move to the screen shown below in Figure 5.16.

Here we click in the black region of the app to select the carrier image that will

be used for data hiding operations.

We select the Snow Owl once again as our carrier or cover image as shown in

Figure 5.17.

Since My Secret provides the ability to hide a text message only inside an image

carrier, we type in our standard secret emergency broadcast message. We also

can if we wish, specify an optional password. This is displayed in Figure 5.18.

FIGURE 5.14 Before and After Extraction Guns and Ammo Payload

Android My Secret App 99

FIGURE 5.16 My Secret Carrier

 Selection Screenshot

FIGURE 5.17 My Secret Carrier Se-

lected Screenshot
FIGURE 5.18 My Secret Message Entry

Screenshot

FIGURE 5.15 My Secret Navigation

Screenshot

CHAPTER 5: Data Hiding Among Android Mobile Devices100

Stego Analysis of the Resulting My Secret Images

Analyzing the My Secret hiding method involves similar steps. First, let’s take a

look at the images and the basic geometry. Figure 5.19 shows that both images

are almost identical in size, the geometry matches perfectly. In addition, the

two images displayed are identical even under close inspections and multiple

renderings and magnification.

Next, we examine the metadata found in the headers of both images, again we

find no modifications. Based on this we can deduce several facts:

1. It is unlikely that the image was re-encoded, therefore modifications to the

quantized DCT is unlikely.

2. Prepending of data in the header of the JPEG is also unlikely as the meta

data and header areas of the image match perfectly.

Examining the other JPEG markers, such as end of file, does reveal modifica-

tion. As you can see in Figure 5.20, the original carrier image has the proper FF

D9 end marker at the end of the file. However, the stego’d image does not, and

most importantly contains a small amount of information consistent with the

size of the emergency broadcast message that was hidden.

FIGURE 5.19 My Secret Stego Analyst Image Display and Geometry Comparison

Android My Secret App 101

Summary

The My Secret Android App accomplish hiding of information in an efficient

manner and causes zero visual changes to the rendered image under any

amount of scrutiny. However, once again by examining the common JPEG

markers, we find data appending operations, this time of the encoded text

which results in a much smaller payload. As with the ImgHid application, sig-

natures can be derived from the data hiding operations. In Figure 5.21, we have

compared two images stego’d with My Secret, the one on the left included a

password and the one on the right did not. You noticed that for both images

the hidden text begins and ends with a common string. For the image on the

left the markers are:

Temp1929479683

And for the image on the right the markers are:

Temp1294555342

The values are actually integer epoch values that can be converted to a read-

able time value. In the case of 1294555342 above this converts to Sun Jan 09

2011 01:42:22 GMT−0500 (Eastern Standard Time). If found, this can provide

additional forensic value.

FIGURE 5.20 Before and After Comparison of the JPEG End of File Marker

FIGURE 5.21 My Secret Stego Marker Identification

CHAPTER 5: Data Hiding Among Android Mobile Devices102

Once again, by combining the data appending detection with the marker align-

ment we can determine that not only is data hiding confirmed, but My Secret is

the likely application that produced the hidden data.

Due to the fact that many of the JPEG-related data hiding activities utilize a

data appending method we develop a small python app that will first detect

JPEG data appending (as well as, other JPEG structural anomalies) and then

extract to the file of your choice. Further analysis of the appended data and

most likely brute force decryption would be necessary to recover the plaintext

or hidden data. Each data hiding method employs differing privacy or con-

fidentiality measures beyond the original steganography to add yet another

dimension the concealment.

STEGDROID

StegoDroid Details

Application Name StegDroid

Developer/creator Tom Medley

Carrier format .ogg Audio

Last release March 2011

StegDroid is a free application found on the Android market. It was created

to compose, and then share, short text messages embedded in audio clips.

Since SMS and MMS messages are easy to filter and monitor, the app attempts

to cloak such messages in order to avoid detection or filtering. What is most

interesting about the application is the use of an audio data hiding method

call “echo steganography.” The concept is based on earlier work by Jenkins

and Martina, among others. Echo steganography, as the name implies, inserts

echos such as those that would be normally caused by resonance from walls,

windows, desks, computer monitors, keyboards, etc. near the point of record-

ing. These echos are normally ignored by our Human Auditory System (HAS)

and our brains. According to tests conducted by Jenkins and Martina (2009),

this method meets the imperceptible threshold under most circumstances. In

addition, echo steganography has several advantages over other forms of com-

pressed audio embedding:

1. The method can be successful in creating both imperceptible modifica-

tions, along with resistance to detection and jamming.

2. The method resists losses typically caused by MP3 compression, creating a

more robust method of data hiding.

StegDroid 103

3. Although the bit rate of embedding is lower than LSB substitution, it

performs better than other compressed data hiding methods. Empirical

tests have shown a bit rate of 16 bits per second is possible under normal

conditions.

Using the Android Application
As soon as the application is opened, the user is instructed to enter a secret text

message. The text message has a limit of 120 characters (see Figure 5.22).

Once the message has been typed, the user records audio with the built-

in microphone of the Android device. The required length of the audio

depends on the length of the text message supplied. The application informs

the user when enough audio for successful data hiding has been supplied

(see Figure 5.23).

During the echo steganography process two different echo algorithms are

used (see Figure 5.24). One algorithm corresponds to a binary “1” and a

second corresponds to a binary “0.” Thus, depending on what value needs

to be hidden (a “0” or “1”), the proper echo algorithm is chosen. When

extracting the encoded data, the detection or extraction algorithm attempts

to detect the echo and determine the echo type a “1” echo, or a “0” echo, and

then records the value. This is repeated until the end of the audio clip. The

resulting audio that includes the hidden data

is stored in the open container format “ogg.”

Ogg is typically used to deliver more efficient

streaming of multimedia objects (Ogg).

After the embedding is completed, the appli-

cation then gives the user the choice to decode

the message to prove its validity, listen to

the recorded message, or send the message

via E-mail or other installed applications.

When the file is sent, it is transferred as an

.ogg attachment. When sending the result-

ing .ogg file to another user, the accomplice

simply needs to obtain the same application

and then can recover the hidden message. You

may think that detecting or blocking .ogg files

would be an easy fix, however, .ogg files are

used for a variety of legitimate purposes on

Android devices, the most notable is for the

exchange of ring tones. Note the application

has other modes for privacy and paranoia that

allows for encryption of the message prior

FIGURE 5.22 StegDroid

Secret Message Entry

CHAPTER 5: Data Hiding Among Android Mobile Devices104

to embedding, along with the subsequent deletion of any remnants of the

 message from the Android device (see Figure 5.25).

We chose to Test Extracting Data and the result is displayed in Figure 5.26.

FIGURE 5.23 StegDroid Audio Recording to Create Carrier for Hidden Message

FIGURE 5.24 StegDroid Encoding and Decoding Diagram

StegDroid 105

FIGURE 5.25 StegoDroid Send or Review Message

FIGURE 5.26 StegDroid Successful Recovery of the Hidden Message

CHAPTER 5: Data Hiding Among Android Mobile Devices106

SUMMARY

Hiding information in video files such as uncompressed AVI and compressed

MPEGx is not only possible today, but can provide a significantly sized con-

tainer that would allow for continuous transmission of hidden data. With cur-

rent and future innovations in error correction and data redundancy that will

allow for the hidden data to survive under even noisy line conditions, stream-

ing of hiding information would certainly enter a new level of threat. The Stego

Analyst then has the arduous task of detection or at least jamming these covert

channels to prevent against covert communications, exfiltration of intellectual

property, or the use of streaming channels for command and control of other

malicious code that could accelerate/facilitate advanced persistent threats.

References

Jenkins, N., & Martina, J. E. (2009). Steganography in Audio. Techniques for data hiding. Techni-

cal report, University of Cambridge. <http://www.lbd.dcc.ufmg.br/colecoes/sbseg/2009/027.

pdf>.

Mauer, U. M. (1990). A universal statistical test for random bit generators. Institute for Theoretical

Computer Science, ETH Zürich, CH-8092 Zürich, Switzerland, April 2, 1990 and revised June

23, 1991.

Microsoft, AVI RIFF file reference. <http://msdn.microsoft.com/en-us/library/ms779636.aspx>.

Ogg. The ogg container format. <http://www.xiph.org/ogg>.

http://www.lbd.dcc.ufmg.br/colecoes/sbseg/2009/027.pdf
http://www.lbd.dcc.ufmg.br/colecoes/sbseg/2009/027.pdf
http://msdn.microsoft.com/en-us/library/ms779636.aspx
http://www.xiph.org/ogg

Data Hiding.

Copyright © 2013 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00006-7

107

CHAPTER 6

Apple iOS Data Hiding

CONTENTS

Introduction107

Mobile Device
Data Hiding
Applications107
Spy Pix Analysis110

Data Hiding Method

Analysis 114

Stego Sec Analysis116

Data Hiding Method

Analysis 121

InvisiLetter Analysis125

Data Hiding Method

Analysis 126

Summary130

References131

n Introduction

n Mobile Device Data Hiding Applications

INFORMATION IN THIS CHAPTER:

INTRODUCTION

The explosion of new data hiding applications for iOS devices, mainly iPad

and iPhone has been notable. Whether this is due to the need to improve

privacy when using mobile devices, just another venue for app developers to

exploit or for more nefarious covert communications purposes is yet to be

seen. This chapter takes a detailed look at just three of latest data hiding appli-

cations; Spy Pix, InvisiLetter, and Stego Sec. Each of these apps offers a different

and unique flavor for data hiding. We examine both the operation and data

hiding methodologies employed by these apps.

MOBILE DEVICE DATA HIDING APPLICATIONS

In David Kahn’s famous book The Code Breakers, he relays the account of

Demaratus who was alleged to have been exiled in Persia. While there, Dema-

ratus learned of a planned attack on Greece by the Persians. As the story goes,

Demaratus determined that he must deliver a secret message to the Spartans

to warn them. The writing instrument of the day was a wax tablet, as we look

at the wax tablet it is quite similar to iPad tablet today, minus the Lithium Ion

battery of course (see Figures 6.1 and 6.2).

Demaratus in his day removed the wax from the tablet and then using a sharp

object he carved the warning in the wood and then covered the carving with

a new coat of wax. This would allow the tablet to make its way through the

http://dx.doi.org/10.1016/B978-1-59-749743-5.00006-7

CHAPTER 6: Apple iOS Data Hiding108

guards and sentries of the day and hopefully arrive in time to warn Greece. The

tablet eventually reached Cleomenes and he somehow knew to remove the

wax and recovered the warning. Having done so, she provided the message to

the Spartans allowing them time to prepare and fortify their positions. I won-

der if the message will reach the Spartans in time the next time an invasion is

imminent (see Figures 6.3 and 6.4).

In addition, unless otherwise noted, we will use the following string when hid-

ing textual data within carrier files:“This is a test of the emergency broadcast

system, this is only a test.”

FIGURE 6.1 Wax Tablet

FIGURE 6.2 iPad Writing

Mobile Device Data Hiding Applications 109

For the examples in this chapter we are using an iPad 1 and associated data

hiding applications. All apps have been downloaded directly, without modi-

fication, from the Apple iTunes site and the iPad has not been Jailbroken or

compromised in anyway.

Many data hiding applications exist on the iPhone, iPad, and related devices

and in examining the techniques and characteristics of each, we have selected

FIGURE 6.3 Standard Carrier Image

FIGURE 6.4 Standard Payload Image

CHAPTER 6: Apple iOS Data Hiding110

just a few to include in this chapter that demonstrate unique data hiding tech-

niques. They include:

1. Spy Pix.

2. InvisiLetter.

3. Stego Sec.

Spy Pix Analysis

Like most iPad applications, Spy Pix offers a simple to use application for data

hiding. This app employs a hiding method that allows the user to hide a photo

within another photo with varying degrees of quality. The resulting data hiding

operations reduce the quality of both the carrier and the hidden image, but are

still quite difficult to detect.

Once you launch Spy Pix you are presented with the following screen shot (see

Figure 6.5).

You must supply two images. The first image is the image you wish to hide (in

other words the secret). The second image is the decoy or cover image.

When you select the image to hide selection box, the screen in Figure 6.6 appears.

Spy Pix Details

Application Name Spy Pix

Seller Juicy bits

Image format True color PNG

Last release December 2009

Mobile Device Data Hiding Applications 111

The application allows the user to either take an immediate picture or to select

any existing image from the photo album. We selected the standard gun with

bullets image as you can see in the following snapshot (see Figure 6.7).

FIGURE 6.5 Spy Pix Image Selection Screenshot

FIGURE 6.6 Spy Pix Photo Source Selection

CHAPTER 6: Apple iOS Data Hiding112

The process is repeated for the decoy or cover image, shown in the snapshot

in Figure 6.8.

At this point, you now can now experiment by combining the two images. The

slider at the bottom of the screen, shown in Figure 6.9, provides the user with

FIGURE 6.7 Spy Pix Gun and Bullet Selection

FIGURE 6.8 Spy Pix with Selected Hidden and Decoy Image Selected

Mobile Device Data Hiding Applications 113

the ability to determine the level of hiding that will take place. As you can see

in Figures 6.9 and 6.10, by varying the combination selection from low to high

you can find the right level. If the level is too low, the photo of the gun and

FIGURE 6.9 Gun and Bullets Bleed Through

FIGURE 6.10 Gun and Bullets are Obscured

CHAPTER 6: Apple iOS Data Hiding114

bullets will bleed through the decoy image, but if you select a higher level, as

in Figure 6.10, the decoy successfully obscures the hidden image.

The Spy Pix concept is quite simple—overlay the two images and hide the most

significant bits of the image to hide into the least significant bits of the decoy

image. Based on how many bits of the hidden picture you wish to preserve, the

quality of the resulting image will be reduced.

Data Hiding Method Analysis

Operationally Spy Pix first converts both images to 24 bit true color images

in order to normalize the formats. The app then allows the user to specify or

experiment with the number of pixels that will be replaced in the cover image—

you can choose 0–7 bits. If you choose zero, the entire cover image would be

replaced with the hidden image thus destroying the original image. If you were

to select seven, only the most significant bit (MSB) of the RGB values of the

secret image would replace the least significant bit (LSB) of the cover image.

In Figure 6.11 we selected a data hiding level of 5. This causes bits 7, 6, and

5 of each RGB value of the secret or hidden image to replace the three LSB

bits 0, 1, and 2 of the decoy image. As you can see in the illustration, bits 0–4

of the secret image are discarded, thus reducing the resolution of the secret

image from 24 bit color image to a 9 bit color image. With 8 bits of color for

Red, Green, and Blue = 24, and 5 bits of color removed from each color plane

5 × 3 = 15, therefore 24 − 15 = 9.

FIGURE 6.11 Spy Pix Data Hiding Diagram

Mobile Device Data Hiding Applications 115

At first glance one might think that this is pretty easy to detect visually. How-

ever, by rendering the image it looks quite good even if you replace as many as

2 or 3 bits. In order to reveal the hidden information, we must render the image

differently, one method is to render and examine only the LSB values.

We do this by utilizing Stego Analyst, a steganography analysis application by

WetStone. Stego Analyst allows the rendering of specific LSB values. See the

Snapshot below.

By specifying exactly which bits of the LSB we wish to see and for which colors,

we can control the image rendering. In Figure 6.13, we have chosen to display

two images side by side. The image on the left is the decoy image with bullets

in gun hidden displayed with normal rendering. The image on the right is the

same decoy image rendered with only the selected LSB and colors that were

specified in Figure 6.12. This gives us the ability to view the images side by side.

This reveals the reduced resolution image that was hidden inside the snow owl.

FIGURE 6.12 Stego Analyst LSB Bit Mask Selection

FIGURE 6.13 Side by Side Comparison of the Decoy Rendered Normally (on Left) Rendered

with Selected LSB Values (on the Right)

CHAPTER 6: Apple iOS Data Hiding116

Since only the three MSB values of the secret image were hidden, the data loss

is evident, but you can certainly still make out the image of the gun and bullets.

Based on the 9 of 24 bits replaced in the original image, one would think this

would be trivial to detect algorithmically. However, the general rule of thumb

for LSB detection algorithms is to perform statistical analysis of the LSB values.

Many of the predecessors to this approach first compressed then encrypted the

desired payload and then modified the LSB values which created randomness

in the LSB values of the decoy image. In this case, the data hidden has very

little randomization, since the MSB values of the secret image vary much less

than even the LSB value of an image, and significantly less than compressed or

random data. In order to accommodate this type of detection, new compari-

son models and neural net training approaches were necessary to detect the

anomalies implemented by this simple data hiding method.

The basic approach for developing such a detector is to create a large set of

examples using this method along with the original cover images and develop

statistical measurements that can distinguish variance within LSB values

of “normal” images compared against images that contain variable length

replacement of LSB values. The process of training the neural net or other

heuristic models is continued until you achieve maximum accurate detec-

tion while reducing false positives. For those readers wishing to investigate

advanced blind detection methods and neural network approaches, this detail

is beyond the scope of this book. However, many good technical papers and

resources are available to aid in this scientific research. A good place to start

would be research papers by Dr. Jessica Fridrich, http://ws2.binghamton.edu/

fridrich/publications.html#Steganography

Stego Sec Analysis

http://ws2.binghamton.edu/fridrich/publications.html#Steganography
http://ws2.binghamton.edu/fridrich/publications.html#Steganography

Mobile Device Data Hiding Applications 117

The Stego Sec iPhone/iPad app provides the ability to hide text inside a pho-

tograph that is either immediately taken or retrieved from previously saved

images. The snapshot below reveals the apps navigation panel. We are going to

focus our attention on the Crypt Image processing, in other words the creation

of the data hiding objects (see Figure 6.14).

As with most mobile apps, Stego Sec allows you to select either images that

already exist on your camera roll or you can take an immediate photograph.

For consistency, we will select the standard snow owl image that is saved in the

camera roll (see Figure 6.15).

The app next prompts us for text that is to be hidden inside the selected image.

For this, we typed in the following standard message “This is a test of the emer-

gency broadcast system, this is only a test,” a 70 character (byte) message string

(see Figure 6.16).

FIGURE 6.14 Stego Sec Application Navigation Panel

Stego Sec Details

Application Name Stego Sec

Seller Raffaele De Lorenzo

Image format JPEG

Last release February 2011

CHAPTER 6: Apple iOS Data Hiding118

Stego Sec claims to encrypt the text message prior to hiding information in the

message. To support this function, we must provide a password. On this same

panel we need to supply the file name where the new image will be stored (see

Figure 6.17).

FIGURE 6.15 Stego Sec Snow Owl Image Selection

FIGURE 6.16 Stego Sec Hidden Message String

Mobile Device Data Hiding Applications 119

We confirm by pressing Go and the hidden image is created (see Figure 6.18).

At this point, we can either reveal the hidden message or more importantly

send the message to the intended recipient. Stego Sec provides the ability to

FIGURE 6.17 Stego Sec Password and File Name Specification

FIGURE 6.18 Stego Sec Successful Completion

CHAPTER 6: Apple iOS Data Hiding120

E-mail or MMS the file containing the hidden information (see Figures 6.19

and 6.20).

FIGURE 6.19 Secret Message Distribution

FIGURE 6.20 Send as E-Mail Selection

Mobile Device Data Hiding Applications 121

Data Hiding Method Analysis

As mentioned earlier Stego Sec hides information in a resulting JPEG file type.

Since we have all the pieces of the puzzle:

1. The original JPEG image.

2. The JPEG with the hidden content.

3. The message content and length of 70 characters.

4. The password we used to encrypt the data.

We can now interrogate the before and after image and attempt to determine

at least the method used to hide the information.

Again we turn to Stego Analyst to assist us in the examination of the resulting

images to deduce the hiding methods employed. In Figure 6.21, the image on

the left is the original unmodified image of the snow owl. The image on the

right is the image created by Stego Sec that contains the hidden emergency

broadcast message.

We have labeled this file Stego Sec Hidden Short Message because we will also

need to compare messages of differing lengths to confirm the hiding method.

In Figure 6.22 we notice is a dramatic difference in the size of the before and

after messages:

Original Carrier: 109,562 bytes. Short Hidden Message: 11,525 bytes.

FIGURE 6.21 Side by Side Comparison of the Original and Stego’d Image

CHAPTER 6: Apple iOS Data Hiding122

What we can immediately deduce is that it is likely that hiding method

involves re-encoding the JPEG and this further suggests that quantized DCT

values inside the JPEG have been altered or there would be no reason to re-

encode the image. We have also verified that no stray comment fields, data

appending or prepending appears to be present in the JPEG. We have also

determined that no other structural anomalies are present. From this we will

run another experiment that will help us verify our hypothesis that the hid-

ing method involves altering the quantized DCT values. To assist us with this,

we have embedded a second text message using Stego Sec. This one contains

a payload length of 350 vs. 70 bytes in the short message and we utilized the

same password in order to only modify a single vector (the length of the

message).

In Figure 6.23 we compare the two images.

FIGURE 6.22 Stego Analyst Comparison of the Image Details, Short Message vs. Long Message

FIGURE 6.23 Quantized DCT Coefficients Comparison, Short vs. Long Messages

Mobile Device Data Hiding Applications 123

As you can see the size difference between the Short and Long messages hidden

inside the JPEG is quite small:

Long Message Image Size: 11,579

Short Message Image Size: 11,525

A difference of only 54 bytes

However the difference in payload size is 350 − 70 = 280 bytes. This supports our

hypothesis that the hidden data is not simply being added or inserted into non-

image areas of the JPEG. In order to more closely examine the changes between

the short message and long message data hiding, we will need to directly exam-

ine the quantized DCT values of each image, side by side. As you can see in

Figure 6.23, the general histogram of the DC coefficients of the quantized DCT

appear similar. This is simply displaying the number of occurrences found in

the image for each DC value extracted from the quantization table. Figure 6.24

depicts a quantized DCT with what we refer to as the DC coefficient value.

In order to determine the discrete differences between the quantized values, we

must take a closer look at a smaller set of individual histogram values. This exami-

nation reveals slight changes in the DC values of the coefficient histogram. As you

can see in Figure 6.25, the highlighted values represent slight changes in the DC

values caused by modification differences between the short and long message

strings. Since we started with the same original image, we utilized the same pass-

word, and the only change was message length, we can deduce that the hiding

method modified DC coefficients with the quantized DCT values. Therefore, the

Stego Sec hiding method involves direct modification of the JPEG Lossy values.

Since the message sizes are relatively small (a few hundred bytes), the ability to

statistically detect these anomalies without human analysis is quite difficult mak-

ing Stego Sec a viable data hiding solution for at least small text based messages.

Another very important note regarding Stego Sec, when we originally ana-

lyzed the previous version of the app, the hidden data was actually stored in

FIGURE 6.24 Quantized DCT Table Showing the DC or Average Value

CHAPTER 6: Apple iOS Data Hiding124

a header area of the JPEG making detection and recovery quite simple. Figure

6.26 depicts a hex dumped taken from an image stego’d in the previous ver-

sion of Stego Sec. The plaintext message in this version was embedded in this

version within the EXIF JPEG header.

As we move forward, we expect to see additional updates and improvements to

these apps, not only for ease of use, but also for the improvement in the quality

of the hiding mechanisms employed.

FIGURE 6.26 Stego Sec Previous Version Simplified Hiding Method

FIGURE 6.25 Short vs. Long Message Highlighted DC Histogram Changes.

Mobile Device Data Hiding Applications 125

InvisiLetter Analysis

InvisiLetter is yet another interesting application for the iPhone/iPad. The App

operates similarly to other iPhone/iPad apps but offers a bit of a twist. As you

can see in Figure 6.27, when the app launches you can either embed or extract

a secret image.

Our interest, of course, is data hiding so we will choose Embedding Secret

Image. Once we do this, the image in Figure 6.28 is displayed and we are

prompted first to select a cover image, as shown in Figure 6.29.

FIGURE 6.27 InvisiLetter App Navigation Panel

CHAPTER 6: Apple iOS Data Hiding126

As you would suspect, you can either take a photo directly with the camera or

you can retrieve an image already stored in the Photo Album (see Figure 6.29).

As you can see in Figures 6.30 and 6.31, once you have selected a cover image the

app allows you to draw with your finger or other suitable stylus the hidden mess-

age directly on the image. For this example, we need to create both a simple mes-

sage and a slightly more complex message to illustrate the data hiding method.

Data Hiding Method Analysis

The analysis of this method is going to require a slightly different analytic pro-

cess. Since the resulting image is a PNG image that contains the hidden draw-

ing inside, we would first look at the differences in the two images. As we did

when analyzing Stego Sec, we modify only the hidden message. In Figure 6.32

we examine the basics of both the simple drawing (on the left) and the more

complex drawing (on the right).

InvisiLetter DetailsX

Application Name InvisiLetter

Seller Hideaki Tamori

Image format True color PNG

Last release July 2010

FIGURE 6.28 InvisiLetter Cover Image Selection

Mobile Device Data Hiding Applications 127

At first glance there are two notable differences between the simple and com-

plex images:

1. The file carrying the simple image is smaller in size by 6744 bytes. This is not

too surprising when we consider the additional information that needed to

FIGURE 6.29 InvisiLetter Cover Image Selection

FIGURE 6.30 InvisiLetter Simple Message

CHAPTER 6: Apple iOS Data Hiding128

be hidden to record the additional words and drawing elements. The IDAT

chunks of PNG images are compressed; however, and any modification to

the true color RGB values prior to compression will alter the compressibility.

2. Consistent with the files size increase and more telling are the number of

used colors found in the complex image. 55,833 vs. 47,606. Whenever

FIGURE 6.31 InvisiLetter Complex Message

FIGURE 6.32 InvisiLetter Simple vs. Complex Embedding

Mobile Device Data Hiding Applications 129

we see this type of increase in used colors (for the same carrier image) it

implies modification to the LSB values as this modification would increase

the number of unique colors found in the uncompressed complex image.

Visually, through normal rendering the images look identical and we don’t

immediately see any noticeable distortion or artifacts. This image is zoomed

at 400% creating some jagged edges, but this is true for the original image, the

simple image, and the complex image.

In order to see the difference between the simple and complex images and

draw out the changes caused by the data hiding, we need to render the image

in a different manner. In Figure 6.33 we have chosen to render the Hue of each

image.

The difference is now apparent, as we add more and more hidden data to the

image (simple vs. complex) we see the Hue of the image begin to degrade.

This is a telltale sign of data hiding that is embedded directly into the RGB

values of the image. Examining the image itself, we also verified all the other

structural elements have not been modified or altered, thus confirming the

embedding is taking place directly into the RGB values of the true color

images.

FIGURE 6.33 Stego Analyst InvisiLetter Simple vs. Complex Hue Rendering

CHAPTER 6: Apple iOS Data Hiding130

SUMMARY

Many data hiding applications currently exist for the iPhone/iPad devices

(see Figure 6.34) with many more being created or advanced each day. The

rapid development of these capabilities and the broad range of techniques and

methods keep many of us up late at night developing new methods to analyze,

detect, react, and mitigate the potential harmful effects when used for mali-

cious purposes. This increase and market demand for better ways to conceal

and communicate covert information is alarming.

What might this actually imply?

(A) People do not feel the built-in encryption features on their devices are

sufficient.

(B) People don’t trust commercial encryption apps.

(C) They are more concerned with concealing the existence of the communi-

cation vs. the privacy of the data.

(D) They want/demand better protection of their personal data .

FIGURE 6.34 Snapshot of iPad with Some Popular Data Hiding Apps

References 131

References

Kahn, D. (1967). Code breakers. Scribner. pp. 81–82

Stego Analyst. A multimedia steganography analysis tool. WetStone Technologies, Inc. <www.wet-

stonetech.com>.

http://www.wetstonetech.com
http://www.wetstonetech.com

This page is intentionally left blank

Data Hiding.

Copyright © 2013 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00007-9

133

CHAPTER 7

Operating System Data Hiding

CONTENTS

Windows Data
Hiding135
Alternate Data Streams

Reviewed135

Stealth Alternate Data

Streams138

Volume Shadowing140

Linux Data
Hiding150
Linux Filename

Trickery150

Extended Filesystem

Data Hiding151

TrueCrypt157

References166

n Windows Data Hiding

n Linux Data Hiding

INFORMATION IN THIS CHAPTER:

With Windows as still the predominant operating system on desktop systems,

it’s no surprise that it continues to be the most targeted by malicious software.

Malware is becoming more complex in a continued effort to evade detection. For

example, some malware include functionality that allows a modular approach.

This modular approach allows the malware creator to remove certain compo-

nents while adding other components to the malware, essentially creating a

derivative malware. Additionally, the malware may point to another file on an

innocuous website such as WordPress. This file may contain C&C (Command

and Control) IP addresses. The IP addresses are updated on a regular basis to

thwart detection. The malware reaches out to the site to obtain the file, which

contains the latest C&C addresses. Furthermore, some of the commands may

be embedded in an image file using steganographic techniques. By pasting

together multiple techniques, the malware writer can create move evasive soft-

ware while also modularly swapping out pieces of the functionality on a case-

by-case basis. A real-world example of that was Operation Shady RAT (Remote

Access Tool).

Operation Shady RAT used a variety of techniques, but the most common

involved targeting Windows operating systems using spear-phishing e-mails

with a malicious spreadsheet attachment (see Figure 7.1).

The following outlines the attack:

1. The attacker sends e-mails to specific individuals at target institutions

(spear phishing).

2. The e-mail contains a seemingly legitimate spreadsheet of contacts.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00007-9

CHAPTER 7: Operating System Data Hiding134

3. The user downloads and opens the Excel spreadsheet and unknowingly

drops a Trojan onto their machine.

4. The Trojan then contacts an innocuous site (e.g. random Wordpress page)

for the latest CnC (command-and-control) information

5. Rather than pulling that information directly from the site, it pulls down

image files. These files contain commands hidden in the image files using

steganographic techniques.

6. These commands are parsed by the Trojan to reveal the current CnC server

information (IP addresses, ports, etc.)

7. The Trojan connects to the provided IP addresses and ports thereby allow-

ing a remote shell into the infected computer.

It was first brought to light by McAfee who revealed a 5-year study at the 2011

Black Hat Conference in Las Vegas.1 The study was performed from mid-2006

to mid-2011 before publically releasing the report. According to the report,

Operation Shady RAT impacted 71 “global companies, governments, and non-

profit organizations.” These parties included the US Federal Government,

United Nations, and Defense Contractors, as well as power and technology

companies. In addition, other countries were attacked including Canada,

South Korea, Japan, Germany, and many others. Another startling discovery

was the length of time these parties were attacked. This ranged from a few

months to a few years. Needless to say, the impact was far reaching.

1 Revealed: Operation Shady RAT, McAfee—www.mcafee.com/us/resources/white.../wp-opera-

tion-shady-rat.pdf.

FIGURE 7.1 Operation Shady RAT

http://www.mcafee.com/us/resources/white.../wp-operation-shady-rat.pdf
http://www.mcafee.com/us/resources/white.../wp-operation-shady-rat.pdf

Windows Data Hiding 135

Shortly after the McAfee report, Symantec disclosed another layer to the attack

not mentioned in the original report.2 Symantec disclosed more technical

details about how Operation Shady RAT was performed and how the CnC

server information was stored in image files using steganographic techniques.

Since image files are typically allowed to pass through firewalls and intrusion

detection systems, the files were easily downloaded by the Trojan to obtain the

latest CnC information. By using this technique, it’s quite possible that many

security products wouldn’t have the latest list of CnC servers on the Internet.

This approach provides an effective way for the Trojan to stay one step ahead

of the CnC detection.

Another case of multidimensional techniques includes the Windows-based

Alureon Trojan which also uses steganographic techniques to hide commands

with images. These and many other recent attacks demonstrate that hackers are

applying multiple techniques to a single piece of malware to enable additional

functionality and thwart detection. In this chapter, we explore recent data hid-

ing techniques for Windows systems.

WINDOWS DATA HIDING

Alternate Data Streams Reviewed
Alternate Data Streams in Windows NTFS has been well known for years and

dates back to Windows NT 3.1. It was originally designed for interoperabil-

ity with Macintosh Hierarchical File System (HFS). NTFS uses Alternate Data

Streams (ADS) to store metadata related to a file including security informa-

tion, original author of file, and other metadata.

Alternate Data Streams (ADS) within Windows NT File System (NTFS) is a

simple yet effective way to hide carrier files. To the casual investigator a simple

directory listing would reveal nothing more than the expected files. Unless any-

thing looked out of the ordinary, the ADS hidden files could remain undiscov-

ered. The following example demonstrates the use of ADS to hide one or more

files in the Alternate Data Streams on a Windows machine with NTFS. This

provides a simple yet stealthy mechanism for hiding files.

To start, a simple text file is created “mike.txt.”

D:\mike>notepad mike.txt (Figure 7.2):

We can then of course run a directory listing to see the newly created file in our

directory:

D:\mike>dir

2 The truth behind Shady RAT, Symantec—http://www.symantec.com/connect/blogs/

truth-behind-shady-rat.

http://www.symantec.com/connect/blogs/truth-behind-shady-rat
http://www.symantec.com/connect/blogs/truth-behind-shady-rat

CHAPTER 7: Operating System Data Hiding136

Volume in drive D has no label.

Volume Serial Number is FFFF-FFFF

Directory of D:\mike

11/07/2005 07:17 PM <DIR> .

11/07/2005 07:17 PM <DIR> ..

11/07/2005 07:17 PM 4 mike.txt

 1 File(s) 4 bytes

 2 Dir(s) 1,029,111,808 bytes free

Next, we can create our first Alternate Data Stream using the original text file

(mike.txt) as demonstrated below and in Figure 7.3:

D:\mike>notepad mike.txt:mikehidden.txt

Normal browsing techniques act as if they’re immune to the Alternate Data

Streams. Command line or Windows Explorer browsing reveals no new file.

Nor has the file size or free space on the disk changed. Even though we’ve cre-

ated an alternate data stream “mikehidden.txt” there’s no glaring evidence of it:

D:\mike>dir

Volume in drive D has no label.

Volume Serial Number is FFFF-FFFF

FIGURE 7.3 Creating an Alternate Data Stream

FIGURE 7.2 Creating “mike.txt” in Notepad

Windows Data Hiding 137

Directory of D:\mike

 11/07/2005 07:17 PM <DIR> .

 11/07/2005 07:17 PM <DIR> ..

 11/07/2005 07:18 PM 4 mike.txt

 1 File(s) 4 bytes

 2 Dir(s) 1,029,111,808 bytes free

We’re not limited to one Alternate Data Stream per file. Multiple ADSs can be

attached to mike.txt (as shown in Figure 7.4):

D:\mike>notepad mike.txt:mikehidden2.txt

Once again, we can run a directory listing and we see no evidence of either of

the Alternate Data Streams:

D:\mike>dir

Volume in drive D has no label.

Volume Serial Number is FFFF-FFFF

Directory of D:\mike

 11/07/2005 07:17 PM <DIR> .

 11/07/2005 07:17 PM <DIR> ..

 11/07/2005 07:18 PM 4 mike.txt

 1 File(s) 4 bytes

 2 Dir(s) 1,029,111,808 bytes free

It also is important to note that most antivirus software packages by default

do not scan Windows Alternate Data Streams for virus, trojans, and other mali-

cious code. If you’re performing forensics investigations, ensure your vendor

provides this very important feature its antivirus suite. If it is supported by your

antivirus software you can enable this feature on an as-needed basis. The draw-

back is by leaving this feature on may seriously slow your normal antivirus

scans by as much as 10x, which is why many antivirus vendors leave it disabled

by default. In summary, Alternate Data Streams are commonly overlooked by

investigators and therefore can be a nice hiding location for files.

FIGURE 7.4 Hiding a Second ADS in mike.txt

CHAPTER 7: Operating System Data Hiding138

Stealth Alternate Data Streams

There is a more stealthy way to hide Alternate Data Streams. By attaching an

alternate data stream to a reserved device name makes the ADS undetectable

with tools such as LDS or streams.exe. Windows includes a number of reserved

device names that should not be used as file names. Specifically, the MSDN

site lists the following reserved device names: CON, PRN, AUX, NUL, COM1,

COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9, LPT1, LPT2,

LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, and LPT9. These reserved device names

are intended to send output to hardware peripherals. The key work here is

“should” not be used as file names, thereby implying that you could use these

reserved device names as file names.

In the following example, we first create a file using the echo command,

then perform the same action while attempting to use a reserved device

name.

C:\sandbox>echo mike > mike.txt

C:\sandbox>echo mike > COM1.txt

The system cannot find the file specified.

C:\sandbox>mkdir COM1

The directory name is invalid.

C:\sandbox>dir

 Volume in drive C has no label.

 Volume Serial Number is AAAA-BBBB

 Directory of C:\sandbox

02/28/2012 03:21 PM <DIR> .

02/28/2012 03:21 PM <DIR> ..

02/28/2012 03:21 PM 7 mike.txt

 1 File(s) 7 bytes

 2 Dir(s) 198,873,174,016 bytes free

As you can see, attempting to save a file or directory under a reserved device

name causes an error. But there is a trick around this limitation.

Since the primary reason to use these reserved device names is for file I/O, we

need to avoid the automatic string parsing and send the file unparsed directly

to the file system. The \\?\ designation disables string parsing and allows you

to send it directly to the filesystem. This is normally used when programming

within the Windows API, but we can use it to create files using reserved device

names within the filesystem. By combining both a reserved device name and

the \\?\ prefix, we can circumvent the standard file parsing and create a file with

a reserved device file name.

Windows Data Hiding 139

In this example, we combine the \\?\ option with the reserved device name and

create a file called NUL:

C:\sandbox>echo mike > \\?\c:\sandbox\NUL

A directory list shows the new file called NUL, but native reading of the file

fails. This can be helpful if attempting to avoid analysis by some forensic tools

or antivirus products.

C:\sandbox>dir

 Directory of C:\sandbox

 01/25/2012 09:13 PM <DIR> .

 01/25/2012 09:13 PM <DIR> ..

 01/25/2012 09:15 PM 7 NUL

C:\sandbox>more NUL

 Cannot access file \\.\NUL

But a user familiar with this technique can still read the contents of the file by

simply prepending \\?\ to the command:

C:\sandbox>more \\?\c:\sandbox\NUL

 mike

Combining this reserved device name technique with Alternate Data Streams

creates what someone has coined as a “stealth” alternate data stream.

In order to apply a more stealthy approach, we can combine these reserved

device name files with Alternate Data Streams, referred to as “Stealth” Alternate

Data Streams. There are a number of advantages to doing this. First, Stealth

Alternate Data Streams are not detected by ADS tools such as streams.exe, dir

/R, and other techniques. In addition, most tools are not refined enough to

detect Stealth ADS. And furthermore, if the ADS is an executable, it can be

run using WMIC (Windows Management Instrumentation Command-Line) in

conjunction with VBscript, Windows PowerShell, etc. thus allowing an effec-

tive way to hide and run malware.

In this example, we attach cmd.exe to CON using an alternate data stream to

create our “stealth” alternate data stream.

C:\sandbox> type cmd.exe > \\?\c:\sandbox\CON:hiddencmd.exe

We can use WMIC to run the previously created cmd.exe executable hidden

in the Stealth Alternate Data Stream. This causes a cmd.exe DOS window to

pop-up. Although, this executable could have been far more malicious thereby

demonstrating that the possibilities are endless (see Figure 7.5).

 C:\sandbox>wmic process call create

\\.\c:\sandbox\CON:hiddencmd.exe

CHAPTER 7: Operating System Data Hiding140

 Executing (Win32_Process)->Create()

 Method execution successful.

 Out Parameters:

 instance of __PARAMETERS

 {

 ProcessId = 8696;

 ReturnValue = 0;

 };

These stealth Alternate Data Streams are typically not detected by antivirus

products, even if those products are scanning Alternate Data Streams looking

for malware.

Volume Shadowing
Newer versions of Windows, including Vista and Windows 7, include the Vol-

ume Shadow Copy Service which backs up disk volumes in case a software

install, device driver, or application crash occurs. These snapshots are taken

at intervals that vary from system to system depending on system idle points,

before software installs, as well as other scenarios. The general rule of thumb

is that these snapshots will occur on Vista every 1–2 days, and on Windows

7 every 7–8 days. But keep in mind that software installs and idle times can

impact these snapshot intervals.3

3 What you should know about volume shadow copy/system restore in Windows 7 and

Vista(FAQ)—http://blog.szynalski.com/2009/11/23/volume-shadow-copy-system-restore/.

FIGURE 7.5 WMIC Kicking Off a Command Prompt Window

http://blog.szynalski.com/2009/11/23/volume-shadow-copy-system-restore/

Windows Data Hiding 141

Another important note about the Volume Shadow Copy Service is that not

every version of a file is stored, say like a VAX/VMS or Mac OS X Lion (10.7)

system. In other words, if you’re editing a document, not every version is saved,

only the version that was saved at the last snapshot interval. In addition, not

every file is backed up, only files that have changed. The Volume Shadow Copy

Service allocates a fraction of the disk volume or hard drive in which to store

these changes. To view the Volume Shadow Copy configuration, go to Control

Panel, System, System Protection (see Figure 7.6).

Select System Protection to view the System Properties. The Protection settings

will display the pre-existing Shadow Copy volumes. By clicking the Configure

button you can also view and modify the storage size. The default maximum

size allocated to the Shadow Copy volumes is 15% of the disk volume on Vista

and 5% on Windows 7.4 But the Configure settings allow you to increase the

volume to a larger size. Note, only changes are tracked by the Volume Shadow

Copies, and only at the snapshot interval, therefore not EVERY change is

archived just the differential since the last snapshot. As a result, the Volume

Shadow Copy service makes incremental backups, just like server and database

4 How the volume shadow copy service works—http://technet.microsoft.com/en-us/library/

cc785914(v=ws.10).aspx.

FIGURE 7.6 Access System Protection to View Volume Shadow Copies

http://technet.microsoft.com/en-us/library/cc785914(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc785914(v=ws.10).aspx

CHAPTER 7: Operating System Data Hiding142

backups. Thus it’s quite possible that multiple snapshots of a file may exist

in the Volume Shadow Copy. In addition, Volume Shadow Copies work on a

FIFO basis which means that when it runs out of space, the oldest archives are

purged to make room for the new ones. It is also important to note that Vol-

ume Shadow Copies are read-only (see Figure 7.7).

Now that we have a better understanding about how Volume Shadow Copies

works, let’s explore this as a potential location for hiding data. Since many

antivirus tools do not scan Volume Shadow Copies, it’s a great place for hiding

data and malware.

The VSSadmin utility provided with Vista and Windows 7 allows the adminis-

trator to administer the Volume Shadow Copies from the command line:

C:\Windows\system32>vssadmin

---- Commands Supported ----

Delete Shadows - Delete volume shadow copies

List Providers - List registered volume shadow copy

providers

List Shadows - List existing volume shadow copies

List ShadowStorage - List volume shadow copy storage

associations

FIGURE 7.7 Shadow Copy Configuration

Windows Data Hiding 143

List Volumes - List volumes eligible for shadow

copies

List Writers - List subscribed volume shadow copy

writers

Resize ShadowStorage - Resize a volume shadow copy storage

association

We can view the Shadow Copy volumes and storage sizes by using the “list

volumes” option:

C:\Windows\system32>vssadmin list volumes

vssadmin 1.1 - Volume Shadow Copy Service administrative command-l

(C) Copyright 2001-2005 Microsoft Corp.

Volume path: \\?\Volume{33faab94-9bc6-11df-9987-806e6f6e6963}\

 Volume name: \\?\Volume{33faab94-9bc6-11df-9987-806e6f6e6963}\

Volume path: C:\

 Volume name: \\?\Volume{33faab95-9bc6-11df-9987-806e6f6e6963}\

Volume path: D:\

 Volume name: \\?\Volume{33faab96-9bc6-11df-9987-806e6f6e6963}\

C:\Windows\system32>vssadmin list shadowstorage

vssadmin 1.1 - Volume Shadow Copy Service administrative command-

line tool

(C) Copyright 2001-2005 Microsoft Corp.

Shadow Copy Storage association

 For volume: (C:)\\?\Volume{33faab95-9bc6-11df-9987-806e6f6e6963}\

 Shadow Copy Storage volume: (C:)\\?\Volume{33faab95-9bc6-11df-

9987-806e6f6e69

 63}\

 Used Shadow Copy Storage space: 9.707 GB (4%)

 Allocated Shadow Copy Storage space: 9.94 GB (4%)

Maximum Shadow Copy Storage space: 10 GB (4%)

The “list shadows” option will allow us to list Volume Shadow Copies, or

essentially each of the differential archives at points in time. The last entry is

essentially the last archive.

C:\Windows\system32> vssadmin list shadows

 .

 .

 .

 Contents of shadow copy set ID: {45540ad8-8945-4cad-9100-

5b4c9a72bd88}

CHAPTER 7: Operating System Data Hiding144

 Contained 1 shadow copies at creation time: 3/4/2012

5:06:01 PM

 Shadow Copy ID: {670353fe-16ff-4739-ad5e-12b1c09aff00}

 Original Volume: (C:)\\?\Volume{33faab95-9bc6-11df-

9987-806e6f6e6963}\

 Shadow Copy Volume:

\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy27

 Originating Machine: funhouse

 Service Machine: funhouse

 Provider: ‘Microsoft Software Shadow Copy provider 1.0’

 Type: ClientAccessibleWriters

 Attributes: Persistent, Client-accessible, No auto

release, Differential, Auto recovered

At this point, we can proceed with creating a file to hide within a Shadow Vol-

ume Copy. Then demonstrate that we can access the file independent of the file

system. In this example we’ll use the cmd.exe executable. We simply copy the

cmd.exe to our sandbox lab environment.

C:\sandbox>copy c:\windows\system32\cmd.exe .

 1 file(s) copied.

C:\sandbox>dir

 Volume in drive C has no label.

 Volume Serial Number is 98B1-9C5A

 Directory of C:\sandbox

03/06/2012 12:05 PM <DIR> .

03/06/2012 12:05 PM <DIR> ..

07/13/2009 08:14 PM 301,568 cmd.exe

02/28/2012 03:21 PM 7 mike.txt

 2 File(s) 301,575 bytes

 2 Dir(s) 199,041,372,160 bytes free

Now that we have our file that we’d like to hide in a Shadow Copy Volume, we

can now create a new restore point, thereby creating a point-in-time backup

that includes our new file. Simply go back to the System Properties tab, and

select Create. Then input a name and click create and your shadow copy vol-

ume will be archived (see Figures 7.8–7.10).

To confirm that a new Shadow Copy Volume has been created, simply rerun

the vssadmin utility to list all of the shadow copies and confirm a new shadow

copy volume has been created that is consistent with the time at which you ran

the utility.

Windows Data Hiding 145

FIGURE 7.8 Create Restore Point

FIGURE 7.9 Creating Shadow Copy Volume

FIGURE 7.10 Shadow Copy Volume (Restore Point) Successfully Created

CHAPTER 7: Operating System Data Hiding146

C:\Windows\system32> vssadmin list shadows

 .

 .

 .

 Contents of shadow copy set ID: {85e1aa26-d2d5-4ec5-88c5-

2149b1f1f544}

 Contained 1 shadow copies at creation time: ¾/2012 5:41:00 PM

 Shadow Copy ID: {19e1084c-7965-4092-9bf4-44dc55c1145a}

 Original Volume: (C\\?\Volume{33faab95-9bc6-11df-9987-

806e6f6e6963}\

 Shadow Copy Volume:

\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy28

 Originating Machine: funhouse

 Service Machine: funhouse

 Provider: ‘Microsoft Software Shadow Copy provider 1.0’

 Type: ClientAccessibleWriters

 Attributes: Persistent, Client-accessible, No auto release,

 Differential, Auto recovered

In this case, we can see the addition of a new entry as a result of creating a new

restore point. Now that we have created a backup of our volume that contains

our hidden executable, we can delete the original executable.

C:\sandbox> del cmd.exe

At this point, the file only exists in the shadow copy volume, and arguably on

the disk drive if performing low-level forensics and it hasn’t been overwrit-

ten. We can now view the contents of the Shadow Copy Volume by creating a

symbolic link to it. To do this we need to review the output of our “vssadmin

list shadows” and make note of the Shadow Copy Volume name: “\\?\GLO-

BALROOT\Device\HarddiskVolumeShadowCopy28.” We will run the mklink

command using the /D option to create a directory for the symbolic link. Note

that we also append a “\” to the end of the Shadow Copy Volume name, a pre-

requisite for creating the symbolic link.

C:\sandbox>mklink /D hiddendirectory

\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy28\

 symbolic link created for hiddendirectory <←=>>

\\?\GLOBALROOT\Device\Harddisk

 VolumeShadowCopy28\

Once the symbolic link is created, we can validate this by simply performing

a directly listing of the directory and we can now see our “hiddendirectory”

symbolic link.

Windows Data Hiding 147

C:\sandbox>dir

 Volume in drive C has no label.

 Volume Serial Number is 98B1-9C5A

 Directory of C:\sandbox

 03/04/.2012 05:52 PM <DIR> .

 03/04/2012 05:52 PM <DIR> ..

 03/04/2012 05:52 PM <SYMLINKD> hiddendirectory

[\\?\GLOBALROOT\Device\Ha

 rddiskVolumeShadowCopy28\]

 02/28/2012 03:21 PM 7 mike.txt

 1 File(s) 7 bytes

 3 Dir(s) 199,002,898,432 bytes free

We can review contents of the Shadow Copy Volume through the symbolic link

by changing to the hiddendirectory and performing a directory listing. Addi-

tionally, we can confirm the “cmd.exe” executable we planted by viewing that

directory and confirming that it exists in the shadow copy volume.

C:\sandbox>cd hiddendirectory

C:\sandbox\hiddendirectory>dir

 Directory of C:\sandbox\hiddendirectory

11/10/2010 10:01 PM 1,024.rnd

06/10/2009 04:42 PM 24 autoexec.bat

03/04/2012 05:19 PM <DIR> book

06/10/2009 04:42 PM 10 config.sys

02/13/2012 04:38 PM <DIR> HP Universal Print Driver

03/04/2012 05:29 PM <DIR> myprogram

02/24/2012 02:45 PM 56,384 offreg.dll

07/13/2009 09:37 PM <DIR> PerfLogs

07/29/2011 02:31 PM <DIR> Personal

10/21/2010 10:17 AM <DIR> Pre

04/14/2011 10:10 PM <DIR> Program Files

03/04/2012 05:39 PM <DIR> sandbox

07/30/2010 02:11 PM <DIR> SwSetup

01/31/2011 11:31 AM <DIR> temp

02/24/2012 02:40 PM 784,896 tsk-xview.exe

12/14/2010 02:58 PM <DIR> Users

10/01/2011 11:27 PM <DIR> Windows

 5 File(s) 842,338 bytes

CHAPTER 7: Operating System Data Hiding148

 14 Dir(s) 199,031,443,456 bytes free

C:\sandbox\hiddendirectory>cd sandbox

C:\sandbox\hiddendirectory\sandbox>dir

 Volume in drive C has no label.

 Volume Serial Number is 98B1-9C5A

 Directory of C:\sandbox\hiddendirectory\sandbox

03/04/2012 05:39 PM <DIR> .

03/04/2012 05:39 PM <DIR> ..

07/13/2009 08:14 PM 301,568 cmd.exe

02/28/2012 03:21 PM 7 mike.txt

 2 File(s) 301,575 bytes

 2 Dir(s) 199,031,443,456 bytes free

Since our objective was to simply confirm the existence of the “cmd.exe” file

we hid in the Shadow Copy Volume, we can now go back and remove the sym-

bolic link by removing the “hiddendirectory.”

C:\sandbox>rmdir hiddendirectory

At this point, we’re now ready to demonstrate that the “cmd.exe” file is acces-

sible and executable, but not viewable from the filesystem. We can do this by

using the WMIC utility to run the executable. It is important to note that when

using WMIC, that a “.” should be used instead of a “?”

 C:\sandbox>wmic process call create

\\.\GLOBALROOT\Device\HarddiskVolumeShadowco

 py28\sandbox\cmd.exe

 Executing (Win32_Process)->Create()

 Method execution successful.

 Out Parameters:

 instance of __PARAMETERS

 {

 ProcessId = 5780;

 ReturnValue = 0;

 };

Running the WMIC command successfully kicks off the hidden executable

(cmd.exe) and a command window pops-up (Figure 7.11).

Bring this altogether we can see that Volume Shadow Copies can be used to

hide files. If the file is an executable, WMIC can be used to execute the pro-

gram from a Volume Shadow Copy without the need for a symbolic link to the

Windows Data Hiding 149

file. In addition, most antivirus and antimalware products don’t scan Volume

Shadow Copies. This is a great place to hide files, malware, and other artifacts.

It is important to note that Volume Shadow Copies are not permanent and

they will eventually be purged to make room for newer restore points. But for

the standard PC this could easily be 6 months or longer, leaving plenty of time

for malware to perform its damage.

Tim Tomes and Mark Baggett released a tool at Hack3rCon II called vssown.

vbs that allows you to view and manipulate the volume shadow copies.5 This

allows you to create or delete volume shadow copies.

c:\sandbox>cscript vssown.vbs

Microsoft (R) Windows Script Host Version 5.8

Copyright (C) Microsoft Corporation. All rights reserved.

Usage: cscript vssown.vbs [option]

 Options:

 /list - List current volume shadow

copies.

 /start - Start the shadow copy service.

 /stop - Halt the shadow copy service.

 /status - Show status of shadow copy

service.

 /mode - Display the shadow copy service

start mode.

 /mode [Manual|Automatic|Disabled] - Change the shadow copy service

start mode.

5 Hack3rCon II—Lurking in the shadows, Tim Tomes & Mark Baggett—http://www.youtube.

com/watch?v=ant3ir9cRME.

FIGURE 7.11 WMIC Command Kicking Off a Hidden Executable (cmd.exe)

http://www.youtube.com/watch?v=ant3ir9cRME
http://www.youtube.com/watch?v=ant3ir9cRME

CHAPTER 7: Operating System Data Hiding150

 /create - Create a shadow copy.

 /delete [id|*] - Delete a specified or all shadow

copies.

 /mount [path] [device_object] - Mount a shadow copy to the given

path.

 /execute [\path\to\file] - Launch executable from within an

unmounted shadow copy.

 /store - Display storage statistics.

 /size [bytes] - Set drive space reserved for

shadow copies.

 /build [filename] - Print pasteable script to stdout.

What’s important is that it can be also run using a remote shell script and

execute a command in a shadow copy. This code bundled with malware would

be very stealthy and difficult to detect on an infected host.

LINUX DATA HIDING

With the proliferation of Linux and the open source movement, Linux’s scalabil-

ity, availability, and acceptance in the server community had bled over into the

user community. As a result, Linux is commonly found on many desktops and

laptops, and now numerous mobile devices. This represents arguably limitless

possibilities for hiding data. Let’s explore some examples of data hiding in Linux.

Linux Filename Trickery

There are some rudimentary ways to hide files and directories in Linux. For

example, it is commonly known to Linux users that putting a dot “.” at the

beginning of a file name will allow one to hide a file within a directory. But this

is really only hidden from the “ls” command and can be easily revealed using

the “ls –al” command:

spihuntr@spihuntrubuntu:∼/sandbox2$ vi .mike.txt

spihuntr@spihuntrubuntu:∼/sandbox2$ ls

spihuntr@spihuntrubuntu:∼/sandbox2$ ls -al

total 12

drwxr-xr-x 2 spihuntr spihuntr 4096 2012-06-01 00:10 .

drwxr-xr-x 44 spihuntr spihuntr 4096 2012-06-01 00:10 ..

-rw-r--r-- 1 spihuntr spihuntr 15 2012-06-01 00:10 .mike.txt

The directory listing also reveals a single dot and a double dot. The sin-

gle dot is the current directory, and the double dot is the parent directory.

Linux Data Hiding 151

What’s interesting is that you can add spaces to the dot to create a new direc-

tory, for example a dot space “. ”.

spihuntr@spihuntrubuntu:∼/sandbox2$ mkdir ". "

spihuntr@spihuntrubuntu:∼/sandbox2$ ls -al

total 16

drwxr-xr-x 3 spihuntr spihuntr 4096 2012-06-01 00:11 .

drwxr-xr-x 2 spihuntr spihuntr 4096 2012-06-01 00:11 .

drwxr-xr-x 44 spihuntr spihuntr 4096 2012-06-01 00:10 ..

-rw-r--r-- 1 spihuntr spihuntr 15 2012-06-01 00:10 .mike.txt

To most users the second single dot would probably be overlooked. It’s almost

as if this directory is hiding in plain sight. The same can be performed for the

“..” representative of the parent directory. You can use dot dot space “.. ” to cre-

ate a second hidden directory as well.

spihuntr@spihuntrubuntu:∼/sandbox2$ mkdir “.. ”

spihuntr@spihuntrubuntu:∼/sandbox2$ ls -al

total 20

drwxr-xr-x 4 spihuntr spihuntr 4096 2012-06-01 00:11 .

drwxr-xr-x 2 spihuntr spihuntr 4096 2012-06-01 00:11 .

drwxr-xr-x 44 spihuntr spihuntr 4096 2012-06-01 00:10 ..

drwxr-xr-x 2 spihuntr spihuntr 4096 2012-06-01 00:11 ..

-rw-r--r-- 1 spihuntr spihuntr 15 2012-06-01 00:10 .mike.txt

These duplicate dots show no indication of the spaces. Most casual and expe-

rienced users would overlook this and not recognize that some of the dots are

actual directories containing additional hidden files. These make for a very

simple hiding place for files. This trick can be performed on many distribu-

tions of Linux including Ubuntu, Mac OS, and Android.

Extended Filesystem Data Hiding
Extended filesystems (ext2, ext3, and ext4) are found within many Linux distri-

butions ranging from Ubuntu to Mac OS to Android. Additionally, these filesys-

tems (as well as other Linux and Unix filesystems) contain inodes. Every file or

directory is represented by an inode. Each inode contains information about the

file type, access rights, owners, timestamps, size, and pointers to data blocks.6

In Extended filesystems, when a file is deleted, the filesystem removes the file-

name to inode association, but the file data is not deleted until overwritten

6 Design and implementation of second extended file system. http://e2fsprogs.souceforge.net/

ext2intro.html.

http://e2fsprogs.souceforge.net/ext2intro.html
http://e2fsprogs.souceforge.net/ext2intro.html

CHAPTER 7: Operating System Data Hiding152

when the filesystem needs space for a new file. The inode stores the deletion

time when the file is deleted. Bottomline, unless the file data is overwritten, the

inode maintains everything except for the filename. Therefore the data can be

recovered in many cases, but this hinges largely upon how active the filesystem

is. If attempting this on a very active server, the chances of recovering this data

are less than an inactive extended filesystem, such as one found on a thumb

drive.7

If we apply this knowledge of extended filesystems and inodes, we can use this

to hide files and recover them by saving them in an inode. Linux recovery tools

exist for recovering these “nameless” files from their inodes. “debugfs” is a

recovery tool found in many Linux distributions, but can be a bit cumbersome

for non-Linux savvy individuals. Fortunately, Oliver Diedrich created a simpler

Linux tool called “e2undel.”8

Let’s begin by first creating a thumb drive with an extended filesystem so we

can create a way to hide data. In this example, we’ll use Ubuntu. There are a

number of partitioning tools in Linux, but we’ll use GParted in this scenario.

If Gparted is not bundled with your Linux distribution, you can download

it from Sourceforge at http://gparted.sourceforge.net.9 To start, simply run

“gparted” from the command line to start the GParted GUI (Figure 7.12).

Next, from the dropdown at the right, choose the thumb drive you’d like to

format. As with any formatting, ensure that you have the right drive so you

don’t format your main operating system by accident. If the device is mounted

simply right-click on the device and select “unmount” from the menu. Then

select format and choose “ext2” (Figure 7.13).

Then follow the prompts to kick-off the formatting process (see Figure 7.14).

When the format is complete, the new partition will be labeled “ext2” (see

Figure 7.15).

Now that we have our ext2 filesystem, we can start hiding some data. Our

methodology involves copying or creating files on our thumb drive, then delet-

ing them (or hiding them). If we want to recover the deleted or hidden files at

a later time, we can use the “e2undel” tool. Referencing the main page:

e2undel -d device -s path [-a] [-t]

with

-d device: the file system where to look for deleted files (like /dev/

hda1)

7 Deleted files recover howto—http://e2undel.sourceforge.net/recovery-howto.html.
8 E2undel—http://e2undel.sourceforge.net/.
9 Gparted—http://gparted.sourceforge.net/.

http://gparted.sourceforge.net
http://e2undel.sourceforge.net/recovery-howto.html
http://e2undel.sourceforge.net/
http://gparted.sourceforge.net/

Linux Data Hiding 153

-s path: the directory where to save recovered files

-a: work on all files, not only on those listed in undel log file

(you need this if you don’t use the undel library or want to recover a

file that was deleted prior to installing libundel)

-t: try to determine type of deleted files without names, works only

with '-a'

In our example, we will recover the two files we previously deleted. We define

the device (-d) and path to the destination where we can save the recovered

files (-s).

spihuntr@spihuntrubuntu:∼$ sudo e2undel -d /dev/sdc1 -s

/home/spihuntr/sandbox -a -t

FIGURE 7.12 Running GParted to Partition the Thumb Drive

CHAPTER 7: Operating System Data Hiding154

e2undel 0.82

Trying to recover files on /dev/sdc1, saving them on

/home/spihuntr/sandbox

FIGURE 7.14 Formatting the Thumb Drive

FIGURE 7.13 Format Thumb Drive as ext2

Linux Data Hiding 155

/dev/sdc1 opened for read-only access

/dev/sdc1 was not cleanly unmounted.

Do you want to continue (y/n)? y

122160 inodes (122149 free)

487992 blocks of 4096 bytes (479595 free)

last mounted on Wed Dec 31 19:00:00 1969

/dev/sdc1 is mounted. Do you want to continue (y/n)? y

reading log file: opening log file: No such file or directory

no entries for /dev/sdc1 in log file

searching for deleted inodes on /dev/sdc1:

|==|

122160 inodes scanned, 2 deleted files found

 user name | 1 <12 h | 2 <48 h | 3 <7 d | 4 <30 d | 5 <1 y | 6 older

-------------+---------+---------+-------+---------+--------+--------

spihuntr | 2 | 0 | 0 | 0 | 0 | 0

First we are prompted for the username. As mentioned earlier, the inode saves

the deletion time. “e2undel” uses this to provide a table of deleted files broken

out by timeframes. Therefore, at the second prompt we enter our timeframe of

less than 12 h by entering a 1 at the prompt.

Select user name from table or press enter to exit: spihuntr

Select time interval (1 to 6) or press enter to exit: 1

 inode size deleted at name

 12 15 May 31 14:31 2012 * ASCII text

 13 27 May 31 14:32 2012 * data

FIGURE 7.15 The Formatted Thumb Drive with ext2 Filesystem

CHAPTER 7: Operating System Data Hiding156

This will now display details about each of the files to be recovered. Since we’re

going to recover both files, we select inodes 12 and 13. Then hit enter at the

file prompt to exit.

Select an inode listed above or press enter to go back: 12

15 bytes written to /home/spihuntr/sandbox/inode-12-ASCII_text

Select an inode listed above or press enter to go back: 13

27 bytes written to /home/spihuntr/sandbox/inode-13-data

Select an inode listed above or press enter to go back:

 user name | 1 <12 h | 2 <48 h | 3 <7 d | 4 <30 d | 5 <1 y | 6 older

-------------+---------+--------+--------+---------+--------+--------

 spihuntr | 2 | 0 | 0 | 0 | 0 | 0

Select user name from table or press enter to exit:

spihuntr@spihuntrubuntu:∼$

Our files should now be saved in our destination directory. By changing to the

destination directory, we can see our saved inodes as files. Since the filename

is lost when the file is deleted, the recovery automatically assigns a filename to

the recovered file.

spihuntr@spihuntrubuntu:∼/sandbox$ ls -al

total 32

drwxr-xr-x 2 spihuntr spihuntr 4096 2012-05-30 22:21 .

drwxr-xr-x 2 spihuntr spihuntr 4096 2012-05-30 22:23 ..

-rwxr-xr-x 1 root root 15 2012-05-31 14:33 inode-12-

ASCII_text

-rwxr-xr-x 1 root root 27 2012-05-31 14:33 inode-13-data

Now is the moment of truth. We originally hid our files in our extended filesys-

tem by deleting them. Then we used “e2undel” to recover the files. If we review

the contents of the file, we can see it contains the data from the original file.

spihuntr@spihuntrubuntu:∼/sandbox$ more inode-12-ASCII_text

hidden message

spihuntr@spihuntrubuntu:∼/sandbox$

Our tactic was a success! These techniques are not limited to just ext2 extended

filesystem. “debugfs” for example can be used to recover files in ext3 and ext4

filesystems as well. In addition, although we performed this on a Ubuntu

distribution, this technique would work on Mac OS, Red Hat, Android, and

other distributions that use extended filesystems. But it should be noted that

the technique is not completely foolproof. Very active extended filesystems will

Linux Data Hiding 157

overwrite their deleted files far more often, this minimizing life of the deleted

file before it’s overwritten. But for a personal laptop, with a spare partition,

or for hiding data on a thumb drive this technique is very useful and every

effective.

TrueCrypt

Per the TrueCrypt10 website “TrueCrypt is a software system for establishing

and maintaining an on-the-fly-encrypted volume (data storage device). On-

the-fly encryption means that data is automatically encrypted right before it

is saved and decrypted right after it is loaded, without any user intervention.

No data stored on an encrypted volume can be read (decrypted) without using

the correct password/keyfile(s) or correct encryption keys. Entire file system is

encrypted (e.g. file names, folder names, contents of every file, free space, meta

data, etc.).”

TrueCrypt also provides the means to create a “hidden” volume. To some, this

provides “plausible deniability” when confronted by an adversary. Plausible deni-

ability is a situation in which there is “little or no evidence of wrongdoing or

abuse.” In legal terms, “it refers to the lack of evidence proving an allegation.”

Providing a way to hide volumes allows users to arguably employ plausible deni-

ability of confronted by an adversary to reveal suspected evidence. TrueCrypt’s

design does not contain known file headers and the data when analyzed appears

as pure random data.

A real-life case involved TrueCrypt and plausible deniability.11 Daniel Dan-

tas was a banker suspected by the Brazilian government of financial crimes.

The Brazilian police confiscated five hard drives secured using TrueCrypt. After

5 months of analysis, the Brazilian National Institute of Criminology deferred

the analysis to the FBI, but after an addition 12 months the FBI was also unsuc-

cessful with cracking them.12

TrueCrypt has captured worldwide attention and is worthy of a deeper view

into how this tool works. Let’s explore TrueCrypt with a walkthrough, of the

installation and use of the product. TrueCrypt is supported on a number

of platforms including Windows and Linux. In this walkthrough, we have

downloaded the gzip from the TrueCrypt website truecrypt.org (see Figures

7.16 and 7.17).

10 TrueCrypt—www.truecrypt.org.
11 Schneier, B. (2006). Plausible deniability—Definition within the context TrueCrypt Schneier

on security, a blog converting security and security technology, Blog April 18—http://www.

schneier.com/blog/archives/2006/04/deniable_file_s.html.
12 Brazilian banker’s crypto baffles FBI—http://www.theregister.co.uk/2010/06/28/brazil_

banker_crypto_lock_out/.

http://truecrypt.org
http://www.truecrypt.org
http://www.schneier.com/blog/archives/2006/04/deniable_file_s.html
http://www.schneier.com/blog/archives/2006/04/deniable_file_s.html
http://www.theregister.co.uk/2010/06/28/brazil_banker_crypto_lock_out/
http://www.theregister.co.uk/2010/06/28/brazil_banker_crypto_lock_out/

CHAPTER 7: Operating System Data Hiding158

Once installed, the GUI can be initiated from the Linux prompt by simply run-

ning “truecrypt”:

spihuntr@spihuntrubuntu:∼$ truecrypt

In this walkthrough we’re going to use a 2GB USB thumb drive to create a

TrueCrypt drive with a hidden volume. For this we plug-in our USB drive into

our Ubuntu laptop and select the “Create a volume with a partition/drive.”

Then choose “Hidden Volume” (see Figures 7.18 and 7.19).

FIGURE 7.17 TrueCrypt Package Installation

FIGURE 7.16 TrueCrypt Setup

Linux Data Hiding 159

This will prompt for a partition or device. In this example, we choose our 2GB

thumb drive and then our encryption options (see Figures 7.20–7.22).

Next, the Volume Creation Wizard will format the “Outer Volume.” This will

be the host volume for one or more hidden volumes (see Figure 7.23).

FIGURE 7.18 Choosing a Partition/Drive for Our Hidden Volume

FIGURE 7.19 Specifying a Hidden TrueCrypt Volume

CHAPTER 7: Operating System Data Hiding160

FIGURE 7.20 Choosing the Thumb Drive for the Hidden Volume

FIGURE 7.21 Choosing AES as the Volume Encryption

Linux Data Hiding 161

Once installed, the GUI can be initiated from the Linux prompt by simply

running “truecrypt.” Then the program will walk you through the “Hidden

Volume” setup (see Figures 7.24–7.27).

FIGURE 7.23 Formatting the “host” Volume

FIGURE 7.22 Choosing a Password for the “host” Volume

CHAPTER 7: Operating System Data Hiding162

FIGURE 7.25 “Payload” Hidden Volume Encryption Options

FIGURE 7.24 TrueCrypt “Payload” Volume Creation Wizard

163Linux Data Hiding

Once complete, we can now mount and open our hidden volume. Choose the

“Select Device” to choose our 2GB USB thumb drive (see Figure 7.28).

This will prompt you for the password used during the setup and will then

allow the volume to be mounted (see Figure 7.29).

FIGURE 7.26 “Payload” Hidden Volume Size Option

FIGURE 7.27 “Payload” Filesystem Type

CHAPTER 7: Operating System Data Hiding164

FIGURE 7.29 Entering Password Used During Setup to Protect the TrueCrypt Volume

FIGURE 7.28 Mounting and Opening Newly Created Volume

165

Viewing the properties allows you to review the details about the TrueCrypt

volume including the encryption (see Figures 7.30 and 7.31).

The volume is now fully accessible until unmounted. As demonstrated, the setup

for TrueCrypt is straightforward when using the wizard. This level of encryption,

randomization of data, and ability to hide data in volumes is quite powerful.

This also runs under Windows, putting the power of this program in the hands

of virtually anyone. A forensic investigator would be quite challenged in even

determining if a drive has TrueCrypt encrypted data on it, and recovery of this

without the password is nearly impossible as of the publication of this book.

It is important to note that Peter Kleissner demonstrated at Black Hat USA 2009

that his Stoned bootkit can circumvent TrueCrypt’s MBR (Master Boot Record)

thus bypassing the full volume encryption.13 But this only works in specific

circumstances. Specifically, the user running an untrusted executable bootkit

with root privileges, and secondly allowing physical access to the drive.14 In

other words, if you’re going to use TrueCrypt follow security best practices.

13 Stoned bootkit—http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-

Kleissner-StonedBootkit-PAPER.pdf.
14 TrueCrypt vs. Peter Kleissner, or Stoned BootKit revisited—http://ctogonewild.

com/2009/08/04/truecrypt-vs-peter-kleissner-or-stoned-bootkit-revisited/.

FIGURE 7.30 Viewing the TrueCrypt Volume Properties

Linux Data Hiding

http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-Kleissner-StonedBootkit-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-Kleissner-StonedBootkit-PAPER.pdf
http://ctogonewild.com/2009/08/04/truecrypt-vs-peter-kleissner-or-stoned-bootkit-revisited/
http://ctogonewild.com/2009/08/04/truecrypt-vs-peter-kleissner-or-stoned-bootkit-revisited/

CHAPTER 7: Operating System Data Hiding166

References

Brazilian banker’s crypto baffles FBI. <http://www.theregister.co.uk/2010/06/28/brazil_

banker_crypto_lock_out/>.

Deleted files recover howto. <http://e2undel.sourceforge.net/recovery-howto.html>.

Design and implementation of second extended filesystem. <http://e2fsprogs.sourceforge.net/

ext2intro.html>.

e2undel. <http://e2undel.sourceforge.net/>.

Gparted. <http://gparted.sourceforge.net/>.

Hack3rCon II – Lurking in the shadows. <http://www.youtube.com/watch?v=ant3ir9cRME>.

How the volume shadow copy service works. <http://technet.microsoft.com/en-us/library/

cc785914(v=ws.10).aspx>.

Revealed: Operation Shady RAT. <www.mcafee.com/us/resources/white.../wp-operation-shady-rat.

pdf>.

Schneier, B. (2006). Plausible deniability – Definition within the context TrueCrypt Schneier on

security, a blog covering security and security technology, Blog April 18. Stable URL: <http://

www.schneier.com/blog/archives/2006/04/deniable_file_s.html>.

Stoned bootkit. <http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-

Kleiss ner-StonedBootkit-PAPER.pdf>.

The truth behind Shady RAT. <http://www.symantec.com/connect/blogs/truth-behind-shady-rat>.

TrueCrypt. <www.truecrypt.org>.

TrueCrypt vs. Peter Kleissner, or Stoned BootKit revisited. <http://ctogonewild.com/2009/08/04/

truecrypt-vs-peter-kleissner-or-stoned-bootkit-revisited/>.

What you should know about volume shadow copy/system restore in Windows 7 & Vista (FAQ).

<http://blog.szynalski.com/2009/11/23/volume-shadow-copy-system-restore/>.

FIGURE 7.31 Access the Files in the TrueCrypt Volume

http://www.theregister.co.uk/2010/06/28/brazil_banker_crypto_lock_out/
http://www.theregister.co.uk/2010/06/28/brazil_banker_crypto_lock_out/
http://e2undel.sourceforge.net/recovery-howto.html
http://e2fsprogs.sourceforge.net/ext2intro.html
http://e2fsprogs.sourceforge.net/ext2intro.html
http://en.wikipedia.org/wiki/Ext2
http://gparted.sourceforge.net/
http://www.youtube.com/watch?v=ant3ir9cRME
http://technet.microsoft.com/en-us/library/cc785914(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc785914(v=ws.10).aspx
http://www.mcafee.com/us/resources/white.../wp-operation-shady-rat.pdf
http://www.mcafee.com/us/resources/white.../wp-operation-shady-rat.pdf
http://www.schneier.com/blog/archives/2006/04/deniable_file_s.html
http://www.schneier.com/blog/archives/2006/04/deniable_file_s.html
http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-Kleissner-StonedBootkit-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-Kleissner-StonedBootkit-PAPER.pdf
http://www.symantec.com/connect/blogs/truth-behind-shady-rat
http://www.truecrypt.org
http://ctogonewild.com/2009/08/04/truecrypt-vs-peter-kleissner-or-stoned-bootkit-revisited/
http://ctogonewild.com/2009/08/04/truecrypt-vs-peter-kleissner-or-stoned-bootkit-revisited/
http://blog.szynalski.com/2009/11/23/volume-shadow-copy-system-restore/

Data Hiding.

Copyright © 2013 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00008-0

167

CHAPTER 8

Virtual Data Hiding

CONTENTS

Introduction167

Hiding a Virtual
Environment168
Getting Started168

A Review of Virtual
Environments171
VMware Files172

Hiding Data in a

VMware Image172

Summary179

References179

n Introduction

n Hiding a Virtual Environment

n A Review of Virtual Machines

INFORMATION IN THIS CHAPTER:

INTRODUCTION

Corporations continue to enforce stricter rules and requirements on end user

computers to deter infection by malware, viruses, Trojans, and undesired use.

With the proliferation of virtual machines or virtual environments, users are

becoming craftier in finding ways to use these virtual machines to access pro-

grams and Websites blocked by their company. In addition, malicious users

are also using virtual machines to remain anonymous while stealing corporate

secrets or confidential data such as PII (personal identifiable information) or

credit card information.

Detecting these virtual environments across the enterprise network remains an

ongoing challenge for administrators. These virtual environments can elude detec-

tion by anti-virus, network scans, and end-point protection, as many of these

products do not scan virtual machines. To further complicate the detection prob-

lem, some of these virtual machines can run from removable storage such as USB

drives or SD cards. For example, a portable version of VirtualBox is available which

allows one to run VirtualBox on a USB thumb drive. Other virtual environment

products are specifically designed to be carried from computer to computer, such

as MojoPac.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00008-0

CHAPTER 8: Virtual Data Hiding168

HIDING A VIRTUAL ENVIRONMENT

MojoPac by RingCube was acquired by Citrix and is still available in a free

version from http://www.mojopac.com. MojoPac allows you to run a virtual

environment on a USB thumb drive and carry it from computer to computer,

thus allowing you to carry your specifically tuned Windows XP environment

from computer to computer. But aside from the arguable shortcoming, its ease

of setup and portability makes it very attractive to anyone looking to hide a

virtual environment on their desktop.

Getting Started

To get started simply download the latest version of MojoPac from the Website.

You will also need a USB thumb drive, preferably a new one with no data on it.

MojoPac is essentially going to treat the drive like a standard Windows C:\

drive (see Figure 8.1).

Once you kick-off the installation, the next screen will ask you to pick the tar-

get drive, in this case your USB drive. Note that there is also an “Add shortcut

to desktop” option. If your goal is to hide your tracks, it would be a good idea

to disable this before proceeding (see Figure 8.2).

FIGURE 8.1 MojoPac Installation

http://www.mojopac.com

Hiding a Virtual Environment 169

FIGURE 8.2 MojoPac Drive Selection

FIGURE 8.3 MojoPac Desktop

CHAPTER 8: Virtual Data Hiding170

The installation program will then proceed to prepare the drive for the virtual

machine. Following the installation, you can now run the MojoPac desktop

(see Figure 8.3).

The MojoPac USB drive can now be carried from Windows XP machine to

Windows XP machine, thereby allowing the user to attempt to avoid detection.

It should be noted that remnants of MojoPac’s use on a Windows XP machine

may remain following its use. As detailed in Barrett’s “Virtualization and Foren-

sics,”1 evidence of MojoPac’s use can be found on the host system in the ntuser.

dat, prefetch files, the page file, and other documented places. Some of this is

configurable in the professional version of MojoPac. By going to the General

Tab, you can click on Policies (within Settings in the General tab) to configure

(or limit) the interaction between the host machine and the MojoPac virtual

environment (see Figures 8.4 and 8.5).

With these settings you can limit access to the fixed and removable drives on

the PC, disable access to the MojoPac filesystem from the host, among other

settings. These options can be used to thwart detection over the network or

with a host-based IDS.

1 Virtualization and Forensics, by Barrett.

FIGURE 8.4 MojoPac General Tab

A Review of Virtual Environments 171

A REVIEW OF VIRTUAL ENVIRONMENTS

In the previous section, we review MojoPac, a virtual environment that runs

within the host operating system. There are also a number of virtual machine

products the most common of course being VMware. These virtual machine

products contain an entire operating system.

Typically when hiding large chunks of data, multimedia files are commonly

used due to their large size. As described in earlier chapters, spreading that

hidden data across a 100 MB multimedia file has minimal effect on the mul-

timedia file itself, yet allows for larger quantities of data to be hidden when

compared to say a 2 MB JPEG file. The result is a multimedia file whose video

or sound quality is typically unaffected. But if a large quantity of data, say 2 MB

is hidden within a JPEG file, the result is easily seen since the image will typi-

cally become very fuzzy or fragmented.

Due to their large size, virtual machines also make a great place to hide

large quantities of data. But unlike static multimedia files, virtual machines

dynamically change in size on an ongoing basis when the virtual machine

is in use. This circumvents traditional data integrity programs that seek to

identify illegitimate changes to a file. Therefore, in order to hide data within

a virtual machine, we must first understand the components of a virtual

machine.

FIGURE 8.5 MojoPac Policies for Rogue Settings

CHAPTER 8: Virtual Data Hiding172

VMware Files

In order to hide data within a virtual machine, we must first understand the

components of a virtual machine. A VMware virtual machine image is typically

comprised of a small group of files. There is a page on the VMware site titled

“What Files Make Up a Virtual Machine?”2 at VMware.com that lists the files

and their purpose (see Figure 8.6).

*.vmdk—This file is the virtual hard drive. These files can be a maximum

of 2 GB in size. In addition, the *.vmdk file contains the virtual machine’s

data, plus space for overhead. *.vmdk files were formally known as *.dsk

in older versions of VMware.

*.nvram—Virtual machine’s BIOS and the number of hard drives.

*.vmsd—Used to store the state of the virtual machine by taking a snap-

shot and storing the snapshot metadata.

*.vmx—A text file that stores the configuration of the virtual machine. It

stores information about the operating system, devices, network interfac-

es, etc. Below is an example of a *.vmx configuration file (see Figure 8.7).

*.vmxf—Additional file that contains the metadata for virtual machines

operating as a team.

Hiding Data in a VMware Image

Now that we have an understanding of the files that comprise a VMware image,

we can now focus on the appropriate carrier file for the larger file we’d like to

hide. Since the virtual hard drive *.vmdk is really the only large file, we’ll focus

2 What files make up a virtual machine? http://www.vmware.com/support/ws55/doc/

ws_learning_files_in_a_vm.html.

FIGURE 8.6 Sample File Listing for a VMware Virtual Machine

http://www.vmware.com/support/ws55/doc/ws_learning_files_in_a_vm.html
http://www.vmware.com/support/ws55/doc/ws_learning_files_in_a_vm.html

A Review of Virtual Environments 173

on that. The files can range from 50 MB to 2 GB. And in enterprise environ-

ments they can range into the terabytes range. But the reality is that for our use,

a reasonable file size for download or transfer over the network is ideal, so a

50 MB file is more ideal.

If you don’t have a *.vmdk file to use, there are hundreds of virtual appliances

available for free on the VMware site. Simply download your favorite appliance

and you will receive a bundle that includes all of the files necessary for running

your virtual machine. Included you will find the virtual disk file *.vmdk. Note

that you will also need to download VMware Player from the VMware site if

you don’t have that already (see Figure 8.8).

Before we begin with hiding our data in the *.vmdk file, we must ensure that

the virtual machine is shutdown and not running. Otherwise it could have

FIGURE 8.7 *.vmx VMware Configuration File Contents

CHAPTER 8: Virtual Data Hiding174

adverse effects. If the virtual machine is shutdown, we can then open the

*.vmdk file within WinHex for analysis to determine the best hiding location

for our payload.

Headers for *.vmdk files can vary, but the most common is KDMV (vmdk

spelled backwards) found in monolithicSparse files. MonolithicSparse files are

essentially virtual disks that are all one file. Also contained with the *.vmdk

file is a descriptor file that details the disk layout, geometry (similar to a physi-

cal disk geometry), and size of the virtual image as well as where it exists on

the disk (as signified by the offset). Bottomline, it is important to keep the size

of the *.vmdk the same to ensure there are no inconsistency errors when the

virtual machine is run.

In addition, since a *.vmdk file is essentially a virtualized version of the physi-

cal hard disk, it contains padding just like the padding in the partitions and

sectors of a physical hard drive. As a result, you will find lots of padding scat-

tered throughout the virtual disk, especially towards the end of the file (see

Figure 8.9).

For our example, we’ll use a 2 MB JPEG file and insert it into the virtual disk

*.vmdk. Rather than append it to the file, we will actually replace a 2 MB chunk

of padding and data with the contents of the 2 MB file. We could accomplish

this using WinHex to simply copy our payload file over to the *.vmdk file and

use WinHex’s replace functionality replace the bytes. But there is a VMDK file

editing tool we can use to accomplish the same task.

FIGURE 8.8 Running the Ubuntu 8.04 Virtual Machine Downloaded from VMware.com

A Review of Virtual Environments 175

Dsfok-tools (sanbarrow.com)3 is a group of programs for Windows designed

to edit VMDK files without the need to open the VMDK file in a hex editor.

Normally the tools are used to edit the descriptor file contained within the

VMDK file. Included in the toolset are dsfo and dsfi. The dsfo program allows

configuration information to be extracted from the VMDK file, whereas dsfi

can be used to inject data into the VMDK file. Since we’d like to insert our JPEG

payload file into the VMDK carrier file, we can use the dsfi to modify the exist-

ing bytes, rather than appending it to the file, rather than changing the size of

the VMDK file which could corrupt it. In addition, changing the VMDK file size

could cause errors at runtime because it would also make the file size inconsis-

tent with the descriptor file size parameter.

Per sunbarrow.com, dsfi uses the following syntax:

dsfi <destination> <offset> <size> <source>

n Null size is interpreted as max possible input.

n Negative size is calculated on current file size.

n Negative offset is calculated from end of file.

n Use “e” as offset to indicate end of file.

n Use “$” as destination to check MD5 signature only.

Our goal is to start with the EOF marker and go backwards far enough to allow

us to insert our JPEG payload file. In order to do this we need to determine the

size of the JPEG file. If we open the file in WinHex, we can determine the raw

file size in the left-hand column. We determine this to be 1,571,228 bytes (see

Figure 8.10).

3 dskfok-tools http://sanbarrow.com.

FIGURE 8.9 Random Padding Within the Virtual Disk Represented by the Zeros

http://sanbarrow.com
http://sunbarrow.com
http://sanbarrow.com

CHAPTER 8: Virtual Data Hiding176

We can now use dsfi to insert the JPEG file into the *.vmdk file. We can use

the negative offset to calculate from the end of the file. If root.vmdk is our file

name, our command would then be (see Figure 8.11):

C:\ dsfi root.vmdk -1571228 1571228 scuba.jpg

If we now reopen the root.vmdk file in WinHex, we can see the JPEG file was

inserted by replacing the last 1,571,228 bytes of the root.vmdk file with the

contents of the JPEG file (see Figure 8.12).

We now have a virtual disk *.vmdk file with an image embedded within it. This

could be left as a dead drop on the network to be picked up by the recipient at

a later time.

The interesting thing is that VMDK file will still play within VMware Player,

and it still operates like a normal virtual machine, which has no indication

that it’s been tampered with. There are no alerts to the user, not even a prompt

asking if you would like to copy or move this image before playing it, as is

common with new images that have been downloaded. Nor is there a message

that the virtual machine has been modified since last use. If a before and after

FIGURE 8.11 Using dsfi Tool to Insert Payload File into VMDK Carrier File

FIGURE 8.10 JPEG Payload File Size

A Review of Virtual Environments 177

image existed, they could be compared in a hex editor to identify the insertion

of the JPEG file.

Simply playing the virtual machine over and over has no impact on the hid-

den picture. But since we’re talking about a virtual disk, this hidden data will

probably be written over with other disk data if the virtual machine is used

frequently. The reality is that in a dead drop scenario, the intended user can

simply use the virtual disk as a covert carrier mechanism. The intended user

has no concern if others download the virtual machine, play it, and eventually

unknowingly overwrite the hidden data. In fact, that may actually be a plus! In

the example below, the virtual machine is run following the insertion with no

impact on the virtual machine’s functionality (see Figure 8.13).

FIGURE 8.13 VMware Virtual Machine Running Cleanly Following Insertion of JPEG

FIGURE 8.12 JPEG Inserted into root.vmdk

CHAPTER 8: Virtual Data Hiding178

Extracting the hidden picture from the VMware virtual machine vmdk file is

very similar to hiding it (see Figure 8.14).

For this we can use the other tool bundled with aforementioned dsfok-tools

called dsfo:

C:\ dsfo root.vmdk -1571228 1571228 scuba.jpg

This will extract the last 1,571,228 bytes of the file and store it in “scuba.jpg.”

FIGURE 8.14 Extract Picture from VM

References 179

SUMMARY

In this chapter we’ve demonstrated ways to hide virtual environments and tech-

niques for hiding data within a virtual machine. Although these techniques may

be less common than others demonstrated in this book, they are very viable and

also stealthy in nature. The use of virtual environments to hide data must be

given serious consideration when deploying a security strategy to detect and deter

undesirable use on the network. For those with large virtual machine deploy-

ments, data integrity of these systems should be given serious consideration.

References

Barrett, D., & Kipper, G. (2010). Virtualization and forensics. Syngress Publishing. (pp. 58–61)

dsfok-tools. <http://sanbarrow.com/vmdk-tools.html#dsfo>.

What files make up a virtual machine? <http://www.vmware.com/support/ws55/doc/ws_learning_

files_in_a_vm.html>.

http://sanbarrow.com/vmdk-tools.html#dsfo
http://www.vmware.com/support/ws55/doc/ws_learning_files_in_a_vm.html
http://www.vmware.com/support/ws55/doc/ws_learning_files_in_a_vm.html

This page is intentionally left blank

Data Hiding.

Copyright © 2013 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00009-2

181

CHAPTER 9

Data Hiding in Network Protocols

CONTENTS

Introduction181

VoIP Data Hiding184

Delayed Packet
Modification
Method187

IP Layer Data
Hiding, The TTL
Field188

Investigating
Protocol Data
Hiding190

Summary191

References191

n Introduction

n VoIP Data Hiding

n Delayed Packet Modification Method

n IP Layer Data Hiding, The TTL Field

n Investigating Protocol Data Hiding

INFORMATION IN THIS CHAPTER:

INTRODUCTION

On Cinco de Mayo in 1997, which happened to be the first Monday in May

that year, the hacker publication First Monday included an article entitled,

“Covert Channels in the TCP/IP Protocol Suite,” by Rowland.

“The TCP/IP protocol suite has a number of weaknesses that allow an attacker to

leverage techniques in the form of covert channels to surreptitiously pass data in

otherwise benign packets. This paper attempts to illustrate these weaknesses in both

theoretical and practical examples” (Rowland, 1997).

The methods employed in this paper exposed data hiding vulnerabilities in

the Transmission Control Protocol (TCP) and demonstrated a very simple and

straightforward method for hiding data in the TCP initial handshake sequence.

In some ways, this served as a warning that hiding information within a data

stream was not only plausible but was also simple and practical. As with

most cyber security related warnings of this type, there was an initial outcry

to develop more secure protocols that could mitigate such threats. Once the

voices died down, we moved on to the next threat of the day and many forgot

about the vulnerability.

In order to illustrate the real flexibility in Covert TCP we modified Craig’s origi-

nal work and utilized the initial sequence number for data hiding. Let’s take a

http://dx.doi.org/10.1016/B978-1-59-749743-5.00009-2

182 CHAPTER 9: Data Hiding in Network Protocols

closer look at the Covert TCP approach. Figure 9.1 shows a typical TCP three

way handshake necessary to make a TCP connection. When setting up a con-

nection, the critical element of our modified Covert TCP is the selection of the

initial sequence number.

Since the initiator of the session (in this example the client) specifies the

initial sequence number we have what we need, a way to convey informa-

tion through the control of the sequence number. In the Wireshark snap-

shot shown in Figure 9.2 we have highlighted the client-specified sequence

number both as the decimal value converted by Wireshark and the hex

value in the TCP Packet at the bottom. Actually, we need to examine the hex

value and convert it to decimal properly interpreting it as a small endian

value:

C4 52 0B 00 → 00 0B 52 C4 hex when converted from little endian

This hex value interpreted yields a decimal value of 742,084 (0B 52 C4 con-

verted hex to decimal).

To obscure the information being hidden for this simple example we chose to

use a constant multiplier K that would be shared between the client and server

of 6236. Thus whatever single byte value we wish to send we multiply that

ASCII value by the arbitrary constant 6236:

ASCII value × K = Sequence Number

Then to recover the hidden characters on the server side you reverse the process:

Sequence Number K = ASCII value

FIGURE 9.1 Covert TCP Initial Handshake Sequence

183Introduction

For the example in Figure 9.2, we were attempting to transmit the letter “w”

which is 119 in decimal. To do so we follow the formula state above:

119 × 6236 = 742,084 Decimal = 00 0B 52 C4 in hex

The execution of the complete message transferred is shown in Figure 9.3.

We could improve on this technique by becoming more sophisticated with the

cover, using for example XOR value to cover the string of characters we wish to

transmit, and this would also then improve randomness of the each successive

sequence number. This data hiding or leakage method is limited to sending

1or 2 bytes per connection, but if you need to exchange keys, short messages, or

just provide a beacon this method would be hidden in the haystack of billions

of connects made each day from even small organizations.

I wonder if a viable solution will exist by Monday May 5, 2014 when Cinco de

Mayo falls once again on the first Monday in May? As of today, not only is the

TCP protocol still vulnerable to Craig’s initial warning, but hundreds of new

protocols have arrived on the scene, most containing a plethora of opportuni-

ties to hide information in innocuous ways.

FIGURE 9.2 Wireshark TCP Handshake Capture

CHAPTER 9: Data Hiding in Network Protocols184

VOIP DATA HIDING

One of the new areas of interest is Voice over Internet Protocol (VoIP) solu-

tions. The reasons are quite obvious: VoIP is ubiquitously deployed and uti-

lized; VoIP solutions generate a large number of small packets which would

be ideally suited for hiding small pieces of a larger message; and finally, the

wide variety of packet types, codecs, and encoding methods for VoIP abound,

providing cover for the needle in a haystack.

VoIP utilizes network transport mechanisms that are inherently unreliable. The

underlying Real-Time Transfer Protocol (RTP) and the Universal Datagram

Protocol (UDP) do not retransmit lost or delayed packets. At first glance this

would appear to be a huge drawback for data hiding activities, since losing

packets that contain portions of the secret message—especially if they were

encrypted—would be problematic. Actually, one of the methods we will dis-

cuss leverages this weakness into a strength.

To begin, I’m going to focus on a simple RTP protocol running on top of UDP

in a point-to-point arrangement to explain the core elements of the data hiding

method. Of course to execute this within a true VoIP setting, you would need

to work with session initiation protocol (SIP), Real-Time Transfer Control Pro-

tocol (RTCP) and others. The diagram below depicts this simplified structure.

Figure 9.4 depicts a simplified version of the VoIP RTP packet structure. As you

can see, the RTP packet is a payload of the UDP packet which carries out the

unreliable transport. In turn, the UDP packet is the payload of the IP packet,

FIGURE 9.3 Covert TCP Execution with Modified Sequence Number Method

VoIP Data Hiding 185

which provides the Internet routing needed. In Figure 9.5 we turn our attention

then to the RTP packet exchange between the now infamous Alice and Bob.

As you can see in Figure 9.5, Alice and Bob exchange a sequence of RTP pack-

ets in a continuous stream. As you recall from above, packets can be missing,

dropped, out of sequence, or delayed, but since the protocol is not meant to be

completely reliable, data continues to stream. As mentioned, control packets

and other protocol elements that can assist in re-establishing connections if

things go bad have been omitted from this 30,000 ft view.

The simplest method of data hiding available is to insert content directly into

the payload section of each packet. The secret message is broken up into small

chunks and embedded directly into the payload. The current methods we have

evaluated uses one of the two basic schemes: (see Figure 9.6)

FIGURE 9.4 VoIP RTP Simplified Packet Overview

FIGURE 9.5 RTP Packet Exchange Alice and Bob

CHAPTER 9: Data Hiding in Network Protocols186

1. The small chunks of the overall secret message are inserted into the header

of the payload section of the RTP packet. Since most RTP payload types

have a built-in header that provides information to the receiver about the

configuration of the payload, it is possible to insert a small number of

bytes into this payload header.

2. The small chunks of the secret message are broken into a bit stream and

each bit is used to overwrite the least significant bit of encoded data

within the payload.

As you can see in Figure 9.7, we have performed a capture during a RTP

VoIP session between two hosts. We have highlighted one packet of 1000s

streaming between two local hosts 192.168.2.1 and 192.168.2.2. In order

to make the data hiding visible we inserted a small test phrase into the pay-

load of the RTP packet namely “Data Hiding.” Normally this would either

be encrypted content or broken into a bit stream that would be embedded

in the LSB of content of the payload to make it virtually invisible. Thus in

the myriad of packets streaming between the hosts, discovery would be dif-

ficult at best.

The problem with both methods of course is that if data loss occurs (lost or

delayed packets), some of the hidden data will also be lost. This can be overcome

by transmitting redundant packets (secret message chunks). The applications

FIGURE 9.6 RTP Payload Insertions

Delayed Packet Modification Method 187

we have reviewed that perform this function allows for the setting of both the

redundancy and frequency of the retransmission.

DELAYED PACKET MODIFICATION METHOD

The next method I reviewed is actually the most interesting, and is depicted in

Figure 9.8. This method actually takes advantage of the fact that RTP packets

are sometimes delayed, delivered out of order, or lost in transmission as a core

element of the spoof. This approach systematically extracts specific packets

from the data stream before they are released by the sender. This causes certain

packets to purposely not be delivered in a timely fashion to the receiver. The

receiving application, whether VoIP or an audio player, automatically compen-

sates for the delayed packet and fills in the blanks, if you will. Since most RTP

packets only contain a few milliseconds of audio, the compensation is hardly

ever noticed when listening to a conversation or even a streamed audio track.

Here is the best part! Once the packet has been extracted from the stream, the

data hiding application can utilize the full payload section to insert slices of

FIGURE 9.7 RTP Theora Payload Hijacking

CHAPTER 9: Data Hiding in Network Protocols188

the hidden message content. The data hiding application then reinserts the

packet back into the stream (after a few seconds of delay). Once the packet

arrives at the destination (now significantly delayed), the receiving applica-

tion discards the packet (it is never used), since it has already compensated for

it earlier. However, a listening application recognizes the delayed packet and

extracts it, and recovers the payload to rebuild the original message.

IP LAYER DATA HIDING, THE TTL FIELD

Since virtually any protocol at any layer is susceptible to data hiding, we

decided to examine the work horse of Internet routing the IP packet. The Inter-

net Protocol Layer IPv4 as shown in Figure 9.9 still constitutes the bulk of both

UDP and TCP delivery.

Examining the layout of the protocol fields that make up the IP Header, we see

for standard packets there are 20 bytes of data defined without optional values.

The fields all have very specific purposes, for example, assigning the source and

destination addresses, defining the type of service, checksum, or underlying pro-

tocol. One interesting field is the 8 bit or 1 byte time to live or TTL field. Due to

the fact that IP is a “best effort” protocol, meaning exactly that, it will do its best

to deliver the packet to the ultimate destination. Thus forced the creation of a

mechanism that would end the life of a packet if it simply could not be deliv-

ered to the destination. Packet travels from router to router in search of a path to

the ultimate destination. Each time this occurs the TTL field is decremented by

one, once the TTL is decremented to zero the packet is discarded. This prevents

packets that cannot be delivered from looping forever and clogging the network.

FIGURE 9.8 RTP Delayed Packet Modification

IP Layer Data Hiding, The TTL Field 189

Due to the intelligent nature of the modern routing networks we have today

most packets arrive at their destination in just a few hops. There does not seem

to be definitive statistics on average routes a typical IP packet takes. Domestic

traffic I have witnessed passes typically through 8–15 routes, far less than the

255 that TTL allows for. Therefore, we rarely, if ever, exhaust the TTL before

arriving at the destination, unless the destination is unreachable. Therefore,

we could allocate the upper 2 bits of the TTL for data hiding without effecting

packet delivery. In Figure 9.10, we have defined what each packet would look

like. The default would be hex 3F for all packets (or 63 routes possible), leaving

the upper 2 bits available for data embedding with every packet.

In Figure 9.11 we provide an example of how this would function. If we

would like to stego into the IP stream the word “H I D E.” First we convert the

FIGURE 9.9 Internet Protocol Stack

FIGURE 9.10 TTL Field Break-Down for Data Hiding

CHAPTER 9: Data Hiding in Network Protocols190

characters into ASCII hex values. For example a capital H = 48 Hex. We then

further break down these values into four 2 bit nibbles. In turn each of those

2 bit nibbles becomes the two upper bits of the TTL value, with the lower 6 bits

always equal to the standard 3F or x x 1 1 1 1 1 1. The x x value is replaced

by the 2 bit nibbles. By inserting these nibbles into the TTL values and form-

ing a sequence of 16 IP packets, we can successfully transfer the message H I

D E. It may seem incomprehensible to send a 1 MB file using this method as

that would take ∼4 million packets, since we can only send ¼ of each byte in

each packet. However, when you consider the number of packets that would

be necessary to stream music or video for an hour say, how many IP packets

would that be?

INVESTIGATING PROTOCOL DATA HIDING

From an investigative perspective analyzing the protocol requires a network

protocol analyzer or sniffer. Wireshark is a great tool for examining the details

of such protocols. Once you suspect this type of behavior is occurring you

can utilize Wireshark to capture the RTP packets flowing between two entities.

At that point, detailed analysis of the headers of the payload section of each

RTP packet is performed to detect inserted values. This may sound completely

impossible or impractical. Actually, since Wireshark has powerful search and

filtering capabilities, and the headers of the packets are quite regular, detecting

the rogue packets is possible with some effort.

FIGURE 9.11 Details of the TTL Data Hiding Scheme

References

When attempting to detect the delayed packet hiding method, you are spe-

cifically looking for packet sequence numbers that are delayed. Sorting by

the packet timestamps and writing a simple python script that will identify

packets delayed more than a couple seconds is possible. Those of you that are

more affluent with SNORT or other intrusion detection sensors, can come up

with other rules and triggers that could constantly monitor for such aberrant

behaviors.

SUMMARY

As you can see with patience, ingenuity and care embedding hidden infor-

mation with Internet protocols is quite reasonable. With so many billions of

messages, Web requests, VoIP, streaming music, and video that generate a qua-

drillion packets a day on the Internet we could easily find a way to hide small

or even large amounts of information. This coupled with Zombies, Trojans,

Keyloggers, and other malicious code left behind by worms and viruses, the

question is how much information is leaking from your organization right

now?

References

Rowland, C. (1997). Covert channels in the TCP/IP protocol suite. First Monday, 2(5). <http://

firstmonday.org/htbin/cgiwrap/bin/ojs/inde9.php/fm/article/view/528/449>

SNORT (2012). Open source network intrusion prevention and detection system (IDS/IPS).

<http://www.snort.org>.

WIRESHARK (2012). Network protocol analyzer information. <http://www.wireshark.org/>.

191

http://firstmonday.org/htbin/cgiwrap/bin/ojs/inde9.php/fm/article/view/528/449
http://firstmonday.org/htbin/cgiwrap/bin/ojs/inde9.php/fm/article/view/528/449
http://www.snort.org
http://www.wireshark.org/

This page is intentionally left blank

Data Hiding.

Copyright © 2013 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00010-9

193

CHAPTER 10

Forensics and Anti-Forensics

CONTENTS

Introduction193

Anti-Forensics—Hiding
your tracks194
Data Hiding

Passwords194

Hiding Your Tracks195

Forensics197
Looking for Data

Hiding Software198

Finding Remaining

Artifacts199

WetStone Technologies

StegoHunt™ 200

Identifying and

View Cached Images

(Cache Auditing

Tools)203

STG Cache Audit 203

Evidence in

Thumbnails204

Searching for Hidden

Directories and Files208

LNS ... 208

Network IDS209

Summary211

References211

n Introduction

n Anti-Forensics—Hiding your tracks

n Forensics

INFORMATION IN THIS CHAPTER:

INTRODUCTION

It has long been rumored that al-Qaeda uses data hiding techniques to covertly

exchange documents related to terrorist plots. Over the last 10 years, al-Qaeda

manuals have been found to contain techniques for covert communications

using steganography programs and techniques. On May 16th, 2011, an Aus-

trian named Maqsood Lodin was questioned by police in Berlin, Germany.

Hidden in his underpants were a digital storage device and memory cards.

The memory card contained files including a video. After thorough analysis,

German investigators determined that over 100 files had been hidden in the

video using steganographic techniques and protected with a password. Upon

cracking the password, the files were determined to include terrorist training

manuals and future plots to seize cruise ships and attacks on Europe.1

In today’s digital world, data hiding has reinvented itself for use in digital covert

communications with one common goal—avoiding detection. And knowing the

anti-forensic techniques for avoiding detection ensures that weak data hiding tech-

niques are avoided. This knowledge provides the basis for refining a methodology

for using data hiding with greater confidence in the most critical of situations.

This chapter is intended to provide additional Forensic and Anti-Forensic tech-

niques for data hiding not covered in the preceding chapters, but will not include

techniques for hiding digital storage devices and memory cards in underpants.

1 Documents reveal al-Qaeda’s plans for seizing cruise ships, carnage in Europe—http://edi-

tion.cnn.com/2012/04/30/world/al-qaeda-documents-future/.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00010-9
http://edition.cnn.com/2012/04/30/world/al-qaeda-documents-future/
http://edition.cnn.com/2012/04/30/world/al-qaeda-documents-future/

CHAPTER 10: Forensics and Anti-Forensics194

ANTI-FORENSICS—HIDING YOUR TRACKS

One of the most common oversights of data hiding that users make is that

they leave the remains of not only the carrier file with the hidden message, but

also the original carrier file. As demonstrated in previous chapters, there are

many techniques for identifying the differences between two identical-looking

files. As a result, it’s highly recommended that the original virgin carrier file be

deleted after creating the carrier file with the payload. This is assuming that the

original isn’t converted into the carrier file with the payload, hence removing

the existence of the original virgin carrier file.

Evidence of the data hiding program should also be removed from the host

computer. If a steganography program is found on a suspect computer, most

likely there are carrier files on the computer as well. If these carrier files are

found, then the only thing between the investigator and revealing the hidden

message is typically the password used in the data hiding program used to hide

the data. If this password is used in other programs such as the login password,

the investigator is that much closer to cracking the key to the hidden data.

Optionally, some users delete the data hiding program following its use. And

don’t forget about Recycle Bin or slack space.

When attempting to hide files in digital photographs it’s recommended that you

choose a custom-made digital photograph rather than one that is common-place.

For example, don’t use a file from Google Images. A common file such as this might

allow an investigator to obtain the original file from somewhere else other than the

suspect computer, thereby allowing the investigator to compare the original file and

the suspect file to identify differences as a result of hidden content in the suspect

file. For example, there are hash databases maintained by agencies and vendors.

Hashing the suspect picture and comparing it to the known hash will immediately

validate the suspicions when the hash computes differently.

Storing the data hiding program and carrier files on removable storage is a

great first step towards eliminating evidence, but that’s assuming that the rest

of the equipment, if not yourself, are not part of an investigation. Let’s con-

tinue by reviewing additional anti-forensic data hiding best practices.

Data Hiding Passwords
Passwords are equally important to consider. As always, remember to use

strong passwords when hiding a message within a carrier file. Common

recommendations include:

n Use a password different from the operating system password, stored

passwords in the browser, or passwords used for network services.

n Use a combination of upper/lower alphanumeric characters and special

characters.

Anti-Forensics—Hiding your tracks 195

n If you must store the password somewhere, consider using Bruce Schnei-

er’s PasswordSafe http://passwordsafe.sourceforge.net/.

Many of the data hiding programs require a user-defined password. When hid-

ing contents using a password it’s commonly recommended that strong pass-

words be used. But there are strong passwords, and then strong passwords.

During my teaching days, I was amazed with the number of administrators

unaware of the hidden characters on a keyboard that can be used to create

a strong password. Most dictionary and brute force attack mechanisms don’t

even incorporate these characters. It’s also a fantastic way to make hell of a

determined cracker’s efforts.

Examples:

n [CTRL]+[ALT]+[C] gives ©

n [CTRL]+[ALT]+[R] gives ®

n [CTRL]+[ALT]+[T] gives ™

n [CTRL]+[ALT]+[E] gives €

Figure 10.1 provides a more comprehensive list of special characters for

Windows.

Using one or more special characters in your password will allow you to avoid

many types of brute force password cracking programs. This is preferred tech-

nique for not only data hiding password protection, but computer security in

general. In addition, simply increasing the quantity of characters used for the

password can exponentially increase the effort required to crack the password.

These techniques will prevent the investigator from using your password to

view your hidden data.

Hiding Your Tracks

In Windows, you can use the cleanmgr utility to wipe your system clean of any

remaining evidence of data hiding software. It is not a silver bullet, but a quick

way to cleanse a machine. From the command line, simply run:

c:\cleanmgr2

This will prompt the user to pick a drive to cleanse. The command will clean

the following:

n Temporary Internet Files.

n Temporary Setup Files.

n Temporary Offline Files.

n Downloaded Program Files.

2 Cleanmgr.exe—http://support.microsoft.com/kb/253597.

http://passwordsafe.sourceforge.net/
http://support.microsoft.com/kb/253597

CHAPTER 10: Forensics and Anti-Forensics196

n Empty the Recycle Bin.

n Windows Temporary Files.

n Optional Windows Components Not Being Used.

n Old chkdsk Files.

n Catalog Files for the Content Indexer.

Windows also keeps track of every program that you run and places the most

frequently run programs in the Start Panel. To clear this list of programs in

Windows 7 right-click on Start and Click Properties. Then deselect the check-

boxes under Privacy, as shown in Figure 10.2. These include “Store and display

recently opened programs in the Start menu” and “Store and display recently

opened items in the Start menu and taskbar.”

You can also click “Customize” in the Start Menu and set “Number of recent

programs to display” and “Number of recent items to display in Jump lists” to

zeroes as shown in Figure 10.3.

FIGURE 10.1 Special Characters List

Forensics 197

These settings will also allow you to eliminate “last run program” evidence.

FORENSICS

There are a variety of ways to detect if a suspect system contains data hiding

software. These options may include:

n Data hiding software applications still exist on the suspect computer.

n Cached website pages indicate the suspect accessed web pages that pro-

vide data hiding software.

n Cached images indicate the suspect accessed and potentially downloaded

data hiding software.

n Remaining artifacts indicated that data hiding software was once installed

or used on the system.

n Registry.

n Remaining files left after the uninstall.

n “Thumb” files.

FIGURE 10.2 Deselect Privacy Checkboxes to Disable Recently Opened Items

CHAPTER 10: Forensics and Anti-Forensics198

Looking for Data Hiding Software
It may seem obvious to most people that a quick review of a system may

instantly reveal the evidence of data hiding software on the suspect computer.

Everything from viewing the installed programs to searching directories may

reveal installed packages.

For example, in Ubuntu Linux you can obtain a list of installed packages by

running:

sudo dpkg --get-selections > listofpkgs

It’s important to note that some data hiding programs don’t require any instal-

lation whatsoever, and as a result can be run from a CD, floppy, thumb drive,

etc. To view the Most Recently Used (MRU) programs in Windows, simply run

regedit and view the following key:

User Key: [HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\

Explorer\RunMRU]

FIGURE 10.3 Updating the Customize Start Menu

Forensics 199

Figure 10.4 shows the list of Most Recently Used programs in the Windows

Registry. In this example, when we review the registry we can see a number of

steganography programs listed including: Contraband, ImageHide, and JPEGX.

There are a variety of other ways to review these remaining artifacts left behind by

previously installed data hiding software. A number of tools exist that automate

this type of analysis. Let’s take a look at some of the most common programs.

Finding Remaining Artifacts

It is common for experienced users to delete the data hiding program after use,

or to run it from removable media. Both may leave trace evidence that can be

extremely useful during an investigation. Everything from registry artifacts to

temporary directories may provide an alternative avenue to the investigator

when investigating a suspect computer.

But there is an alternative way to identify that a system contains (or used to

contain) steganography software. Various organizations such as the Depart-

ment of Defense (DoD) and National Institute of Standards and Technology

(NIST) have created file hashes for common *.dll’s and other files created dur-

ing the installation of the data hiding software. Software packages now exist

that allow an investigator to scan a machine for these files and compare the

hashes to determine if a data hiding program was once installed. These pro-

grams can sometimes also look for artifacts left behind in the registry, even

after the data hiding program has been removed.

FIGURE 10.4 Finding Steganography Programs in the Registry

CHAPTER 10: Forensics and Anti-Forensics200

WetStone Technologies StegoHunt™

WetStone’s StegoHunt Software provides investigators with the ability to search

for both known Steganography / Data Hiding programs and will also iden-

tify carrier files (images, audio, video, and documents) that contain hidden

information. WetStone has collected known steganography and data hiding

programs for over a decade and their repository contains over 2000 known

data hiding applications. StegoHunt™3 uses a combination of a proprietary

Fibonacci and standard MD5 or SHA hash signatures to accurately identify

these known applications used to conceal data. The program can scan Drives,

Directories, Forensic Image files, and networked computers for the existence of

such threats (see Figure 10.5).

Once the scan completes, StegoHunt provides detailed results either in print-

able reports or a results grid shown in Figure 10.6. The results grid provides

information regarding each file detected and correlates that file with the known

Steganography or Data Hiding program that it is associated with. StegoHunt

also preserves the Modified, Accessed, and Created times, the Forensic Hash of

the file, the filename, directory, and the original file name that was used by the

application. (Note: in some cases suspects change the filename and file exten-

sion associated with nefarious programs to conceal their activities.)

3 StegoHunt™—http://www.wetstonetech.com.

FIGURE 10.5 StegoHunt Scan Program Selection

http://www.wetstonetech.com

Forensics 201

Also, included with StegoHunt is the ability to scan for carrier files (the files

that actually contain the hidden data). This function invokes a search for

images, audio, video, and document files that may contain hidden infor-

mation. The algorithms that perform this examination are quite sophis-

ticated and can detect slight anomalies within images and multimedia

carriers that are created when embedding hidden information. In addition,

the function detects signature and structural artifacts that often occur from data

hiding activities. Examining the results of the Carrier scan provides a summary

of findings that pinpoints files that are suspected of containing hidden data. In

addition, each detected file contains a category and detect-code that provides

further information regarding the details of the findings (see Figure 10.7).

Once suspected carrier files have been detected, StegoHunt’s StegoAnalyst and

StegoBreak modules perform deep inspection and perform cracking opera-

tions against the suspect carriers to recover the hidden data.

StegoAnalyst provides detailed visual and auditory inspection of image, audio,

video, and document files with a plethora of tools to render these carriers that

highlight data hiding activities (see Figure 10.8).

FIGURE 10.6 StegoHunt Program Scan Results Grid

CHAPTER 10: Forensics and Anti-Forensics202

StegoBreak performs dictionary and/or brute force attacks against suspected

carrier files. If successful, the attacks will return the passphrases used by the

identified steganography applications. Extraction is then done by using the

known steganography or data hiding threat with the suspect file and the dis-

covered passphrase in order to extract the hidden payload (see Figure 10.9).

FIGURE 10.7 StegoHunt Carrier Scan Results Grid

FIGURE 10.8 StegoAnalyst Image Examination

Forensics 203

Identifying and View Cached Images (Cache Auditing
Tools)
In addition to scanning for data hiding software itself, an investigator can

attempt to identify websites commonly known for providing data hiding soft-

ware. A suspect computer may warrant an analysis of visited sites and surfing

habits. It’s quite possible that the data hiding software was locally downloaded

using the same computer. Analyzing the visited URLs and cached images can

be a great way to determine whether a suspect computer warrants a full inves-

tigation. It is also important to determine if the suspect was a member of any

online chat groups to determine posts that may be relevant to the investigation.

To a forensic investigator it would seem important to review not only static images

on the suspect computer, but also cached images. If a suspect deletes the data hid-

ing program and carrier and payload files, the cached directories may still house

relevant images. This could provide additional proof of access to data hiding soft-

ware sites. In the case of a terrorist, cached images may reveal images that were

uploaded to a terrorist site for download by another terrorist in the cell. Analysis

of this cached image may reveal use of data hiding and therefore hidden messages.

STG Cache Audit

STG Cache Audit (www.snapfiles.com/screenshots/stgcache.htm) is an advanced

cache, cookie, and history viewer that runs on Windows and that allows you to

FIGURE 10.9 StegoBreak Cracking Automation

http://www.snapfiles.com/screenshots/stgcache.htm

CHAPTER 10: Forensics and Anti-Forensics204

investigate web surfing habits of a suspect machine. You can set filter words and

instantly view sites that relate to certain keywords, sort the results by different

criteria, and create a detailed report. The “Site View” allows one to see which

sites were visited how often. Figure 10.10 shows the results of running STG Cache

Audit on suspect machine to quickly identify sites visited by the suspect.

The “History View” allows the user to chronologically list the surfing events

as they occurred. The investigator can also drill down into a specific URL as

shown in Figure 10.11.

The user can also export the results to many formats including HTML, text,

CSV, and an Excel spreadsheet. This is a nice piece of evidentiary information

to the overall investigation.

Evidence in Thumbnails

Thumbnails are another type of cached information that can be analyzed on a

suspect computer. Thumbnails are found in Windows Operating Systems and

are intended to allow a quick view of files residing in a folder. Unbeknownst

to most people, this view also simultaneously creates an associated thumbs.db

file in the same folder that stores a miniature version of the images. Thumbs.

db files also store the first page of things such as a PowerPoint presentation.

Although this information may not identify the data hiding directly, it does

allow an investigator to identify suspicious data that was once hidden within

FIGURE 10.10 STG Cache Audit Site View

Forensics 205

another file. For example, if a terrorist has a diagram for a building and then

hides that diagram in a carrier file using steganography, a cached version of

that original diagram remains in the thumbs.db file. If the terrorist is wise

enough to remove the steganography program, the diagram, and the carrier

file, they may not have covered all of their tracks, because a copy of it still

resides in the thumbs.db file!

To view the thumbnails database, one must first go into Folder Options, select

View, and deselect “Hide protected operating system files” as shown in Figure

10.12. (In Windows 7, within Windows Explorer, go to Organize and then

Folder and Search Options).

Windows Explorer will then display thumbs.db in the current folder as shown

in Figure 10.13. Note that it’s always there, just not visible unless you unhide it.

Thumbnails of images are stored automatically in the current folder’s thumbs.db

file unless the user has explicitly disabled them. This goes for Windows ME, Win-

dows 2000, Windows XP, and Windows 2003. One notable is that for Windows

2000, the thumbs.db is actually stored in an ADS (Alternate Data Stream), as

long as it’s on an NTFS partition, and therefore will not appear in the folder at all.

Starting with Windows Vista and Windows 7, the thumbs.db files are stored

in central location for each user in %userprofile%\AppData\Local\Microsoft\

Windows\Explorer (see Figure 10.14).

There are a number of freeware and commercial tools for viewing and analyzing

thumbs.db files. Thumbnail Database Viewer available at: http://www.itsam-

ples.com/thumbnail-database-viewer.html is a freeware utility for viewing the

FIGURE 10.11 STG Cache Audit History View

http://www.itsamples.com/
http://www.itsamples.com/

CHAPTER 10: Forensics and Anti-Forensics206

FIGURE 10.13 Thumbs.db Revealed in the Current Folder

FIGURE 10.12 Displaying a thumbs.db File in Windows

Forensics 207

database. Within the tool choose the thumbs.db you want to analyze, or use

the search function to find all of them. The viewer will allow you to view cur-

rent and previous thumbnails and build an audit trail of pictures, videos, pow-

erpoint presentations, etc. that once resided on the system (see Figure 10.15).

Another interesting fact about thumbnails is that they are stored in the thumbs.

db file even after the graphic file has been deleted! They will remain there for-

ever, unless manually deleted. If a suspect is suspected of terrorism and deletes

all of the images, a miniature version of them still resides in the thumbs.db.

FIGURE 10.14 Windows Vista and Windows 7 Centrally Stored Thumbs.db Files

FIGURE 10.15 Thumbnail Database Viewer

CHAPTER 10: Forensics and Anti-Forensics208

If the filesystem is encrypted using EFS, unpatched Microsoft systems will still

display the miniature versions of the images in the thumbs.db unencrypted!

It may also be possible that the suspect moved these images to removable

media. Copying these from a hard disk drive to a USB thumb drive still leaves

behind the thumbs.db on the original hard drive, thereby leaving critical evi-

dence on the main suspect computer even if the removable media is nowhere

to be found. This is by far one of the most effective ways to determine what

images were once stored on a suspect computer and can be the single best

way to crack a case.

Users can disable the use of a thumbs.db. For example, in Windows 7 a user

can cover their tracks by copying the registry entry shown in Figure 10.16 to a

notepad file and saving it as disablethumbsdb.reg.

Now simply double-click on the file to add it to the registry, and then reboot.

Please edit the windows registry at your own risk.

Searching for Hidden Directories and Files

In a previous chapter we covered Alternate Data Streams (ADS) in Windows.

There are a handful of other tools that do allow one to identify files hidden in

Alternate Data Streams. Let’s take a look at LNS.

LNS

LNS (www.ntsecurity.nu/toolbox/lns/) is a freeware tool for Windows used for

identifying hidden files in Alternate Data Streams on a suspect computer. It can

perform the search recursively by simply inputting the directory or drive to be

searched as shown in Figure 10.17.

In addition, streams.exe is a program available from Microsoft’s sysinternals

website at, http://technet.microsoft.com/en-us/sysinternals/bb897440.

FIGURE 10.16 Using the Registry to Disable Thumbs.db Files in Windows 7

http://www.ntsecurity.nu/toolbox/lns/
http://technet.microsoft.com/en-us/sysinternals/bb897440

Forensics 209

Network IDS
With the prevalence of network intrusion detection and prevention systems

in most corporate environments, corporations are looking to track not only

incoming threats, but outgoing threats such as corporate espionage, objection-

able content, and exposure of confidential information.

The foundation for creating signatures to detect data hiding involves building

rules that include each individual signature for every data hiding program.

In addition, these signatures can vary from version to version. Therefore it’s

important to distinguish these not only in the signatures, but the resulting

report output including the program identified and the program version.

Other relevant information would include the source and destinations IPs so

as to assist the investigator with identifying the suspect machine.

A sniffer can be very effective for testing your rules and ensuring proper map-

pings. Using wireshark we can sniff the wire during the transmission of a car-

rier file or covert transmission Figure 10.18. demonstrates a capture that reveals

the Hiderman signature identified by “CDN.” Although it’s possible this could

be a random sequence of characters, the probability is low, and therefore it’s a

strong possibility that this is the signature of our Hiderman program.

We can therefore build a Snort signature to detect this. A lazy man’s version of

Snort is provided on Backtrack http://www.backtrack-linux.org4 comes with a full

install of Snort. Once you have Snort installed, you can begin to add your data hid-

ing IDS rules. IDS rules typically generate a plethora of false positives, so it’s impor-

tant to ensure accuracy of your rules (the longer the signature string, the greater the

accuracy). Rules can include content matches in ASCII or Hexadecimal. Because

steganography signatures don’t always include ASCII mappings, hexadecimal

notations are typically more effective. The following demonstrates both options:

Signature syntax for an ASCII notation:

Alert tcp any any <> any any (msg:"Message"; content:"content";)

4 BackTrack http://www.backtrack-linux.org/.

FIGURE 10.17 LNS Alternate Data Streams Scanner

http://www.backtrack-linux.org
http://www.backtrack-linux.org/

CHAPTER 10: Forensics and Anti-Forensics210

Signature syntax for hexadecimal notation:

Alert tcp any any <> any any (msg:"Message"; content:"|hex string|";)

The following example demonstrates the signatures for Hiderman in both

ASCII and hexadecimal notation. Note the signature located in the content

section of the rule.

Alert tcp any any <> any any (msg:"Hiderman Detected"; content:"CDN";)

Alert tcp any any <> any any (msg:"Hiderman Detected"; content:"43 44

4E";)

The previous example would probably have a large number of false positives

due to the simplicity of the signature, but the next example demonstrates a

FIGURE 10.18 Wireshark Capture of a Hiderman Signature

References 211

longer signature string for the Jpegx steganography program. The signature for

Jpegx V2.1.1 is “36 45 35 3B 32 00 00.” This type of signature is difficult to

represent in ASCII form, so the only way to identify it is by its hexadecimal

notation. Building a rule for Jpegx V2.1.1 would yield:

Alert tcp any any <> any any (msg:"Jpegx V2.1.1 Detected"; content:"36

45 35 3B 32 00 00";)

If you have a fairly complex string, hexadecimal notation may provide better

accuracy than ASCII strings anyways, so sticking with hexadecimal is the best

way to go.

If we can detect steganography over the wire, we now have the ability to identify

potentially malicious people on our network. In addition, we have the ability

to identify incoming carrier files from the Internet to an internal suspect. Com-

mercial vendors have yet to create IDS signatures for detecting steganography.

Most Intrusion Detection Systems (IDS) and Data Leakage Prevention Systems

(DLP) vendors do not have signatures for detecting steganography over the

network. Perhaps we’ll see this area mature over the coming years and emerge

as a new option for detecting steganography.

SUMMARY

As demonstrated in this chapter, a suspect has a very challenging task of cleans-

ing a system. With the arsenal available to an investigator, a determined inves-

tigator has a respectable chance of finding one or more data hiding programs

installed or once installed on a machine. Additionally, cached files, thumb-

nails, and other evidence may reside on the suspect computer. If the suspect is

to have any chance he must stick with removable media and properly cover his

tracks. Otherwise the only other reasonable way is to destroy the media or disk

is through low-level sanitization. The techniques in this chapter provide insight

into forensic and anti-forensic techniques when dealing with data hiding.

References

BackTrack http://www.backtrack-linux.org/.

cleanmgr.exe. <http://support.microsoft.com/kb/253597>.

Documents reveal al-Qaeda’s plans for seizing cruise ships, carnage in Europe. <http://edition.cnn.

com/2012/04/30/world/al-qaeda-documents-future/>.

StegoHunt™. <http://www.wetstonetech.com>.

http://www.backtrack-linux.org
http://support.microsoft.com/kb/253597
http://edition.cnn.com/2012/04/30/world/al-qaeda-documents-future/
http://edition.cnn.com/2012/04/30/world/al-qaeda-documents-future/
http://www.wetstonetech.com

This page is intentionally left blank

Data Hiding.

Copyright © 2013 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00011-0

213

CHAPTER 11

Mitigation Strategies

CONTENTS

Forensic
Investigation213
Step 1 Steganography

Use Discovery213

Step 2 Steganography

Carrier Discovery215

Step 3 Hidden Content

Extraction215

Mitigation216
Network Technologies

for detecting Data

Hiding219

Non-Destructive

Jamming 221

Endpoint Technologies

for detecting Data

Hiding223

Summary225

References227

n Forensic Investigation

n Mitigation

INFORMATION IN THIS CHAPTER:

FORENSIC INVESTIGATION

We have all heard the statement “It is like trying to find a needle in a haystack.”

For historical purposes, the original saying is typically credited to St. Thomas

More in 1532 when he wrote “to seek out one line in his books would be to

go looking for a needle in a meadow.” As difficult as that sounds, a number of

years ago during a presentation at George Mason University, I compared dis-

covering steganography to finding that proverbial needle in a haystack. How-

ever, I was immediately corrected by Dr. Neil Johnson who was in the audience

that day. Neil stated that a more accurate description would be “trying to find

a piece of straw in a haystack.”

We have certainly made progress in uncovering data hiding and steganography

activities during the last decade through the process of data collection, direct

experimentation, and deep analysis of “known steganography” programs.

Although each investigation and circumstances are different, the following

chart provides a basic model for identifying steganography and discovering the

hidden messages that lie beneath (see Figure 11.1).

Step 1 Steganography Use Discovery
Step 1 requires access to the suspect data storage containers. We must create a

forensically sound image (or perform a write blocking scan) of the suspect’s

data storage devices. This would include local storage devices, remote storage,

memory sticks, SD Cards, etc. Once obtained, a scan would be performed to

identify known steganography or data hiding programs. During this step we

http://dx.doi.org/10.1016/B978-1-59-749743-5.00011-0

CHAPTER 11: Mitigation Strategies214

are looking not only for executable files, but also collateral files, and registry

entries related to these known steganography programs. During this stage, we

would also examine any Web history, downloaded applications, and network

searches performed by the suspect that would point to an interest in stegan-

ography. This step is quite important in order to potentially streamline the

process in Steps 2 and 3. The more we know about the specific steganogra-

phy programs utilized by the suspect, the more targeted the subsequent steps

would be. For example, if we found evidence that the suspect had downloaded

JP Hide and Seek, (abbreviated as JPHS), and the program was found on his or

her computer and was last accessed three days ago, the subsequent steps would

be more critical. Furthermore, if this is the only steganography program we

found evidence of, we could deduce the following:

a. JPHS can only perform steganography on jpeg files (thus we narrow the

field of possible carriers).

b. Last access time changes on jpeg files in the last three days would be pos-

sible cover files.

c. Last modified time changes on jpeg files in the last three days may contain

possible steganographic embedding.

Note: US State and Local Law Enforcement can obtain a free tool from the Elec-

tronic Crime Technology Center of Excellence (ECTCOE) called Trait Analytic

Program Search or T.A.P.S. that will perform Step 1 (NIJ).1

1 NIJ, Electronic Crime Technology Center of Excellence—http://www.ectcoe.net/resources/

tools.

FIGURE 11.1 General Steganography Forensic Discovery

http://www.ectcoe.net/resources/tools
http://www.ectcoe.net/resources/tools

Forensic Investigation 215

Step 2 Steganography Carrier Discovery

Based on the results from Step 1, we would collect likely carrier files. This could

be filtered by type of carrier, time and date, or other case-relevant data. Once

the possible carrier files have been collected we typically apply three types of

analysis to each of the collected objects:

a. We first run signature-based anomaly detection algorithms against the

suspect carrier files. Many steganography programs modify characteristics

of the carrier file in ways that are detectable. A simple example would be

the steganography program Camouflage, which appends data after the end

of file marker. Signature detection algorithms will easily pickup and report

this anomaly and identify the offending files.

b. Next, we run more sophisticated blind steganography detection algo-

rithms. These methods calculate statistics on each object in question and

compare those statistics against “known good” models of images and

multimedia files. Any outliers are reported and further analysis would be

recommended.

c. Finally, a human analyst examines the results from Steps 1 and 2, and

then examines the objects manually. In this step visual, auditory and

multifactor rendering is applied to the suspect files. For example, if we

suspect that LSB embedding was performed on a True Color image (BMP,

PNG, etc.) we would render only the LSB values and determine visually

if the distribution of values in the LSB follows the image, or if the data is

random indicating a steganographic replacement of the LSB values.

Step 3 Hidden Content Extraction

Once we have narrowed the field on confirmed to a high degree of certainty,

we have digital objects that contain hidden information we can proceed to

the cracking step. Unlike encryption where standardization does exist for

encrypted files and these encrypted files are interoperable, this is not the case

with Steganography. Each steganography program performs hiding using dif-

fering methods. Thus knowledge of the Steganography program is an almost

essential ingredient for cracking. The most common ways of discovering the

steganography program that was used by the suspect are as follows:

a. Program was discovered during Step 1—Steganography Use Discovery.

b. Program was deduce based upon the characteristics found during Step 2—

Steganography Carrier Discovery.

Once we established the likely program(s), we attack the carrier file with either

known passwords (dictionaries, extracted suspect information) or by using

brute force password generation. Once these are generated we can apply each

CHAPTER 11: Mitigation Strategies216

potential password using the likely identified program or develop software that

will mimic the behavior of the program in an automated fashion. Finally, certain

carrier files content can be directly cracked (without password guessing) due to

weaknesses in their construction or flaws in their key management methods.

MITIGATION

Defining a mitigation strategy requires a thorough understanding of what it

is you’re trying to protect against. In 1995, Dan Farmer and Wieste Venema

released their network vulnerability scanning tool SATAN (Security Admin-

istrator Tool for Analyzing Networks). This was one of the original network

vulnerability scanning tools. Dan Farmer’s thought process was how better to

protect your network than by trying to hack into it and use that information

to determine how to better fortify your network. This brought on a new era of

network security focused on penetration testing and ethical hacking.

This approach can also be applied to data hiding and your network to deter-

mine the effectiveness of your defense-in-depth strategy. By exercising some

of the tools and techniques outlined in this book, you can determine how

well your layers of security identify evidence and behaviors of data hiding

techniques.

Data hiding activities can lead to corporate espionage, covert communications,

child exploitation, data breaches, and other malicious activities. For example,

when companies are concerned about personal identifiable information (PII)

breaches, they commonly implement a DLP (Data Leakage Prevention) product

and define rules around data that resembles their PII data. But when that data is

hidden using a sophisticated technique, it becomes much more difficult to detect.

How people hide data varies greatly. The examples in this book only scratch the

surface in terms of the broadness of techniques. But in most cases the approach

and behavior of data hiding follows general methodology. Most commonly, a

user downloads a data hiding application from the Internet, and uses this to hide

their payload or content within a carrier file. Then posts that file on the Web for

the recipient to download, or communicates it over the network via E-mail, ftp, or

other means. Let’s take a closer look at this process step by step (see Figure 11.2.).

1. Download Program—The most common method of data hiding involves a

user downloading a canned tool designed for hiding data. These programs

are available for not only computers, but mobile devices as well.

2. Install Program—When the program is installed a few things occur. First

the device identifies install behavior, and many times the installation will

include multiple files. In the case of Windows, one or more dlls may be

installed, the registry may be updated, and an executable is loaded.

Mitigation 217

FIGURE 11.2 Data Hiding using a Program

CHAPTER 11: Mitigation Strategies218

3. Run program—When the program is used to hide the data, it may delete

the original payload file after it has hidden it in the carrier file.

4. Choose carrier—The carrier file chosen for hiding data is typically depen-

dent upon the data hiding program, and can range from a JPEG, to an

MP3, or even a PDF. The format of the payload file may also hinge on the

program used to hide in the carrier file. For example, a schematic may

need to be changed to a format that the program understands, such as

converting a Visio diagram to a PDF.

5. Hide payload in carrier—Largely dependent on the program, this step

involves inserting the payload, and choosing numerous other options spe-

cific to the program. This may involve options for where and how the data

is hidden, as well as possible encryptions options and a password. Once

the file is saved, this carrier file is a hybrid of the original, except now it

has content hidden within it. As a result, its makeup, layout, and even

format may change (e.g. changing the file from a JPEG to a BMP).

6. Send file—Although the file could be carried out on a thumb drive, most

commonly the carrier file is sent over the network. This can range from

sending from a personal E-mail account to a recipient, posting it to a site for

download, uploading it to an FTP server, or embedding it covertly in a net-

work protocol. But in all of these circumstances there’s one commonality—

it’s sent over the network. Therefore, it’s possible that a variety of detection

devices can be used to identify the carrier file, or anomalous behavior.

7. Recipient receives file—Again, this involves another network hop, and there-

fore another possibility for detection. Whether the user downloads it from

a Website, retrieves it via E-mail, or pulls it down from an FTP server, it has

still traversed the network.

8. Recipient reveals payload—The recipient will most likely need to use the same

program as the sender for extracting the hidden content. This involves all of

the previous steps outlined, thus providing another process for detection.

A more experienced user may use sophisticated techniques to hide data manu-

ally, rather than using a public tool. Since the manual approach is more of a

one-off, it can make this more difficult to detect and mitigate, but the behaviors

are very similar. Hiding the data via manual methods will most likely avoid the

download and installation steps outlined in the life cycle diagram. But how

data is hidden within the carrier file may be similar for manual methods and

methods employing a software program or tool. Manual methods circumvent

download and installation program detections. Many of these manual tech-

niques have been detailed throughout the book.

So far we’ve outlined the steps involved with hiding data. But the burning

question as this point is: how do detect this? This involves tools and tech-

niques that analyze data-at-rest and data-in-transit.

Mitigation 219

Network Technologies for detecting Data Hiding

Companies are using their defense-in-depth strategy to identify and counter

data hiding techniques. Statistics suggest that data is most frequently hidden

using free data hiding tools available over the Internet. So while although

covert VOIP or Wireless transmissions can occur, it is more common to come

across a malicious user who has used a known data hiding application to com-

mit crimes such as child exploitation or corporate espionage. Since this is more

common, the potential for damage is higher due to how frequently this occurs

when compared to a VOIP or Wireless attack (see Figure 11.3).

Today there are a variety of products for detecting evidence of data hiding

techniques. For data-in-transit, there are network capture tools that allow for

post-collection analysis of hidden data, for example in pcap files. Additionally,

comprehensive monitoring products allow for correlation of multiple data

points and presentation within a SIEM (Security Information Event Manage-

ment) view. These products stem from Live network analysis tools such as IPS

and MPS (malware protection systems). But finding hidden data is far more

difficult than identifying a known malicious file. Additionally, hashes exist for

common files such as common photos, but when an individual hides data

within an unknown digital photo there is no hash to compare it to in order to

determine if the original photo has been modified to hide data.

The following table details categories of products most likely in enterprise

networks today that can be used as part of a defense-in-depth strategy for

identifying, mitigating, and remediating data hiding activities. This includes

FIGURE 11.3 Layered Approach to Data Hiding Security

CHAPTER 11: Mitigation Strategies220

data-in-transit traversing the network such as a file, as well as data hidden

within network transmissions and protocols (see Table 1).

Most Intrusion Prevention Systems (IPS) are not fine tuned for detecting data

hiding techniques and steganography programs. IPSs are best fit to detect the

downloading of data hiding and steganography programs, or step 1 of our

life-cycle wheel. Currently, most IPS products do not have the signatures for

detecting the majority of these types of programs, but they could be. Many of

the common programs have been profiled, and with minimal effort signatures

could be created to detect this download activity.

Malware Protection Systems are designed to analyze unknown executables

with malicious intent. By dumping an unknown executable into a virtual

sandbox, the MPS analyzes the behavior of the executable when at runtime.

Any installed or modified dlls, registry changes, services installed, and many

other behaviors are identified and analyzed for unauthorized or anomalous

Table 11.1 Network Technologies for Detecting Data Hiding Activities

Technology Detection, Mitigation, & Remediation

capabilities

Intrusion Prevention System Detect and block downloaded data hiding

and steganography programs (App Block-

ing)

Malware Protection System Sandbox, analyze, & block unknown ex-

ecutables & files

Network Security Analytics & Forensics with

add-on products

Anti-Virus Quarantine & remove downloaded known

data hiding and steganography programs

Next Generation Firewall (NGFW) Application Signatures

Application Protocol Decoding

Network Heuristics (Behavioral)

Data Leakage Prevention (DLP) Identify & block documents with company

specific metadata

Identify strings of data hidden within files

(SS#, Credit Card, PII, PHI, etc.)

Wireless Intrusion Prevention System Detect wireless protocol manipulation and

block malicious extrusions

Content Filter Detect and block data hiding program

downloads

Jamming Sanitization and re-encoding of files

Application Blocking White Listing

Black Listing

Hash verification for known safe programs

Mitigation 221

activities synonymous with malcode. This heuristic (behavioral) analysis is a

nice fit for identifying new data hiding or steganography programs that have

not been profiled to date.

Anti-Virus seems like an obvious choice for detecting data hiding and stegan-

ography activities. In terms of programs, most are downloaded via the Internet,

rather than sent over E-mail, so in this case A/V is not a good fit. But when

people send E-mails with attachments with embedded hidden data created

by these known programs, anti-virus could be a good solution for detecting

and mitigating this activity. The shortcoming of A/V today is that most do

not include a comprehensive set of signatures for detecting attachments with

embedded hidden data.

Next Generation Firewalls (NGFW) provide a plethora of features that dwarf

old school firewalls. The Application Protocol Decoding feature of these fire-

walls allows it to detect an embedded protocol within a protocol and vari-

ous tunneling techniques. For some of the data hiding protocols, Application

Protocol Decoding could provide a possible solution to some of these tech-

niques, but further development in this area would be required. Additionally,

Next Generation Firewalls also include heuristic analysis to analyze evasive

techniques including protocols using proprietary encryption and other eva-

sive techniques and misuse. Although Next Generation Firewalls lack out

of the box data hiding and steganographic transmission detection, the poli-

cies contained within these products can be refined to detect some of these

communications.

Data Leakage Prevention (DLP) can be used to detect files and documents

with metadata. Policies can be created to track extrusions such as undesired

metadata that should not leave the network. DLPs in general required a fair

amount of tuning to detect metadata specific to the company or institution.

But is important to note that data hiding programs that use obfuscation tech-

niques or masking of data (e.g. encryption) will most likely not be detected

by most DLP systems when that file or document with hidden data traverses

the network. The play for DLP is to use it to detect simple techniques in which

people hide data within the metadata fields of Word documents, PDFs, and

other common word processing and spreadsheet files.

Non-Destructive Jamming

We can trace one of the first cases of communication jamming to 1904–1905

during the Russo-Japanese conflict. Russian telegraph stations transmitted con-

stant random noise over telegraph channels in order to interrupt communi-

cation between Japanese warships. During World War II, the British and US

developed methods to evade accurate radar detection by using chaff (small

pieces of metal) dropped from aircraft to confuse ground and air-based radar

CHAPTER 11: Mitigation Strategies222

systems. Today, electronic countermeasures are central to any Naval, Air, and

Ground campaigns designed to confuse, game, and add stealth to virtually

every battlefield situation.

For steganography, some of these fundamental concepts are being applied

within network infrastructures. With the advent of Operation Shady Rat, the

Alureon Trojan, and many other active malicious applications that employ

data hiding methods to evade detection from data leak prevention systems,

content filters, and application firewalls. Therefore, the need to consider jam-

ming or disruption methods is essential. As digital images and multimedia

files begin to play a larger role in these attack vectors, system operators can

apply low cost (to network performance) non-destructive jamming methods.

One example of these methods would be a Web gateway equipped with JPEG

Jamming (see Figure 11.4).

The process is quite simple:

a. A user makes a URL request via a Web gateway.

b. The gateway forwards the request to the Internet-based URL.

c. The URL responds to the request.

d. The response is intercepted by the Web Gateway and examined.

e. If the response contains a JPEG the response is held, while the JPEG is

forwarded to the JPEG Jamming Server.

f. The Jamming server performs sanitization and re-encoding of the JPEG file

disrupting any hidden content.

FIGURE 11.4 Non-Destructive Jamming

Mitigation 223

g. The sanitized JPEG is delivered back to the Web Gateway.

h. The Web Gateway then delivers the sanitized JPEG to the requesting

application.

The sanitized JPEG appears unaltered if viewed by the user, however, if the

request was made by a malicious application expecting to extract command

and control information embedded in the image, this information would have

been successfully jammed.

Of course many other forms of jamming would be required as information

can be easily concealed in virtually any delivered content (images, multimedia

files, Web html, documents, spreadsheets, javascript, etc.).

Endpoint Technologies for detecting Data Hiding

Many vendors provide host-based application blocking capabilities. These

capabilities are typically based on a policy setting that defines what applications

are either allowed (white listing) or not allowed (black listing). The policy can

be defined based on the application name, signature (HASH) or even behavior

(for example, system call usage, rights required to execute the application, user

permissions, etc.).

Therefore, application blocking could easily be performed against any known

steganography application by developing a policy to Not Allow applications

of this type to be executed under specific circumstances or by specific users.

All you would need is a list of signatures (HASH values) for the set of known

steganography applications that you wish to block (and then keep that list

updated with new known programs) and you can prevent their execution.

These security mechanisms such as McAfee Host Intrusion Prevention System

(HIPS) or Symantec Critical System Protection not only provide the blocking

mechanisms necessary, but can also relay the attempted action to management

consoles or Security Information Event Management systems (SIEM). This

 provides security personnel with immediate high level warning of potential

data leakage of malware infestation alerts (see Table 2).

Many enterprise networks have a vulnerability scanning strategy. For those

scanners that allow for custom plug-ins (e.g. Nessus), an administrator could

create checks for dlls, executables, and other files related to known data hiding

programs. It is important to note that these are not normally identified during

network vulnerability scans, but rather during credentialed scans where the

scanner logs into the device. Many of the vulnerability scanning products

today support NASL (Nessus Attack Scripting Language).2 The following check

2 Auditing Infected Systems for Viruses for Viruses and Trojans with Nessus—http://blog.

tenablesecurity.com/2009/01/auditing-infected-systems-for-viruses-and-trojans-with-nessus.

html.

http://blog.tenablesecurity.com/2009/01/auditing-infected-systems-for-viruses-and-trojans-with-nessus.html
http://blog.tenablesecurity.com/2009/01/auditing-infected-systems-for-viruses-and-trojans-with-nessus.html
http://blog.tenablesecurity.com/2009/01/auditing-infected-systems-for-viruses-and-trojans-with-nessus.html

CHAPTER 11: Mitigation Strategies224

could provide the basis for checking for a registry key made by a steganography

program, for example Camouflage:

<if>

<condition type: “and”>

<custom_item>

type : REGISTRY_SETTING

description : “steganography program Camouflage”

value_type : POLICY_TEXT

reg_key : “HKEY_CURRENT_USER\Software\Camouflage\CamouflageFile\0”

reg_option : CAN_BE_NULL

</custom_item>

Table 11.2 Endpoint Technologies for Detecting Data Hiding Activities

Endpoint or Data-at-Rest Detection Abilities

Host Intrusion Prevention System (HIPS) Program abuse (WinHex editing a Word

doc)

Abnormal behaviors

Integrity Monitoring Changes to files & folders, registry changes,

executables

Changes in database tables & indexes

Changes in Virtual environments

Rea time or scheduled

Anti-Virus Locally installed data hiding programs

eDiscovery Preserve electronic data and metadata

Vulnerability Scanning (credentialed) Scanning for known steganography pro-

grams, modified dlls inconsistent with latest

known dlls, etc.

Mobile Device Management & Security Detect & Block data hiding and steganogra-

phy programs (app blocking)

DLP-like blocking of cut/paste data from

one doc into another file, or forwarding

E-mail to personal account

Forensics Software Locally installed data hiding programs

Evidence of previously installed data hid-

ing programs (unremoved dlls, registery

artifacts, etc.)

Files with embedded content from known

data hiding programs

Files with embedded content from unknown

data hiding programs

Metadata analysis for hidden data

225Summary

As we push into the mobile revolution, Mobile Device Management & Security

products are positioned very nicely to detect a variety of data hiding and

 steganography vectors. Many of the products natively detect and can block

the downloading of data hiding and steganography mobile applications.

Additionally, if the user jailbreaks or roots their phone to circumvent this and

other detections, most MDM products also can sever their connections to the

 corporate network, thus quarantining the user. Furthermore, the administrator

can perform a selective or full wipe of the device. MDM products are also start-

ing to show signs of including DLP-like features to prohibit content from being

copied from a corporate E-mail and forwarded to a personal E-mail account, or

copy/paste into an E-mail or other document file type.

SUMMARY

Today, there is far better success using tools to detect data hiding behaviors on

the end user’s computer, rather than in-transit. This is a result of tool maturity.

Techniques for detecting evidence of hidden data originated with forensic

investigators. Therefore, the most mature products are forensic analysis tools

for analyzing data-at-rest on imaged suspect computers (see Figure 11.5).

As time progressed and the enterprise had a stronger desire to protect against

attacks such as corporate espionage, tools such as anti-virus, host-based intru-

sion prevention (HIPS), eDiscovery, an integrity monitoring tools enhanced

their detection capabilities. Some anti-virus vendors began to scan common

hiding locations such as alternate data streams. eDiscovery tools matured

to allow administrators to define policies classify certain files and identify

their existence on unauthorized desktops. But the Data-at-Rest Live Analysis

 products have room to mature in terms of detecting evidence of hidden data

or data hiding behaviors. For example, HIPS and file integrity monitoring tools

FIGURE 11.5 Effectiveness of Data Hiding Detection Tools

CHAPTER 11: Mitigation Strategies226

are not tuned out of the box to detect program abuse. If a user opens a PDF

document in WinHex and hides data, it’s highly likely that these monitoring

tools will not flag this abnormal behavior.

Considering the broad arena of data hiding techniques, it would seem to

 suggest that modeling the behaviors of hiding data versus mapping all of the

techniques would be far more effective. Operating system policies could be

enhanced and enforced to prevent undesired behaviors. For example, should

a normal end user be exhibiting behaviors such as hiding a file in an alter-

nate data stream or volume shadow copy? Should an end user have the ability

to install a known steganography program and install it on the computer or

mobile device? These behaviors are far easier to detect, control, and prohibit

through existing operating system or mobile device management policies.

Many of the scenarios demonstrated in this book should be tested in an

enterprise network to test the effectiveness of the network’s defense-in-depth

technologies. First, this will test the effectiveness (or lack thereof) of each prod-

uct. The results of the testing can then allow the team to fortify each product

through tuning and customizations. And many additionally enforce the need

for additional controls or alternative defensive technologies. Apply Dan Farm-

er’s methodology and applying it to data hiding, the team can download a

data hiding program and determine if the next generation firewall (NGFW),3

content filter, anti-virus, malware protection system, and other products in

the network detect the downloads. Lists of common steganography programs

can be obtained at Dr. Neil Johnson’s site at www.jjtc.com/Steganography/

tools.4html. Mature products should allow the administrator to add these

 programs to the detection filters.

One or more innocuous steganography program can be installed on a test

 system to determine the effectiveness of a host-based intrusion prevention sys-

tem, integrity monitoring, and other data-at-rest monitoring tools. Anything

not detected should be modified in their respective policies and retested.

In summary, there seems to be a gap in analyzing for malicious user behaviors

on laptops and desktops. For example, should a user be hiding data in a volume

shadow copy on their Windows laptop or creating a hidden linux directory on

their Mac? Or should a user be editing a Word document in a hex editor to hide

additional data? Detection of these behaviors should be incorporated into

more security products to prohibit malicious users from circumventing native

technologies. Files should be signed to ensure their integrity and authenticity.

3 Next Generation Firewalls for Dummies, by Lawrence C. Miller—Palo Alto Networks.
4 Steganography Tools, Neil Johnson—http://www.jjtc.com/Security/stegtools.htm.

http://www.jjtc.com/Steganography/tools
http://www.jjtc.com/Steganography/tools
http://www.jjtc.com/Security/stegtools.htm

References 227

This applies to Microsoft Word documents, Adobe PDF files, multimedia, etc.

Products today have much room for maturity to improve their ability to detect

data hiding techniques. This applies to both products that detect data hiding

techniques in data-at-rest as well as data-in-transit.

References

Auditing Infected Systems for Viruses and Trojans with Nessus. <http://blog.tenablesecurity.

com/2009/01/auditing-infected-systems-for-viruses-and-trojans-with-nessus.html>.

Next Generation Firewalls for Dummies, by Lawrence C. Miller, CISSP Palo Alto Networks

NIJ, Electronic Crime Technology Center of Excellence. <http://www.ectcoe.net/resources/tools>.

Steganography Tools, Neil Johnson. <http://www.jjtc.com/Security/stegtools.htm>.

http://blog.tenablesecurity.com/2009/01/auditing-infected-systems-for-viruses-and-trojans-with-nessus.html
http://blog.tenablesecurity.com/2009/01/auditing-infected-systems-for-viruses-and-trojans-with-nessus.html
http://www.ectcoe.net/resources/tools
http://www.jjtc.com/Security/stegtools.htm

This page is intentionally left blank

Data Hiding.

Copyright © 2013 Elsevier, Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-1-59-749743-5.00012-2

229

CHAPTER 12

Futures

CONTENTS

The Future, and
the Past229
Future Threats230

Wireless—The New

Frontier 231

Steganography as

a Countermeasure233

Current and Futuristic

Combined Threats235

Summary236

n The Future, and the Past

INFORMATION IN THIS CHAPTER:

THE FUTURE, AND THE PAST

Steganography remains the leader in data hiding techniques by its very nature.

In relation to its cousin, cryptography, the very nature of its ability to be hidden

and remain hidden until revealed by its recipient differs greatly from cryptog-

raphy. Data hiding continues to proliferate throughout our daily lives. Ranging

from hidden RFIDs in the products we buy, to our computer printers that print

hidden identifiable information printed on every page; hidden data touches

our lives in so many ways most of us aren’t aware of.

As we press further into the 21st century, we are witnessing the explosive growth

of mobile devices and wireless communications. We can expect new forms

and uses of data hiding to emerge. Unbeknownst to the average user, a picture

taken on our smart phone now includes GPS coordinates, camera, and phone

serial number information, and other identifiable information hidden within

the picture. Wireless communications currently include network identifiers in

the headers of the network packets, detailing the originator from which the

packets were sent. We expect further proliferation in these areas of ubiquitous

mobility.

In terms of military implementations we have already seen legitimate wire-

less communications and transmissions hidden within a larger number of

fake transmissions, so as to throw-off any eavesdropper. For example, in

1942, the Radio Intelligence Division (RID) of the United States Federal

Communication Commission (FCC) joined forces with the British Radio

Security Service to identify German espionage networks. The equipment

included a receiver for collecting signals on a range of frequencies and a

http://dx.doi.org/10.1016/B978-1-59-749743-5.00012-2

CHAPTER 12: Futures230

“snifter,” “a meter that a man could carry in the palm of his hand while

inspecting a building to see which apartment a signal came from,”1 similar

to modern day wireless war walking.

The patrolman would scan through the frequencies making note of apparently

legitimate transmissions found on every pass for weeks and months, while

also noting anomaly signals not present in previous scans. These anomalies

were then recorded for detailed review. Great intelligence was collected on the

Nazis including the processes by which the Nazi spies traveled around with

transmitter-receivers the size of a suitcase using directional antennas and sig-

nal power to minimize dispersion. As the analysis progressed, the Allies had

collected and deciphered a variety of codes and cipher allowing them to read

many of the Nazi messages.

As the Nazis became aware of the Axis tactics, they created their own “Funk-

spiel.” Funkspiel comes from the word “Funk” or radio, and “Spiel” or play.

Essentially the Nazis setup decoy radio networks that appeared to be legitimate

but were really fabricated information. As the Allies identified networks and

read the messages, it caused the Allies to realign their troops and attacks. In a

way, the Nazis where manipulating the Allies to understand their intentions

or position them for counterattack. This caused the Allies to lose confidence

in the intelligence, until the Allies created their own funkspiel to mislead the

Nazis.2 Modern day funkspiels may be developed. These may include legiti-

mate transmissions hidden within fake transmissions or transmissions embed-

ded within transmissions so as to throw-off eavesdroppers.

Future Threats
As we have seen throughout history, beginning with Demaratus in ancient

times, to the use of Null Ciphers by the Germans in World War II, to the Rus-

sian Spy case3 and Operation Shady Rat, the use of data hiding and steganog-

raphy evolves with the times.

When new devices like the iPad and Android appear, new advanced data hid-

ing and steganography threats are quick to respond. And as we have seen with

digital images, multimedia files, virtual machines, and operating systems,

the evolution of these technologies is constant. With the need for malware

creators, bot herders, criminal organizations, terrorists, and nation states to

conceal their command and control activities, it is not only likely that stegan-

ography and other advanced data hiding methods will expand and evolve—it

is a given.

1 The Codebreakers, by David Kahn, p. 526.
2 The Codebreakers, David Kahn, pp. 526–534.
3 Russian Spy Ring http://www.theregister.co.uk/2010/06/29/spy_ring_tech/.

http://www.theregister.co.uk/2010/06/29/spy_ring_tech/

The Future, and the Past 231

Looking toward the future then, the integration of advanced data hiding meth-

ods will likely target the following areas in the near term:

n Cloud Computing.

n Virtualization.

n Advanced Streaming Protocols.

n Metadata.

n Databases.

n Wireless Protocols.

n Smartphones & Tablets.

Following these obvious areas of future expansion, we need to examine more

closely how advance persistent threats are using data hiding and steganogra-

phy to conceal their activities. This would not only include Trojans, but would

expand to Key Loggers, Botnets, Rootkits, Spyware, Network wired, and wire-

less sniffers, remote access applications and anti-forensic technologies.

Wireless—The New Frontier

Wireless technologies and protocols continue to grow at an alarming rate. As

we’ve grown accustomed in a short amount of time to ubiquitous mobility.

WiFi, Bluetooth, 3G, 4G, and all of the variants of these technologies make us

wonder about our ability (or inability) to monitor these technologies for hid-

den data. There are far less technologies for monitoring these networks for data

that may be hidden in the payload or even the protocol headers themselves.

I demonstrated the ability to communicate hidden data in the WiFi proto-

col by using Beacons as a transport mechanism for data. Originally created

by Microsoft Research, Beacon Stuffing4 is a technique where the Information

Element of a WiFi Beacon packet can be used to carry ads distributed to WiFi

devices in the neighboring airspace. Think of it as a Kmart “blue light special.”

A user downloads a mobile app allowing them to receive in-store specials that

day while they’re at the store. The WiFi network sends them an ad carrier in a

Beacon packet from the access point to the user’s mobile device, and the app

allows them to view the coupon or special.

Applying this method to carry hidden data, we can effectively use the same

technique. The Information Element portion of the packet allows for up to 253

of the 256 bytes to be used for “vendor-specific information” (see Figure 12.1).

This modern day SRAC (Short Range Agent Communication) device could be

used to send a series of packets carrying a large message that is then reassem-

bled on the recipient’s device (see Figure 12.2).

4 Microsoft Research, Beacon Stuffing http://research.microsoft.com/pubs/73482/BeaconStuff-

ing.pdf.

http://research.microsoft.com/pubs/73482/BeaconStuffing.pdf
http://research.microsoft.com/pubs/73482/BeaconStuffing.pdf

CHAPTER 12: Futures232

The original SRAC device was created by the Soviets in 1970’s and allowed

“messages to be written on a computer to be downloaded onto a small SRAC

transmitter. This device, slightly larger than a cigarette pack sends out a low

power interrogation signal. When the receiving agent is close enough—about

100 m away—the SRAC transmitter makes contact and “burst” transmits any

waiting messages.”5

I prefer to call this more modern technique “Stego Stuffing” after taking inspira-

tion from Microsoft Research’s Beacon Stuffing paper. By taking the results and

reassembling them, the recipient can extract and reveal the hidden message.

This could be used for a variety of small messages such as lock combinations,

Instant Messenger-like messages, etc. A larger message could be encapsulated

and sent once, or multiple times using a tool such as aireplay-ng. The possibili-

ties are endless. The following example demonstrates this using Wireshark (see

Figure 12.3).

In addition, frequency hopping, nonstandard WiFi channels, and other wire-

less protocol characteristics can circumvent Wireless IPS detections. Addition-

ally, the example provided above is performed with the recipient device not

connected to any wireless network, and purely in promiscuous mode, making

5 The Spycraft Manual: The Insider’s Guide to Espionage Techniques, by Barry Davies and

Richard Thomlinson, p. 63.

FIGURE 12.2 Stego Stuffing

FIGURE 12.1 WiFi Beacon Packet

The Future, and the Past 233

it additionally difficult to detect the activity by detecting neighboring wireless

client devices. With the device not connected to any wireless network and by

not broadcasting, it’s nearly impossible to detect the recipient.

Most enterprises have a plethora of products for their wired networks to create

a defense-in-depth strategy. But as we reach the tipping point of mobile devices

outnumbering wired devices, we are once again at a disadvantage for detecting

hidden data. This is of special concern considering that wireless is the preferred

method of communication across enemy lines. Although Wireless Intrusion

Prevention Systems are very mature, they’re designed more for detecting rogue

devices, wireless attacks on other devices, and protocol abuse. But they are not

fine-tuned to detect the existence of hidden messages. There is a growing need

for wireless detection technologies in this area. We can also expect to see the

emergence of more data hiding techniques using wireless protocols including

WiFi, Bluetooth, Virtual WiFi, 3G, 4G, etc. The need exists as demonstrated by

the recent Russian Spy case where wireless adhoc networks were used to trans-

port secret documents.6

Steganography as a Countermeasure
One option in the defense of our systems is to turn the tables on those attacking

our systems (insiders or outsiders). By utilizing the capabilities of steganogra-

phy as a countermeasure we can improve attribution, pedigree and provenance

6 Russian Spy Ring—http://www.theregister.co.uk/2010/06/29/spy_ring_tech/.

FIGURE 12.3 Wireshark capture of Stego Stuffing

http://www.theregister.co.uk/2010/06/29/spy_ring_tech/

CHAPTER 12: Futures

of corporate documents, proposals, intellectual property, and even databases

that contain Personal Identifiable Information (PII). In a simplified view, this

would work as shown in Figure 12.4.

An authorized user creates a document, briefing, spreadsheet, digital image, mul-

timedia file, etc. It is deemed that this document should include a provenance

marker. The original object is sent to the Stego-Based Provenance Marker Server.

The server secretly embeds hidden markers throughout the object. The markers

are embedded in such a way that even when the object is modified or altered the

markers remain. This may sound similar to a watermark, however, the content

of the markers contain pedigree information (ownership, location, timestamp,

description, confidentiality information, expiration, etc.) As the document,

image, movie or other digital object is circulated throughout the organiza-

tion, strategically placed security components can detect the markers and apply

policy that would determine distribution, release, access control and integrity

FIGURE 12.4 Steganography as a Countermeasure

234

The Future, and the Past 235

operations. Documents, images, etc. that do not have provenance markers, could

then be scanned and marked based on the trustworthiness and handling. Even

host devices could determine, (based on policy again) how digital objects with/

without out provenance markers would be handled, quarantined or processed.

This is because the hidden markers don’t effect the usefulness of the object, (in

other words they do not affect the quality of the images, multimedia file, docu-

ment or database as they are non-intrusive to normal use of the objects).

By examining the usefulness of steganography for such confidentiality, integ-

rity, and trust applications, you increase the overall confidentiality, integrity,

and availability of your cyber infrastructure. Much of today’s cyber security

mechanisms rely on passive detection of threats. This method is becoming

more difficult as network and processing speeds increase, and the number of

devices and diversity of network traffic evolve. We must provide methods to

assist these security mechanisms with a-priori and secure information that will

improve the efficiencies of these devices.

Current and Futuristic Combined Threats

Data hiding threats are expected to continue to evolve in more sophisticated

ways to avoid detection. Some of these methods combine two or more of these

techniques (see Figure 12.5).

n Polymorphic—Much like virus, data hiding programs can self-mutate when

hiding the data so as to throw-off signature based detections (e.g. Hydan

which hides data in executables in different ways at run-time).

n Multidimensional—This form of data hiding applies multiple techniques

or steps to hide data. In one such case, the data is first hidden using an

LSB method within the file. That file is then hidden in a Stealth Alternate

Data Stream or Volume Shadow Copy.

n Dispersion—Some tools utilize methods to hide data (or disperse) across

multiple carrier files or transmissions. In addition, the approach may also

add decoy files or transmissions with no hidden data to throw-off tar-

geted analysis and detection (e.g. OpenPuff).

FIGURE 12.5 Combined Threats

n Derivative—One form of the derivative technique is where a data is hid-

den in a file, while modifying other innocuous files so as to throw-off

the investigator (e.g. “touching” multiple Linux files to change dates and

times on a large quantity of files, or modifying the checksums on a large

number of files).

n Advanced Persistent Threat—Although this is a broad definition, one recent

example with Operation Shady RAT involved routinely obtaining images

with hidden data that included the latest command and control URLs or

IP addresses.

As covered in the Mitigation Strategies chapter, detection technologies that

identify behavioral patterns and heuristics related to data hiding activities are

the best adaptive technologies for these evolving combined threats. Bottomline,

combined threats should be mitigated using combined detection techniques.

SUMMARY

As we look back on the story of Demaratus and how he carved that secret mes-

sage into the wood of the wax tablet in order to avoid detections by the sentries

of the day, one has to wonder how far have we actually come in 2,500 years.

Recently, we gave a presentation to a group of some of the best cyber security

minds in the world, working to protect the assets of large private and public

organizations around the globe. We asked the following simple question….

“If someone or some application hides information inside a digital image and

then E-mails that image as an attachment via the normal channels with the

most modern sentries available today in place, how many of these messages

would be blocked?” Essentially, repeating the message exfiltration that Dema-

ratus successfully executed over 2500 years ago.

Not a single hand was raised.

CHAPTER 12: Futures236

FM Header

237

Index

A
Alternate Data Stream (ADS), 135,

140, 208
See also Windows data hiding
alternate data stream creation,

136
drawback, 137
hiding second ADS in mike.txt,

137
LNS, 208–209
thumbs.db storage, 205
in Windows NTFS, 135

Anagrams, 2–3, 8
Android, 91

carrier image, 92
data hiding applications, 91
ImgHid and Reveal App, 91

data hiding operation,
successful completion, 93,
94

data hiding screenshot
execution, 93, 94

gallery screenshot,
92, 94

navigation screenshot, 93
resulting ImgHid data hiding

operation, 95–98
secret and carrier, 93, 94
secret image screenshot

selection, 92, 93
My Secret App, 98

carrier selected screenshot,
98, 99

carrier selection screenshot,
98, 99

message entry screenshot, 98,
99

navigation screenshot, 98, 99
standard payload image, 92
StegDroid, 102–105

advantages, 102, 103
using Android application,

103–106
Anti-forensics, 193

carrier file, 194
custom-made digital photograph,

194
data hiding passwords, 194–195

recommendations, 194, 195
using special characters, 195
special characters list,

195, 196
user-defined password, 195

hiding
clean command, 195–196
using command line, 195
deselecting privacy

checkboxes, 196, 197
start menu updating

customization, 196, 198
removable storage, 194
steganography program, 194

Append insertion
See also Insertion methods
EOI marker, 44
JPEG file with appended data,

44, 45
unmodified JPEG file, 43, 44

Application blocking, 220, 223
Audio Manager, 29

iPad writing, 107, 108
Wax Tablet, 107, 108

Audio Video Interleave file (AVI file),
80–82

B
BackTrack, 63
Beacons, 231. See also Wifi Beacon
Binaries, 52
BIOS, virtual machine’s, 172

Black Hat Conference, 2011, in Las
Vegas, 134

Bluetooth, 231, 233
BMP images, 48, 215, 218
Brazilian National Institute of

Criminology, 157
British, in accurate radar detection,

221–222
British intelligence, 14
British Radio Security Service,

229–230

C
C&C IP addresses. See Command

and Control IP addresses
Cached images, 203–204
Caesar, Julius

See also Substitution cipher
Johnny Quest Decoder

Ring, 4
Navajo code talkers, 4–5
substitution cipher

creation, 3–4
Cardano Grille cipher

with hidden message, 11
invisible ink, 13
microdots, 13–14
with overlay revealing hidden

message, 11, 12
printer tracking dots, 14–16
Spam Mimic encoding,

11–12
watermarks, 16–17

Carriers, 215
file, 218
hide payload in, 218

Cipher alphabet, 3–4
Cipher text, 3, 4
Codebreakers, 1, 2
Command and Control IP addresses

Note: Page numbers followed by “f” and “t” indicate figures and tables respectively

Index238

(C&C IP addresses), 133
Covered writing, 10
Cryptanalysis, 3, 55–56
Cryptograms, 2–3

cipher text, 3
cryptanalysis, 3
goal, 2–3

Cryptography, 3, 229
See also Steganography
hidden writing, 10
substitution cipher, 3

Cryptology
anagrams, 2–3
cryptograms, 2–3
and steganography differences,

10–11
substitution and transposition

ciphers difference, 10
substitution cipher, 3

coded radio messages and
Morse code, 5–6

and Julius Caesar, 3–5
Vigenere cipher, 6–8

transposition cipher, 8–10

D
Data at rest, 218, 224
Data Encryption Standard (DES), 10
Data hiding, 1, 186, 193

See also Digital audio,
data hiding in

activities, 216
carrier file, 218
download program, 216
install program, 216
integration areas, 231
passwords, 194–195

recommendations, 194, 195
by special characters, 195
special characters list, 195, 196
user-defined password, 195

using program, 216–218
recipient receives file, 218
recipient reveals payload, 218
run program, 218
security layered approach, 219
send file, 218
software, 198–199
techniques, 216
.wav file, 73–75

data hiding wave form com-
parison, 76–77

LSB substitution, 75

original vs. data hiding hex
data, 78

original vs. data hiding
waveform analysis, 77

S-TOOLS v 4.0, 75–76
triple DES encryption

selection, 76
Data hiding applications, 107

InvisiLetter analysis, 125–130
iPad with, 130
Spy Pix analysis, 110–116
Stego Sec analysis, 116

Data hiding program, 194
Data in transit, 218, 219
Data Leakage Prevention (DLP), 216,

220, 221
DCT function. See Discrete cosine

transform function
debugfs tool, 152, 156–157
Delayed packet modification

method, 187–188
Department of Defense (DoD), 199
DES. See Data Encryption Standard
Digital audio, data hiding

in, 68
See also Digital video,

data hiding in
advanced audio file embedding,

79
advantage, 70
audio file embedding, 70

analog wave with discrete
samples, 71

PCM standard, 70–71
wave audio file, 73, 74
wave file header, 71–72
wave sample data, 72, 73

audio summary, 79–80
data hiding in .wav file, 73–75

data hiding wave form
comparison, 76–77

LSB substitution, 75
original vs. data hiding

hex data, 78
original vs. data hiding

waveform analysis, 77
S-TOOLS v 4.0, 75–76
triple DES encryption

selection, 76
HAS, 70
StegAnalysis

LSB audio data hiding, 79
LSB data hiding, 78

MP3Stego command line MP3
encoder, 79

Digital music, 69
Digital steganalysis,

55–56
Digital video, data hiding in, 80

MSU StegoVideo, 80–82
fame comparison, 82–83
features, 80, 82
LSB pixel examination 2000 X

zoom, 83, 84
MSU data hiding process

usage, 81, 82
reverse process, 81, 82

TCStego tool, 84
clandestine information, 85
movie file basic structure,

85–86
python script, 88, 89
QuickTime multimedia

file, 84
STOC and MDAT, 87
tcsteg.py, 84
TrueCrypt container, 86–87

Digital watermarks, 16
Discrete cosine transform function

(DCT function), 62–63
DLP. See Data Leakage Prevention
Document Inspector, 24

finding Hidden Text and
Metadata, 23

Hidden Text identification in
document, 24

DoD. See Department of
Defense

Dot wave file. See .wav file
.wav file. See also Wave file

analog, 71
data hiding, 73–78

LSB substitution, 75
original vs. data hiding hex

data, 78
original vs. data hiding wave-

form analysis, 77
S-TOOLS v 4. 0, 75–76
triple DES encryption

selection, 76
wave form comparison,

76–77
LSB wave data hiding, 78
S-TOOLS, 75–76
spectrum, 79

Double Transposition, 10

Index 239

E
ECTCOE. See Electronic Crime

Technology Center of
Excellence

EFF. See Electronic Frontier
Foundation

Electronic Crime Technology Center
of Excellence (ECTCOE), 214

Electronic Frontier Foundation (EFF),
14–16

End of File (EOF), 35
End of Image marker (EOI marker),

44
Endpoint technologies

data hiding detection tools, 225
for detecting data hiding

activities, 224
HASH values, 223
HIPS, 223
MDM products, 225
steganography program,

223– 224
EOF. See End of File
EOI marker. See End of Image

marker
EXIF headers, 26
Extended filesystem data hiding, 151

changing destination directory,
156

debugfs tool, 152, 156–157
e2undel, 152, 156
format thumb drive as ext2, 152,

154, 155
inode, 151–152
recovering files, 153–155, 156
running GParted to partition,

152, 153

F
FCC. See Federal Communication

Commission
Federal Communication

Commission (FCC), 229–230
File compression tool

data hiding
add mike.txt to archive, 33, 34
using Dos command, 35
EOF marker, 35
using Extract To option, 37
hidden message file, 33
mike.rar archive creation, 34, 35
opening mike.txt to reveal hidden

message, 38

*.RAR extension, 36
rebuilt file rebuilt.newimage.rar,

36, 37
run WinRAR and click add, 34
WinRAR, 33

repairing, 36
Fingerprinting Organizations and

Collected Archives
(FOCA), 20

Forensics, 213
cache auditing tools, 203

forensic investigator, 203
STG cache audit, 203–205

data hiding software, 197
finding steganography

programs, 199
MRU program, 198
reveal installed packages, 198
in Ubuntu Linux, 198
windows registry, 199

finding remaining artifacts, 199
NIST, 199
steganography software, 199
WetStone technologies

StegoHuntTM, 200–203
hidden content extraction,

215–216
hidden directories and files

ADS, 208
LNS, 208–209

Network IDS, 209
ASCII notation, 209, 210
building rules, 209
CDN, 209
DLP, 211
hexadecimal notation, 210
IDS rules, 209
Wireshark capture of

Hiderman signature, 210
steganography use discovery,

213–214
JPHS, 213–214
TAPS, 214

steganography
carrier discovery, 215
forensic discovery, 214

thumbnails, evidence in, 204
ADS, 205
displaying thumbs.db file, 206
using registry to disable

thumbs.db files, 208
suspicious data identification,

204–205

Thumbnail Database Viewer,
205–207

thumbs.db revealed, 205, 206
USB thumb, 208
windows registry, 208
Windows Vista and Windows

7, 205, 207
Freeware tools

Stegdetect, 62
StegSpy, 60–62

Funkspiel, 230
Future threats

data hiding futures, 231
futuristic combined threats,

235–236
using Null Ciphers, 230
persistent threats, 231
steganography threats, 230

G
Gallery, ImgHid screenshot, 94
Gallery and sharing with Audio

Manager, 31
Germans and microdot, 13
Google Android mobile platform, 29
Google’s Picasa, 26–27
GParted, 152
Greece, ancient

Scytale, 9
Spartan Scytale, 9

Grille, 11–17. See also Cardano
Grille cipher

goal of, 11–12
with hidden message, 11
with overlay revealing hidden

message, 12
Spam Mimic encoding, 12
Spam Mimic website, 11

GUI version
initiation from Linux, 158
Stegdetect tarball or zip, 64

H
HAS. See Human Auditory System
HFS. See Hierarchical File System
Hidden content extraction, 215–216
Hidden directories and files

ADS, 208
LNS, 208–209

Hidden writing, 10
Hide it Pro

application, 29, 30
creation or select folder, 31, 32

Index240

PIN, 29, 30
Hierarchical File System (HFS), 135
HIPS. See Host Intrusion Prevention

System
Host Intrusion Prevention System

(HIPS), 223
Human Auditory System (HAS), 69,

102–103
Hydan, 52

executable runtime errors, 54
tar binary, 52–53

I
ICE encryption. See Information

Concealment
Engine encryption

IDS. See Intrusion Detection
Systems

Image Hide (ImgHid), 48, 91
Image metadata

changing camera maker metadata,
28

FBI and law enforcement, 26
Google’s Picasa, 26–27
JPEG format, 26
using law enforcement

commonly, 29
photo and EXIF header, adding

caption, 27
viewing image metadata, 28

ImgHid. See Image Hide
ImgHid and Reveal App, 91

data hiding operation, successful
completion, 93, 94

data hiding screenshot execution,
93, 94

gallery screenshot, 92, 94
ImgHid data hiding operation

analysis, 95, 97–98
basic image details, 95
end of file marker

examination, 96
extraction guns and ammo

payload, 97, 98
ImgHid comparable Stego’d

images, 96, 97
ImgHid hex JPEG marker

comparison, 97
metadata examination, 95

navigation screenshot, 93
secret and carrier, 93, 94
secret image screenshot selection,

92, 93

Information Concealment
Engine encryption
(ICE encryption), 54

Insertion methods, 43
See also Steganography
append insertion

EOI marker, 44
JPEG file with appended data,

44, 45
unmodified JPEG file, 43, 44

prepend insertion, 44–45
JFIF, 45
to JPEG file, 46

Intrusion Detection Systems (IDS),
211

Intrusion Prevention Systems (IPS),
220

Invisible ink, 13
Invisible writing. See Covered

writing
InvisiLetter analysis, 125, 126

complex message, 126, 128
cover image selection, 125, 126,

127
data hiding method analysis

differences, 127–129
simple vs. complex

embedding, 126, 128
simple vs. complex Hue

rendering, 129
navigation panel, 125
simple message, 126, 127

IP layer data hiding, 188
See also Data hiding; Microsoft

word data hiding
Internet protocol layer IPv4, 189
modern routing networks, 189
TTL

data hiding scheme, 189–190
field, 188
field break-down, 189

IPS. See Intrusion Prevention
Systems

ITTL field. See Time to live field

J
Java-based apps, 92
JFIF. See JPEG File Image Format
Johnny Quest Decoder Ring, 4
JP Hide and Seek (JPHS),

213–214
JPEG File Image Format (JFIF), 45
JPEG format, 26

JPEG Jamming, 222
JPEGX, 199
Jpegx steganography program,

210–211
JPHS. See JP Hide and Seek
Jumbles. See Anagrams

L
Least Significant Bit (LSB), 70–71,

73–75, 114
See also Steganography
Hex dump, 78
modification, 46, 47

in 24-bit color palette, 46–47
hiding technique, 48
original and modified LSBs file

comparison, 48
true color file formats, 48
two colors comparison, 48

substitution, 43, 77
Linux data hiding

See also Windows data hiding
extended filesystem data hiding,

151–157
Linux Filename Trickery, 150–151
TrueCrypt, 157–166

Linux Filename Trickery, 150
duplicate dots, 151
single and double dot, 150–151

LNS, 208
alternate data streams scanner,

209
streams.exe program, 208

LSB. See Least Significant Bit

M
Malware, 133

Alternate Data Streams, 140
steganographic techniques in, 42
Volume Shadow Copies, 148–149

Malware Protection Systems (MPS),
219, 220–221

MD5 hashing. See Message Digest
Algorithm hashing

MDAT. See Media Data
MDM. See Mobile Device Manage-

ment
Media Data (MDAT), 85–86
Message Digest Algorithm hashing

(MD5 hashing), 8
Metadata, 19

Inspect Document use,
21, 23, 24

Index 241

Microsoft Word Properties and,
25

Microdots, 13
See also Cardano Grille cipher
Minox Camera, 13, 14
problem, 14
steganography, 14

Microsoft word data hiding, 20
See also Data hiding
advanced properties, 25
display options for hidden text

identification, 21, 23
document after hiding second

sentence, 21, 22
using document inspector, 23
document inspector

identification, 24
using hidden option in, 21, 23
inputting data into, 20, 21
inspect document option, 21
properties and metadata, 24, 25

Minox Camera, 13, 14
Mitigation, 216

data hiding
activities, 216
carrier file, 218
download program, 216
install program, 216
using program, 216–218
recipient receives file, 218
recipient reveals payload, 218
run program, 218
send file, 218
techniques, 216

endpoint technologies
data hiding detection tools,

225
for detecting data hiding

activities, 224
HASH values, 223
HIPS, 223
MDM products, 225
steganography program,

223–224
manual methods, 218
network technologies

Anti-Virus (A/V), 221
using defense-in-depth

strategy, 219
for detecting data hiding

activities, 219–220
DLP, 221
IPS, 220

layered approach, 219
MPS, 220–221
Next Generation Firewalls

(NGFW), 221
non-destructive jamming,

221–227
SIEM view, 219

Mobile device data hiding
accessing hidden files,

31–33
applications, 109–110

InvisiLetter analysis, 125–130
iPad writing, 107, 108
Spy Pix analysis, 110–116
standard carrier image,

107–109
standard payload image,

107–109
Stego Sec analysis, 116
Wax Tablet, 107, 108

Audio Manager, 29
Google Android mobile platform,

29
hidden directories and renamed

files, 31, 32
Hide it Pro

application, 29, 30
creation or select folder,

31, 32
PIN, 29, 30

Passcode Entry, 29, 30
viewing and sharing picture, in

gallery and Audio Manager,
29–31

Mobile Device Management (MDM),
225

MojoPac, 168
desktop, 168, 169
drive selection, 168, 169
general tab, 170
installation, 168
policies for rogue settings, 171
USB drive, 170

Monoalphabetic cipher. See Cipher
alphabet

Morse code, 5–6. See also
Substitution cipher

Moscow State University (MSU),
80–82. See also MSU

StegoVideo
Most Recently Used program

(MRU program), 198
Most significant bit (MSB), 72–73,

114
MP3, 79

hiding methods, 80
MP3Stego command line MP3

encoder, 79
MP4, 84

multimedia containers, 84
tcsteg.py application, 84

MPS. See Malware Protection
Systems

MRU program. See Most Recently
Used program

MSB. See Most significant bit
MSU. See Moscow State University
MSU StegoVideo, 80–82

fame comparison, 82–83
features, 80, 82
LSB pixel examination 2000 X

zoom, 83, 84
MSU data hiding process usage,

81, 82
reverse process, 81, 82

Multimedia, 69
Multimedia data hiding

digital audio data hiding, 70–80
digital video data hiding, 80–89

My Secret App, 98
carrier selected screenshot,

98, 99
carrier selection screenshot, 98,

99
message entry screenshot,

98, 99
navigation screenshot, 98, 99
Stego analysis of My Secret

images, 100
data appending detection, 102
JPEG end of file marker

comparison, 101
JPEG markers, 100, 101
JPEG-related data hiding

activities, 102
steganography codes, 100, 101
Stego analyst image display

and geometry, 100
Stego marker identification,

101

N
NASL. See Nessus Attack Scripting

Language
National Institute of Standards and

Technology (NIST), 199

Index242

Navajo code talkers, 4–5
Nessus Attack Scripting Language

(NASL), 223–224
Network data hiding, 190
Network technologies

Anti-Virus, 221
using defense-in-depth strategy,

219
for detecting data hiding

activities, 220, 219–220
DLP, 221
IPS, 220
layered approach, 219
MPS, 220–221
NGFW, 221
non-destructive jamming,

221–227
SIEM view, 219

Next Generation Firewalls (NGFW),
221

NGFW. See Next Generation
Firewalls

NIST. See National Institute of
Standards and Technology

Non-destructive jamming,
221–227

NT File System (NTFS), 135
NTFS. See NT File System
*.nvram file, 172
Nyquist theorem, 73–75

O
Ogg, 103
Openpuff, 235
Operating system data hiding

Linux data hiding
extended filesystem

data hiding, 151–157
Linux Filename Trickery,

150–151
TrueCrypt, 157–166

Windows data hiding
ADS, 135–138
stealth alternate data streams,

138–140
Volume Shadowing,

140–150
Operation Shady RAT,

133, 134
McAfee report, 135
multidimensional techniques,

135
OutGuess, 62

P
Passcode Entry, 29, 30
Password 7 hashing, 8
Pcap file, 219
PCM. See Pulse code

modulation
Personal identifiable information

(PII), 167, 216
PNG files, 88
PNG images, 118, 127–128, 215
Polyalphabetic substitution

cipher, 7
Prepend insertion, 44–45

See also Insertion methods
JFIF, 45
to JPEG file, 46

Printer tracking dots, 14–16. See
also Cardano Grille cipher

Protocol data hiding investigation,
190–191

Pulse code modulation (PCM),
70–71

Python script, 88, 89

Q
QuickTime multimedia file, 84

R
Radio Intelligence Division (RID),

229–230
Radio messages, coded, 5–6
*.RAR file, , 36
Real-Time Transfer Control Protocol

(RTCP), 184
Real-Time Transfer Protocol (RTP),

184
Recycle Bin, 194
Red, Green, and Blue (RGB),

46–47, 48. See also “True
Color” file formats

Remote Access Tool (RAT). See
Operation Shady RAT

Repair feature, of WinRAR, 36
RID. See Radio Intelligence Division
Rogue setting, MojoPac policies for,

171
Roman letters vs. Greek letters,

3–4
RTCP. See Real-Time Transfer

Control Protocol
RTP. See Real-Time

Transfer Protocol

S
Sample Table Chunk Offset (STOC),

85–86
SATAN. See Security Administrator

Tool for Analyzing Networks
Secret writing, 1
Security Administrator Tool for

Analyzing Networks (SATAN),
216

Security Information Event
Management (SIEM), 219, 223

Session initiation protocol (SIP), 184
Shift Cipher, 3–4
Short Range Agent Communication

(SRAC), 231
SIEM. See Security Information

Event Management
Signature, 57
SIP. See Session initiation protocol
Skytale. See Spartan Scytale
Snow program, 54

HTML documents comparison, 55
tool online version, 55, 56
using WinHex, 55, 56

Spam Mimic encoding, 11–12. See
also Cardano Grille cipher

Spartan Scytale, 9
Spy Pix analysis, 110

data hiding method analysis, 114
detector development, 116
LSB detection algorithms, 116
side by side comparison,

115–116
for decoy or cover image, 112
gun and bullet

bleed through, 112–114
obscured, 112–114
selection, 111, 112

photo source selection, 110, 111
screen shot, 110, 111

SRAC. See Short Range Agent
Communication

Stealth ADS. See Stealth alternate
data streams

Stealth alternate data streams
(Stealth ADS), 138, 139

See also Windows data hiding
advantages, 139
\\?\ designation, 138
using echo command, 138
NUL, 139
reserved device names, 138
WMIC kicking off, 139–140

Index 243

StegAnalysis, 55–57
anomalous analysis, 58

file property differences,
58–59

baseline methods, 58
digital audio, data hiding in

LSB audio data hiding, 79
LSB data hiding, 78
MP3Stego command line MP3

encoder, 79
freeware and commercial tools,

59
LSB audio data hiding, 79
LSB data hiding, 78
methods, 57
MP3Stego command line MP3

encoder, 79
signature, 57
steganography detection forms,

57
Steganography, 10, 229

Cardano Grille cipher, 11–17
invisible ink, 13
microdots, 13–14
printer tracking dots, 14–16
Spam Mimic encoding, 11–12
watermarks, 16–17

carrier discovery, 215
as countermeasure, 233–235
and cryptography differences,

10–11
digital, 42
hiding

executables, 52–54
HTML, 54–55
in PDF, 49–52

insertion methods, 43–46
substitution methods, 43, 46–49
use discovery, 213–214

JPHS, 213–214
TAPS, 214

Steganos, 48
Stegdetect, 62

description, 62
installation, 63
output, 64
program, 63
XSteg, 64, 65, 66

StegDroid, 102–103
advantages, 102, 103
using Android application, 103

audio recording, 104
encoding and decoding

diagram, 103, 104
hidden message successful

recovery, 104, 105
secret message entry, 103
send or review message,

103–105
Stego Sec analysis, 116, 117

data hiding method analysis, 124
comparison, 121
DC histogram changes, 123,

124
DC or average value, 123
JPEG file type result, 121
quantized DCT coefficients,

122, 123
short message vs. long

message, 122
hidden message string, 117, 118
navigation panel, 117
password and file name

specification, 118, 119
secret message distribution,

119–120
sending e-mail, 119–120
snow owl image selection,

117, 118
successful completion, 119

StegoBreak, 201, 202
cracking automation, 203

StegoHunt™, 200, 201
carrier scan results grid, 201, 202
program scan results grid, 201
scan program selection, 200
StegoAnalyst and StegoBreak

modules, 201
StegoAnalyst image examination,

201, 202
StegoBreak, 202, 203

StegSpy, 60
description, 60
installation, 60
output, 61, 62
program, 60, 61

STG cache audit, 203–204
history view, 204, 205
site view, 204

STOC. See Sample Table Chunk
Offset

S-TOOLS v 4. 0
after data hiding wave form

comparison, 77
with sample wave, triple DES

encryption selection, 76

with sample wave ready for data
hiding, 76

Substitution cipher, 3
See also Transposition cipher
coded radio messages and Morse

code, 5–6
Julius Caesar

Johnny Quest Decoder Ring, 4
Navajo code talkers, 4–5

transposition ciphers vs., 10
Vigenere cipher, 6

complexity, 7
design, 6–7
English language letter fre-

quency, 7
frequency analysis, 7
hashing mechanism, 8, 9
Internet-based tool, 8
polyalphabetic substitution

cipher, 7

T
TAPS. See Trait Analytic Program

Search
Tar binary, 52–53
Tar file, 63

GUI version, 64
TCP. See Transmission Control

Protocol
TCP/IP Protocol Suite, 181
TCP/UDP embedding methods, 188
tcsteg.py application, 84
TCStego tool. See TrueCrypt real

steganography tool
Thumbnail Database Viewer,

205–207
Thumbnails, 204
Time to live field (ITTL field), 188
Trait Analytic Program Search

(TAPS), 214
Transmission Control Protocol

(TCP), 181
ASCII value, 182
Craig’s initial warning, 183
data hiding method, 183
endian value, 182
hex value, 182
initial handshake sequence,

181–182
modified sequence number

method, 183, 184
Wireshark snapshot, 182, 183

Transposition cipher, 8

Index244

Double Transposition, 10
Spartan Scytale, 9
substitution ciphers vs., 10

“TrueColor” file formats, 48
and Spy Pix, 123

True color images, 129, 215
TrueCrypt, 157, 158

container, 86–87
hidden volume, 158, 159

access files in, 165, 166
choosing drive for, 158, 159
choosing thumb drive for,

159, 160
entering password, 163, 164
mounting and opening, 163,

164
setup, 161
viewing properties in, 165

host volume
choosing password for, 159,

160
formatting, 159, 161

package installation,
157, 158

plausible deniability, 157
worldwide attention on, 157

TrueCrypt real steganography tool
(TCStego tool), 84

clandestine information, 85
movie file basic structure, 85–86
python script, 88, 89
QuickTime multimedia file, 84
STOC and MDAT, 87
tcsteg.py application, 84
TrueCrypt container, 86–87

U
United States, in accurate radar

detection, 221–222
Universal Datagram Protocol (UDP),

184

V
Vigenere cipher, 6

See also Substitution cipher
complexity, 7
design, 6–7
English language letter frequency,

7
frequency analysis, 7
using hashing mechanism, 8
Internet-based tool, 8
polyalphabetic substitution

cipher, 7
Virtual data hiding

See also Data hiding
virtual environments, 168–171
VMware files, 172
hiding data in VMware image,

172–179
Virtual environments, 167

data and multimedia files, 171
hiding process

MojoPac, 168
MojoPac desktop, 168, 169
MojoPac drive selection, 168,

169
MojoPac filesystem, 170
MojoPac general tab, 170
MojoPac policies for rogue

settings, 171
MojoPac USB drive, 170

virtual machine products, 171
VMware files, 172

hiding data in VMware image,
172–179

sample file listing for VMware
virtual machine, 172

VMware virtual machine
image, 172

*.vmx VMware configuration
file contents, 173

*.vmdk file, 172
*.vmsd file, 172
VMware files, 172

sample file listing for, 172
VMware image, hiding data in,

172–173
using dsfi tool to insert

payload file, 176
dsfo tool, 178
Dsfok-tools, 175
extract picture, 178
JPEG inserted into root.vmdk,

176, 177
JPEG payload file size, 175,

176
KDMV, 174
MonolithicSparse files, 174
normal virtual machine,

176–177
random padding within virtual

disk representation, 174
storage, 178
using syntax, 175
2 MB JPEG file, 174

Ubuntu 8. 04 virtual machine
downloading, 174

*.vmdk file, 173–174
VMware virtual machine, 177

VMware virtual machine image,
172

VMware image, hiding data in,
172–173

using dsfi tool to insert payload
file, 176

dsfo tool, 178
Dsfok-tools, 175
extract picture, 178
JPEG inserted into root.vmdk,

176, 177
JPEG payload file size,

175, 176
KDMV, 174
MonolithicSparse files, 174
normal virtual machine,

176–177
random padding within virtual

disk representation, 174
storage, 178
using syntax, 175
2 MB JPEG file, 174
Ubuntu 8. 04 virtual machine

downloading, 174
*.vmdk file, 173–174
VMware virtual machine, 177

*.vmx file, 172
*.vmxf file, 172
Voice over Internet Protocol (VoIP),

184
VoIP. See Voice over Internet

Protocol
VoIP data hiding

Alice and Bob exchange, 185
data loss, 186–187
payload insertions, 185, 186
RTCP, 184
RTP, 184
schemes, 185–186
Theora payload hijacking, 186,

187
UDP, 184
VoIP RTP simplified packet,

184–185
Volume Shadow Copies, 148–149
Volume Shadowing

See also Windows data hiding
access system protection, 141–142
using cmd.exe, 144

Index 245

hidden directory performance,
147–148

using list volumes, 143
removing hidden directory, 148
restore point creation, 144, 145
Shadow Copy Configuration,

141–142
shadow copy volume creation,

144, 145
successful creation, 144, 145
symbolic link creation, 146
Volume Shadow Copy Service,

140, 141
VSSadmin utility, 142–143
vssown.vbs, 149–150
WMIC command kicking off, 148,

149
Vulnerability scanning, 216

endpoint technologies, 224
enterprise networks, 223–224

W
Watermarks, 16

See also Cardano Grille cipher
of Benjamin Franklin, 16
digital, 16

Wave file (.wav file), 70, 71–72
analog, 71
data hiding, 73–78

LSB substitution, 75
original vs. data hiding

hex data, 78

original vs. data hiding
waveform analysis, 77

S-TOOLS v 4. 0, 75–76
triple DES encryption

selection, 76
wave form comparison, 76–77

LSB wave data hiding, 78
S-TOOLS, 75–76
spectrum, 79

wbStego4open wizard, 49
changing digitally signed Adobe

PDF, 51, 52
conversion, 49, 50
inserting copyright info, 49, 50
PDF file modified using, 50, 51

WetStone technologies
StegoHuntTM, 200

StegoAnalyst image examination,
201, 202

StegoBreak, 202, 203
StegoHunt carrier scan results

grid, 201, 202
StegoHunt program scan results

grid, 200, 201
StegoHunt scan program

selection, 200
StegoHunt’s StegoAnalyst and

StegoBreak modules, 201
Windows data hiding

ADS, 135–138
stealth alternate data streams,

138–140

Volume Shadowing, 140–150
Windows Management

Instrumentation Command-
Line (WMIC), 139

WinHex, 43
WinRAR, 33
Win-Zip, 33
Wireless communications, 229
Wireless data hiding, 231

Beacon stuffing, 231
SRAC device, 232
Stego stuffing, 231, 232
WiFi beacon packet, 231, 232
wireless intrusion prevention

systems, 233
wireless IPS detections,

232–233
Wireshark capture,

232, 233
WMIC. See Windows Management

Instrumentation
Command-Line

X
XSteg, 64, 65, 66

Y
YouTube, 85

Z
Zip file, 63. See also Win-Zip

This page is intentionally left blank

This page is intentionally left blank

This page is intentionally left blank

	Front Cover
	Half Title
	Title Page
	Copyright
	Dedication
	Raggo Acknowledgments
	Hosmer Acknowledgments
	Contents
	About the Authors
	About the Technical Editor
	Preface
	1 History of Secret Writing
	Introduction
	Cryptology
	Substitution Cipher
	Caesar
	Coded Radio Messages and Morse Code
	Vigenere Cipher

	Transposition Cipher
	Spartan Scytale

	The Difference Between Substitution Ciphers and Transposition Ciphers

	Steganography
	Cardano’s Grille
	Invisible Ink
	Microdots
	Printer Tracking Dots
	Watermarks

	Summary
	References

	2 Four Easy Data Hiding Exercises
	Hiding Data in Microsoft Word
	Image Metadata
	Mobile Device Data Hiding
	File Compression Tool Data Hiding
	Summary
	References

	3 Steganography
	Introduction
	Steganographic Techniques
	Insertion Methods
	Append Insertion
	Prepend Insertion

	Modification
	LSB

	Hiding in PDFs (Insertion Meets LSB)
	Hiding in Executables (Hydan)
	Hiding in HTML

	Steganalysis
	Anomalous Analysis
	File Properties

	Steganalysis Tools
	Freeware Tools
	StegSpy
	Description
	Installation
	Using StegSpy

	Stegdetect
	Using Stegdetect

	Summary
	References

	4 Multimedia Data Hiding
	Multimedia Overview
	Data Hiding in Digital Audio
	Simple Audio File Embedding (Imperceptible Approach)
	Data hiding in a .wav file
	StegAnalysis of LSB Wave Data Hiding
	Advanced Audio File Embedding
	Audio Summary

	Data Hiding in Digital Video
	MSU Stego
	TCStego

	Summary
	References

	5 Data Hiding Among Android Mobile Devices
	Android Overview
	Android ImgHid and Reveal App
	Analysis of the Resulting ImgHid Data Hiding Operation

	Android My Secret App
	Stego Analysis of the Resulting My Secret Images
	Summary

	StegDroid
	Using the Android Application

	Summary
	References

	6 Apple iOS Data Hiding
	Introduction
	Mobile Device Data Hiding Applications
	Spy Pix Analysis
	Data Hiding Method Analysis

	Stego Sec Analysis
	Data Hiding Method Analysis

	InvisiLetter Analysis
	Data Hiding Method Analysis

	Summary
	References

	7 Operating System Data Hiding
	Windows Data Hiding
	Alternate Data Streams Reviewed
	Stealth Alternate Data Streams
	Volume Shadowing

	Linux Data Hiding
	Linux Filename Trickery
	Extended Filesystem Data Hiding
	TrueCrypt

	References

	8 Virtual Data Hiding
	Introduction
	Hiding a Virtual Environment
	Getting Started

	A Review of Virtual Environments
	VMware Files
	Hiding Data in a VMware Image

	Summary
	References

	9 Data Hiding in Network Protocols
	Introduction
	VoIP Data Hiding
	Delayed Packet Modification Method
	IP Layer Data Hiding, The TTL Field
	Investigating Protocol Data Hiding
	Summary
	References

	10 Forensics and Anti-Forensics
	Introduction
	Anti-Forensics—Hiding your tracks
	Data Hiding Passwords
	Hiding Your Tracks

	Forensics
	Looking for Data Hiding Software
	Finding Remaining Artifacts
	WetStone Technologies StegoHunt™

	Identifying and View Cached Images (Cache Auditing Tools)
	STG Cache Audit

	Evidence in Thumbnails
	Searching for Hidden Directories and Files
	LNS

	Network IDS

	Summary
	References

	11 Mitigation Strategies
	Forensic Investigation
	Step 1 Steganography Use Discovery
	Step 2 Steganography Carrier Discovery
	Step 3 Hidden Content Extraction

	Mitigation
	Network Technologies for detecting Data Hiding
	Non-Destructive Jamming
	Endpoint Technologies for detecting Data Hiding
	Summary

	References

	12 Futures
	The Future, and the Past
	Future Threats
	Wireless—The New Frontier

	Steganography as a Countermeasure
	Current and Futuristic Combined Threats

	Summary

	Index

