
 



 
Data Hiding Fundamentals
and Applications



 

This Page Intentionally Left Blank



 
Data Hiding
Fundamentals
and Applications
Content Security in Digital Media

Husrev T. Sencar

Mahalingam Ramkumar

Ali N. Akansu

Amsterdam Boston Heidelberg London New York Oxford
Paris San Diego San Francisco Singapore Sydney Tokyo



 

Elsevier Academic Press
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

This book is printed on acid-free paper.

Copyright © 2004, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopy, recording, or any
information storage and retrieval system, without permission in writing from
the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.com.uk. You may also complete your request on-line
via the Elsevier homepage (http://elsevier.com), by selecting “Customer Support”
and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

Sencar, Husrev T.
Data hiding fundamentals and applications / Husrev T. Sencar, Mahalingam Ramkumar,

Ali N. Akansu.
p. cm.

Includes bibliographical references and index.
ISBN 0-12-047144-2 (alk. paper)

1. Multimedia systems–Security measures. 2. Data encryption (Computer science) I.
Ramkumar Mahalingam. II. Akansu, Ali N., 1958- III. Title.

QA76.575.S46 2004
005.8′2–dc22

2004052921

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN: 0-12-047144-2

For all information on all Academic Press publications
visit our Web site at www.academicpress.com

Printed in the United States of America
04 05 06 07 08 9 8 7 6 5 4 3 2 1



 
To our wives:

Yelda

Bindu

Bilge



 

This Page Intentionally Left Blank



 
Contents

Preface xiii
Foreword xv

CHAPTER 1
Introduction

1.1 What Is Data Hiding? 1
1.2 Forms of Data Hiding 2

1.2.1 Relative Importance of Cover Signals 3
1.2.2 Nature of Content 4
1.2.3 Oblivious and Nonoblivious 4
1.2.4 Synchronous and Asynchronous 4
1.2.5 Active and Passive Wardens 5

1.3 Properties of Steganographic Communications 5
1.3.1 Multimedia Data Hiding 6

1.4 The Steganographic Channel 8

CHAPTER 2
Frameworks forData Hiding

2.1 Signal Processing Framework 14
2.2 Data Hiding from a Communications Perspective 15
2.3 Relationship Between Communications and Signal Processing

Frameworks 17
2.4 A Review of Data Hiding Methods 20

CHAPTER 3
Communication withSide Information
and Data Hiding

3.1 Costa’s Framework 27

vii



 

viii Contents

3.2 A Framework Based on Channel Adaptive Encoding and Channel Independent
Decoding 30
3.2.1 Highlights of the CAE-CID Framework 34

3.3 On the Duality of Communications and Data Hiding Frameworks 35
3.4 Codebook Generation for Data Hiding Methods 40

CHAPTER 4
Type I (Linear) Data Hiding

4.1 Linear Data Hiding in Transform Domain 50
4.2 Problem Statement 51
4.3 Capacity of Additive Noise Channels 52
4.4 Modeling Channel Noise 58

4.4.1 Modeling Image Noise 59
4.4.2 Modeling Processing Noise 59

4.5 Visual Threshold 61
4.6 Channel Capacity vs. Choice of Transform 63
4.7 Some Capacity Results and Discussions 66
4.8 The Ideal Decomposition 74
4.9 Factors Influencing Choice of Transform 76

CHAPTER 5
Type II and Type III (Nonlinear) Data
Hiding Methods

5.1 Type II Embedding and Detection 79
5.2 Type III Embedding and Detection Methods 83

5.2.1 Postprocessing Types 85
5.2.1.1 Vectoral Embedding and Detection 86
5.2.1.2 Scalar Embedding and Detection 87

5.2.2 Forms of Demodulation 87
5.2.2.1 Minimum Distance Decoding 88
5.2.2.2 Maximum Correlation Rule 90

5.2.3 Optimization Criteria for Embedding and Detection
Parameters 91
5.2.3.1 Optimization of Parameters for Vectoral Embedding

and Detection 91
5.2.3.2 Optimization of Parameters for Scalar Embedding

and Detection 92
5.2.3.3 Maximizing Correlation 95
5.2.3.4 Minimizing Probability of Error 96
5.2.3.5 Maximizing Mutual Information 98

5.3 Performance Comparisons 98



 

Contents ix

CHAPTER 6
Advanced Implementations

6.1 Spread Transforming 108
6.2 Multiple Codebook Data Hiding 113

6.2.1 A Channel Model for Multiple Codebook Data Hiding 119
6.2.2 Single Codebook Data Hiding Based on the Maximum Correlation

Criterion 125
6.2.2.1 Distribution of ρind 127
6.2.2.2 Distribution of ρdep 128

6.2.3 Multiple Codebook Data Hiding Using the Maximum Correlation
Criterion 130
6.2.3.1 Distribution of ρi

m, j 132
6.2.3.2 Distribution of ρmax 133

6.2.4 Single Codebook Hiding Using the Minimum Distance
Criterion 134
6.2.4.1 Distribution of dind 135
6.2.4.2 Distribution of ddep 136

6.2.5 Multiple Codebook Hiding Using the Minimum Distance
Criterion 137
6.2.5.1 Distribution of di

m, j 139
6.2.5.2 Distribution of dmin 139

6.2.6 Comparisons 139
6.2.7 Implementation and Simulation Results 147

CHAPTER 7
Major Design Issues

7.1 DFT-Based Signaling 154
7.1.1 Conventional Signaling 154
7.1.2 FFT-Based Signaling 155

7.1.2.1 Cyclic All-Pass Sequences 155
7.1.2.2 Signal Constellation 157
7.1.2.3 Redundant Signaling 158

7.2 Synchronization 160
7.2.1 Autocorrelation for Restoring the Cropped Signal 162
7.2.2 Practical Concerns 165

7.2.2.1 Watermark Signal Design 165
7.2.2.2 Cyclic Autocorrelation 165

7.2.3 Synchronization 167
7.2.4 Results 167

7.3 Perceptual Constraints 170
7.4 Attacks on Data Hiding Systems 172

7.4.1 Removal Attacks 173
7.4.1.1 Blind Attacks 173
7.4.1.2 Estimation Attacks 174



 

x Contents

7.4.2 Desynchronization Attacks 175
7.4.2.1 Geometric Attacks 175
7.4.2.2 Mosaic Attack 175
7.4.2.3 Template and Periodicity Removal 175

7.4.3 Security/Cryptographic Attacks 176
7.4.4 Protocol Attacks 176

7.4.4.1 Invertible Watermarks 176
7.4.4.2 Copy Attack 176

7.4.5 Future Direction in Attack Design 176

CHAPTER 8
Data HidingApplications

8.1 Design of Data Hiding Methods Robust to Lossy Compression 179
8.1.1 Data Hiding for Secure Multimedia Delivery 180
8.1.2 Compression and Data Hiding 182

8.1.2.1 Data Hiding with Known Compression 183
8.1.2.2 Simultaneous Robustness to Multiple Compression

Techniques 185
8.1.2.3 Robustness to Unknown Compression Methods 187

8.1.3 Utilizing the “Hole” in Compression Techniques 187
8.1.4 The Data Hiding Scheme 191

8.2 Type III Hiding for Lossy Compression 194
8.2.1 Joint Embedding and Compression 195
8.2.2 Results for JPEG Compression 197

8.3 Watermarking for Ownership 199
8.3.1 Counterfeit Attacks on Watermarks 201

8.3.1.1 Freedom in Choosing 202
8.3.1.2 Detection Statistic 203
8.3.1.3 Fake Originals 205
8.3.1.4 Multiple Watermarks 205

8.3.2 Watermarking Algorithms 206
8.3.3 Overcoming Attacks on Watermarks 207
8.3.4 Restrictions on Choice of Signature 209
8.3.5 Attacking Scheme III (Craver’s Protocol) 210
8.3.6 Quasi-Oblivious Watermarking 211
8.3.7 Detection Statistic for Quasi-Oblivious Watermarking 213
8.3.8 Suggested Protocol 214
8.3.9 An Example of a Watermarking Scheme 216

APPENDIX A
CAE-CID Framework under Varying

Channel Noise 221



 

Contents xi

APPENDIX B
Statistics of ρρρdep|P
and ddep|P 223

APPENDIX C
Mathematical Proofs

C.1 Proof of Eq. (7.7) 229
C.2 Proof of Eq. (7.10) 230

Bibliography 231

Index 239



 

This Page Intentionally Left Blank



 
Preface

Data hiding is an exciting and challenging field that has made significant
strides in the very recent past. In this book, we address various issues
involved in the design of data hiding systems, especially for secure media
delivery. The book primarily targets graduate electrical engineers with
some background in signal processing and digital communications. Some
familiarity with data compression and information theory will also help.

Data hiding is a means of communication using subliminal chan-
nels. Therefore, like any communication scheme, data hiding can be
synchronous or asynchronous. Though we address both types of data hiding
methods, we lay more emphasis on synchronous data hiding.

Chapter 1 is a brief introduction to data hiding and its applications. In
Chapter 2, we provide different frameworks under which we can attempt
to solve the problem of synchronous data hiding. Once the problem to be
solved is formulated, in Chapter 3 we review some basic concepts. Chap-
ters 4 to 6 offer some solutions of increasing complexity and sophistication
to effectively address the problem of data hiding.

Chapter 7 addresses the design of data hiding schemes, especially for
secure media delivery. In Chapter 8, we address some coding techniques
useful for data hiding applications.

xiii
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Foreword

Multimedia technologies are becoming more sophisticated, enabling the
Internet to accommodate an ever-growing audience with a full range of
services and efficient delivery modalities. The Internet brings the world
to desktop, and puts communication, education, commerce, and social-
ization at our fingertips. The opportunities are enormous and evolving at
an incredible rate. All this growth, however, has raised some very real
multimedia content security concerns.

As the information infrastructure evolves to support the new elec-
tronic services, it is imperative that digital content security and dis-
tributed monitoring methodologies be developed simultaneously. This
book focuses on the theory and state-of-the-art applications of content
security and data hiding in digital multimedia. It consists of a theoreti-
cal framework for data hiding, utilizing signal processing and information
theory, and its extensions to real-world problems and applications in secure
multimedia delivery.

This book is intended for engineers and computer scientists doing
research in multimedia signal processing, content security, and digital
rights management systems. It is also an in-depth technical reference for
professionals working in multimedia content production and distribution
industries to appreciate and assess the value and potential of data hiding in
digital content security solutions.

xv
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C H A P T E R

Introduction

The rapidly decreasing cost of processing, storage, and bandwidth has
already made digital media increasingly popular over traditional ana-
log media. However, digital media also causes extensive vulnerabilities
to mass piracy of copyrighted material. It is, therefore, very important to
have the capabilities to detect copyright violations and control access to
digital media. Fueled by these concerns, data hiding has evolved as an
enabler of potential applications for copyright protection such as access
control of digital multimedia (e.g., watermarking), embedded caption-
ing, secret communications (e.g., steganography), tamper detection, and
others.

1.1 What Is Data Hiding?

Data hiding is the art of hiding a message signal in a host signal without
any perceptual distortion of the host signal. The composite signal is usually
referred to as the stego signal. Data hiding is a form of subliminal com-
munication. Any form of communication relies on a channel or medium.
Data hiding, or steganographic, communications rely on the channel used
to transmit the host content. As the stego content moves around the globe,
perhaps over the Internet, or by any other means usually deployed for com-
municating the host signals, so does the embedded, covert message signal.

1
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Figure 1-1 Traditional communication and steganographic communication

block diagrams.

Figure 1-1 displays the block diagram for steganographic communication
as compared to traditional communication systems.

1.2 Forms of Data Hiding

Data hiding may be classified in different ways based on

(1) the relative importance of cover and message signals,
(2) the nature of cover content,
(3) the need for an unmodified cover signal for message signal

extraction,
(4) the type of subliminal communication—synchronous or asyn-

chronous, and
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(5) the type of attacks to remove hidden messages—active and
passive wardens.

1.2.1 Relative Importance of Cover Signals

If the cover signal is of little or no importance, the stego signal may even
be generated synthetically. In other words, the only purpose of the stego
signal is subversive communication of the message signal (the underlying
cover signal is of no relevance). This technique is common in linguistic

steganography [1]. For example, the following message, sent by a German
spy in World War II [2],

Apparently neutral’s protest is thoroughly discounted and ignored. Isman hard hit.
Blockade issue affects pretext for embargo on byproducts, ejecting suets and vegetable
oils,

translates to

Pershing sails from NY June 1

if we take the second letter in each word.
Consider another example in which the cover signal serves a purpose.

The Vedas, ancient Hindu literature, contain numerous instances of data
hiding. Sanskrit, the language of the Vedas, assigns a number between 0
and 9 for all consonants. By a particular choice of consonants, and utilizing
the freedom in the choice of vowels, one can compose poetic hymns with
many interpretations. Here is an example of a sutra of spiritual content as
well as mathematical significance [3]:

gopi bhagya madhuvrata
srngiso dadhi sandhiga
khala jivita khatava
gala hala rasandara.

This stego signal translates to the cover signal

O Lord anointed with the yogurt of the milkmaids’ worship,
O savior of the fallen,
O master of Shiva, please protect me.
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In addition, this verse yields a hidden message signal—the value of π
10 =

0. 31415926535897932384626433832792 to 32 decimal places.
For the type of data hiding described in this book, the cover content

is relatively more important. It is in fact for the protection of such cover
content that we purport to use data hiding.

1.2.2 Nature of Content

Another type of classification for data hiding depends on the nature of the
cover signal. We have signals like text or binary data that are inherently

discontinuous. On the other hand, we have signals like audio and images
that are inherently continuous (even though we may handle digitized ver-
sions of them). This book addresses data hiding only for the latter type of
signals (inherently continuous).

More precisely, signals A1 and A2 are inherently continuous if
A1, A2 ∈ A, A metric space with distance measure d; and if d(A1, A2)
is “small,” A1 and A2 are “perceptually close.” Obviously, text or binary
data do not satisfy the above condition, because even if one bit is changed
in an executable binary code, the difference in interpretation may be
significant.

1.2.3 Oblivious and Nonoblivious

Yet another classification of data hiding may depend on whether the origi-
nal unmodified content is needed for the extraction of the hidden message
signal. Nonoblivious data hiding methods need the original, while obliv-
ious methods do not. We shall see that both methods are used for secure
multimedia applications. This book addresses both types of data hiding
methods, even though oblivious methods are treated in more detail.

1.2.4 Synchronous and Asynchronous

Data hiding is a form of communication, and communication schemes
can be of synchronous or asynchronous type. In conventional commu-
nication systems, an unknown propagation delay is the main reason that
both carrier and symbols have to be synchronized. For communications
scenarios employing data hiding, the carrier is the content. Obviously, the
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message-carrying content could undergo far more types of distortions than
the carrier signals for conventional communication systems. Simple and
commonly used operations like resampling the content can cause a loss
of synchronization during detection. Therefore, the problem of achieving
synchronization for data hiding is more challenging than traditional carrier
and symbol synchronization methods.

It is also possible for data hiding to be completely asynchronous.
However, we shall see that similar to the case in conventional commu-
nication schemes, such methods cannot be as efficient as synchronous
communications. In this book, we focus more on synchronous data hid-
ing. However, we also address some methods to regain synchronization
once it is lost.

1.2.5 Active and Passive Wardens

This classification is based on “interceptors” of the stego signals in the
channel that may modify the stego signal. For the case of steganography
with active wardens, we have active interceptors in the channel trying
to sabotage the secret communication (perhaps by introducing modifica-
tions to the stego signal with the idea of thwarting the attempted secret
communication).

On the other hand, if the stego signal passes unmodified through the
channel (or, if any modification occurs, it is not for the purpose of destroy-
ing the hidden message signal), we have steganographic communication
with a passive warden. We shall consider both types of steganographic
techniques in this book.

1.3 Properties of Steganographic Communications

Applications of data hiding emerge from the fact that steganographic
communications have some rather unique properties:

(1) The original or cover signal is modified. Data hiding would not
be possible if we were not able or not permitted to modify the
original signal.
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(2) The modification introduced to the signal persists throughout the
remaining life of the signal.

(3) The modification introduced by data hiding is imperceptible, or
the original (cover) signal and the modified (stego) signal should
be perceptually indistinguishable.

(4) Preexisting channels are utilized. Communication of the covert
message does not demand a channel of its own. The cover signal
is used as the transmission medium.

(5) Secret communication techniques like cryptography conceal the
transmitted message. Steganography conceals the very fact that
some form of communication is being attempted.

1.3.1 Multimedia Data Hiding

Data hiding in multimedia [4], [5], [6], [7] can help in providing proof of
the origin and distribution of a content. Multimedia content providers can
communicate with the compliant multimedia players through the sublimi-

nal, steganographic channel. This communication modality might control
or restrict access of multimedia content and carry out e-commerce functions
for pay-per-use implementations. The concept of compliant multimedia
players may extend to computer operating systems that would recognize
protected multimedia files, meaning one may not be able to print a doc-
ument or make additional copies unless authorized by the hidden data in
the document. Note that all material available on paper may eventually be
in electronic form. Downloading or distributing the documents could be
controlled by the hidden data in the documents.

A typical application scenario of data hiding for multimedia content
delivery is depicted in Fig. 1-2. The content providers supply the raw mul-
timedia data (e.g., a full-length movie) along with some hidden agents,
or control data. The job of the distributors would be to package the con-
tent in some suitable format (like MPEG [Motion Picture Experts Group])
consumable by the players and distribute the multimedia either through
DVDs/CDs, live digital broadcasts, or even by hosting websites for down-
loads. The compliant multimedia players will typically be connected to
the Internet.
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Figure 1-2 A secure multimedia delivery system.

In conventional multimedia distribution, the content provider loses
all control over how the multimedia is used at the moment it leaves his/her
hands. The key idea behind employing data hiding in this scenario is to
reestablish control whenever the content is used. The content provider, by
hiding some agents in raw data, hopes to control access to the multimedia
content. This can be done with the cooperation of the players and an
established protocol for communication between the content providers and
the compliant multimedia players.

Perhaps a more conservative secure media distribution scheme,
Fig. 1-3, would also rely on encryption of distributed content in addi-
tion to using data hiding for tracing origin and destinations of content.
Multimedia content would be subjected to watermarking for the purpose
of embedding ownership information and possibly some additional con-
trol information (like a pointer to a URL). This would then be followed
by data compression, encryption, and perhaps some form of channel cod-
ing before the content is delivered to various consumers. The consumers
equipped with compliant players could obtain decryption keys, extract and
honor the control information, and use data hiding to insert the fingerprint
of the consumer before the decoded content is sent in the clear to the ren-
derer. If the rendered content is captured and redistributed, such content



 

8 CHAPTER 1 Introduction

Renderer

Key

Content
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Figure 1-3 Secure media distribution scheme.

would carry the fingerprint of the compliant player where the content was
decrypted.

1.4 The Steganographic Channel

Figure 1-4 depicts a block diagram of a general data hiding channel. C is the
original multimedia data, which is also referred to as the cover signal. The
cover signal serves as the carrier for the hidden message m. The message

S

Key

W

C

Key

m

Y
Receiver

Signature
Generator

m̂Channel

Figure 1-4 Block diagram of multimedia steganography.
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m is converted to a signature W that is in a form suitable for embedding in
C as expressed in

W =W(m, K) (1.1)

where W is the signature generator block in Fig. 1-4 and K is a key. Usually
the embedding operation E takes the form of superpositioning of W with
C to obtain S. However, other forms of embedding are also possible.
Therefore,

S = C+W or S = E(C, W). (1.2)

The imperceptibly modified multimedia signal S (the stego signal) is trans-
mitted through a channel C and emerges at the other end as Y = C(S).
Now, the buried message signal m is retrieved by a detector D as

m̂ = D(Y, K). (1.3)

Note that the detector is assumed to have the key K available. For nonobliv-
ious data hiding, (e.g., for watermarking applications), the detector D may
also require the original C for extracting the hidden message or signature.
Hence,

m̂ = D(Y, C, K). (1.4)

The channel, apart from other things, may include a lossy compressor
at one end and decompresser at the other end. While this is the main cause
of concern for most data hiding applications, the same is not true for
watermarking applications. For watermarking applications, the channel
may include agents with deliberate intentions of removing the watermark.
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C H A P T E R

Frameworks for
Data Hiding

A tremendous amount of information signals are transmitted every second
through a wide variety of media—radio, television, telephones, and, of
course, the ubiquitous Internet. Such information signals can be transmit-
ted by different means. For example, a local television channel may be
received by a cable station through the air and then rebroadcast to homes
through cables. In many applications, it is of great interest for the orig-
inators of such information to attach an auxiliary message signal to their
content (or information signals) in order to monitor its moves. Data hiding,
as we saw in the previous chapter, is a mechanism for attaching an aux-
iliary (message) signal to such information (cover) signals. The auxiliary
message signal is inextricably tied to the information signal and persists
independently of the means by which the information signal is dissem-
inated. In the context of information hiding, the information signal is
called the cover signal before the message signal is embedded into it and
the stego signal after the message signal is embedded.

In a conventional communications scenario, an information signal
typically modulates a carrier signal. The nature of the carrier signal and the
mechanism of modulation may, however, vary significantly from applica-
tion to application. From the point of view of a communications engineer,
data hiding can be seen as modulation of the information signal by the
auxiliary message signal. The fundamental reason for this is to ensure
that extraction of the message signal from the information signal does not

11
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depend on how the information signal was transmitted, as long as the
information signal is recovered with reasonable fidelity at the receiver.
The fundamental difference between conventional communication scenar-
ios and data hiding is that while modulation of the carrier signal by the
information signal typically changes the carrier signal drastically, modula-
tion of the information signal by the message signal should introduce only
imperceptible changes into the information signal.

Let c(t) be some information (cover) signal, and w(t) the auxiliary
message signal. A modulator E generates the composite signal s(t) =
E(c(t), w(t)), with some d(c(t), s(t)) ≤ ǫ, where d is a suitable distortion
metric for the information signal. At the receiver, we typically have a
noisy version y(t) = s(t)+z(t) of the modulated information (stego) signal
s(t). The term z(t) represents noise in the communication channel that was
used to disseminate the information signal. The receiver should be able to
obtain an estimate w̃(t) of the auxiliary message signal w(t). Obviously,
we would like to obtain as faithful an estimate as possible of w(t) from
y(t), in the presence of channel noise z(t), while simultaneously ensuring
that modulation of the information signal with the message signal does not
alter the information signal drastically, d(c(t), s(t)) ≤ ǫ.

The most important issues that arise in the study of data hiding
techniques concern:

• Embedding and Detecting Mechanism. What is the optimum way
to embed and then later extract this information? In other words,
what should be the nature of E , D?

• Capacity. What is the optimum amount of data that can be embed-
ded in a given signal? In the above model, the capacity is related
to the fidelity of the extracted data w(t) or w̃(t).

• Robustness. How do we embed and retrieve data such that it would
survive malicious or accidental attacks at removal?

• Transparency. How do we embed data such that it does not
perceptually degrade the underlying content?

These questions have been the focus of intense study in the past few
years, and some remarkable progress has already been made. However,
there are still more questions than answers in this rapidly evolving research
area. Perhaps a key reason for this is the fact that data hiding is inherently a
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multidisciplinary topic that builds on developments in diverse subjects. The
areas that contribute to the development of digital watermarking include
at least the following:

• Information and communication theory
• Decision and detection theory
• Signal processing and transforms
• Cryptography and cryptographic protocols

Each of these areas deals with a particular aspect of the data hiding
problem. Generally speaking, information- and communication-theoretic
methods deal with the data embedding (encoder) side of the problem.
For example, information-theoretic methods are useful in the computa-
tion of the amount of data that can be embedded in a given signal subject
to various constraints such as peak power (square of the amplitude) of
the embedded data or the embedding-induced distortion. The host signal
can be treated as a communication channel, and various operations such
as compression/decompression, filtering, etc., can be treated as noise.
Using this framework, many results from classical information theory are
successfully applied to compute the data hiding capacity of a host signal.

Decision theory is used to analyze data embedding procedures from
the receiver (decoder) side. For a given data embedding procedure, how
do we extract the hidden data from the host signal, which may have been
subjected to intentional or unintentional attacks? The data extraction pro-
cedure must be able to guarantee a certain amount of reliability. What are
the chances that the extracted data is indeed the original embedded data? In
data hiding applications in which the embedded data is used for copyright
protection, decision theory is used to detect the presence of embedded data.
In applications like fingerprinting, detection-theoretic methods are needed
to extract the embedded information.

A variety of signal processing tools and algorithms may be used in
the field of digital watermarking. Such algorithms are based on aspects
of the human visual system, properties of signal transforms (e.g., Fourier
and discrete cosine transform [DCT]), noise characteristics, properties of
various signal processing attacks, etc. Depending on the nature of the
application and the context, some of these methods might be implemented
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Y

W Z

C ^
W+

Figure 2-1 Illustration of data hiding from a signal processing perspective.

at the encoder, at the decoder, or at both. The user has the flexibility
to mix and match different techniques depending on the algorithmic and
computational constraints of the application.

Watermarking is a generic signal processing tool that has to be utilized
efficiently to realize the desired application. Cryptography and crypto-
graphic protocols play an important role in ensuring that watermarking is
used in a proper manner to achieve content tracking in a secure information
delivery system.

2.1 Signal Processing Framework

It is more common to consider the cover (host), stego, message signals,
and channel noise as sampled real-valued signals expressed as C, S, W, Z ∈
ℜN , rather than continuous real-valued signals c(t), s(t), w(t) and z(t).

Consider a host signal C ∈ ℜN and a message signal W ∈ ℜN (see
Fig. 2-1). An embedder E embeds the message signal W in the host signal
C to yield the stego signal S given as

S = E(C, W). (2.1)

Let d be a predefined metric. In other words e = d(S, C) is the
“distance” between S and C. A commonly used metric or distance measure
is the mean square error (MSE), given by

MSE = d(S, C) =
N∑

i=1

(S− C)2

N
. (2.2)
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The embedding distortion d(S, C) is constrained to be less than a defined
threshold P to ensure that the cover signal C and the stego signal S are
perceptually the same or very similar.

The stego signal is corrupted by a noise signal Z ∈ ℜN before it
reaches the detector D. The detector obtains an estimate Ŵ ∈ ℜN of the
message signal W defined as

Ŵ = D(Y). (2.3)

The problem now boils down to the optimal design of embedder E

and detector D to maximize the “fidelity” of Ŵ, subject to the distortion
constraint d(S, C) ≤ P.

An intuitive way to maximize the fidelity of Ŵ is to minimize the
error signal

We = min
∀a

N∑

i=0

(aŴ [i] −W [i])2 (2.4)

which is the same as maximizing the correlation

ρ = WT Ŵ

|W||Ŵ|
. (2.5)

In the case of continuous time signals, the goal would be the optimal
choice of E , D to maximize

ρ =
∫

w(t)w̃(t) dt√∫
w2(t) dt

∫
w̃2(t) dt

. (2.6)

2.2 Data Hiding from a Communications Perspective

We now have a host signal C ∈ ℜN and a message signal m ∈ M, where
M is an alphabet of size M (see Fig. 2-2). The message signal m can
equivalently be considered as an index 1 ≤ mi ≤ M in the alphabet.
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Figure 2-2 Illustration of data hiding from a communications perspective.

The encoder E produces the stego content S as

S = E(C, mi) (2.7)

subject to the distortion constraint d(S, C) ≤ P.
Y is the corrupted version of S from which the decoder estimates the

message signal as

m̂ = D(Y). (2.8)

For the case of continuous time signals,

s(t) = E(c(t), mi) (2.9)

and

m̂ = D(y(t)) (2.10)

where y(t) = s(t)+ z(t).
The problem is now the optimal design of encoder E and decoder D

to minimize

me =
M∑

i=1

M∑

j=1, j �=i

p(mi|mj)p(mi) (2.11)

where p(mi|mj) is the conditional probability of mi given that mj was
embedded.
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Figure 2-3 A sampled baseband spread spectrum communication scheme.

2.3 Relationship Between Communications
and Signal Processing Frameworks

Consider a digital baseband spread spectrum communications scheme
(W , W−1) (Fig. 2-3) in which an arbitrary symbol indexed by m: 1 ≤ m ≤
M from an alphabet M is mapped to a sequence W ∈ ℜN . The sequence
W is in turn transmitted over a channel characterized by an additive noise
Z ∼ N [0, σ 2

Z I]. The corrupted vector at the receiver is Y = S + Z. The
mappings involved are expressed as

W : m → W ∈ ℜN W−1 : Ŵ → m̂ (2.12)

and may be performed by using an M×N codebook C at the transmitter and
the receiver. The transmitted vector W is one of the possible M codewords
of the codebook. The codebook should be chosen such that the codewords,
Wi, 1 ≤ i ≤ M, are maximally separated and

∑N
j=1 W2

i ( j) = NP ∀i

is satisfied. The receiver determines the element of the codebook that is
“closest” to the corrupted vector Ŵ = W+Z in order to obtain an estimate
of the transmitted symbol.
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D

==

E

==

Figure 2-4 Splitting of E and D into two independent parts.

Let us now assume that the encoder E and decoder D can be separated
into two independent parts as shown in Fig. 2-4. In other words, the encoder
E first maps the message m to a codeword W, which is in turn embedded in
C by the embedder E . Similarly, the decoder D now includes a detector D

that obtains Ŵ, an estimate of the transmitted codeword W. Then, W−1

maps the estimated codeword Ŵ to m̂, an estimate of the symbol m.
For the continuous-time case, for instance, the M message symbols

may be mapped to M signals wi(t), 1 ≤ i ≤ M, such that

∫
w2

i (t) dt =
∫

w2
j (t) dt ∀i, j (2.13)

where

ρij =
∑

∀i,j,i �=j

∫
wi(t)wj(t) dt (2.14)

is as small as possible.
Therefore, the overall hiding and detection scheme illustrated in

Fig. 2-5 can be described as

W =W(m) S = E(C, W) embedding,

Ŵ = D(Y) m̂ =W−1(Ŵ) detection.
(2.15)
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Figure 2-5 The data hiding channel with constrained embedder and detector.
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Communication Channel m̂m

Figure 2-6 Equivalent communication channel.

As far as the signaling scheme (W , W−1) is concerned, the entire
dashed box in Fig. 2-5 appears as a channel that can be characterized by
some additive noise. This is illustrated in Fig. 2-6. Therefore, the optimal
design of E and D is now split into two independent problems:

(1) the design of (W , W−1)
(2) the design of (E , D).

Note that the optimal design problem of (E , D) is the same as the one
addressed in Section 2.1. However, as we shall see in the coming chapters,
for some data hiding schemes it may not be possible to split the detector
into two independent parts. In other words, for such schemes

m̂ = D(Y) (2.16)

and

m̂ = D( y(t)) (2.17)

for the continuous case.
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2.4 A Review of Data Hiding Methods

The early works in the literature on data hiding focused mainly on heuristic
approaches. As the similarities between the issues of data hiding and other
fields became evident, a variety of approaches were made available by
exploiting those similarities. Among these approaches, the ones that have
generated a lot of attention are inspired by spread spectrum communications
and communication with side information [8], [9], [10], [11], [12].

Data hiding techniques are characterized by the embedding and
extraction techniques employed. Methodologically, the proposed embed-
der/detector designs can be categorized into two main groups: additive
spread spectrum–based methods and quantization-based methods.

In additive spread spectrum methods, the watermark signal is gener-
ated by modulating the information symbols with a weighted unit energy
spreading vector and then is added to the host signal [13], [14], [15], [16],
[17]. By choosing an appropriate weighting factor, perceptual intactness
of the host signal is retained. These methods are preferable due to their ease
in processing and their reliability under additive noise interference. With
additive embedding, the data hiding rate is uncompromisingly traded off
against its robustness to severe attacks while complying with the perceptual
constraints. The major drawback of such methods is that the host signal
affects as a source of interference at the detector. As a result of this fact,
satisfactory performance is not possible unless the host signal is available
during detection or host signal interference is negligibly smaller than chan-
nel interference. In additive schemes, optimal decoding of the watermark
signal depends on exact probabilistic characterization of the host signal at
the detector.

The shortcomings of additive spread spectrum methods in suppressing
the host signal interference are handled by adopting the results of commu-
nication with side information to data hiding applications. Costa, in [18],
showed for the first time that for an additive white Gaussian noise (AWGN)
channel with Gaussian input and side information, the channel capacity
does not depend on the side information. His results, when evaluated
within a data hiding context, encouraged researchers in designing practi-
cal oblivious data hiding schemes that could achieve the hiding capacity.
This approach gives the information hider a freedom in determining the
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rate vs robustness characteristics at a given attack level. However, the dis-
tortion measure on the host signal is confined to the squared error distance
(power limited), irrespective of the perceptual features of the host signal.

In practice, in order to achieve the hiding rates that are closer to the
upper capacity bound, several implementations that utilize this approach
are proposed in the literature [9], [19], [20], [21], [22], [23]. These
techniques are characterized by the use of enhanced quantization proce-
dures in order to design embedding/detection methods that approximate the
performance of Costa’s optimal encoding/decoding. Within this approach,
the optimal implementation requires higher-dimensional quantization for
embedding. In [24], Zamir et al. show that nested lattices can be used
to construct optimum codes. However, a satisfactory performance is
also achievable through scalar quantization or unidimensional lattices.
The extraction of the hidden message is usually achieved by employ-
ing minimum distance decoding due to the use of lattice structures in
embedding. As a consequence of such an embedding, these methods are
vulnerable to signal scaling. Therefore, they perform well only if the
attack is not severe. However, they are suitable for oblivious data hiding
applications.

Chen et al. [25] provide a formal treatment of data hiding methods
that use quantization indices to embed signals called quantization index
modulation (QIM). In this class of methods, quantization is used to force
the host signal coefficients to take desired values depending on the infor-
mation signal to be embedded. Similarly, Chou et al. in [11], [23], based
on a duality with the distributed source coding problem, implement the
exhaustive codeword generation for Costa’s scheme by using a robust
optimization method through the use of trellis coded quantizers. In this
research direction, the most popular embedding technique is a low com-
plexity implementation of QIM that relies on uniform scalar quantization,
which is called dither modulation (DM) [26]. In fact, the earliest data
hiding methods [27], [28], [29], [30], which modified only one or two
least significant bits (LSBs) of the host signal, were based on the same
principle in rejecting the host signal interference, so-called low bit modu-
lation (LBM). For example, a method which modifies only two LSBs may
be considered a form of QIM in which the step size of the quantizer used
is 4. Even–odd modulation is another embedding technique that operates
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similarly. In the data hiding scheme proposed by Wang et al. [31], the
significant wavelet coefficients are modified such that they quantize to an
even or odd value depending on the bit to be embedded. In [32], Wu et al.

introduced a similar scheme based on JPEG (Joint Photographic Experts
Group) quantization by altering the DCT coefficients.

The additive spread spectrum- and quantization-based methods have
poor performances for the “no attack” and “severe attack” cases, respec-
tively. In the former, the performance becomes independent of the additive
attack level, whereas in the latter the performance drops rapidly with the
increase in the attack. These deficiencies point to a nonoptimal design
procedure compared with Costa’s scheme, which can deliver perfect host
signal interference rejection at all attack levels. The need for a class of
practical methods by which the hider has better control over the operating
characteristics has been immediately recognized by various researchers.

In quantization-based methods, this effort has resulted in the incor-
poration of embedding quantization with a postprocessing function and
redundancy coding of the watermark signal. In [9] and [33], Chen et al.

introduced, respectively, a distortion-compensated (DC) version of QIM
(DC-QIM) (which can achieve the capacity under AWGN attacks) and
a spread transform (ST) technique for practical implementations (which
embeds the watermark signal by spreading it over many host signal coef-
ficients). Ramkumar et al. [21], considering scalar embedding, used a
continuous triangular periodic function for extracting the watermark sig-
nal and also employed a thresholding type of processing at the embedder.
Eggers et al. [22] optimized the performance of DC-DM by a more care-
ful optimization of embedding parameters. They also combined multilevel
signaling with binary coding techniques for low attack applications and
provided some performance results [34], [35]. Perez-Gonzalez et al. [36]
proposed a probability density function (pdf) transformation type of pro-
cessing for embedding. Furthermore, they provided a calculation of an
upper bound for the probability of error in a multidimensional embedding
case considering various noise distributions.

In order to improve the performance of additive spread spectrum
methods, a similar approach to quantization-based methods is also devel-
oped. Inspired by ST-DM, [36] proposed a decoding technique that
integrates the underlying principles of quantization-based methods with the
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additive schemes. In this method, a watermark signal is selected such that
when the linear correlation between the watermark signal and the undis-
torted stego signal is quantized, the resulting signal is a centroid of the
lattice associated with the embedded signal. The probability of error per-
formance of this method is improved by further processing. Consequently,
the watermark signal is selected such that rather than the quantized cor-
relation metric itself, the properly scaled error due to quantization of the
correlation metric is mapped to the desired centroid. Similarly, in [37] the
watermark signal energy is properly shaped to compensate for the host sig-
nal interference at the detector. This is achieved by designing the weighting
as a function of the projection of the host signal onto the spreading sequence
so that at the detector, the host signal’s effect is diminished.
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C H A P T E R

Communication with
Side Information and
Data Hiding

Shannon [38] introduced the first analysis of discrete memoryless chan-
nels with side information, in the form of varying channel states from
a finite set, causally known to the encoder. He proved that this chan-
nel is equivalent (in terms of capacity) to a usual memoryless channel
that has the same output alphabet and an expanded input alphabet with
no side information. Accordingly, each letter of the new input alphabet
is generated as a mapping from the set of states into the input alphabet
of the original channel. Kusnetsov et al. [39] examined a practical ver-
sion of the same problem in which the errors in the channel were invariant
(namely memory with defective cells). They offered an encoding scheme
for reliable storage of information when the encoder is given the defect
information, and they investigated the redundancy bounds for such codes.
Gelfand et al. [40] considered a similar channel as in [38] by removing
the causality condition on the encoder such that at any transmission time,
the encoder had the whole channel state information for all times. They
proceeded to derive the capacity of this channel assuming an input alpha-
bet X , an output alphabet Y , an auxiliary alphabet U , and a finite set C

of side information, where X , Y , U , C ∈ ℜN . The channel capacity C0

25
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is expressed in terms of random variables X ∈ X , Y ∈ Y , U ∈ U , and
C ∈ C by a maximization over all conditional joint probability distributions
pC(c)pU,X (u, x|c)pY (y|x, c) as

C0 = max
p(u,x|c)

(I(U, Y )− I(U, C)) (3.1)

where pX (x) is the probability mass function of a random variable X , and
I(X , Y ) is the mutual information between two random variables X and Y .
Heegard et al. [41], also using this formulation, extended the idea to
establish achievable storage rates for memory when defect information is
given only to the encoder or the decoder and completely to the decoder but
partially to the encoder.

Costa [18] applied the results of [40] to memoryless channels with dis-
crete time and continuous alphabets and presented an information-theoretic
analysis of a problem that also applies to oblivious data hiding. He studied
a communications scenario in which the encoder transmitted a message
index to the decoder in the presence of side information and designed the
auxiliary variable in Gelfand’s formulation as U = X+αC, where X is the
power constrained input (codeword), C is the channel state information
available at the encoder, and α is a scaling factor. Costa showed that for
an AWGN channel with Gaussian input and side information, the channel
capacity does not depend on the side information.

Later research gained considerable momentum, first by reinterpret-
ing these results in terms of oblivious data hiding, and later by formulating
the problem from a game-theoretic perspective. The researchers in [42]
and [43] assumed a Gaussian distributed host signal and squared error dis-
tortion measure and studied the problem as a data hiding game between
the hider-extractor and the attacker. In [42], Moulin et al. introduced
an information-theoretic model for data hiding considering memoryless
attacks. In their model, the information hider determines the embed-
ding strategy without knowing the attack, whereas the attacker uses the
stego signal to design the attack. The extractor, on the other hand, is
assumed to be in a position to learn the strategy of the attacker. It is
shown that for the squared error distortion measure and white Gaussian
distributed host signal, the Gaussian test channel is the optimal attack, and
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the hiding capacity is the same as in the case of the host signal’s being
known to the detector. They also showed that Costa’s results were valid
for this setting of the data hiding game under the small distortions sce-
nario, which assumes that host signal power is much higher than that of
the distortions introduced by the hider and attacker. Cohen et al. [43] pre-
sented a detailed discussion and the results of hiding capacity assuming
a Gaussian distributed host signal and squared error distortion measure,
similar to [42], except for the removal of the assumption that the extractor
knows the attack. They showed that an independent, identically dis-
tributed (iid) Gaussian host signal maximizes the hiding capacity among
all finite fourth-moment distributions for the host signal. It is also dis-
cussed that additive attacks are suboptimal. Furthermore, they extended
Costa’s results by considering non–white-noise attacks and non-Gaussian
embedding distortions.

These studies have shown that the solution for the hiding capac-
ity varies with the setting of the game, and Costa’s framework yields
the upper bound on the coding capacity among all versions of the game,
since the attacker has a fixed strategy (additive noise) that is known to
both the encoder and the decoder. Therefore, Costa’s framework and his
results serve as a test-bed for comparing and evaluating the performances
of various practical embedding/detection techniques.

3.1 Costa’s Framework

Costa in [18], based on the results of [40], considers a power-constrained
AWGN channel with iid Gaussian input X and side information C (in the
form of channel state) that is available only at the encoder in a noncausal
manner. Amessage index m is transmitted to the receiver by properly select-
ing the codeword X that is distorted during transmission by the additive
channel state C and the channel noise Z. Consequently, the channel out-
put is defined as Y = X+ C+ Z. Considering the design of U = X+αC,
0 < α < 1, and assuming that X, C, Z are iid length N sequences of
random variables with zero covariance matrices and Gaussian marginal
distributions (i.e., X ∼ N (0, P), C ∼ N (0, σ 2

C), Z ∼ N (0, σ 2
Z )), the
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communication rate is computed as [18]

R(α) = I(U, Y )− I(U, C)

= H(X + C + Z)− H(X + C + Z|X + αC)

− H(X + αC)+ H(X + αC|C)

= H(X + C + Z)+ H(X)− H(X + C + Z , X + αC) (3.2)

where H(X) is defined as the entropy of random variable X. Since X , C

and Z are assumed to be independent Gaussian random variables, X + αS

and X+C+Z are respectively distributed as N (0, P+α2σ 2
C) and N (0, P+

σ 2
C+σ 2

Z ). The joint distribution of X+C+Z and X+αC is also Gaussian,
with the density function given as

fX+C+Z ,X+αC(x + c+ z, x + αc)

= N

([
0

0

]
,

[
P + σ 2

C + σ 2
Z P + ασ 2

C

P + ασ 2
C P + α2σ 2

C

])
. (3.3)

Hence, the rate in Eq. (3.2) is obtained by calculating the entropies for the
corresponding distributions as [44]

R(α) = 1

2
log2

P(P + σ 2
C + σ 2

Z )

Pσ 2
C(1− α)2 + σ 2

Z (P + α2σ 2
C)

. (3.4)

Maximizing R(α) over α, Costa shows that the communication rate
achieves 1

2 log2(1 + P/σ 2
Z ) bits per transmission for α∗ = P/(P + σ 2

Z ),
which is the capacity of the same AWGN channel with the side informa-
tion available to both encoder and decoder. Thus, for a properly chosen α,
the lack of side information at the decoder does not reduce the capacity.

The channel model for Costa’s framework is displayed in Fig. 3-
1. In order to transmit message m, encoder E generates the codeword X

that is additive to the channel state C at the given channel noise variance.
Decoder D, not knowing the random channel state C, detects the message
m̂ from the received signal Y.
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Figure 3-1 The channel model for Costa’s framework corresponding to

codebook design of U = X+ αC.

Costa outlines the capacity-achieving encoding/decoding scheme
based on random coding techniques. The optimal codebook has M =
⌊2NR⌋1 codewords corresponding to M messages. Each message is trans-
mitted in N uses of the channel. For optimal encoding and decoding,
2N(I(U,Y )−ǫ) (for an arbitrarily small ǫ) length-N iid sequences with indi-
vidual distributions N (0, P + α∗

2
σ 2

C) are generated and then partitioned
into 2NR bins. Each bin is associated with the index of a message and
points to 2N(I(U,C)+ǫ) sequences. This collection of sequences is made
known to both encoder and decoder. In order to generate the codeword,
the side information C is weighted by the proper α and subtracted from the
sequences in the bin corresponding to the message to be conveyed. Among
the resulting signals, the one that is orthogonal to C (|(Uj −α∗C)T C| < δ,
j = 1, . . . , 2N(I(U,C)+ǫ), for a proper δ value) and also satisfies the power
constraint ( 1

N
‖X‖2 ≤ P) is the optimal codeword corresponding to the

message index being sent.
The encoder sends the codeword over the channel. The decoder

receives the signal Y and searches over all U sequences for the jointly
typical (Uj, Y) pair (|(Uj−αY)T Y| < δ, j = 1, . . . , 2N(I(U,Y )−ǫ)). The sent
message is decoded successfully from the Uj sequence and the received
signal Y, for α = α∗ and large N , as

|(Uj − αY)T Y| = |(Uj − α∗C− α∗X− α∗Z)T (X+ C+ Z)| (3.5)

= |(1− α∗)XT X− α∗ZT Z| (3.6)

= (1− α∗)NE[X2] − α∗NE[Z2] (3.7)

1⌊x⌋ is the greatest integer smaller than or equal to x.
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= N

(
1− P

P + σ 2
Z

)
P − NP

P + σ 2
Z

σ 2
Z = 0. (3.8)

The message index associated with the bin that contains the sequence Uj

is declared as the sent message. Such a code generation is asymptotically
optimal as N→∞ [18].

3.2 A Framework Based on Channel Adaptive Encoding
and Channel Independent Decoding

For the same communications scenario, let the channel model of Costa’s
framework be modified in two respects. The first modification is by redefin-
ing the channel input as Xn = X− Xt . We refer to Xt as the “processing
distortion,” since it is by nature a “disturbance” to encoder output X. The
processing distortion Xt may be a function of the encoder output X, and
the nonzero correlation between X and Xt is denoted by ρ. Also, Xt , like
X, is iid and independent of C. In this channel model, since the code-
word transmitted by the encoder is Xn, the power constraint that needs
to be satisfied by the codeword X in Costa’s framework applies to Xn,
viz., 1

N
‖Xn‖2 ≤ P. Consequently, the received signal at the decoder is

expressed as Y = Xn + C+ Z. The second modification is by designing
the shared variable as U = X + C, where the α value employed in code-
book generation is set to 1 regardless of the channel’s noise level. This
setting will be referred to as CAE-CID (channel adaptive encoding and
channel independent decoding) framework.

The transmission rate for the modified channel can now be computed
for U = X + C, Xn = X − Xt , and Y = Xn + C + Z as

R= I(U,Y )−I(U,C)

= I(X+C,Xn+C+Z)−I(X+C,C)

=H(Xn+C+Z)−H(Xn+C+Z|X+C)−H(X+C)+H(X+C|C)

=H(Xn+C+Z)−H(Z−Xt|X+C)−H(X+C)+H(X)

=H(X)+H(Xn+C+Z)−H(Z−Xt ,X+C). (3.9)
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The formulation given in Eq. (3.9) can be solved for rate R assuming
that random variables X , Xt , C, and Z are mutually independent except
for the known dependence between X and Xt and that they are distributed
according to N (0, σ 2

X ), N (0, σ 2
Xt

), N (0, σ 2
C), and N (0, σ 2

Z ), respectively.
The normalized correlation between X and Xt is defined as

ρ = E[XXt]√
E[X2]E[X2

t ]
. (3.10)

On the other hand, Xn is a random variable, with the second moment set
to P, and its distribution depends on how Xt is related to X . Furthermore,
the random variables Z − Xt and X + C are jointly Gaussian, with the
probability density function given by

fZ−Xt ,X+C(z − xt , x + c) = N

([
0

0

]
,

[
σ 2

Z + σ 2
Xt

E[XXt]
E[XXt] σ 2

X + σ 2
C

])
. (3.11)

Consequently, the rate in Eq. (3.9) is derived by computing the entropies
for the marginal and joint distributions as [44]

R(σX , σXt , ρ) = 1

2
log2

(
σ 2

X (P + σ 2
C + σ 2

Z )

(σ 2
X + σ 2

C)(σ 2
Xt
+ σ 2

Z )− E[XXt]2

)
. (3.12)

Using Eq. (3.10), Eq. (3.12) can be rewritten as

R(σX , σXt , ρ) = 1

2
log2

(
σ 2

X (P + σ 2
C + σ 2

Z )

(σ 2
X + σ 2

C)(σ 2
Xt
+ σ 2

Z )− ρ2σ 2
Xσ 2

Xt

)
. (3.13)

The achievable transmission rate for this channel can be found
by maximizing the rate R over σX , σXt , and ρ under the constraint
1
N
‖X− Xt‖2 = P. Since ρ is a normalized variable, it does not depend on
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the variances of X and Xt . Hence, setting ρ = 1 (Xt is a linear function of
X) will maximize Eq. (3.13) in ρ. Moreover, the power constraint on the
input relates σX and σXt as

σXt =

⎧
⎨
⎩

σX −
√

P, if ρ = 1

ρσX −
√

σ 2
X (ρ2 − 1)+ P, if ρ �= 1.

(3.14)

As a result, maximization of the rate given in Eq. (3.13) reduces to a
maximization over σX for ρ = 1 and σXt = σX −

√
P. Then,

max
σX

R
(
σX , σXt = σX −

√
P, ρ = 1

)
= 1

2
log2

(
1+ P

σ 2
Z

) ∣∣∣∣∣
σX=σ ∗X

(3.15)

which is maximized for

σ ∗X =
P + σ 2

Z√
P

, σ ∗Xt
= σ 2

Z√
P

. (3.16)

This is the capacity of the AWGN channel in which the side information is
also known to the decoder, as first derived by Costa [18]. The preceding
results show that the optimal codebook design in Costa’s framework based
on a particular α∗ can be equivalently achieved in the CAE-CID framework
with the corresponding σ ∗X when ρ = 1. Therefore, the two frameworks are
equivalent, and they can be translated into each other through σ ∗X =

√
P/α∗

at the same transmission rate. The corresponding channel model for the
proposed CAE-CID framework is displayed in Fig. 3-2. When compared
with Fig. 3-1, the main difference is that α dependency of the (E, D) pair
is replaced by the inclusion of Xt generated by the processing P at the
encoder.

The optimal encoding/decoding scheme of the CAE-CID framework
is similar to the one described in [18]. The codebook used for encoding
and decoding relies on the design of U = X+ C, as α is set to unity. Cor-
respondingly, the shared U sequences are iid with an underlying marginal
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Figure 3-2 The channel model for the proposed CAE-CID framework corre-

sponding to the codebook design of U = X+ C.

distribution N (0, P+σ 2
C). The channel dependence, however, is reflected

in the appropriate choice of processing that generates Xt from X. At the
encoder, for the given C, the jointly typical (U, C) pair is searched in
the bin corresponding to the message signal being sent. The codeword is
generated from the Uj sequence that satisfies the orthogonality constraint
(|(Uj − C)T C| < δ, j = 1, . . . , 2N(I(U,C)+ǫ)) and yields codeword Xn such
that the power constraint ( 1

N
‖Xn‖2 ≤ P) is satisfied. It should be noted that

in order to achieve capacity, Xt is a linear function of X. Therefore, the
codeword Xn is readily obtained from the encoder output X by the relation
Xn = (

√
P/σX )X.

On the decoder side, the sent message is decoded as the index of the
bin that contains the U sequence, which is jointly typical with the received
signal Y. The particular sequence Uj is found, for large N , as

|(Uj − Y)T Y| = |
(
Uj − (X− Xt + C+ Z)

)T
(X− Xt + C+ Z)|,

= |XT
t X− XT

t Xt − ZT Z| (3.17)

= NE[XXt] − NE[X2
t ] − NE[Z2] (3.18)

= N
P + σ 2

Z√
P

σ 2
Z√
P
− N

(σ 2
Z )2

P
− Nσ 2

Z = 0 (3.19)
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where E[XXt] = σ ∗Xσ ∗Xt
, Eq. (3.10) for ρ = 1, is used. The cancellation

of the terms in Eq. (3.19) completely relies on the choice of X and the
corresponding Xt at the encoder.

In CAE-CID framework, since the design of the shared variable is
fixed as U = X+ C, the optimal encoding and decoding relies merely on
the statistics of the encoder output X and its dependence with processing
distortion Xt .

3.2.1 Highlights of the CAE-CID Framework

When compared with Costa’s framework, the CAE-CID framework has
the following characteristics:

(1) In Costa’s framework, the channel adaptive operation of
encoder/decoder is achieved through proper selection of the
scaling factor α. However, in the CAE-CID framework, the
channel-dependent nature of the encoding is reflected in both
inputs X and Xt . Thus, channel state interference rejection at the
decoder is achieved solely by the encoder’s ability to properly
select σX and σXt depending on the given σZ , Eq. (3.16).

(2) When the channel noise level changes in the CAE-CID frame-
work, the encoder/decoder can continue successful operation
at a lower or higher rate by adjusting P at the encoder without
updating the shared collection of U sequences, as long as

σ 2
X ≥ 2σ̂Z (3.20)

where σ̂ 2
Z is the new channel noise power (derivation details are

given in Appendix A).
(3) The CAE-CID framework provides a better theoretical basis

for practical embedder/detector designs, as the postprocessing
employed in practical methods can be represented by the process-
ing distortion term Xt in the formulations. In Chapter 5, practical
embedder/detector designs will be studied from this point of view.
Different types of postprocessing and their performances will be
evaluated based on the choice of X and Xt .
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3.3 On the Duality of Communications and Data Hiding
Frameworks

The theory of data hiding has been developed mainly through employing
analytical tools of communication with side information and spread spec-

trum communications. This is achieved by reinterpreting and adapting
basic concepts such as channel, side information, and power constraints
within the context of data hiding.

In data hiding, the channel is the medium between the hider and the
extractor, and it includes all forms of disturbances that affect the stego sig-
nal, which is an intelligent combination of the host signal and the message
to be conveyed. Side information available at the encoder in a communica-
tion channel model is associated with the host signal at the embedder in the
equivalent data hiding model. Similarly, the encoder/decoder pair (E, D)
is functionally equivalent to the embedder/detector pair (E , D). Power
constraints in a channel communication scenario are analogous to the per-
ceptual distortion limits that are determined based on the features of the
host signal. The bandwidth is dual to embedding signal size, as they are
both resources of the communication, and the measure of signal-to-noise
ratio (SNR) corresponds to the measure of embedding-distortion to attack-
distortion ratio (watermark-to-noise ratio [WNR]). Table 3-1 shows the
duality between the communications and data hiding frameworks.

Based on the frameworks given in Sections 3.1 and 3.2, encoding and
decoding of a message index relies on proper selection of the codeword.

TABLE 3-1

Duality Between Communications and Data Hiding Frameworks

COMMUNICATIONS FRAMEWORK DATA HIDING FRAMEWORK

Side information Host signal

Encoder/decoder Embedder/detector

Channel noise All forms of modification on the stego signal (attack)

Power constraints Perceptual distortion limits

Bandwidth Embedding signal size

Signal-to-noise ratio Embedding distortion to attack distortion ratio
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Correspondingly, in the dual data hiding problem, the performance of
an embedding and detection technique depends on the underlying code-
word generation scheme. Hence, the main goal of a data hiding method
is to design practical codebook and codeword generation schemes that can
deliver perfect host signal interference rejection at all noise levels.

A codebook is a collection of mappings from the set of messages to be
conveyed. Each mapping, or codeword, is generated from the host signal
by an intelligent process based on the imposed distortion constraints and
the expected noise level. However, in the formulations of data hiding, a
codeword is defined in two different ways. From the communications point
of view, the side information is a state of the channel and the codeword
is the signal transmitted through the channel. Then, due to the analogy
with the communications framework, a codeword can be defined as the
distortion introduced into the host signal due to the embedding opera-
tion. However, within the context of data hiding, side information is the
host signal, and it is also transmitted through the channel. Correspond-
ingly, one can define the stego signal to be the codeword, as it is the
channel input. In order to better exploit the duality between the communi-
cations and data hiding frameworks, the former definition for codeword is
adopted.

A typical data hiding system can be modeled as

Embedding: W : m → W,
S = E(C, W)

Attack: Y = S+ Z

Detection: m̂ = D(Y) or Ŵ = D(Y), W−1 : Ŵ → m̂

where the detector is assumed to have no access to the host signal during
the extraction process. In this model, m is the message to be hidden, C is
the host signal, W is the watermark signal, S is the stego signal, Z is the
intrusion of the attacker, Y is the distorted stego signal, Ŵ is an estimate
of W, and m̂ is the detected message. At the embedder, the message index
m is mapped to a sequence of information samples W by the mapping W ,
which transforms the message m into a better representation for embedding.
Then, the resulting watermark signal W is embedded in the host signal C.
At the detector, the sent message is detected from the received signal
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Y or from an extracted estimate Ŵ of W by the inverse mapping W−1.
In the model, the embedder E and the detector D may be linear or nonlinear
functions that operate on scalar or vector variables and are not necessarily
inverses of each other. Not evident in the model is the distortion constraints
imposed on hider and attacker for keeping the host signal intact. Ideally
speaking, the measure used to quantify the hider’s and attacker’s distortion
is expected to be in compliance with the perceptual properties of the host
signal.

The frameworks in Sections 3.1 and 3.2 can be extended to data
hiding by using the duality between the communications and data hiding
frameworks. The encoding and decoding of both frameworks assume the
presence of a very large number of U sequences at both the encoder and the
decoder, and achieving channel capacity relies on adapting the codeword to
the channel state at a given channel noise level. The encoding operation is
simply a brute search in the bin pointed by the message index in order to find
the U sequence that yields the codeword in the direction of the host signal
C. Accordingly, each codeword is orthogonal to C and satisfies the power
constraint P. (These constraints take the form of XT C ≈ 0 and 1

N
‖X‖2 = P

in Costa’s framework and XT
n C ≈ 0 and 1

N
‖Xn‖2 = P in the CAE-CID

framework.) At the decoder, on the other hand, the same U sequence is
searched in all bins based on joint typicality with the received Y. Figures
3-3 and 3-4 depict the optimal encoding and decoding for message index
m. In Costa’s framework, 0 < α < 1 and processing distortion is zero,
whereas in the CAE-CID framework α = 1 and the processing distortion
is nonzero. Hence, the main difference between the two frameworks is in
how the channel-dependent nature is reflected in encoding and decoding

operations.

Despite its optimality, such an encoding/decoding scheme cannot be
applied to the design of practical embedding/detection techniques due to
complexity issues. However, its structure has been an inspiration for the
design of many embedder/detector pairs [9], [19], [21], [22], [23], [36].
Common to all these data hiding techniques is the use of quantization to
simplify codebook generation and codeword selection. Also, they impose
the power and orthogonality constraints in a less strict sense.

An efficient algebraic structured binning scheme that generalized the
approach to constructing optimum codes for data hiding is provided by
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Figure 3-4 Decoding of sent message index m.
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[12], [24], [45]. This approach connects the embedder/detector design
problem with the areas of linear codes and lattice codes. A nested lattice
code is essentially a high-dimensional lattice partition characterized by a
fine lattice and a coarse lattice. The fine lattice is partitioned into a num-
ber of cosets corresponding to coarse lattice and its translates. (In other
words, the union of the coarse lattice and its translates is the fine lattice.)
Hence, the coding rate is determined by diluting the coset density in the
fine lattice space. Accordingly, the encoding of the message m is per-
formed by quantizing C in the N-dimensional signal space to the nearest
lattice point in the corresponding coarse lattice, and the decoding is by
quantizing the received Y to the nearest point in the fine lattice. Similarly,
the embedding rate is designed by the number of cosets. The construction
of good nested lattice codes corresponds to the use of high-dimensional
vector quantization for embedding and detection. (It should be noted that
QIM and DC-QIM [20] are constructions based on high-dimensional self-
similar lattices where the coarse lattice is scaled and rotated version of the
fine lattice.) However, from the practical point of view, high-dimensional
constructions are not feasible. Therefore lattices with simpler structures
need to be utilized. Such constructions include recursive quantization pro-
cedures and Cartesian products of low-dimensional lattices which coincide
with the practical embedder/detector designs discussed previously.

In quantization-based methods, the optimal encoding/decoding pro-
cedure is effectively simplified by generating U sequences as reconstruction
points, where each reconstruction point is associated with a quantizer from
a set of quantizers. The number of quantizers in the set corresponds to
the number of messages or message letters. Each quantizer of the set is
uniquely described by a set of reconstruction points that are nonoverlap-
ping with other sets of reconstruction points. Therefore, each finite state
of U is a sequence with values restricted to reconstruction values of the
designated quantizers. The terms X and Xt are the embedding distortion
due to quantization and the processing distortion, respectively. The code-
word corresponding to a message is the distortion signal introduced into
the host signal as a result of the embedding operation, S− C. Conse-
quently, it is denoted by Xn = X− Xt in the CAE-CID framework and
by X in Costa’s framework. The embedding operation, in the CAE-CID
framework, is the quantization of C vector with the quantizer(s) pointed
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by the watermark signal W to be embedded and then the processing of
the resulting quantized signal by a choice of (postprocessing) function.
Hence, input X in the CAE-CID framework is the distortion introduced
into C due to quantization of embedding, and the processing distortion Xt

is the result of processing P , Xt = P(X). The sent message, on the other
hand, is detected by determining the nearest reconstruction point(s) to the
received signal Y and generating the message by mapping the correspond-
ing quantizer(s) to the message letters they are associated with. The crux
of these practical methods is that each codeword is directly generated from
the given host signal and the watermark signal through quantization rather
than maintaining a collection of shared U sequences.

Chou et al. in [23] applied the solution of a problem in distributed
source coding to data hiding through the use of optimal quantizers. They
proposed the use of robust optimization for codeword selection from
Costa’s huge codebook. In their work, the orthogonality of C and X is
obtained by choosing U as a rate-distortion optimized and quantized version
of a scaled version of C. Although this approach approximates the optimal
encoding and decoding scheme of Costa’s framework, even the simplest
implementations involve considerable complexity. Such complexity draws
attention to practical approaches with simpler implementations. Chen et al.

[9], Ramkumar et al. [21], Eggers et al. [22], and Perez-Gonzalez et al.

[36] respectively, proposed methods to handle codebook generation by
uniform scalar quantization.

3.4 Codebook Generation for Data Hiding Methods

Practical data hiding approaches can be categorized into three main types
within the frameworks studied in Sections 3.1 and 3.2 based on the design
of the embedder/detector pair, namely type I, type II, and type III [47],
[48]. Type I methods refer to additive schemes in which the stego signal is
generated by adding the watermark signal to the host signal [13], [14], [15],
[16], [17]. This type of method suffers severely from host signal interfer-
ence due to the nonoptimal design that assumes the host signal C to be a
noise and tries to cancel it. Type I methods have preferable performance
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only if channel noise is very strong or the host signal is available at the
extractor.

Type II methods are characterized by the use of quantization proce-
dures and by the (E , D) pair, which are exact inverses [21], [25], [27],
[28], [29], [30], [31], [32]. The major drawback of methods of this
type is that they perform well only if the attack is not severe. However,
they are very suitable for oblivious data hiding applications with low noise
levels.

Type I and type II methods correspond to designs of U = X, α = 0,
and U = X+ C, α = 1, respectively, within Costa’s framework. In the
CAE-CID framework, however, corresponding designs for type I and type
II methods take the form U = X + C with the statistics of σ 2

X = σ 2
C + σ 2

Z

when ρ = 1, and of σX =
√

P when Xt = 0, respectively. These two
choices of design for both frameworks correspond to two extreme cases in
hiding rate vs robustness curves. Namely, type I methods are preferred for
the case of severe attacks while type II methods are superior for the case
of low attacks.

An optimal design is one in which the designer has control over the
operating characteristics of the method. In effect, this imposes some sort of
dependency on the channel noise instead of the fixed severe noise (type I)
or low noise (type II) assumptions. The methods that rely on this principle
are called type III which is a generalization of type I and type II. Codebook
design of type III methods follows U = X+C when ρ = 1 (Xt �= 0) within
the CAE-CID framework, and U = X + αC, where 0 < α < 1, within
Costa’s framework. Therefore, the information hider has the freedom to
adapt the codeword to the host signal at the presumed noise level. These
methods are ideal for oblivious data hiding.

Type III methods are developed from type II methods by enhanc-
ing the functionality of the type II embedder with added processing (i.e.,
thresholding, distortion compensation, and Gaussian mapping) [9], [21],
[22], [36]. In type III methods, the postprocessing is designed in a way that
the hiding rate is maximized for a presumed attack level [49]. However,
codeword generation for most type III methods does not explicitly follow
Costa’s framework due to the processing that takes place after quantization
of the host signal. Therefore, type III methods are better evaluated within
the CAE-CID framework.
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TABLE 3-2

Three Types of Embedding/Detection Schemes

CHARACTERIZATION CODEBOOK DESIGN

Type I Additive schemes U = X

Type II Quantization-based schemes U = X+ C

Type III Channel adaptive schemes U = X+ C with processing

Table 3-2 summarizes the three types of methods. Based on the code-
book designs, it is observed that type I embedding does not exploit any
information on the host signal or channel noise level, while type II embed-
ding exploits only host signal information. Type III embedding, on the
other hand, utilizes both forms of information.

Figures 3-5, 3-6, and 3-7, respectively, display the codeword gener-
ation of type I, type II and type III methods for a set of watermark signals,
denoted by W1, . . . , WM , for the given host signal C. In type II and type
III methods, each message or watermark sample is assigned a particular
quantizer Q�(·). The base quantizer Q�(·) may be a high dimensional
vector quantizer or a Cartesian product of scalar quantizers with � as the
distance between the reconstruction points. For type II embedding, C

is quantized with respect into the watermark signal, Q�(C, W). Conse-
quently, the codeword X is the quantization error introduced to the host
signal C, X = Q�(C, W)−C. On the other hand, in type III methods the
quantization error (type II codeword) undergoes the particular processing
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C

Figure 3-5 Encoding of message index m in type I methods.
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Figure 3-6 Encoding of message index m in type II methods.
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Figure 3-7 Encoding of message index m in type III methods.
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: :

Figure 3-8 The partition of the signal space between decision regions R×
and R◦ corresponding to scalar embedding and detection of a binary signal.

P , which generates the codeword Xn = X − P(X). The postprocessing
function P may have the following forms:

(1) distortion compensation [9], [22],
(2) thresholding [21], or
(3) Gaussian mapping [36].

The performance of the three types of methods can also be judged by
the structure of the corresponding detectors. Considering the very simple
scenario in which a two-level watermark sample is embedded in a signal
coefficient and sent through a noisy channel, the three types of detectors
take the following forms. The detector for the type I scheme decides on the
sent sample by comparing the received signal with a threshold, whereas in
type II and type III methods, detection of the embedded watermark sample
is by some form of minimum distance decoding in order to determine the
nearest reconstruction point to the received stego sample. Figure 3-8 dis-
plays the partitioning of the signal space between the two disjoint decision
regions R× and R◦. In the figure, × and ◦ denote the reconstruction points
associated with the quantizers corresponding to two watermark samples.
Obviously, the partitioning of the decision regions in a type I detector is far
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from being optimal when the channel noise level is low. This is because
with a limited embedding distortion, most (host) signal coefficients are
not suitable for embedding (i.e., in order to embed the information symbol
denoted by ◦ in a host signal coefficient that is at the far left of the threshold,
an arbitrarily large embedding distortion needs to be introduced to translate
it to the region R◦). On the contrary, the layout of the decision regions of
the type II detector ensure reliable detection from all stego coefficients,
albeit only up to channel distortions of power P. A type III detector, on
the other hand, gives control over the size of the decision regions, and as
a result successful detection can be sustained up to noise level σ 2

Z while
embedding distortion is still limited to P as in type II embedding. As the
channel noise level σ 2

Z increases, the type III detector will depart from the
type II detector and take the form of a type I detector.

Figures 3-9 and 3-10 display the hiding rate vs robustness perfor-
mances achievable by type I, type II, and type III methodologies computed
using Eq. (3.4) for α = 0, α = 1, and α = P/(P + σ 2

Z ), respectively,
or equivalently, solving Eqs. (3.9) and (3.13) for σX = (P + σ 2

Z )/(2
√

P)
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Figure 3-9 Hiding rate vs robustness performance of type I, type II, and type

III methods with P = 10 and DWR =15 dB.



 

46 CHAPTER 3 Communication with Side Information and Data Hiding

Optimal Type III
Type II
Type I (DWR =30 dB)
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Figure 3-10 Hiding rate vs robustness performance of type I, type II, and type

III methods with P = 10 and DWR = 30 dB.

when ρ = 1, σX =
√

P when Xt = 0, and σX = (P + σ 2
Z )/
√

P when
ρ = 1.

The hiding rate is measured in the number of bits that can be hidden
in a host signal coefficient, and the robustness measure is defined in terms
of the ratio between the embedding distortion power and the channel noise
power,

WNR = 10 log10
P

σ 2
Z

in dB. (3.21)

However, for type I methods, the WNR by itself cannot be the indicator of
robustness as the host signal is considered to be part of the noise. Therefore,
another measure that can be considered is the ratio of the host signal power
to the embedding distortion power,

DWR = 10 log10
σ 2

C

P
in dB. (3.22)
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In type II methods, due to the ability to reject the host signal interfer-
ence (depending on the WNR), the dependency of the performance to the
document to watermark ratio (DWR) level is weak. Type I methods achieve
the capacity at very low WNRs; and at high WNRs, there is almost a con-
stant gap with the capacity. On the other hand, type II methods achieve the
capacity at higher WNRs, and the hiding rate drops exponentially with the
decreasing WNR. Furthermore, at low WNR, range hiding is not possible.
Since type III is a superset of type I and type II methods, its optimal version
can achieve the capacity at all WNRs.

Adetailed analysis of type I embedding/detection and capacity results
can be found in [48], [50], [51], [52].
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C H A P T E R

Type I (Linear)
Data Hiding

Most promising data hiding applications—like authentication, copyright
control, and ownership verification—involve multimedia data and assume
the presence of a very powerful attacker. Many of the data hiding tech-
niques that are proposed for such applications are based on type I data
hiding. There are two reasons for the popularity of type I methods:

(1) simplicity of implementation, and
(2) robustness to severe additive attacks.

In this chapter we investigate the achievable hiding capacities (pay-
load) of type I (linear) data hiding in still images. For type I (linear) data
hiding, the embedder E and the detector D take the forms

S = E(C, W) = C+W,

Ŵ = D(S) = S. (4.1)

In Eq. (4.1), the host signal C is an image, and the stego signal S is the
watermarked image.

49
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4.1 Linear Data Hiding in Transform Domain

Most of the state-of-the-art techniques for data hiding in images utilize
some decomposition for embedding the message bits. Among different
orthonormal decomposition techniques, it was probably the inspiration of
image compression applications that caused DCT, and subband (wavelet)
transforms have been more popular than the others. Another reason for
the choice of DCT and wavelet-based techniques is perhaps to “match” the
data hiding [53] technique with the properties of the signal processing that
the image is most likely to undergo. Currently, the most common image
compression tools are the DCT-based JPEG and the subband (wavelet)
transform–based source coding techniques of SPIHT (set partitioning in
hierarchial trees)/EZW (embedded zerotree wavelet) [54]. Adding the sig-
nature or the message signal intelligently in the DCT domain (for example,
taking the JPEG quantization tables into account) can ensure robustness to
JPEG compression. Similarly, one could design wavelet-based methods
that are robust to SPIHT/EZWcompression techniques. It is no surprise that
most wavelet-based data hiding methods are very robust to EZW or SPIHT
compression [55], although they are not very robust to JPEG compression.
Similarly, DCT-based data hiding methods are robust to JPEG and not so
to SPIHT/EZW compression. Of course, one cannot expect robustness of
these data hiding methods to other forms of compression/signal-processing
operations. Though it is true that most images are very likely to go
through DCT/wavelet-transform–based compression, the situation is dif-
ferent for video sequences. For most video frames the major source of
information is the motion vectors. Therefore, it is difficult to intelligently

devise DCT/wavelet-transform–based methods for data hiding in video
frames.

It is of great interest to devise robust data hiding methods given that no
knowledge of the compression technique to be performed is available. Now
the question is, what is the underlying decomposition technique that should
be used? We attempt to answer that question in this chapter. We provide
an information-theoretic approach to estimate the achievable capacities
for different orthonormal decompositions like DCT, wavelet (subband),
discrete Fourier transform (DFT), Hadamard and Hartley transforms.
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Several authors, [56], [57], [58], have proposed information-
theoretic approaches to characterize or evaluate the performance of the
data hiding channel. In [56], Smith et al. model the image as a Gaus-
sian noise source of variance defined by the average noise (image) power.
The data hiding capacity (payload) is then calculated as the capacity of the
Gaussian channel. In [57], Servetto et al. obtain the capacity of the data
hiding channel where the noise source is an intentional jamming. However,
it is assumed that the original image is available at the receiver. Hernandez
et al. [58] proposed a more thorough model, which analyzes the perfor-
mance of a proposed data hiding method. In this model, L orthogonal
sequences are used for the signature. The image is decomposed into chan-
nels corresponding to its projections onto each of the orthogonal signatures.
The capacity of the channels is calculated for unprocessed images and for
images that have gone through filtering operations.

4.2 Problem Statement

Let I be the original (cover) image, to which a message W (a representation
for embedded information bits) is added, such that Î = I+W. The modified
image Î is visually indistinguishable from I and may typically be subjected
to a lossy compression, like JPEG, and Ĩ = C(Î), where C(·) denotes the
compression/decompression operations pair. The embedded bits in image
I are extracted from Ĩ. We would like to know in advance the maximum
number of bits that can be hidden (payload) and recovered later at the
detector with an arbitrarily low probability of error; namely, the capacity

of the data hiding channel for a given compression scenario.
A block diagram of the data hiding channel is shown in Fig. 4-1. W is

the message (signature) to be transmitted through the channel. The channel

PI

W
~
I++

^
I

Figure 4-1 The data hiding channel.
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CompressionW
^ Extractor

I

W

Transform
Forward

I
~

Transform
Forward

I
^

+ Transform
Inverse

Figure 4-2 Generalized schematic of data hiding/retrieval.

has two sources of noise: I, the noise due to the (original) cover image,
and P, the noise component due to some future processing (compres-
sion/decompression or others). Ŵ = Ĩ is the “corrupted” or noisy message.
Note that for nonoblivious data hiding methods, there is only one source
of noise due to processing. The image noise can be subtracted from the
received image Ĩ because it is available at the detector. One can expect
such methods to have higher data hiding capacity than oblivious detection
methods.

Figure 4-2 displays the block diagram of a typical data hiding method.
The forward transform block decomposes the image I into its coefficients
of L bands. A component of the signature/message signal is added to each
band. The inverse transform reconstructs the modified image Î due to data
hiding.

The image Î then undergoes some processing (e.g., lossy compres-
sion), resulting in the image Ĩ. The hidden message signal/signature is
extracted from Ĩ. First, the image Ĩ is decomposed into L bands by using
the same forward transform. Then, each component of the signature is
extracted separately in each band. In this chapter, we assume the data hid-
ing system shown in Fig. 4-2 and estimate its data hiding capacity for differ-
ent decomposition types (different forward and inverse transform blocks).

4.3 Capacity of Additive Noise Channels

Prior to considering the data hiding channel of Fig. 4-1, we consider the
simpler channel displayed in Fig. 4-3a. X ∼ [ fX (x), σ 2

x ] is the message
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Figure 4-3 (a) A simple additive noise channel with an arbitrary noise type.

(b) The channel of (a) modified to obtain its equivalent additive Gaussian noise.

signal to be transmitted, Z ∼ [ fZ (z), σ 2
z ] is the additive noise in the

channel, and Y ∼ [ fY (y), σ 2
y ] is the received signal at the output of the

channel.
We assume that X and Z are independent. This implies that σ 2

y =
σ 2

x + σ 2
z . Therefore, the channel capacity is expressed as [44]

C = max
fX (x)

IM(X , Y ) = max
fX (x)

h(Y )− h(Y |X) = max
fX (x)

h(Y )− h(Z) bits (4.2)

where IM(X , Y ) is the mutual information between X and Y . For a given
noise statistic fZ (z) and input variance σ 2

x , one can maximize the entropy
of the channel output Y

y(Y ) = −
∫

fY (y) log2( fY (y)) dy bits (4.3)

by choosing a suitable distribution fX (x) for the input message X . For a
given variance σ 2

y , the maximum entropy value of Y = 1
2 log2(2πeσ 2

y ) bits
is achieved when Y has a normal distribution. For instance, the maximum
entropy value is achievable if both pdf’s fZ (z) and fX (x) are normally dis-
tributed. However, for an arbitrary distribution fZ (z), and a fixed σ 2

x , the
maximum achievable entropy value is not immediately obvious. To calcu-
late this, we pass the noise Z through an ideal information processor (see
Fig. 4-3b) that does not alter the amount of information in Z, but changes
its statistics to a Gaussian distribution at its output Zg. (The information
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processor can be considered an ideal data compressor, where “compres-
sion” is measured in terms of signal energy. The information processor
translates the data into a form that has minimum energy while maintaining
the information content or entropy.) Since the output of the information
processor has the same entropy as its input, the variance of the output, σ 2

Zg
,

can be obtained by solving the equation

h(Zg) = h(Z) = 1

2
log2(2πeσ 2

Zg
) bits. (4.4)

It is well known that Gaussian distribution has the highest entropy for
a given variance [44]. Alternately, Gaussian distribution has the least
variance for a given entropy. Thus, it is always true that σ 2

Zg
≤ σ 2

z . We

call σ 2
Zg

the entropy-equivalent Gaussian variance. The maximum value
of h(Y) is, therefore, obtained as

max
fX (x)

h(Y ) = max
fX (x)

h(X + Zg) = 1
2 log2(2πe(σ 2

Zg
+ σ 2

x )) bits. (4.5)

In order to calculate the channel capacity, we can now replace fZ (z) by
N[0, σ 2

Zg
] as follows

C = max
fX (x)

h(Y )− h(Zg) = 1

2
log2

(
1+ σ 2

x

σ 2
Zg

)
bits. (4.6)

Note that if the processing noise is Gaussian and independent of the
image noise, the two channel noise sources in Fig. 4-1 can be replaced
by a single Gaussian noise source of variance σ 2

Ig
+ σ 2

P , where σ 2
Ig

is the

equivalent Gaussian variance for the image noise I, and σ 2
P is the variance

of the processing noise. If σ 2
W is the message signal energy, the capacity

of the data hiding channel can be expressed as

Ch =
1

2
log2

(
1+ σ 2

W

σ 2
Ig
+ σ 2

P

)
bits. (4.7)
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As a first approach to calculate the capacity or payload of the data
hiding channel, the original image pixels, the image noise I are assumed
to be uniformly distributed random variables I taking values between
0 and 255 with variance σ 2

I . Let σ 2
p be the variance of the noise (per

pixel) introduced due to processing (e.g., compression). As we shall
see, the processing noise is an estimate of the variance of an equiv-

alent additive noise that substitutes for the actual nonlinear processing
noise sources (mainly quantization in the case of lossy compression).
Since we do not know anything about the distribution of the equiv-
alent processing noise, we assume the worst: Gaussian distribution.
Finally, let σ 2

W be the average energy per pixel allowed for the mes-
sage signal. If MN is the number of pixels in an image, then the
energy (or variance if it has a zero mean) of the message signal is
calculated as

σ 2
W =

∑MN
I=1 W2

I

MN
(4.8)

where WI is the message signal added to the Ith pixel. The (differential)
entropies h(g) of a Gaussian random variable g, with variance of σ 2

g , and

h(u), that of a uniformly distributed random variable u with variance σ 2
u ,

are expressed as [44]

h(g) = 1
2 log2(2πeσ 2

g ) bits, h(u) = 1
2 log2(12σ 2

u ) bits. (4.9)

From Eq. (4.9), the entropy-equivalent Gaussian noise (or the Gaussian
random variable that has the same entropy as the uniform random variable
u of variance σ 2

i ) has a variance given by

σ 2
Ig
= 12

2πe
σ 2

I . (4.10)

Although we would expect the variance of u, the pixel values, to be given

by σ 2
I = 2552

12 (or σI = 73.6), statistics from many test images (see Section
4.4 for the details of the test images used) show that σI = 55. Therefore,
we assume that u has a uniform distribution with σI = 55. From Eq. (4.10)
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it is calculated that σIg = 55( 12
2πe

)0.5 ≈ 46. If we allow a degradation of the
image after the addition of a message with a peak SNR (PSNR) of up to 40
dB, then the message energy is calculated to be σ 2

W = 6. 5. Furthermore,
if the image goes through a JPEG compression at 50% quality level, then
it is measured for test images that the processing noise has a standard
deviation of σP ≈ 6. 7 (the actual procedure for estimating processing
noise is described in Section 4.4.2). This would yield a capacity Ch value
of 0.0022 bits/pixel (140 bits of capacity for a 256× 256 image). Even if the
message-embedded image (stego image) undergoes some other processing
that results in a barely recognizable image, corresponding to σP ≈ 20, the
capacity Ch would still be 0. 0019 bits per pixel (about 124 bits of capacity
for a 256 × 256 image). Therefore, one can see that hiding the message
in the image domain can be very robust. However, in most cases, we do
not require such robustness. Since many data hiding applications aim to
protect and ascertain copyright or control access, it is unlikely in such a
scenario that anyone would want to claim ownership or control access of
an image of no commercial value (an image that has been significantly
degraded in perceptual quality). Typically, it is sufficient if the message
survives well-known image compression/decompression operations with
acceptable quality.

Given that less robustness than the previously mentioned method
offers is acceptable, could we do better than this? In our first approach,
what we have done is very similar to the method reported in [56] (the
only difference is that we have also introduced processing noise into the
channel). By assuming a Gaussian channel, we imply that the image pixels
have a flat spectrum. However, it is well known that the spatial frequency
characteristics of a typical image is far from flat (white). Most of the
image energy is concentrated in the low-frequency bands. It is, therefore,
intuitive that a decomposition of an image into its different frequency bands
might help. We expect the low-frequency bands of the decomposition to
be very noisy due to the high-energy content of the image. On the other
hand, high-frequency components would be very vulnerable to processing,
as most compressors would discard them at low bit rates. At midfrequency
bands, however, we could strike a compromise. A typical distribution of
image and processing noise in various bands of a decomposition is shown
in Fig. 4-4.
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Figure4-4 A typical distribution of image and processing noise among differ-

ent bands.

In Fig. 4-5, the channel of Fig. 4-1 is decomposed into its multiple
subchannels. The decomposition is performed by the forward and inverse
transform blocks of Fig. 4-2. The decomposition of an image into its L

subbands results in L parallel subchannels with two noise sources in each.
Let σ 2

Ij
, j = 1, . . . , L, be the variances of the coefficients for each subband

(or the variances of the image noise in each subchannel) of the decom-
position. Similarly, let their corresponding equivalent Gaussian variances
be σ 2

Igj
. If σ 2

Pj
is the variance of the processing noise (Gaussian) in the jth

subchannel, then the total capacity of the L parallel subchannels is given by

Ch =
MN

2L

L∑

j=1

log2

⎛
⎝1+

v2
j

σ 2
Igj
+ σ 2

Pj

⎞
⎠ bits (4.11)
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Figure 4-5 Decomposition of the data hiding channel into its parallel sub-

channels (subbands).

for an image of size MN pixels. In Eq. (4.11), vj is the visual threshold

of band j. In other words, v2
j is the maximum message signal energy

permitted in band j based on its perceptual quality effects. Note that if
the channel was purely energy constrained (or if the constraint was on the
total signature energy regardless of its distribution among different bands),
then the best solution would be to use the water-filling approach [44] to
calculate the overall channel capacity. However, in this case, the allowed
maximum signal energy in a channel is constrained by the visual threshold
of the band. Ideally, we would like to utilize all channels to the fullest
extent possible.

In the following sections, we evaluate the capacity of the data hiding
channel for DCT, DFT, Hadamard, and uniform-subband-decomposition–
based transform domain embedding methods. We use popular compression
methods like JPEG and SPIHT to model the processing (compression) noise
in each subband of the decomposition.

4.4 Modeling Channel Noise

In order to model the channel noise (the two noise sources I and P in
Fig. 4-1), we measure their statistics from 15 monochrome test images of
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size 256× 256 and their JPEG and SPIHT compressed versions at various
quality factors (bit rates).

4.4.1 Modeling Image Noise

The cover images are decomposed into L subbands using an orthonormal
transform. Let fIj (ij) be the distribution of the jth subband with variance σ 2

Ij
.

(The image noise I is split into its components in L subchannels, which are
modeled as random variables with fIj (ij) and variances σ 2

Ij
, j = 1, . . . , L.)

After calculating the variances of the image noise in each subchan-
nel, the next step is to obtain the subchannels’entropy-equivalent Gaussian
variances. This is achieved by plotting a histogram of the transform coef-
ficients for each band and calculating the entropy. If �x is the width of the
n bins of the histogram gj(m), m = 1, . . . , n, and p is the total number of
coefficients in band j, the entropy Hj and the equivalent Gaussian variance
σ 2

Igj
of the subband are obtained as

Hj = −
n∑

I=1

gj(I)

p�x
log2

(
g(I)

p�x

)
�x, bits σ 2

Igj
= 22Hj

2πe
.

Thus, the image noise in subchannel (band) j can be substituted by a
Gaussian noise of variance σ 2

Igj
. In our simulations, the image noise is

estimated for each image individually for five different transforms tested.

4.4.2 Modeling Processing Noise

At the outset, one should note that processing noise is introduced due to
quantization of transform coefficients. While one could accurately esti-
mate the type of quantization noise introduced by JPEG compression on
the DCT coefficients of the original image (assuming that the quantiza-
tion table is known), the same cannot be feasible, for instance, for the
Hadamard transform coefficients of the original image. The quantization
of one DCT coefficient in JPEG compression would affect a number of
Hadamard coefficients, since their subspectra are not the same. More
importantly, for the reasons explained earlier, we wish to make the model
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of the processing noise more general. The only reason we restrict our-
selves to JPEG and SPIHT image compression techniques for processing
noise sources is their widespread availability. We define processing noise
as the equivalent additive noise that accounts for the reduction in cor-

relation between the transform coefficients of the original image and the

image obtained after lossy compression. Note that while this estimate pro-
vides us with the variance of the equivalent additive noise, it does not tell
us anything about the statistical nature of the noise (like its distribution).
We therefore assume the worst—Gaussian distribution for the processing
noise.

Let the processing noise variance in each subchannel be σ 2
Pj

, j =
1, . . . , L. The steps to obtain the processing noise variance in our
experiments are as follows:

• Decompose the ni original test images using an orthonormal
transform.

• Obtain MNni

L
samples for each subband. Let ijk , k = 1, . . . , MNni

L
be

the coefficients of subband j.
• Apply lossy compression/decompression (JPEG/SPIHT at various

quality factors) to the ni test images.
• Decompose the ni reconstructed images (compressed) using the

same orthonormal transform.
• Let ĩjk , k = 1, . . . , MNni

L
be the corresponding transform coefficients

of the compressed images.
• Define the intraband correlation as

ρj =
〈ij, ĩj〉
|ij||ĩj|

= 〈ij, (ij + nj)〉
|ij||ij + nj|

(4.12)

where nj is a vector of random variables, uncorrelated with ij.
• σ 2

nj
= |nj|2 is the variance of the equivalent additive noise due to

compression (or σpj = σnj ).
• Since 〈ij, nj〉 = 0, Eq. (4.12) can be simplified to obtain

σ 2
Pj
= |nj|2 =

(
1

ρ2
j

− 1

)
|ij|2. (4.13)
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It can easily be seen that the processing noise in each subband cannot

be simply obtained as ĩjk−ijk . Consider a scenario, in which DCT is used for
the decomposition, and a low-quality JPEG for processing. Let us assume
that a high-frequency subband is completely removed due to compression
(ĩjk = 0 ∀ k for some j). This implies that all information buried in that
subchannel (subband) is lost. In other words, the processing noise in that
subchannel has infinite variance (and not the variance of ĩj). This happens
because no correlation exists between ĩjk and ijk . Note that in Eq. (4.13),
when ρj → 0, σPj →∞.

Also note that while the image noise is estimated individually for each
image, the processing noise is not. There are two reasons for this:

• As the equivalent image noise is estimated by correlation, the
result is likely to be more accurate if more samples are used.
If we calculate processing noise for each image separately (for
256 × 256 images using some 64-band decomposition), we have
only 1024 coefficients in each band. However, using 15 images
yields 1024× 15 coefficients per band.

• The second reason is that this method of estimating the processing
noise would yield unrealistic (very low) estimates of processing
noise for low-entropy images. The original and compressed ver-
sions of low-entropy images are bound to be very “close”, leading
to high correlation in most bands. This would cause an overesti-
mate of capacity for smooth images. To mitigate this effect, we
average processing noise over many images.

4.5 Visual Threshold

The value of the visual threshold for subchannel j, vj in Eq. (4.11), how-
ever, is highly subjective. Since the amount of message signal energy
permitted in any subband is determined by the visual threshold, different
models for visual thresholds would yield different estimates of achievable
data hiding capacity. The visual threshold depends not only on the band,
but also on the magnitude of the particular coefficient. Within the same
band, a coefficient with high magnitude can be altered to a larger extent than
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a coefficient with small magnitude. Additionally, the visual threshold may
also depend on the magnitudes of coefficients of other bands corresponding
to the same image block (spatial location).

However, what we desire is an estimate of the average energy for the
message signal that can be added to a particular band. Since it is well known
that the human visual system is more sensitive to the lower frequencies
than the higher ones, the SNR (message signal to image noise) should be
smaller for lower-frequency subbands. In general, lower-frequency image
subbands have higher variances. Hence, a reasonable model for the visual
threshold factor vj could be

v2
j = Kσ 2α

Ij
(4.14)

where 0 < α < 1, and K ≪ σIj ∀j is a constant. When α = 0, the message
signal energy is distributed equally among all subbands regardless of their
variances. On the other hand, when α = 1, the message signal energy is
distributed among subchannels according to their band variances.

From Eqs. (4.11) and (4.14), for the case of no processing noise, if
we assume that all subchannels have the same pdf type (such that KσIj =
K1σIgj

), the channel capacity can be calculated as

Ch =
MN

2L

L∑

j=1

log2

⎛
⎝1+

K1σ
2α
Igj

σ 2
Igj

⎞
⎠ ≈ MN

2L
log2

⎛
⎝1+

L∑

j=1

K1

σ
2(1−α)
Igj

⎞
⎠ .

(4.15)

In the above equation, the approximation is justified because
(K1σ

2α
Igj

)/(σ 2
Igj

) ≪ 1 ∀j. Note that for the case of α = 1, the decompo-

sition does not have any effect on the capacity. However, for α < 1,
Ch can be increased by choosing a suitable transform, as shown in the
next section. Thus, the increase in capacity is due to the fact that one can
add relatively more message signal energy to bands of lower variances (or
high-frequency bands in a typical scenario).

However, in Eq. (4.14), there seems to be no rationale for fixing the
value of α apart from actual simulations. We therefore adopt a different
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model for visual threshold. To derive the model, we argue that JPEG, at
a reasonably good quality factor, is well tuned visually in distributing the
quantization errors amongst the bands, at least with respect to preserving
the visual fidelity of the compressed image. More advanced methods like
SPIHT tend to optimize the MSE rather than visual fidelity (in general,
the visual quality of a JPEG compressed image at a certain PSNR is much
better than that of a compressed SPIHT image at the same PSNR). Let ijk
be the coefficients of the original images and ĩjk the coefficients of the same
images that have gone through JPEG-75 (quality factor 75) compression
and decompression. Let σ 2

qj
be the variance of the quantization error, eqj =

Ĩj−Ij, for subband j. If quantization error (due to JPEG-75) of variance σ 2
qj

in subband j results in an image that is visually satisfactory, we can argue
that the addition of a message signal with energy σ 2

qj
in subband j would still

render the image Î with an acceptable visual quality. However, in order to
maintain the PSNR of Î in the range of 40–50 dB (so that the Î is visually
indistinguishable from I), we choose the subband visual thresholds as

v2
j = K2σ

2
qj

(4.16)

where K2 < 1. (The average PSNR of JPEG-75 images is only about 35 dB.
Hence, a choice of K2 = 1 would yield images Î of PSNR 35 dB. This
might not be an acceptable quality. For our simulations we use K2 = 0. 25.)

4.6 Channel Capacity vs. Choice of Transform

It should be noted that both Eqs. (4.11) and (4.15) are subject to the
following constraints:

L∑

j=1

σ 2
Ij
= Lσ 2

I ,
L∑

j=1

σ 2
Igj
= Lσ 2

Ig
, I = 1

2
log2(2πeσ 2

Ig
)

where σ 2
I is the variance of images, σ 2

Ig
is the entropy-equivalent Gaussian

variance for σ 2
I , and I is the average entropy of image pixels. The first
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equation states that unitary transforms (the transforms used for the embed-
ding decompositions) preserve energy. The second and third equations state
that the transforms also preserve entropy. With these constraints, it can be
shown that the minimum channel capacity (for the case of no processing

noise or Eq. (4.15)) is achieved for σIgj
= σ ∀j, or when no decomposition

(spatial embedding) is used.
Note that a transform with good energy compaction or higher gain in

transform coding gain (GTC) [59] would result in more imbalance of the
coefficient variances. This would enhance the term

∑L
j=1 K1/(σ 2(1−α)

Igj
) in

Eq. (4.15) and therefore increase the capacity (when the processing noise is
small). Hence, good energy-compaction transforms like DCT and subband
transforms are good embedding decompositions for low processing noise

scenarios.
However, the relationship between processing noise and the choice

of transform is not immediately obvious. For example, if we use JPEG
at low quality factor for compression and DCT as the embedding decom-
position, it is very easy to see that the processing noise will approach
infinity for many high-frequency bands, as they are bound to be com-
pletely eliminated. On the other hand, the high-frequency coefficients of,
say, a Hadamard transform will have components in many more DCT
coefficients. So, it is not very likely that any Hadamard transform band is
completely eliminated. In fact, even if the processing that the image under-
goes is SPIHT, it is still likely to affect the high-frequency DCT coefficients
more than the high-frequency Hadamard transform coefficients, since the
latter have poorer spectral selectivity. Any efficient compression method
would affect the low-variance (high-frequency) bands of the transforms
suitable for compression (or high-GTC transforms).

To illustrate this point, Fig. 4-6 shows the distribution of the process-
ing noise for DCT and Hadamard transform bands for processing noise
due to SPIHT compression at 1 bpp and 0.35 bpp. While the processing
noise for the two decompositions are comparable for SPIHT at 1 bpp, it
is seen that processing noise increases drastically for high-frequency DCT
bands for SPIHT at 0.35 bpp. The high-frequency bands of the Hadamard
transform, however, are relatively immune to processing noise. Similarly,
low-quality JPEG affects the high-frequency bands of subband decompo-
sition (using an 8-tap binomial QMF [Daubechies] filter) to a much larger
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Figure 4-6 Comparison of standard deviations of processing noise for DCT

and Hadamard decompositions. The source of processing noise is SPIHT

compression at 1 bpp and 0.35 bpp.

extent than the high-frequency Hadamard bands. We already know that
low-frequency bands are not efficient channels due to the presence of high
image noise. If the high-frequency bands are also affected by processing,
it leaves us a small number of useful midfrequency bands. Transforms with
lower GTC have many more of these useful midfrequency bands than the
high-GTC transforms due to their spectral properties at higher processing
noise scenarios. Therefore, decompositions unsuitable for compression

would, in general, be more immune to processing noise than decompo-

sitions with high GTC. Also, recall that in Section 4.3, embedding in
the image domain (or using identity transform for the transform blocks in
Fig. 4-2) was found to be very robust to processing noise. The identity
transform, which has the lowest GTC, has the highest robustness to pro-
cessing noise. It is relevant to point out here that the term robustness is
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a measure of the change in overall capacity with a change in the process-
ing noise (or processing scenario). The more robust the decomposition,
the less is the reduction in capacity for a scenario of increased processing
noise (or lower-quality compression). One should note that the robust-
ness of the low-frequency bands of, say, the DCT decomposition will
be much higher than the robustness of the single band coefficients (pix-
els) in the image domain. However, the low-frequency bands of the DCT
have very little capacity due to high image noise. The reduced robust-
ness of DCT is because of the drastic reduction in the overall capacity

due to the significant increase of processing noise in the high-frequency
bands.

The next question that arises concerns the choice of the number of
bands for the decomposition or size of the transform. From Eq. (4.15),
we see that a decomposition will not hurt. At worst, it may cause no
improvement. Therefore, decomposing each subchannel of, for instance,
a 16-band decomposition further into four subchannels can only improve
the capacity of data hiding, at least when processing noise is low.

4.7 Some Capacity Results and Discussions

The estimated capacities for different 64-band decompositions (for
256× 256 images, or 65,536 pixels each) like DFT, DCT, subband, Hart-
ley, and Hadamard transformations are shown in Fig. 4-7. The capacities
were estimated for five different transforms for eight different processing
scenarios and averaged over 15 images. Figures 4-8 and 4-9 show the
individual capacities of 4 different images (Baboon, Barbara, Lena, and
Bridge).

Figure 4-10 shows the average channel capacities of each video frame
of three video sequences (Table Tennis, Football, and Garden) averaged
over 90 frames per sequence. The source of processing for the video
sequences is MPEG-2 compression (30 frames/sec, 15 frames in GOP
(group of pictures) and I/P (intra/predictive) frame distance of 3), at var-
ious bit rates. In Fig. 4-10, the left column is the capacity estimates of
I-frames and the right column is for P/B-frames.
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For the subband decomposition, we use the 8-tap binomial QMF
(Daubechies) filter (though it would be a better idea to use the linear phase
9-7 filters, which are used more commonly for subband or wavelet image
compression, the biorthogonality of the filters would complicate the anal-
ysis). More specifically, we use uniform subband decomposition. For the
DFT decomposition, we use only the magnitude of the DFT coefficients.
The phase is ignored. (In other words, the message signal added would
change only the magnitude of the DFT coefficients. The phase is left intact.
As no message signal information is available in the phase, the phase is
ignored during detection of the message signal.) The 2-D DFT of an 8× 8
real matrix has 4 real and 60 complex (out of which only 30 are unique)
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Figure 4-7 Average capacity estimates for 15 256× 256 images. The indices

for JPEG compression correspond to different JPEG quality factors (1 = lossless

compression, 2 = 75%, 3 = 50%, 4 = 35%, 5 = 25%). The indices for

SPIHT compression correspond to different bit rates (1 = lossless, 2 = 1 bpp,

3 = 0.75 bpp, 4 = 0.5 bpp, 5 = 0.35 bpp).
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Figure 4-8 Capacity estimates for 256 × 256 Baboon and Barbara images.

The indices for JPEG compression correspond to different JPEG quality factors

(1 = lossless compression, 2 = 75%, 3 = 50%, 4 = 35%, 5 = 25%). The

indices for SPIHT compression correspond to different bit rates (1 = lossless,

2 = 1 bpp, 3 = 0.75 bpp, 4 = 0.5 bpp, 5 = 0.35 bpp).

coefficients. Note that this causes a reduction in the number of available
channels from 64 to 34, as only 34 magnitude coefficients are unique (the
magnitudes of 30 complex and 4 real coefficients). In addition, this also
reduces the message energy available to each channel by a factor of (approx-
imately) half—only half the message signal energy distributed among the
60 complex coefficients is available for detection. Half the message signal
energy is added just for the purpose of maintaining the symmetry proper-
ties of the DFT for a real signal. But by compromising some channels (or
by reducing the degrees of freedom), we obtain smaller noise variances in
each channel. As an example, consider N iid random variables (N degrees
of freedom) with variance σ 2. If we construct N

2 random variables from
the N original variables by averaging every two of them, the variance of
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Figure 4-9 Capacity estimates for 256 × 256 Lena and Bridge images. The

indices for JPEG compression correspond to different JPEG quality factors (1 =

lossless compression, 2 = 75%, 3 = 50%, 4 = 35%, 5 =25%). The indices for

SPIHT compression correspond to different bit rates (1 = lossless, 2 = 1 bpp,

3 = 0.75 bpp, 4 = 0.5 bpp, 5 = 0.35 bpp).

the resultant N
2 random variables will be iid with variances equal to σ 2

2 .
Therefore, we reduce the variance of noise in the channels by reducing the
degrees of freedom (from N to N

2 ).
From the plots in Figs. 4-7–4-10, we see that capacities for all

decompositions fall with increased processing noise as expected. DCT and
subband decompositions are better than Hartley and Hadamard decompo-
sitions for detection of the message when processing noise is low. It is
also seen that decompositions unfavorable for compression (DFT, Hartley,
and Hadamard) are more immune to processing noise than decompositions
suitable for compression (DCT, subband).
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Figure 4-10 Channel capacities of different decompositions for Football and

Tabletennis sequences. The processing scenarios 1–5 correspond to loss-

less compression and compression ratios of 10, 25, 50, and 100 (MPEG-2),

respectively.

What is surprising is that magnitude DFT decomposition offers more
capacity than better energy-compaction transforms even when there is no
processing noise. In this case, a reduction in the entropy of the image noise
is achieved by ignoring the phase of the DFT coefficients. The reduction
in entropy is precisely the information content in the DFT phase. Appar-
ently, this reduction in entropy more than offsets the reduced signal energy
available for detection (again, only half the signal energy is available for
detection, as the added signal power is divided among 64 coefficients,
while only 34 of them are available for detection). Yet magnitude DFT
performs better than other transforms because DFT phase contains dispro-

portionately more information than DFT magnitude! Note that in Figs. 4-8
and 4-9, the capacity of magnitude DFT decomposition for Baboon and
Bridge images is much higher than that of the high-GTC transforms, even
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for a no-processing-noise scenario. On the other hand, the capacity of
magnitude DFT is comparable to or even less than high-GTC transforms
for smoother images like Lena and Barbara. This might be due to the
following reasons:

• High-GTC transforms suitable for most images are not very well
suited for these high-activity images.

• The disparity between information content in the phase and
magnitude is even more pronounced for these high-activity images.

In addition, being a relatively low GTC transform, DFT is also robust
to processing noise like Hadamard and Hartley transforms.

Another surprising observation is that embedding in the DCT domain
is slightly more resistant to subband compression methods than JPEG. Sim-
ilarly, embedding in the subband domain is slightly more resistant to JPEG
than SPIHT. This may appear to contradict the idea of “matching” embed-
ding transforms with the compression method. But one should note that the
matching is useful only if we design the methods intelligently. So, design-
ing a DCT-based data hiding method with no idea of, say, the quantization
matrix used may not be more robust to JPEG than a wavelet-based data
hiding method.

As an indicator of the performance of these decompositions for other
possible compression methods, we look at the capacities of the decompo-
sitions when an image has to survive JPEG or SPIHT. We group the four
different processing scenarios of JPEG and SPIHT into four pairs: JPEG-
75 and SPIHT 1 bpp, JPEG-50 and SPIHT 0.75 bpp, JPEG-35 and SPIHT
0.5 bpp, and JPEG-25 and SPIHT 0.35 bpp. For example, to calculate
the capacity when the message signal has to survive JPEG-50 or SPIHT
0.75 bpp, we choose the worst processing noise in each subband (from
the estimates of processing noise for SPIHT 0.75 bpp and JPEG-50). The
capacities thus obtained are plotted in Fig. 4-11. Note that the estimates of
the capacity still follow the same trend.

We can define a figure of merit for each of the L ( L
2 + 2 for mag-

nitude DFT) subchannels for the various decompositions. The figure of
merit is given as the ratio of the capacity of each subchannel to the
logarithm of the power of the message signal in that subchannel. The
approximate (rounded) values of the figure of merit for the channels of
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Figure 4-11 Average capacity estimates for 15 images when the message

signal has to survive SPIHT or JPEG. The compression indices 1–5 correspond

to 1 = lossless compression, 2 = (JPEG-75, SPIHT 1 bpp), 3 = (JPEG-50,

SPIHT 0.75 bpp), 4 = (JPEG-35, SPIHT 0.5 bpp), 5 = (JPEG-25, SPIHT 0.35

bpp).

different decompositions (when the message has to survive SPIHT 0.5 bpp
or JPEG-35) are listed in Table 4-1 for various 64-band decompositions.
These figures indicate the relative performance of each subchannel and
would, therefore, be useful in designing hidden communication methods
to make optimal trade-offs between the visual quality of the image and the
number of bits that can be embedded. As the figure of merit is normalized
with respect to the message signal energy in each band, it is independent
of the model used for the visual threshold. The high figures of merit for the
channels of the magnitude DFT decomposition show that it would perform
better than other decompositions for any message signal energy assignment
method (model for visual threshold).
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TABLE 4-1

Figure of Merit of the Bands of Different Decompositions When the Image Has to Survive
SPIHT 0.5 bpp

(a) Magnitude DFT (b) DCT

0 27 49 69 83 0 0 0 0 8 19 29 37 42 29 23

27 53 72 70 87 0 0 0 8 17 28 34 41 28 10 28

49 72 69 38 51 0 0 0 19 28 36 40 35 15 7 22

69 70 38 18 32 0 0 0 29 34 40 40 23 8 2 22

83 87 51 32 43 0 0 0 37 41 35 23 15 2 11 2

0 69 46 33 0 0 0 0 42 28 15 8 2 0 0 0

0 71 69 46 0 0 0 0 29 10 7 2 11 0 0 6

0 54 71 69 0 0 0 0 23 28 22 22 2 0 6 14

(c) Uniform Subband (d) Hadamard

0 9 29 37 43 41 37 33 0 23 11 22 5 22 10 22

9 18 19 26 37 43 32 18 23 34 30 12 38 24 34 22

29 19 30 37 29 23 30 16 11 30 31 24 22 29 28 26

37 26 37 28 44 43 10 8 22 12 24 13 28 21 27 13

43 37 29 44 11 19 2 7 5 38 22 28 11 32 17 30

41 43 23 43 19 39 6 9 22 24 29 21 32 22 33 24

37 32 30 10 2 6 2 12 10 34 28 27 17 33 24 30

33 18 16 8 7 9 12 11 22 22 26 13 30 24 30 17

Figure 4-12 shows the average data hiding capacities for 15 images
for 256-band decompositions. As expected, we observe an increase in
the estimate of the capacity. The increase is more substantial for low-
processing-noise scenarios.

Finally, note that we evaluate processing noise by measuring the cor-
relation between the image components before and after compression. By
this, we implicitly assume that the message signal (signature) is affected
to the same extent as the image coefficients themselves by the compres-
sor/decompressor pair. In a practical method, this may not be true. In fact,
an ideal compression method would completely suppress any extra infor-
mation added to the image coefficients (no data hiding would be possible
with an ideal compression method). But practical compression methods
can probably be tricked into believing that the embedded information is
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Figure 4-12 Average capacity estimates for 15 256 × 256 images for 256-

band decomposition. The indices for JPEG compression correspond to different

JPEG quality factors (1 = lossless compression, 2 = 75%, 3 = 50%, 4 = 35%,

5 = 25%). The indices for SPIHT compression correspond to different bit rates

(1 = lossless, 2 = 1 bpp, 3 = 0.75 bpp, 4 = 0.5 bpp, 5 = 0.35 bpp).

an integral part of the image if the embedded message signals are chosen
intelligently. However, choosing the signature S intelligently may imply
reduced degrees of freedom for its choice, translating into reduced data
hiding capacity.

4.8 The Ideal Decomposition

For a moment, if we ignore the magnitude DFT decomposition, the per-
formance of a decomposition depends roughly on its position on the GTC
scale. In Fig. 4-13, a few transforms are marked on the GTC scale. To the
extreme left is the identity transform, which has no energy compaction. To
the extreme right is the Karhunen-Loeve transform (KLT) [59]. Transforms
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Figure 4-13 The GTC scale.

to the right would yield high data hiding capacities for low-processing-
noise scenarios. As the processing noise increases, we should move toward
the left to choose a transform. The question is, given a processing noise
scenario, what would be the ideal decomposition?

For example, if α = 0. 5 in Eq. (4.14), the data hiding capacity of
each subchannel of a decomposition is given by

Chj = log2

⎛
⎝1+

KσIgj

σ 2
Igj
+ σ 2

Pj

⎞
⎠ . (4.17)

In order to maximize Chj , it is enough to maximize t = (σIgj
)/(σ 2

Igj
+ σ 2

Pj
).

It can be easily seen that t (and hence Chj ) is maximized when σ 2
Igj
= σ 2

Pj
.

The ideal decomposition would be one that results in image noise variances
close to the processing noise variances in the maximum number of sub-
bands. Typically, for high-GTC decompositions, (Fig. 4-14a), σI ≫ σP

in the low-frequency bands and σP ≫ σI in the high-frequency bands. For
lower-GTC transforms, the discrepancy is reduced (Fig. 4-14b). On the
other hand, for the identity transform, σI ≫ σP in the single band (Figure
4-14c). Therefore, for the ideal decomposition, the image and processing
noise variances should be distributed as shown in Fig. 4-14d. For the ideal
decomposition, the image and processing noise variances should be dis-
tributed as shown in Fig. 4-14. It should also be noted that a decomposition
so obtained would perform as expected only if we were able to assume the
same model for the relationship between the coefficient variance and the
visual threshold. Therefore, the search for such a decomposition may not
be simple.
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Figure 4-14 The ideal decomposition.

4.9 Factors Influencing Choice of Transform

The superiority of the magnitude DFT decomposition, among the decom-
positions compared, lies in an advantageous trade-off, where we com-
promise the degrees of freedom to reduce the entropy of the image.
Simulations show that the magnitude DFT decomposition yields uniformly
superior performance (over other decompositions considered) for both low-
and high-processing-noise scenarios.

The final choice of decomposition should depend on the data hid-
ing application. While some data hiding applications, like watermarking,
may need robustness to intentional tampering, other applications, like cap-
tioning, may not. The performance of magnitude DFT decomposition is
superior to others because of its low information content. For the very
same reason, the magnitude of DFT coefficients can be altered signifi-
cantly without affecting the visual quality of the image. This makes the
DFT coefficients very vulnerable to intentional tampering. Thus, the mag-
nitude DFT decomposition may not be a suitable choice for watermarking
applications. However, standard image compression methods do not seem
to affect the magnitude DFT coefficients drastically. This “hole” in stan-
dard compression methods can be put to use advantageously. Therefore,
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for applications in which intentional tampering is not an issue, magni-
tude DFT may be a good choice for both low- and high-processing-noise
scenarios.

For robustness to “commercial quality” compression methods (bet-
ter than JPEG-50 or SPIHT 1 bpp), high-GTC transforms like DCT
and wavelets (subband) perform better than low-GTC transforms. Fur-
thermore, since transforms are frequently used for image compression
applications, they would leave very little room for intentional tamper-
ing without significant degradation of the image. This property would
make them very suitable for watermarking applications. For other data
hiding methods, with perhaps reduced robustness to intentional tampering
but increased robustness to processing noise (lower-quality compression),
transforms like Hadamard or Hartley would probably be more useful.
For example, an average video frame is likely to suffer more process-
ing noise than an average still-image frame. Hence, low-GTC transforms
may be good choices for data hiding in video frames. Furthermore, though
lower-GTC transforms are bound to have reduced robustness to intentional
tampering (compared with DCT or wavelets), if the transform employed is
known, the case is different than if the transform used is not known. There
exists a high degree of freedom for the choice of the low-GTC transforms
for embedding. This enhanced degree of freedom for the choice of the
embedding transform could result in improved robustness to intentional
tampering.
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C H A P T E R

Type II and Type III
(Nonlinear) Data
Hiding Methods

Quantization-based data hiding methods that rely on type II and type III1

embedding/detection principles are studied together and compared based
on three key characteristics [60]:

(1) the type of the distortion reduction technique (postprocessing)
employed in embedding,

(2) the form of demodulation used (detection function), and
(3) the optimization criterion utilized in determining the embedding/

detection parameters.

In the following sections, various type II and type III methods are examined
and evaluated considering these three issues. The performance results of
these methods, based on the above criteria, are provided in Section 5.3.

5.1 Type II Embedding and Detection

The codebook generation for type II methods is characterized by the design
of U = X+ C, which corresponds to a choice of α = 1 within Costa’s

1Type II can be considered a special case of type III where no postprocessing is employed.

79
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Figure 5-1 Block diagram of type II embedding and detection stages.

framework or Xt = 0 (Xn = X) within the CAE-CID framework. The gen-
eralized channel model for type II hiding methods is displayed in Fig. 5-1.
In the model, W is the watermark signal corresponding to the message
index m to be conveyed, C is the host signal, X is the codeword, S is the
stego signal, Z is the additive noise (attack), and Y is the distorted stego
signal at the detector defined as Y = S+ Z. The embedder E imposes
the power constraint as 1

N
‖X‖2 = P. At the detector D the sent message

m̂ is detected from Y or from an extracted estimate Ŵ of W. Except for
the codebook design, type II methods are also characterized by their E , D

designs, which are exact inverses expressed as

S = E(C, W), W = D(S). (5.1)

Chen et al. in [25], introduced the QIM method that outlined the code-
word generation for type II methods. QIM achieves the upper bound on
the hiding rate for low-level attacks (or high WNRs). In the QIM method,
embedding a message into a host signal refers to quantization of the host
signal by a quantizer picked from an ensemble of quantizers, where each
quantizer is associated with a message letter or message index. Thus, the
stego signal S is a quantized form of C, and the corresponding quantiza-
tion error is the codeword X. The number of quantizers in the ensemble
determines the information embedding rate. The embedding distortion is
measured using a squared error distance measure, viz., 1

N
‖X‖2 = P, and it

varies with the size and shape of the quantization cells. The orthogonality
constraint, XT C = 0, however, is relaxed by assuming that C is uni-
formly distributed over all quantization cells and the number of quantization
levels is not small, such that X and C are approximately uncorrelated.
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This assumption also removes the dependence of embedding and detection
operations on the host signal’s statistics. In practice, this can be satisfied
by the small distortions scenario, where embedding and attack distortion
powers are much less than the host signal power.

On the other hand, detection of a hidden message is achieved by the
minimum distance decoder, which computes the Euclidean distances of the
received signal to surrounding reconstruction points. The message index
associated with the nearest reconstruction point of the corresponding quan-
tizer is regarded as the sent message. In QIM, embedding and detection
are high-dimensional operations.

Apractical implementation of QIM based on dithered quantizers, viz.,
DM, is presented and detailed in [25] and [26]. Dithered quantizers intend
to decorrelate the quantization error of a quantizer from its input [61].
In subtractive dithering, an iid dither vector (independent of the input)
is added to the input prior to quantization and then subtracted from the
quantized output. Hence, the goal (decorrelation of the quantization error)
is achieved. Within the context of data hiding, the dither signal is merely
a mapping from the message index, the watermark signal. Therefore, the
dither signal is not genuinely random and the orthogonality between the
error and the input signals is not guaranteed. In DM, each quantizer in the
ensemble is generated from a base quantizer by shifting the quantization
cells and reconstruction points. The stego signal is generated by quantizing
the host signal with the corresponding dithered quantizer as

S = Q�(C+Wm)−Wm (5.2)

where Q�(·) is the high-dimensional base quantizer with reconstruction
points � apart, and Wm is the watermark signal corresponding to the
message indexed by m, 1 ≤ m ≤ M, where each component Wmi , 1 ≤
i ≤ N , of Wm is a representation from a set 	 ∈ ℜ. Consequently, the
codeword X is defined as

X = (Q�(C+Wm)−Wm)− C. (5.3)

The power constraint on the embedding distortion X is controlled by
adjusting the quantization step size �.
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For the sake of practicality, Q�(·) can be considered to be a product
quantizer generated by a Cartesian product of N uniform scalar quantizers,
q�(·), each with step size � such that

q�(C) = i�, for i�− �

2
≤ C < i�+ �

2
. (5.4)

Therefore, embedding can be viewed as N successive scalar quantizations,
of the coefficients of C = (C1, . . . , CN ), dithered with the watermark
signal vector Wm = (Wm1 , . . . , WmN ). Each distinct component of the
watermark (dither) signal is associated with a quantizer that is generated by
properly shifting the reconstruction points of q�(·). The amount of shifting
is determined by the number of possible values a watermark sample can take
(the number of quantizers). For maximum separation of the reconstruction
points of embedding quantizers, the watermark sample values are equally
spaced along an interval of length that is equal to quantization step size
�, i.e., [−�/2, �/2). It should be noted that since the watermark signal
is the subtractive dither signal, the sample values represented by the form
Wm + i� for i ∈ Z , where Z is the set of all integers, lead to the same
dithered quantizer. (In other words, shifts differing by an integer multiple
of � correspond to the same quantizer.) Considering a d-ary watermark
sample, the set 	 that contains the d possible sample values is defined as

	 =
{
δ + i�, δ + �

d
+ i�, δ + 2

�

d
+ i�, . . . , δ + (d − 1)

�

d
+ i�

}

(5.5)

where δ is a uniform random variable in [−�
2 , �

2 ) and i ∈ Z . As a result,
reconstruction points and quantization cells of each quantizer in the ensem-
ble are shifted by �

d
with respect to each other. The reconstruction points of

the embedding quantizers are also known to the detector for the extraction
of the sent message. At the detector, the hidden message is extracted by
the minimum distance decoder as

m̂ = arg min
m
‖Y− (q�(Y+Wm)−Wm)‖ . (5.6)
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Figure 5-2 Reconstruction points of dithered quantizers corresponding to a

binary watermark (dither) signal.

Figure 5-2 displays the reconstruction points of the dithered quantiz-
ers associated with the two watermark samples. The reconstruction points
of the two quantizers are �

2 apart. The decision regions denoted by R×
and R◦ determine the sustainable amount of noise for successful extraction
of the message. The stego signal S is generated by quantizing each host
signal coefficient C with the quantizer pointed by the binary watermark
sample W of W to be embedded. (Accordingly, embedding of the water-
mark sample associated with × or ◦ refers to translation of the host signal
coefficient C in the direction of the nearest × or ◦.) Similarly, detection
of a sent message is achieved by determining the nearest reconstruction
points, denoted × or ◦, to the coefficients of the received signal Y.

The main disadvantage of type II methods is that they perform well
only if the attack is not severe (less than distortion P). In other words, their
performance is equivalent to that of optimal design only for the low attack

case (see Section 3.1). For all other attack levels, there is a performance
gap with the upper bound, which increases with the attack level. This is
due to the nonoptimal codebook design based on α = 1 or equivalently
Xt = 0, which undermines the dependency of codebook generation to
the channel noise level. The poor performance of type II methods with
increasing attack levels is improved by the modifications proposed by the
class of methods called type III.

5.2 Type III Embedding and Detection Methods

The data hiding rate (payload) vs robustness performance of type II methods
is substantially improved by enhancing the functionality of the embedder
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Figure 5-3 Block diagram of type III embedding and detection stages.

with further processing capabilities (i.e., thresholding, distortion com-
pensation, Gaussian mapping) [9], [21], [22], [36]. In type III methods,
embedding quantization is followed by a processing stage (postprocessing)
that generates the stego signal. The improvement in the performance of
type III methods, compared with type II, at the same noise level can be
explained by the fact that codebook design depends on channel noise level
or by the deviation from the nonoptimal design of Xt = 0 through the added
processing. Alternately, in terms of Costa’s framework, the improvement
can be attributed to the effective value of α used in codebook generation,
which is less than 1 rather than being equal to 1, as the latter is optimal
for the no-attack case. Data hiding methods with postprocessing abilities
enable the embedder to increase the distance between the reconstruction
points of quantizers at a fixed embedding distortion. Therefore, they have
improved detection capabilities for any finite WNR level (type II is optimal
only for the case of infinite WNR). On the other hand, since the detector
is blind to the additional processing at the embedder, its structure is not
altered.

The channel model for type III hiding methods, based on the model
for type II methods given in Fig. 5-1, is displayed in Fig. 5-3. In the
model, X is the type II codeword (embedding distortion introduced due to
the quantization), Xt is the processing distortion, and the channel output
is Y = C+ X− Xt + Z. The processing distortion Xt is derived from
X by postprocessing depending on the expected noise level. The type III
codeword that yields the stego signal, S = C+ Xn, is defined as Xn =
X− Xt . Correspondingly, the embedder imposes the power constraint as
1
N
‖Xn‖2 = P.
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In type III methods, since the detector is not aware of the processing
at the embedder, the processing distortion Xt can effectively be considered
to be a part of the channel noise at the detector. Therefore, the type II
codeword X, which would yield an errorless extraction of the watermark
signal W, is distorted by two sources of noise, viz., the attack Z and the
processing distortion Xt . (In other words, the signal C + X refers to a
signal quantized by the quantizer(s) associated with the watermark signal
W, and the embedded W can be perfectly recovered from this signal.)
Therefore, the effective noise at the detector that distorts the embedded
watermark signal is represented as Zeff = Z− Xt . In type III methods,
the invertibility condition on the E , D pair is sacrificed as a result of the
processing that follows quantization of the host signal, D(E(C, W )) �= W .

Performance of type III hiding methods vary based on three factors:
the type of postprocessing that is incorporated with type II embedding,
the choice of demodulation function used in message extraction, and the
criterion used for optimizing the embedding and detection parameters.
Therefore, the performance of any type III data hiding method can be
evaluated further by considering these three issues.

5.2.1 Postprocessing Types

There are three types of postprocessing employed in type III embed-
der/detector designs. These are:

• distortion compensation,
• thresholding, and
• Gaussian mapping.

In [9], Chen et al. identified the capacity-achieving variant of QIM
as DC-QIM (see Chapter 2.4). In DC-QIM, the quantization index mod-
ulated signal is perturbated by subtracting the 1 − α∗ scaled version of
the embedding distortion X. Therefore, Xt = (1 − α∗)X, ρ = 1, and
Xn = α∗X. Ramkumar et al. [21] proposed a thresholding type of post-
processing in which the magnitude of distortions that can be introduced to
the host signal samples are limited to ±β

2 . Hence, the type III codeword

Xn is generated by limiting the values of X, Xn = min(|X|, β
2 )sign(X).
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TABLE 5-1

Expressions for Xt and Xn

PROCESSING, P PROCESSING DISTORTION, Xt CODEWORD, Xn

Thresholding max(0, |X| − β
2 )sign(X) min(|X|, β

2 )sign(X)

Distortion compensation (1− α)X αX

Gaussian mapping −σvQ−1

(
X+�

2
�

)
X− Xt

The processing distortion Xt , in this case, is the thresholding noise,
Xt = max(0, |X|−β

2 )sign(X). Perez-Gonzalez et al. [36], considering uni-
form scalar quantization, proposed to generate the processing distortion Xt

from X by transforming each iid component X into a zero-mean Gaussian

distributed random variable with a variance of σ 2
v , Xt = −σvQ−1

(
X+�

2
�

)
,

where Q−1(·) is the inverse Gaussian Q-function.
In type III methods, the parameters α, β, and σv, depending on the

type of postprocessing, are selected in such a way that the power con-
straint 1

N
‖Xn‖2 = P is satisfied and the performance at the presumed noise

(attack) level is maximized. Corresponding expressions for the processing
distortion Xt and the codeword Xn for the three types of postprocessing
are as given in Table 5-1.

5.2.1.1 Vectoral Embedding and Detection

The optimal processing, within the CAE-CID framework, requires that the
processing distortion Xt be a linear function of the processing distortion X.
Accordingly, the power σ 2

X of the embedding distortion X corresponding
to the distortion-compensation type of postprocessing can be computed in
the limit, using 1

N
‖Xn‖2 = P, as

σ 2
X =

1

N
‖X‖2 = 1

N

∥∥∥∥
Xn

α∗

∥∥∥∥
2

= (P + σ 2
Z )2

P
(5.7)

where α∗ = P

P+σ 2
Z

. It should be noted that the variance of the iid compo-

nents of the channel input X (the power of the input X) in Eq. (3.15) is
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the same as the power of the optimal embedding distortion X found in Eq.
(5.7), σX = σ ∗X . Therefore, distortion compensation is the optimal post-
processing when the embedding distortion is Gaussian distributed. This
can be satisfied by the use of high-dimensional quantization for embed-
ding which yields a Gaussian distributed quantization error. However,
a capacity-achieving embedding/detection scheme based on thresholding
or Gaussian mapping types of postprocessing is not possible because the
relation between X and Xt is not linear.

5.2.1.2 Scalar Embedding and Detection

In some practical cases, scalar quantization rather than high-dimensional
vector quantization is employed at the embedder. X is an iid vector
with a non-Gaussian distribution. Therefore, the optimal postprocessing
is not necessarily distortion compensation. For the scalar quantization
case, the embedding operation of all embedding/detection techniques can
be represented by a form of dithered quantization. Thus, each compo-
nent X of the embedding distortion X, defined as X = q�(C, Wm) −
Wm − C, is uniformly distributed. However, the processing distor-
tion Xt and its dependency on X are different for the three types of
postprocessing.

Eggers et al., in [22] optimized the value of α for scalar quantization,
rather than assuming α∗ = P

P+σ 2
Z

, and provided the approximation

α =
√

P

P + 2. 71σ 2
Z

. (5.8)

Expressions for the optimal values of � and the threshold β based on the
expected attack level were reported in [21]. Although [36] does not provide
the optimal σv values for Gaussian mapping, the optimization procedure
is straightforward.

5.2.2 Forms of Demodulation

Detection of the sent message is achieved either by sample-wise hard deci-
sions or soft decisions based on the availability of the set of watermark
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signals at the extractor side. The presence of watermark signals leads to
an improved detection of the sent message because they can be utilized in
detection operation [21], [26].

There are two forms of demodulation employed in detection of the
sent message. In [22], [26], [36], demodulation of the sent message, from
the received signal Y, is realized by minimum distance decoding, and in
[21], demodulation takes the form of a maximum correlation rule.

5.2.2.1 Minimum Distance Decoding

With the use of minimum distance decoding, detection is simply the quan-
tization of the received signal Y by all quantizers in the ensemble. The
message letter or message index associated with the quantizer that yields
the minimum Euclidean distance to received Y is deemed to be the sent mes-
sage. The general form of minimum distance decoding based on dithered
quantization can be rewritten, in terms of Ym = Y+Wm, as

m̂ = D(Y) = arg min
m
‖Ym − Q�(Ym)‖, 1 ≤ m ≤ M. (5.9)

It should be noted that Eq. (5.9) is a minimization of the quantization error
over all quantizers. For the case of scalar quantization, Q�(·) takes the
form of dithered quantizer q�(·), Eq. (5.6).

Figure 5-4 displays the detectors for the binary signaling case where
the embedding operation is based on scalar quantization. In the figure,
the symbols × and ◦ denote the reconstruction points of the quantizers
associated with the watermark sample values of −�

4 and �
4 . (However, it

should be noted that within the scope of DM, any two sample values with
�
2 difference are valid choices; see Eq. (5.5).)

When the extractor has no access to the watermark signals but knows
only the reconstruction points, each sample of the embedded watermark
signal is detected from each coefficient Y of the received signal Y by
individual hard decisions as

Ŵi = arg min
Wi∈	

‖Yi +Wi − q�(Yi +Wi)‖ for i = 1, . . . , N (5.10)
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Figure5-4 Demodulation for DM based on (a) hard decisions and (b) soft

decisions.

where 	 is the set of signal representations for watermark samples. Equa-
tion (5.10) is based on determining the minimum Euclidean distance of the
received signal coefficients to reconstruction points that can equivalently
be achieved by mapping each coefficient Y over the square wave function
displayed in Fig. 5-4a. Then, the extracted binary watermark samples,
Ŵ1, . . . , ŴN , are combined into the sequence Ŵ to generate the embedded
watermark signal.

On the other hand, when the watermark signals are present at the
detector, detection of each sample is by soft decisions. Accordingly, each
coefficient Ym of the signal Ym that is obtained from the received signal Y

is mapped over the sawtooth function displayed in Fig. 5-4b. The norm of
the resulting signal values is the distance between Y and Wm. Hence, the
watermark signal that has the minimum distance to Y is regarded as the
embedded signal.
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Figure 5-5 Periodic extraction function corresponding to soft decisions.

5.2.2.2 Maximum Correlation Rule

When the demodulation scheme is based on a maximum correlation detec-
tor, watermark signals are assumed to be present at the detector. In this
form of demodulation, at first an estimate Ŵ of the embedded watermark
signal is extracted from the received signal by soft decisions. Then, the sent
message is detected by matching the estimate of the embedded watermark
signal to one of the watermark signals using a correlation-based similarity
measure as

Ŵ = D(Y),

m̂ = arg max
m

WmŴ

‖Wm‖ ‖Ŵ‖
, 1 ≤ m ≤ M. (5.11)

Since the hard decisions are caused by the discontinuities in the extrac-
tion function, Fig. 5-4a, [21] has proposed a continuous periodic triangular
extraction function. Figure 5-5 displays the corresponding function used
for extracting embedded binary watermark samples that are confined to
values −�

4 and �
4 for maximum separation, 	 = {−�

4 , �
4 }. An estimate

of the embedded watermark signal is obtained by mapping each coefficient
of Y over the periodic triangular function, rather than making a hard deci-
sion by the Euclidean distance decoder. As a result, each extracted sample
Ŵ is a real-valued signal in the range of [−�

4 , �
4 ]. Message detection is

achieved by combining the sample estimates into Ŵ = (Ŵ1, . . . , ŴN ) and
then matching Ŵ to one of W1, . . . , WM .
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5.2.3 Optimization Criteria for Embedding and Detection Parameters

Embedding and detection operations are controlled by a pair of parameters.
The values for these parameters are optimized for the given channel noise
and permitted distortion levels, σ 2

Z and P.
One of the parameters common to all techniques is �, which des-

ignates the distance between the reconstruction points of the embedding
quantizers. The choice of � determines the embedding distortion due to
quantization, and it is known to both embedder and detector. The other
parameter controls the amount of processing distortion introduced into the
quantized signal (type II embedded signal) by postprocessing and limits
the distortion due to the embedding operation to the permitted amount.
This parameter is known only to the embedder and parameterized as β,
α, or σV depending on the type of postprocessing. The values for the two
interdependent parameters can be optimized based on various performance
criteria, as discussed in the following sections.

5.2.3.1 Optimization of Parameters for Vectoral Embedding
and Detection

In [9], researchers optimized the embedding/detection parameters by max-
imizing the ratio of the embedding distortion to the sum of processing and

channel distortions,

(
σ 2

X

σ 2
Xt
+σ 2

Z

)
, at the extractor as

(�, σ 2
Xt

) = arg max
�,σ 2

Xt

{
σ 2

X

σ 2
Xt
+ σ 2

Z

∣∣∣∣∣ σ
2
Z ,

1

N
‖Xn‖2 = P, Xt

}
. (5.12)

With the use of high-dimensional quantization for embedding and
detection, the marginal pdf of embedding distortion X approximates Gaus-
sian distribution, and consequently, distortion compensation becomes the
optimal postprocessing. Hence, for the given channel noise level, � and α

are selected in such a way that Eq. (5.12) is satisfied, where Xt = (1−α)X
and Xn = αX, i.e., σ 2

Xt
= (1 − α)2σ 2

X and σ 2
X = P

α2 . This leads to

α = P

P+σ 2
Z

, which is in accord with the results of Section 3.1 due to the

duality between the two channel models.
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5.2.3.2 Optimization of Parameters for Scalar Embedding
and Detection

Researchers [21], [22], [36] have modeled the effective noise that distorts
the embedded watermark signal in terms of the statistics of the channel
noise Z and the processing distortion Xt , Zeff = Z− Xt . The optimum
values for embedding/detection parameters are then selected in such a way
that the distortion in the extracted watermark signal is minimized.

When the host signal is uniformly distributed over all quantization
intervals, the embedding distortion X introduced into each host signal
coefficient C is uniformly distributed in [−�

2 , �
2 ]. For the thresholding

type of postprocessing, the parameters are the step size � and the threshold
β. The corresponding pdf and statistics of processing distortion Xt and the
codeword Xn are expressed as

fXt (xt) =
β

�
δ(xt)+

1

�
rect(�− β), (5.13)

mXt = 0, (5.14)

σ 2
Xt
= (�− β)3

12�
, (5.15)

fXn(x) = 1

�
rect(β)+ �− β

2�

(
δ(xn −

β

2
)+ δ(xn +

β

2
)

)
, (5.16)

mXn = 0, (5.17)

σ 2
Xn
= β2

12�
(3�− 2β) (5.18)

where rect(x) is the rectangular function in x with a value of 1 in the interval
(−1

2 , 1
2 ) and zero elsewhere. Similarly, for the distortion-compensation

type of postprocessing, corresponding pdf’s and statistics are found in
terms of � and α as

fXt (xt) =
1

(1− α)�
rect((1− α)�), (5.19)

mXt = 0, (5.20)
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σ 2
Xt
= (1− α)2�2

12
, (5.21)

fXn(x) = 1

α�
rect(α�), (5.22)

mXn = 0, (5.23)

σ 2
Xn
= α2�2

12
. (5.24)

When postprocessing takes the form of Gaussian mapping, Xt is a zero-
mean Gaussian random variable with variance σ 2

v and the parameters are
� and σv. However, as the dependency between X and Xt is through a
Gaussian transformation, the pdf of Xn is not a straightforward one, but
its statistics can be calculated as

E[Xk
n ] =

∫ �
2

−�
2

(
x + σvQ−1

(
x + �

2

�

))k
1

�
dx. (5.25)

Figures 5-6 and 5-7 display fX (x), fXt (xt), and fXn(xn) for thresholding and
distortion-compensation types of postprocessing, respectively.

Given that the host signal is iid, X and Xt are iid random vectors
with the marginal distributions given as previously, since the embedding
operation is memoryless. It should also be noted that for large N , the
distortion P introduced into host signal C, due to the embedding operation,
is equal to σ 2

Xn
, i.e., 1

N
‖X2

n‖ = P.
Assuming that Z and Xt are independent, the resulting pdf of Zeff ,

fZeff
(zeff ), can be computed by the convolution of the individual pdf’s fZ (z)

n
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Figure 5-6 Probability density functions (left) fX (x), (center) fXt
(xt), and

(right) fXn
(xn) corresponding to thresholding type of processing for 0 < β < �.
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for α < 1.

and fXt (xt) as

fZeff
(zeff ) =

∫ ∞

−∞
fZ (zeff − x) fXt (x)dx. (5.26)

Thus, for Z ∼ N (0, σ 2
Z ), fZeff

(zeff ) corresponding to the thresholding type
of postprocessing is derived as

fZeff
(zeff ) = β

�

√
2πσ 2

Z

exp

(
−

z2
eff

2σ 2
Z

)

+ 1

2�

(
erf

(
zeff + �−β

2√
2σZ

)
− erf

(
zeff − �−β

2√
2σZ

))
(5.27)

where erf(·) is the Gaussian error function, erf(z) = 2
π

∫ z

0 exp−x2
dx. Sim-

ilarly, in distortion-compensation and Gaussian mapping cases, respec-
tively, fZeff

(zeff ) is expressed as

fZeff
(zeff ) = 1

2(1− α)�

(
erf

(
zeff + (1−α)�

2√
2σZ

)
−erf

(
zeff − (1−α)�

2√
2σZ

))

(5.28)

and

fZeff
(zeff ) = 1√

2π (σ 2
Z + σ 2

v )
exp

(
−

z2
eff

2(σ 2
Z + σ 2

v )

)
. (5.29)
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The embedding-detection parameters are optimized by proper selec-
tion of the step size � and the amount of processing distortion σ 2

Xt
. Such

a selection can be based on one of the three criteria for the given statistics
of Zeff .

5.2.3.3 Maximizing Correlation

With this criterion, the selection of parameters is based on maximizing the
normalized correlation between the embedded and the extracted watermark
signals [21]. Since Zeff is the noise that distorts the type II codeword X

corresponding to watermark signal W, the signal Ŵ extracted from Y can
be expressed in terms of Zeff and W using the extraction function shown in
Fig. 5-5. (Note that if Zeff = 0, then W=Ŵ.) Hence, a binary distributed
watermark signal sample W with values in {−�

4 , �
4 } embedded in a host

signal coefficient is extracted as

Ŵ=

⎧
⎪⎨
⎪⎩

(
(2i+1)�

4
−Zeff )(−1)i, i

�

2
<Zeff ≤

(i+1)�

2
, i∈Z if W=�

4
,

(− (2i+1)�

4
+Zeff )(−1)i, i

�

2
<Zeff ≤

(i+1)�

2
, i∈Z if W=−�

4
.

(5.30)

Due to memoryless embedding/detection and attack schemes, the
vectors W and Ŵ are iid with sample values W and Ŵ . Hence the nor-
malized correlation ρ between W and Ŵ can be analytically computed for
large N as

ρ = E

[
WT Ŵ

‖W‖ ‖Ŵ‖

]

= E[WŴ ]√
E[W2]E[Ŵ2]

= R(1)√
R(2)

(5.31)
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where E[WŴ ] is the first joint moment of the random variables W and Ŵ ,
and

R(p) = 2
i=∞∑

i=0

∫ (i+1)�
2

i�
2

((
(2i + 1)�

4
− zeff

)
(−1)i

)p

fZeff
(zeff )dzeff .

(5.32)

Therefore, the optimal parameter values for the utilized postprocessing
technique is computed by maximizing Eq. (5.31) over � and σ 2

Xt
using

the pdf’s given in Eqs. (5.27)–(5.29) for the given channel noise level and
permitted distortion as

(�, σ 2
Xt

) = arg max
�,σ 2

Xt

{
ρ

∣∣∣∣∣ σ
2
Z , Xt ∈ Xt , σ

2
Xn
= P

}
(5.33)

where

Xt =
{

max

(
0, |X| − β

2

)
sign(X), (1− α)X,−σvQ−1

(
X+ �

2

�

)}

(5.34)

and X = q�(C+W)−W− C.

5.2.3.4 Minimizing Probability of Error

The embedding/detection parameters are selected to minimize the prob-
ability of error in detecting an embedded watermark sample [36]. Since
Zeff indicates the deviation of the received signal coefficient Y from the
reconstruction points, the probability of detection error, Pe, can be calcu-
lated by integrating fZeff

(zeff ) over all decision regions but excluding the
one associated with the sent sample as

Pe = P{Y �∈ RW | W} (5.35)
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Figure 5-8 Embedding and detection of a binary watermark sample.

where RW denotes the decision region associated with the sample W . For
the binary signaling case depicted in Fig. 5-8, the symbols× and ◦ denote
the reconstruction points of two quantizers associated with sample values
�
4 and−�

4 , respectively. The decision regions R× and R◦ are used to map
the received signal coefficient Y to �

4 or−�
4 by hard decisions. Assuming

�
4 and −�

4 are equally likely to be embedded, the corresponding Pe is
calculated as

Pe=P

{∥∥∥∥Y+�

4
−q�

(
Y+�

4

)∥∥∥∥>

∥∥∥∥Y−�

4
−q�

(
Y−�

4

)∥∥∥∥

∣∣∣∣∣w=
�

4

}
,

=P

{
Y ∈R◦ | w=�

4

}
,

=
∫

R◦
fZeff

(
zeff −

�

4

)
dzeff . (5.36)

Then, the parameters can be selected to minimize Pe for the given P, σ 2
Z ,

and the type of postprocessing as

(�, σ 2
Xt

) = arg min
�,σ 2

Xt

{
Pe

∣∣∣∣∣ σ
2
Z , Xt ∈ Xt , σ

2
Xn
= P

}
(5.37)

where Xt is given in Eq. (5.34).
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5.2.3.5 Maximizing Mutual Information

The parameters are selected to maximize the mutual information between
the embedded watermark sample W and the received signal coefficient Y

[22]. The mutual information between W and Y is expressed as

I(W , Y ) = H(Y )− H(Y |W ) (5.38)

where H(·) is the differential entropy of a random variable in bits that is
defined as H(X) = −

∫∞
−∞ fX (x) log2[fX (x)] dx. As the erroneous detection

of W from Y is due to the noise Zeff , H(Y |W ) in Eq. (5.38) can be com-
puted in terms of the effective noise pdf conditioned on W , fzeff |w(zeff |w).
The pdf fZeff |W (zeff |w) can be calculated over any quantization interval �,
because the signal constellation is periodic with � (reconstruction points
corresponding to the quantizer associated with W are � apart). However,
one should take into account that when Zeff is heavy tailed (the range of
fZeff

(zeff ) is larger than �), its pdf will be wrapped around � due to the peri-
odicity. Consequently, H(Y ) is computed from H(Y |W ) by averaging it
over W . (Assuming that all samples W ∈ 	 are equally likely, H(Y )
is obtained as 1

|	|
∑

W∈	 H(Y |W ).) With this criterion, optimization of
parameter values is by maximizing Eq. (5.38) for the given constraints
over � and σ 2

Xt
as

(�, σ 2
Xt

) = arg max
�,σ 2

Xt

{
I(Y , W )

∣∣∣∣∣ σ
2
Z , Xt ∈ Xt , σ

2
Xn
= P

}
. (5.39)

The use of Eq. (5.38) also enables computation of the maximum
hiding rate in bits per host signal coefficient achievable with a particu-
lar embedding/detection technique. Therefore, it is a useful performance
evaluation tool.

5.3 Performance Comparisons

Figure 5-9 displays the achievable data hiding rates of various embed-
ding/detection techniques for the binary signaling case, obtained using



 

5.3 Performance Comparisons 99

−30 −20 −10 0 10 20 30
10−5

10−4

10−3

10−2

10−1

100

101

WNR (dB)

H
id

in
g 

R
at

e 
(b

it
/s

ym
bo

l)

Capacity
Additive scheme (DWR =20 dB) 
Binary DM
Binary DM with thresholding
Binary DM with DC
Binary DM with GM

Figure 5-9 Comparison of the hiding rates corresponding to various hiding

methods considering binary signaling obtained for P = 10.

Eqs. (3.4) and (5.38), compared with hiding rates of type I (additive
scheme) and optimal type III (capacity). The embedding/detection param-
eters for type II and type III methods are selected so that the hiding rate
is maximized, Eq. (5.39). The additive scheme (type I) and DM (type
II) have preferable performances, respectively, at very low and very high
WNRs. For DM, the gap with the upper bound at higher WNRs is due
to binary signaling. Thus, the performance can be improved for multi-
level signal representations. The poor performance of both methods in
mid-WNR range is due to nonoptimal codebook designs, as discussed in
Section 3.4. In the former, the codebook design does not utilize the host
signal, and in the latter, the design disregards the channel noise level.

The type III versions of DM, implemented by incorporating the
embedding of DM with thresholding, distortion-compensation, and
Gaussian-mapping types of postprocessing, have better performances than
DM due to the deviation from the optimistic “low-noise” assumption in
the codebook design. These methods have significantly improved per-
formances in the mid-WNR range; however, in order to achieve higher
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rates, embedding through scalar quantization has to be substituted by
high-dimensional vector quantization.

Type III methods employing thresholding and distortion compensa-
tion types of postprocessing perform closely in the whole WNR range. On
the other hand, Gaussian-mapping processing has a comparable perfor-
mance only for WNRs higher than−7. 8 dB. Below that range the rate drops
rapidly. At WNRs lower than −8. 7 dB, thresholding performs marginally
better, while from −8. 7 dB to −7 dB, distortion compensation performs
best. Above −7 dB, both distortion compensation and Gaussian mapping
are the preferred postprocessing types. Figures 5-10–5-13 show the hiding
rates for the corresponding methods with multilevel signaling. With the
decreasing noise level and higher signal representation levels, all methods
yield similar data hiding rates as the need for postprocessing is reduced.
Ultimately, when there is no noise, DM is the optimal embedding/detection
technique.

The normalized-correlation ρ and probability-of-error Pe per-
formances for the considered methods are given, respectively, in
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Figure5-10 Data hiding rates for DM with binary, 5-ary, 10-ary, and 100-ary

signaling.
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Figure 5-11 Data hiding rates for DM followed by thresholding type of

postprocessing with binary, 5-ary, 10-ary, and 100-ary signaling.
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Figure 5-12 Data hiding rates for DM followed by distortion-compensation

type of postprocessing with binary, 5-ary, 10-ary, and 100-ary signaling.
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Figure 5-13 Data hiding rates for DM followed by Gaussian-mapping type of

postprocessing with binary, 5-ary, 10-ary, and 100-ary signaling.
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Figure 5-14 The normalized correlation between W and Ŵ for the considered

hiding methods when P = 10.
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Figure 5-15 The probability of error in detecting W for the considered hiding

methods when P = 10.

Figs. 5-14 and 5-15. The corresponding embedding/detection parameters
for the hiding methods are selected as described in Section 5.2, Eqs. (5.33)
and (5.37). The correlation between an embedded binary watermark signal
W and an extracted watermark signal Ŵ is calculated by using Eq. (5.31),
and the probability of error in detecting an embedded binary watermark
sample is computed by using Eq. (5.36).

The relative performances of the three types of postprocessing
obtained for the three criteria, Figs. 5-9, 5-14, and 5-15, are in accord
with each other. Thus, the thresholding type of postprocessing performs
better when WNR is below approximately −9 dB, and at higher WNRs
distortion compensation has better performance. Above −7 dB, Gaussian
mapping and distortion compensation have comparable performances, and
DM performs well only at the higher WNR range, as expected. Figures
5-16 and 5-17 display the actual simulation results obtained by embedding
and detecting binary watermark signals. In Fig. 5-16, the normalized cor-
relation ρ between the embedded vector W and its extracted version Ŵ is
measured, and in Fig. 5-17, the error probability in detecting an embedded
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Figure 5-16 The actual measured normalized correlation between embedded

W and extracted Ŵ for the considered hiding methods when P = 10.
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Figure 5-17 The actual measured error probability in detecting W for the

considered hiding methods when P = 10.
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watermark sample W is measured. Both simulation results are in accord
with theoretical values computed in Figs. 5-14 and 5-15.

One intuitive way to evaluate the performance characteristics of type
I, type II, and type III methods at varying noise levels is by considering
the size of decision cells at the detector, as discussed in Section 3.4. For
type II methods in the absence of noise, the extracted watermark signals
correspond to reconstruction points of the embedding quantizers. Thus,
decision cells can collapse to points and the data hider can afford to use
higher level signaling without any performance penalty. However, with
the increasing noise level, the successful extraction of the embedded water-
mark signal requires decision cells to be enlarged accordingly. In type III
methods, � is increased in accordance with the channel noise level σ 2

Z , and
the corresponding increase in embedding distortion due to increased � is
compensated by the postprocessing. Hence, the data hider has the freedom
to change the size of the decision cell depending on the noise level. Ulti-
mately, when the noise level is very high, the optimal strategy becomes
making the decision regions arbitrarily large, as in type I methods, where
even for very high noise levels the detector is able to extract some of the
embedded watermark signals.
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C H A P T E R

Advanced
Implementations

In all digital communication systems, a general objective is the efficient
use of the available resources, that is, bandwidth, power, and complexity,
to achieve a specified performance goal. The design of a communication
system very often requires tradeoffs among these resources depending on
the channel description which quantifies the power limitations, available
bandwidth, and nature of the noise and its statistics. In many applications,
one of the two primary communications resources, power or bandwidth, is
more scarce than the other. This limitation on the communication system
is fundamental to the choice of a modulation scheme.

The notion of channel in a communications scenario, defined as the
propagating medium between the transmitter and receiver, can be reinter-
preted as the host signal in the context of data hiding, as it is the message
bearing medium between the embedder and detector. Correspondingly, the
power constraints (or SNR) and the available transmission bandwidth of a
communications channel can be associated with the amount of embedding
distortion (or WNR) and the host signal size (embedding signal size) in the
data hiding channel model, respectively. Practical data hiding methods
are evaluated based on the performance they deliver over varying WNR
levels at the given signal size N and the degree of complexity involved
in their implementations. Due to the nature of the applications, however,
data hiding methods are required to trade off complexity for performance,
depending on the signal size N .

107
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For the case where the host signal size is large, spread transform-

ing can be employed. Spread transforming (ST) technique is inspired by
spread-spectrum (SS) modulation scheme [19]. Spread-spectrum systems
are most generally viewed as power limited systems (bandwidth efficiency
is not of primary concern) since the bandwidth occupancy of transmitted
information signal is much wider than and independent of the bandwidth
that is intrinsically needed. In SS communications, the information signal
is spread in bandwidth prior to transmission and then despread in band-
width by the same factor at the receiver. While this scheme keeps the total
transmitted signal power unchanged, it reduces the power spectral density
of the narrow-band noise signal introduced during transmission through
despreading. Dually, ST increases the embedding distortion to noise dis-
tortion ratio (WNR) at the extractor by sacrificing the signal size N . The
concept of optimal spreading factor in ST is addressed by Ramkumar et al.

in [21] and by Eggers et al. in [62] independently.
On the contrary, when the signal size is small, multiple codebook

data hiding method can be used [63], [64]. In strictly bandwidth limited
communication systems, an efficient error control scheme, based on set-
partitioning of an expanded constellation, is employed to improve the
performance (i.e., trellis coded modulation). A key to the success of
this scheme is the increased minimum distance between the codewords
which enables more reliable decoding of the sent message. Similar to
set-partitioning principle of trellis encoding, quantization based methods
employ a periodic constellation where each information symbol is associ-
ated with a higher minimum distanced subconstellation. In addition, the
multiple codebook data hiding method generates a set of codewords for
each message to be hidden, thereby expanding the constellation by the
number of codebooks, and picks the codeword that adapts to host sig-
nal best. In multiple codebook data hiding, the detection performance
is improved due to the ability to embed the message signal at a lower
embedding distortion.

6.1 Spread Transforming

The underlying idea of spread transforming is to embed the watermark
signal into a projection of the host signal and generate the stego signal
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Figure 6-1 Embedding and detection with spread transforming.

by spreading the corresponding lower-dimensional embedding distortion
over the high-dimensional host signal. In spread transforming, a pseudo-
random vector u of size L with unit norm, 1= uT u, is designed as the
spreading vector and made known to both embedder and detector. The
embedding and detection operations are performed as follows.

At the embedder, the host signal vector C ∈ ℜN is split into sub-
vectors of length L such that CT = [CT

1 , . . . , CT
N
L

], where Ci ∈ ℜL. Each

block of data is projected onto u to generate the projected host signal

ĈT = [Ĉ1, . . . , Ĉ N
L
], where Ĉ ∈ ℜN

L and

Ĉi = CT
i u, i = 1, . . . ,

N

L
. (6.1)

Then, the watermark signal W ∈ ℜN
L , corresponding to a message index,

is embedded into Ĉ, Ŝ = E(Ĉ, W). The stego signal ST = [ST
1 , . . . , ST

N
L

] is

generated from Ŝ T = [̂S1, . . . , Ŝ N
L
] as

Si = Ci + (̂Si − Ĉi)u, i = 1, . . . ,
N

L
. (6.2)

Similarly, at the detector, the received signal is partitioned into blocks,
YT = [YT

1 , . . . , YT
N
L

], and each block of data is projected onto u, Ŷ =
[Ŷ1, . . . , Ŷ N

L
], where Ŷi = YT

i u. This is followed by the detection of

the hidden signal, D(Ŷ). Figure 6-1 depicts the embedding and detection
operations with spread transforming.
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With spreading, the bandwidth is reduced by a factor of L, from N

to N
L

, as N
L

coefficients are information embedded. However, the embed-
ding distortion is spread over all of the N coefficients. On the other hand,
the distortion introduced into the host signal is N

L
P = ‖̂S − Ĉ‖2, which

would be NP without the spreading. Therefore, the hider can afford to
increase the embedding power by a factor of L. At the embedder, this is
reflected in an increase in the distance between the reconstruction points of
the embedding quantizers (when scalar quantization is considered, spread-
ing with a factor of L leads to an increase in � by a factor of

√
L, i.e.,

LP = (
√

L�)2/12, where P = �2/12 is the embedding distortion per
coefficient). Therefore, the system operates at a higher WNR level. An
alternate interpretation of the gain due to spreading is that the stego signal
can be distorted only by the component of the noise that is in the direction
of the vector u, which improves the robustness against noise.

The spread transforming method can be generalized to include
noninteger spreading factors by adopting a transform domain embed-
ding/detection approach in which each basis vector of the transform basis
is treated as a spreading vector. Let U ∈ ℜL×L be a unitary transforma-
tion matrix, I = UT U, where I is an L × L identity matrix, and the host

signal vector C ∈ ℜN be mapped to the matrix C ∈ ℜL×N
L , by arranging

its coefficients into L rows and N
L

columns, C = [C1; . . . ; CL], where

Ci ∈ ℜ1×N
L . Let Ĉ represent the unitary transformation of C as

Ĉ = UC (6.3)

where Ĉ = [Ĉ1; . . . ; ĈL] and Ĉi ∈ ℜ1×N
L . In other words, the coefficients

of the host signal vector are broken down into L channels, each consisting

of N
L

coefficients. The watermark signal W ∈ ℜN
L is embedded in the

coefficients of designated channel(s), i.e., Ĉ1, . . . , ĈL.
For the general case, let’s assume that W is embedded into ith

channel coefficients. This yields the embedded signal Ŝi = E(Ĉi, W)
at the ith channel, while the transform coefficients in the rest of the
channels are not changed. Then the transformed and embedded signal
Ŝ = [Ĉ1; . . . ; Ŝi; . . . ; ĈL] is inverse transformed as

S = UT Ŝ (6.4)
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Figure 6-2 Embedding and detection of WT = [WT
1 , . . . , WT

m] into C with

the spreading gain L = n
m .

and mapped to the stego signal vector S. At the detector, the embedded
signal is extracted from the stego channel(s) obtained by segmenting and
transforming the received signal Y. Although only particular transform
coefficients are used for data hiding, the resulting embedding distortion,
in the transform domain, is spread over all samples in the signal domain.
This enables the hider to exploit the bandwidth vs WNR trade-off at the
detector by selecting the spreading factor by choosing U. The spreading
factor, in this case, is the ratio of the total number of channels to the
number of channels used for data hiding. In order to obtain a spreading
factor of L = n

m
, where L may also be a rational number, m channels of

an n× n unitary transform of the host signal (C ∈ ℜn×N
n ) are information

embedded. Figure 6-2 illustrates this scenario, in which the first m channels
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of Ĉ are used for hiding the watermark signal WT = [WT
1 , . . . , WT

m], where

Wi ∈ ℜ
N
n .

The effect of spread transforming on the data hiding rate of a method
can be determined in terms of N and WNR. The capacity of any communi-
cation scheme, in general, can be expressed in terms of its bandwidth
and SNR. Therefore, the data hiding capacity can be formulated as
C = Nf (WNR). Due to the trade-off between N and WNR, the capac-
ity with spread transforming takes the form of CS = N

L
f (L×WNR). Thus,

the optimal spreading factor L for a given method can be found from the
measured C through maximizing CS. It should be noted that if the capacity
formulation of a scheme is such that the linear increase in the WNR can
compensate for the linear reduction in N , then spread transforming offers
an improvement in performance. As the performance drop in type II and
type III methods are exponential in WNR, spreading becomes an efficient
tool by enabling them to operate at higher WNR levels, where they per-
form reasonably well. However, for type I schemes and the upper bound
(optimal type III scheme), where all variables are assumed to be Gaus-
sian, the fall in the hiding rate is logarithmic, 1

2 log2( WNR
WNR×DWR+1

) and
1
2 log2(1+WNR), respectively. Consequently, the optimal spreading fac-

tor L that maximizes 1
2L

log2( L×WNR
L×WNR×DWR+1

) or 1
2L

log2(1+L×WNR)
is computed as 1.

The hiding rate vs robustness curves of DM and type III methods
with spread transforming, computed using the results of Fig. 5-9, are dis-
played in Fig. 6-3. When compared with the hiding capacity, the hiding
rates corresponding to DM and the type III implementations of DM with
the Gaussian-mapping type of postprocessing improved remarkably in the
low WNR range. With spread transforming, distortion-compensation and
Gaussian-mapping types of processing deliver slightly better performances
than the thresholding type. This is not surprising because the improve-
ment with spreading depends on the performance of the scheme at higher
WNRs where distortion-compensation and Gaussian-mapping types of
postprocessing were seen to perform better than thresholding type of post-
proccessing (see Section 5.3). Measured spreading factors for the methods
are shown in Fig. 6-4. However, one should be careful because very large
spreading factors enable large embedding distortions, i.e., increased � val-
ues, and this may violate the assumption that the host signal is uniformly
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Figure 6-3 Improvement in the hiding rate of type II and type III methods when P = 10.
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Figure 6-4 Corresponding spreading factors.

distributed over all quantization cells. Therefore, large spreading fac-
tors may not be practically feasible as the embedding operation becomes
dependent on the statistics of the host signal.

6.2 Multiple Codebook Data Hiding

When the embedding signal size N is small, multiple codebook data hiding
can be used to embed the watermark signal at lower embedding distortion
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levels. The distortion P introduced into host signal C due to the embedding
operation is computed over all stego signal coefficients as P = 1

N
‖Xn‖2.

Assuming that the pdf of the host signal is smooth enough, such that it can
be considered uniformly distributed over all quantization intervals, the
distortion introduced into each host signal sample C has the statistics of
Xn, Eqs. (5.16), (5.22), and (5.25). In other words, the distortion P is a

random variable and its distribution approximates N (σ 2
Xn

,
σ 2

P

N
), where

σ 2
P

N
= 1

N

∫ ∞

−∞
x4

n fXn(xn) dxn − (σ 2
Xn

)2. (6.5)

Accordingly, when N is large, the distortion P introduced into the host
signal becomes σ 2

Xn
. However, when N is small, P varies around the mean

σ 2
Xn

depending on the distribution of Xn and the signal size N . The variation
in the embedding distortion becomes more significant with the decreasing
value of N . Therefore, embedding in a host signal with limited signal size
requires a more careful selection of embedding and detection parameters.
In general, embedding/detection parameters are optimized to maximize the
performance at the given noise level σ 2

Z and the permitted distortion σ 2
Xn

as
described in Section 5.2.3. Therefore, implicitly, a very large embedding
signal size N is assumed. Embedding and detection with the parameters
obtained through an optimization procedure that disregards this aspect of
the problem may cause the data hiding method to operate on a lower hiding
rate vs robustness curve due to the variation in the embedding distortion
with respect to N .

Figures 6-5 and 6-6 display the hiding rates corresponding to binary
DM with thresholding and distortion-compensation types of postprocess-
ing for various N values when the embedding distortion deviates from the

mean σ 2
Xn

by five times the standard deviation, P = σ 2
Xn
− 5
√

σ 2
P /N . As

displayed in the figures, with decreasing N , the hiding rate drops in both
cases. However, since Xn corresponding to the distortion-compensation
type of postprocessing has higher variance around the mean, the reduc-
tion in rate is more drastic. These results indicate that given two host
signals with similar statistics, if the same watermark signal is embedded
in both signals using the same parameters, the resulting distortion due to
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Figure 6-5 Hiding rates corresponding to binary DM with thresholding for

various N when P = σ 2
Xn
− 5
√

σ 2
P /N .
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Figure 6-6 Hiding rates corresponding to binary DM with distortion compen-

sation for various N when P = σ 2
Xn
− 5
√

σ 2
P /N .

embedding may differ significantly for the two signals depending on size
N . Therefore, more sophisticated optimization techniques are needed for
determining the embedding/detection parameters for limited N . An obvi-
ous approach is to fine-tune the parameters obtained with the assumption
of large N , such that the resulting distortion is neither above nor below the
permitted distortion level. The question now is, can we do better? Can
the fact that the embedding distortion has a large variance be utilized to
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improve the performance of data hiding? We shall soon see that this is pos-
sible. The multiple codebook data hiding method exploits this phenomenon
by choosing a transformation of C that yields the minimum embedding dis-
tortion when W is embedded. The ability to embed a watermark signal at
a lower embedding distortion, rather than at the permitted distortion level,
is translated into more robust embedding of the watermark signal.

The essence of the method is depicted in Figs. 6-7 and 6-8, where
the embedding signal size is 2. In both cases, one of the binary sym-
bols is embedded into a signal vector c composed of two signal samples,
c = (c1, c2), using either a two-dimensional lattice or two unidimensional
lattices. The lattice points or the reconstruction points associated with each
binary sample is marked by × and ◦ symbols. The embedding operation
is the translation of the vector c to the nearest centroid associated with the
symbol to be embedded. The decision regions in Figs. 6-7 and 6-8 deter-
mine the sustainable amount of noise that does not impair the detection
performance.

Figure 6-7 Depiction of embedding a binary symbol into the host signal c =
(c1, c2) and into its two transformations using a 2-D lattice.
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Figure 6-8 Depiction of embedding two binary symbols into the host sig-

nal vector c = (c1, c2) and into its two transformations using uniform scalar

quantizers.

In the considered cases, the binary symbol corresponding to × is
embedded into c and into two of its transformed (rotated) versions c2 and
c3. The embedding distortions between the signal pairs (c, ĉ), (c2, c̃2), and
(c3, c̃3) are measured, in terms of Euclidean distance, as d1, d2, and d3,
respectively, as displayed in Fig. 6-7. Similarly, in Fig. 6-8 the result-

ing embedding distortions are measured as
√

d2
11 + d2

12,
√

d2
21 + d2

22, and√
d2

31 + d2
32. When c̃2 and c̃3 are inverse transformed, one can observe that

the distortions introduced into c due to three embedding operations are not
the same. For both of the cases depicted in Figs. 6-7 and 6-8, ĉ2 (inverse
transformed c̃2) yields the smallest embedding distortion, d2. It is impor-
tant to note that the amount of embedding distortion, due to embedding into
transformations of c, c2, and c3, remains the same in magnitude after the
inverse transformation because the transformation is assumed to be unitary
or energy preserving. One can now easily see that with the added compu-
tational complexity of transformations, a binary symbol can be embedded
into c at a smaller embedding distortion level. Multiple codebook hiding
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incorporates these savings in embedding distortion with type III hiding
methodology.

Type III methods, as described earlier, are derived from type II
methods by increasing the distance between the reconstruction points and
introducing a processing distortion that is also a function of the expected
noise level. In type III methods, the resulting increase in the embedding
distortion, due to the increased separation of the reconstruction points, is
reduced to the permitted amount by postprocessing, while performance is
maximized at the expected noise level [49]. In other words, the distortion
introduced into C due to the embedding operation is limited to the permitted
amount P by proper selection of the separation between the reconstruction
points (�) and the amount of processing distortion (σ 2

Xt
). The � and σ 2

Xt

values that yield the distortion P are not unique, and in order to maintain
a fixed distortion level of P, an increase or decrease in either of � or
σ 2

Xt
values should be followed by the other in the same manner. Since the

employment of transformations enables embedding at lower distortion lev-

els, the difference between the permitted and actual embedding distortions

can be utilized by the type III embedder to either reduce the σ 2
Xt

value at

the given � or further increase the � value at the fixed σ 2
Xt

. Both actions
lead to an improvement in the detection performance.

Employing multiple codebooks resembles the optimal binning tech-
nique in the manner that the size of each bin is increased from 1 to the
number of codebooks. Therefore, for a message to be transmitted, the
embedder generates a set of codewords and chooses the best among them.
Correspondingly, the detector has to search over all codebooks for a suc-
cessful extraction of the message. Modifying the multiple codebook hiding
method by assigning one of the codebooks for embedding and detection
while discarding the others reduces it to a type III method. Due to this free-
dom in selecting one of the many codebooks being utilized, the method is
referred to as multiple codebook hiding.

In multiple codebook hiding, each codeword is generated from a uni-
tary transformation of the host signal. From this point of view, the design
of the ideal codebook requires the derivation of the optimal transform basis
for embedding and detection (at both the embedder and the detector). This
is an impractical task considering the dependency on the host signal. (In
Figs. 6-7 and 6-8, where N = 2, this refers to the transformation that
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translates c to a point that coincides with one of the × points.) Therefore,
rather than computing the optimal transformation basis, a set of transfor-
mation bases is selected with the intention that for a given host signal, some
of the bases will yield codewords similar to those of the optimal transfor-
mation. Thus, the use of multiple codebooks provides the embedder with
a freedom in choosing the best among a number of suboptimal codewords.
However, when N −→∞, for any C, the embedding distortion converges
to the expected value, P −→ σ 2

Xn
, and the multiple codebook hiding

method does not provide any advantage over single codebook hiding. (In
other words, with the increasing N , all transformations of C become
equally preferable for embedding, as they all yield the same distortion.)
On the other hand, the detector should be able to differentiate the correct
transformation from among all transformations of the received signal in
order to successfully detect the embedded message. Apparently, such a
detection of the message is more prone to errors. Ultimately, the question
to be answered is whether at a fixed N and permitted embedding distortion,
the improvement in the detection performance due to the ability to increase
the � (or to reduce the σ 2

Xt
) can compensate for the additional detection

errors due to the uncertainty in the transform basis used for embedding. It
is shown that for theAWGN channel, Gaussian distributed host signal, and
squared error distortion measure, the increase in probability of error due
to use of multiple codebooks is compensated by a reduction (in probability
of error) due to the embedder’s ability to adapt the codeword to the host
signal.

6.2.1 A Channel Model for Multiple Codebook Data Hiding

In the multiple codebook data hiding scenario, the information hider
and extractor share two sets of information. One is the set of sequences
W1, . . . , WM ∈ ℜN that are associated with M distinct messages. The other
is the set of L, N × N , unitary transform bases, i.e.,

I = TT
i Ti, i = 1, . . . , L (6.6)

where I is the N × N identity matrix and T denotes the matrix transpose
operation. The overall data hiding system is outlined in Eqs. (6.7) through
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(6.12) in an additive model as follows:

W :m −→ Wm, (6.7)

Ŝk = E(TkC, Wm), 1 ≤ k ≤ L, (6.8)

Sk = TT
k Ŝk , (6.9)

Y = Sk + Z = C+ Xnk
+ Z, (6.10)

Ŵi
m = D(TiY), i = 1, . . . , L, (6.11)

W−1 : Ŵi
m −→ m̂. (6.12)

In the model, C is the iid Gaussian distributed host signal with the marginal
C ∼ N (0, σ 2

C), Xn = Xnk
is the distortion introduced by the type III

embedder (type III codeword, Section 5.2), and Z is the AWGN vector,
where Z ∼ N (0, σ 2

Z ). One selection criterion for Ti, i = 1, . . . , L, is to
require that the transformations of a random signal vector r be maximally
separated from each other in ℜN with respect to a predesignated distance
measure. For squared error distortion measure, selection of T1, . . . , TL is
based on the maximization of the following criterion

E[‖Tkr − Tir‖2] , 1 ≤ i, k ≤ L and i �= k (6.13)

where the expectation is performed over all r ∈ ℜN . Among the L unitary
transformations Ci = TiC, i = 1, . . . , L, the embedder picks the one that is
expected to yield the highest detection statistics at the permitted embedding
distortion. Assuming that k is the index of the selected transform basis, the
sequence Wm, corresponding to the message indexed by m, 1 ≤ m ≤
M, is embedded in the Tk transformation of the host signal, Ck . Then,
the stego signal in the transform domain Ŝk is inverse transformed to the
signal domain Sk . Uninformed of the particular transform Tk used for
embedding, the detector generates L transformations of the received signal
Y and detects the hidden message m̂ in a blind manner. With the use of
multiple codebooks, the choice of Tk determines the codeword Xnk

among
codewords {Xn1 , . . . , XnL}. Therefore, the embedding operation can be
viewed as a vectorial operation in which the embedder chooses one of the
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TABLE 6-1

Notations Used in This Chapter

C Host signal vector

X Codeword

S Information hidden signal vector

Z Channel noise vector

Y Distorted S

Wm Watermark signal vector corresponding to message m to be conveyed

Ŵm Extracted signal vector when Wm is embedded

ρm, j The normalized correlation between Ŵm and Wj

dm, j The mean squared distance between Ŵm and Wj

Ŵi
m Extracted signal vector from Ti transformation of Y when Wm is embedded

W̃i
m Extracted signal vector from Ti transformation of S when Wm is embedded

ρi
m, j The normalized correlation between Ŵi

m and Wj

ρ̃i
m, j The normalized correlation between W̃i

m and Wj

di
m, j The mean squared distance between Ŵi

m and Wj

d̃i
m, j The mean squared distance between W̃i

m and Wj

L codewords based on the given host signal C and the message m to be
conveyed.

Figure 6-9 displays codeword generation for multiple codebook hid-
ing. Compared with Fig. 3-7, the main difference is that for a message
index m, L number of codewords are generated by embedding Wm into
T1, . . . , TL transformations of C. Consequently, the embedder chooses the
best one among the codewords X1,m, . . . , XL,m.

Table 6.1 lists all the notations used in this analysis in addition to the
previous notation; i.e., the vectors are denoted by boldfaced characters, the
random variables and their realizations are symbolized by the capital letters
and the corresponding lowercase letters, respectively. For the general case,
all signals are assumed to be random vectors of size N . However, in some
of the derivations, individual random variables are used for the sake of
simplicity. In such cases, vector extensions are straightforward due to iid

assumption.
The most crucial step in multiple codebook data hiding is the selec-

tion of the transformation basis Tk , 1 ≤ k ≤ L, which yields the
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Figure 6-9 Encoding of message index m using multiple codebooks.
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codeword that adapts to the host signal C best at the permitted embed-
ding distortion. For this, the watermark signal Wm is embedded into L

transformations of the host signal, Ci = TiC, i = 1, . . . , L, consecu-
tively. Note that in a type III method, embedding and detection functions
are not inverses of each other; the signal Wm embedded into Ci will
differ from the corresponding extraction W̃i

m due to the processing dis-
tortion Xt , D (E (C, Wm)) �= Wm. Therefore, the embedder can decide
on the transformation basis by measuring the similarity (or dissimilarity)
between Wm embedded in all transformations of C and the corresponding
extractions W̃i

m through computing and comparing normalized correla-
tions, ρ̃i

m,m, or mean squared distances, d̃i
m,m. If the decision on the

transform basis is made using correlation, the maximum correlation crite-
rion, the value of index i that yields the highest correlation ρ̃i

m,m, is chosen
as the index of the best transformation basis Tk , k = arg maxi

(
ρ̃i

m,m

)
for

ρ̃i
m,m = (WT

mW̃i
m)/(‖Wm‖ ‖W̃i

m‖). Alternately, if squared error distance
is used as the decision metric, the minimum distance criterion, the embed-
der picks the transform basis Tk that yields the smallest mean squared
distance between Wm and W̃i

m, k = arg mini{d̃i}, i = 1, . . . , L, where
d̃i = 1

N
‖Wm − W̃i

m‖2.
Such a selection of the transformation basis can be justified as fol-

lows. In order to embed a signal in a host signal, the embedder has
to determine the optimal embedding parameters depending on the post-
processing employed (i.e., (�, β) for thresholding, (�, α) for distortion
compensation). These parameters are computed in advance for the per-
mitted embedding distortion (PE) and the given channel noise (σ 2

Z ) levels
assuming that N is very large and host signal is uniformly distributed in
each quantization interval. It should be noted that the embedding parame-
ters computed using the optimization criteria described in Section 5.2 are
valid when N is relatively large. However, due to limitation on the size N ,
the embedding distortion P introduced into C by using the optimal embed-
ding parameter values differs from PE . Therefore, the embedder has to
fine-tune those parameters for the given host signal in order to comply
with PE . Since � is also revealed to the extractor, it should remain the
same for all embedding operations while processing distortion due to the
choice of β or α may vary for each embedding. As discussed earlier, β

and α designate the amount of processing distortion applied on the type II
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codeword due to the postprocessing. Ultimately, when β = � or α = 1
no postprocessing is performed, and therefore, embedded and extracted
watermark signals are the same. On the other hand, when embedding
of Wm with β < � and α < 1 is considered, the extracted signal W̃m

will be distorted at various levels depending on the amount of processing
distortion. Thus, the correlation (respectively the distance) between the
embedded and extracted signals reduces (increases) with decreasing β or α.

The sent message is detected from the received signal Y without
knowing which of the L transformation bases is used for embedding.
Hence, the extractor tries all preset transformations of Y and extracts sig-
nals Ŵi

m = D(TiY). Then, the set of extracted signals {Ŵ1
m, . . . , ŴL

m}, of
which only Ŵk

m is a valid extraction, is compared with the set of watermark
signals {W1, . . . , WM} by computing the normalized correlations, ρi

m, j, or

mean squared distances, di
m, j, where i = 1, . . . , L and j = 1 . . . , M,

depending on the decision metric used at the embedder. Among all (i, j)
index pairs, the j index of the pair that maximizes ρi

m, j or minimizes

di
m, j is the index of the detected message m̂, m̂ = argj maxi, j

(
ρi

m, j

)
or

m̂ = argj mini, j

(
di

m, j

)
.

Figure 6-10 displays an L codebook embedding and detection scheme.
In the block diagram, W is the watermark signal corresponding to message
index m. The decision block bE , at the embedder, decides on the best
transform basis Ti, 1 ≤ i ≤ L, to be employed for embedding using one
of the decision metrics. Then, it transmits the stego signal corresponding

+
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m

m

m

^m

W

W

W

C

Figure 6-10 Multiple codebook embedding and detection.
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to W and C. At the detector, bD detects the message with index m̂ by
computing the correlations or distances between the extracted signals and
the set of watermark signals. A detection error occurs whenever m and m̂

are not the same.
In multiple codebook hiding, as mentioned earlier, the embedder

is able to better adapt the codeword to the host signal. However, this
improvement at the embedder is accompanied by an increase in the prob-
ability of detection error. This error is due to the two sources of noise: the
channel noise and the interference from the other transformations. When
extraction is made from the correct transformation of the received signal,
the sent message may still be falsely detected due to the channel’s distor-
tion affecting the stego signal. This scenario is the same as the detection
error in single codebook hiding. However, for the multiple codebook case,
the error may also be due to the interference from the other L − 1 trans-
formations. This occurs when detection of a message is obtained from a
transformation of the received signal other than the transformation used at
the embedder. This error is independent of the channel noise and can be
minimized by the proper selection of the transformation bases.

Type III schemes like binary DM with thresholding and distortion-
compensation types of postprocessing, employing soft-decision-rule–
based detectors, are incorporated with the multiple codebook data hiding
technique. In Sections 6.2.2–6.2.5, single and multiple codebook hiding
methods utilizing maximum correlation and minimum distance criteria are
studied. Their probability of error performances are also calculated and
presented in these sections.

6.2.2 Single Codebook Data Hiding Based on the Maximum
Correlation Criterion

Let WT
m = [Wm1 , . . . , WmN ] be a length-N iid, zero-mean, binary random

vector corresponding to message m, and ŴT
m = [Ŵm1 , . . . , ŴmN ] be the

extracted real-valued signal at the detector. Since the embedding and detec-
tion processes are memoryless, and both host signal and channel noise are
white, Ŵm is an iid, zero mean random vector. For the single codebook
case, the embedder employs an M × N–sized codebook composed of M

length-N codewords. A detection error is due to Ŵm having the highest
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correlation with any of {W1, . . . , WM} other than Wm. Then, an event
Ej that the detector will pick m̂ as the detected message instead of m is
denoted as

Ej = {p(ρm, j ≥ ρm,m)}, j = 1, . . . , M and j �= m. (6.14)

The event E that the detector makes a detection error is expressed as

E =
M⋃

j=1, j �=m

Ej. (6.15)

Hence, the probability of error for single codebook–based data hiding,
Pone

e , is expressed as

Pone
e = Pr{E} ≤

M∑

j=1, j �=m

Pr{Ej}. (6.16)

Using Eq. (6.14), the upper bound for Pone
e can be rearranged as

Pone
e ≤

M∑

j=1, j �=m

p(ρm, j ≥ ρm,m). (6.17)

In Eq. (6.17), ρm, j and ρm,m are random variables that are equivalent
to random variables ρind and ρdep, respectively, in their statistics. The
relationship of ρm, j, 1 ≤ m, j ≤ M, with ρind and ρdep is explained in the
following subsections. Based on those results, the pdf of random variable
ρm, j can be generalized as

ρm, j ∼
{

N (0, 1
N

), if m �= j

ρdep, if m = j.
(6.18)

Assuming that m is the index of the transmitted message for all the
cases, the first subscript, m, of ρm, j can be dropped for the sake of
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simplicity. Thus, Eq. (6.17) can be rewritten using Eq. (6.18) as

Pone
e ≤

M∑

j=1, j �=m

∫ ∞

−∞

∫ ∞

−∞
fρj (ρj ≥ ρm)fρm(ρm) dρj dρm, (6.19)

≤
M∑

j=1, j �=m

∫ ∞

−∞

(∫ ∞

ρm

fρj (ρj)dρj

)
fρm(ρm) dρm. (6.20)

The inner integral in Eq. (6.20) can be expressed in terms of Gaussian
Q-function, i.e., Q(x) = 1√

2π

∫∞
x

e−t2/2 dt. Since statistics of ρj are inde-

pendent of the index j when j �= m, the sum operator in Eq. (6.20) can be
replaced with the factor M − 1, and the inequality in Pone

e simplifies to

Pone
e ≤ (M − 1)

∫ ∞

−∞
Q(ρm

√
N)fρm(ρm) dρm. (6.21)

6.2.2.1 Distribution of ρind

If Wm and Ŵm have a zero covariance matrix, Ŵm carries no information
about Wm due to the channel noise, and the normalized correlation ρind

between Wm and Ŵm is defined as

ρind =
WT

mŴm

‖Wm‖ ‖Ŵm‖
=

l=N∑

l=1

Wml
Ŵml

‖Wm‖ ‖Ŵm‖
. (6.22)

The random variable Wml
, 1 ≤ l ≤ N , has the variance ‖Wm‖2/N

due to the iid assumption, where ‖Wm‖2 is the power of Wm. Similarly, the
variance of Ŵml

is ‖Ŵm‖2/N independent of its pdf. Hence, the normalized
random variables Wml

/‖Wm‖ and Ŵml
/‖Ŵm‖ are both zero-mean with

variance 1
N

. The normalized correlation ρind is a random variable with the
mean mρind

and the variance σ 2
ρind

calculated as

mρind
=

l=N∑

l=1

E

[
Wml

‖Wm‖

]
E

[
Ŵml

‖Ŵm‖

]
,

= 0, (6.23)



 

128 CHAPTER 6 Advanced Implementations

σ 2
ρind

=
l=N∑

l=1

Var

[
Wml

‖Wm‖

]
Var

[
Ŵml

‖Ŵm‖

]
,

= N
1

N2
= 1

N
. (6.24)

The random variable ρind has approximately Gaussian distribution,
due to the central limit theorem, ρind ∼ N (0, 1

N
).

Similarly, if Wm and Wj are independent iid random vectors, then
Ŵm is also independent with Wj. Consequently, the normalized correlation
ρm, j ∼ ρind .

6.2.2.2 Distribution of ρdep

When Wm and Ŵm are dependent, a similar analysis can be performed.
However, in this case, the samples Wml

and Ŵml
, 1 ≤ l ≤ N , are

somewhat correlated. The normalized correlation ρdep, defined between
Wm and Ŵm, is the normalized inner product of the two iid correlated
random vectors, as given in Eq. (6.22).

For relatively small N , the embedding distortion P introduced into
C with the use of optimal embedding parameters (computed for large N)
becomes a random variable distributed around PE = σ 2

Xn
with the variance

σ 2
P

N
as discussed in Section 6.2. Based on the measured distortion P, the

embedder has to adjust the processing distortion Xt by changing β or α in
order to ensure an embedding distortion of PE . Consequently, the effective
noise level, Zeff = Z − Xt , at the detector changes, and the embedded
signal Wm is distorted accordingly. The relation between the embedded
binary watermark signal samples and the extracted samples is expressed
in terms of Zeff as in Eq. (5.30). The pdf of Zeff for thresholding and
distortion-compensation types of postprocessing is given in Eqs. (5.27) and
(5.28) as a function of embedding parameters. Ultimately, the correlation
coefficient ρdep between the dependent Wm and Ŵm can be calculated in
terms of embedding parameters, N , and statistics of Zeff and W .

It should be noted that a change in the embedding parameter β or
α will induce a similar change in the value of the correlation coefficient
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as the parameter designates the amount of processing distortion applied.
When N is not large enough, the embedding distortion P deviates from
PE = σ 2

Xn
. This is reflected as a deviation of embedding parameters from

their optimal values so that the adjusted β or α value yields P = PE . Hence,
the correlation of Wm and Ŵm is actually a random variable conditioned
on P, ρdep|P, with the mean mρ∗ and the variance σ 2

ρ∗ . Its mean mρ∗ is
calculated as

mρ∗ = E

[
WT

mŴm

‖Wm‖ ‖Ŵm‖

]

= E[WmŴm]√
E[W2

m]E[Ŵ2
m]

= R(1)√
R(2)

(6.25)

where E[Wp
mŴ

p
m] is the pth joint moment of random variables Wm and Ŵm

and

R(p) = 2
i=∞∑

i=0

∫ (i+1)�
2

i�
2

((
(2i + 1)�

4
− zeff

)
(−1)i

)p

fZeff
(zeff ) dzeff .

(6.26)

Similarly, the variance σ 2
ρ∗ of the random variable ρdep|P is expressed as

σ 2
ρ∗ = Var

[
WT

mŴm

‖Wm‖ ‖Ŵm‖

]
. (6.27)

The details of the derivations for the Eqs. (6.25) and (6.27) are given in
Appendix B.

The covariance matrix of the iid signal vector Wm and the extracted
signal vector Ŵm is diagonal (i.e., E[Wml

Ŵms] = 0, if l �= s, 1 ≤ l, s ≤
N). Therefore, the distribution of random variable ρdep|P approximates
Gaussian distribution, ρdep|P ∼ N (mρ∗ , σ 2

ρ∗), with mean and variance as
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given in Eqs. (6.25) and (6.27), respectively. The pdf of ρdep is therefore

fρdep
(ρdep) =

∫ ∞

−∞
fρdep|P(ρdep|P)fP(P) dP (6.28)

where P ∼ N (σ 2
Xn

,
σ 2

P

N
).

6.2.3 Multiple Codebook Data Hiding Using the Maximum
Correlation Criterion

In the multiple codebook data hiding method, the transmitted codeword,
corresponding to a message, is expected to yield the highest detection
statistics at the presumed noise level σ 2

Z . The embedder achieves this by
searching for the transformation basis that yields less processing distortion
than the others. This is achieved by choosing the maximum of the corre-
lations ρ̃i

m,m, i = 1, . . . , L, that are measured between Wm embedded into

L transformations of C and the corresponding extractions W̃i
m. However,

due to channel noise Z, the dependency between the embedded watermark
signal and the extracted signal at the detector reduces. Therefore, the cor-
relation ρ̃i

m,m, between Wm and its extracted version from Y, would be
less than ρ̃i

m,m measured at the embedder. The correlation values ρ̃i
m,m and

ρi
m,m can be calculated from Eq. (5.30) for Zeff = −Xt and Zeff = Z− Xt ,

respectively. Ultimately, the transformation basis that yields the highest
correlation at the embedder will also yield the highest correlation at the
detector, argi max

(
ρ̃i

m,m

)
= argi max

(
ρi

m,m

)
.

Let the maximum of ρi
m,m be denoted by ρmax with the pdf given as

ρmax ∼ max
(
ρ1

m,m, . . . , ρL
m,m

)
(6.29)

where ρi
m,m are independent random variables with ρi

m,m∼ ρdep,
Section 6.2.2.2. With multiple codebook hiding, then, detection errors are
due to any of the normalized correlation values ρi

m, j, j �= m, being greater
than the correlation value ρmax. Compared with the single codebook case,
probability of error for multiple codebook hiding, Pmul

e , is expected to
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increase with the number of codebooks, as there are L times more nor-
malized correlation values that can exceed ρmax. On the other hand, since
ρmax is expected to have a higher mean than ρm,m, the probability of error
for each comparison of the normalized correlations is reduced.

Assuming Tk is the transformation basis used for embedding in all
cases, an event Ei

j that the detector will pick m̂ instead of m is denoted as

Ei
j = {p(ρi

m, j ≥ ρmax)}, i = 1 . . . , L, j = 1, . . . , M and j �= m.

(6.30)

The event Emul that the detector makes an error is

Emul =
L⋃

i=1

M⋃

j=1, j �=m

Ei
j. (6.31)

Hence, the probability of detecting a wrong message for multiple codebook
hiding, Pmul

e , is obtained as

Pmul
e = Pr{Emul} ≤

L∑

i=1

M∑

j=1, j �=m

Pr{Ei
j}. (6.32)

The union bound on the probability of error can be rewritten using
Eq. (6.30) as

Pmul
e ≤

L∑

i=1

M∑

j=1, j �=m

Pr(ρi
m, j ≥ ρmax). (6.33)

Comparing Eq. (6.17) with Eq. (6.33), one sees that the advantage of
multiple codebook embedding over single codebook embedding is reflected
in the statistics of ρm,m and ρmax.
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The distribution of ρi
m, j, 1 ≤ j ≤ M and 1 ≤ i ≤ L, can be

generalized as

ρi
m, j ∼

⎧
⎪⎪⎨
⎪⎪⎩

N (0, 1
N

), if i �= k,

N (0, 1
N

), if i = k and j �= m,

ρdep, if i = k and j = m.

(6.34)

The probability of error for multiple codebook hiding, Eq. (6.33),
can be further rewritten using the preceding results as

Pmul
e ≤

L∑

i=1

M∑

j=1, j �=m

∫ ∞

−∞

∫ ∞

−∞
fρi

j
(ρi

j ≥ ρmax)fρmax (ρmax) dρi
j dρmax,

(6.35)

≤
L∑

i=1

M∑

j=1, j �=m

∫ ∞

−∞

(∫ ∞

ρmax

fρi
j
(ρi

j ) dρi
j

)
fρmax (ρmax) dρmax (6.36)

where the first subscript referring to the transmitted message m is dropped.
Since the inner integral in Eq. (6.36) is the Gaussian Q-function and does
not depend on the index j, Eq. (6.36) can be simplified to

Pmul
e ≤ L(M − 1)

∫ ∞

−∞
Q(ρmax

√
N)fρmax (ρmax) dρmax. (6.37)

Note that for L = 1, Pmul
e given in Eq. (6.37) reduces to Pone

e in Eq. (6.21).

6.2.3.1 Distribution of ρ i
m, j

The distribution of the random variables ρi
m, j can be found based on the

choice of i and j. When the detector assumes i = k, the transformations
used for embedding and detection are the same. Then, the extracted signal
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Ŵk
m is expressed as

Ŵk
m = D

(
Tk

(
TT

k E (TkS, Wm)+ Z
))

(6.38)

= D
(
E (TkC, Wm)+ Z′

)
. (6.39)

Since Z is assumed to be a white noise vector (iid Gaussian), a unitary
transformation of it, Z′ = TkZ, is also iid Gaussian with the same mean
and variance. Therefore, the results of the analysis given in Sections 6.2.2.1
and 6.2.2.2 also apply to multiple codebook hiding. Consequently, the
normalized correlation ρk

m, j, 1 ≤ j ≤ M, is equivalent to random variables
ρdep and ρind in its statistics for j = m and j �= m, respectively.

If there is a mismatch between the embedding and detection transfor-
mations, i �= k, then Ŵi

m is obtained as

Ŵi
m = D

(
Ti

(
TT

k E (TkC, Wm)+ Z
))

(6.40)

= D
(
TiT

T
k E (TkC, Wm)+ Z′

)
(6.41)

where Z′ = TiZ. In Eq. (6.41), Ŵi
m is related to Wm through the transfor-

mation Ti followed by a nonlinear detection (see Section 5.2). For properly
selected transform bases, E[‖TiC − TkC‖] is maximized. An extraction
from Ti transformation of the received signal does not provide any mean-
ingful information about Wm because the embedding transformation was
Tk . Consequently, the binary distributed Wm with values in {−�

4 , �
4 }, is

extracted, Ŵi
m, as a uniformly distributed sample sequence in the range

[−�
4 , �

4 ] which is independent of Wm. Therefore, the normalized corre-
lation ρi

m, j, i �= k and ∀j, has the same statistics as the random variable

ρind , ρi
m, j ∼ N (0, 1

N
).

6.2.3.2 Distribution of ρmax

The random variable ρmax is the maximum of L random variables, Eq.
(6.29), that are all distributed according to pdf of random variable ρdep.
The distribution of ρmax, for any finite L, can be expressed in terms of the
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distribution function of ρdep as

Fρmax (ρmax) = FL
ρdep

(ρmax) (6.42)

where FX (x) =
∫ x

−∞ fX (x) dx and the superscript L refers to the Lth-order
power of the distribution function Fρdep

(ρmax). Correspondingly, the pdf
of ρmax is found as fρmax (ρmax) = LFL−1

ρdep
(ρmax)fρdep

(ρmax).

6.2.4 Single Codebook Hiding Using the Minimum Distance Criterion

Considering the minimum distance criterion for the single codebook hiding
case, a detection error is the result of Ŵm having the smallest distance with
any of {W1, . . . , WM} other than Wm. Hence, the upper bound on the prob-
ability of detection error, Pone

e , can be expressed similarly to Section 6.2.2,
Eqs. (6.14)–(6.17), as

Pone
e ≤

M∑

j=1, j �=m

p(dm, j ≤ dm,m). (6.43)

As will be shown in the following sections, the statistics of the random
variables dm, j and dm,m in Eq. (6.43) are, respectively, the same as those of
dind and ddep. Consequently, the pdf of random variable dm, j, 1 ≤ m, j ≤
M, can be expressed as

dm, j ∼

⎧
⎨
⎩

N

(
�2

12
,

�4

N180

)
, if m �= j

ddep, if m = j.
(6.44)

Assuming that m is the index of the transmitted message for the
generic case, Eq. (6.43) can be rewritten using Eq. (6.44) as

Pone
e ≤

M∑

j=1, j �=m

∫ ∞

−∞

∫ ∞

−∞
fdj (dj ≤ dm)fdm(dm) ddj ddm (6.45)
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≤
M∑

j=1, j �=m

∫ ∞

−∞

(∫ dm

−∞
fdj (dj) ddj

)
fdm(dm) ddm (6.46)

≤ (M − 1)
∫ ∞

−∞
Fdj (dm)fdm(dm) ddm (6.47)

where Fdj (dj) is the probability distribution function of the random
variable dj.

6.2.4.1 Distribution of dind

When Wm and Ŵm have a zero covariance matrix, the distance dind

between the iid Wm and Ŵm can be defined as

dind =
1

N
‖Wm − Ŵm‖2

= 1

N
(Wm − Ŵm)T (Wm − Ŵm)

= 1

N

l=N∑

l=1

(W2
ml
+ Ŵ2

ml
− 2WŴml

). (6.48)

Introducing the random variable λ = W2 + Ŵ2 − 2WŴ , such that dind =
1
N

∑l=N
l=1 λml

, the statistics of random variable dind can be computed in
terms of the statistics of λ. The mean and variance of λ are, respectively,
derived in Appendix B as

mλ =
�2

12
, (6.49)

σ 2
λ =

�4

180
. (6.50)

Therefore,

mdind
= E

⎡
⎣ 1

N

j=N∑

j=1

λml

⎤
⎦

= 1

N
Nmλ =

�2

12
, (6.51)
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σ 2
dind
= Var

⎡
⎣ 1

N

j=N∑

j=1

λ

⎤
⎦ ,

= 1

N2
Nσ 2

λ =
1

N

�4

180
. (6.52)

As both Wm and Ŵm are iid, the distribution of dind approximates Gaus-

sian, dind ∼ N (�2

12 , �4

N180 ). Similarly, the distance di, j measured between

the extracted signal Ŵi and the watermark signal Wj is equivalent to dind

in its statistics when Wi and Wj are mutually independent iid random
vectors.

6.2.4.2 Distribution of ddep

When Wm and Ŵm have a diagonal covariance matrix, an analysis similar
to the one given in Section 6.2.2.2 is performed. The distance ddep is
the mean squared difference of the iid correlated random vectors Wm and
Ŵm, as defined in Eq. (6.48). Given that optimal embedding parameters
yield an embedding distortion of P, the distance between Ŵm and Wm can
be expressed as a random variable conditioned on P. The mean md∗ and
the variance σ 2

d∗ of ddep|P can be calculated in terms of the statistics of
λml

as

md∗=E

[
1

N

N∑

l=1

λml

]

=
(

�

4

)2

−2
�

4
R(1)+R(2), (6.53)

σ 2
d∗=Var

[
1

N

N∑

l=1

λml

]

=
(

�

4

)4

−4

(
�

4

)3

R(1)+ 1

N

(
R(4)+6

(
�

4

)2

R(2)−�R(3)

)
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×N−1

N

(
2

(
�

4

)2

R(2)+2

(
�

4

)2

R(1)2+4

(
�

4

)2

R(1)2−�R(1)R(2)

+ R(2)2

)
−m2

d∗ (6.54)

where R(p) is as given in Eq. (6.26). Derivation details for Eqs. (6.53) and
(6.54) are given in Appendix B, Eqs. (B.12)–(B.13). The distribution of
ddep|P also converges to a Gaussian distribution, ddep|P ∼ N (md∗ , σ 2

d∗).
The pdf of random variable ddep is calculated as

fddep
(ρdep) =

∫ ∞

−∞
fddep|P(ddep|P)fP(P) dP (6.55)

where P ∼ N (σ 2
Xn

,
σ 2

P

N
).

6.2.5 Multiple Codebook Hiding Using the Minimum Distance Criterion

In this version of the method, the embedder selects the transformation basis
by choosing the minimum of the distances d̃i

m,m, i = 1, . . . , L computed
between Wm and W̃i

m for each transformation of C. At the detector, on
the other hand, the distance between the embedded and the extracted sig-
nals is measured as di

m,m, 1 ≤ i ≤ L. The degradation in the measured

distance from d̃i
m,m to di

m,m is due to the channel noise Z as discussed in
Section 6.2.3. However, the transformation basis that yields the minimum
distance at the embedder will yield the minimum distance at the detector,
argi min(d̃i

m,m) = argi min
(
di

m,m

)
. Defining the minimum of di

m,m as dmin,
its pdf is given as

dmin ∼ min
(

d1
m,m, . . . , dL

m,m

)
(6.56)

where di
m,m are independent random variables with di

m,m∼ ddep (see Section
6.2.4.2). Consequently, a detection error occurs if any of the distance
values di

m, j, 1 ≤ j ≤ M, j �= m, and 1 ≤ i ≤ L are smaller than
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dmin. Compared with the single codebook case, similar to Section 6.2.3,
probability of error is expected to increase with respect to the number of
codebooks because there are L times more distance values that may be
smaller than dmin, whereas dmin has a lower mean than dm,m, which will
reduce the probability of error. The union bound on the probability of
error for multiple codebook hiding, Pmul

e , is found to be similar to Eqs.
(6.30)–(6.33) as

Pmul
e ≤

L∑

i=1

M∑

j=1, j �=m

Pr(di
m, j ≤ dmin). (6.57)

The advantage of multiple codebook hiding stems from the difference in
the distributions of the random variables dm,m and dmin in Eqs. (6.43) and
(6.57), respectively. The distribution of di

m, j, 1 ≤ j ≤ M and 1 ≤ i ≤ L,
can be generalized as

di
m, j ∼

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

N (�2

12 , �4

N180 ), if i �= k,

N (�2

12 , �4

N180 ), if i = k and j �= m,

ddep, if i = k and j = m.

(6.58)

The bound on the probability of error given in Eq. (6.57) can be
rewritten using these results (by dropping the first subscript referring to the
transmitted message m) as

Pmul
e ≤

L∑

i=1

M∑

j=1, j �=m

∫ ∞

−∞

∫ ∞

−∞
fdi

j
(di

j ≤ dmin)fdmin(dmin) ddi
j ddmin, (6.59)

≤
L∑

i=1

M∑

j=1, j �=m

∫ ∞

−∞

(∫ dmin

−∞
fdi

j
(di

j ) ddi
j

)
fdmin (dmin) ddmin, (6.60)

≤ L(M − 1)
∫ ∞

−∞
Fdi

j
(dmin)fdmin

(dmin) ddmin (6.61)

where di
j ∼ N (mdind

, σ 2
dind

).
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6.2.5.1 Distribution of d i
m, j

The distribution of the random variables di
m, j can be found based on the

choice of i and j, as in Section 6.2.3. When the detector assumes that
i = k, the transformations used for embedding and detection are the same.
The detected watermark signal Ŵk

m, j can be expressed as in Eq. (6.39).
Thus, the analysis given for the single codebook case also applies to the
multiple codebook case. The distance between the Wm and Ŵk

m, j, dk
m, j for

1 ≤ j ≤ M and j �= m, has the same statistics as the random variable dind ,

dk
m, j ∼ N

(
�2

12 , �4

N180

)
. In the same manner, dk

m,m, j = m, has the same

statistics as the random variable ddep, dk
m,m ∼ ddep.

If there is a mismatch between the embedding and detection transfor-
mations such that i �= k, then Ŵk

m, j is obtained as in Eq. (6.41). Due to
the transformation Ti, i �= k, and the nonlinear detection that follows it,
Ŵk

m, j becomes independent of Wm. Therefore, the mean squared distance,

di
m, j for i �= k, is equivalent to the random variable dind in its statistics,

di
m, j ∼ N (�2

12 , �4

N180 ).

6.2.5.2 Distribution of dmin

Since dmin is the minimum of L independent random variables, Eq. (6.56),
distributed according to Fddep

(ddep), the probability distribution function
of dmin is found as

Fdmin(dmin) = 1−
(

1− Fddep
(dmin)

)L

. (6.62)

The pdf of random variable dmin is therefore

fdmin(dmin) = L
(

1− Fddep
(dmin)

)L−1
fddep

(dmin). (6.63)

6.2.6 Comparisons

The robustness measure used to compare multiple codebook hiding with
single codebook hiding is defined in terms of the ratio between the embed-
ding distortion power and the channel noise power, WNR= PE

σ 2
Z

. Figures
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6-11–6-13 and 6-14–6-16 display the union bound on the probability of
error for the thresholding type of postprocessing using both criteria. The
curves are obtained by numerically solving Eqs. (6.37) and (6.61) at dif-
ferent WNRs and for various numbers of codebooks and codebook sizes
M×N . Corresponding results for the distortion-compensation type of post-
processing are similarly displayed in Figs. 6-17–6-19 and 6-20–6-22. In all
cases, as the number of codebooks increases, the bound on the probability

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Codebooks

P
ro

b
a

b
ili

ty
 o

f 
E

rr
o

r

WNR = 0.2
WNR = 0.4
WNR = 0.6
WNR = 0.8
WNR = 1 

Figure 6-11 Probability of error performance for multiple codebook hiding

based on maximum correlation criterion and thresholding type of processing

for M = 100 and N = 50.
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Figure 6-12 Probability of error performance for multiple codebook hiding

based on maximum correlation criterion and thresholding type of processing

for M = 200 and N = 100.
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Figure 6-13 Probability of error performance for multiple codebook hiding

based on maximum correlation criterion and thresholding type of processing

for M = 1000 and N = 500.
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Figure 6-14 Probability of error performance for multiple codebook hiding

based on minimum distance criterion and thresholding type of processing for

M = 100 and N = 50.

of error decreases exponentially. On the other hand, the probability of
error for single codebook hiding also decreases with the increasing signal
size N . Consequently, fewer codebooks are required to further improve
the performance. Results show that for WNR ≥ 1 and WNR ≥ 0. 2
(equivalently in logarithmic scale WNR ≥ 0 dB and WNR ≥ −7 dB)
the use of multiple codebooks is not necessary if N ≃ 100 and N ≃ 500,
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Figure 6-15 Probability of error performance for multiple codebook hiding

based on minimum distance criterion and thresholding type of processing for

M = 200 and N = 100.
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Figure 6-16 Probability of error performance for multiple codebook hiding

based on minimum distance criterion and thresholding type of processing for

M = 1000 and N = 500.

respectively. Intuitively, this is due to increasing confidence in the detec-
tion with the increasing N . With reference to the analyses in Sections 6.2.3
and 6.2.5, as mρdep

increases and σ 2
ρdep

decreases, the maximum of the

ensemble of random variables ρ̃1
m,m, . . . , ρ̃L

m,m is less likely to differ from

the rest. Respectively, as mddep
decreases, the minimum of d̃1

m,m, . . . , d̃L
m,m
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Figure 6-17 Probability of error performance for multiple codebook hiding

based on maximum correlation criterion and distortion-compensation type of

processing for M = 100 and N = 50.
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Figure 6-18 Probability of error performance for multiple codebook hiding

based on maximum correlation criterion and distortion-compensation type of

processing for M = 200 and N = 100.

will not differ significantly from any of the other measured distances.
Consequently, all codebooks become almost equally favorable.

In the multiple codebook data hiding method, since the detector forces
the extracted signal to match one of the watermark signals, one concern is
the probability of a false positive (false alarm). This is the probability of
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Figure 6-19 Probability of error performance for multiple codebook hiding

based on maximum correlation criterion and distortion-compensation type of

processing for M = 1000 and N = 500.
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Figure 6-20 Probability of error performance for multiple codebook hiding

based on minimum distance criterion and distortion-compensation type of

processing for M = 100 and N = 50.

detecting a message when no message is embedded, and it can be derived
based on the results of analysis given in Sections 6.2.2 and 6.2.3. Under the
assumption that the host signal is distributed uniformly in each quantization
interval (σ 2

C ≫ �), the extracted signal Ŵnull is iid uniformly distributed
in [−�

4 , �
4 ] and uncorrelated with any of the watermark signals. As a

result, the normalized correlation ρnull, j or the squared error distance dnull, j
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Figure 6-21 Probability of error performance for multiple codebook hiding

based on minimum distance criterion and distortion-compensation type of

processing for M = 200 and N = 100.
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Figure 6-22 Probability of error performance for multiple codebook hiding

based on minimum distance criterion and distortion-compensation type of

processing for M = 1000 and N = 500.

between Ŵnull and Wj, 1 ≤ j ≤ M, is distributed as N (0, 1
N

) irrespective

of the channel noise level.
For single codebook hiding, a false positive occurs when ρnull, j is

greater or dnull, j is smaller than a preset threshold. Using maximum cor-
relation criterion, the threshold is set based on the statistics of ρdep, which
is the normalized correlation between an embedded watermark signal and
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its extracted version, so that the embedded message can be distinguished
from the rest at a constant false-alarm rate. Respectively, using minimum
distance criterion, the threshold is determined based on the statistics of ddep.

With multiple codebook hiding, where extractions are made from
unitary transformations of the received signal, the extracted signals Ŵi

null,
1 ≤ i ≤ L, have the same statistics as Ŵnull. Consequently, the correlation
ρi

null, j and the distance di
null, j, computed between Ŵi

null and Wj, have the
same statistics as ρnull, j and dnull, j, respectively. Correspondingly, the
probability of a false positive is due to ρi

null, j being greater or di
null, j being

smaller than the preset threshold. Considering a fixed threshold for message
detection, the false-alarm rate within multiple codebook hiding increases
with a factor of L compared with single codebook hiding (as there are so
many comparisons that may yield a false positive). However, noting that
the use of multiple codebooks enables embedding a watermark signal with
less processing distortion, the correlation and distance properties of the
extracted signal are improved. Therefore, using the maximum correlation
criterion, one can afford to increase the threshold in accordance with the
statistics of ρmax. Alternately, using the minimum distance criterion, the
threshold can be decreased depending on the statistics of dmin.

The numerical solutions of Eq. (6.37) indicate that the increase in
the Pmul

e by the factor of L, compared with Pone
e , is compensated by the

embedder’s ability to better adapt the codeword to the host signal, as a
result of which detection statistics are improved from those of ρdep to ρmax.
Similarly, the linear increase in the false alarm rate with the number of
codebooks can be compensated by an exponential decrease through proper
selection of the threshold, which relies on the statistics of ρmax rather than
of ρdep. A similar reasoning based on the solution of Eq. (6.61) is valid
for the minimum distance criterion due to the improvement in distance
properties from ddep to dmin.

A complete comparison of multiple codebook hiding and single code-
book hiding schemes would involve calculating the actual probability of
errors (not the union bound), which would be extremely difficult. How-
ever, the analytical results indicate that, as in Eqs. (6.37) and (6.61), the
upper bound on the probability of error decreases exponentially for the
multiple codebook data hiding scheme. Therefore, schemes employing
multiple codebooks, rather than a single codebook, will perform better
when N is limited.
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6.2.7 Implementation and Simulation Results

Optimum codeword selection in multiple codebook hiding depends on
designing the set of transform bases T1, . . . , TL properly (i.e., they should
be able to generate maximally separated transformations of the host signal;
see Eq. (6.13)). One intuitive way of picking such a set of transform bases
is by choosing them among rotation matrices so that each transformation
of the host signal is a rotated version of the others. The multiple codebook
data hiding method is implemented by designing the transformation bases
using Givens rotations [66]. Givens rotations provide orthogonal transfor-
mations in ℜN that can be employed to rotate a given vector with a chosen
angle.

A particular transform basis Tk is obtained by the consecutive mul-
tiplication of N(N−1)

2 number of orthogonal matrices, all with determinant
1 so that the resulting Tk is unitary. Each orthogonal matrix is derived
from the identity matrix by introducing cos θk terms at (i, i) and ( j, j) loca-
tions along with sin θk and − sin θk terms at (i, j) and ( j, i) locations in
order to rotate the (i, j) coordinate plane with the designated angle θk . The
rotation angles θk , k = 1, . . . , L, are chosen by uniformly sampling 2π ,
θk = (k − 1)2π

L
.

By setting the signal size to N and the number of messages to M, the
size of the codebooks utilized by the embedder is fixed to M × N . The
watermark signals that are embedded into the host signal are generated
using a Hadamard transform matrix due to its simplicity. The Hadamard
transform matrix of size N×N and its negated version are combined into a
2N×N binary valued matrix. Every row of the combined matrix is indexed
from 1 to M = 2N , scaled by �

4 for maximum separation, and assigned
to the watermark signal Wj, 1 ≤ j ≤ M, such that E[WT

i Wj] = 0,
i �= j and i �= j + N . The host signal and channel noise are iid zero-mean
Gaussian vectors with σ 2

C ≫ PE , σ 2
Z . Prior to embedding, the permitted

embedding distortion PE is fixed, and the optimal values for the embedding
parameter � are derived for the considered WNRs. The � values are also
revealed to the detector. The parameters β and α, however, are properly
adjusted for each embedding in order to ensure an embedding distortion
of PE and are not known to the detector. The simulations are done for a
different number of transformations L and signal sizes N by embedding
and detecting randomly chosen message indices.



 

148 CHAPTER 6 Advanced Implementations

Multiple codebook hiding is implemented in the type III scheme
based on thresholding and distortion-compensation types of postprocessing
using both maximum correlation and minimum distance criteria. Message
embedding and detection with up to 25 codebooks is performed consider-
ing codebook sizes of 64 × 32, 128 × 64, and 256 × 128 and the WNR
range of 0. 1 to 1. Figures 6-23 and 6-24 display the probability of success
results obtained, respectively, for L = 1, 3 and L = 1, 4 with varying
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Figure 6-23 Probability of success performance for three-codebook hid-

ing based on thresholding processing and maximum correlation criterion for

various watermark signal sizes of N = 32, N = 64, and N = 128.
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Figure 6-24 Probability of success performance for four-codebook hiding

based on thresholding processing and minimum distance criterion for various

watermark signal sizes of N = 32, N = 64, and N = 128.



 

6.2 Multiple Codebook Data Hiding 149

N values where the postprocessing is thresholding. The increase in the
embedding signal size N , at a fixed number of codebooks, improves the
detection statistics because normalized correlation and mean squared dis-
tance give more reliable results with the larger signal sizes. On the other
hand, Figs. 6-25 and 6-26 display the performances for a thresholding

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

WNR

P
ro

b
a
b
ili

ty
 o

f 
S

u
c
c
e
s
s

L = 1 

L = 3 

L = 5 

L = 9 

L = 14
L = 25

Figure 6-25 Probability of success performance for multiple codebook hiding

based on thresholding type of processing and maximum correlation criterion

for L = 1,3,5,9,14,25 and N = 128.
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Figure 6-26 Probability of success performance for multiple codebook hiding

based on thresholding type of processing and minimum distance criterion for

L = 1,3,5,9,14,25 and N = 128.
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Figure 6-27 Probability of success performance for multiple codebook hiding

based on distortion-compensation type of processing and maximum correlation

criterion for L = 1,3,5,9,14,25 and N = 128.
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Figure 6-28 Probability of success performance for multiple codebook hiding

based on distortion-compensation type of processing using minimum distance

criterion for L = 1,3,5,9,14,25 and N = 128.

type of postprocessing when N = 128 and L = 1, 3, 5, 9, 14, 25 using the
two criteria. Corresponding results for the distortion-compensation type
of processing are displayed in Figs. 6-27 and 6-28 for both criteria. It is
observed from these performance simulations that the multiple codebook
data hiding method has superior performance vs the corresponding single
codebook method at the same N .
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The computational complexity of the proposed method depends on
the number of codebooks employed. Multiple codebook embedding, when
compared with single codebook embedding, requires the embedding of the
watermark signal into transformations of the host signal and a comparison
based on the resulting signals in order to select the transformation basis.
On the other hand, at the detector, extraction should be repeated for each
transformation basis. Therefore, the computational complexity increases
almost linearly with the number of codebooks (see Fig. 6-10).
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C H A P T E R

Major Design
Issues

Though the material in the previous chapters has addressed the basis for a
framework of optimal data hiding systems, there are many other aspects
which need to be addressed to translate the theoretical framework to prac-
tical and usable designs. This chapter addresses some issues in the design
of such systems.

In the previous chapters, we argued that the design of data hiding
systems can be loosely divided into two parts—a conventional signaling
scheme, which addresses the issue of mapping information bits to the
watermark signal W, and an embedder/detector E , D, which “mixes” the
watermark signal and the cover signal to yield the stego signal. The first
section of this chapter addresses the design of the former, viz., the pair
(W , W−1).

Further, the analysis of the data hiding systems presented in earlier
chapters assumed “synchronous” communications. In the context of data
hiding, this implies a shared knowledge of spatial or time coordinates
between the embedder and the extractor. In practice, there are many dis-
turbances in the channel that may result in loss of this synchronization. For
example, if the cover signal were an image, resizing or cropping the stego
image would result in loss of synchronization. Section 7.2 address this
issue of synchronization. However, at the risk of losing some generality,
we consider the issue of synchronization only for data hiding in images.
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Another important issue to be addressed is that of ensuring perceptual
transparency of the distortion introduced due to data hiding. The analysis
in the previous chapters has measured perceptual transparency using mean
square distortion of the watermark signal power. However, this measure is
not always useful in practice. Section 7.3 briefly discusses issues involved
in placing constraints on the distortion introduced to satisfy perceptual
transparency.

7.1 DFT-Based Signaling

7.1.1 Conventional Signaling

The conventional signaling part, viz., the pair (W , W−1), addresses the
problem of mapping a K-length bit sequence b to a possibly real-valued
sequence W of length N , where N ≫ K . As a simple approach, we have

W = [W1 W2 · · ·WK ] (7.1)

where Wi = sign(b(i))θ, i = 1, . . . , K , and θ is random vector (obtained
from a random seed or the private key K) of length N /K . On the other
hand, we could generate 2K sequences Wi, i = 1, . . . , 2K of length N ,
such that the sequences Wk are maximally separable. Geometrically, the
sequences Wk can be represented by a set of 2K points in an N-dimensional
hypersphere. In other words, the minimum distance between any two of
2K points should be as high as possible, under the given constraint of the
hypersphere radius. The binary sequence [b1 b2 · · · bK ] can be interpreted
as a decimal number between 0 and 2K − 1. For instance, transmit a
particular sequence of bits whose decimal equivalent is d, we choose
W = Wd .

Detection of the hidden bit sequence, or equivalently the number d,
can be accomplished as d̃ = arg maxi=0···2K−1〈Ŵ, Wi〉.

While it is assured that the latter scheme will approach the channel

capacity closer than the former, in practice, implementation of the second
scheme may be prohibitively expensive, especially for large K and/or N .
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A reasonable compromise might be to choose an alphabet size between
2 of the former (bit-by-bit signaling) technique and 2K of the latter. For
example, if the alphabet size is chosen as 2K /k , then a single member of
the alphabet is detected from each of the k sequences of length N /k.

A signaling method based on a fast Fourier transform (FFT) proposed
in the next section offers an efficient way to increase the alphabet size used
for signaling, while keeping the computational complexity at manageable
levels. Furthermore, the maximally separable signal constellation itself is
generated from random seeds.

7.1.2 FFT-Based Signaling

In the FFT-based signaling technique, the maximally separable sequences
are constrained to be orthogonal. Let Wk ∈ ℜLk , Lk = 2pk−1. Maximally
separable signature sequences Wl

k , l = 1, . . . , 2pk , corresponding to pk bits,
are obtained as Lk orthogonal sequences and their negatives. Random sig-

nature spaces are generated from a seed. This is achieved by constraining
the signatures to be cyclic all-pass sequences.

7.1.2.1 Cyclic All-Pass Sequences

Let h ∈ ℜN and H = F(h), where F(·) stands for the DFT. Further, let h

be such that

|H(n)| = 1 for n = 0, 1, . . . , N − 1. (7.2)

Hence

(H · H∗) = [1, 1, . . . , 1]. (7.3)

Taking the inverse DFT (IDFT) of both sides of Eq. (7.3), we get

F−1(H. H∗) = [1, 0, 0, . . . , 0]. (7.4)

As F−1(H · H∗) is the circular autocorrelation of the vector h, it follows
that all circular shifts of h are mutually orthogonal [67]. As the phases
φn, n = 0, 1, . . . , N − 1 of the elements of H can be arbitrary, we have
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infinitely many choices for the vector h with mutually orthogonal circular
shifts. For real h we have N /2− 1 phase values, which can be arbitrarily
chosen. Thus a pseudo-random all-pass sequence of length N can be gen-
erated from a pseudo-random (uniformly distributed between π and −π )
sequence of length N /2− 1. If

φk =

⎧
⎪⎨
⎪⎩

0 or π k = 0, k = N /2

θk k = 0, . . . , N /2− 1

−θN−k k = N /2+ 1, . . . , N − 1

H(k) = cos(φk)+ i sin(φk), k = 0, . . . , N − 1, (7.5)

where θk , k = 1, . . . , N /2−1 are randomly distributed between π and−π ,
i =

√
−1, then h = F−1(H) is a cyclic all-pass sequence.

Alternately, a pseudo-random binary sequence is generated from a
seed. Then, the unique all-pass sequence “closest” (in the mean square
sense) to the binary sequence is obtained (this guarantees that the signature
energy will not be concentrated in a few coefficients).

Let f = [ f (0) f (1) · · · f (N − 1)] be a random binary sequence. We
need to find the all-pass sequence that is closest to f. In other words, we
need to find the vector h = [h(0) h(1) · · · h(N − 1)]T that minimizes the
error ε defined as

ε =
N−1∑

n=0

|h(n)− f (n)|2 (7.6)

subject to the constraint that h is a cyclic all-pass sequence. Since
the DFT of a (cyclic) all-pass sequence can be written as H =
[e jφ0 e jφ1 · · · e jφN−1], let

h(n) =
N−1∑

k=0

e j( 2πkn
N
+φk) f (n) =

N−1∑

k=0

ake j( 2πkn
N
+θk)
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for n = 0, . . . , N − 1. It can be easily shown (see Appendix C) that the
error ε is given by

ε = N

[
N − 2

N−1∑

k=0

ak cos(φk − θk)+
N−1∑

k=0

a2
k

]
. (7.7)

The error is minimized if we choose φk = θk for k = 0, 1, . . . , N − 1.
In other words, we choose H to have the same phase as F, while the
magnitude of all coefficients of H are set to unity.

7.1.2.2 Signal Constellation

The procedure employed for generating the maximally separable sequences
is as follows:

(1) From a random seed, generate a binary (±1) sequence ek of
length L = 2pk−1.

(2) Obtain the length-Lk DFT Ek of the binary sequence.
(3) Obtain Sk from Ek such that |Sk(l)| = 1, l = 1, . . . , Lk and

∠Sk(l) = ∠Ek(l), l = 1, . . . , Lk .
(4) Take the length-Lk IDFT of Sk to obtain Wk . Wk is a cyclic all-

pass function. All Lk = 2p−1 cyclic shifts of Wk are orthogonal.
(5) Wk and the other Lk − 1 cyclic shifts of Wk , and their negatives,

are the 2pk maximally separable sequences.

Note that the inner product of the sequence Wk of length Lk with each
of the 2Lk = 2pk maximally separable sequences can be obtained by one
length-Lk cyclic correlation efficiently implemented using the FFT. The
index of the maximum absolute value of the cyclic correlation coefficients
gives then detected sequence of p bits. Let 0 ≤ dk ≤ 2pk−1 be the decimal
representation of Wd

k .

Wd
k =

{
αC(Wk , dk) if dk < 2p−1

−αC(Wk , dk − 2p−1) if dk ≥ 2p−1
(7.8)
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where C(x, q) stands for cyclic shift of the vector x by q (counter clockwise)
positions, and α is a scaling factor that depends on �. For detection,

Rk = F(Wk)F(Ŵk) rk = F−1(Rk) (7.9)

where F denotes the DFT, and

d̃k =
{

arg maxi=0···Lk−1 |rk(i)| if rk(i) > 0

arg maxi=0···Lk−1 |rk(i)| + Lk if rk(i) ≤ 0.

An easier way of generating cyclic all-pass sequences Wk would be to
generate them in the DFT domain by choosing unit magnitudes for DFT
coefficients, but choosing the phases randomly. However, we need binary
sequences of length �

4 for the optimality of the practical type III schemes
employed. Steps 1–4 ensure that the generated watermark signal (signa-
ture) Wk is an all-pass sequence closest in the mean square sense to the
binary random sequence ek .

The choice of the length Lk of each segment (which in turn decides
the alphabet size) will depend mainly on the correlation ρ (the correlation
measured between the embedded and extracted watermark signals) for the
particular choice of embedding and detection parameters (i.e., � and β

for thresholding type of postprocessing). Typically, the lower the value
of ρ, the higher will be the value of Lk . Obviously, other factors like
computational complexity may also influence the choice of Lk .

As the segment lengths are restricted to be powers of 2 for efficient
implementation of the FFT, smooth trade-offs between bit rate and the
probability of error can be achieved only by redundant signaling. In the next
section, we propose a suitable and practical redundant signaling technique
for improving the overall efficiency of the signaling method.

7.1.2.3 Redundant Signaling

For the proposed FFT-based signaling technique, we propose a combina-
tion of Reed-Solomon (RS) encoding [68] and introduction of parity for
error correction. A sequence of d-bit symbols D1 to Dn is RS encoded over
GF(2d), with block size of 2d − 1 (if n < 2d − 1, the “shortened” code
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can be easily implemented by zero-padding D1 · · ·Dn to length 2d − 1 and
considering the nonexistent symbols as “erasures” at the decoder). The
RS-encoded sequence of d-bit symbols is then “appended” with q-parity
bits to produce a p-bit symbol sequence, where p = d + q.

Signaling with parity can be done efficiently for the FFT-based tech-
nique. To introduce one parity bit (or reduce the valid points in the
constellation by a factor of 2), we choose only odd values D between
0 and 2p−1 and only even values between 2p−1 and 2p. This would corre-
spond to choosing the largest from the even-indexed coefficients of rk in
Eq. (7.9). If Lk = 2p−1 is the length of rk , the even-indexed coefficients
rek

of rk can be obtained as (proof in Appendix C)

R2k
(l) = Rk(l )+ Rk(l + LK /2), l = 0, . . . ,

Lk

2
− 1

rek
= F−1

Lk /2(0. 5R2k
). (7.10)

In this equation, F−1
Lk /2(·) is an Lk/2-point IDFT (the factor 0. 5 is irrelevant,

as our intention is only to pick the coefficient with the highest magnitude).
For introducing q-parity bits (in the segment Lk representing p bits, where
p = q + d), valid points in the constellation are given by

D =
{

m2q − 1 D < Lk − 1

m2q Lk ≤ D < 2Lk

m = 0, 1, . . . ,
Lk

2q
. (7.11)

In this case, only coefficients of rk with indices that are multiples of 2q are
needed. For l = 0, . . . , Lk/2q − 1,

Rqk
(l) =

2q−1∑

i=0

Rk

(
l + i

Lk

2q

)
rqk
= F−1

Lk /2q(Rqk
).

Signaling with parity is especially useful for very low SNR data hiding (if
ρ is very small, which results in large p or Lk).

For example, let c ∈ ℜ8192. For a low-noise scenario we may use
segment lengths of Lk = 64 for each p= 7 bit symbol (Lk = 2p−1). In such
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a scenario, we may use, for example, a block of RS code (127,111)
over GF(27= 128), which can correct up to eight errors in each block of
length 127 (number of source bits = 1 block × 111 symbols per block ×
7 bits per symbol = 777). However, if the SNR is low, we use segment
sizes of Lk = 1024 ( p= 11). If we do not employ parity bits, we need
to use an RS code, say (2047, 2045). The maximum block size possible
is, however, 8192/1024= 8. We need a shortened code. We may start
with a source of six 11-bit symbols (66 bits), zero-padded to length 2045,
and then perform (2047,2045) RS encoding, which can correct one error
out of the eight transmitted symbols. Obviously this is computationally
expensive. An alternative is to use Lk = 512 and p= 10, and also have
q= 5 parity bits. We may now start with fourteen 5-bit source symbols
(70 bits) and zero-pad it to a length-29 symbol block. This is followed
by a computationally simple RS encoding (31,29). The first sixteen 5-bit
symbols obtained after RS encoding are then made into 10-bit symbols
by introducing 5 parity bits (which is done efficiently in the FFT-based
method). For detection, the parity bits are stripped first to obtain a 16-
symbol sequence of 5-bit symbols. This may be zero-padded to length 31
and RS decoded.

For data hiding applications in which computational complexity of
detection is not a serious limitation or channel noise is low (implying small
p), signaling with parity would be suboptimal. However, if p is large and
q = 0 (or d = p), then RS encoding/decoding may become prohibitively
expensive.

7.2 Synchronization

In some data hiding applications like image, video, and audio watermark-
ing, preserving the synchronization between the embedding and detection
operations becomes crucial. In such contexts, synchronization refers to the
accuracy of the detector’s information on spatial and temporal coordinates
of the watermark signal in the stego signal. When the actual coordinates of
the embedded watermark signal are different from the ones supposed by the
extractor, detection performance may degrade significantly even though
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the traces of the watermark signal are present in the stego signal. Therefore,
removing the synchronization between embedder and detector becomes a
more effective attack than, say, attempting to “erase” the watermark signal
from the stego signal. Geometric transformations like rotation, scaling,
and translation (RST), warping, and signal cropping are the most com-
mon forms of desynchronization attacks [69], [70], [71]. For successful
extraction of the watermark signal, data hiding methods require tools
and techniques for restoring the synchronization efficiently, e.g., [72],
[73], [74].

In the following sections, a hiding technique based on type III
methodology with a thresholding type of postprocessing is proposed for
watermark recovery from stego signals consecutively subjected to crop-
ping and resizing operations. These attacks pose a threat of poor watermark
detection due to signal transformation and signal loss. Hence, the detector
has to be synchronized with the distorted stego signal prior to watermark
extraction.

In general, if a particular desynchronizing attack can be modeled
as a transformation, watermark detection could depend either on embed-
ding in a domain that is invariant to that transform or on the ability to
estimate the applied transformation by the attacker and invert it before
detection. One particular technique that enables estimation of such trans-
formation in the face of many different types of desynchronization attacks
is periodic embedding and estimation of the transformation through cyclic
autocorrelation.

It is shown that cyclic autocorrelation peak pattern (periodicity fea-
tures of the signal) can specifically be used for calculating the resampling
factor and estimating the amount of cropped data (i.e., number of deleted
samples in a vector, number of pixels of line in an image). Therefore, the
resampled signal can be restored to its original size.

The information loss due to cropping is countervailed by multiple
embedding and redundancy coding of the watermark signal. Although
multiple embedding is not an ultimate remedy to cropping, the motivation
is that all replicas cannot be completely distorted simultaneously due to
the perceptual constraints. Figure 7-1 is a representation of signal crop-
ping and resampling. Erasures in the stego signal require reinstatement
of synchronization. Synchronization is achieved by designing watermark
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Figure 7-1 Representation of cropping and resampling consecutively.

signals in the form of all-pass filters that are orthogonal to all their cyclic
shifts (Section 7.1.2.1). The phase of the all-pass filter is modulated by
the message to be conveyed. RS error correcting codes are used for both
introducing redundancy and achieving synchronization.

7.2.1 Autocorrelation for Restoring the Cropped Signal

Let a periodic signal V be obtained by combining n replicas of the signal W

of length T1 (Fig. 7-1). V is arbitrarily cropped out, VC , and the resulting
signal is resampled by the factor 1/τ = T2/T1, VCR. Then, T2 is the size
of the resampled W. Let n be a large integer number; Te be the amount
of signal (number of coefficients) cropped from V, where Te < T1, and
L = nT2 − Te/τ be the length of VCR. The resampling factor can also be
defined as 1/τ = L/(nT1 − Te). The autocorrelation RVCRVCR(m) of VCR is
computed as

RVCRVCR(m) =
L−|m|∑

k=1

VCR(k)VCR(k + m). (7.12)

In order to recover W, the cropped resampled signal VCR of size
nT2 − Te/τ has to be restored to the cropped signal VC with size nT1 − Te

by resampling with the factor τ . The autocorrelation function of VCR is
used to estimate 1/τ depending on information about V available to the
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extractor (i.e., size of V, size of W). It will also be seen that the autocorre-
lation peak pattern provides insights into the nature of the croppings even
when croppings occur at multiple positions (note that if two or more consec-
utive samples in V are cropped, they will be considered a single cropping).
The total amount of cropped signal is assumed to be much smaller than
the size of V, Te ≪ nT1. The justification for this assumption is that in
a typical attack scenario, due to perceptual constraints, the attacker can-
not make radical changes on signal size V. Therefore, all copies of W

cannot be cropped fatally at the same time. Consequently, in the corre-
sponding autocorrelation function of VCR the peaks observed at T2 shifts
of the origin, RVCRVCR(±iT2), where i ∈ Z , will be relatively greater in
strength compared with other peaks, irrespective of the number of crop-
pings. Given that T1 is known at the extractor, the resampling factor can be
found by measuring T2 through distances between the dominant peaks in
the autocorrelation function and calculating T2/T1. Alternately, if the size
of V prior to cropping, nT1, is known rather than the size of W, 1/τ can be
calculated using the relative peak locations of the autocorrelation function.

Considering the single cropping case of amount Te, the autocorrela-
tion function of the signal VCR will indicate the presence of two periodic
components with the same period, T2 = T11/τ . The first component is
identified by peaks at T2 shifts of the origin. The second, on the other
hand, generates peaks at the shift of T2 − Te1/τ with respect to zero shift
and at T2 shifts thereafter. In other words, the first component is due to
resampled copies of signal W in VCR, and the second one is due to the
cropping. In the autocorrelation, at every T2 − Te1/τ shift following a
T2 shift, the incomplete signal period coincides with a copy of itself and
generates a peak. The peaks corresponding to the latter component are
weaker in signal strength compared with the former due to the incomplete
W. Therefore, other than the peak at the zero shift, every peak at T2 shifts
(with respect to zero shift) is accompanied by a peak due to cropped W

(assuming n is large enough). The distance d between the peak at kT2,
k ≤ n, and (k − 1)T2 + T2 − Te1/τ is calculated as

d = kT2 −
(

(k − 1)T2 + T2 − Te

1

τ

)
,

= Te

1

τ
. (7.13)
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Being able to measure Te/τ and T2, the resampling factor τ is calculated
as τ = nT2/nT1 or τ = T2/T1 based on availability of nT1 or T1. Then
the total cropping amount Te is calculated using Eq. (7.13). It should also
be noted that given either of nT1 or T1, one can determine either using τ

and T2.
Now we shall consider the double cropping case where Te1 and Te2

are the amounts of the nonoverlapping cropped samples (Te1 and Te2 refer
to croppings of W at different locations) from V with Te1+ Te2 < T1. The
autocorrelation function of VCR may have up to four peaks in every T2

interval that are (k− 1)T2, k ≤ n, away from zero shift. These peaks may
appear at kT2 − (Te1 + Te2)/τ , kT2 − (Te1)/τ , kT2 − Te2/τ , and kT2. The
last one is due to resampled copies of W and has the highest correlation
value. Others are due to cropped-resampled copies of W and have smaller
strengths. If no croppings are present in the first and last periods of W,
for relatively large n and T1, the distance, d, between the first and the last
peak in any T2 interval is measured as (Te2 + Te1)/τ . Similar to the single
cropping case, nT2 and 1/τ = nT2/nT1 are consequently computed.

For more croppings followed by resampling, a similar analogy is
applicable. If Te1, . . ., Tem are the amounts of the nonoverlapping cropped
signals and Te1+· · ·+Tem < T1, there may, at most, be 2m peaks at every
shift based on how the signal V is cropped (i.e., the number of croppings
in each period of W, the location of a cropping in the period W, the neigh-
borhood of the cropped periods). These croppings may yield correlation
peaks at 2m locations in a T2 shift (assuming each cropping is nonoverlap-
ping with the others and considering that the first and last periods are not
cropped). Corresponding peak locations in the autocorrelation function are

at kT2 −
∑j=m

j=1 Tej/τ , kT2 −
∑j=m

j=1, j �=i Tej/τ for ∀i, kT2 −
∑j=m

j=1, j �=i,l Tej/τ
for ∀i, l such that i �= l, . . . , kT2 − Tej/τ for ∀j, and at kT2. Then, the dis-
tance d between the first and last peaks in a T2 shift can be used to estimate
the total erasure amount.

When the first and last periods of the signal V are cropped, the auto-
correlation function may not generate a peak at kT2− (Te1 + · · · + Tem)/τ .
Therefore, the distance d, measured between the first and the last peak at a
T2 shift of the autocorrelation function, does not indicate Te/τ . However,
as will be explained in Section 7.2.3, d may still be measured using cyclic
autocorrelation features for such croppings. Further, if both T1 and nT1 are
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known at the extractor, the amount of cropping, Te, can also be determined
by measuring d and 1/τ using Eq. (7.13).

7.2.2 Practical Concerns

Calculating the resampling factor 1/τ correctly depends on identifying
correlation peaks and determining their relative locations in the autocor-
relation function. However, some peaks may be buried in the correlation
noise, which makes peak detection unreliable. Designing white noise like
W signals and using cyclic autocorrelation are two remedies available for
measuring d reliably.

7.2.2.1 Watermark Signal Design

The design of the signal W is critical, as autocorrelation properties of
W characterize those of V. Designing W as an all-pass filter which is
orthogonal to all its cyclic shifts [67] gives one freedom to hide information
by modulating the phase of the W as well as the improved autocorrelation
properties (Section 7.1.2.1). An all-pass filter W of size T1 gives (T1 − 1)/2
degrees of freedom in modulating its phase, if T1 is odd ((T1 − 2)/2 degrees
of freedom if T1 is even).

7.2.2.2 Cyclic Autocorrelation

Cyclic autocorrelation enhances the correlation peaks due to signal wrap-
ping in the autocorrelation function. Assuming VCR has undergone
multiple croppings of Te1, . . . , Tem, the corresponding cyclic autocorre-
lation can be obtained from the autocorrelation function by flipping the
signal range ((nT2)/2 −

∑j=m

j=1 Tej/2τ , nT2 −
∑j=m

j=1 Tej/τ ] and adding it

onto signal range (0, (nT2)/2 −
∑j=m

j=1 Tej/2τ ]. After signal wrapping,
the new coordinates for autocorrelation peaks in the range ((nT2)/2 −∑j=m

j=1 Tej/2τ , nT2 −
∑j=m

j=1 Tej/τ ] are found by subtracting their coordi-

nates from nT2 −
∑j=m

j=1 Tej/τ , which always coincide with one of the 2m

peak locations. For instance, if VCR has been cropped once by removing Te

samples, autocorrelation peaks at kT2 and kT2− Te/τ for k > n/2 translate
to (n−k)T2−Te/τ and (n−k)T2 in the cyclic autocorrelation function. For
the general case, the peaks at kT2−

∑j=m

j=1 Tej/τ , kT2−Tei/τ for i ≤ m and
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Figure 7-2 Computing total cropped amounts using cyclic autocorrelation

RVCVC
. (a) Cropping once, Te = 20. (b) Multiple cropping, Te1 = 40 and

Te2 = 20.
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kT2, respectively, translate to (n − k)T2, (n − k)T2 −
∑j=m

j=1,j �=i Tej/τ and

(n− k)T2 −
∑j=m

j=1 Tej/τ , making peak detection easier. Correspondingly,
the autocorrelation peaks with the highest strength (due to cropped and
resampled W) will be translated to (n− k)T2 and (n− k)T2 −

∑m
i=1 Tei/τ

irrespective of the cropping pattern. Then, the resampling factor τ = T1/T2

(or nT1/nT2) is reliably calculated by measuring the distance d between the
two peaks, Te/τ = (Te1 + · · · + Tem)/τ .

Figure 7-2a–b displays the cyclic autocorrelation functions,
RVCVC (m), for single and double cropping cases. Signal W has a size
of 90, and V is generated from 11 replicas of W. In Fig. 7-2a, VC is
generated by cropping V once by removing the first 30 samples of the sixth
period. On the other hand, in Fig. 7-2b, V is cropped twice by removing
the middle 40 samples of the third period and the last 20 samples of the
fifth period. In both figures, the peaks at multiple shifts of 90 (the size of
W) are easily identified, τ = 1. Every shift of size 90, corresponding to
the size of W, contains two peaks in Fig. 7-2a and four peaks in Fig. 7-2b.
The distance d = Te, the number of erased samples, between the peaks in
the former is 30 and between the first and fourth in the latter is 60.

7.2.3 Synchronization

The restored cropped signal must be repartitioned to recover W. Since it is
not certain which partitions are affected by cropping, the extractor needs
some markers for reestablishing the synchronization. Most of the partitions
contain signal W or a translated version of it. While some other partitions
have cropped and translated versions of W, RS error correcting encodes
for generating W and handling synchronization. Since it is highly likely
that most partitions will carry a cyclic-shifted version of W, errorless
decoding will be possible when the partition is reordered. Thus, given
enough redundancy, both robustness to signal loss and synchronization
are achieved, and errorless decoding of most of the partitions is possible
at some cyclic shift of the partition.

7.2.4 Results

We implemented the methodology on a 512× 512 graylevel Lena image,
Fig. 7-3-a. Message m is assumed to be a sequence of 32 bits. The signal W
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takes the form of the watermark signal corresponding to m with a constraint
on the correlation properties. Hadamard transform matrix is designated as
the codebook and its orthogonal rows are mapped to codewords that are
employed in watermark signal generation.

The message bit sequence is translated into words. Then the message
words are redundancy coded using RS error correcting codes. Using the
codebook, encoded message words are BPSK (binary phase shift keying)
modulated and ordered in a way that fulfills the frequency domain sym-
metry requirements for the phase of the all-pass filter in order to generate
the watermark signal W. The watermark signal is chosen to be a 32× 32
all-pass filter, which provides the hider with 32×32−4

2 = 510 phase samples
to modulate by the coded message m. Then, 16 copies of the watermark
signal are embedded throughout the whole image.

The watermarked image is cropped, and in order to compensate the
reduction in size, it is resampled back to its original size. At the extrac-
tor, a copy of the watermarked, cropped, and resampled image is divided
into partitions of size W. Watermark detection for each partition is fol-
lowed by the two-dimensional cyclic autocorrelation of the detected set
of signals. Using correlation peak pattern, resampling factor τ is esti-
mated. The extractor, knowing an estimate of the total cropped amount
but not their locations, resamples the image back to its size after crop-
ping. Hence, the disturbing effects of the resampling can be reversed or
at least minimized. This image is then repartitioned and the watermark
extracted. Since extracted watermark signals may have been cropped and
translated, an immediate detection of message m is not possible. RS codes
are used to detect the message m from the extracted watermark signal,
since they are capable of correcting burst error. The two-dimensional sig-
nal is shifted in rows and columns until an errorless decoding is possible.
High redundancy coding helps in detecting message m even under severe
signal loss.

Figure 7-3a–d displays the results for the described method applied
on the Lena image, Fig. 7-3a. The watermarked Lena image is displayed
in Fig. 7-3b, where the MSE per coefficient due to embedding is 6. 9 (40
dB in PSNR). Figure 7-3c is the watermarked image cropped twice in both
dimensions to a size of 488×488. Each cropping is the erasure of 12 lines
of pixels in either horizontal or vertical dimension. The cropped image is
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Figure 7-3 (a) Lena image. (b) Watermarked image. (c) Cropped image after

watermarking. (d) Resampled image after cropping, and estimation of cropped

amounts from the resampled image by projecting the two-dimensional auto-

correlation function onto (e) horizontal dimension and (f) vertical dimension.
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resampled back to its original size of 512 × 512 in 7-3d. Figure 7-3e–f
shows the projections of the cyclic autocorrelation function onto horizontal
and vertical dimensions. The distance between the first and last peaks in
each period, corresponding to the size of the watermark signal enlarged
by the resampling factor, of the cyclic autocorrelation function is d = 25,
which has an estimation error of 1 line of pixels in both dimensions. T2 is
also measured using the Fig. 7-3e–f as 33 at some shifts and as 34 at most
of the others, 32

34 < τ < 32
33 . The image in Fig. 7-3d is resampled to a size

shorter by 24 (Te = round(25 × 32
34 )) lines of pixels in each dimension,

partitioned in 32 × 32 blocks and watermark detected. Extracted signals
from each block are averaged. Then the averaged signal block is decoded
in cyclic shifts of rows and columns until an errorless decoding is possi-
ble. For the presented implementation, the redundancy rate is around 1

15(
32

510

)
. RS codes were successful in detecting the 32-bit message m with no

errors.

7.3 Perceptual Constraints

As the resource of the communication between the hider and the attacker
is the total imperceptible distortion that can be introduced into a given host
signal, achieving the optimal rate vs robustness performance requires a
higher-level understanding of the host signal in the perceptual sense. Data
hiding methods, most generally, approach the problem by incorporating
simplified perceptual models or the findings of perceptual compression
with the embedding process.

Most elaborate formulations of data hiding (as discussed in this chap-
ter) rely on a fixed distortion measure, e.g., MSE distortion, for analytical
tractability. Hence, the corresponding analyses and results oversimplify
this aspect of the problem. Evaluated from an imperceptibility perspective,
type I methods can exploit the host signal information better than type II
or type III methods.

Within the additive schemes, embedding is done by adding a scaled
version of the watermark signal to the host signal or to a transformed ver-
sion of it. The proper weighting for each watermark signal sample can
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be locally determined according to just-noticeable-difference thresholds
and masking principles, thereby complying with perceptual constraints.
In quantization-based techniques, however, the distortion introduced into
each host signal coefficient can be controlled only in an indirect manner,
by adjusting either the quantization step size or the amount of process-
ing distortion. Since the optimization procedure for the embedding and
detection parameters assumes power-limited distortion, which disregards
the perceptual properties of the host signal, the corresponding embedding
operation is nonoptimal in terms of perceptual criteria. In this respect,
scalar quantization-based embedding/detection schemes provide a better
control, since each coefficient is embedded individually and � or the
postprocessing parameter can be selected to comply with perceptual con-
straints, whereas in schemes that employ high-dimensional quantization,
the introduced distortion due to embedding is minimized over the quan-
tized vector, which would not necessarily limit the distortion introduced
into each coefficient.

In order to achieve imperceptibility, type II and type III methods
select the power constraint conservatively. This leads to an underutiliza-
tion of the communication resource. Compared with type II methods, the
postprocessing involved in type III methods gives the hider another degree-
of-freedom into controlling the distortion introduced into each host signal
sample. Hence, the embedding parameter that designates the amount of
processing distortion introduced into the quantized host signal (i.e., β in
thresholding, α in distortion compensation, σV in Gaussian mapping) can
be fine-tuned in accordance with the perceptual features of the host sig-
nal. Thresholding and distortion-compensation types of postprocessing
can be readily adapted to applications with more strict imperceptibility
requirements through adjusting β and α, whereas with Gaussian mapping,
modulating the processing distortion is a more complex task due to the
nonlinear transformation. However, the optimal approach is to revise the
optimization procedures given in Section 5.2 (Eqs. (5.33), (5.37), and
(5.39)) by taking into account the perceptual properties of the host sig-
nal as constraints (rather than limiting the distortion power to P) during
the optimization of embedding/detection parameter values. This is prob-
ably the next step for future research in quantization-based embedding
methods.
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7.4 Attacks on Data Hiding Systems

The vast majority of research in the field of information hiding is motivated
by ownership protection, copy and access control, and authentication of
digital media content, e.g., image, audio, video. Common to all of these
motives is the likely presence of intruders willing to modify contents that
have undergone processing, with the intention of nullifying aforemen-
tioned efforts. Correspondingly, the research focus in this direction is the
design of information hiding methods that can survive very sophisticated
attacks while exploiting the perceptual characteristics of the cover signal to
the fullest. In this setting, robustness of a scheme, rather than its capability
to convey maximum amount of information, is central to the evaluation
process. This has drawn a lot attention to the design of optimal attack strate-
gies. In this section, the conventional and the state-of-the-art attacks are
reviewed and categorized by highlighting the research direction in this field.

Attacks on a stego signal intend to impair the detector’s ability to
extract the message signal through all possible means without perceptually
modifying the stego signal. The research in attack design grows at a pace
that parallels the improvements in embedding/detection techniques [69],
[70], [75], [76], [77], [78], [79]. The initial phase of attacks evolved
mainly by applying common signal processing operations. This type of
operation lacks the ability to apply the optimal attack, as it does not fully
exploit any prior information on the embedding process or cover signal
but, rather, attacks in a blind manner. However, these attacks have led to
great success by pointing out common deficiencies of many methods and
instigating improvements to resist such manipulations.

From the game-theoretic point of view, as put forth in [42] and [43],
the solution of the game between hider-extractor and attacker depends on
the attacker’s information on the hider’s strategy. Therefore, designing
attacks that do not utilize any available information on the embedding
scheme, cover signal, and embedding distortion may yield overly opti-
mistic results for the method. The type of attacks that intend to compensate
for this drawback, by more effective design, constitute the second phase
[77], [79]. These attacks rely on estimating either the original cover signal
or the watermark signal from a given stego signal generated by an additive
embedding scheme. Then the stego signal is attacked by either removing
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the watermark signal or remodulating the stego signal so that the attacked
signal has no traces of the watermark signal.

The attacks on information hiding systems can be classified into four
categories based on how the watermark extraction operation is impaired.
These are:

• Removal attacks

– Blind attacks
– Estimation attacks

• Desynchronization attacks
• Security/cryptographic attacks
• Protocol attacks

In the following sections, each category is briefly described.

7.4.1 Removal Attacks

This type of attack aims at removing the watermark signal so that a con-
clusive extraction of the signal is not possible. Based on the underlying
principle for removal, these attacks can be grouped into two kinds: blind
attacks and estimation attacks. The former assumes that the stego signal is
a distorted version of the cover signal and tries to remove the noise without
any reference to the original, whereas the latter models the cover signal
and the embedding distortion statistically and removes the noise by proper
filtering.

7.4.1.1 Blind Attacks

(1) Noise Addition. A random noise is added to the stego signal in
order to garble the embedded watermark signal. The success of
the attack depends on the power and the correlation of the noise
with the embedding distortion.

(2) Digital(D)/Analog(A) to A/D Conversion and Quantization.
These are effective against embedding schemes that do not effec-
tively exploit the cover signal’s features for embedding; e.g.,
embedding by manipulating LSBs of the cover signal, even/odd
modulation.
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(3) Filtering. A simple filtering operation can be used to remove
the signal content in the perceptually insensitive bands. This
attack can be effectively used to distort the pseudo-noise-like
and high-pass watermark signals.

(4) Statistical Averaging and Collusion Attacks. When the attacker
has access to multiple copies of a cover signal watermarked with
different keys or watermark signals, the attacker can successfully
produce a signal with no watermark signal. If the embedding
distortion is independent of the cover signal, averaging the stego
signals will cause the watermark signals to cancel each other or
will generate an unrecognizable noise signal. Alternately, the
attacked signal can be generated by combining different parts of
the stego signal.

(5) Perceptual Quantization. A quantization tuned to perceptual fea-
tures of the cover signal may remove all the redundancy in the
stego signal. Thus, the watermark signal can be removed or
impaired severely.

(6) Multimedia Processing. Common multimedia processing tech-
niques used in analyzing media data provide powerful means
to modify the contents. For example, image processing opera-
tions like blurring, sharpening, edge enhancement, despeckling,
histogram modification, Gamma correction, brightness and/or
contrast changes, and color quantization can be applied on the
stego signal in order to render the watermark signal undetectable.
Similarly, the watermark signal embedded in a stego audio signal
can be distorted by processings like time stretching, zero cross
insertions, copying/cutting samples, and reverbing.

7.4.1.2 Estimation Attacks

In estimation-based attacks, the attacker assumes priors on the original
cover signal and the watermark signal. Then, using one of the stochastic
criteria such as MAP (maximum a posteriori), ML (maximum likelihood),
or MMSE (minimum mean squared error criterion), the original signal or
the embedding distortion is estimated.
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(1) Denoising Attack. The cover signal is estimated and the stego
signal is replaced by the obtained estimate.

(2) Remodulation Attack. The embedding distortion is estimated,
and then the modulation applied to the cover signal in generating
the stego signal is reversed.

7.4.2 Desynchronization Attacks

The attacks in this class intend to remove synchronization between the
embedder and the detector rather than removing the watermark signal.
Therefore, the detector is, ideally, able to recover the embedded signal
once the desynchronization attack is identified and reversed, although this
may be a very high complexity task.

7.4.2.1 Geometric Attacks

These attacks include common image processing manipulations applied
on a global and local scale. Some of the most common manipulations
are RST change in aspect ratio, shearing, line or column removal, crop-
ping, random alterations (e.g., random bending), and jittering. Unzign
and StirMark are two popular software packages that enable applying a
combination of these attacks to a given stego signal.

7.4.2.2 Mosaic Attack

This attack relies on the assumption that an extractor will not be able to
extract the watermark signal from a randomly chopped piece of a stego
signal. The attacker utilizes this in web-based applications by displaying a
stego signal as a tile of many pieces, without hindering the visible quality,
in order to trick the webcrawlers.

7.4.2.3 Template and Periodicity Removal

If the synchronization between the embedder and the detector is established
based on a template or a periodicity feature of the stego signal, the attacker
can simply detect and erase them. Hence, the extractor will be vulnerable
to simple geometric attacks.
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7.4.3 Security/Cryptographic Attacks

Unlike the previous two categories, this class of attacks do not intend to
remove the watermark signal or fail the extractor’s operation in a direct
manner. Rather, they try to find a secret of the employed method by
exhaustive searches for manipulating the stego signal or the extractor, e.g.,
brute search of the secret key.

(1) Oracle Attack. When the watermark extractor is available, the
attacker can remove the watermark signal by introducing small
changes to the stego signal until watermark extraction fails. With
this attack, the attacker ensures that the stego signal is distorted
no more than required to remove the stego signal.

(2) Software and Hardware Attacks: An attacker can decompile
an available software or reverse-engineer tampered hardware in
order to obtain some valuable information or to disable certain
functionalities.

7.4.4 Protocol Attacks

Protocol attacks aim at shedding doubt on the reliability of an information
hiding system.

7.4.4.1 Invertible Watermarks

If a stego signal is generated by an invertible watermark, the attacker can
create ambiguity in the ownership by subtracting his watermark signal from
the stego signal and claiming the resultant signal as his original.

7.4.4.2 Copy Attack

The attacker can use a form of estimation attack to estimate the watermark
signal embedded in a stego signal and then transfer it to another signal,
thereby creating confusion.

7.4.5 Future Direction in Attack Design

It should be noted that an attacker will usually apply a combination of the
previously mentioned attacks, thereby exposing the stego signal to a more
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vulnerable situation. This requires more sophisticated information hiding
system designs with a better utilization of the perceptual characteristics of
the cover signal, which will induce a similar action in the attack design
process. An immediate further step in this direction is to adopt more sensi-
tive distortion measures rather than the widely used MSE distortion, e.g.,
Watson’s metric. Another issue is the extension of estimation-based attacks
to more general embedding schemes, other than linear additive schemes.
Finally, the theoretical aspects of the attack design need to be addressed
within a game-theoretic framework for the practical data hiding applica-
tions. This will have a deep impact on the study of information hiding.
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C H A P T E R

Data Hiding
Applications

In this chapter we explore some applications of data hiding. Even though
there are numerous potential applications of data hiding, our explorations
are restricted to three common applications that need robust data hiding. It
is pertinent to mention here that there is a class of applications of data hiding
in which the hidden data is rendered very fragile on purpose. Obviously,
such applications are not based on the theoretical framework presented
in the earlier chapters, which try to establish techniques to maximize the
capacity or robustness of data hiding.

In particular we address three applications of data hiding. In Sec-
tions 8.1 and 8.2 we consider applications in which only robustness to
compression is needed. In Section 8.3 we consider applications in which
data hiding is required to be robust to many generic attacks. Specifically,
we address the issue of using the hidden data to resolve ownership of
watermarked content.

8.1 Design of Data Hiding Methods Robust to
Lossy Compression

In this section, we begin by exploring the intricacies of the duality of
data hiding and data compression to help develop efficient data hiding
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techniques for images that can reasonably resist lossy compression. The
problem of efficient data hiding is divided into two subproblems. The
first is maximization of the resource, which is the permitted distortion

of images. The second is the efficient use of the resource by means of
sophisticated signaling techniques. Various solutions for both problems
are proposed, and their advantages and disadvantages are discussed. We
conclude that a good solution to the first problem is to choose magnitude

DFT as the domain in which the message signal is embedded. For the
signaling method, we use a type III scheme, which uses periodic functions
to tile the space of magnitude DFTs of images with a large dimensional
signal constellation. The large dimensional signal constellation is in turn
efficiently implemented using the FFT.

Applications of data hiding can be classified in many ways. One
classification may be based on the robustness requirements of the data
hiding application. For instance, applications like watermarking typically
require robustness to intentional tampering. On the other hand, some
applications may need robustness to only unintentional attacks (attacks not
especially directed at removing the hidden data), like lossy compression.
Another classification may depend on the restrictions to be placed on data
hiding. For example, invisible watermarking is expected to resolve rightful
ownership of the multimedia content, unambiguously, in a court of law.
For this purpose many restrictions may have to be imposed [80], [81] [82],
[83] on data hiding for watermarking. In contrast, virtually no restrictions
are placed on applications like secret communications (communication
between two private parties through a subliminal channel facilitated by
data hiding). We focus on data hiding applications and methods for images
and video. We also restrict ourselves to applications that require robustness

to only lossy compression.

8.1.1 Data Hiding for Secure Multimedia Delivery

Data hiding is expected to be a boon for multimedia content providers, who
can expect to communicate with compliant multimedia players through
the subliminal channel provided by data hiding. This communication
could control access and provide customized delivery and solutions for
pay-per-view implementations [6], [84]. A compliant multimedia player
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Figure 8-1 Block diagram of a multimedia distribution system. Though the

generic multimedia players may support only a limited number of compression

formats, all the players follow the same protocol for extracting the hidden

control information. Player 3 supports three different formats, while player 5

supports only the proprietary compression format.

would honor an agreed-upon protocol for extracting (and abiding by)
the hidden control information. Figure 8-1 displays a block diagram of
a possible multimedia delivery system. Content providers (the creators
of multimedia content) can hide pertinent control information for the
multimedia players and make it available for distribution. The distributors
may compress the content using some standard or proprietary compres-
sion method before it reaches the end users (or their multimedia players).
The content may be distributed by several distributors in different formats,
understandable by different players. However, as long as all such play-
ers follow an established protocol for extracting the hidden information,
and the hidden data is able to survive all the lossy compression methods

employed by the distributors, the content providers can indirectly control

compliant players through the hidden information. Hiding the information
in the raw multimedia data ensures that the hidden data stays embedded
forever in the content.
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Unless the hidden data is extracted with a “reasonable degree of
certainty,” the compliant multimedia players may refuse to play the
content. Thus intentional tampering for the purpose of removing the hid-
den information serves to make only that particular copy of the content
unusable. On the other hand, the motivation to make it robust to all

compression methods is to facilitate more efficient distribution of the
content. Failure of the hidden data to survive a “good” compression
method makes that compression method unusable for distributing that
content.

8.1.2 Compression and Data Hiding

Multimedia compression tries to convey the information in a multimedia
content as efficiently as possible, with the fewest number of bits. Data
hiding, on the other hand, tries to sneak additional bits of information
into the original content. As the “additional information” does nothing to
improve the quality of the content, an ideal compressor would completely
suppress the hidden information.

Let I represent the space of M × N images of b bits per pixel (2MNb

possible images). Alternately, every point in I is an M × N image. As
the image is represented by fewer bits in the compressed domain, many
original image points are mapped by the compressor to one image point after
(lossy) compression (and decompression). As an example, in Fig. 8-2, all
points in the range R are mapped to a single point D.

In the figure, consider an image A (represented by +) in the region R.
Let us assume that we want to hide one bit of information in the image A

that would survive compression. The space I is completely tiled by two
regions that represent 0 or 1. For example, if the image A is located in a
region representing 0, it could be left intact if the bit to be hidden is 0. To
hide a bit 1, however, A has to be moved to a point B (represented by ∗),
which simultaneously belongs to region 1 and lies outside the range R,
so that after compression (and decompression) the image is mapped to
a different point B1. For hiding nb bits in an image that can survive com-
pression, the image has to be distorted such that after decompression the
image is mapped to any of 2nb possible points. In this case, the space of
images has to be tiled by 2nb regions.



 

8.1 Design of Data Hiding Methods Robust to Lossy Compression 183

*R D

Space of Uncompressed Images Space of Compressed Images

+

*

A

B

*B1

Figure 8-2 A lossy compression/decompression sequence maps all points in

the range R to a single point in the domain D.

Now, it is easy to see that no data hiding would be possible with an
ideal compressor. If δt is the visual distortion permitted (δt may not be a
measure of the MSE), then there exists a finite number of points to which the
original image may be “moved.” However, an ideal compressor with the
same threshold δc = δt would map all such points to a single point in
the space of decompressed images! Unless we employ different standards
(a measure of δ) for the quality of the image after data hiding and for the
decompressed image (or unless δc > δt) no data hiding would be possible

with ideal compressors. However, practical compression techniques are
not ideal. Therefore, efficient design of data hiding should utilize the holes

in compression techniques.

8.1.2.1 Data Hiding with Known Compression

When the compression method the image is likely to undergo is known in
advance, it is easier to design efficient data hiding methods. For example,
let us assume that it is known in advance that the images will undergo only
DCT-based JPEG compression with the default quantization matrix. Let us
also assume that the image is not expected to undergo compression more
severe than quality factor 50%. The best data hiding method for such a
situation would be the following [85]:

• Let Q(m, n), m = 1, . . . , 8, n = 1, . . . , 8 be the quantization matrix
for JPEG at 50% quality. The matrix is tabulated in Table 8-1.
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TABLE 8-1

The DCT Quantization Matrix Q

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

• Let K be the total number of coefficients (among the M × N 2-D
DCT coefficients of the image) that quantize to a nonzero value
when the quantization matrix Q is used.

• Let bs be a bit sequence of length K to be hidden in the image.

Fix a particular scan order for the M
8 ×

N
8 image blocks. Fix a scan order

for the 8 × 8 coefficients of each block. We hide one bit in each nonzero
(after quantization) coefficient (as a significant amount of compression is
achieved by JPEG compression due to efficient run-length coding of the
coefficients that quantize to zero, changing coefficients that quantize to
zero would affect the compression ratio of the image with embedded data).
Let C be the vector of nonzero coefficients. For i = 1, . . . , K , if bs(i) = 0,
then force the coefficient c(i) to quantize to an odd number. Otherwise force
it to quantize to an even number. If the values are forced to the midpoints
of the quantizers, then the hidden data would survive JPEG compression
of any quality as long as it is better than 50% (if they are not forced to
the midpoints of the quantizer steps, the hidden data will survive JPEG-50
but may not survive any higher quality compression, like JPEG-75!). For
extracting the hidden information, the DCT of the image blocks (of the
received image) are obtained. The DCT coefficients are quantized using
the quantization matrix Q. All coefficients quantizing to zero are ignored.
All other coefficients are arranged in the prescribed order. If the quantized
result is odd, the hidden bit is a zero. Otherwise, the hidden bit is a 1.
Figure 8-3 depicts the achievable data hiding capacities for 11 standard
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Figure 8-3 Data hiding capacities (number of DCT coefficients that quantize

to a nonzero value with quantization matrix Q) of 11 256 × 256 test images.

test images using this simple data hiding technique. However, the hidden
data is very unlikely to survive other forms of lossy compression, even if
DCT-based JPEG is used with a different quantization matrix.

8.1.2.2 Simultaneous Robustness to Multiple Compression
Techniques

Consider the space I of original images. When the compression method
is known (as in the previous section), we make use of the fact that points
(or “states”) R1 to Rn are mapped to the same points R1 to Rn in the space
of decompressed images, as shown in Fig. 8-4. Therefore, the number
of valid states of the compression method that lie within an envelope of
“unnoticeable visual distortion” is a direct measure of the number of bits
that can be hidden in an image (in the previous example, it is the number
of valid JPEG-50 compressed images within the envelope of unnoticeable
visual distortion).

The problem becomes more complicated if the hidden data has to sur-
vive multiple compression methods. Consider three compression schemes
C1, C2, and C3. In Fig. 8-5 + denotes points in I which are permissible
C1-compressed (and decompressed) images. Similarly, • and ∗ stand for
C2- and C3-compressed images, respectively. Let A be the original image
and R be an envelope of the possible points that A could be moved to with
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Figure 8-5 Data hiding with robustness to different compression methods.

unnoticeable visual distortion. If the hidden data has to survive any com-
pression scheme, then the number of possible states (2p, where p is the
number of bits that can be hidden) is limited to the number of noninter-
secting regions (marked by dotted circles) where at least one of the valid
points of each compression scheme can be found.
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8.1.2.3 Robustness to Unknown Compression Methods

However, if the exact effect of compression is not known (the valid states
are not known a priori), the job of designing efficient data hiding methods
warrants a totally different approach. Since one has no idea of the “valid”
compression points (or valid compressed images for that particular com-
pression method), the centers of the nonintersecting regions have to be
considerably well separated to ensure that at least one valid compression
point of all compression methods lies in each hypersphere. However, the
following questions arise:

• Alarge distance between the centers of the hyperspheres implies that
it may be necessary to introduce a significant amount of distortion
to move the image to a desired state. Is it possible to do that without
affecting the visual fidelity of the image?

• Assuming that it is possible to introduce a significant amount of
distortion without affecting the visual fidelity to move the image A

to a new point Â, why should a good compressor map two visually

identical images A and Â to different points in the compressed
domain?

The answer to the second question is the following. All known compression
methods try to minimize the MSE between the original and the compressed
image—in the new generation of compression methods (like EZW, SPIHT,
and IFS [fractal] image compression) even more so than the DCT-based
JPEG. This is a hole common to all compression methods and can be used
effectively for data hiding if satisfactory answers to the first question exist.
In the next section we explore solutions to the first question.

8.1.3 Utilizing the “Hole” in Compression Techniques

As stated in the previous section, if the images can be modified consider-
ably in the mean square sense without affecting the visual fidelity of the
image, then one can achieve large separation between states corresponding
to different bit sequences, and thus achieve robust data hiding.

One solution to this problem (of trying to introduce as much dis-
tortion as possible without affecting the visual fidelity) is to use good
models of visual thresholds (for example, see [86], [87]) to embed the
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After Histogram Modification After StirMarkOriginal Image

Figure 8-6 Left: Original Goldhill image. Center: Goldhill image obtained

by modifying the histogram. Though both images look similar and are of good

visual quality, the difference between the two images in terms of PSNR is 20 dB.

Right: Image obtained after StirMark. The difference between the two images

in terms of PSNR is 19 dB.

hidden bits. Many data hiding methods [88] that utilize these models have
been proposed. However, the main drawback of these methods is that
well-defined visual threshold models (e.g., in the DCT or wavelet domain)
also suggest the compression-technique means to improve their perfor-
mance. Thus, when one uses these models to add a significant amount
of signature energy to certain coefficients of the image, a better compres-
sion technique that may evolve in the future may also make use of these
visual thresholds to perhaps quantize those coefficients more coarsely. In
other words, utilizing such visual threshold models indirectly amounts to

utilizing holes that can be easily “plugged” in the future. One of the main
advantages of data hiding is that the hidden data stays with the content
forever. As compression techniques improve in the future, content distri-

bution becomes more efficient. But if the hidden data is not able to survive
those compression methods, the content loses its value. Therefore, more
useful data hiding techniques should utilize holes that are very difficult to
plug.

Figure 8-6 depicts the original 256 × 256 Goldhill image, its
histogram-reshaped version, and the image after StirMark [71] (StirMark
is a watermark attack software that introduces imperceptible geometric dis-
tortions in the image). Though the second and third images are very close to
the original in visual fidelity, their PSNRs are 20 and 19 dB, respectively!
It is clear that significant amounts of distortion (in the MSE sense) can be
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tolerated as long as the introduced distortion modifies only the histogram or

introduces small geometric distortions, or perhaps both. Hence, if we are
able to embed the hidden data by introducing geometric distortions and/or
histogram modification, a large separation between different states can be
obtained.

However, things may not be as simple as they seem at first glance.
Let I and I1 be two “similar” images (assume that I1 is derived by lossy
compression of I). Let H(I) be a function of the histogram of the pixels
of image I. If we try to embed data by specifying H(I) [89], the hidden
data will not be robust to compression. Even small modifications in the
MSE (like what may typically be introduced by lossy compression) can
change the histogram significantly. Similarly, if G(I) is a function of some
geometric features1 of the image I, and d is some metric, d(G(I), G(I1))
may be large even if d(I, I1) is small. Just as introduction of small geo-
metric distortions can cause a significant change in the MSE, introduction
of small distortions in the MSE may cause significant changes into G(·).
This is the reason that the watermarking technique proposed by Rongen
et al. [90] is robust to StirMark, but not very robust to JPEG compression.
In order to achieve robustness to compression, the well-separated states
(corresponding to the bit sequence to be embedded) have to be specified

first. Then geometric distortions and/or histogram modifications have to be
introduced to move the image close to the specified state. However, there
may not be a simple or even methodical way to do this. But if such a method
can be found and implemented with a reasonable degree of computational
complexity,2 it promises to be an excellent solution to the problem of
robust data hiding.

A practical way to introduce a large amount of distortion into the
image without affecting its visual fidelity is to modify only the magnitudes
of the DFT coefficients. Figure 8-7 (left) shows the original 256 × 256
Boats image. The center image (14.1 dB PSNR) was derived by retaining
the DFT phases of the original image and choosing random magnitudes.
In spite of the very low PSNR of the image, we see that a significant
amount of “information” about the original image is preserved. The third

1For example, in [90] the function depends on the spatial location of “salient” features.
2Computational complexity of the data embedding algorithm is not a serious limitation for the

applications proposed in Section 5. Data embedding is done only once for each content.
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Figure 8-7 Left: Original Boats image. Center: Boats image obtained by

retaining the DFT phases of the original image and choosing random magnitudes

(PSNR 14.1 dB). Right: Image obtained by retaining DFT magnitudes of the

original and choosing random DFT phases (PSNR 15.6 dB).

image (right, 15.6 dB PSNR) was derived by retaining the magnitudes of
the DFT coefficients of the original image but choosing the DFT phases
randomly. Even though the PSNR of the third image is 1.5 dB better than
that of the image in the center, the resulting image conveys almost no
information about the original. This illustrates the well-known fact that
the human visual system is much more sensitive to DFT phase than DFT
magnitudes [91].

Thus if the data embedding is done in the magnitude-DFT domain (the
states are specified by their magnitude-DFT coefficients—embedding the
data changes the magnitudes of the DFT coefficients of the original image
but leaves the phase intact), a significant amount of distortion (in the MSE
sense) can be introduced without affecting the visual fidelity of the image.
In addition, unlike the use of well-defined visual threshold models, this is
not a hole that is capable of being easily plugged in the future (compres-
sion techniques that utilize the DFT and quantize the magnitudes coarsely
and the phases finely have been proposed but have not been effective
[92], [93]).

Introducing the distortion into the magnitude-DFT coefficients (for
embedding information bits) can be achieved as follows. Let I be the

original M × N image. Let I
F⇐⇒ IF , where

F⇐⇒ stands for 2-D DFT
pairs. IF has 4 real coefficients and MN−4 complex coefficients. Only half
(D0 = MN−4

2 ) of them, however, have unique magnitudes. Let CIF ∈ ℜD0

be a vector of the unique magnitudes of the complex DFT coefficients of
IF . Every image can be represented as a point in D0-dimensional space.
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The D0 magnitude-DFT coefficients serve as the carriers for the subliminal
communication. However, as high-frequency DFT coefficients may not
be able to survive lossy compression, we shall use only a subset C ∈ ℜD

of CIF for data hiding.

8.1.4 The Data Hiding Scheme

Figures 8-8 and 8-9 show the block diagrams of data embedding and
the data detection schemes. The figures are self-explanatory, except for
the additional “Key-Based Transform” blocks. A truly secure data hiding
scheme should be difficult to crack even if every step of the algorithm for
data hiding were public. In this case, the only “secret” should be the key
K (even though it is possible to have � as part of the key, as its choice
is demanded by design criteria, one would not have very much freedom
in choosing �). If the transform employed (DFT) and the value of � are
public, then the signature can be easily “read,” especially if binary signa-
tures are used. While erasing hidden data may not be a very serious issue
for multimedia delivery, modifying it may have disastrous consequences.
Security can be vastly improved by using a key-based transform before
data embedding (and therefore before detecting). In the proposed scheme,
we use a simple key-based transform based on cyclic all-pass filters.

Let h
F←→ H, where h ∈ ℜN is cyclic all-pass (or |H(k)| = 1 ∀k).

As all cyclic shifts of h are orthogonal, they form a basis for ℜN . The
phases φn, n = 0, 1, . . . , N − 1 of the elements of H can be arbitrary, and
we have N degrees of freedom for choice of the vector h with mutually
orthogonal circular shifts. For real h we have N

2 − 1 phase values that can
be arbitrarily chosen. Thus, a pseudo-random all-pass sequence of length
N can be generated from a pseudo-random (uniformly distributed between
π and−π ) sequence of length N

2 −1. The pseudo-random sequence would
be generated from the key K. If

φk =

⎧
⎪⎨
⎪⎩

0 or π k = 0, k = N
2

θk k = 0, . . . , N
2 − 1

−θN−k k = N
2 + 1, . . . , N − 1

H(k) = cos(φk)+ i sin(φk), k = 0, . . . , N − 1 (8.1)
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Figure 8-10 Plots of achieved data hiding capacities for JPEG (left) and SPIHT

(right) compression for five 256 × 256 test images (Lena, Barbara, Boats,

Goldhill, and Girl). JPEG compression scenarios 1–5 correspond to quality

factors 75, 65, 55, 50, and 40, respectively. SPIHT compression scenarios

1–5 correspond to 1.35, 1.25, 1.15, 1.10, and 1.0 bpp, respectively.

where i =
√
−1, and θk , k = 1, . . . , N

2−1 are randomly distributed between
π and −π , then h = F−1(H) is a cyclic all-pass sequence.

A transform employing the h and all its cyclic shifts as its basis can
be easily implemented by cyclic correlation. If x ∈ ℜN is a vector of
coefficients, the corresponding transform coefficients X can be obtained as

X = F−1(F(x) · F(h)) (8.2)

and the inverse transform can be obtained as

x = F−1(F(X) · conj(F(h))). (8.3)

Figure 8-10 shows the performance of the data hiding scheme for
several test images undergoing JPEG (at various quality factors) and SPIHT
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compression (at different bit rates). From applying JPEG at quality factors
of 75, 65, 55, and 50, respectively, it was found that the resulting images
on an average were compressed to 1.35, 1.25, 1.15, 1.10, and 1.0 bpp,
respectively. So, in the figure, the X-axis for both plots (JPEG and SPIHT)
is an indication of the bit rate of the compression method employed.

Data hiding employed 8192 low-frequency magnitude-DFT coeffi-
cients. By subjecting various images to bitrate-N compression (N =
1, . . . , 5, the X-axis), the average noise variances σ 2

ν were estimated.
The permitted distortion γ was chosen depending on the overall “activ-
ity” of the image. The measure of activity used was the MSE of the image
after SPIHT compression at 1 bpp. The estimates of γ and σν were used
to obtain optimal values of embedding and detection parameters for each
scenario as described in Section 5.2 where γ 2 = σ 2

Xn
and σ 2

ν = σ 2
Z .

8.2 Type III Hiding for Lossy Compression

Data compression is the most common application that any multimedia con-
tent will undergo. Therefore, optimal design of a watermarking method for
the given compression is a very practical requirement. Given the quanti-
zation tables utilized by the compression scheme, one will know the exact
compression noise that a stego signal will undergo. Hence, compression
may be considered an attack in which the embedder has the ability to reduce
its distorting effects on the stego signal.

As discussed in Chapter 5, the major advantage of quantization-based
methods over additive schemes is that the former enables the hider to
optimize the hiding rate at the given attack level, unlike the latter. Due to
this property of type III methods, the embedding and detection parameters
can be optimized in a way that takes into account compression distortion.

In this section, a type III data hiding scheme that makes use of
the compression scheme’s quantization characteristics is presented [94].
The method incorporates embedding quantization with the quantization
of compression. Results show that joint embedding and compression has
better payload and lower compression bit rates compared with indepen-
dent compression and quantization. Hiding performance is evaluated under
JPEG compression for the thresholding type of processing; however, the
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proposed methodology is trivially applicable to any lossy compression
scheme for all types of postprocessing.

8.2.1 Joint Embedding and Compression

The motivation for modifying the embedder with respect to compression
characteristics relies on the fact that the content creator, as the distribu-
tor, has the control over both watermarking and compression. Under this
circumstance, an optimal system is the one that handles watermarking and
compression jointly rather than considering them independent.

Considering watermarking and compression apart from each other
may reduce the data hiding rate to remarkably low values or to zero. Among
all possible cases, the worst occurs when the quantization step size specified
by the compression scheme is much greater than �, the distance between
the reconstruction points of the embedding quantizers. This may remove
all the watermark and lead to zero hiding rates. Moreover, low hiding rates
may not be avoided even in moderate or high bit-rate compression levels
in such cases.

Embedding can be interpreted as introducing two forms of noise into
the host signal, namely, the distortion due to embedding quantization and
the processing distortion. The quantization involved in compression will
round embedded watermark signal values to discrete quanta values. There-
fore, the compression distortion, the difference between the watermarked
signal and the quantized watermarked signal, is another source of noise
that reduces the hiding rate. However, knowing the quantization char-
acteristics in advance, the embedder can adjust its embedding distortion
and processing distortion to lessen the effects of compression distortion.
This requires the embedder to be modified in order to make comparisons
between the watermarked signal and its quantized version, which will help
to decide on the proper embedding and detection parameters. Using the a

priori information on the compression, the embedder chooses among the
(�, β) parameter pairs that maximize the data hiding rate. (Note that, as
discussed in Chapter 5, for a permitted amount of embedding distortion,
the information hider has infinitely many choices of embedding/detection
parameter pairs.)
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The information hiding system is outlined below:

W : m −→ W,

S = EQ(C, W) = S+ Xn,

Y = S+Q+ Z, (8.4)

Ŵ = D(Y),

W−1 : Ŵ −→ m̂

where W is the watermark signal corresponding to message index m, C

represents the transformed cover signal coefficients, Xn is the type III code-
word, Q is the quantization noise due to compression, and Z is the channel
noise. Since quantization for lossy compression is generally performed in
transform domain, embedder EQ and the detector D operate on transform
domain coefficients. The distortion introduced into C due to embedding,
compression, and channel noise is measured using MSE distortion mea-
sures and is denoted by PE , PQ, and PZ , respectively. The figure of
merit used for evaluating the performance of the modified embedder is
the normalized correlation between the embedded watermark signal and
the extracted signal at varying ratios of distortion introduced by embed-
ding and compression to channel noise distortion, PE+PQ

PZ
. Corresponding

hiding rates are overestimated at a fixed PE+PQ

PZ
through calculating the

statistics of the Gaussian noise additive to the watermark signal vector so
that the watermark signal vector and the extracted noised signal vector have
the same correlation.

Comparing the joint and independent embedding/compression at the
same distortion level of PQ + PZ , the hiding rate in the former will be
higher as the mutual information between the W and Ŵ is higher, due to
interrelated Xn and Q. What is not so readily obvious is that better compres-
sion of the watermarked signal is possible when embedding is coordinated
by the compression. As the embedder tries to minimize quantization noise
by changing the embedded signal value with respect to its reconstruction
value at the output of the quantizer, entropy of the quantized watermark
signal decreases.
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Figure 8-11 (a) Hiding rates for joint and independent embedding/

compression. (b) Entropy of the quantized embedded signals.

Figure 8-11a displays the hiding rate vs robustness performance
obtained for synthetically generated data using both joint and independent
embedding/compression. The host signal C is assumed to be an iid Gaus-
sian vector. For compression, a quantization step size of 6� is assumed
for all coefficients. Fig. 8-11b displays the entropies for the watermarked
signal after quantization for the same set of data. Joint embedding and
compression has higher payload and provides a better compression of
the watermarked signal when compared with independent embedding and
compression.

8.2.2 Results for JPEG Compression

The method is implemented on a 256×256 sized test image where embed-
ding is followed by a JPEG compression scheme [95]. A quality-factor
concept introduced into the compression standard enables the provider to
compress at various bit-rate values by scaling the built-in quantization
tables. Transformed block coefficients are combined coherently into chan-
nels in which the first channel (00-channel) corresponds to DC coefficients
and the rest of the 63 channels are for AC coefficients. The watermark sig-
nal is embedded into the first 9 low-frequency channels because the rest of
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Figure 8-12 Hiding rates for 00-channel with compression at quality factors

(40 ≤ PE ≤ 170) (a) JPEG-10 and (b) JPEG-50.

the channels go through a coarser quantization, which makes embedding
extremely difficult.

The watermark signal embedded into the transformed image coeffi-
cients is an iid uniformly distributed vector of length 1024. This vector
is embedded into the preselected low-frequency channels by the modi-
fied embedder making use of the quantization table for a particular quality
factor. The attacker’s intrusion is also modeled by an iid Gaussian noise
vector of length 1024. Performance results are obtained for a range of
0. 2 ≤ PE+PQ

PZ
≤ 0. 8.

Figure 8-12a–b displays the improvement in 00-channel’s hiding rate
with joint embedding and compression, where embedding powers for
JPEG-10 and JPEG-50 compression are restricted to be the same. Sim-
ilarly, Fig. 8-13a–b displays the correctly detected number of bits among
the embedded 1024 bits. Entropies of the watermarked images after quan-
tization are displayed in Fig. 8-14a–b. The modified embedder contributes
fewer bits per pixel increase to the compression bit rate of the sample
image.

Although the modification on the embedder for joint embedding and
compression is a simple one, the resulting benefits are twofold. Based on
the a priori information on the compression, it becomes possible to achieve
higher embedding rates by embedding with appropriate � and β values.
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Figure 8-13 Number of correctly detected bits out of 1024 hidden bits for

(40 ≤ PE ≤ 170) (a) JPEG-10 and (b) JPEG-50.
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Figure 8-14 Entropy rates after quantization corresponding to (a) JPEG-10

and (b) JPEG-50.

Additionally, as the embedder aims to minimize quantization noise, the
resultant embedded signal is more friendly to the quantization.

8.3 Watermarking for Ownership

Establishing ownership of books or blueprints has traditionally been done
by obtaining copyright on their content, perhaps from the U.S. Copyright
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Figure 8-15 Scenarios in which existing copyright laws may be inadequate

for resolving ownership. Scenario I (top): A and B are two similar photographs

created by Alice and Bob. Scenario II (bottom): Alice (creator of A) does not

want to obtain copyright.

Office. However, the nature of digital content makes traditional copyright
mechanisms unsuitable for establishing ownership. Figure 8-15 depicts
two typical scenarios, in which existing copyright mechanisms may be
unsuitable for securing copyright of digital images. In scenario I, A and B

represent two distinct but identical photographs created by Alice and Bob,
respectively (both photographs may have been shot at the same place at
different instances of time). Alice is responsible for circulating copies of
her art as A1. Meanwhile, Bob circulates his creation as B2. Both Alice
and Bob register their contents A and B with the U.S. Copyright Office.3 If
both A and B (and hence A1 and B2) look identical, Bob can claim that A

and all A1 are violations of his copyright, while Alice can claim that B all
and B2 are violations of her copyright. Obviously, this is not a desirable
situation. In a second scenario, the photograph is created by Alice, who is
not interested in obtaining a copyright. Bob may have received a copy of
A (which Alice may have made freely available on her website), for which
he promptly obtains a copyright and then circulates it as A2. While it may

3To register a work of visual art, a completed application form, a nonrefundable filing fee of
$30, and a nonreturnable deposit of the material to be registered are to be mailed to the Copyright
Office. See http://www.loc.gov/copyright/reg.html for more details.
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still be acceptable for Bob to claim ownership of all A2 (circulated by Bob)
it is definitely not ethical to let the copyright law enable Bob to claim
ownership of the original A created by Alice. The key issue here (which
cannot be determined by traditional copyright mechanisms) is to determine
which copies originate from a particular source. Watermarking the source

can effectively address this problem.
Digital watermarking [8] is a means of protecting multimedia con-

tent from intellectual piracy. It is achieved by imperceptibly modifying the
original content to insert a “signature.” The signature is extracted when
necessary to show proof of ownership. It should be appreciated that water-
marking is just a tool for protecting intellectual property rights, just as a
lock is a tool for protecting a home. Like any tool, therefore, watermarking
has to be used “intelligently.” Just as a lock is useless in the hands of one
who does not know how to use it, watermarking is useless without a proper
“protocol” for using it. This section addresses the need for a protocol and
proposes a robust protocol to make efficient use of watermarking. The
proposed protocol takes the form of enhancements to the one suggested
by Craver et al. [80]. In this paper, for the purpose of illustration, we
assume that the original content is a digital image. However, the proposed
protocol is equally applicable for video and audio signals as well.

8.3.1 Counterfeit Attacks on Watermarks

One of the primary issues to be addressed by watermarking methods is
their ability to make a counterclaim practically impossible. A counter-
claim arises from situations in which a pirate can use the inadequacies of

watermarking protocols [80], [81], [96], [97] to “demonstrate” the pres-
ence of his/her “watermark” (a fake watermark or signature) in the actual
original content.

Let I be the original (cover) image. A watermark embedding func-
tion E inserts a watermark W in the image I to generate the watermarked
image Î = E(I, W). The presence of the watermark W in an image Ĩ is
checked by a detector D. Watermark detectors can be broadly classified
into two categories. Nonoblivious detectors need the original image I to
check for the presence of the signature W in Ĩ. On the other hand, oblivious

detectors [96], [98] do not require the original image. We shall term the
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output of the detector,

sd =
{

D(Ĩ, W, I) nonoblivious detector

D(Ĩ, W) oblivious detector
(8.5)

the detection statistic. The detection statistic is an indication of the degree

of certainty with which the signature W is detected in the image Ĩ.
Time stamping [99], [100] has been proposed as an enhancement to

the security provided by watermarking to overcome the problems asso-
ciated with counterclaims. In addition to watermarking, the creator can
obtain a time stamp from a time stamping service (TSS). If the time stamp
is obtained before the content is released to the public (before the pirate

can obtain a time stamp on the content), nobody else can claim legitimate
ownership of the content. However, time stamping has the disadvantage
of requiring the ongoing involvement of a third party (i.e., the TSS). More-
over, there are some situations for which it does not provide acceptable
solutions:

• Time stamping does not protect people who do not want to obtain
a time stamp and/or watermark their content, like Alice in scenario
II. If Bob is able to show a counterfeit signature in image A created
by Alice, and if Alice has not obtained a time stamp, then Bob will
be able to claim ownership of content created by Alice. Clearly,
time stamping does not help in situations like this.

• Time stamping is not a solution for time-sensitive applications. The
creator may not want to wait until he/she obtains a time stamp from
a TSS. Therefore, it may be very difficult to use time stamping for
securing live broadcasts.

However, we shall demonstrate that with a suitable protocol, which would
lay some (very reasonable) restrictions on watermarking algorithms, these
problems can be effectively addressed.

8.3.1.1 Freedom in Choosing

Let Alice be the creator of the original image I. She embeds her signature
WA in I to obtain the watermarked image ÎA = EA(I, WA). The presence
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of her signature WA in ŴA or any image ĨA derived from ÎA (or ĨA =
ÎA +N) can be demonstrated, with a reasonably good degree of certainty,
by obtaining a sufficiently high detection statistic,

ddA = DA(ĨA, WA, 〈I〉). (8.6)

In this equation, 〈I〉 denotes that the original image I may or may not be
used by the detector. The job of Bob, an aspiring pirate, is to demonstrate
the presence of his (arbitrary) signature WB in Alice’s original image I. In
other words, Bob has to obtain a “large”

sdB = DB(I, WB, 〈If 〉) (8.7)

where If may be Bob’s fake original image. Note that Bob is at liberty
to choose his own watermarking scheme (EB, DB). If Bob has freedom
in choosing his signature WB, he can fix some (EB, DB) and “construct”
a signature WB that yields a high detection statistic sdB . Note that even
though Bob does not possess a copy of I (which is never released to the
public by Alice), he does have ÎA, which is “very close” to I. Therefore,
if Bob can choose a signature WB such that DB(ÎA, WB, 〈If 〉) is large, he
is guaranteed that sdB = DB(I, WB, 〈If 〉) will also be reasonably high.

If Bob does not have freedom in choosing his signature (for example,
the signature may be assigned to him by a watermarking authority), he
can still try to tweak the watermarking scheme (EB, DB) to obtain a high
detection statistic.

Even if Bob’s freedom in choosing both the signature and the water-
marking scheme is curtailed, he could still tweak If (the fake original)
to obtain a high detection statistic. Therefore, it is clear that a good
watermarking protocol should address effective ways to limit all the “three
degrees of freedom.”

8.3.1.2 Detection Statistic

The detection statistic sd [98] is a measure of degree of certainty with which
the signature is detected. Typically, the signature W takes the form of a
Gaussian or binary pseudo-random sequence (e.g., of length N) generated
from a key K. The watermark embedding and detection operations can
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therefore be written as

Î = E(I, W) Ŵ = D(Ĩ, 〈I〉) sd =
WT Ŵ

|W||Ŵ|
. (8.8)

In other words, the detection statistic (−1 ≤ sd ≤ 1) is a measure of
(normalized) inner product, or normalized correlation of the embedded
and detected signature sequences.

The normalized inner product of randomly generated signature
sequences will also be random. More specifically, for large N , the distri-
bution of the inner product will be Gaussian. Let xi and yi, i = 1, . . . , N

be iid of variances σ 2
x = σ 2

y = 1
N

, and let qi = xiyi. The inner product is

calculated as p =
∑N

i=1 qi =
∑N

i=1 xiyi. Since xis and yis are independent,
the variance of qi is σ 2

q = σ 2
x × σ 2

y = 1
N
× 1

N
= 1

N2 . Therefore, for large

N , from central limit theorem [101], p ∼ N [0, 1
N
].

If the creator (or pirate) has absolutely no freedom in choosing the
signature, and if the detection statistic sd obtained is, say, six times the
standard deviation (if sd = 6 1√

N
), then we could say that the signature is

detected with a probability of error (or probability of false alarm) of less

than Q(6) ≈ 1 × 10−9, where Q(x) = 1√
2π

∫∞
x

e
t2
2 dt is related to the

Gaussian error function. In other words, on average, only 1 out of 1×109

signatures chosen randomly can yield such a high correlation. Note that
N is also the degree of freedom of the signature. Even if the detection
statistic is unity, the signature is still detected with a nonvanishing false-
alarm probability, given by Q(

√
N). It is therefore very important to have

a sufficiently large N to be able to yield “acceptable” levels of Pe.
Any judge would be more than willing to rule in favor of detection

of the signature if the probability of making a wrong decision is one in a
million. In this case, sd = 5 1√

N
is more than acceptable. However, if

the pirate can find a loophole in the watermarking protocol that enables a
search for a suitable signature, then the pirate has to search for one mil-
lion signatures (on average) before obtaining one that yields a satisfactory
detection statistic.

One way to overcome this problem is to insist that the detection
statistic be of the order of, say, 9 1√

N
. This would imply that the pirate has
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to search through about 1 × 1019 signatures before being able to obtain
one that yields satisfactory correlation. If a pirate could search 1 × 108

signatures in one second, then he/she would still need over 300 years to
come up with a satisfactory signature! However, this restriction may make
it considerably simpler for the pirate to remove the watermark by carefully
planned attacks. After such attacks, the real owner may not be able to
extract the signature with such a high degree of confidence (obtain a high
detection statistic).

8.3.1.3 Fake Originals

As mentioned in Section 8.3.1.1, even if the watermarking scheme and the
choice of signature are fixed, it may still be possible for a pirate to engi-
neer a counterfeit attack if the detection scheme is nonoblivious. This would
permit the pirate to create a fake original (cover) image, for which there
are no restrictions! This problem can be solved if the detection method is
strictly oblivious. But some geometric attacks on images like StirMark4

[71] may be extremely difficult to overcome unless use the original image
is permitted to undo the geometric distortions. Under this condition, the
pirate may gain some freedom in choosing an algorithm for undoing the
geometric distortions. Therefore, a good watermarking protocol should
also fix (or regulate) the algorithms used for undoing the distortions intro-
duced. However, the pirate still has freedom in choosing the fake original

that will be used by the fixed algorithm for undoing geometric distortions.
In other words, the pirate (Bob) can engineer a (fake) original that when
used in conjunction with the fixed algorithm can “undo the distortion” in
Alice’s original image I (Bob would claim that the fake original he has
created is the original and that Alice’s image I is an image derived from
his original) to show the presence of his watermark. Again, to engineer
the attack, he has the image Î, which is very close to I (Bob would try to
tweak If to obtain a high value of DB(Î, WB, If )).

8.3.1.4 Multiple Watermarks

Another possible counterfeit attack on watermarks is to create ambiguity in
ownership due to the presence of multiple watermarks. Let I be the actual

4Free software available for download from http://www.cl.cam.ac.uk.
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original created by Alice and ÎA the image containing Alice’s watermark,
which is available to Bob. Bob can create a new image ÎAB by embedding
his signature in ÎA. It is very possible for Bob to obtain a much higher
detection statistic (of his signature) in ÎAB than Alice. In this case, what
can prevent Bob from claiming ownership of ÎAB? If Alice’s watermarking
scheme is robust, it might not be possible for Bob to show any copy
of an image that is similar to I or ÎA or ÎAB and that does not contain

Alice’s signature. On the other hand, Alice’s actual original I, and ÎA,
will not contain Bob’s signature. However, if Alice does not have a copy
of the original (or ÎA) in her possession, this problem may be difficult to
resolve.

8.3.2 Watermarking Algorithms

Before we see how freedom in choosing can be curtailed, we need to
understand the effect on watermarking algorithms. In this section we
present a generalization of “conventional” watermarking algorithms. A
few “unconventional” watermarking schemes that embed the watermark
by introducing geometric distortions [90] or by modifying the histogram
[89] have been proposed in literature. However, the main limitation of
these algorithms is lack of robustness to commonly occurring attacks like
lossy compression and/or drastically reduced degrees of freedom (N).
The conventional algorithms rely on the assumption that if the image is
altered significantly in the MSE sense, then the quality of the resultant
image would be so poor that it would not warrant an ownership claim.
Even though this assumption is not true, conventional algorithms can
be used effectively along with regulated algorithms for undoing geomet-

ric distortions/histogram modification, etc., as we shall see in the next
section.

Typically, the watermark is inserted in some transform domain. Let
CI = T (I), where T denotes some transform and CI designates the
transform coefficients of I. Generally, only a subset of C ∈ ℜN of CI

may be modified to embed the watermark, W ∈ ℜN , which is typically
a pseudo-random binary or Gaussian sequence generated from a key K.
This general model does not preclude the possibility of T being an identity
transform and the subset C = CI. For enhanced robustness to intentional
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attacks, the transform (or its basis vectors) may also be generated from
secret keys [102], [103]. Let CI = C ∪ C̄, where C ∩ C̄ = ∅. The
coefficients C̄ are unaffected by the watermarking process. The overall
embedding operation may be expressed as

CI = T (I) S = E(C, W) SI = S ∪ C̄ Î = T −1(SI). (8.9)

Let Ĩ = Î + N be the image in which the presence of the watermark is
tested. The detection operation can be expressed as

Y
Ĩ
= T (Ĩ) Ŵ = D(Y) sd =

WT Ŵ

|W||Ŵ|
. (8.10)

Let Z = Y−S be the effect of N in the transform domain on the data-hidden
coefficients S. The watermarking algorithms that fit into the general model
of Eqs. (8.9)–(8.10) are discussed in Chapters 3–5 as types I, II, and III.

8.3.3 Overcoming Attacks on Watermarks

Conventional watermarking methods introduce small modifications in the
MSE sense (|Y − C|2). Therefore, most attacks on conventional water-
marks would rely on changing the image significantly in the MSE sense,
without visually distorting the image. There are many ways to accomplish
this—for example, scaling of pixel intensities, modifying the histogram,
introducing small geometric distortions, etc. Similar attacks are also
possible if the content is an audio signal instead of an image or video frame.

One way to survive geometric attacks like StirMark would require
the watermarking method to introduce geometric distortions. Low-energy
signatures introduced in the MSE sense show very good robustness to dis-
tortions of much higher energies due to spreading gain. Similarly, small
modifications introduced into the geometric features can enable these fea-
tures to withstand much larger attacks [90]. Let G(I) be a function of some
geometric features of the image I. The watermark can be introduced by
specifying G(Î). However, we cannot expect such methods to be robust

to compression. Just as small geometric distortions can modify the MSE
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significantly, small changes in MSE (such as those that might be intro-
duced due to lossy compression) can change G(I) significantly. In this
light it is not surprising that the watermarking method proposed by Rongen
et al. [90] is robust to StirMark, but not very robust to lossy compression.
Similarly, methods that specify the histogram [89] are not very resistant
to compression.

One could still use conventional watermarking methods effectively
if the primary ways by which the fake original can be moved away from
the original in the MSE sense can be identified and suitable algorithms
to undo the changes employed. For example, against attacks that mod-
ify the histogram, we could permit reshaping the histogram of the image
in question to match the histogram of the original image before detect-
ing the signature. Similarly a good algorithm for detecting salient points

of the original image and those of the image in question may be used to
re-warp the image (in which the signature is to be detected) so that the
salient points match [104] before the signature is detected. Similar algo-
rithms could also be used to overcome pixel scaling attacks. However,
only regulated algorithms may be used for reshaping the histogram or
identifying the salient points to re-warp the image or for rescaling the pixel
values. As mentioned in Section 8.3.1.3, permitting freedom in choosing
these algorithms would provide the pirate with additional degrees of free-
dom to engineer counterfeit attacks. Most oblivious watermarking methods
proposed in the literature are not strictly oblivious. For strictly oblivious
watermarking, the watermark detector may not even know the size of the
original. The received image may have been resized, rotated, cropped,
or undergone some histogram modification and probably some geometric
distortion such as those introduced by StirMark. For example, the method
proposed in [105] can reasonably survive RST attacks. This is achieved by
embedding the watermark in a (significantly reduced degrees of freedom)
RST invariant domain. However, it cannot survive RST and cropping.
In order for it to do that, one might have to repeat the watermarks in
many blocks of the image, thus reducing the degrees of freedom for the
watermark further. Even if such a method survives RST and cropping,
it may not be able to survive other forms of attacks. Reduced degrees
of freedom imply lower separation between possible watermarks and, in
general, lower robustness to attacks. As mentioned in Section 8.3.1.2, the
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maximum false alarm probability obtainable is Q(
√

N). Therefore, such
schemes may not be able to unambiguously establish ownership in a court
of law. In other words, a strictly oblivious watermarking method, capable
of resolving ownership, may never be practical. In addition, if the creator
does not maintain a copy of the original, the problem of multiple water-
marks may be difficult to resolve (Section 8.3.1.4). In this light, insisting
that the creator preserve an unwatermarked copy of his creation does not
seem restrictive. It may be the only option. In fact, it has been shown
in [106] that any method of resolving ownership with no reference to the
original can never be unambiguous.

8.3.4 Restrictions on Choice of Signature

The restrictions on choice of signature, proposed in the watermarking
literature, can be classified into those

(1) issued by a watermarking authority (scheme I).
(2) derived from a meaningful string [96] (scheme II), or
(3) derived from the cover image [80] (scheme III).

Scheme I has the major disadvantage of requiring a watermarking authority
in possession of all “secrets.” The disadvantage of scheme II is that if the
method of obtaining the signature from the meaningful string is fixed (as
it should be—otherwise, the whole purpose is defeated), then it may be
possible for the pirate (Bob) to “guess” the meaningful string used by
Alice, thus reducing security. In addition, both schemes I and II suffer
from the fake original problems discussed in Section 8.3.1.3. Moreover,
neither of these schemes provide good solutions for the problem of multiple
watermarks (Section 8.3.1.4).

In [80], Craver et al. suggested a novel idea (scheme III), which at
one stroke solves the fake original problem, the need for an agency to issue
signatures, and the multiple-watermarks problem. They suggested that the
signature be obtained from the original image itself. The original image is
hashed by a fixed hash function. The output is used as a seed for a fixed

random sequence generator (RSG) to generate the signature. Tying the
signature to the original image in an inextricable fashion goes a long way
toward restricting the freedom available for the pirate to engineer counter-
feit attacks. If the pirate tries to tweak the fake original, the signature also
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changes! The signature is obtained as WA = G(H(I)), where H is a fixed
hash function and G is a fixed RSG . More importantly, H(I) �= H(Î). The
watermarking scheme is nonoblivious and can therefore be described by

WA = G(H(I)) S = C+WA ŴA = Y− C sd =
WT

AŴA

|WA||ŴA|
.

(8.11)

8.3.5 Attacking Scheme III (Craver’s Protocol)

The attack, for Craver’s protocol, rests on the fact that Bob can still search

for a combination of a fake original and its corresponding signature. How-
ever, this is much more difficult than searching for a fake original alone,
as is the case in schemes I and II, where the signature is fixed.

Bob, who has in his possession Î (or equivalently S), could change
Î significantly, in the MSE sense, while maintaining the visual similarity
between the original Î and the resulting (modified) image Im. Let Id be the
difference image Id = Im − Î and Cd = Cm − C. Even though the algo-
rithms for undoing geometric distortions/histogram modifications/pixel
rescaling would not permit Bob to move very far away from Î, he should
be able to introduce distortions such that the total power of Id (or Cd) is
much larger than that of the signature WA added by Alice. Alternately,

N∑

i=1

C2
d(k) ≫

N∑

i=1

(C(i)− S(i))2. (8.12)

Therefore, Cd = Cm − S ≈ Cm − Cs. The next step for Bob is to
derive his “original” (fake original) image If from Im. Before we see how
he can do that, note that the hash function H maps different images to
(possibly) different seeds. For example, if all the images in the world were
of size 256 × 256 and restricted to 8 bits per pixel, there would still be
2256×256×8 possible images. Though H would map the space of images to
a (comparatively) very restricted “space” of seeds, this space should still
be large enough to ensure that the probability of different signatures being
correlated is very small. The case of two “obviously” different images
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having the same signature is not likely to create a problem. The problem
arises only when images are similar. So, it is important that the (fixed) hash
function generate different seeds, especially when the images are similar.
This implies that the hash function would be required to “respond” to the
LSBs of the image more than to its most significant bits. This works to
Bob’s advantage.

Bob could probably generate enough (different) signature sequences
from the image Im (or Cm) just by tweaking one or two LSBs of the image
pixels. But when he does this, the resulting image is still very close to Im.
He could correlate every signature sequence obtained from modified ver-
sions of Im with the fixed Cd . Whenever a particular tweaking of the bits
results in a signature sequence with satisfactory correlation with Cd , he
stops. He calls the resultant image If ≈ Im as his (fake) original image.
If WB is the signature generated from If , and Wb has a reasonable corre-
lation with S − Cf , then it can also be expected to have high correlation
with C−Cf . Thus Bob can demonstrate the presence of his signature in I!
Note that making If − Î large swamps out the difference between I and Î.
After Bob’s carefully planned series of attacks on Alice’s watermark in Im

(en route to creation of If ), Alice may not be able to detect her signature in
If with a high degree of certainty. Let us assume that Alice, using a very
sophisticated watermarking method, manages to detect her signature in If

with Pe ≈ 3 × 10−7 (or ρd = 5 1√
N

). To obtain a comparable detection

statistic of his signature in I, Bob has to search roughly 3. 3×106 sequences
on average before obtaining a suitable signature. This is certainly feasible
computationally.

8.3.6 Quasi-Oblivious Watermarking

We would like watermarking schemes to be able to resolve ownership
unambiguously even in the face of different types of attacks like RST pixel
scaling, histogram changes, imperceptible geometric attacks, lossy com-
pression, etc. Furthermore, we would also like the watermarking scheme
to be oblivious, as it would reduce overheads necessary for detection of the
signature. However, an ideal oblivious watermarking scheme may never
be practical. Firstly, as mentioned in Section 8.3.3, a strictly oblivious
watermarking scheme, due to its vastly reduced degrees of freedom for the
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choice of signature, may not be able to yield satisfactorily low false-alarm
probability Pe. Secondly, as shown by Qiao et al. [106], strictly oblivious
watermarking may not be able to resolve ownership unambiguously.

The main necessity for an oblivious watermarking scheme arises out

of the impracticality for the content creator to have access to his/her orig-

inal,5 to check for the presence of his/her signature in some content that
may be present at a remote location. A typical scenario in which this might
be required is when the content is rendered by a compliant player [102]
(which can check for watermarks or fingerprints). The content provider
would like to confirm that the content being rendered is indeed his/her
content.

This problem can be solved by using two watermarks: one (which
is not valid in court) for checking the presence of the creator’s signature,
and another, generated from the original, for unambiguously resolving
ownership in court. However, the use of two independent signatures is a
waste of bandwidth available for watermarking. A solution to this problem
is to permit the content provider to have multiple keys. At least one of
them, however, should be derived from the original. The others have to

be registered with an appropriate authority. As a naive example, a content
provider may use two keys: K1, a content-independent key registered
with some authority, and K2 obtained from hashing the original. The
key K2 is used to generate a ±1 sequence of length K . The seed K1 is

used to generate a “short” signature sequence q ∈ ℜN
K . The signature

sequence W ∈ ℜN is obtained by the Kronecker product of q and the
±1 sequence.6 With the key K1, the compliant player can determine (by
obtaining sufficiently high magnitudes of detection statistics of the short
signature sequence q generated from K1) the identity of the content owner.
If the content is being used in an unacceptable fashion, the content provider
may need to take legal action and show unambiguously (by providing the
pirated content along with the actual original in court) true ownership of the
content.

5Especially for professional content creators who may have thousands of watermarked
content.

6The watermarking scheme can also be seen as hiding a content-dependent bit sequence using a
registered key K1.
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8.3.7 Detection Statistic for Quasi-Oblivious Watermarking

Once the pirated content and the original are produced in court by the
true owner, obtaining the detection statistic sd , as in Eq. (8.10), may not
be the best alternative. Making the detection statistic a combination of the

detection statistics obtained from the image in question and from the unwa-

termarked original can go a long way toward rendering counterfeit attacks
more difficult. As the watermarking scheme is oblivious, the watermark is
detected without subtracting the original image. But the original image is
still necessary because the seed is obtained from the original image, as in
Craver’s protocol. Further, we also need P = D(C). Let w, ŵ, and p rep-
resent normalized versions of W, Ŵ, and P, respectively, i.e., w = W

|W| .
The detection statistic should be

sd = wT ŵ − bwT p = wT (ŵ − bw) (8.13)

where b is a scalar whose optimal choice shall be determined shortly.
Let pi, ŵi ∼ N [0, 1

N
], i = 1, . . . , N . Obviously, as C and Y are not

independent, pi and ŵi, i = 1, . . . , N are not independent. Let ρ = pT ŵ

and u = ŵ − bp. It can be easily shown that ui ∼ N
[
0, σ 2

u = 1+b2−2bρ
N

]

[101]. As we should try to minimize the false-alarm probability, we should
try to minimize σ 2

u . The choice of b for minimizing σu is b = ρ = pT ŵ.
Therefore, the detection statistic should be

sd = wT (ŵ − bp) = wT (ŵ − pT ŵp). (8.14)

Under this condition, σ 2
u = 1−ρ2

N
.

The pirate, on the other hand, would try to maximize σ 2
u to simplify

his search. To do this he has to reduce ρ as much as possible by moving If

far away from I. Bob, as earlier, would claim that If (Cf ) is the original and
would like to search for a signature Wf that would yield a high detection
statistic with C. In other words, Bob’s detection statistic is

sdB = wT
B (p− pT

f ppf ) (8.15)
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where Pf = D(Cf ) and pf is the normalized version of Pf . For type I
oblivious methods, where P ≡ C and Pf ≡ Cf , it may be very difficult to
achieve low values of ρB = pT

f p. The original and modified image7 will
be more similar than not similar, even in the MSE sense. As mentioned
earlier, type III methods for watermarking are closer to type I. Therefore,
it may be extremely difficult for Bob to obtain low values for ρB.

Note that for the genuine creator (Alice), the second term in Eq.
(8.14) is not going to affect the signature extraction process in any way
(the random signature generated from the image is very unlikely to yield
a high correlation with the original image). However, we force the pirate
to search for a signature that is not correlated with his fake original but
at the same time is correlated with the actual original. This makes his
search for a suitable signature extremely difficult. Let us assume that Alice
obtains a detection statistic of sd = 5√

N
for her signature in Bob’s image

If . For Bob to obtain a comparable detection statistic, he has to search for
1

Q(5) ≈ 3× 106 signatures with Craver’s protocol. However, in the quasi-

oblivious scheme suggested, Bob has to search an average of Q( 5√
1−ρ2

b

)−1.

For ρb = 0. 6, 0. 65, 0. 7, 0. 75, and 0. 8, Bob has to search for 4. 9× 109,
4. 2×1010, 7. 9×1011, 4. 9×1013, and 2. 5×1016 signatures, respectively.

8.3.8 Suggested Protocol

Based on the arguments put forth in the previous sections, we suggest the
following list of restrictions to be placed on watermarking methods, in
order to make them resolve rightful ownership unambiguously; the overall
protocol for watermark embedding and detection is shown in Figure 8-16.
(In the figure, only the watermark-embedding and detection blocks will
depend on the particular watermarking algorithm. The rest of the blocks
are fixed [or regulated from time to time by the watermarking authority]):

(1) A prescribed algorithm for equalizing the histogram. The sig-
nature is added to the original content after equalizing its
histogram. The histogram of the content in question is equalized

7The modified image after being subjected to regulated algorithms to undo distortions that might
be introduced by the pirate.
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Figure 8-16 Watermark embedding and detection protocol.

(using the same equalizer) before performing detection of the
signature.

(2) A prescribed algorithm for determining significant points and
re-warping the image if necessary. For audio signals, the water-
marked audio signal is resampled to ensure that salient points in
the original (unwatermarked) and in the audio segment in ques-
tion match. For instance, the algorithm presented in [104] by
Ozer et al., based on iterative partitioning and matching of “fea-
ture” points, helped in improving the false-alarm probability of
detection of watermark in StirMarked images from as high as
10−2 to 10−50.

(3) A prescribed algorithm for determining scale factors of pixel
values/audio samples and rescaling and for equalizing the his-
togram prior to watermark detection.

(4) Fixed hash function H to be used. The hash function could be
made computationally intensive to further discourage engineer-
ing of signatures. The hash function operates on the (histogram
equalized) original content to produce the seed H(I). Other keys
may be used in addition to the image-dependent key if they are
registered with an appropriate authority.

(5) The seed H(I) is input to an RSG G to generate the signature
sequence WI .

(6) Wd
N = G(H(I), N , d) is the complete set of sequences that could

be generated by G. For a fixed I (or original content), the only
parameters that can be changed are N = the length of the sequence,
and d = the type of random sequence desired. For instance, d

could take two options, Gaussian and uniform. Another useful
option for d might be a random permutation of integers 1, . . . , N
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(this may be used for reordering coefficients if the algorithm calls
for it). No restriction is placed on the length N .

(7) Any decomposition of the original content can be used. If decom-
positions are generated from random sequences, only one from
the set of possible sequences Wd

N can be used. If the watermark-
ing algorithm calls for a random sequence (e.g., for reordering of
coefficients) at any stage of the watermark embedding/extraction
process, only random sequences Wd

N are permitted.
(8) The signature is to be extracted from the content in question

without subtracting the original (or cover) content.
(9) The detection statistic should be the weighted difference between

the statistics obtained from the content in question (s̃d) and the
statistics obtained from the original (sdo), using Eq. (8.14).

This proposed protocol does not limit itself only to methods in which
the signature is detected by correlative processing. For example, in [107]
some low-frequency DCT coefficients were scrambled by a random cyclic
all-pass filter. The detection statistic was obtained by counting the differ-
ence between positive and negative coefficients. The only restrictions our
proposal places on this method concerns how the seed is obtained and the
corresponding random sequence to be used to generate the all-pass filter
coefficients. To our knowledge, any existing oblivious detection water-
marking method (with the exception of methods [89], [90] that introduce
geometric distortions or modify the histogram to introduce the watermark)
can be modified to meet the requirements of the proposed protocol. If the
creator so desires, she may be able to resolve ownership unambiguously
without the involvement of a third party if she uses only the key derived
from hashing the original. In this case, the creator is also free to use
nonoblivious data hiding.

8.3.9 An Example of a Watermarking Scheme

This section outlines a possible watermarking scheme for images (except
for the choice of the decomposition employed, and the choice of coeffi-
cients to be modified for inserting the watermark, the proposed method
is equally applicable for audio signals). The main purpose of this section
is to illustrate with an example the influences of the proposed protocol
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Figure 8-17 Block diagram of the watermark embedding and detection scheme.

in choosing parameters for the watermarking scheme. The block diagram
of the scheme (embedding and detection) is shown in Figure 8-17. This
block diagram may be considered a closer look at the shaded blocks in
Figure 8-16.

In Figure 8-17, I represents the cover image after equalizing the his-
togram by the fixed equalizer. Perhaps, high-GTC transforms like DCT
or wavelets are best suited for watermarking applications. As high-GTC
transforms provide the most compact representation of the image, attack-
ing DCT/wavelet coefficients for the purpose of watermark removal will
most likely destroy the image. From the complete set of DCT/wavelet coef-
ficients, we choose a low- to medium-frequency subset for watermarking
purposes. The embedding and detection operators are type III.
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For type II (and to a lesser extent, type III) systems, if the trans-
form employed and quantization step size � are known, it is easy for a
pirate to remove the signature completely without introducing significant
distortion into the image. A truly secure watermarking scheme should
be difficult to crack even if every step of the algorithm is public. In
this case, the only “secret” should be the key K (which is derived from
the original image using the hash function). The security can be vastly
improved by using a key-based transform [102] before data embedding
(and therefore before detection). In the proposed scheme, we use a simple
key-based transform using cyclic all-pass filters as basis vectors [67], [98]
(see Section 8.1.4).

The overall embedding operation is then as follows. The original
image (after histogram equalization) undergoes DCT/wavelet transform,
and selected low- to medium-frequency bands are utilized for data hiding.
The selected coefficients are transformed by the key-based transform to
obtain the coefficients C to be used for data embedding. The signature
sequence W to be embedded into C may be obtained as a pseudo-random
binary sequence using the prescribed RSG triggered by the key K (which in
turn is derived from hashing the original image). The coefficients obtained
after embedding, viz., S, then undergo the inverse key–based transform
to obtain the modified DCT/wavelet coefficients, which, together with the
unmodified coefficients, are inverted to obtain the watermarked image, or
the stego image.

For detection, the received image undergoes fixed algorithms for
aligning geometric features and rescaling of pixel values/histogram equal-
ization, resulting in image Ĩ. The transformation T is performed on the
received noisy image Ĩ to get the corresponding coefficients Y. The detec-
tor function D extracts the noisy signature sequence Ŵ, which, along with
the signature sequence W (obtained from I) and P = D(C), is input to
the comparator block. The comparator implements Eq (8.14) to obtain the
detection statistic sd . More details of the watermarking scheme and its
performance can be found in [108].

Note that any permitted watermarking algorithm should have very
little freedom in choosing arbitrarily defined parameters. For example,
in this case the protocol may impose a condition that all watermarking
algorithms should use the same � (which should be chosen after a lot
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of thought). A less restrictive (and probably more reasonable) rule could
be that the value of � should have at least five significant digits—while
the first digit may be chosen based on the design criteria, the following
digits should be derived from the key K, which itself is derived from the
original.



 

This Page Intentionally Left Blank



 

A P P E N D I X A

CAE-CID Framework
under Varying
Channel Noise

The optimal encoding and decoding described in Chapter 3.4 is achieved
by the use of a shared collection of U sequences at the given channel noise
level σ 2

Z . Consequently, when the channel noise level changes, successful
operation can not be maintained due to the dependency on σ 2

Z . However,
in CAE-CID framework, if encoder is aware of this change, reliable trans-
mission can be restored by adjusting the input power without updating the
shared collection of U sequences.

Each U sequence is an iid vector with the Gaussian marginal distri-
bution, U ∼ N (0, σ 2

X + σ 2
C). Since both encoder and decoder are bound

to use the same sequences (i.e. σ 2
X and σ 2

C are both fixed) and σX and σZ

are related to each other due to Eq. (3.16) as

σX =
P + σ 2

Z√
P

, (A.1)

encoder can adjust the input power in accordance with the new noise level
σ̂ 2

Z . Using Eq. (A.1), the new input power P̂ is found as

√
P̂1,2 =

σX ±
√

σ 2
X − 4σ̂ 2

Z

2
(A.2)

where P̂1 and P̂2 are both valid choices only if σ 2
X − 4σ̂ 2

Z ≥ 0 is satisfied.
This requires σX ≥ 2σ̂Z as stated in Section 3.2.1, Eq. (3.20).
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Consider σ̂ 2
Z = kσ 2

Z , where 0 < k < ∞, such that 0 < k < 1
indicates a decrease in the channel noise and 1 < k < ∞ indicates an
increase compared to earlier state σ 2

Z . Since maximum communication

rate is computed as 1
2 log2

(
1+ P

σ 2
Z

)
, Eq. (3.15), the new rate will change

as a function of P̂

σ̂ 2
Z

, or equivalently
√

P̂√
kσZ

. Using Eq. (A.2) the change in
√

P̂√
kσZ

with respect to
√

P
σZ

can be expressed as

r =

√
P̂√

kσZ√
P

σZ

=
σX√

k
±
√

σ 2
X

k
− 4σ 2

Z√
P

. (A.3)

Since, for the given σ 2
Z ,
√

P needs to be a solution of Eq. (A.2),
√

P =
σX±

√
σ 2

X−4σ 2
Z

2 will be true for one of the ±. Then, the ratio given in Eq.
(A.3) can be viewed as

r =

√
P̂√

kσZ√
P

σZ

=
σX√

k
±
√

σ 2
X

k
− 4σ 2

Z

σX ±
√

σ 2
X − 4σ 2

Z

. (A.4)

Depending on the choice of P̂1 or P̂2 and k, the expression given in Eq.
(A.3) will either be greater or smaller than 1. Therefore, when the channel
noise changes from σ 2

Z to kσ 2
Z , embedder and detector will be able to

resume communication with the same set of U sequences at a lower or

higher rate of 1
2 log2

(
1+ r2 P

σ 2
Z

)
depending on the choice of input power,

as given in Eq. (A.2), and k.
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Statistics of
ρdep|P and ddep|P

The mean mρ∗ of the random variable ρdep|P can be computed through
deriving the joint and marginal moments of W and Ŵ . The random variable
Ŵ is expressed in terms of Zeff and W in Eq. (5.30), where W is a binary
random variable with the density function fW (w) = 1

2δ(w−�
4 )+ 1

2δ(w+�
4 ).

The pqth joint moment of W and Ŵ is defined as

E[WpŴq] =
∫ ∞

−∞

∫ ∞

−∞
wpŵqfW ,Ŵ (w, ŵ)dwdŵ. (B.1)

The joint pdf in the above integral can be expressed in terms of marginal
and conditional pdf’s, fW ,Ŵ (w, ŵ) = fŴ (ŵ|wm)fW (w), thus Eq. (B.1) can
be written as

E[WpŴq] = P(w = �

4
)
∫ ∞

−∞

(
�

4

)p

ŵqfŴ (ŵ|w = �

4
)dŵ

+ P(w = −�

4
)
∫ ∞

−∞

(
−�

4

)p

ŵqfŴ (ŵ|w = −�

4
)dŵ.

(B.2)

Since the expectation of a function of a random variable can be expressed
in terms of the pdf of the random variable itself rather than of the function,
E[Ŵ ] =

∫∞
−∞ ŵ(zeff )fZeff

(zeff )dzeff , and since all pdf’s are assumed to be
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symmetric, Eq. (B.2) may be rewritten as

E[WpŴq] = 1

2

i=∞∑

i=−∞

∫ (i+1)�
2

i�
2

(
�

4

)p (( (2i + 1)�

4
− zeff

)
(−1)i

)q

× fZeff
(zeff )dzeff

+ 1

2

i=∞∑

i=−∞

∫ (i+1)�
2

i�
2

(
−�

4

)p ((
− (2i + 1)�

4
+ zeff

)
(−1)i

)q

× fZeff
(zeff )dzeff ,

=
(

1

2
+ (−1)p+q

2

)(
�

4

)p

2

×
i=∞∑

i=0

∫ (i+1)�
2

i�
2

((
(2i + 1)�

4
− zeff

)
(−1)i

)q

fZeff
(zeff )dzeff ,

=
(

1

2
+ (−1)p+q

2

)(
�

4

)p

R(q) (B.3)

where R(q) is as defined in Eq. (5.32). Hence, the joint moment of W and
Ŵ is generalized, based on Eq. (B.3), as

E[WpŴq] =
{

(�
4 ) pR(q), if p, q are both even or odd,

0, otherwise.
(B.4)

Marginal moments of W are derived straightforwardly, due to the
binary distribution, as

E[Wp] =
{

0, if p is odd,

(�
4 ) p, if p is even.

(B.5)

The moments of the random variable Ŵ depend on W and Zeff through Eq.
(5.30) and can be computed by using the properties employed in deriving
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Eqs. (B.2) and (B.3) as

E
[
Ŵp
]
=P(W=�

4
)E

[
Ŵp|w=�

4

]
+P(W=−�

4
)E

[
Ŵp|w=−�

4

]
,

= 1

2

i=∞∑

i=−∞

∫ (i+1)�
2

i�
2

((
(2i+1)�

4
−zeff

)
(−1)i

)p

fZeff
(zeff )dzeff

+ 1

2

i=∞∑

i=−∞

∫ (i+1)�
2

i�
2

((
− (2i+1)�

4
+zeff

)
(−1)i

)p

fZeff
(zeff )dzeff ,

=
(

1

2
+ 1

2
(−1)p

)
2

i=∞∑

i=0

∫ (i+1)�
2

i�
2

((
(2i+1)�

4
−zeff

)
(−1)i

)p

×fZeff
(zeff )dzeff ,

=
(

1

2
+ 1

2
(−1)p

)
R(p). (B.6)

Finally, E
[
Ŵp
]

can be summarized as

E[Ŵp] =
{

0, if p is odd,

R( p), if p is even.
(B.7)

Based on Eqs. (B.1)–(B.7), mρ∗ is derived as

mρ∗ =
E[WŴ ]√

E[W2]E[Ŵ2]
,

=
�
4 R(1)

√
(�

4 )2R(2)
,

= R(1)√
R(2)

. (B.8)

The variance σ 2
ρ∗ is the variation of the correlation coefficient ρ∗

around its mean mρ∗ when mρ∗ is estimated from N iid samples of Ŵm
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and Wm. For the case when Ŵ and W are from a bivariate Gaussian distribu-
tion, the variance is as given in [109]. However, when the samples are from
non-Gaussian distributions, derivation of σρ∗ is not straightforward.
Therefore, Monte Carlo simulations are performed to obtain the σ 2

ρ∗ values
for the considered N by computing the correlations between the embed-
ded Wm and extracted Ŵm at the assumed WNR and then measuring the
deviation from mρ∗ . However, for the minimum distance criterion, the cor-
responding variance values can be calculated in a straightforward manner.

For the minimum distance criterion, the statistics of ddep|P are
computed in terms of the statistics of the random variable λ = W2 +
Ŵ2 − 2WŴ .

When the noise level is very high, so that it can be considered uni-
formly distributed over all quantization intervals, W and Ŵ become
independent of each other, and Ŵ is extracted as a uniformly distributed sig-
nal in [−�

4 , �
4 ]. The mean mλ = E[λ], and the variance σ 2

λ = E[λ2] −m2
λ

of λ is calculated in terms of the moments

E[λ] =
∫ ∞

−∞

∫ ∞

−∞
(w2 + ŵ2 − 2wŵ)fW ,Ŵ (w, ŵ)dwdŵ,

=
∫ ∞

−∞
w2 fW (w)dw+

∫ ∞

−∞
ŵ2 fŴ (ŵ)dŵ

− 2
∫ ∞

−∞
w fW (w)dw

∫ ∞

−∞
ŵ fŴ (ŵ)dŵ,

= Var[W ] + Var[Ŵ ],

= �2

16
+ �2

48
= �2

12
, (B.9)

E[λ2] =
∫ ∞

−∞

∫ ∞

−∞
(w2 + ŵ2 − 2wŵ)2fW ,Ŵ (w, ŵ)dwdŵ,

=
∫ ∞

−∞
w4fW (w)dw+

∫ ∞

−∞
ŵ4fŴ (ŵ)dŵ

+ 6
∫ ∞

−∞
w2fW (w)dw

∫ ∞

−∞
ŵ2fŴ (ŵ)dŵ,

= �4

28
+ �4

285
+ �4

27 =
�4

80
, (B.10)
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as mλ = �
12 and

σ 2
λ =

�4

80
−
(

�2

12

)2

= �4

180
. (B.11)

When W and Ŵ are dependent on each other, the statistics of ddep|P
can be similarly computed in terms of the individual and joint moments of
W and Ŵ , Eqs. (B.4)–(B.7). Consequently the mean md∗ and the variance
σ 2

d∗ are computed as

md∗ = E

[
1

N

l=N∑

l=1

(
W2 + Ŵ2 − 2WŴ

)]
,

= E[W2] + E[Ŵ2] − 2E[WŴ ],

=
(

�

4

)2

+ R(2)−
(

�

4

)
R(1), (B.12)

σ 2
d∗ = E

⎡
⎣
(

1

N

l=N∑

l=1

(
W2 + Ŵ2 − 2WŴ

))2⎤
⎦− m2

d∗ ,

= 1

N

(
E[W4] + E[Ŵ4] + 6E[W2Ŵ2] − 4E[W3Ŵ ] − 4E[WŴ3]

)

+ N − 1

N

(
E[W2]2 + E[Ŵ2]2 − 4E[W2]E[WŴ ] − 4E[Ŵ2]E[WŴ ]

+ 2E[W2]E[Ŵ2] + 4E[WŴ ]2
)
− m2

d∗ ,

= 1

N

((
�

4

)4

+ R(4)+ 6

(
�

4

)2

R(2)− 4

(
�

4

)3

R(1)− 4

(
�

4

)
R(3)

)

+ N − 1

N

((
�

4

)4

+ R(2)2 − 4

(
�

4

)3

R(1)− 4
�

4
R(2)R(1)

+ 2

(
�

4

)2

R(2)+ 4

(
�

4

)2

R(1)2

)
− m2

d∗ . (B.13)
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Mathematical Proofs

C.1 Proof of Eq. (7.7)

h(n) =
∑N−1

k=0 e j( 2πkn
N
+φk) f (n) =

∑N−1
k=0 ake j( 2πkn

N
+θk)

for n = 0 · · ·N − 1. From Eq. (7.6),

ε =
N−1∑

n=0

N−1∑

l=0

N−1∑

k=0

[
e j( 2πkn

N
+φk) − ake j( 2πkn

N
+θk)
]
×
[
e−j( 2π ln

N
+φl) − ale

−j( 2π ln
N
+θl)
]

=
N−1∑

k=0

N−1∑

l=0

(
N−1∑

n=0

[
e j( 2π (k−l)n

N
)e j(φk−φl) − ale

j( 2π (k−l)n
N

)e j(φk−θl)

− ake j( 2π (k−l)n
N

)e j(θk−φl) + akale
j( 2π (k−l)n

N
)e j(θk−θl)

])
. (C.1)

Using the identity

N−1∑

n=0

e j( 2π (k−l)n
N

) =
{

N for k = l

0 otherwise
, (C.2)

Eq. (C.1) reduces to

ε = N

[
N − 2

N−1∑

k=0

ak cos(φk − θk)+
N−1∑

k=0

a2
k

]
. (C.3)
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C.2 Proof of Eq. (7.10)

Given that h ∈ ℜN , H = FN (h), and he(n) = h(2n) for n = 0, . . . , N
2 − 1,

and He = FN /2(he), we need to show

He(l) =
H(l)+ H(l + N

2 )

2
, l = 0 · · · N

2
− 1. (C.4)

He(l) =
N
2 −1∑

n=0

h(2n) exp

(
−j2πnl

N
2

)
(C.5)

=
N
2 −1∑

n=0

1

N

N−1∑

k=0

H(k) exp

(
j4πnk

N

)
exp

(−j4πnl

N

)

= 1

N

N−1∑

k=0

H(k)

N
2 −1∑

n=0

exp

(
j4πn(k − l)

N

)

=
H(l)+ H(l + N

2 )

2
, l = 0 · · · N

2
− 1.
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