

Alan Holt � Chi-Yu Huang

802.11 Wireless
Networks

Security and Analysis

Dr. Alan Holt
IP Performance
1-3 Merietts Court
Long Ashton Business Park
Long Ashton
Bristol BS41 9LW
UK

Dr. Chi-Yu Huang
Tata Technologies Ltd
6 Monarch Court
Emerald Park
Emersons Green
Bristol BS16 7FH
UK

Series Editor
Professor A.J. Sammes, BSc, MPhil, PhD, FBCS, CEng
Centre for Forensic Computing
Cranfield University
DCMT, Shrivenham
Swindon SN6 8LA
UK

ISSN 1617-7975
ISBN 978-1-84996-274-2 e-ISBN 978-1-84996-275-9
DOI 10.1007/978-1-84996-275-9
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2010930228

© Springer-Verlag London Limited 2010
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: VTEX, Vilnius

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book is about wireless local area networks (WLANs) based upon the IEEE
802.11 standards. It has three primary objectives:

• To introduce the principles of 802.11 wireless networks and show how to config-
ure equipment in order to implement various network solutions.

• To provide an understanding of the security implications of wireless networks and
demonstrate how vulnerabilities can be mitigated.

• To introduce the underlying 802.11 protocols and build mathematical models in
order to analyse performance in a WLAN environment.

The book is aimed at industry professionals as well as undergraduate and gradu-
ate level students. It is intended as a companion for a university course on wireless
networking.

A practical approach is adopted in this book; examples are provided throughout,
supported by detailed instructions. We cover a number of wireless vendors; namely,
Cisco’s Aironet, Alactel-Lucent’s Omniaccess and Meru Networks. While separate
vendors, all three systems have a Cisco IOS-like command-line interface.

The GNU/Linux operating system is used extensively throughout this book.
GNU/Linux systems have gained considerable popularity in the server and em-
bedded system market (indeed, both Alcatel-Lucent and Meru Network’s wireless
equipment are based upon GNU/Linux). As well as the core GNU/Linux software
we also use a number of open source applications. Wireless equipment does not op-
erate in isolation. There are times when other network services are required, such as
RADIUS. FreeRADIUS, in conjunction with a MySQL database server, is used to
demonstrate an enterprise secutity WLAN. For convenience, the Xen virtualisation
application is employed to emulate a multi-server environment. We show how to
build and configure these systems.

There are many GNU/Linux distributions available. In this book, we use Debian
and its derivative, Ubuntu. Debian and Debian like distributions have APT, a power-
ful package management application that greatly simplifies software installation and
maintenance. Other distributions will have their advocates and supporters and if you
wish to replicate the examples in this book we suggest you use the distribution with

vii

viii Preface

which you are most familiar. However, you will have to translate the instructions to
suit your distribution where they differ from Ubuntu/Debian.

We present a number of mathematical models in this book for analysing the per-
formance of 802.11. We show how to build these models using the commercial
application computer algebra, Maple. The examples presented in this book were
developed on Maple version 11, but all the examples should work on older versions.

Acknowledgments

The authors would like to thank the following people for the valuable contribu-
tion they made to this book: Dr Adrian Davies, Dr Sue Casson (Leeds University),
Michael Dewsnip (DL Consulting), Wayne Look (IP Performance), and Damien
Parker (IP Performance).

Thanks also to Simon Rees of Spinger for all his support in helping us through
this process.

Bristol, UK Alan Holt
Hamilton, New Zealand Chi-Yu Huang

Contents

1 Introduction . 1
1.1 IEEE 802 . 2
1.2 Wireless LANs . 3
1.3 A Brief History of 802.11 . 7
1.4 The RF Environment . 8
1.5 Book Outline . 12
1.6 Summary . 13

2 Radio Frequencies . 15
2.1 The Electromagnetic Spectrum 15
2.2 Radio Waves . 17

2.2.1 Direct Path . 19
2.2.2 Absorption . 22
2.2.3 Reflection . 22
2.2.4 Diffraction . 24
2.2.5 Refraction . 25
2.2.6 Scattering . 25
2.2.7 Multi-path . 25

2.3 Radio Frequency Regulation . 27
2.4 Spectrum Management . 32
2.5 Summary . 34

3 Medium Access Control . 35
3.1 802.11 Services . 36
3.2 MAC Frame Format . 38
3.3 Distributed Coordination Function 39

3.3.1 Carrier Sensing . 40
3.3.2 Transmission Methods . 40
3.3.3 Inter-frame Spacing . 41
3.3.4 Random Back-Off Algorithm 43
3.3.5 Fragmentation . 43

ix

x Contents

3.3.6 Fairness . 44
3.4 Point Coordination Function . 45
3.5 Hybrid Coordination Function . 45

3.5.1 Enhanced Distributed Channel Access 46
3.5.2 HCF Controlled Channel Access 48

3.6 Summary . 50

4 Physical Layer . 51
4.1 Frequency Hopping Spread Spectrum 51
4.2 Direct Sequence Spread Spectrum 54
4.3 High-Rate Direct Sequence Spread Spectrum 56
4.4 Orthogonal Frequency Division Multiplexing 58
4.5 Extended Rate PHY . 60
4.6 MIMO-OFDM . 62
4.7 Beamforming . 66
4.8 Summary . 71

5 Cryptography . 73
5.1 Ciphers . 73

5.1.1 Symmetric Key Cryptography 74
5.1.2 Asymmetric Key Cryptography 76

5.2 Encryption . 78
5.2.1 RC4 . 79
5.2.2 DES and Triple-DES . 80
5.2.3 AES . 80

5.3 Message Digests . 81
5.4 Digital Signatures . 83
5.5 Digital Certificates . 84
5.6 Generating Digital Certificates 86

5.6.1 Generating a Certificate Authority 87
5.6.2 Generating Certificates 90
5.6.3 Testing the Certificates 95

5.7 Summary . 97

6 Wireless Security . 99
6.1 Pre-RSNA . 99

6.1.1 Authentication . 100
6.1.2 Encryption and Integrity 101

6.2 RSNA . 101
6.2.1 Authentication . 102
6.2.2 Key Management . 105
6.2.3 Encryption and Integrity 105

6.3 Summary . 108

7 Configuring Wireless Networks . 111
7.1 Ad-hoc Network . 112

Contents xi

7.2 WEP . 114
7.3 WPA with Pre-shared Key . 115

7.4 Multiple SSIDs . 119
7.5 Wireless Distribution System . 121
7.6 Wireless Bridge . 123
7.7 Build an Open Source Access-Point 126

7.7.1 Root Filesystem . 126
7.7.2 Administration . 127
7.7.3 Configuring the Access-Point 129
7.7.4 Installing Grub . 130
7.7.5 Compile the Kernel . 130
7.7.6 Install Root Directory Structure onto Compact Flash 132

7.8 Summary . 134

8 Robust Security Network . 135
8.1 Installing FreeRadius . 136
8.2 Configuring FreeRadius . 138
8.3 Configure FreeRadius to use MySQL 140
8.4 Testing . 144
8.5 Configure EAP . 146
8.6 Configure TLS . 148
8.7 NAS Configuration . 149
8.8 Wireless Client . 150
8.9 Summary . 154

9 MAC Layer Performance Analysis 155
9.1 Fragmentation . 155
9.2 Analysis of Multiple Hops . 156
9.3 Throughput . 158
9.4 Summary . 166

10 Link Rate Adaptation . 167
10.1 Walffish-Ikegami Model . 167
10.2 Berg Model . 168
10.3 802.11b Link Rate Adaptation . 171
10.4 Link Rate Adaptation in an Urban Area 176
10.5 802.11a Link Rate Adaptation . 178
10.6 Link Rate Experiments . 182
10.7 Summary . 184

A Build a Xen Server . 185
A.1 Install Xen . 185
A.2 DomU Configuration . 187

A.2.1 RADIUS Server . 187
A.2.2 MySQL Server . 188
A.2.3 DHCP Server . 189

xii Contents

A.2.4 Test Client . 190

B Initial Configuration of Access-Point Controllers 193
B.1 Alcalel-Lucent Omniaccess Controller 193
B.2 Meru Controller . 194

References . 201

Futher Reading . 205

Index . 207

Abbreviations

AAD Additional authentication data
ADSL Asynchronous digital subscriber line
AES Advanced encryption standard
ANSI American National Standards Institute
AS Authentication server
BSS Basic service set
BSSID Basic service set Identifier
CBC Cipher-block chaining
CBC-MAC Cipher-block chaining with message authentication code
CCK Complimentary code keying
CCM Counter mode and cipher-block chaining with message authentication

code
CCMP Counter mode and cipher-block chaining with message authentication

code protocol
CFB Cipher feedback
CFP Contention free period
CP Contention period
CRC Cyclic redundancy check.
CSMA/CA Carrier sense multiple access with collision avoidance
CTR Counter mode
CTS Clear-to-send
DAB Digital audio broadcasting
DES Cata encryption system
DHCP Dynamic host configuration protocol
DN Distinguished name
DNS Domain name system
DPSK Differentiated phase shift keying
DBPSK Differentiated binary phase shift keying
DQPSK Differentiated quadrature phase shift keying
DSA Digital signature algorithm
DVB Digital video broadcasting

xiii

xiv Abbreviations

DSSS Direct sequence spread spectrum
EAP Extensible authentication protocol
EAPOL Extensible authentication protocol over local area network
ECB Electronic codebook
ERP-OFDM Extended rate PHY, orthogonal frequency division multiplexing
FHSS Frequency hopping spread spectrum
FFT Fast fourier transform
FSK Frequency shift keying
GI Guard interval
GMK Group master key
HCF Hybrid coordination function
HCCA HCF controlled channel access
HR/DSSS High rate direct sequence spread spectrum
IBSS Independent basic service set
IEEE Institute of Electrical and Electronics Engineers
ICMP Internet control message protocol
IFFT Inverse fast fourier transform
IP Internet protocol
ISM Industrial, scientific and medical
IR Infrared
LAN Local area network
KCK EAPOL-key confirmation key
KEK EAPOL-key kncryption key
LEAP Lightweight EAP
MAC Medium access control
MAC Message Authentication Code
MIC Message integrity code
MD5 Message digest 5
MIMO Multiple-input multiple-output
MISO Multiple-input single-output
MRC Maximum ratio combining
OFB Output feedback
OFDM Orthogonal frequency division multiplexing
PBCC Packet binary convolution coding
PEAP Protected EAP
PING Packet internet groper
PLCP Physical layer convergence procedure
PSK Pre-shared key
PSK Phase shift keying
PTK Pairwise temporal key
PMD Physical medium dependent
PMK Pairwise master key
PN Packet number
PSDU PLCP service data unit
PPDU PLCP protocol data unit

Abbreviations xv

QAM Quadrature amplitude modulation
QPSK Quadrature phase shift keying
RADIUS Remote authentication dial in user service
RSA RSA
RSN Robust security network
RSNA Robust security network association
RTS Request-to-send
SHA Secure hash algorithm
SISO Single-input, single-output
SIMO Single-input, multiple-output
SNMP Simple network management protocol
SSID Service set identifier
SSL Secure socket layer
TCP Transmission control protocol
TKIP Temporal key integrity protocol
TLS Transport layer security
UDP User datagram protocol
VoIP Voice over IP
WEP Wired equivalent privacy
WPA Wi-Fi protected access

List of Figures

1.1 The IEEE 802 reference model 2
1.2 Performance of Aloha and CSMA schemes 5
1.3 WLANs detected by Kismet Application 9
1.4 Spectrum analysis of 2.4 GHz band 10
1.5 Shannon limit . 11
1.6 BER of BPSK modulation . 12

2.1 Electric and magnetic field directions 16
2.2 Electric circuit . 18
2.3 A half-wavelength Di-pole antenna 18
2.4 Wave components . 19
2.5 Refracted radio wave . 19
2.6 Free-space loss . 22
2.7 Fresnel zone . 23
2.8 Diffraction . 24
2.9 Diffraction loss . 25
2.10 Rayleigh probability density function 27
2.11 Ricean probability density function 28
2.12 802.11 channel allocation in the 2.4 GHz band 30
2.13 U-NII lower and middle . 31
2.14 U-NII upper . 32

3.1 802.11 reference model . 36
3.2 802.11 Infrastructure Network 37
3.3 Authentication/association state machine 37
3.4 MAC header . 38
3.5 Frame control field . 38
3.6 Channel access with the basic DCF transmission method 41
3.7 Channel access using RTS/CTS and setting the NAV 41
3.8 Fragmentation of a MSDU into MPDUs 44
3.9 MSDU sent as multiple fragments under the RTS/CTS method . . . 44
3.10 PCF access . 46

xvii

xviii List of Figures

3.11 Prioritisation in EDCA . 48
3.12 The four access categories (ACs) for ECDA 49

4.1 PPDU encapsulation . 52
4.2 Frequency hopping spread spectrum 52
4.3 The PLCP frame format for FHSS 54
4.4 Direct sequence spread spectrum 55
4.5 Long preamble . 56
4.6 Polyphase complementary codes 57
4.7 PBCC convolutional encoder 58
4.8 Short preamble . 58
4.9 The PLCP frame format for OFDM in 802.11a 59
4.10 Cyclic prefix . 61
4.11 MIMO Communication system 62
4.12 Space-time coding . 63
4.13 Diversity gain for N replica input streams 63
4.14 Spatial multiplexing . 64
4.15 Capacity of a MIMO system 65
4.16 Capacity of Tx/Rx diversity 65
4.17 Gain of a simple beamformer 67
4.18 Gain of a simple beamformer (polarplot) 68
4.19 Uniform linear array (ULA) 69
4.20 Gain of a beamformer with a boresight of 0° 70
4.21 Gain of a beamformer with a boresight of 45° 71
4.22 Beamformer for various boresight angles (polar plot) 72

5.1 ECB encryption . 74
5.2 An illustration of the problems related to ECB Encryption 76

6.1 Summary of 802.11i security 100
6.2 Assembly of a WEP frame . 102
6.3 802.1X . 103
6.4 EAP over LAN (EAPOL) . 104
6.5 802.11i key hierarchy . 105
6.6 TKIP frame . 106
6.7 TKIP encapsulation . 107
6.8 Expanded CCMP frame . 108
6.9 CCMP header . 108
6.10 CCMP encapsulation process 109
6.11 CCMP decapsulation process 109

7.1 An Aironet AP running dual SSIDs 119
7.2 Wireless distribution system 121
7.3 A wireless bridge topology 124
7.4 Output of make menuconfig command 131

8.1 RSN architecture . 136

List of Figures xix

9.1 Probability of MSDU transmission failure. 156
9.2 Probability of MSDU transmission failure. 157

9.3 Successful transmission probaility for multiple links 157
9.4 File transfer times . 166

10.1 Walfish-Ikegami model path loss 169
10.2 Street plan . 169
10.3 Signal loss in an urban area (Berg model) 172
10.4 802.11b Link rate adaptation versus SNR (dB) 174
10.5 802.11b Link adaptation NOISE = −90 dB. 175
10.6 802.11b Link adaptation NOISE = −87 dB. 176
10.7 Link adaptation of 802.11b in an urban area (φ = 90°). 177
10.8 Link adaptation of 802.11b in an urban area (φ = 55°). 178
10.9 Walfish-Ikegami model link rate adaptation for BER 10−4 178
10.10 802.11a link rate adaptation versus SNR 180
10.11 Link rate versus distance for 802.11a 181
10.12 Retransmissions versus link rate 183

List of Tables

1.1 Some of the IEEE 802 standards . 3

2.1 The electromagnetic spectrum . 17
2.2 Signal losses caused by material . 23
2.3 ISM bands . 29
2.4 Channel allocation in the 2.4 GHz band 30
2.5 5 GHz unlicensed bands . 31

3.1 SIFS and aSlotTime values . 42
3.2 Contention windows values . 43
3.3 Mapping of user priority to access category 47
3.4 Default values of the EDCA parameter set 48

4.1 Details of modulation methods in 802.11 52
4.2 DBPSK encoding . 55
4.3 DQPSK encoding . 55
4.4 Details of modulation methods in 802.11b 57
4.5 Details of modulation schemes for the 802.11a PHY 59
4.6 802.11g PHYs . 61

5.1 Performance of AES . 80
5.2 Performance comparison of RC4, DES and AES 81

7.1 Summary of wireless equipment manufacturers 112
7.2 Summary of laptops used to form an ad-hoc network 112

8.1 IP addresses . 136

10.1 Modulation techniques supported by 802.11b 172
10.2 802.11a Link rate adaptation (empirical data) 179
10.3 Retransmissions . 183

xxi

Chapter 1
Introduction

Communication systems that rely on cabling are inherently faster, more reliable,
and more secure than wireless systems. Installing a cabling infrastructure can be
expensive. Furthermore, if the network traverses public highways, it is subject to
regulation and requires the services of a licensed operator. Wireless communica-
tion has the advantage of mobility and obviates the need for cabling, but the radio
frequency spectrum is also heavily regulated. Nevertheless, the allocation of unli-
censed parts of the spectrum has facilitated the growth in wireless local area net-
works (WLANs).

The European Telecommunications Standards Institute (ETSI) published the first
WLAN standard, HiperLAN/1, finalised in 1995, and followed by HiperLAN/2
in 2000. However, it is the IEEE 802.11 WLAN standard that has become the
most widely accepted. Portable devices such as laptops, personal digital assistants
(PDAs) and even mobile phones have 802.11 chipsets built in as standard. Fur-
thermore, wireless infrastructure equipment (access-points) is relatively inexpen-
sive.

WLAN technology has progressed at a rapid pace. The original IEEE 802.11
standard supported data rates up to 2 Mb/s. At the time of writing this book, de-
vices capable of 54 Mb/s are commonplace. Furthermore, devices that utilise MIMO
(multiple input, multiple output) technology, which can support up to 300 Mb/s, are
growing in popularity. The 802.11 standard has been very successful in incorpo-
rating advances in modulation techniques while maintaining interoperability with
legacy schemes. New modulation schemes, however, do not replace subsequent
schemes. 802.11 can select any scheme from the current set of modulation schemes
in order to optimise frame transmission. In this way, wireless devices can link rate
adapt according to the channel conditions.

802.11 has not been without its problems, especially with regard to security.
WLANs are particularly vulnerable to eavesdropping, unauthorised access and de-
nial of service due to their broadcast nature. The original 802.11 standard had no
security provisions at all, neither authentication, encryption or data integrity. Some
access-point vendors offered authentication of the client’s physical address. The
standard was amended in 1999 to support a basic protection mechanism. Wired

A. Holt, C.-Y. Huang, 802.11 Wireless Networks,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-275-9_1, © Springer-Verlag London Limited 2010

1

2 1 Introduction

equivalent privacy (WEP) used cryptographic methods for authentication and en-
cryption. The security flaws in WEP, however, have given rise to a complete re-
search field. In 2001, Fluhrer, Mantin, and Shamir showed that the WEP key could
be obtained within a couple hours with just a consumer computer [11]. The au-
thors highlighted a weakness in RC4’s key scheduling algorithm and showed that it
was possible to derive the key merely by collecting encrypted frames and analysing
them. Since then, more sophisticated WEP attacks have been developed. Along with
advances in computing power, the WEP key can be recovered in seconds. A further
vulnerability with WEP is that the pre-shared key is common to all users on the
same SSID. Any user associated with an SSID, therefore, can decrypt packets of
other users on the same SSID.

These problems have largely been resolved with the deprecation of WEP and
the introduction of enhanced security methods. As with the introduction of new
modulation techniques, interoperability is an issue. The current security methods
rely on modern cryptography techniques which are only available on new devices.
On legacy devices, interim solutions have been adopted.

1.1 IEEE 802

The Institute of Electrical and Electronic Engineers (IEEE) is a large non-profit,
professional society concerned with technological research and development. Its
standards board oversees the development of IEEE standards and is accredited by
the American National Standards Institute (ANSI). Project 802 was initiated in 1980
with the aim of defining a set of standards for local area network (LAN) technology.
The standards cover the data link and physical layers of the International Orga-
nization for Standardization (ISO) open system interconnection (OSI) seven layer
reference model [32]. The data link layer is concerned with the reliable transfer of
data frames over the physical channel. It implements various forms of error control,
flow control and synchronisation. In the 802 reference model, the data link layer
comprises two sub-layers, the logical link control (LLC) sub-layer and the medium
access control (MAC) sub-layer. Figure 1.1 shows the 802 reference model.

Fig. 1.1 The IEEE 802
reference model

1.2 Wireless LANs 3

Table 1.1 Some of the IEEE
802 standards Number Standard Comment

802.1 Bridging

802.2 Logical link

control (LLC)

802.3 CSMA/CD Ethernet-like LAN

802.4 Token bus Disbanded

802.5 Token ring Inactive

802.11 Wireless LANs Wi-Fi

802.15 Wireless PANs Bluetooth and Zigbee

802.16 Wireless MANs WiMAX

LLC is defined in the IEEE 802.2 standard. Its primary function is to provide an
interface between the MAC layer and the higher layers (network layer). It performs
multiplexing functions in order to support multiple upper layer protocols. Further-
more, it is responsible for flow control and error control. Both connectionless and
connection-orientated frame delivery schemes are supported. LLC is unconcerned
with the specific details of the LAN medium itself. That is the responsibility of the
MAC sub-layer which is primarily concerned with managing access to the physical
channel. The physical layer of 802 is responsible for the transmission and reception
of bits, encoding and decoding of signals and synchronisation (preamble process-
ing). The physical layer hides the specifics of the medium from the MAC sub-layer.

The first 802 standards were wired LANs. Carrier sense multiple access with
collision detect (CSMA/CD) based LANs (802.3) are the most widely used. Token
bus (802.4), token ring (802.5) and fibre distributed data interface (FDDI) were also
defined.

Wireless network standards emerged in the 1990s. IEEE 802.11 defined a wire-
less LAN technology that operates in license free bands. 802.11 is commonly re-
ferred to as Wi-Fi. 802.11 employs a CSMA protocol similar to 802.3 (and Ether-
net). However, instead of using collision detection, it uses collision avoidance.

Wireless personal area networks (PANs) are covered by 802.15, where 802.15.1
specifies the Bluetooth standard and 802.15.4 defines Zigbee. IEEE 802.16 is a wire-
less metropolitan area network (MAN) also known as WiMAX. Table 1.1 shows a
summary of some of the 802 standards.

1.2 Wireless LANs

The IEEE 802.11 standard has its roots in WaveLAN [37], which was a proprietary
wireless LAN system from NCR that pre-dates 802.11. NCR, however, submitted
the design of WaveLAN to the IEEE 802.11 committee. The IEEE 802.11 standard
was first released in 1997 and ratified in 1999. It was capable of 1 or 2 Mb/s trans-
mission rates (depending upon the wireless channel conditions). It operated in the

4 1 Introduction

infrared band and unlicensed radio frequency band. The Federal Communications
Commission (FCC), in the US, allocated the 2.4 GHz industrial scientific medical
(ISM) band for wireless LANs in 1985. Pre-802.11 and early 802.11 WLANs also
used the 900 MHz ISM band. The original 802.11 standard has been superceded by
a number of amendments released by the IEEE.

A competitor to the IEEE 802.11 WLAN is the ETSI high performance radio
local area network 1 (HiperLAN/1), which uses a CSMA/CA methods similar to
802.11. HiperLAN/2 is similar to 802.11a, however, instead of using CSMA/CA,
medium access is dynamic time division multiple access (TDMA). When it was
released in 2000, HiperLAN/2 outperformed 802.11. Despite this, 802.11 devices
quickly gained market dominance.

802.11 is one of a number of multi-access LAN technologies. In general, multi-
access protocols fall into two categories: active and passive. Active systems allow
users to transmit whenever they have something to send. Various methods are used
to avoid collisions. These methods vary in their sophistication, complexity and ef-
fectiveness. Passive systems rely on a central controller which grants access to the
communication channel by polling devices in turn.

802.11 controls channel access through a number of coordination functions. Both
contention based (active) and contention free (passive) access techniques are spec-
ified in the standard. Contention based access is provided by the distributed co-
ordination function (DCF). DCF is a mandatory component of 802.11. The point
coordination function (PCF) supports contention free access and is an optional com-
ponent of 802.11. The 802.11e amendment supports differentiated services for both
contention-based and contention-free access methods.

One of the first active multi-access wireless systems was Aloha [1]. Abramson
conceived the Aloha system in 1970 for a packet radio network at the University of
Hawaii campus. Packet radio devices communicate over a common frequency band
using a random access method.

The first Aloha access scheme (commonly referred to as pure Aloha) is rela-
tively straightforward. A device transmits whenever it has data to send. The device
verifies that a packet has been sent successfully (or not) by monitoring the broad-
cast channel during transmission. If a collision occurs, the packet is retransmitted.
Repeated collisions are avoided by employing an exponential back-off algorithm
whereby retransmissions are deferred for a random period. While simple, the pure
Aloha scheme is inefficient with regards to channel utilisation. The throughput of
pure Aloha SpureAloha is expressed as a function of offered traffic load G, thus:

SpureAloha = Ge−2G (1.1)

A slotted version of the Aloha protocol improved throughput efficiency. With the
slotted-Aloha scheme, packet transmissions are synchronised to discrete time slots.
This has the effect of reducing collision times. While slotted-Aloha is an improve-
ment over pure-Aloha, the channel efficiency is far from ideal. The throughput for
slotted Aloha SslottedAloha is given by:

SslottedAloha = Ge−G (1.2)

1.2 Wireless LANs 5

Fig. 1.2 Performance of
Aloha and CSMA schemes

From the graph in Fig. 1.2, it can be seen that slotted Aloha performs better than
pure Aloha. The maximum throughput achieved by pure Aloha is only 18 percent,
compared to 37 percent for slotted Aloha.

A number of variations of the Aloha protocol have been researched. Half duplex
Aloha (Aloha-HD) implements a limited form of carrier sensing. A device defers
any transmission (according to its back-off algorithm) if it detects a packet for which
it is the recipient. If it detects a packet for which it is not the recipient then it behaves
like pure Aloha. Note that this sensing function is only effective if it is able to
capture the packet header. If the “sensing” begins after the transmission of the
header it is impossible to extract the destination address and determine the recipient.
Again, in this case, the device resorts to the pure Aloha protocol. Carrier sense
Aloha (Aloha-CS) is a variant of Aloha-HD. It extends the carrier sensing function
to include all packets regardless of whether the sensing device is the recipient or
not.

Aloha is the predecessor to carrier sense multiple access (CSMA) systems used
in many broadcast networks today (both wired and wireless). There is a variety of
CSMA protocols:

• non-persistent
• 1-persistent
• p-persistent

With non-persistent CSMA, the device senses the channel prior to transmission.
The device initiates the packet transmission if the channel is idle, however, if the
channel is busy the device executes a back-off algorithm and reschedules packet
transmission to some time in the future (chosen at random). The problem with non-
persistence is that even if a number of devices have data to send the channel will,

6 1 Introduction

after completion of the current transmission, remain idle until the first back-off timer
expires. The problem of channel idle time is overcome by 1-persistent CSMA. A de-
vice transmits if it senses the channel to be idle (just like non-persistent CSMA).
If the channel is busy, the device continues to sense the channel. When the chan-
nel becomes free, transmission begins immediately, while this overcomes the “idle
channel” problem. A collision is inevitable, however, once the channel becomes idle
if two or more devices had previously deferred transmission when the channel was
busy. The throughput of non-persistent CSMA is given by:

Snp-CSMA = Ge−aG

G(1 + 2a) + e−aG
(1.3)

The throughout of 1-persistent CSMA is:

S1p-CSMA = G[1 + G + aG(1 + G + aG/s)]e−G(1+2a)

G(1 + 2a) − (1 − e−aG) + (1 + aG)e−G(1+a)
(1.4)

where a is ratio of propagation delay and packet transmission time. The throughput
of non-persistent and 1-persistent CSMA is shown in Fig. 1.2. For the purpose of
illustration, a value of a = 0.001 is used.

With p-persistence, a device sensing the transition of a busy channel to an idle
channel, will initiate transmission with a probability p. It defers transmission with
a probability 1 − p, in which case, it performs its back-off algorithm. Ethernet (and
its IEEE equivalent, 802.3), though not a wireless LAN, is worth mentioning here
as it adopts a 1-persistent CSMA scheme. In all three CSMA schemes, (non/1/p-
persistent), the device performs back-off when a collision is detected. However,
back-off cannot begin until the end of the packet transmission, even though it is
corrupted by the collision with another packet. Collision detection (CSMA/CD) re-
duces this wasted capacity by ceasing transmission and generating a short jamming
signal to ensure that other transmitting devices are aware of the collision. Back-off
is performed after transmitting the jamming signal. This scheme is referred to as
listen-while-talk. Ethernet. IEEE 802.3.

Collision detection, however, is not conducive to wireless networks. Firstly,
transmitting a packet and listening for collisions simultaneously would require two
radios. This would make wireless devices prohibitively expensive. Secondly, sig-
nals in free space suffer greater attenuation than signals transmitted over a wire.
While the strength of an interference signal may be sufficiently strong to corrupt
a frame at the receiving device, it could have faded beyond detection by the time
it reached the distant sending device. This is commonly known as the hidden node
problem [28]. A related problem is the exposed terminal scenario. An exposed de-
vice must defer to a neighbouring device that is transmitting to some other device
which is out of range of the exposed device. The exposed device will not interfere
with the signal at the (out-of-range) receiver, yet it is prevented from transmitting.
For the reasons described above, 802.11 uses a CSMA scheme based on collision
avoidance (CSMA/CA) for contention based channel access. 802.11’s coordination
functions (both contention based and contention free) are discussed in more detail
in Chap. 3.

1.3 A Brief History of 802.11 7

Tobagi and Kleinrock [34] proposed the busy tone multiple access (BTMA) pro-
tocol as a solution to the hidden/exposed terminal problem. BTMA uses a data chan-
nel and control channel. A device emits a “busy-tone” signal on the control channel
when it is receiving on the data channel. Neighbouring devices defer transmission
for the duration of the busy-tone.

Split-channel reservation multiple access (SRMA) proposed a handshake be-
tween the sender and receiver. This represents a power saving over BTMA which
must transmit a continuous signal throughout reception. Like BTMA, SRMA uses
a data channel for transmitting data and a separate control channel for exchanging
handshakes.

Multiple access collision avoidance (MACA) [23] was the first CSMA/CA-like
protocol. It uses an RTS/CTS mechanism influenced by the Appletalk protocol. The
transmission of a data frame is preceded by a ready-to-send (RTS) and a clear-to-
send (CTS) exchange between the sender and receiver. Unlike SRMA, RTS and CTS
frames are sent over the same channel as data frames. The surrounding neighbours
in range of the RTS or CTS frames defer any pending transmissions. MACAW
(MACA for Wireless) [4] is an enhancement of MACA which addresses some of
the fairness issues inherent within the protocol.

1.3 A Brief History of 802.11

In 1985, the Federal Communications Commission (FCC) opened up the industrial,
scientific and medical (ISM) frequency band for wireless LANs [36]. The first wire-
less technologies appeared in 1990 and operated in the 900 MHz frequency band
with speeds of 1 Mb/s (much slower than wired LANs which, at the time, were
capable of 10 Mb/s). Furthermore, the implementations were non-standard. Prod-
ucts that operated in the 2.4 GHz ISM band appeared in 1992. Data rates were still
relatively low and based on proprietary solutions.

The IEEE 802.11 project began in 1990 and was approved in 1997. The aim of
802.11 was to develop medium access control (MAC) and physical (PHY) layer
standards for fixed, portable and mobile wireless devices.

The original 802.11 specification is seen as the root standard. Devices that im-
plement the original 802.11 standard, however, are rare nowadays. Since its publi-
cation, the 802.11 working group has introduced a number of enhancements, pri-
marily (but not exclusively) to address performance and security issues. These en-
hancements to the standard are published as amendments designated by a lower case
letter. A few of the more notable amendments are discussed in this section.

The 802.11a and 802.11b amendments appeared in 1999, specifying improved
modulation schemes which yielded higher transmission rates. 802.11b wireless
LAN equipment quickly became popular. 802.11b devices operated in the same
frequency band as the legacy 802.11 specification. Whereas the original 802.11
standard was limited to data rates of 1 and 2 Mb/s, 802.11b supported data rates
of 5.5 and 11 Mb/s. As well as improved data rates, 802.11b also introduced wired
equivalent privacy (WEP) which supported cryptographic based security.

8 1 Introduction

The 802.11a amendment was completed in 1999. 802.11a operates in the 5 GHz
frequency band, and uses orthogonal frequency-division multiplexing (OFDM). It
supports up to 54 Mb/s but can rate adapt down to 48, 36, 24, 18, 12, 9 or 6 Mb/s,
according to the channel conditions.

The FCC permitted the use of OFDM in 2001. This gave rise to the 802.11g
amendment in 2003. Like 802.11a, 802.11g supports transmission rates of up to
54 Mb/s (and link rate adapts in the same way as 802.11a). As 802.11g shares the
same frequency spectrum as 802.11b, 802.11g devices have to be backwards com-
patible with 802.11b devices. 802.11g, therefore, operates a number of protection
mechanisms in order to co-exist with 802.11b devices.

The 802.11n amendment was ratified in 2009. The 802.11n PHY relies heavily on
multiple-input multiple-output (MIMO) technology for increased speed and range
(over 802.11a/g). 802.11n devices can operate in either the 2.4 GHz or the 5 GHz
band. In the same way 802.11g has to co-exist with 802.11b, 802.11n implements
protection mechanisms to ensure co-existance with pre-802.11n devices.

Security provisions were first specified in the 802.11b amendment, which
adopted WEP for authentication and encryption. As outlined above, WEP had many
flaws. WEP could be exploited with minimal effort and know how. Indeed the FMS
attack has been incorporated into tools, such as AirSnort and Aircrack. The 802.11i
amendment was developed to address the shortcomings of WEP.

802.11 devices suffered from interoperability problems between vendors when
they initially came on the market. The Wi-Fi Alliance was formed to address in-
teroperability issues. A number of companies formed the Wi-Fi Alliance in order to
test the compliance of 802.11 equipment. Equipment that passes the compliance test
is entitled to bear the Wi-Fi certification logo, which is a registered trademark of the
Wi-Fi Alliance. Most 802.11 devices display the Wi-Fi logo. For this reason, Wi-Fi
and 802.11 devices have become synonymous. When the wired equivalent privacy
(WEP) security methods in 802.11b were found to be flawed, the IEEE initiated the
802.11i project to address the problem. The Wi-Fi Alliance also introduced a cer-
tification program called Wi-Fi Protected Access (WPA) which was based upon a
draft version of the amendment. When 802.11i was fully ratified, the Wi-Fi Alliance
issued the WPA2 certification programme.

1.4 The RF Environment

802.11 devices operate in unlicensed radio frequency (RF) bands. While these fre-
quency bands are unlicensed, they are not unregulated. Both Wi-Fi and non-Wi-Fi
devices must adhere to strict power limits (depending upon region and frequency
band) and methods of modulation. No user can claim exclusive access rights to un-
licensed bands (unlike licensed bands). Therefore, the radio spectrum at these fre-
quencies are shared resources. For this reason, devices must observe certain codes
of etiquette in order to use an unlicensed frequency band. The Federal Communi-
cations Commission (FCC) outlines three basic principles for operating in an unli-
censed band [10]:

1.4 The RF Environment 9

Fig. 1.3 WLANs detected by Kismet Application

i. Listen before talk
ii. When talking, make frequent pauses and listen again

iii. Don‘t talk too loud

In general, devices operating in these bands must not cause harmful interference
to neighbouring devices. However, devices must accept interference that may have
“undesirable” effects on their ability to operate. Congestion is one of the undesirable
effects brought about by the popularity of 802.11. Figure 1.3 shows a screen shot
of the Wi-Fi analyser Kismet. This shows the number of WLANs operating in the
vicinity of one of the authors. The location of this wireless scan was a small rural
town in Wiltshire, UK. It shows a number of wireless networks distributed across
the 2.4 GHz frequency band. Yet, This town is not a densely populated metropolitan
city. If we may be allowed to submit somewhat more anecdotal evidence, a few
miles away, in the city centre of Bristol, the iPhone of one of the authors detected
more that 100 wireless hotspots in its new shopping complex!

These unlicensed bands are not solely reserved for 802.11 devices. For example,
the 2.4 GHz band, often called the industrial, scientific and medical (ISM) band,
is also open to other communication devices, such as cordless telephones (DECT),
baby monitors and Bluetooth devices. Even dumb, non-telecommunications emit-
ters, like microwave ovens, operate at these frequencies. The images in Fig. 1.4
shows a spectral analysis of the 2.4 GHz band (using a WiSpy 2.4× spectrum anal-
yser [27]). The top image shows 802.11 wireless networks denoted by the blue
“humps” occupying discrete channels. The bottom image shows the “interference”
received from a domestic microwave oven in operation.

10 1 Introduction

Fig. 1.4 Spectrum analysis of 2.4 GHz band

The range, performance and reliability of wireless communications is governed
by signal strength and noise level (amongst other things). Shannon’s theorem [31]
gives us some insights into the upper bound of a channel’s capacity:

C = B × log2(1 + SNR) (1.5)

where C (bits/s) is the channel capacity, B (Hz) is the channel bandwidth and SNR is
the signal-to-noise ratio. The graph in Fig. 1.5 shows maximum transmission speed
as a function of SNR for a channel bandwidth of W = 20 MHz.

The spectral density of radio signals (or any electromagnetic radiation, for that
matter) diminishes with distance, resulting in a reduced signal strength at the re-
ceiver. Obstructions in the signal path compound the problem further by absorb-
ing and scattering radio signals. Radio signals can be reflected by physical ob-
jects resulting in multiple signal paths between the transmission end-points. Re-
flected/refracted signals arrive at the receiver out of phase with the direct path signal
and combine destructively. This causes multipath fading.

1.4 The RF Environment 11

Fig. 1.5 Shannon limit

The receiver power level requirements for a particular wireless interface card, are
referred to as the receive sensitivity Prx :

Prx = noise floor + SNR (1.6)

The electronics that comprise the receiver, generate internal thermal noise. For an
ideal receiver the thermal noise N can be calculated by the expression:

N = kT B (1.7)

where k = 1.38 × 10−23 J/K is the Boltzmann constant, T is the temperature (typi-
cally 290 K) and B (Hz) is the bandwidth of the channel. The level of internal noise
is referred to as the noise floor. A real receiver, however, will incur losses. Equation
1.8 could underestimate the noise floor by as much as 15 dB, thus:

noise floor = N + 15 dB (1.8)

In addition to the internal thermal noise of the wireless interface card, there are also
external sources of thermal and electromagnetic noise in the environment. This is
expressed as the SNR:

SNR = Eb

N0
× R

BT

(1.9)

where Eb is the energy per bit, N0 is the noise per 1 Hz, R is the system rate and BT

is the system bandwidth. In general, the bit error rates (BER) of wireless systems
diminish with increased SNR (though BER is also dependent upon the modulation
scheme used). The graph in Fig. 1.6 shows the BER for binary phase shift key
(BPSK). Typically, BER results are plotted against Eb/N0 rather than SNR. We
adopt this convention here.

12 1 Introduction

Fig. 1.6 BER of BPSK
modulation

A link budget analysis of a wireless communication system yields the transmis-
sion power requirements Ptx given the end-to-end gains and losses:

Ptx = Prx + 2Lc − Gtx − Grx + FSPL + fade margin (1.10)

Gtx and Grx are the gains of the transmitting and receiving antenna respectively.
Lc is the loss introduced by the antenna cable and connectors. For simplicity, we
assume that the cable loss is the same at each end. FSPL is the free-space loss. We
will discuss free-space loss in more detail in Chap. 2. The fade margin accounts for
the losses experienced due to multi-path fading. This fade margin can be anything
up to 30 dB.

1.5 Book Outline

The organisation of the book is outlined as follows:

Chapter 2: Radio Frequencies. We introduce the basic principles of the electromag-
netic spectrum with respect to radio frequencies (RF). We focus on the part of
the spectrum where WLANs operate; namely, microwave frequencies. Radio wave
propagation methods are discussed in detail. RF regulation with respect to WLANs
is also covered in this chapter.

Chapter 3: Medium Access Control. The MAC sub-layer is introduced in this chap-
ter. The MAC layer implements a number of coordination functions, which are
responsible for controlling wireless channel access. The distributed coordination
function (DCF) and point coordination function (PCF) are covered. We also cover
the hybrid coordination function (HCF) from the 802.11e ammendent which ad-
dresses quality of service issues within 802.11 WLANs.

1.6 Summary 13

Chapter 4: The Physical layer. The primary focus is the physical sub-layers of
802.11; namely, the PLCP and PMD. Modulation techniques are discussed in de-
tail together with associated amendments in which they appeared appear. We close
the chapter with a review of MIMO and beamforming.

Chapter 5: Cryptography. The 802.11 standard makes extensive use of crypto-
graphic methods for security. Cryptographic concepts are introduced in this chap-
ter. It covers encryption, message digests, digital signatures and digital certificates.
We use applications such as OpenSSL to demonstrate the concepts presented. In
Chap. 8 we describe how to build a WLAN based on the RSN (robust security
network) framework. EAP-TLS is used as the authentication method and requires,
therefore, digital certificates. This chapter describes how to generate X.509 digital
certificates using OpenSSL.

Chapter 6: Wireless Security. An overview of the 802.11e ammendment is pre-
sented in this chapter. We discuss RSNA (robust security network association) and
pre-RSNA security methods. We cover authentication, encryption and message in-
tegrity within 802.11.

Chapter 7: Configuring Wireless Networks. In this chapter, we show how to im-
plement a number of wireless network solutions. We show examples using Cisco,
Alcatel-Lucent and Meru equipment. We also show how to implement an open
source access-point.

Chapter 8: Enterprise Security. In this chapter, we give a detailed description of
how to implement a wireless network with enterprise security. Enterprise security
requires a RADIUS server for authentication. We show how to configure the open
source RADIUS package, Freeradius.

Chapter 9: MAC Layer Performance Analysis. Models of the 802.11 MAC sub-
layer are developed and analysed. We show the effects of the RTS/CTS mechanism
and fragmentation on performance.

Chapter 10: Link rate adaptation. 802.11 devices select modulation techniques (and
consequently link speeds) according to the RF environment. In this chapter we de-
velop a number of signal loss models and use them to analyse link rate adaptation.

1.6 Summary

Wireless communication systems present a set of challenges which are distinct from
those of wired based systems. This book is aimed at addressing the performance and
security issues associated with 802.11 WLANs.

The book presents configuration examples of various wireless network solutions
across a number of different vendor platforms. We also rely heavily on open source
(such as GNU/Linux) for building the supporting infrastructure required for enter-
prise level WLAN security.

Chapter 2
Radio Frequencies

The range and performance of wireless communication systems are governed by
signal strength and noise level (expressed as the signal-to-noise ratio). 802.11 wire-
less devices adjust their transmission rate according to the channel conditions. Radio
signals weaken with distance. Obstructions in the signal path compound the problem
further by absorbing and scattering radio signals. Radio signals can also be reflected
by physical objects, resulting in multiple paths between the transmission end-points.
Reflected signals arrive at the receiver out of phase with the line-of-sight signal and
combine destructively. This is known as multi-path fading.

Systems operating in open or unlicensed bands have to contend with radio de-
vices in co- and adjacent channels. Undesired signals with frequencies in or near
the receiver’s bandpass get processed by the same circuitry as desired signals. In-
terference can also result from undesired signals that are far outside the receiver’s
bandpass frequencies. If the signal levels are high enough, local oscillator harmonics
can produce anomalies in the receiver.

This chapter introduces radio frequency (RF) waves and RF wave propagation.
We introduce radio regulation with respect to WLANs and discuss spectrum man-
agement methods adopted by 802.11.

2.1 The Electromagnetic Spectrum

Radio waves are a form of electromagnetic radiation. Electromagnetic radiation
is energy radiated by a charged particle as a result of acceleration. James Clark
Maxwell derived a mathematical framework based upon Faraday’s empirical data on
magnetic lines of force. Maxwell’s equations describe how electromagnetic waves
propagate. Electric and magnetic fields propagate as sinusoids at right angles to each
other. Figure 2.1 shows the direction of an electric field (E) and magnetic field (H)
relative to the direction of the wave propagation. The wave propagates out in all
directions, creating a spherical wave front. For a given source emitting RF energy at
a power level Ptx , the power density S is given by:

S = Ptx

4πd2
W/m2 (2.1)

A. Holt, C.-Y. Huang, 802.11 Wireless Networks,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-275-9_2, © Springer-Verlag London Limited 2010

15

16 2 Radio Frequencies

Fig. 2.1 Directions of
electric and magnetic fields
relative to the direction of
propagation

where d is the distance between the radiator and the wave front (radius of the
sphere).

The frequency range of electromagnetic waves form the electromagnetic spec-
trum and range from extremely low frequencies of a few Hertz to Gamma rays at
100s of Exa-Hertz. The wavelength λ of a electromagnetic wave is related to its
frequency f by the relationship:

c = λf (2.2)

where the speed of light in free-space is c ≈ 3 × 108 m/s. Wavelengths, therefore,
range from many thousands of kilometers for frequencies at the lower end of the
electromagnetic spectrum, to picometers at the upper end.

All radiation in the electromagnetic spectrum has common properties. The elec-
tromagnetic spectrum is continuous over the entire frequency range. However, the
way in which electromagnetic radiation interacts with matter varies according to the
frequency. For this reason, the spectrum is divided into different types of radiation.
Table 2.1 shows the classification of electromagnetic radiation.

Visible light occupies a very narrow band in the range of 430 to 790 THz. Above
the visible light range lies ultraviolet, X-ray and Gamma rays. For the current pur-
pose, however, we are mostly interested in radiation with frequencies below that of
visible light; namely, radio waves. The original 802.11 standard specified a PHY
based on infrared (which lies just below the visible light range). 802.11 infrared de-
vices, however, did not achieve much commercial success, so we will confine our
attention to radio wave frequencies. Radio wave frequencies range from a few hertz
to 300 GHz. Wireless LAN communication systems operate within a range of fre-
quencies commonly known as microwaves. Microwaves are a subset of radio waves
that cover the EHF, SHF and UHF bands.

2.2 Radio Waves 17

Table 2.1 The electromagnetic spectrum

Acronym Band name Wavelength (m) Frequency

Upper Lower Lower Upper

ELF Extremely low frequency 108 107 3 Hz 30 Hz

SLF Super low frequency 107 106 30 Hz 300 Hz

ULF Ultra low frequency 106 105 300 Hz 3 kHz

VLF Very low frequency 105 104 3 kHz 30 kHz

LF Low frequency 104 103 30 kHz 300 kHz

MF Medium frequency 103 102 300 kHz 3 MHz

HF High frequency 102 10 3 MHz 30 MHz

VHF Very high frequency 10 1 30 MHz 300 MHz

UHF Ultra high frequency 1 10−1 300 MHz 3 GHz

SHF Super high frequency 10−1 10−2 3 GHz 30 GHz

EHF Extremely high frequency 10−2 10−3 30 GHz 300 GHz

FIR Far infrared 10−3 10−4 300 GHz 3 THz

MIR Mid infrared 10−4 10−5 3 THz 30 THz

NIR Near infrared 10−5 10−6 30 THz 300 THz

NUV Near ultraviolet 10−6 10−7 300 THz 3 PHz

FUV Far ultraviolet 10−7 10−8 3 PHz 30 PHz

EUV Extreme ultraviolet 10−8 10−9 30 PHz 300 PHz

SX Soft X-rays 10−9 10−10 300 PHz 3 EHz

HX Hard X-rays 10−10 10−11 3 EHz 30 EHz

Y Gamma 10−11 10−12 30 EHz 300 EHz

2.2 Radio Waves

All electronic circuits radiate RF energy. Consider the circuit in Fig. 2.2, connect-
ing an RF source to a load by a transmission line. If the conducting wires are close
together, the transmission line acts as a wave guide and the RF energy emitted by
the source is delivered to the load along the conductors of the circuit. The RF en-
ergy will radiate out from the two conducting wires of the transmission line into the
environment. However, as the wires are close together, the electromagnetic waves
will effectively cancel each other out. As the distance between the conducting wires
increases, RF energy is emitted into the surrounding environment. Furthermore, the
wavelength of the emitted energy is in the order of the distance between the wires.
The energy radiates away from the transmission line in the form of free-space elec-
tromagnetic waves. Radio antennas can be thought of as transmission lines that have
been configured for the purpose of efficiently transmitting energy from the conduc-
tors into free-space (see Fig. 2.3).

The propagation of radio waves is governed by frequency. Below 2 MHz, radio
waves propagate as ground waves. Ground waves follow the contours of the Earth.
For frequencies between 2 and 30 MHz, sky wave propagation is the dominant mode.
Radio signals are refracted by the ionosphere. Long range coverage can be achieved;
however, the range is dependent upon frequency, time of day and the season.

18 2 Radio Frequencies

Fig. 2.2 Electric circuit

Fig. 2.3 A half-wavelength Di-pole antenna

At frequencies above 30 MHz, signals propagate between transmitter and re-
ceiver along a direct line-of-sight path. The range of these signals is limited by the
curvature of the Earth, amongst other things. Radio waves at these frequencies are
subject to very little refraction by the ionosphere; rather, they tend to propagate
through it (making them ideal for satellite communications). As 802.11 WLANs
operate at microwave frequencies, we are not concerned with ground or sky wave
propagation modes here.

Radio waves are affected by the environment and objects within that environ-
ment. The means by which radio wave propagate are given by:

• Direct path
• Absorption
• Reflection
• Refraction
• Diffraction
• Scattering

20 2 Radio Frequencies

The size of the effective aperture Ae is given by;

Ae = λ2

4π
(2.4)

Combining (2.1), (2.3) and (2.4), gives:

Prx = Ptxλ
2

(4πd)2 (2.5)

The loss L due to the spreading of the wave front as it propagates through free-space
is the ratio of the transmission power over the receive power, thus:

L = Ptx

Prx

=
(

4πd

λ

)2

(2.6)

Sometimes it is practical to express the free-space loss equation in decibels:

FSPL = 10 log10 L (2.7)

Rearranging yields:

FSPL = 10 log10

(
4πd

λ

)2

= 20 log10

(
4πf d

c

)

= 20 log10(d) + 20 log10(f) + 20 log10

(
4π

c

)
(2.8)

We developed this model using Maple. For convenience we define a constant for the
speed-of-light (c = 2.99792458 × 108 m/s):

> c := 2.99792458e8:

Below is the Maple function for the free-space loss model in (2.8):

> FSPL := (f,d,K) -> 20*log10(f) + 20*log10(d) + K;

FSPL := (f, d,K) → 20 log10(f) + 20 log10(d) + K

The constant K in the Maple function determines the units for frequency and
distance. As c is in meters per second, then the distance d is in meters and f is in
Hz:

> K1 := 20*log10(4*Pi/c);

K1 := 20 ln(1.334256381 × 10−8π)

ln(10)

Whenever possible, Maple returns results in exact form. In the example above,
K1 is expressed as a rational number. To return a result in (inexact) floating point
format:

> evalf(K1);

2.2 Radio Waves 21

K1 := −147.5522168

We can calculate the free-space loss for f = 2.412 × 109 Hz and d = 1000 m,
which is approximately 100 dB:

> evalf(FSPL(2.412*10^9,1000,K1));

100.0953293

If we want to pass the frequency and distance parameters to the function in units
of GHz and km respectively, then we compute the constant (K2) thus:

> K2 := 20*log10(4*Pi*GHz*1000/c): evalf(K2);

K2 := 92.44778326

For f in MHz and d in miles, the constant is:

> K3 := 20*log10(4*Pi*MHz*1609.344/c): evalf(K3);

K3 := 36.58076092

In the examples below, we show how to compute the free-space loss for different
units. The Maple expression below gives the free-space loss for 1 km at a frequency
of 2.412 GHz:

> evalf(FSPL(2.412,1,K2));

100.0953293

The expression below shows the free-space loss for 1 mile. We use the same
frequency as the example, except we express it in units of MHz:

> evalf(FSPL(2412,1,K3));

104.2283070

We define graph objects of the free-space loss for frequencies 2.437 and
5.24 (GHz):

> G1 := plot(FSPL(2.412,i,K2), i=0..1,
labels=["distance (m)", "loss (dB)"],
labeldirections=["horizontal", "vertical"],
legend=["2.412 GHz"], color=black, linestyle=DASH):

> G2 := plot(FSPL(5.24,i,K2), i=0..1,
labels=["distance (m)", "loss (dB)"],
labeldirections=["horizontal", "vertical"],
legend=["5.24 GHz"], color=black, linestyle=SOLID):

The statement below generates the graph in Fig 2.6. It can be seen that the losses
are greater in the 5 GHz band than the 2.4 GHz band but this is due to the effective
aperture of the antenna rather than the frequency of the signal itself.

> display(G1,G2);

22 2 Radio Frequencies

Fig. 2.6 Free-space loss

The free-space loss equation(s) discussed above are for isotropic antennas.
Isotropic antennas, however, are merely theoretical and do not exist in practice. Ac-
tual antennas exhibit some form of directionality. The isotropic antenna is merely
used as a reference point when comparing the gain from using real antennas.

2.2.2 Absorption

When radio waves encounter an obstacle, some of the energy is absorbed (and con-
verted into some other kind of energy, such as heat). The energy that is not ab-
sorbed will continue to propagate through the medium; however, the signal that fi-
nally reaches the receiver will be attenuated. The amount of energy absorption, and
consequently the degree of attenuation, is dependent upon the material from which
the obstruction is composed. Table 2.2 shows the losses for a selection of building
materials.

2.2.3 Reflection

Radio waves reflect off the surfaces of objects that are large relative to the signal’s
wavelength. The object material governs the amount of signal that is reflected. Ob-
stacles near the line-of-sight can reflect the wave causing duplication at the receiver.
These reflections may interfere, either constructively or destructively, depending

24 2 Radio Frequencies

Fig. 2.8 Diffraction

2.2.4 Diffraction

Radio waves can penetrate the shadow of an object by means of diffraction. Diffrac-
tion occurs when a radio wave encounters the edge of an object that is large com-
pared to the wavelength. Part of the wave’s energy is bent around the object, causing
a change in direction relative to the line-of-sight path. Non line-of-sight devices lo-
cated in the shadow of an object are able to receive signals, albeit attenuated. The
more deeply the receiver is located in the shadow, the greater the attenuation of the
diffracted signal. The diffraction loss Ldiff is given by:

Ldiff = 6.9 + 20 log(
√

(v − 0.1)2 + 1 + v + 0.1) (2.10)

where v is Fresnel parameter:

v = h

√
2

λ

(1

d1
+ 1

d2

)
(2.11)

The parameter h is the height of the object above the direct line of the signal and
d1 and d2 are the respective distances between the two devices and the obstacle (see
Fig. 2.8).

Define the Fresnel parameter v in Maple:

> v := (h,d1,d2) -> h * sqrt((2/lambda) * i
((1/d1)+(1/d2)));

v := (h, d1, d2) → h

√
2(1

d1
+ 1

d2
)

λ

The Maple function for the diffraction loss (Ldiff) is:

> diffloss := (h,d1,d2) -> 6.9 + 20 * log10(sqrt(1 +
(v(h,d1,d2) - 0.1)^2) + v(h,d1,d2) - 0.1);

diffloss := (h, d1, d2) → 6.9 + 20 log10(
√

(v(h, d1, d2) − 0.1)2 + 1

+ v(h, d1, d2) + 0.1)

The 3D surface graph in Fig. 2.9 shows the diffraction loss between two devices
1000 m apart. An object obstructs the direct signal path and is located 100 ≤ d1 ≤
900 meters from one device (and d2 = 1000 −d1 meters from the other). The height
of the obstruction above the line-of-sight between the antennas is given by h. The
graph in Fig. 2.9 is produced by the command:

26 2 Radio Frequencies

the troposphere and ionosphere exhibit properties of Rayleigh fading. The Rayleigh
distribution is also appropriate for built-up urban areas when the line-of-sight signal
is not dominant. If the line-of-sight signal is dominant, then Ricean fading is a more
appropriate model. The probability distribution function for Rayleigh fading is given
by:

frayleigh(x, σ) = x

σ 2
e−x2/2σ 2

(2.12)

> rayleigh := (x,sigma) -> (x/sigma^2) *
exp(-1*(x^2)/(2 * sigma^2));

rayleigh := (x, σ) → xe
− 1

2
−x2

σ2

σ 2

Define a list of values for σ (along with their respective line style):

> slist := [[0.5, "dash"], [1,"dot"], [2,"dashdot"],
[4,"solid"]]:

Create a sequence of plots of the probability distribution function (pdf) for each
value of σ in the list, slist:

> raylplots := seq(plot(rayleigh(x,s[1]), x=0..10,
labeldirections=["horizontal", "vertical"],
labels=["X", "pdf"],font=[times,roman,12],
linestyle=s[2],legend=[s[1]], color=black),
s in slist):

The command below produces the graph in Fig. 2.10:

> display(raylplots);

The Rice distribution is given by the expression below:

frice(x,u,σ) = x

σ 2 e−(x2+u2)/2σ 2
I0(xu/σ 2) (2.13)

where I0(x) is the zero order, first kind, modified Bessel function. Note that the
Rayleigh distribution is a special case of Rice distribution; that is, when u = 0, the
Rice distribution reduces to the Rayleigh distribution. Create a Maple function for
I0(x):

> I0 := (x) -> BesselI(0,x);

I0 := x → BesselI (0, x);
Define the pdf for the Rice distribution:

> rice := (x,u,sigma) -> (x/sigma^2) *
exp(-1*(x^2 + u^2)/(2 * sigma^2)) *
I0((x*u)/sigma^2);

2.3 Radio Frequency Regulation 27

Fig. 2.10 Rayleigh
probability density function
for various values of σ

rice := (x,u,σ) → xe
− 1

2
(x2+u2)

σ2 I0
(

xu
σ 2

)
σ 2

Define a list of values for u:

> ulist := [[0, "dash"], [0.5,"dot"], [1,"dashdot"],
[2,"spacedash"], [4,"solid"]];

Create a sequence of plots of the pdf for each value of u in the list ulist and
σ = 1:

> riceplots := seq(plot(rice(x,u[1],1), x=0..8,
labels=["X", "pdf"],font=[times,roman,12],
labeldirections=["horizontal", "vertical"],
linestyle=u[2],legend=[u[1]],color=black),
u in ulist):

The command below produces the graph in Fig. 2.11:

> display(riceplots);

2.3 Radio Frequency Regulation

The radio spectrum is a public resource and subject to strict regulation. National reg-
ulatory bodies are responsible for controlling radio emissions and frequency use. In
the UK, for example, the regulatory body is OFCOM. In the US, regulatory control
is divided between the Federal Communications Commission (FCC) for commerce

28 2 Radio Frequencies

Fig. 2.11 Ricean probability
density function, for various
values of u and σ = 1

and the National Telecommunications Information Administration (NTIA) for gov-
ernment.

The radio spectrum is divided into bands and allocated to a particular service,
such as broadcasting, radio astronomy, radar or telecommunications. The UK, for
example, regulates the radio frequency spectrum from 9 kHz to 275 GHz and pub-
lishes the frequency allocation table in [37]. There are three categories of radio band
allocation:

• Licensed
• Open
• Unlicensed

For licensed bands, licenses are granted by the regulatory bodies to organisations
for exclusive rights to use a particular frequency band. Deciding who has the right
to use the spectrum is not straightforward, but regulatory bodies employ a number
of methods:

• First come first served
• Lottery
• Administrative process
• Auction

The first come, first served and lottery methods are seldom used. In the past,
the regulatory bodies have favoured the administrative process; however, auctions
have become popular in recent years. Spectrum auctions were first used in New
Zealand in 1990 and have been adopted by many other countries since then. The UK
was one of the first to allocate 3G (third generation) licenses in this way. Raising

2.3 Radio Frequency Regulation 29

Table 2.3 ISM bands

Frequency Comment

Lower Upper

6,765 kHz 6,795 kHz

13,553 kHz 13,567 kHz

26.957 MHz 27.283 MHz

40.65 MHz 40.7 MHz

83.996 MHz 84.04 MHz

167.992 MHz 168.008 MHz

443.05 MHz 433.92 MHz

902 MHz 915 MHz US Legacy 802.11 and pre-802.11
proprietary devices

2.400 GHz 2.500 GHz 802.11b/g devices

5.725 GHz 5.875 GHz Overlaps with U-NII band in US

24 GHz 24.25 GHz

61 GHz 61.5 GHz

122 GHz 123 GHz

244 GHz 246 GHz

considerable capital for the treasury, the radio spectrum is more than just a public
resource; it is also a valuable commodity. Not all licensed parts of the spectrum are
exclusive; some parts are shared in that they are allocated to specific technologies
instead of organisations.

Spectrum licensing ensures reliable frequency usage, but has been argued that it
is inefficient [7]. When a frequency band is subject to open regulation, operating
within the band does not require a license.

An open frequency band can be shared by many users, thus achieving greater
efficiency. Uncoordinated access to the band, however, could render the frequency
band unusable. For this reason, a minimum standard of etiquette is imposed on its
usage.

Like open frequency bands, unlicensed bands do not require a license. However,
the standards of etiquette and technical conformance are more rigorous. There are
a number of unlicensed bands allocated for industrial, medical and scientific (ISM)
applications. ISM apparatus is allowed in the UK provided it is operated in accor-
dance with the 1949 Wireless Telegraphy Act. The ISM frequency bands are shown
in Table 2.3.

802.11 devices use a number of ISM bands. The first ISM band used for wireless
was the 900 MHz band. However, this was primarily in the US. The 2.4 GHz ISM
band is used by 802.11b and 802.11g devices. The band is divided into a number of
overlapping channels. The US specifies 11 channels, while Europe (ETSI) specifies
13. The bandwidth of each channel is 22 MHz, with a 5 MHz separation between
the centre of each band. A comparison of the US and European channel allocation

30 2 Radio Frequencies

Table 2.4 Channel allocation
in the 2.4 GHz band Channel Frequency (GHz) US Europe

Lower Upper

1 2.401 2.423 Yes Yes

2 2.406 2.428 Yes Yes

3 2.411 2.433 Yes Yes

4 2.416 2.438 Yes Yes

5 2.421 2.433 Yes Yes

6 2.426 2.448 Yes Yes

7 2.431 2.453 Yes Yes

8 2.436 2.458 Yes Yes

9 2.441 2.463 Yes Yes

10 2.446 2.468 Yes Yes

11 2.451 2.473 Yes Yes

12 2.456 2.478 No Yes

13 2.461 2.483 No Yes

Fig. 2.12 802.11 channel
allocation in the 2.4 GHz
band

is shown in Table 2.4. Channel frequencies are considered to be non-overlapping if
separated by 25 MHz. Any single channel can have up to four neighbouring chan-
nels that overlap. Within the frequency band, it is possible to have a maximum of
three overlapping channels. For US WLANs, these channels are 1, 6 and 11, whereas
in Europe, other combinations are possible. The 802.11 channel arrangement in the
2.4 GHz band is shown in Fig. 2.12, where the solid lines present the three non-
overlapping channels 1, 6 and 11. Despite this, it has been reported that, under cer-
tain conditions, there are no non-overlapping channels. If antennas are sufficiently
close together, then no pair of channels are completely interference-free [13].

802.11a devices operate in a number of unlicensed bands in the 5 GHz range.
The allocation of the spectrum and operating parameters vary across regions. Ta-
ble 2.5 contrasts the regulations for the US (FCC) and Europe (ETSI). In the US,
these bands are referred to as unlicensed national information infrastructure (U-
NII) bands. These frequency bands are not ISM bands; however, the 5.725–5.825
U-NII upper band used in the US overlaps with the ISM 5.725–5.875 GHz band.
Figure 2.13 shows channel allocation for the lower and middle U-NII bands and
Fig. 2.14 shows channel allocation for the upper band.

5.150–5.250 GHz: 802.11a devices that operate in this band are limited to indoor
use. The reason for this is to minimise interference with mobile satellite services
(MSS). Devices must perform transmit power control (TPC) and digital frequency

2.3 Radio Frequency Regulation 31

Table 2.5 5 GHz unlicensed bands

Region No. channels EIRP

(U-NII low) (U-NII mid) (U-NII worldwide) (U-NII high)

5.15–5.25/GHz 5.26–5.35/GHz 5.470–5.725 GHz 5.726–5.825 GHz

US 12 50 mW 250 mW Reserved 1 W

Europe 19 200 mW 200 mW 1 W Reserved

Fig. 2.13 U-NII lower and middle

selection (DFS). EIRP (equivalent isotropically radiated power) is restricted to
200 mW and the maximum mean EIRP spectral density should not exceed 0.25
mW in any 25 kHz band.

5.250–5.350 GHz: In order to minimise interference to Earth exploration satellite
services (EESS), 802.11a devices are restricted to indoor use. They must perform
TPC and DFS. EIRP is limited to 200 mW and the maximum mean EIRP spectral
density must not exceed 10 mW in any 1 MHz.

5.470–5.725 GHz: Devices in this band can operate both indoors and outdoors and
must perform TPC and DFS functions. EIRP is restricted to 1 W with a maximum
mean EIRP spectral density not exceeding 50 mW in any 1 MHz band.

A summary of the U-NII bands is presented below:

U-NII low (5.15–5.25 GHz): Devices are restricted to indoor use. Regulations re-
quire the use of an integrated antenna. EIRP is limited to 50 mW and the maximum
mean EIRP spectral density cannot exceed 0.25 mW per 1 MHz. If the directional
gain of the antenna exceeds 6 dB, then the EIRP and EIRP spectral density needs to
be reduced by an amount corresponding to the antenna gain, less 6 dB. Initially, the
FCC Part 15 specified that only integrated antennas could be used. This regulation
was lifted in 2004, allowing the use of external antennas [9].

U-NII mid (5.25–5.35 GHz): Devices can operate both indoors and outdoors. EIRP
is limited to 50 mW and the maximum mean EIRP spectral density cannot ex-
ceed 12.5 mW in any 1 MHz band. If the directional gain of the antenna exceeds
6 dB, then the EIRP and EIRP spectral density needs to be reduced by an amount
corresponding to the antenna gain, less 6 dB.

U-NII Worldwide (5.470–5.725 GHz): Devices can operate both outdoors and in-
doors. Devices must operate (TPC and DFS). EIRP is limited to 250 mW. This

32 2 Radio Frequencies

Fig. 2.14 U-NII upper

band was introduced by the FCC in 2003 in order to align devices that used the
U-NII bands in the US with other parts of the world [9].

U-NII Upper 5.725 to 5.825 GHz): Typically, for devices that operate outdoors.
EIRP is limited to 1 W and the maximum mean EIRP spectral density cannot
exceed 50 mW per 1 MHz. If the directional gain of the antenna exceeds 6 dB,
then the EIRP and EIRP spectral density needs to be reduced by an amount cor-
responding to the antenna gain, less 6 dB. There are exceptions to this rule for
point-to-point links. No reductions in EIRP or EIRP spectral density are required
for antennas with gains up to 23 dB. EIRP (and EIRP spectral density) must be re-
duced by 1 dB per dB gain over 23. This band overlaps with the 5.725–5.725 GHz
ISM and is, therefore, sometimes referred to as the U-NII/ISM band.

2.4 Spectrum Management

In unlicensed bands, WLAN devices must observe certain standards of “etiquette”
in terms of spectrum usage. In the previous section, we mentioned some of the
regulations regarding transmission power output. In addition to transmission power,
WLAN devices must use spread spectrum techniques.

Spread spectrum is method of spreading a narrow band signal over a wider fre-
quency band. Spreading communications signals over wider bands makes them
more resilient to unintentional interference and jamming. Consequently, spread
spectrum is used extensively in military radio applications. Spread spectrum meth-
ods employ two modulation stages:

• Modulation of the spreading code
• Modulation of the (spreaded) message

The original 802.11 standard specified two spread spectrum techniques (for de-
vices that operated in radio frequency bands), namely, frequency hopping spread
spectrum (FHSS) and direct sequence spread spectrum (DSSS). With FHSS, de-
vices (both transmitter and receiver) hop from channel-to-channel in a pseudo-
random sequence. Different transmitter/receiver pairs use a different pseudo-random
sequence in an attempt to minimise the collisions within the same channel band.
With DSSS, the transmitter and receiver use the same center frequency. The en-
ergy of the original signal is spread over a wider band by multiplying it with a
pseudo random sequence (called a chipping code). Resilience to interference is due

2.4 Spectrum Management 33

to the spreading of any interference. At the receiver the DSSS signal undergoes
despreading. Since the original standard, new modulation techniques have been in-
troduced. A high rate DSSS (HR/DSSS) was introduced in the 802.11b amendment
and OFDM (orthogonal frequency division multiplexing) in 802.11a (also later used
in 802.11g and 802.11n).

802.11 devices, as mentioned in Chap. 1, adjust their modulation scheme, and
consequently their link speed, according to RF environment. The 802.11 standard
does not specify how link rate adaptation should be performed. It is, therefore, at
the discretion of the vendor how link rate adaptation should be implemented.

The 802.11k ammendment [20] was introduced to provide a framework for ra-
dio resource measurements. The radio measurements framework enables devices
to collect data on the performance of a radio link and disseminate that informa-
tion throughout the network. A wireless device can either take local measurements
or request measurements taken by a neighbouring device. Radio measurement may
be used for a number of applications. If we consider a wireless network consist-
ing of multiple access-points, with legacy 802.11, devices associate with access-
points based upon the best signal. This can lead to an uneven distribution of devices
amongst access-points. Some access-points will be overloaded while others are un-
derutilised. Location awareness will help to distribute the load more evenly across
access-points.

As discussed in the previous section, devices operating in the 5 GHz range must
perform TPC (transmit power control) and DFS (dynamic frequency selection). The
5 GHz range is already occupied by primary users, such as radar and satellite ser-
vices. The IEEE 802.11h amendment was introduced to meet the European reg-
ulatory requirements of WLANs that operate in the 5 GHz range (IEEE 802.11a
devices). 802.11h is an enhancement to MAC for TPC and DFS. TPC procedures
enable the transmit power of wireless to devices to be controlled. The aim of TPC is
to minimise the interference between adjacent wireless networks while optimising
frame transmission reliability.

802.11h [19] is responsible for setting both the regulatory and local power levels
for the frequency band. The local maximum transmit power level is set according to
the transmission capabilities of devices and the level of interference. The local max-
imum transmit power level must not exceed the regulatory power levels. Devices
may adjust the power level of any frame transmission, provided that the local max-
imum transmit power level is not exceeded. Devices associate with access-points
based upon their power capabilities.

The local maximum transmit power level is set by the access-point and relayed
to devices using beacon, probe response and association response frames. Further-
more, this level is updated dynamically to reflect changes in the channel conditions.
802.11h also specifies a transmit-power reporting function.

The aim of DFS is to minimise interference in other wireless users in the area. In
the 5 GHz range the primary users of this band are radar and satellite communica-
tion. Wireless devices gather information on the condition of a channel and send it
to the access-point. Based on this information, the access-point will then determine
if it needs to switch to another channel.

34 2 Radio Frequencies

With DFS, the access-point controls communication within the BSS. Devices
may not access the channel without authorisation from the access-point (and are,
therefore, unable to use active scanning). Prior to authorising any communication,
an access-point selects a channel and monitors it for radar signals. If interference is
detected, the access-point selects another channel to monitor. When it finds a chan-
nel free of interference, it announces it to the network. The access-point continues
to monitor the channel. If any interference is detected, the access-point instructs
other devices in the BSS to cease transmitting. The access-point then identifies a
new channel and informs the devices to switch over to it.

Non-access-point devices are not required to do interference detection, provided
they operate under the control of an access-point that does. Devices that do have
interference detection capabilities will inform the access-point if it detects a primary
user (or another wireless network). The access-point defines quiet periods during
which devices may scan the channel.

2.5 Summary

Radio waves belong to the subset of the electromagnetic radiation below infrared.
At the upper part of the radio band are microwaves which range from 300 MHz
to 300 GHz. 802.11 devices operate in microwave bands. In this chapter, we have
discussed how radio waves propagation and their effect of wireless communication
systems. We have also discussed spectrum management techniques used in 802.11
WLANs. These techniques are subject to a great deal of research and will, hopefully,
lead to more effective use of the radio spectrum.

The radio spectrum is a valuable resource for many sectors, including broadcast-
ing, mobile telephony, aviation, public transport, navigation and defence. Conse-
quently, the radio spectrum has become a commodity; and has had a huge impact on
economic welfare. The use of an unlicensed spectrum for WLANs has had a major
impact on the growth of WLAN technology. Wireless devices are easy to mass mar-
ket due to the lack of any licensing procedure, which would, otherwise, significantly
contribute to the cost of production. Furthermore, usage is more efficient because
the spectrum is shared. Typically, an individual user’s needs for channel resources
are sporadic. Thus, one user may use a channel while the others are idle.

However, as the number of users increases, so does the amount of interference.
Thus, we are faced with a dilemma; strict regulation can lead to under-utilisation,
while liberal access can results in a tragedy of the commons whereby the spectrum
is overgrazed.

Chapter 3
Medium Access Control

Devices operating in a wireless environment have to deal with factors that are not
present in wired LANs. Nevertheless, 802.11 must appear as a traditional 802 LAN
to the protocol layer above. 802.11 defines a medium access control (MAC) data
link sub-layer which provides services to the logical link control (LLC) sub-layer.
Below the MAC sub-layer is the physical layer which comprises two sub-layers.
The physical layer convergence protocol (PLCP) sub-layer and the physical medium
dependent (PMD) sub-layer will be discussed in more detail in Chap. 4. The diagram
in Fig. 3.1 shows the 802.11 reference model.

LLC frames are passed to the MAC layer and encapsulated in MAC service data
units (MSDUs) by prepending a header and appending a frame check sequence
(FCS) to the payload. An MSDU is mapped to one or more MAC protocol data
units (MPDUs). MPDUs are passed to the physical layer for transmission.

The 802.11 MAC controls access to the RF channel via a number of logical func-
tions, called the coordination functions. Coordination functions determine when a
device may transmit frames over the wireless medium. The distributed coordina-
tion function (DCF) and the point coordination function (PCF) were defined in the
original standard.

DCF is a mandatory component of 802.11 and provides a contention based ser-
vice. Frame delivery with DCF is best-effort. PCF is an optional component of
802.11 which supports time-bound frame delivery. PCF divides the wireless medium
into alternating contention-free periods (CFP) and contention periods (CP). During
the contention free periods, access to the RF channel is controlled by a master node
(typically an access-point) using a polling mechanism. DCF is used for the con-
tention periods.

In addition to DCF and PCF, the 802.11e amendment was introduced to support
quality of service. The hybrid coordination function (HCF) is a backwards compat-
ible enhancement to the legacy 802.11 MAC.

This chapter gives an overview of the 802.11 MAC layer services and discusses
the coordination functions, DCF, PCF and HCF.

A. Holt, C.-Y. Huang, 802.11 Wireless Networks,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-275-9_3, © Springer-Verlag London Limited 2010

35

38 3 Medium Access Control

Prior to authentication/association, devices must identify any access-points that
are within range. Two methods of scanning are available; namely, passive and active.
In passive scanning mode, a device monitors each channel for beacon frames that
are broadcast by the access-points in the vicinity. With active scanning, a device
sends an explicit probe request. Access-points within range respond with a probe
response. The device caches any BSS identifiers (BSSIDs) acquired in the scanning
process (either passive or active).

Beacon frames are not just for announcing wireless networks; they are also used
to synchronise the clocks on all devices within the BSS. Beacons are transmitted
periodically by the access-points. The beacon carries a target beacon transmission
time (TBTT) so that devices know when the next beacon is due. Devices in the BSS
do not schedule frame transmission when the TBTT is due.

3.2 MAC Frame Format

This section describes the 802.11 MAC frame format. A MAC frame (see Fig. 3.4)
consists of a number of fields. A description of each field is provided below:

Frame control: The frame control field comprises a number of sub-fields. The struc-
ture of the frame control field is shown in Fig. 3.5. These sub-fields are described
below:

• Protocol Version: Identifies the version of the MAC. There is currently only one
standard for the MAC and it is assigned the value 0.

• Type: Describes the frame type, either: management, control or data.
• Subtype: The context of these values depends upon the type of field (that is,

whether the frame is management, control or data).
• ToDS: Set to 1 if the frame is to the DS.
• FromDS: Set to 1 if the frame is from the DS.
• More frag: If a frame has been fragmented, then all but the last frame has this

field set to 1.
• Retry: If the frame is a retransmission, then this bit is set to 1 (and 0 otherwise).
• Power mgmt: If the sending device is in power save mode, this bit is set to 1

(and 0 otherwise).

Fig. 3.4 MAC header

Fig. 3.5 Frame control field

3.3 Distributed Coordination Function 39

• More data: When a device is in power save mode, the access-point can buffer
the frames destined for it. This bit is set to 1 to indicate that the access-point has
one or more frames for a sleeping device.

• WEP: This field is set to 1 to indicate that WEP was used to encrypt the frame
body.

• Other: Set to 1 if strict ordering is enabled.

Duration/ID: The duration/ID field specifies the time to transmit the frame and re-
ceive an ACK. This is used to set the network allocation vector (NAV) in neigh-
bouring devices.

Sequence control: The sequence control field is a 12-bit sequence number plus a
4-bit fragment number and is used to identify and order the MSDU fragments
(MPDUs).

Addresses: The addr fields (1–4) contain 48-bit addresses. The meaning of these ad-
dresses depends upon whether the frame is being sent to or from the DS, indicated
by the to DS and from DS sub-field in the frame control field. The interpretation of
these four address fields is deferred until the discussion below.

Frame body: The frame body field contains the payload and the FCS (32-bit CRC
Code).

The meaning of the address fields in the MAC header are determined by the
ToDS and FromDS fields. Here, we provide an explanation of the address fields of
the MAC header.

In ad-hoc mode (IBSS), addressing is straight-forward. Addr-1 is the MAC ad-
dress of the destination; that is, the ultimate recipient of the frame. Addr-2 is the
source address of the sender. Addr-3 is set to the BSSID. Addr-4 is not used. In the
frame control field, both ToDS and FromDS are set to zero.

In infrastructure mode, addressing is more involved. Consider a device sending
frames to another device. Even if both devices are within range, the frame has to
be sent via an access-point. For frames sent in the direction of the DS (from a de-
vice to an access-point), ToDS = 1 and FromDS = 0. Addr-1 is set to the BSSID,
Addr-2 is the source address (that of the sender) and Addr-3 is the address of the
destination device. For frames sent from the DS (from an access-point to a device)
ToDS = 0 and FromDS = 1 Addr-1 is set to the destination address, Addr-2 is the
source address and Addr-3 is the BSSID. In both these cases, Addr-4 is unused.

Now consider a device sending a frame to a device on another BSS. Both de-
vices are associated with different access-points. ToDS = 1 and FromDS = 1 when
frames are transmitted between access-points. Addr-1 is set to the MAC address of
the receiving access-point and Addr-2 is set to the MAC address of the transmit-
ting access-point. Addr-3 and Addr-4 are set to the destination and source addresses
respectively.

3.3 Distributed Coordination Function

The distributed coordination function (DCF) is a mandatory component of 802.11
and is based upon a carrier sense multiple access (CSMA) protocol. DCF may also

40 3 Medium Access Control

employ a collision avoidance mechanism which uses a ready-to-send/clear-to-send
(RTS/CTS) handshake prior to sending a data frame. The reason for the RTS/CTS
mechanism is to resolve the hidden terminal problem (discussed in Chap. 1).

3.3.1 Carrier Sensing

A device must sense the wireless channel before initiating a transmission. 802.11
defines two carrier sensing methods:

• Physical Carrier Sensing (PCS)
• Virtual Carrier Sensing (VCS)

With PCS, carrier-sensing is performed at the physical layer using a clear channel
assessment function (CCA). CCA can use either coherent or non-coherent methods
of signal detection. Coherent signal detection involves preamble detection whereby
the sensing node synchronises with the frame’s preamble. With this method, the
CCA function must be running continually so that it can detect the preamble on
the channel. With the non-coherent method, the received signal strength indicator
(RSSI) is compared to some (configurable) threshold. Signal detection can be initi-
ated mid-frame and is, therefore, more energy efficient.

VCS uses a timer called the network allocation vector (NAV) to “reserve” the
RF channel. The NAV is specified in the duration field in the MAC header. Each
device keeps track of the NAV and “senses” the channel by checking its value. If
the NAV is non-zero, then another device is transmitting.

A device senses the wireless channel prior to transmitting a frame for a period
specified by the distributed inter-frame space (DIFS). If the channel is free for this
period, the device transmits the frame. Inter-frame spaces are discussed in more
detail in Sect. 3.3.3 below.

If, however, the device senses that the channel is busy, it defers transmission and
continues to sense the channel. Once the channel becomes free, the device senses
the channel for the remaining DIFS interval, and then enters a back-off period where
the device waits for a (back-off) timer to expire. The timer is frozen if the channel
becomes busy and resumes when it becomes free again. The device transmits when
the timer reaches zero.

3.3.2 Transmission Methods

DCF supports two transmission methods, basic and RTS/CTS. The latter method
supports collision avoidance.

With the basic transmission method, if the device senses the RF channel is idle,
it transmits the data frame. All neighbouring devices that detect the frame set their
NAV according to the duration field value in the header of the data frame. The du-
ration field value is set to the time to transmit the data frame, the time to transmit

42 3 Medium Access Control

• PCF IFS (PIFS).
• DCF IFS (DIFS).
• Extended IFS (EIFS).

The IFSes above are listed in order of priority; thus: SIFS < PIFS < DIFS <

EIFS. The SIFS precedes the highest priority packets; namely, ACK, CTS and
polling response frames. In DCF mode, any new transmission of data must be pre-
ceded by a DIFS. Similarly, in PCF mode, a new transmission is preceded by a PIFS.
As the DIFS is greater than PIFS, PCF transmissions have greater priority than DCF
transmissions. The EIFS is used in DCF mode instead of the DIFS when a frame
transmission does not result in a correct sequence. The PIFS and DIFS intervals are
calculated according to:

PIFS = aSIFSTime + aSlotTime

DIFS = SIFS + 2 × aSlotTime
(3.2)

The SIFS is PHY dependent and given by:

SIFS = RxRFDelay + RxPLCPDelay + MacProcessingDelay

+ RxTxTurnaroundTime (3.3)

and the aSlotTime as:

aSlotTime = CCATime + RxTxTurnaroundTime + AirPropagationTime

+ MacProcessingDelay (3.4)

Equations (3.3) and (3.4) are dependent upon a number of parameters, which are
described below:

CCATime: The minimum time required by the PHY to determine the state of the
channel.

RxTxTurnaroundtime: The maximum time the PHY takes to switch between receive
and transmit modes.

MacProcessingDelay: Time taken for the MAC to process a frame.
frameTXtime: Frame transmission time.
ackTXtime: Acknowledgment frame transmission time.
RxRFDelay: Time taken to deliver a symbol from the PHY to PLCP.
RxPLCPDelay: Time take to deliver a symbol from the PLCP to the MAC layer.
AirPropagationTime: Propagation delay through the wireless channel.

Table 3.1 shows the slot time and SIFS values for each PHY.

Table 3.1 SIFS and
aSlotTime values PHY aSlotTime SIFS

FHSS 50 µs 28 µs

DSSS 20 µs 10 µs

OFDM 9 µs 16 µs

3.3 Distributed Coordination Function 43

Table 3.2 Contention
windows values PHY CW min CW max

FHSS 15 1023

DSSS 31 1023

OFDM 15 1023

3.3.4 Random Back-Off Algorithm

If two (or more) wireless devices sense that the channel is busy, they defer their
respective transmissions until it is idle. If both devices transmit when the channel
becomes available (after waiting for a DIFS) there will be a collision. To avoid
such collisions, transmissions are staggered between devices by using a random
back-off algorithm. Each device waits for a random amount of time-slots before
transmitting. The device with the shortest back-off timer gains contention of the
channel. The back-off timers in the other devices are frozen. Timers resume their
countdown once the channel becomes idle again and the procedure is repeated. The
length of the timer (in slots) is determined by the binary exponential back-off (BEB)
algorithm. The number of slots is selected, uniformly, at random, from the interval
[0,CW − 1], where CW is the current size of the contention window. The back-off
timer can be calculated using the expression below:

backoff = �CW × U(0,1)� × aSlotTime (3.5)

where U(0,1) is a uniform random number in the interval [0,1]. The value of CW
depends upon the number of collisions and previously successful transmissions. We
denote the contention window on the ith failed transmission attempt as CWi , given
by:

CWi = 2i × (CW min+1) − 1, 0 ≤ i ≤ m (3.6)

where m = log2 CW max/CW min. On the first transmission attempt, CW0 is set
to CW0 = CW min. Each time a collision is experienced, the contention window is
doubled. Wi never exceeds CW max, where CW max = 2m × (CW min+1)−1. The
contention window is reset to CW min when the frame is successfully transmitted.
The parameters for the BEB algorithm vary according to the PHY. CW min and
CW max values are shown in Table 3.2.

3.3.5 Fragmentation

As wireless channels are inherently unreliable, MSDUs over a certain size, may
be fragmented and sent as a sequence of smaller MPDUs. Figure 3.8 shows the
fragmentation of an MSDU and the encapsulation of MPDUs. The receiving node
is responsible for recombining the MPDUs into a MSDU. This process is called
defragmentation.

3.4 Point Coordination Function 45

window will seize control of the channel as its residual back-off interval will even-
tually expire. Short-term fairness, however, diminishes as the number of devices
increases. Devices that suffer collisions will incur long back-off intervals. Devices
that merely defer their transmission because they sense the channel through the NAV
have preferential access over devices that have suffered collisions.

DCF does suffer from an upstream/downstream unfairness. If there N −1 devices
are associated with an access-point, then, all devices, including the access-point,
receive a 1/N share of the channel capacity. As DCF does not support quality of
service, the access-point is the same priority as any other device, even though it
initiates all of the downstream flows on the WLAN.

On the whole, DCF is considered fair. 802.3, for example, suffers from the cap-
ture effect problem, whereby, under high load, a single device can seize control of
the channel over consecutive frame transmissions. DCF, however, does lack service
differentiation. The coordination functions discussed below facilitate prioritisation
and deterministic frame delivery.

3.4 Point Coordination Function

The DCF only supports a best-effort frame delivery service. PCF was introduced to
provide support for time-bounded frame delivery. PCF only works in infrastructure
mode. A point coordinator (PC) runs on an access-point and sends beacon frames
periodically. This divides the channel into a sequence of superframes consisting of
a contention-free period (CFP) followed by a contention period (CP).

The PC initiates a CFP by gaining control of the channel by sending a beacon
frame after a PCF inter-frame space (PIFS). The beacon frame announces the dura-
tion of the CFP (specified by the CFPMaxDuration Value). All devices that receive
the beacon set their NAV to the value of the CFPMaxDuration, thereby suspend-
ing DCF access. DCF access is resumed when the NAV reaches zero. Stations are
granted access to the RF channel under control of the PC.

The PC carries a list of devices which may transmit during the CFP and grants
access by polling the devices on its list. The PC awaits a SIFS after the beacon
frame and then sends a CF-Poll frame to the first device. The device responds by
sending an ACK if it has no frames to send; otherwise it sends a CF-ACK+data.
If the device sends a CF-ACK+data, the PC responds with a CF-ACK+CF-Poll
frame. The PC, therefore, can simultaneously poll the next device on the list and
acknowledge the data from the previous one. The PC can piggy-back the data it
needs to send to devices on the CF-Poll, CF-ACK and CF-ACK+CF-Poll frames.
At the end of the CFP, CP is resumed and the devices use the DCF transmission
method to gain control of the channel. Figure 3.10 shows the PCF access method.

3.5 Hybrid Coordination Function

While PCF was developed for time-bound frame delivery, there are a number of
problems. The time between beacons (which signals the start of the CFP) is unpre-

3.5 Hybrid Coordination Function 47

Table 3.3 Mapping of user
priority to access category Priority UP AC Traffic category

Lowest 1 AC_BK Background

– 2 AC_BK Background

– 0 AC_BE Best-effort

– 3 AC_BE Best-effort

– 4 AC_VI Video

– 5 AC_VI Video

– 6 AC_VO Voice

Highest 7 AC_VO Vioce

EDCA frame delivery is based on differentiating user priorities (UPs). UPs are
designated integer values of 0–7 and correspond to 802.1D MAC bridge priority
tags. 802.11e maps UPs to four access categories (ACs). The mapping of UPs to
ACs is shown in Table 3.3.

Four separate back-off entities (one for each AC) operate within each device.
The priority of an MSDU is determined by the AC parameters associated with the
back-off entity responsible for delivering the MSDU. Each back-off entity contends
for a TXOP independently. The channel is sensed for a period called the arbitration
inter-frame space (AIFS). The AIFS associated with a particular AC, AIFS[AC], is
computed by:

AIFS[AC] = SIFS + AIFSN[AC] × aSlotTime (3.7)

The minimum value of AIFS[AC] is equal to DIFS in the legacy 802.11. The
AISF number (AIFSN) is initially set to 2 by the HC. However, the back-off entity
can elect to increase the AIFS[AC] by increasing the AIFSN[AC]. An increase in
the AISFN[AC] (and consequently the AIFS[AC]) has the effect of reducing the
priority of the MSDUs sent by that back-off entity.

The minimum and maximum contention window sizes (CWmin and CWmax
respectively) are also determined by the AC. The smaller the values of CWmin and
CWmax, the higher the channel access priority. The contention window size for any
given back-off stage i is given by:

CWi[AC] = min(2i(CW min[AC] + 1) − 1,CW max[AC]) (3.8)

The diagram in Fig. 3.11 shows that the frames are assigned priorities with ACs
according to their AIFS. Once a back-off entity has seized control of the channel,
it transmits for the period defined by the TXOP. TXOP limits are defined per AC
and the TXOPlimit[AC] determines the back-off entity’s share of the channel ca-
pacity. Furthermore, 802.11e allows the continuation of an EDCA-TXOP, that is, a
back-off entity may deliver multiple MSDUs provided that it does not exceed the
TXOPlimit[AC]. The default EDCA parameter set is shown in Table 3.4.

Finally, 802.11e devices maintain two per AC retry counters. QSRC[AC] and
QLRC[AC] are the short and long retry counters, respectively. The counters are
applied depending upon the length of the MSDU. For AC_VO and AC_VI, the retry

3.5 Hybrid Coordination Function 49

Fig. 3.12 The four access
categories (ACs) for ECDA

specification (TSPEC) parameters are included in the quality of service management
frame sent by the device. The TSPEC parameters include the mean data rate (ρ) the
MSDU size (σ) for the application ([AC]). If A is a cumulative traffic process, the
traffic is sent in the period t − s, where t > s, is bounded by:

A(t) − A(s) ≤ ρ · (t − s) + σ (3.9)

The HC scheduler performs an admission control function to determine if suffi-
cient resources are available to support the TSPEC request. For any traffic stream k,
the admission control function computes the number of MSDUs that arrive within a
set service interval (SI) at the mean rate:

Nk =
⌈

SI × ρk

σk

⌉
(3.10)

SI is taken as the lowest value of the maximum service intervals of all admitted
flows. The transmission opportunity TXOPk is given by:

TXOPk = max

[
Nkσk

Rk

+ O,
σmax

Ri

+ O

]
(3.11)

50 3 Medium Access Control

Rk is the minimum transmission rate for the PHY, σmax is the maximum MSDU
size and O is the overhead. The TS is admitted, if:

TXOPn+1

SI
+

n∑
k=1

TXOPk

SI
≤ B − TCP

B
(3.12)

where B is the beacon period and TCP is the time reserved for traffic under the
contention-based delivery. A TXOP is allocated to an individual AC (on a device)
rather than to the device itself. An AC transmits until it has exhausted its buffer or
the TXOP expires. At the end of CFP, or if all of the devices on the polling-list have
no more frames to transmit, the HC broadcasts a CF-End frame.

The CF-End frame signals the start of the CP. Devices may contend for EDCA-
TXOPs using the contention-based access method. The HCCA, however, continues
to operate alongside EDCA during the CP. If the medium becomes idle, the HC can
seize control of the channel and issue HCCA-TXOPs.

3.6 Summary

802.11 defines a number of coordination functions for managing the contention of
the wireless medium. DCF (distributed coordination function) uses carrier sense,
multiple access with collision avoidance (CSMA/CA) and provides a best-effort
frame delivery service. DCF suffers from a number of fairness problems.

A coordination function is specified for contention-free access, called PCF (point
coordination function). PCF requires centralised control and can, therefore, only op-
erate in infrastructure mode (not ad-hoc mode). With PCF, the access-point divides
the channel into contention-free and contention-based (DCF) periods. A contention-
free period is initiated by a beacon frame sent by the access-point. The beacon an-
nounces the duration of the contention-free period and all clients set their NAV
(network allocation vector) accordingly. When the contention-free period has ex-
pired, access to the wireless channel is controlled by the DCF. PCF has a number
of drawbacks. The centralised polling scheme is inefficient. Transmission times of
the polled devices are unknown and contention-free periods lead to unpredictable
beacon delays. Furthermore, PCF is an optional part of the standard and is rarely
implemented.

The differentiation of frames is not supported in the original 802.11 coordina-
tion functions. The 802.11e amendment specifies HCF (hybrid coordination func-
tion) for quality of service. Enhanced distributed channel access (EDCA) and HCF
controlled channel access (HCCA) provide contention-based and controlled access
schemes, respectively.

EDCA implements a priority scheme, whereby higher priority traffic has a greater
chance of acquiring the channel than lower priority traffic. Furthermore, each prior-
ity level is assigned a greater transmit time, called a Transmit Opportunity (TXOP).
The TXOP is a bounded interval during which the sender is free to transmit as many
frames as possible. HCCA is similar to legacy PCF; however, instead of alternating
contention-free and contention-based access periods between successive beacons,
contention-free periods can be initiated at any time.

Chapter 4
Physical Layer

The 802.11 physical layer is divided into two sub-layers; the physical layer con-
vergence procedure (PLCP) sub-layer and the Physical Medium Dependent (PMD)
sub-layer. The PLCP sub-layer is responsible for encapsulating MPDUs from the
MAC layer into frames which are transmitted by a PMD entity. The PMD sub-
layer is responsible for implementing the transmission encoding scheme. MPDUs
are mapped to PLCP service data units (PSDUs) which are, in turn, encapsulated in
PLCP protocol data units (PPDUs). The PMD specifies a number of PHYs in order
to support multiple modulation schemes. The format of PPDUs varies according to
the PHY. Figure 4.1 shows the encapsulation of a MPDU/PSDU into a PPDU.

The original 802.11 standard specified three PHYs; frequency hopping spread
spectrum (FHSS), direct sequence spread spectrum (DSSS) and infra red (IR). The
IR PHY did not achieve commercial success and so will not be discussed here. For
more details on IR PHY, refer to [5].

FHSS and DSSS support transmission speeds of 1 and 2 Mb/s. A high rate DSSS
(HR/DSSS) was introduced in the 802.11b amendment, supporting speeds of up
to 11 Mb/s. Instead of spread spectrum, 802.11a and 802.11g use orthogonal fre-
quency division multiplexing (OFDM) and are capable of speeds of up to 54 Mb/s.
The 802.11n combines improved OFDM methods with multiple-input, multiple-
output (MIMO) technology. 802.11n can achieve transmission rates of 600 Mb/s. A
summary of the PHYs in the 802.11 amendments is shown in Table 4.1.

4.1 Frequency Hopping Spread Spectrum

FHSS uses frequency shift keying (FSK) for the spreading code modulation. De-
vices transmit/receive on a common frequency for a short period (known as the
dwell time), before “hopping” to another channel. Devices (both transmitter and re-
ceiver) hop from channel-to-channel in a pseudo-random sequence. Different trans-
mitter/receiver pairs use a different pseudo-random sequence in an attempt to min-
imise the collisions within the same channel band. In order to avoid narrow band

A. Holt, C.-Y. Huang, 802.11 Wireless Networks,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-275-9_4, © Springer-Verlag London Limited 2010

51

4.1 Frequency Hopping Spread Spectrum 53

where fx(i) is the frequency of the ith hop of the xth hopping pattern. The compu-
tation of fx(i) is regional and is given by the expression below [21].

fx(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(b(i) + x) mod (79) + 2 North America, China, Europe
(not including France and Spain)

((i − 1) × x) mod (23) + 73 Japan
(b(i) + x) mod (27) + 47 Spain
(b(i) + x) mod (35) + 48 France

(4.2)

The base-hopping sequences b(i) are also regional. For North America, China
and Europe, the base-hopping frequencies are shown in Tables 14–15 of [21]. For
Spain and France, the base-hopping frequencies shown in Tables 14–16 and 14–17
of [21] respectively. Using Maple, we demonstrate how the fx(i) is calculated.

For North America, China and Europe, assign the base-hopping sequence B:

> B := [0, 23, 62, 8, 43, 16, 71, 47, 19, 61, 76, 29,
59, 22, 52, 63, 26, 77, 31, 2, 18, 11, 36, 71,
54, 69, 21, 3, 37, 10, 34, 66, 7, 68, 75, 4,
60, 27, 12, 25, 14, 57, 41, 74, 32, 70, 9, 58,
78, 45, 20, 73, 64, 39, 13, 33, 65, 50, 56, 42,
48, 15, 5, 17, 6, 67, 49, 40, 1, 28, 55, 35,
53, 24, 44, 51, 38, 30, 46]:

Define the function for computing fx(i) for North America, China and Europe:

> f := (i, x) -> (i + x) mod 79 + 2;

f := (i, x) → (i + x) mod 79 + 2

Calculate the hop sequence for x = 7:

> seq(f(i,7), i in b);
9, 32, 71, 17, 52, 25, 80, 56, 28, 70, 6, 38, 68, 31,
61, 72, 35, 7, 40, 11, 27, 20, 45, 80, 63, 78, 30, 12,
46, 19, 43, 75, 16, 77, 5, 13, 69, 36, 21, 34, 23, 66,
50, 4, 41, 79, 18, 67, 8, 54, 29, 3, 73, 48, 22, 42,
74, 59, 65, 51, 57, 24, 14, 26, 15, 76, 58, 49, 10, 37,
64, 44, 62, 33, 53, 60, 47, 39, 55

Gaussian frequency shift keying (GFSK) is used to encode the resultant spread
code for transmission. The benefits of frequency encoding is that it offer some im-
munity to noise, as noise tends to affect the signal amplitude. GFSK, however, is
not spectral efficient; consequently, the data rates are low.

Figure 4.3 shows the PLCP frame format for FHSS.
The frame fields are described below:

• sync: sequence of alternating ones and zeros.
• SFD: start frame delimiter. Marks the start of a PSDU using the bit pattern:

0000110010111101.
• PLW: PSDU length word. The length of the PSDU in octets

54 4 Physical Layer

Fig. 4.3 The PLCP frame format for FHSS

• PSF: PLCP signalling field. Specifies the transmission rate of the PSDU.
• HEc: header check error. The value of the frame check sequence from the trans-

mitter.

4.2 Direct Sequence Spread Spectrum

DSSS uses phase shift keying for both the spreading code and message modulation.
The spreading code is a pseudo-random “noise” sequence called a chip sequence.
The chip sequence is XORed to each data bit prior to transmission. Figure 4.4 shows
how a narrowband signal is spread over a wider frequency band using DSSS. 802.11
uses an 11-bit Barker code as a spreading code1:

{+1,−1,+1,+1,−1,+1,+1,+1,−1,−1,−1}

As the symbols in the chip occur at a much higher frequency than the data bits,
the energy of the original signal is spread over a wider frequency band.

The resultant spread spectrum signal is then modulated for transmission using
phase shift keying techniques. Two-level phase shift keying is the simplest form of
PSK. Otherwise known as binary PSK (BPSK), the modulator modifies the phase
of a carrier signal fc to reflect a binary 0 or 1:

s(t) =
{

A cos(2πfct) 0

A cos(2πfct + π) 1
(4.3)

1In 802.11, +1 is represented by a 1 and −1 by a 0.

56 4 Physical Layer

Fig. 4.5 Long preamble

DSSS PLCP preamble and header is referred to as the long preamble and header, to
distinguish it from the short preamble and header, introduced in 802.11b (discussed
below). The frame format is shown in Fig. 4.5. The fields are described below:

• Sync: sequence of alternating one’s and zero’s.
• SFD: Start frame delimiter. This field signals the beginning of the PHY-dependent

parameters within the preamble.
• Signal: Specifies the modulation technique used. For 1 Mb/s DBPSK, this field

is 10, and for 2 Mb/s DQPSK, it is 20. In 802.11b, where higher data rates are
supported, this field is set to 55 or 110 for 5.5 Mb/s and 11 Mb/s respectively.

• Service: Reserved.
• Length: The transmission time of MPDU in microseconds.
• CRC: Cyclic-redundancy-check. Uses CRC-16 as a frame check sequence.

4.3 High-Rate Direct Sequence Spread Spectrum

The 802.11b amendment introduced a “Higher-Speed Physical Layer Extension
in the 2.4 GHz Band”. The high-rate direct sequence spread spectrum (HR/DSSS)
technique produced improved transmission rates.

• Complementary code keying (CCK)
• Packet binary convolution coding (PBCC)

Both CCK and PBCC yield data rates of 5.5 and 11 Mb/s. CCK is a block code,
where the symbols are divided into fixed blocks and used as code words. The CCK
modulation is based on the use of polyphase complementary codes. CCK codes
are (nearly) orthogonal; that is, autocorrelations are negligible for lags greater than
zero. The polyphase complementary codes are complex rather than binary. The dia-
gram in Fig. 4.6 shows an example of a polyphase code with the real and imaginary
components represented on the horizontal and vertical planes, respectively.

The subset of allowed code words is less than the possible total number of code
words. Complementary codes are symbols with desirable correlation features. The
received code word is compared to the set of valid code words. If the received code

4.3 High-Rate Direct Sequence Spread Spectrum 57

Fig. 4.6 Polyphase complementary codes

Table 4.4 Details of modulation methods in 802.11b

Link
rate

Code Code
length

Modulation System Symbol rate
(MS/s)

Bits per
symbol

1 Mb/s Barker code 11 DBPSK DSSS 1 1

2 Mb/s Barker code 11 DQPSK DSSS 1 2

5.5 Mb/s CCK 4 DQPSK HR/DSSS 1.375 4

11 Mb/s CCK 8 DQPSK HR/DSSS 1.375 8

word is close to a particular valid code word, then that code word is selected as
the transmitted code word. In this way, an errored code word can be recovered at
the receiver. CCK uses a symbol length of 8 complex chips and the codeword C is
derived from the expression below [30]:

C = {ej (φ1+φ2+φ3+φ4), ej (φ1+φ3+φ4), ej (φ1+φ2+φ4),

ej (φ1+φ4), ej (φ1+φ2+φ4), ej (φ1+φ3), ej (φ1+φ2), ej (φ1)} (4.5)

The terms φ1, φ2, φ3 and φ4 are selected according to the data rate (5.5 or
11 Mb/s). Six bits (of the 8) are used to encode the polyphase complementary key
code. The code word is then rotated by 0, /π/2, π or 3π/4 according to the remain-
ing two bits of the byte.

If the channel conditions cannot support high data rates, then the a device can
drop its transmission speed to 1 or 2 Mb/s by using the DSSS PHY from legacy
802.11 [15].

PBCC is based upon convolution codes. Each input bit is processed by a series
of shift registers and modulo-2 addition operations. The coder produces two output
bits from an input bit and the bits are then stored in the shift registers. Figure 4.7
shows the convolution encoder for PBCC.

58 4 Physical Layer

Fig. 4.7 PBCC convolutional encoder

Fig. 4.8 Short preamble

In 802.11b, two preamble/header types are supported; namely, long and short.
The long preamble/header is the same as for the 1 and 2 Mb/s DSSS specification,
as defined in the original standard (see Fig. 4.5). The format of PPDU using the
short preamble header is shown in Fig. 4.8.

4.4 Orthogonal Frequency Division Multiplexing

The IEEE 802.11a PHY specifies orthogonal frequency division multiplexing
(OFDM) as its modulation scheme [8, 25, 41]. OFDM is not exclusive to 802.11,
but is also used in other wireless technologies, such as HiperLAN/2 and 802.16
(WiMAX). It is also used in digital audio broadcasting (DAB), digital video broad-
casting (DVB) and asynchronous digital subscriber line (ADSL) systems.

OFDM transmits a high-speed binary signal over a number of closely-spaced,
lower-rate sub-carriers. In 802.11a, there are a total of 52 sub-carriers, 48 of which
are data sub-carriers and the remaining 4 are pilot subs-carriers. The PLCP frame
format for 802.11a is shown in Fig. 4.9. The (binary) bits of the PPDU are encoded
with a convolution code. Furthermore, bits are reordered and bit interleaved, then
mapped to a complex number and divided amongst the sub-carriers. The sub-carrier
then undergoes an inverse fast Fourier transform (IFFT) and is transmitted.

Sub-carrier signals are modulated using one of four modulation methods; namely,
BPSK, QPSK, 16 or 64 state quadrature amplitude modulation (QAM). Convolu-
tion codes are used to protect against errors. 802.11a devices can transmit at speeds

4.4 Orthogonal Frequency Division Multiplexing 59

Fig. 4.9 The PLCP frame format for OFDM in 802.11a

Table 4.5 Details of modulation schemes for the 802.11a PHY

Mode Link rate
(Mb/s)

Modulation Coding rate Coded bits Data bits
bits/OFDM sym.Bits/carrier Bits/OFDM sym.

1 6 BPSK 1/2 1 48 24

2 9 BPSK 3/4 1 48 36

3 12 QPSK 1/2 2 96 48

4 18 QPSK 3/4 2 96 72

5 24 16QAM 1/2 4 192 96

6 36 16QAM 3/4 4 192 144

7 48 64QAM 2/3 6 288 192

8 54 64QAM 3/4 6 288 216

of 6, 9, 12, 18, 24, 36, 48 or 54 Mb/s, depending upon the modulation scheme and
convolution code; see Table 4.5.

Traditional frequency division multiplexing uses guard bands between channels
in order to mitigate against co-channel interference. With OFDM, however, the sub-
carriers overlap. The orthogonal properties of the modulated sub-carrier ensures
that adjacent signals do not interfere with each other. Two functions, f and g, are
orthogonal if their inner product is zero; that is:

〈f,g〉 =
1∑

−1

f (x)g(x)dx (4.6)

For example, consider the two “orthogonal” functions:

f (x) = 2x + 3

g(x) = 5x2 + x − 17/9
(4.7)

We define the functions f and g in Maple:

> f := x -> 2*x + 3;

f =: x → 2x + 3

60 4 Physical Layer

> g := x -> 5 * x^2 + x - 17/9;

g =: x → 5x2 + x − 17/9

The inner product, in the interval [−1,1], yields a result of zero, demonstrating
that f and g are orthogonal:

> int(f(x)*g(x), x=-1..1);

0

The sub-carriers (sometimes called tones) comprise sinusoidal waveforms that
are eigenfunctions of a linear channel. This property ensures that, in the presence of
multi-path, orthogonality is preserved between sub-carriers. The OFDM signal s(t),
is given by:

s(t) = 1√
N

N−1∑
k=0

xkφkt, 0 < t < NT (4.8)

where φk(t) is the kth baseband subcarrier and takes the form:

φk(t) = ej2πfkt (4.9)

The term NT is the length of the OFDM symbol and xk is the kth complex data
symbol (selected from, for example, a QAM or PSK constellation). The kth sub-
carrier frequency, fk , is given by:

fk = k

NT
(4.10)

which ensures the orthogonality of the sub-carriers, φk(t). Orthogonality between
the sub-carriers can be lost due to the dispersive nature of the channel. This, in turn,
causes inter-carrier interference (ICI). Furthermore, channel dispersion can cause
ISI between successive OFDM symbols. ISI can be prevented by inserting a silent
guard interval (GI) between successive OFDM symbols. This can, however, cause a
loss of orthogonality. Adding a cyclic prefix preserves the orthogonality of the sub-
carriers and prevents ISI. The cyclic prefix is introduced by extending the symbol
period by �, thus:

s(t) = 1√
N

N−1∑
k=0

xkφkt, −� < t < NT (4.11)

Part of the signal is replicated at the start of the OFDM symbol to create a GI.
Figure 4.10 is a graphical representation of the use of the cyclic prefix.

4.5 Extended Rate PHY

802.11g, like 802.11a, supports data rates up to 54 Mb/s using extended rate PHY
(ERP). Unlike 802.11a, however, 802.11g operates in the same 2.4 GHz band as

62 4 Physical Layer

Fig. 4.11 MIMO Communication system

4.6 MIMO-OFDM

The MIMO-OFDM PHY (in 802.11n) supports data rates of up to 300 Mb/s. In ad-
dition to the PHY, there are efficiency enhancements to the MAC, such as frame
aggregation and block acknowledgements. The 802.11n PHY relies heavily on
multiple-input, multiple-output (MIMO) technology for high data rates. MIMO sys-
tems consist of multiple antennas and RF chains at the transmitter and receiver (see
Fig. 4.11). The number of antennas/RF chains at the transmitter (nT) need not be the
same as the number at the receiver (nR). MIMO technology is conducive to OFDM
systems which transmits signals in multiple narrowband channels. MIMO-OFDM
is, therefore, subject to a great deal of research in the quest for high speed wireless
systems.

MIMO systems bring about increases in capacity through spatial diversity gains
and spatial multiplexing. Spatial diversity exists in both receive and transmit forms.
With receive diversity, two or more antennas are spaced apart, so that they receive
uncorrelated signals (having travelled along independent paths). In its simplest form,
the antenna with the best signal is selected for processing by the RF chain. This is
called switched diversity. Maximum ratio combining (MRC) is a more advanced
receive diversity method. With MRC, advanced digital signal processing (DSP)
methods are used to combine the separate signals into a single, higher quality signal
for improved gain. Multiple RF chains are required for this method.

Receive diversity methods have been studied and refined over many years. In-
deed, receive diversity has been employed by devices running pre-802.11n standards
(802.11a/b/g). The advent of transmit diversity is more recent. A simple scheme in-
volves transmitting from the antenna that yields the best signal at the receiver. This
involves obtaining feedback from the receiver about the channel environment.

A more sophisticated method of transmit diversity exists which can mitigate the
effects of fading by sending multiple signals. The transmit bit stream is encoded in
space and time. Space-time codes (STC) are used to send replica signals which can
be constructively recombined at the receiver. Figure 4.12 shows the concept of STC
in MIMO systems.

4.6 MIMO-OFDM 63

Fig. 4.12 Space-time coding

Fig. 4.13 Diversity gain for
N replica input streams

The diversity gain for N independent, Rayleigh distributed input signals, is given
by:

diversity gain =
N∑

k=1

1

k
(4.12)

We define the diversity gain in Maple:

Gdiversity := (N) -> sum(1/k, k=1..N);

Gdiversity := N →
N∑

k=1

1

k

The statement below produces the graph in Fig. 4.13:

> plot(Gdiversity(N), N=1..5, labels=["N", "Gain"],
labeldirections=[HORIZONTAL, VERTICAL],
color=black, font=[TIMES,ROMAN,12]);

Spatial multiplexing exploits multi-path environments to send parallel data
streams. A high rate signal is divided into several lower rate signals which are trans-
mitted simultaneously in the same frequency band. The receiver can decode the

64 4 Physical Layer

Fig. 4.14 Spatial multiplexing

different signal streams, provided that they arrive at the antenna array with suffi-
cient spatial separation. Figure 4.14 shows how parallel data streams are sent from
multiple antennas over diverse paths.

Here, we examine the performance gains of MIMO systems, comparing them
with the single-input, single-output (SISO), single-input, multiple-output (SIMO),
multiple-input, single-output (MISO) systems. Shannon’s formula [29] gives the
theoretical channel capacity for a single-input single-output (SISO) configuration.
The expression for Shannon’s channel capacity theorem is given in (1.5) in Chap. 1.
The capacity of a MIMO system increases linearly with the number of antennas, K ,
where K = min[nT ,nR]:

Cmimo = Kw log2(1 + SNR) (4.13)

With SIMO/MISO systems (1 × K/K × 1), there is a logarithmic increase in
capacity with the number of antennas:

Ctx/rx = w log2(1 + K · SNR) (4.14)

Maple does not have a log2 function, so, for convenience, we define one:

> log2 := (x) -> log10(x)/log10(2):

Define Cmimo in Maple:

> Cmimo := (W,SNR,K) -> K * W * log2 (1 + SNR):

Create the 3D plot in Fig. 4.15:

> plot3d(Cmimo(20*10^6,snr,k)/10^6, k=1..6, snr=0..20,
axes=boxed, labels=["k", "SNR (dB)","C (Mb/s)"],
labeldirections=[HORIZONTAL, HORIZONTAL, VERTICAL],
font=[TIMES,ROMAN,12]);

Define a Maple function for Ctx/rx :

> Ctxrx := (W,SNR,K) -> W * log2 (1 + K * SNR):

66 4 Physical Layer

While MIMO promises improved coverage, range and performance, there is an
associated increase in complexity and cost. Antennas may be inexpensive and DSP
costs are decreasing, but Moore’s law does not apply to RF components. For this
reason, there has been considerable research into hybrid-selection schemes. With
hybrid-selection, L out of K antenna signals are chosen for processing. While there
is some performance loss over full K ×K systems, significant cost savings are made
by reducing RF chains from K to L.

802.11n specifies a number of improvements to OFDM. The number of sub-
carriers is increased to 56 (4 or which are used for signalling) which yields a 20%
increase in transmission rate over 802.11a/g which uses 52 (minus 4 for signalling)
sub-carriers. When channel bonding is used (described below), 114 (6 for signalling)
are used. As mentioned above, OFDM uses a guard interval (GI) to protect against
inter-symbol interference due to multi-path. With legacy 802.11a/g, the GI is 800 ns,
whereas, with 802.11n, the GI is 400 ns. This results in a symbol rate increase of
10%. 802.11n can transmit in a channel of either 20 MHz or 40 MHz bandwidth. The
feature that enables 40 MHz channels is called channel bonding. There is a trade-
off, however, in terms of the number of overlapping channels that can co-exist. In
the 2.4 GHz band, there is only capacity for one (non-overlapping) 40 MHz channel
(plus one legacy 20 MHz channel). The 5 GHz band is wider, and can accommodate
multiple non-overlapping 40 MHz channels. For this reason, channel bonding is
usually reserved for the 5 GHz band.

Just as the 802.11g amendment had to be designed to inter-operate with legacy
802.11b, similar issues arise in 802.11n. As 802.11n operates in both the 2.4 GHz
and 5 GHz band, it has to co-exist with 802.11b/g and 802.11a devices. Legacy
preambles and headers are used so that 802.11a/b/g devices can detect the presence
of 802.11n frames. Under certain circumstances, however, the use of legacy pream-
bles and headers can be a problem. When an 802.11n payload is transmitted, the
change in power levels (due to MIMO and beamforming) can cause legacy devices
to reset their NAV. For this reason, 802.11n devices usually resort to the RTS/CTS
protection mechanism.

4.7 Beamforming

Beamforming is a method for achieving directional signal transmission/reception
using sensor arrays combined with signal processing techniques. The receive direc-
tionality of the array can be altered by means of analysing the interference patterns
formed by “multiple” signals arriving at the array elements. The phase and ampli-
tude of the signal is controlled by the beamformer so that the signal pattern interferes
constructively in the direction of the receiver and destructively in other directions.
Beamforming is an optional component of 802.11n.

Beamforming cannot be used in conjunction with the MIMO techniques de-
scribed above. Spatial multiplexing, for example, relies on a rich multiple envi-
ronment, whereas beamforming produces a single, coherent RF signal beam in the
direction of the receiver. In this section we demonstrate the directional radiation

4.7 Beamforming 67

Fig. 4.17 Gain of a simple
beamformer, θb = 30° and
θw = 90°

patterns of a beamforming sensor array can be analysed. A simple model of beam-
forming gain is given by:

g(θ) =
{

c θb − θw/2 ≤ θ < θb + θw/2

0 otherwise
(4.15)

where θb is the boresight angle and θw is the beam width. Equation (4.15) is imple-
mented as a Maple function:

> g := (a,b,c) -> piecewise(a >= b - w/2 and
a < b + w/2, c, 0);

g := (a, b, c) → piecewise

(
a ≥ b − w

2
and a < b + w

2
, c,0

)

Set the beamwidth to 90°:

> w := Pi/2;

w := 1

2
π

Create a plot of the beamforming gain with a boresight angle of θb = 30°:

> G6 := plot(g(a, Pi/6, 5), a=-Pi..Pi,color=black):

The command below produced the graph in Fig. 4.17:

> display(G6, labeldirections=["horizontal","vertical"],
labels=["angle (radians)", "gain (dB)"],
gridlines=true, thickness=1, font=[times,roman,12]);

68 4 Physical Layer

Fig. 4.18 Gain of a simple
beamformer (polarplot),
θb = 30° and θw = 90°

We can represent the gain as a polarplot:

> G1 := polarplot(g(a,Pi/6,5), a=-Pi..Pi, color=black):

Define a set of concentric circles for scale:

> C := polarplot([2,4,6], color=gray):

The graph in Fig. 4.18 was produced with the statement:

> display(G1, C, scaling=constrained);

While simple, the model above is unrealistic. The model below of a uniform
linear array is derived from [3]. It consists of a set of elements arranged in a straight
line, � distance apart (see Fig. 4.19). The directionality of the array is defined by
its boresight angle θb , which is the angle of maximum radiation intensity:

θb = ± arccos
(

− γ λ

2π�

)
(4.16)

For a beamforming array, the boresight angle is towards the destination node. The
gain of the beamformer at angle θ for a given boresight (destination node direction)
is given by:

g(θ, θb) =
(sin(mψ(θ,θb)

sin(ψ(θ,θb))

)2

1
2

∫ π

0

(sin(mψ(θ,θn))
sin(ψ(θ,θb))

)2 sin θdθ
(4.17)

where m is the number of elements in the antenna array. The function ψ is given by:

ψ(θ, θb) = π�

λ
(cos θ − cos θb) (4.18)

70 4 Physical Layer

Fig. 4.20 Gain of a
beamformer with a boresight
of 0°

> lambda := c/f;

λ := 0.1575456053

Set the array element spacing � to half the wavelength:

> Delta := lambda/2;

� := 0.07877280265

Set the number of antenna elements in the array:

> m := 6;

m := 6

Create a plot of the gain for a boresight angle of 0°:

> G2 := plot(g1(a,0), a=-Pi..Pi, color=black):

The graph in Fig. 4.20 was produced with the statement:

> display(G2, labels=["angle (radians)","gain (dB)"],
labeldirections=["horizontal", "vertical"],
font=[times,roman,12], gridlines=true);

The graph in Fig. 4.21 shows the gain of the beamformer for a 45° boresight
angle. It was produced by the following statements:

> G3 := plot(g1(a, Pi/2), a=-Pi..Pi,color=black):
> display(G3, labels=["angle (radians)","gain (dB)"],
labeldirections=["horizontal", "vertical"],
font=[times,roman,12], gridlines=true);

4.8 Summary 71

Fig. 4.21 Gain of a
beamformer with a boresight
of 45°

We plot (polar) graphs for various boresight angles (θb = {0°,30°,90°,110°}):
> G4 := polarplot(g1(a,0), a=-Pi..Pi,
color=black, legend=["0 degrees"], linestyle=dot):

> G5 := polarplot(g1(a,Pi/6), a=-Pi..Pi,
color=black, legend=["30 degrees"], linestyle=dash):

> G6 := polarplot(g1(a,Pi/2), a=-Pi..Pi,
color=black, legend=["90 degrees"], linestyle=solid):

> G7 := polarplot(g1(a,Pi*110/180), a=-Pi..Pi,
color=black, legend=["110 degrees"],
linestyle=dashdot):

The polarplot in Fig. 4.22 was produced by the statement:

> display(G4,G5,G6,G7,C,scaling=constrained);

4.8 Summary

PHYs in the RF domain use spread spectrum methods. Spread spectrum techniques
are designed to reduce the effects of narrowband interference. Typically, spread
spectrum methods employ two modulation stages. First, the message is modulated
by a spreading code. The resultant message is then modulated for transmission over
the wireless channel.

The original 802.11 standard specified two spread spectrum technique, FHSS
(frequency hopping spread spectrum) and DSSS (direct sequence spread spectrum).
Both FHSS and DSSS supported 1 and 2 Mb/s data rates.

72 4 Physical Layer

Fig. 4.22 Beamformer for
various boresight angles
(polar plot)

HR/DSSS (high-rate DSSS) was introduced in 802.11b, which was capable of
speeds of 5.5 and 11 Mb/s. 802.11b operates in the same 2.4 GHz band as legacy
802.11.

The 802.11a amendment was ratified at the same time as 802.11b. It supports
rates of up to 54 Mb/s. 802.11a operates in the 5 GHz range and uses OFDM (or-
thogonal frequency division multiplexing). OFDM is resilient to severe channel con-
ditions, such as narrowband interference and multi-path fading. ISI (inter-symbol
interference) is avoided by selecting sub-carrier frequencies which are mathemati-
cally orthogonal.

Speeds of up to 54 Mb/s in the 2.4 GHz band were realised with the introduction
of 802.11g. 802.11g uses OFDM, similar to 802.11a. As 802.11g operates in the
same band as 802.11b, 802.11g devices must use certain protection mechanisms in
order to co-exist with 802.11b devices.

The 802.11n PHY uses MIMO (multiple-input, multiple-output) techniques to
achieve data rates of up to 300 Mb/s. MIMO systems exploit the spatial domain by
using multiple antennas and RF chains at both the transmitter and receiver. 802.11n
still uses OFDM, but specifies a number of enhancements; for example, more sub-
carriers, shorter guard intervals and channel bonding.

Beamforming is the technique that combines RF signals from multiple omni-
directional antennas into a directional beam. This has the effect of increasing the
gain in the direction of the receiver and reducing interference in other directions in
much the same way as a directional antenna. Unlike a directional antenna, however,
the beamforming array (sometimes called a smart antenna) is not physically aligned.

Chapter 5
Cryptography

The broadcast nature of WLANs makes them inherently vulnerable, more so then
their wired counterparts. Whereas signals transversing a wired network are con-
fined to communication devices (for example, hubs, switches, routers) and the ca-
bles that connect them, wireless signals (can) propagate beyond the boundaries of
the intended domain of (legitimate) receivers. WLANs, therefore, rely heavily on
cryptography for implementing security.

Cryptography is synonymous with encryption.1 Indeed the subject of cryptog-
raphy used to be exclusively about the confidentiality of messages. More recently,
however, the field has expanded (largely due, one might speculate, to the growth of
information technology) to include authentication and message integrity.

In this chapter, we present an overview of cryptography. We avoid a mathemat-
ical treatment of the subject, preferring a practical approach instead; see [40] for a
rigorous mathematical treatment of cryptographical techniques.

5.1 Ciphers

Ciphers fall into two broad categories; namely, symmetric key and asymmetric key.
Symmetric key cryptography (also known as secret key) uses a shared single se-
cret key for both encryption and decryption processes, whereas, with asymmetric
key cryptography (also called public key cryptography), two keys are used; one for
encryption and the other for decryption. The two keys are mathematically linked,
whereby one is designated the public key and the other is designated the private
key. Symmetric and asymmetric key cryptographic methods are discussed in this
section.

1The use of the term “encryption” in this chapter, also refers implicitly to the reverse process
“decryption”. We use the term decryption when we need to distinguish it from the encryption
process.

A. Holt, C.-Y. Huang, 802.11 Wireless Networks,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-275-9_5, © Springer-Verlag London Limited 2010

73

74 5 Cryptography

Fig. 5.1 ECB encryption

5.1.1 Symmetric Key Cryptography

There are two types of symmetric key cipher; namely, stream ciphers and block
ciphers. With stream ciphers, data is encrypted one digit (bit or byte) at a time.
Stream ciphers approximate one-time pad ciphers (also known as Vernam ciphers).
With one-time pads, a keystream is applied to the plaintext to produce the ciphertext.
One-time pads have been proved to be completely secure. However, the keystream
can only be used once, otherwise security is compromised. Furthermore, the size of
the keystream must be at least the size of the plaintext message. For large messages,
therefore, one-time pads are impractical.

Stream ciphers, for convenience, use a smaller key (which are likely to be less
than the size of a plaintext message). The cipher uses this initial key to generate
a pseudo-random keystream to match (or exceed) the length of the message. The
keystream is applied to the plaintext (typically by XORing) to produce the cipher-
text.

In contrast, a block cipher processes fixed-length groups of bits. A block of plain-
text symbols of size m > 1 are encrypted to create a block ciphertext of the same
size. For the reverse process (decryption), the ciphertext is decrypted in blocks of
size m to produce plaintext blocks of size m. Consequently the cipher key will be
of length m. To encrypt messages longer than the block size (m) a mode of op-
eration is used. Various modes of operation have been developed, each varying in
sophistication. Some of them, effectively, behave as stream ciphers. A detailed dis-
cussion of all modes of operation are beyond the scope of this book (see [12] for
more information). Some of the common ones are listed below:

• Electronic codebook (ECB)
• Cipher-block chaining (CBC)
• Cipher feedback (CFB)
• Output feedback (OFB)
• Counter (CTR)

The simplest of these modes of operation is ECB. The plaintext message is
divided into n-bit blocks and encrypted with a key of that length (illustrated in
Fig. 5.1). The problem with this method is that, if a plaintext (n-bit) block appears
repeatedly throughout the message, it will result in replica ciphertext blocks. We

5.1 Ciphers 75

use a simple example to illustrate this problem. Create a file plain.txt with the
command-line below:

$ echo -n "0123456789ABCDEF0123456789ABCDEF" >plain.txt

It can be seen that the file consists of two, 16 byte (128-bit) repeating sequences:
0-9,A-F. If we examine the file using the command od, we see the “*” character
denoting repetitions of the previous line:

$ od -X plain.txt
0000000 33323130 37363534 42413938 46454443
*
0000040

We encrypt the plain.txt using 128-bit ECB (we redirect the output to od):

$ openssl enc -k secret -aes-128-ecb -in plain.txt |
> od -X
Verifying - enter aes-128-ecb encryption password:
0000000 746c6153 5f5f6465 ff081061 1bc14f2c
0000020 6a0e2904 42f71db1 801f410b d8c89430
*
0000060 e93b7afc adacb89c 2eef7448 6d34640e
0000100

The encryption process has added a 128-bit block at the beginning and end of
the data stream, but for the purpose of this example, we can ignore them. The “*”
character on the third line of the hexdecimal output indicates that the second and
third line of ciphertext are identical to each other, corresponding to the replica blocks
of plaintext. However, if we repeat this experiment using 128-bit CBC, we see that
the resulting ciphertext of each 128-bit block is different, even though the plaintext
blocks are identical:

$ openssl enc -aes-128-cbc -k secret -in plain.txt |
> od -X
0000000 746c6153 5f5f6465 28795aec 955b170c
0000020 d5a2690b 2367cb71 c8ca66b8 0f8a6ca4
0000040 26db9f39 fc7605b4 eba6a3d8 f804ac29
0000060 6cc916d0 edac713b 239e9abc e51f29c9
0000100

A more graphical illustration of the problem is shown in Fig. 5.2. Here, we en-
crypt an image using both ECB and CBC (with the AES cipher). Figure 5.2(a) shows
the original (plaintext) image. Figure 5.2(b) shows the image encrypted using ECB
mode. It can be seen that some elements of the image are still visible. However, in
Fig. 5.2(c) (encrypted using CBC), the resultant “image” resembles noise.

5.1 Ciphers 77

Generating public/private rsa key pair.
Enter file in which to save the key (/home/aholt/.ssh/
id_rsa):
Created directory ’/home/users/aholt/.ssh’.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/aholt/.ssh/
id_rsa.
Your public key has been saved in /home/aholt/.ssh/
id_rsa.pub.
The key fingerprint is:
d9:94:30:20:6e:18:99:0e:41:93:b1:90:67:b1:4d:6b
aholt@client

Do not supply a passphrase, when prompted; just hit return. This creates two files
in the directory .ssh, id_rsa and id_rsa.pub:

client$ ls .ssh/id_*
.ssh/id_rsa .ssh/id_rsa.pub

The file id_rsa contains the private key and id_rsa.pub the public key. Copy
the public key file id_rsa.pub to the server. We can do this securely with the scp
command:

client$ scp .ssh/id_rsa.pub server:.ssh/
aholt@server’s password:
id_rsa.pub 100% 394 0.4KB/s 00:00

Log on to the server and change the permissions of the .ssh directory so that it is
readable and executable by other (and group):

server$ chmod 755 .ssh

Append the client’s public key to the server’s authorized_keys2 file:

server$ cat .ssh/ id_rsa.pub >> .ssh/authorized_keys2

Now we can SSH from the client to the server without having to supply a pass-
word:

client$ ssh server "/bin/uname -n"
server

Asymmetric key ciphers are more computationally expensive than symmetric key
ciphers. For this reason, asymmetric key ciphers are seldom used for the encryption
of large messages. Symmetric key ciphers are more appropriate for this application.
Asymmetric key ciphers are used in conjunction with symmetric key ciphers; that
is, shared keys (symmetric keys) are encrypted with a public key so that they can be
transmitted securely to the party with the associated private key. Once both parties
are in possession of the shared key, they can use it to encrypt messages.

Other applications of asymmetric key ciphers are digital signatures and digital
certificates. These concepts are discussed in detail below.

78 5 Cryptography

5.2 Encryption

We have used the terms plaintext and ciphertext above. We provide an explantion of
these terms here, though we accept that the reader may have already deduced their
meaning. Messages that can be readily understood are called plainext (or sometimes
cleartext). Encryption is a method, whereby plaintext is converted into a correspond-
ing unintelligible form called ciphertext so that it can be sent over (or stored on) an
insecure medium. The process of converting the ciphertext back to plaintext is called
decryption. Only the intended recipient should have the knowledge to decrypt the
message. If the (encrypted) message is intercepted, then the confidentiality of the
plaintext message is ensured.

Consider the simple substitution cipher ROT13, a version of the Caesar cipher
developed in ancient Rome. ROT13 “scrambles” plaintext messages by rotating
the ascii value of each character thirteen places. As there are 26 characters in the
alphabet, the “decryption” process is merely a matter of rotating the ascii values
another thirteen places. A version of the ROT13 “cipher”, written in Python, is
given below:

#!/usr/bin/env python

import sys

rotate = lambda c,k: (ord(c) - k - 13) % 26 + k

def rot13(msg):
newmsg = []
for c in msg:

if c.islower():
newmsg.append("%c" % (rotate(c,97)))

elif c.isupper():
newmsg.append("%c" % (rotate(c,65)))

else:
newmsg.append(c)

return(’’.join(newmsg))

if __name__==’__main__’:

for line in sys.stdin.readlines():
print rot13(line.strip())

The plaintext message “Julius Caesar” can be scrambled with the command line:

$ echo Julius Caesar | ./rot13.py
Whyvhf Pnrfne

Similarly, the ciphertext can be unscrambled:

5.2 Encryption 79

$ echo Whyvhf Pnrfne | ./rot13.py
Julius Caesar

ROT13 is mainly used to hide offensive statements, of for solutions to puzzles
and joke punchlines on on-line forums. It is not a serious cryptographic application.
In fact, encryption systems deemed to be weak are criticised by comparing their
effectiveness to that of ROT13. In the following sub-sections, we introduce a number
of encryption algorithms (based on symmetric key ciphers).

5.2.1 RC4

RC4 (Ron’s Code 4) was designed by Ronald Rivest for RSA Data Security in 1984.
It is a byte-oriented stream cipher. Each byte of a plaintext is XORed with a byte of
a key to produce a byte of a ciphertext. Due to its simplicity and speed, RC4 is the
most widely used stream cipher. It is used in WEP for both encryption and authenti-
cation. For the purpose of illustration, we download the following document3 to use
as a test file (while any document will suffice, if the reader uses the same document,
the results will match those obtained here):

$ wget http://www.ietf.org/rfc/rfc2246.txt

We encrypt the rfc2246.txt file using RC4 with the key “secret”:

$ openssl enc -rc4 -k secret -in rfc2246.txt \
> -out rfc2246.rc4

A file rfc2246.rc4 is created which contains the ciphertext of the plaintext file,
rfc2246.txt. While the file rfc2246.txt is readable, the contents of rfc2246.rc4 is
unintelligible. For this reason, we examine the two files using the command od. We
display the first 32 bytes of the each file. It can be seen from these small extracts
that the two files have completely different content:

$ od -N 32 -x rfc2246.txt
0000000 0a0a 0a0a 0a0a 654e 7774 726f 206b 6f57
0000020 6b72 6e69 2067 7247 756f 2070 2020 2020
0000040
$ od -N 32 -x rfc2246.rc4
0000000 6153 746c 6465 5f5f 64dd d70d bc80 67be
0000020 69b9 df66 9c00 30a5 adda 9e2c f85a ccb2
0000040

3This is the request for comment (RFC) document for the TLS protocol.

80 5 Cryptography

5.2.2 DES and Triple-DES

The data encryption standard (DES) is a symmetric key block cipher, published by
the National Institution of Standards and Technology (NIST). DES is vulnerable to
brute-force attacks due to the limited length of cipher key (64-bits). Also, its inse-
cure internal structure allows the National Security Agency (NSA) to decrypt the
message without the cipher key. Triple-DES (the DES cipher repeated three times)
is designed to strengthen DES. It employs up to three 56-bit keys and makes three
encryption/decryption passes over the block. We encrypt rfc2246.txt using DES with
the command below:

$ openssl enc -des -k secret -in rfc2246.txt \
> -out rfc2246.des

To decrypt the ciphertext file (rfc2246.des), use the command below. As DES is
a symmetric key cipher (like RC4), the encryption and decryption passwords are the
same. When prompted, we issue the password: (“secret”):

$ openssl enc -des -d -in rfc2246.des
enter des-cbc decryption password:

5.2.3 AES

The advanced encryption standard (AES) was designed as a successor to DES and
published by the NIST in 2001. It is an encryption standard adapted by the US gov-
ernment. It has a fixed block size of 128-bits and employs keys lengths of either 128,
192, or 256 bits. While larger key sizes yield greater security, there is a performance
trade-off. This is illustrated by the command below which tests the performance of
AES in CBC mode for 128, 192 and 256 bit key sizes:

$ openssl speed aes

For brevity, the output of the command is omitted. Instead we summarise the
results in Table 5.1. We also compare the performance of RC4, DES (CBC mode)
and AES (CBC mode with 128-bit key). The results are presented in Table 5.2.
Again, we use OpenSSL:

$ openssl speed rc4 des-cbc aes-128-cbc

Table 5.1 Performance of AES

Block size
(bits)

Performance (kbytes/s)

16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

128 43631.54 69270.06 80642.73 84584.79 86576.97

192 40473.58 60079.55 68818.43 71977.98 73004.37

256 37277.10 53214.76 59966.29 61694.98 62859.95

5.3 Message Digests 81

Table 5.2 Performance comparison of RC4, DES and AES

Encryption
method

Performance (kbytes/s)

16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

rc4 165493.37 191814.14 189848.75 192289.45 185851.90

des-cbc 35471.77 36572.78 37149.53 37173.25 37372.56

aes-128-cbc 59936.06 77465.84 82522.97 85504.68 86649.51

5.3 Message Digests

A message digest is a transformation of a message of arbitrary length to a fixed
length numerical value. Message digests are also known as hashes, digital finger-
prints, or, simply, digests. Functions for computing message digests have three prop-
erties:

• Message digests are easy to compute
• It is very difficult to derive the message from the message digest
• It is unlikely that more than one message has the same message digest

Two simple forms of message integrity checks are checksums and cyclic redun-
dancy checks (CRCs). Communication protocols employs checksums and CRCs in
order to detect corruption in packets. Consider the checksum function for National
Marine Electronics Association (NMEA) messages (called sentences) used in the
global positioning system (GPS). NMEA sentences are a set of comma separated
fields. The checksum is appended to the end of the sentence, delimited by a “*”
character. An example of a NMEA sentence, including the checksum, is:

$GPVTG,,T,,M,0.00,N,0.0,K,N*1C

The checksum is computed over the message a character at a time. The commas
are included, but the leading “$” and trailing “*” are removed. The Python script
below computes the NMEA checksums.

#!/usr/bin/python

import sys

def checksum(nmealine):
sentence, csum = nmealine.split(’*’)
csum1 = "0x%s" % (csum.lower())
csum2 = 0
for s in sentence[1:]:

csum2 = csum2 ^ ord(s)
return csum1 == hex(csum2)

if __name__==’__main__’:

82 5 Cryptography

for line in sys.stdin.readlines():
print checksum(line.strip())

The script reads NMEA sentences from the standard input and returns True or
False depending upon whether the computed checksum equals the checksum ap-
pended to the message. Run the script, then enter NMEA sentence:

$./checksum.py
$GPVTG,,T,,M,0.00,N,0.0,K,N*1C
True

In this case the computed checksum agrees with the checksum included with the
sentence. We run the script again, but make slight change to the NMEA sentence:

$./checksum.py
$GPVTG,,T,,M,0.00,S,0.0,K,N*1C
False

Checksums and CRCs are predominantly used to detect errors introduced by un-
reliable communication channels. They are not based upon true cryptographic meth-
ods and are deemed unsuitable for security purposes. Nevertheless, CRC-32 was
used as an integrity check in 802.11 before more rigorous methods were adopted.
Two examples of message digests based upon cryptographic algorithms are: mes-
sage digest 5 (MD5) and secure hash algorithm (SHA). Create a test file:

$ dd if=/dev/urandom of=testfile1 bs=1 count=64
Calculate a message digest using md5sum:

$ md5sum testfile1
2ca0b569cf50118c8a87cdda01a363ec testfile1

Alternatively a message digest using MD5 can be generated using OpenSSL:

$ openssl dgst -md5 testfile1
MD5(testfile1)= 2ca0b569cf50118c8a87cdda01a363ec

Create a file testfile2 with identical content to testfile1:

$ cp testfile1 testfile2

Examine the contents of testfile2:

$ od -x testfile2
0000000 eb39 7f93 eb5d f990 8bad 57be ef9b cdd1
0000020 6408 c2f5 9dac 424c 0047 0770 fac8 b806
0000040 cf2d f1ca 43af edbf 76a7 a480 7b8d 845d
0000060 b2ba e36f 65ce 5c48 1efd 34e5 a0bc 6967
0000100

Using a binary editor (like bvi), we make a slight change to the file. The value
of the byte that appears on the last line in the far right column is altered from 67 to
66:

5.4 Digital Signatures 83

$ od -x testfile2
0000000 eb39 7f93 eb5d f990 8bad 57be ef9b cdd1
0000020 6408 c2f5 9dac 424c 0047 0770 fac8 b806
0000040 cf2d f1ca 43af edbf 76a7 a480 7b8d 845d
0000060 b2ba e36f 65ce 5c48 1efd 34e5 a0bc 6966
0000100

Whilst this represents a change of only one bit, the resultant message digest is
completely different:

$ od -x testfile2
$ openssl dgst -md5 testfile2
MD5(testfile2)= 66b20cc640ef6b3f1eb9409b699ea387

MD5 is no longer recommended as a cryptographic message digest algorithm
and its only real use is as a checksum for large files. It has been demonstrated that
two (different) messages can be produced that have the same MD5 message digest.
MD5, therefore, is subject to collision attacks. Furthermore, the speed of these at-
tacks is increasing with the increase in computer processing power.

SHA is a set of cryptographic hash functions conceived by the National Secu-
rity Agency (NSA) and is part of the US Federal Information Processing Standard
(FIPS). Five algorithms are defined: SHA-1, SHA-224, SHA-256, SHA-384, and
SHA-512. Vulnerabilities have been reported for SHA-1, but none have been re-
ported to date for the remaining algorithms.

5.4 Digital Signatures

A digital signature consists of three algorithms. One algorithm is used to generate, at
random, a public key and a (corresponding) private key. Another algorithm is used to
sign messages using the private key. Finally, a signature verifying algorithm which,
given a message, public key and signature, either accepts or rejects the message.

Messages can be authenticated by a digital signature. As messages can be large,
the message itself is not signed. Instead, a message digest is generated (see Sect. 5.3
above), which is signed by encrypting it with the sender’s private key. We present
the following example using OpenSSL. Generate a SHA-1 message digest of the
file rfc2246.txt and write it to a file (rfc2246.dgst):

$ openssl dgst -sha1 -out rfc2246.dgst rfc2246.txt

Check the digest:

$ cat rfc2246.dgst
SHA1(rfc2246.txt)=
13c9790c0ea8f61e0e080c2990b3d030695bbf43

We generate a 512-bit RSA key with the command below:

84 5 Cryptography

$ openssl genrsa -aes192 -out rsa_privkey.pem 512
Generating RSA private-key, 512 bit long modulus
.......................++++++++++++
.........++++++++++++
e is 65537 (0x10001)
Enter pass phrase for rsa_privkey.pem:
Verifying - Enter pass phrase for rsa_privkey.pem:

Note that 512 bits is too short for any practical security purpose. The reader
is advised to use a key of at least 1024-bits for real applications. The -aes192
option causes OpenSSL to prompt for a passphrase. At the prompt (and verification
prompt), we entered “secret” (which is not echoed on the screen). Sign the digest
of rfc2246.txt:

$ openssl dgst -sha1 -sign rsa_privkey.pem \
> -out rfc2246.sig rfc2246.txt

Create a corresponding public key for the private key in rsa_privkey.pem:

$ openssl rsa -in rsa_privkey.pem -out rsa_pubkey.pem \
> -pubout

Verify the signature (in rfc2246.sig) of rfc2246.txt:

$ openssl dgst -sha1 -verify rsa_pubkey.pem \
> -signature rfc2246.sig rfc2246.txt
Verified OK

5.5 Digital Certificates

A digital signature, created using a given private key, can be verified with the corre-
sponding public key. This merely establishes that the owner of the public key is also
the owner of private key, and did indeed create the signature. It does not, however,
guarantee the validity of the key owner. In a large-scale network environment, it is
difficult to distribute public keys securely in an ad-hoc fashion. Digital certificates
were conceived to solve the public key distribution problem. A digital certificate
is a mechanism for binding an identity to a public key (and its associated private
key). The owner (with the given identity) of the public key can be an individual, an
organisation, or a device.

Certificates are managed and maintained by trusted third party organisation
called a certificate authority (CA). The CA establishes the binding by digitally sign-
ing the owner’s identity data and the public key. The digital signature, identity data
and public key form the digital certificate. A root certificate identifies the Root Cer-
tificate Authority (CA) and is either an unsigned or self-signed.

The International Telecommunication Union (ITU) X.509 recommendation is a
digital certificate standard that is widely used. X.509 specifies the secure manage-
ment, distribution and format of digitally signed certificates. An X.509 certificate

5.5 Digital Certificates 85

is a container for an X.500 Distinguished Name (DN). The structure of an X.509
certificate is shown below:

• Certificate
– Version: The X.509 version of this certificate. Current certificates are typically

version 3, which is required if the certificates has extensions.
– Serial number: A unique serial number for the certificate.
– Algorithm ID:
– Issuer: The DN of the entity that signed the certificate.
– Validity: The certificate is valid only for a limited period, specified by the Not

Before and Not After fields below:
· Not before: Certificate valid, not before this date.
· Not after: Expires after this date.

– Subject: The DN of the entity to be authenticated.
– Subject public key info:

· Public key algorithm:
· Subject public key:

– Issuer unique identifier (Optional)
– Subject unique identifier (Optional)
– Extensions (optional): The standard fields of X.509 were insufficient for many

applications. The syntax of Version 3 was extended to include extensions that
specified extra information about keys and procedures; and attributes of owners
and issuers.

– Certificate signature algorithm:
– Certificate signature:

The specification for the X.509 certificate structure is in ASN.1 (abstract syntax
notation 1):

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signatureValue BIT STRING

}
TBSCertificate ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
-- If extensions are present, version MUST be v3
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
extensions [3] EXPLICIT Extensions OPTIONAL

}
Name ::= CHOICE {RDNSequence}
RDNSequence ::= SEQUENCE OF

86 5 Cryptography

RelativeDistinguishedName
RelativeDistinguishedName ::= SET OF
AttributeTypeAndValue

AttributeTypeAndValue ::= SEQUENCE {
type AttributeType,
value AttributeValue

}
AttributeType ::= OBJECT IDENTIFIER
AttributeValue ::= ANY DEFINED BY AttributeType
SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING

}
Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension
Extension ::= SEQUENCE {
extnId OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING
}

In order to verify that a public key belongs to a valid user the following verifica-
tion process is carried out:

• Verify the digital signature of the issuing CA upon the certificate contents.
• Check that the current time is within the validity period of the certificate.
• Check that the certificate is not on a certificate revocation list (CRL).

5.6 Generating Digital Certificates

In Chap. 8, we describe how to set up an RSN (robust security network). We use
EAP-TLS for authentication, which requires digital certificates, for both the wireless
client and the RADIUS server. We keep user accounting information for RADIUS in
a MySQL database on a separate server. In order to strengthen security, we configure
the RADIUS and MySQL servers to use SSL. Thus, we also need to generate a
certificate for the MySQL server so that the RADIUS server can authenticate.

In order to test the certificates, we create two Xen virtual machines (VMs) called
radius and client. In Chap. 8, we show how FreeRadius is configured on the radius
VM. Thus, the radius VM will ultimately become the RADIUS server for the RSN.
The client VM assumes the role of a “wireless” client, purely for the purpose of
testing the certificates. It will communicate with the radius VM over the virtual
bridge on the Xen host. It will not actually have any wireless connectivity.

It is important that the IP addresses of these hosts can be resolved. Either they
must have records in DNS (domain name system) or the following entries must exist
in the /etc/hosts files:

5.6 Generating Digital Certificates 87

172.16.20.70 radius
172.16.20.81 client, sta

Note that client is also known as sta because, when we generate the wireless
client certificate, the CN component of the DN will be set to “sta”.4 Here, we verify
the address resolution of radius and sta. From radius, ping sta (this also
tests the communication path between the two hosts):

radius$ ping -q -c 3 sta
PING sta (172.16.20.81) 56(84) bytes of data.

--- sta ping statistics ---
3 packets transmitted, 3 received, 0% packet loss,
time 2001ms
rtt min/avg/max/mdev = 0.512/0.806/1.394/0.416 ms

Similarly, test radius from sta:

client$ ping -q -c 3 radius
PING radius (172.16.20.70) 56(84) bytes of data.

--- radius ping statistics ---
3 packets transmitted, 3 received, 0% packet loss,
time 2000ms
rtt min/avg/max/mdev = 0.494/1.740/4.164/1.714 ms

The certificates do not have to be generated on their respective hosts, but can be
generated on any machine. We prepare a number of directories in which to work:

$ mkdir ca/{,crl,newcerts,private,demoCA}
$ cd ca

In the ca directory, create the following files:

$ echo "01" > serial
$ touch index.txt

5.6.1 Generating a Certificate Authority

Before we can generate the radius and sta certificates, we need a certificate authority
(CA) to sign them. The command below generates a certificate authority:

srv$ openssl req \
> -new \
> -x509 \

4“STA” is the IEEE nomenclature for an 802.11 device.

88 5 Cryptography

> -out cacert.pem \
> -keyout private/cakey.pem \
> -passin pass:rootsecret \
> -passout pass:rootsecret \
> -days 3650

The OpenSSL command creates a private key (in private/cakey.pem) and displays
the following message:

Generating a 1024 bit RSA private key
...
...
....................++++++
.........++++++
writing new private key to ’private/cakey.pem’

You are about to be asked to enter information that
will be incorporated into your certificate request.
What you are about to enter is what is called a
Distinguished Name or a DN.
There are quite a few fields but you can leave some
blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

The user is prompted to enter a number of fields which make up the DN, as
described in the output above.

Country Name (2 letter code) [AU]:UK
State or Province Name (full name) [Some-State]: Wilts
Locality Name (eg, city) []:.
Organization Name (eg, company) [Internet Widgits Pty
Ltd]:WLAN
Organizational Unit Name (eg, section) []:.
Common Name (eg, YOUR name) []:Root
Email Address []:.

Note that some fields are assigned and others left blank (when a . was input). If
we check the policy_match section in the /etc/ssl/openssl.cnf file, we see how
the attributes are set:

For the CA policy
[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional

5.6 Generating Digital Certificates 89

commonName = supplied
emailAddress = optional

The attributes cannot be blank in the DN of the CA if the are set to “match”. Fur-
thermore, the corresponding attributes in the certificate request must match those in
the CA. “Supplied” attributes must be set in the request. Attributes marked “op-
tional” may be left blank. A file cacert.pem is created containing the CA. We can
examine it with:

$ openssl x509 -in cacert.pem -noout -text
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

ca:49:0b:69:d9:e3:70:15
Signature Algorithm: sha1WithRSAEncryption
Issuer: C=UK, ST=Wilts, O=WLAN, CN=Root
Validity

Not Before: Dec 3 13:44:59 2008 GMT
Not After : Dec 1 13:44:59 2018 GMT

Subject: C=UK, ST=Wilts, O=WLAN, CN=Root
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
:

00:ee:1e:15:bf:43:94:bb:c3:68:d0:
2d:46:fe:a1:c1:b1:36:2e:b4:3a:7c:
82:81:e3:f0:24:e8:61:45:80:cb:61:
5f:37:e7:46:ce:62:dd:ff:de:b5:c4:
86:2f:c9:99:f5:38:4b:c2:e6:80:bf:
25:6a:1b:eb:81:26:d4:03:40:7d:f6:
04:26:da:13:99:c0:ef:8c:e1:ce:a6:
78:79:d6:92:37:83:66:9c:8b:4d:59:
6b:0a:03:23:8c:27:55:a7:e0:de:fb:
30:85:64:e7:f9:c8:c7:6f:b8:ea:e4:
76:04:a5:cb:04:9f:59:02:8c:e7:d0:
16:c6:48:55:54:ec:9b:d9

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Subject Key Identifier:
E4:A0:36:B1:98:5F:3C:D4:6E:1B:3B:B3:52:

D9:9F:0E:76:C7:17:60
X509v3 Authority Key Identifier:

keyid:E4:A0:36:B1:98:5F:3C:D4:6E:1B:3B:
B3:52:D9:9F:0E:76:C7:17:60

90 5 Cryptography

DirName:/C=UK/ST=Wilts/O=WLAN/CN=Root
serial:CA:49:0B:69:D9:E3:70:15

X509v3 Basic Constraints:
CA:TRUE

Signature Algorithm: sha1WithRSAEncryption
7a:f3:38:34:0e:c0:96:e5:55:7c:e9:ea:a3:af:8f:
12:9e:1b:4f:1f:1a:14:6b:1e:53:81:a1:ac:f0:47:
fd:a9:96:fa:a4:5d:c5:bc:0b:af:16:a8:a7:5e:91:
88:09:56:8c:6f:64:7b:98:d9:77:33:58:1a:1f:72:
52:9c:d7:63:06:e3:f4:75:80:01:3e:ec:fa:26:42:
40:2e:8f:49:3e:14:28:79:7b:79:69:ed:af:dd:2b:
2a:53:13:ea:ad:93:98:87:ca:f8:a5:cb:34:9b:d7:
17:da:81:a4:4b:53:fe:99:da:1e:70:35:ad:0d:50:
ba:aa:d1:73:7b:36:ba:3a

The output from this command shows that the certificate is in human-readable
form and conforms to the structure of an X.509 certificate, as described in Sect. 5.5.
The CA:TRUE directive confirms that the certificate is a certificate authority. Also,
the Issuer and Subject are the same because the certificate is self-signed. For signed
certificates, the Issuer will be the Subject of the certificate that signed the request.

5.6.2 Generating Certificates

The generation of certificates involves a two step process:

• Generate a certificate request.
• Sign the certificate request using the CA.

OpenSSL commands require many options, and the resulting command-lines can
be somewhat cumbersome. In order to overcome this, we assign the options to en-
vironment (array) variables and let the shell interpreter do the expansion for us. Set
the options for the radius certificate request:

$ OPTS1[0]="-new"
$ OPTS1[1]="-nodes"
$ OPTS1[2]="-keyout rad_key.pem"
$ OPTS1[3]="-out rad_req.pem"
$ OPTS1[4]="-passin pass:certsecret"
$ OPTS1[5]="-passout pass:certsecret"

In order to avoid interaction with OpenSSL, we can use the -subj to specify
the DN. We add this to the option array:

$ OPTS1[6]="-subj /C=UK/ST=Wilts/O=WLAN/CN=radius"

5.6 Generating Digital Certificates 91

We can evaluate the shell variable (and view the option settings) with the
command-line:

$ echo ${OPTS1[*]}
-new -nodes -keyout rad_key.pem -out rad_req.pem
-passin pass:certsecret -passout pass:certsecret
-subj /C=UK/ST=Wilts/O=WLAN/CN=radius

A certificate request (along with a private key) is generated with the command:

$ openssl req ${OPTS1[*]}
Generating a 1024 bit RSA private key
......++++++
.........++++++
writing new private key to ’rad_key.pem’

Set the options for signing the certificate:

$ OPTS2[0]="-in rad_req.pem"
$ OPTS2[1]="-out rad_cert.pem"
$ OPTS2[2]="-key rootsecret"

The certificate request, in human-readable form, is shown below:

$ openssl req -in rad_req.pem -noout -text
Certificate Request:

Data:
Version: 0 (0x0)
Subject: C=UK, ST=Wilts, O=WLAN, CN=radius
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:b6:de:fa:1d:16:45:29:53:2c:04:3b:
48:2c:48:1a:a1:17:47:b7:52:72:43:8d:
43:31:90:06:11:95:2b:94:e1:7f:2a:2a:
96:7f:81:a2:1f:ec:c5:a4:65:4d:7a:16:
dd:9a:57:5d:60:36:ab:85:b4:46:4c:90:
a9:38:dd:04:11:2b:40:17:ea:77:d0:2e:
3c:cb:b4:10:29:91:08:23:93:ba:08:50:
b9:21:28:40:74:b1:12:04:ec:77:13:9e:
74:02:71:c4:f1:ea:78:78:05:08:74:d9:
ff:b8:46:18:a1:e1:f7:48:ff:9d:af:a8:
be:8a:0e:e0:9c:0a:6b:7e:c5

Exponent: 65537 (0x10001)
Attributes:

a0:00
Signature Algorithm: sha1WithRSAEncryption

92 5 Cryptography

61:ad:b6:b5:7f:c1:12:f0:6c:c9:80:1e:44:b9:62:6f:
fb:a7:6a:f6:2e:d1:82:11:d2:0d:6a:36:e6:7a:84:0d:
98:80:56:85:53:fc:cc:07:4b:15:76:1b:22:f5:4c:19:
58:98:4d:d8:f3:0a:29:33:7b:dc:98:aa:92:2d:3c:36:
75:58:02:e6:22:61:62:7c:20:7b:59:70:18:e6:98:68:
92:40:f7:cd:51:ff:3f:07:78:b5:60:7f:6f:71:85:61:
e6:81:ed:b1:dc:fd:06:8f:00:76:27:b8:29:61:a3:e8:
4f:a6:5b:14:64:2b:81:d8:97:43:64:73:5f:46:dd:c8

The command-line below signs the certificate (using the CA in cacert.pem). The
OpenSSL ca command prompts the user (twice) to confirm the signing of the cer-
tificate (and the user should answer “y” on both occaisons). Interaction with the user
is avoided by piping the output of the command yes to the openssl command:

$ yes | openssl ca ${OPTS2[*]}
Using configuration from /usr/lib/ssl/openssl.cnf
Check that the request matches the signature
Signature ok
Certificate Details:

Serial Number: 1 (0x1)
Validity

Not Before: Nov 25 14:47:33 2008 GMT
Not After : Nov 25 14:47:33 2009 GMT

Subject:
countryName = UK
stateOrProvinceName = Wilts
organizationName = WLAN
commonName = radius

X509v3 extensions:
X509v3 Basic Constraints:

CA:FALSE
Netscape Comment:

OpenSSL Generated Certificate
X509v3 Subject Key Identifier:

77:96:33:36:8A:03:5D:1A:77:05:49:1C:15:
17:4B:E7:C3:EB:E6:D5

X509v3 Authority Key Identifier:
keyid:80:A0:CE:6E:69:C1:F8:27:D3:0F:CC:

97:CF:8D:C6:E9:21:8A:98:E0

Certificate is to be certified until Nov 25 14:47:33
2009 GMT (365 days)
Sign the certificate? [y/n]:

1 out of 1 certificate requests certified, commit?
[y/n]Write out database with 1 new entries
Data Base Updated

5.6 Generating Digital Certificates 93

View the certificate:

$ openssl x509 -in rad_cert.pem -noout -text
Certificate:

Data:
Version: 3 (0x2)
Serial Number: 1 (0x1)
Signature Algorithm: sha1WithRSAEncryption
Issuer: C=UK, ST=Wilts, O=WLAN, CN=Root
Validity

Not Before: Dec 3 13:45:18 2008 GMT
Not After : Dec 3 13:45:18 2009 GMT

Subject: C=UK, ST=Wilts, O=WLAN, CN=radius
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:b6:de:fa:1d:16:45:29:53:2c:04:3b:
48:2c:48:1a:a1:17:47:b7:52:72:43:8d:
43:31:90:06:11:95:2b:94:e1:7f:2a:2a:
96:7f:81:a2:1f:ec:c5:a4:65:4d:7a:16:
dd:9a:57:5d:60:36:ab:85:b4:46:4c:90:
a9:38:dd:04:11:2b:40:17:ea:77:d0:2e:
3c:cb:b4:10:29:91:08:23:93:ba:08:50:
b9:21:28:40:74:b1:12:04:ec:77:13:9e:
74:02:71:c4:f1:ea:78:78:05:08:74:d9:
ff:b8:46:18:a1:e1:f7:48:ff:9d:af:a8:
be:8a:0e:e0:9c:0a:6b:7e:c5

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE

Netscape Comment:
OpenSSL Generated Certificate

X509v3 Subject Key Identifier:
9F:C7:F3:7D:0C:6D:2F:74:2C:74:36:65:55:

69:26:F7:D8:44:00:E4
X509v3 Authority Key Identifier:

keyid:E4:A0:36:B1:98:5F:3C:D4:6E:1B:3B:
B3:52:D9:9F:0E:76:C7:17:60

Signature Algorithm: sha1WithRSAEncryption
51:75:02:ee:f9:b9:f3:48:5f:da:02:b8:bc:46:df:7f:
5c:b5:85:a0:a1:be:21:1c:10:5c:ba:1e:b4:5d:bc:cf:
17:14:ee:68:bf:0c:24:53:d3:7d:8a:85:d8:01:81:e4:
86:31:cd:cb:dd:78:7c:97:2a:78:59:ec:a3:53:f6:fd:

94 5 Cryptography

3c:f5:10:50:27:29:33:10:ec:d9:6c:50:b8:0c:79:36:
14:7a:01:a2:f7:47:46:e3:5b:95:2c:5c:d0:94:3a:40:
d5:84:21:22:dc:72:14:1b:1b:a5:d2:cd:34:11:08:a4:
0f:f6:13:1d:3c:c3:50:c9:9b:a6:e7:9d:99:16:48:00

Now we generate the certificate for the wireless device. Some of the options
settings are common to both the radius server and the wireless client. We set the
options which are different:

$ OPTS1[2]="-keyout sta_key.pem"
$ OPTS1[3]="-out sta_req.pem"
$ OPTS1[6]="-subj /C=UK/ST=Wilts/O=WLAN/CN=sta"

Set the options for signing:

$ OPTS2[0]="-in sta_req.pem"
$ OPTS2[1]="-out sta_cert.pem"

Generate a certificate request (along with a private key) and then sign it:

$ openssl req ${OPTS1[*]} && yes |
openssl ca ${OPTS2[*]}
Generating a 1024 bit RSA private key
...
................++++++
..........++++++
writing new private key to ’sta_key.pem’

Using configuration from /usr/lib/ssl/openssl.cnf
Check that the request matches the signature
Signature ok
Certificate Details:

Serial Number: 2 (0x2)
Validity

Not Before: Nov 25 14:55:33 2008 GMT
Not After : Nov 25 14:55:33 2009 GMT

Subject:
countryName = UK
stateOrProvinceName = Wilts
organizationName = WLAN
commonName = sta

X509v3 extensions:
X509v3 Basic Constraints:

CA:FALSE
Netscape Comment:

OpenSSL Generated Certificate
X509v3 Subject Key Identifier:

25:29:FD:CA:7B:0C:D2:50:31:39:0D:CD:80:

5.6 Generating Digital Certificates 95

A2:ED:50:31:F4:16:58
X509v3 Authority Key Identifier:

keyid:80:A0:CE:6E:69:C1:F8:27:D3:0F:CC:
97:CF:8D:C6:E9:21:8A:98:E0

Certificate is to be certified until Nov 25 14:55:33
2009 GMT (365 days)
Sign the certificate? [y/n]:

1 out of 1 certificate requests certified, commit?
[y/n]Write out database with 1 new entries
Data Base Updated

Finally, we generate the certificate for the MySQL server:

$ OPTS1[2]="-keyout mysql_key.pem"
$ OPTS1[3]="-out mysql_req.pem"
$ OPTS1[6]="-subj /C=UK/ST=Wilts/O=WLAN/CN=mysql"
$ OPTS2[0]="-in mysql_req.pem"
$ OPTS2[1]="-out mysql_cert.pem"
$ openssl req ${OPTS1[*]} && yes |
openssl ca ${OPTS2[*]}

We verify certificates for the radius, sta and mysql with the command:

$ openssl verify -CAfile cacert.pem rad_cert.pem \
> sta_cert.pem mysql_cert.pem
rad_cert.pem: OK
sta_cert.pem: OK
mysql_cert.pem: OK

5.6.3 Testing the Certificates

We will test the certificates by using the OpenSSL s_server and s_client
commands to create an SSL tunnel. Data can be transmitted once the server and
client have authenticated successfully. Copy the certificates, private keys and CA to
the respective machines (radius and client):

$ scp rad*pem cacert.pem 172.16.20.79:
$ scp sta*pem cacert.pem 172.16.20.81:

This will also copy the certificate request (because of the use of the wild card).
However, this is not required for the authentication process. Set the options for the
s_server process:

radius$ OPTS[0]="-accept 8008"
radius$ OPTS[1]="-CAfile cacert.pem"

96 5 Cryptography

radius$ OPTS[2]="-cert rad_cert.pem"
radius$ OPTS[3]="-key rad_key.pem"
radius$ OPTS[4]="-Verify 1"
radius$ OPTS[5]="-state"

Some of these options require an explanation. The -accept option specifies the
port on which to accept connections (in this case, 8008). Options -CAfile, -cert
and -key specify the respective files containing the CA, the server’s certificate and
the private key. The -Verify option ensures that the radius server authenticates
the wireless client. Without this option only, the radius server is authenticated (by
the client) and the client will report:

No client certificate CA names sent

OpenSSL outputs useful information if the -state option is used. The
(-debug option could also be used to give even more information). Start the
OpenSSL server process on the server:

radius$ openssl s_server ${OPTS[*]}
verify depth is 1, must return a certificate
Using default temp DH parameters
Using default temp ECDH parameters
ACCEPT

The process waits to accept connections from a client. On the client, set the op-
tions:

client$ OPTS1[0]="-connect sta:8008"
client$ OPTS1[1]="-cert sta_cert.pem"
client$ OPTS1[2]="-key sta_key.pem"
client$ OPTS1[3]="-CAfile cacert.pem"
client$ OPTS1[4]="-state"

The -connect options tell the client on which port the server is waiting to
accept connections. The other options are the same as for the server. The command
line below opens up a tunnel to the OpenSSL server process and transmits the string
“hello”.

sta$ echo "hello" | openssl s_client ${OPTS1[*]}

The -www option causes the s_server to behave as a web server. Now we can
test the certificates with a web client such as wget. On the client, set the options
for wget:

sta$ OPTS2[0]="--certificate=sta_cert.pem"
sta$ OPTS2[1]="--private-key=sta_key.pem"
sta$ OPTS2[2]="--ca-certificate=cacert.pem"

Now download index.html of the secure tunnel:

5.7 Summary 97

client$ wget ${OPTS2[*]} https://radius:8008/
--15:03:08-- https://radius:8008/

=> ‘index.html’
Resolving radius... 172.16.20.70
Connecting to radius|172.16.20.70|:8008... connected.
HTTP request sent, awaiting response... 200 ok
Length: unspecified [text/html]

[<=>] 5,492 --.--K/s

15:03:08 (130.94 MB/s) - ‘index.html’ saved [5492]

5.7 Summary

In this chapter, we presented an overview of cryptography. We avoided a mathemat-
ical treatment of the subject and adopted a practical approach instead. We used the
OpenSSL application and Python code extracts to demonstrate prinicples of cryp-
tography.

There are two type of cipher: symmetric key and asymmetric key. Symmetric key
is based upon a single shared key, whereas asymmetric key ciphers employs a pair
of keys. Asymmetric key ciphers overcome the problem of secure key exchange.

We have discussed applications of cryptography; namely, encryption, message
digests, digital signatures and digital certificates. We have shown how to create dig-
ital certificates which we will use in Chap. 8 for implementing a wireless LAN with
enterprise security.

Chapter 6
Wireless Security

Security methods were not specified in the original 802.11 standard. Some vendors
provided authentication based upon MAC addresses, whereby access-points main-
tained a list of MAC addresses of devices that were allowed to associate with them.
This method suffers from scalability issues, as maintaining the access-list is prob-
lematic for networks with many devices. Furthermore, as MAC addresses can be
spoofed, security can be circumvented with little effort. Wired equivalent privacy
(WEP) was introduced with 802.11b, but suffered from a number of serious vulner-
abilities. In order to overcome the shortcomings in the WEP, the IEEE introduced
the 802.11i amendment. The aim of 802.11i was to produce a specification for a
robust security network association (RSNA) designed to enchance:

• Authentication
• Key management
• Confidentiality and integrity

The Wi-Fi Alliance introduced an interim solution to WEP called Wi-Fi protected
access (WPA). The aim of WPA was to address some of the vulnerabilities of WEP
while 802.11i was being ratified (WPA was an implementation of a draft version of
802.11i). The 802.11i standard includes pre-RSNA algorithms. When 802.11i was
ratified, the Wi-Fi alliance released WPA2.

Figure 6.1 summarises the authentication, key generation, confidentiality and in-
tegrity in 802.11i. We will discuss these methods in more detail in this chapter.

6.1 Pre-RSNA

Pre-RSNA algorithms originated from WEP which first appeared in the 802.11b
amendment. WEP was introduced for the purpose of providing confidentiality, in-
tegrity and authentication. The RC4 stream cipher from RSA Security Inc. is used
for confidentiality (encryption). A 32-bit cyclic redundancy check (CRC) is used for
data integrity.

A. Holt, C.-Y. Huang, 802.11 Wireless Networks,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-275-9_6, © Springer-Verlag London Limited 2010

99

100 6 Wireless Security

Fig. 6.1 Summary of 802.11i security

There are two pre-RSNA authentication methods; namely, open system and
shared key authentication. With the exception of the open system authentication
mechanism, all pre-RSNA algorithms have been deprecated. Despite this, WEP, and
shared key authentication are still in wide-spread use.

6.1.1 Authentication

With open system, authentication is established by the transmission of two mes-
sages. Consider two wireless devices, A and B . Device A asserts its identity to
device B by sending B an authentication request. B sends A the result of the re-
quest, which is either success or failure. The devices are mutually authenticated if
the request is successful. As there is no criteria for authenticity, then the result is in-
variably “success”. Authentication based on MAC address may be employed, thus,
if the MAC address of a device does not appear in the access-point’s access list, then
a failure notification will result. MAC authentication, however, is not specified in the
standard and is, therefore, vendor implemented at the discretion of the access-point
manufacturer.

With shared key authentication, only devices that know the shared key can suc-
cessfully authenticate. Shared-keys are distributed amongst participating devices by
some secure mechanism outside the 802.11 framework (for example, by manual
configuration by an administrator). Authentication is completed after a four-way
handshake. Device A sends an authentication request to device B (first frame).
B prepares a random 128-octet challenge text using a PRNG. The challenge is sent
to A (second frame). A encrypts the challenge using RC4 (in the same way as it
encrypts data frames) and sends the result to B (third frame). When B receives the
third frame, it checks the ICV. If the ICV is correct, it verifies the challenge sent

6.2 RSNA 101

by A. If the challenge returned by A matches the original challenge text, B sends a
“success” status code to A (fourth message). Otherwise, B responds by sending an
“unsuccessful” status code.

The same shared key used for encryption is also used in the authentication pro-
cess. The keystream K can be recovered by XORing the plaintext and ciphertext.
Thus, the shared key is at its most vulnerable during the authentication stage because
the plaintext challenge and the encrypted response are transmitted over the network.
As the same key is used for both authentication and encryption, confidentiality is
compromised due to flaws in the authentication method. While counter-intuitive,
the open authentication method is actually more secure than the shared key method.
This problem in compounded by the use of static keys which only change when the
user manually changes them (which is, typically, infrequently).

The IV is 24-bits in length which is considered to be too small. On a busy
network, the IV will frequently wrap around. IV collision (frames with the same
IV), therefore, are relatively common. The likelihood of guessing the keystream in-
creases with the IV collision rate. The problem is compounded by the lack of detail
in the 802.11 specification regarding IV generation. Many wireless network cards
do not make per-packet IV changes.

6.1.2 Encryption and Integrity

An integrity check value (ICV) is computed for each frame (M). The ICV is a 32-bit
CRC and thus a plaintext frame M yields ICV = CRC32(M). The ICV is appended
to a plaintext packet M to form P = M|ICV (where | denotes concatenation). A
keystream is generated using a pseudo-random number generator (PRNG) from the
WEP key KWEP and a 24-bit initialisation vector (IV). A new IV is used for each
frame (though IVs are reused every 242 frames). The IV is prepended to KWEP to
form a per-frame key, K = IV|KWEP. P is then encrypted using the RC4 cipher.
The ciphertext message C is derived by XORing the per-frame key K with P :

C = P ⊕ K

The original WEP key was 40-bits in length (WEP-40). This was deemed to be too
short for any serious security purpose. The length key was increased to 104 bits
(WEP-104), though this did little to strengthen security.

A plaintext 802.11 MAC frame header is prepended to the ciphertext payload.
One of the fields in the MAC frame header is the IV, thus the IV is transmitted as
plaintext. The assembly of a WEP frame is shown in Fig. 6.2.

6.2 RSNA

802.11i introduced RSNA in response to the flaws in the original 802.11 security.
RSNA algorithms provide enhancements to confidentiality, integrity authentication
and key management.

6.2 RSNA 103

Fig. 6.3 802.1X

The diagram in Fig. 6.3 shows how the components of a 802.1X environment
are interconnected. The supplicant is a piece of software that runs on the (wireless)
client. The authenticator runs on the network authentication server (NAS). In an
802.11 network, the NAS is typically the access-point. The authentication server is
typically a RADIUS server. The NAS is needed because the authentication server
may not reside on the same layer-2 network as the client and the NAS blocks layer-3
packets from the client until it has authenticated. The NAS is configured with the
IP address (or domain name) of the authentication server and forwards EAP packets
from the client.

An access-point advertises its security capabilities in beacon frames or in re-
sponses to probe requests. A wireless client is, therefore, able to ascertain security
capabilities either passively or actively. The wireless client then selects an access-
point and “authenticates” using the open system authentication method. Authenti-
cation at this point is fairly weak and is simply to allow the device to associate with
the access-point so that it can start sending EAP packets. All other communication
is blocked.

The supplicant and the authentication server (RADIUS) perform the authentica-
tion (using one of a variety of methods) using the authenticator as an intermedi-
ate relay. Authentication can be client-only or mutual and depends upon the EAP
method.

Upon successful authentication, the client and authentication server generate a
common secret key called the master session key (MSK). The supplicant derives
the pairwise master key (PMK) from the MSK. The authentication server transfers
key material to the authenticator, enabling it to derive the PMK too. The supplicant
and authenticator perform a 4-way handshake exchange which establishes the cipher
suite and the pairwise transient key (PTK). Others keys are derived from the PTK,
which are discussed in more detail below. At this point 802.1X unblocks the port
and admits data packets to the network. At this point the supplicant and authenticator
can now exchange frames securely.

EAP is an Internet standard for network client authentication. EAP was origi-
nally an extension to the point-to-point protocol (PPP). EAP was developed as a
framework for end-points to negotiate which authentication mechanism to use. This

104 6 Wireless Security

Fig. 6.4 EAP over LAN (EAPOL)

meant that new authentication mechanisms could be adopted without having to ex-
tend PPP.

When the supplicant associates, the authenticator sends an EAP-request/identity
packet to the supplicant. The supplicant responds by sending the authenticator its
identity with a EAP-Response/Identity. The authentication server sends the suppli-
cant a challenge. The supplicant responds to the challenge and the authentication
server sends back a success message if the client’s credentials are valid.

The authenticator forwards EAP messages between the supplicant and authenti-
cation server. Messages traversing the wireless network are encapsulated in EAPOL
packets (EAP over LAN). Messages traversing the wired network are encapsulated
in RADIUS packets (over TCP/IP). The authenticator is responsible for the encap-
sulation (and de-encapsulation) of EAPOL and RADIUS packets. The relationship
between EAP and 802.1X is summarised in Fig. 6.4.

A few of the current EAP methods are described below:

• EAP-PSK: Authentication based on pre-shared key.
• EAP-MD5: A minimal authentication method based upon a MD5 hash function.

Authentication is not mutual; that is, only the authentication of the client is per-
formed. It is vulnerable to dictionary and man-in-the-middle attacks. Further-
more, it is unsuitable for key generation.

• EAP-MSCHAPv2: Microsoft CHAP, version 2 is a challenge handshake authen-
tication protocol. While version 1 was a client-only authentication mechanism,
version 2 allows both client and server authentication.

• EAP-LEAP: Lightweight EAP is a proprietary EAP protocol from Cisco. EAP-
LEAP provides mutual authentication based on password challenge-response.

• EAP-PEAP: Protected EAP protocol is a proprietary protocol co-developed by
Microsoft, Cisco, and RSA Security. PEAP provides the secure mutual authenti-
cation of the client and server.

6.2 RSNA 105

Fig. 6.5 802.11i key
hierarchy

• EAP-TLS: Transport layer security (TLS) is based upon mutual certificate au-
thentication. Certificates from both the client and the server are exchanged.

• EAP-TTLS: Tunneled transport layer security (TTLS) is an extension of TLS.
Clients are authenticated by password, but server authentication is certificate
based.

6.2.2 Key Management

The distribution of keys is closely linked to the authentication process. 802.11i uses
different keys for different purposes. These keys form a key hierarchy, as shown
in Fig. 6.5. At the top level is the PMK (pairwise master key) which is then used
to derive other keys. If 802.1X is used for authentication, the PMK is established
during the mutual authentication stage between the supplicant and authentication
server. If the pre-shared key method is used for authentication, then the pre-shared
key is used for the PMK. The PTK (pairwise transient key) is established on both
the supplicant and the authenticator (access-point), Three more temporal keys are
then derived from the PTK:

• EAPOL-key key confirmation key (KCK)
• EAPOL-key key encryption key (KEK)
• Temporal key (TK)

6.2.3 Encryption and Integrity

RSNA specifies two protocols for encryption (confidentiality) and integrity; namely,
the temporal key integrity protocol (TKIP) and Counter mode with cipher block
chaining message authentication code (CBC-MAC) protocol (CCMP). TKIP uses
RC4 for encryption, but it is a much stronger implementation than that used by WEP.
TKIP also feature a more sophisticated keying system which overcomes many of the
shortcomings of WEP. The Michael algorithm is used for message integrity codes.

106 6 Wireless Security

Fig. 6.6 TKIP frame

CCMP uses the advanced encryption standard (AES) in Counter mode for en-
cryption and CBC-MAC for message integrity. CBC-MAC also supports confiden-
tiality protection.

TKIP

Despite the improved security that 802.11i would bring, it was recognised that, the
use of legacy 802.11 hardware would continue for some time to come. Firmware on
legacy devices used WEP and, therefore, the RC4 cipher. In order to prevent the im-
proper use of WEP (weak key scheduling, IV collisions and packet forgery), 802.11i
specifies the TKIP sub-protocol. TKIP acts as wrapper around WEPs encryption,
providing a more sophisticated key-mixing function. The 128-bit RC4 per-frame
encryption key is derived from a temporal key (TK), the client’s MAC address and
an IV. The IV in TKIP also acts as a sequence counter to protect against simple
replay attacks.

The TKIP mixing function operates in two phases. In the first phase, a TKIP-
mixed transmit address and key (TTAK) is computed from the TK, MAC address
(TA) and TKIP sequence counter (TSC). A per-frame key, called the WEP seed
WEPseed is generated in the second phase using the TTAK, TA and TSC.

The WEPseed is passed to the WEP encapsulation process along with the plaintext
frame M . From WEPseed, WEP gets an RC4 key and an IV. Thus WEPseed is used
in place of the WEP key and WEP IV. WEP computes the ICV and encrypts M to
produce the ciphertext frame. The TKIP frame format is shown in Fig. 6.6.

TKIP includes a 64 bit message integrity check (MIC) with every frame. The
algorithm used to compute the MIC is called Michael. Its purpose is to prevent the
sort of attacks that WEP was subjected to because of its weak CRC integrity check.
The MIC is computed over the source address (SA), destination address (DA),

priority field (Pr), three reserved octets (Rsvd) and (plaintext) payload data (M) of
the MAC frame:

MIC = Michael(SA|DA|Pr|Rsvd|M)

A per-frame TSC (TTKIP sequence counter) is used to protect against simple
replay attacks. Frames that do not have increasing sequence numbers are dropped
by the receiver. While Michael is an improvement of the CRC used in WEP, it is
not infallible and it is possible to compromise message integrity. This is due to de-
sign constraints imposed on the implementation, requiring the support of legacy
hardware. TKIP, therefore, implements countermeasures in order to reduce the like-
lihood of forgeries and limit information about the key. If an attack is suspected,

6.2 RSNA 107

Fig. 6.7 TKIP encapsulation

TKIP operations are suspended for 60 seconds. Group and pairwise keys are then
re-negotiated. Countermeasures are deployed if two frames arrive within a minute
of each other with incorrect MICs.

The RC4 key and IV are used as the WEP seed, which is passed to the WEP
encapsulation process. WEP uses this to generate an ICV and to encrypt the MPDU
and the MIC (see Fig. 6.7). While an improvement on WEP, TKIP’s MIC is still
fairly weak in defending against message forgery. Nevertheless, it represents the
best that can be achieved on legacy hardware.

CCMP

CCMP is a protocol is based upon AES’s Counter mode with cipher-block chaining
message authentication code (CBC-MAC). Counter mode is used for confidentiality
and CBC-MAC for integrity. AES is much stronger than the RC4 cipher used in
WEP and TKIP. However, it cannot run on legacy hardware.

802.11 MAC frames are passed to CCMP for processing. 802.11 frames consist
of a MAC header, plaintext data and a frame check sequence (FCS). The MIC is
encrypted along with the plaintext payload of the 802.11 frame. A CCMP header and
the cipher text are appended to the original MAC header. An FCS is also appended.
Figure 6.8 shows the expansion of a MAC frame into a CCMP frame.

Figure 6.9 shows the fields of the CCMP header. The CCMP header consists of
a ExtIV, a KeyID and a packet number (PN). PN0 is the least significant byte of the
PN. CCMP generates a new temporal key for each session and a nonce value for
every frame. The nonce value is a 48-bit PN encrypted with the temporal key. The
standard [17] warns that security can be compromised if the PN is reused with the
same temporal key. The PN, therefore, is incremented for each frame.

Here we describe the CCMP encapsulation process. The additional authentica-
tion data (AAD) is constructed from fields in the MPDU header. The PN, the second
address field (A2) and the priority field of the MAC header are used to construct the
CCM nonce block:

nonce block = Prioriry|A2|PN

108 6 Wireless Security

Fig. 6.8 Expanded CCMP
frame

Fig. 6.9 CCMP header

The PN and key identifier are placed in the CCMP header. The concatenation of
the payload data from the MAC frame and the MIC are encrypted with AES using
the temporal key, AAD and nonce value. The encrypted frame is formed from the
MAC header, the CCMP header and the ciphertext (see the diagram in Fig. 6.10).

The decryption process is as follows. Fields from the MAC and CCMP headers
are extracted to construct the AAD and nonce value. The ciphertext is decrypted to
produce the plaintext and the MIC. The original plaintext frame is reconstructed by
appending the plaintext data to the MAC frame header. The diagram in Fig. 6.11
shows the CCMP decapsulation process.

6.3 Summary

The 802.11i amendment introduces RSNA (robust security network association).
WEP (wired equivalent privacy) appears in the 802.11i standard under the pre-
RSNA security methods. The flaws in WEP have been extensively studied and its
use has been deprecated. TKIP (temporal key integrity protocol) is an enhancement
of WEP that runs when using legacy 802.11 hardware. TKIP’s security benefits from
an extended IV (initialisation vector) space. Whereas WEP has a per-SSID encryp-

6.3 Summary 109

Fig. 6.10 CCMP encapsulation process

Fig. 6.11 CCMP decapsulation process

tion key, TKIP generates per user, per session keys. This prevents users on the same
SSID from being able to decrypt each others’ frames.

TKIP, like WEP, uses the RC4 cipher. TKIP implements a re-keying mechanism,
a key mixing scheme and a MIC (message integrity check). Re-keying protects
against recurrence-based PSK derivation attempts by generating per-packet encryp-
tion and integrity keys. The key mixing scheme introduces an IV sequence enforce-
ment policy in order to protect against replay attacks. The Micheal MIC forms a
counter measure against forgery attempts (but not packet replay forgeries).

TKIP is merely for backwards compatibility with legacy 802.11 hardware and
for hardware that does not have the necessary capacity to run the CCMP encryption
algorithm (we refer the reader to Table 5.2 which compares the performance of

110 6 Wireless Security

RC4 and AES). CCMP offers stronger cryptographic methods and, for this reason,
802.11i recommends the use of CCMP over TKIP. The CCMP protocol is based on
AES (advanced encryption standard) in Counter mode. CBC-MAC (cipher block
chaining message authentication code) is used for data integrity.

Authentication in 802.11 is based upon either PSK (pre-shared key) of 802.1X.
With 802.1X, clients are blocked until they have successfully authenticated. Within
the 802.1X framework, the EAPOL (extensible authentication protocol over LAN)
protocol is used to exchange authentication and key management information.

Chapter 7
Configuring Wireless Networks

In this chapter, we describe how to configure wireless equipment. A number of
scenarios are presented using a variety of manufacturers, namely Cisco, Alcatel-
Lucent and Meru Networks. We also describe how to build a router using open
source software. Table 7.1 shows a summary of these three manufacturers. While
they are three separate manufacturers, their command-line interfaces are similar, in
that they resemble the Cisco IOS interface. All configuration commands must be
entered when the controller is in configuration mode. To enter configuration mode,
use the command from enable mode:

configure terminal

Exit configuration mode by typing either, exit or CTRL-Z. Configuration com-
mands take immediate effect but are not automatically saved to flash memory. Save
the running configuration with:

write memory

As we can see from Table 7.1, there are two different access-point architectures.
Thick access-points operate stand alone and are managed directly. Each access-
point maintains its own configuration data and performs its own security functions
(such as authentication). Traffic is forwarded directly between network ports. Client
roaming is performed in cooperation with the neighbouring access-points.

Conversely, thin access-points are lightweight and need to be managed from a
separate controller. Configuration information is kept by the controller and pushed
out to the access-points. Traffic also flows through the controller.

The initial deployment of thick access-points is relatively straightforward. Thick
access-points, however, are more expensive than thin ones, but there are fewer in-
frastructure costs (no controllers required). Furthermore, they are more resilient; if
an access-point fails, then coverage is only lost in a specific area. Thick access-
points have scalability issues, as each access-point must be managed independently.
Global changes to the network requires a configuration change on each access-point.

Thin access-points facilitate centralised administration. Troubleshooting is easier
because data can be correlated in one place. Furthermore changes can be pushed to

A. Holt, C.-Y. Huang, 802.11 Wireless Networks,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-275-9_7, © Springer-Verlag London Limited 2010

111

112 7 Configuring Wireless Networks

Table 7.1 Summary of
wireless equipment
manufacturers

Manufacturer Product Architecture Comment

Cisco Aironet Thick AP Aironet is an
Cisco aquisition

Alcatel-lucent Omniaccess Thin AP
w/controller

OEM partnership
w/aruba networks

Meru networks n/a Thin AP
w/controller

Table 7.2 Summary of
laptops used to form an
ad-hoc network

Manufacturer Product Distribution Wireless card

Dell Inspiron 510m Ubuntu 9.04 Orinoco
silver

Asus Eee PC 4G Xubuntu 7.04 Athereos
AR5006EG

all access-points at once. Roaming can be coordinated by the controller, resulting
in the seamless transition of a device from one access-point to another. In contrast,
hand-overs between thick access-point can take hundreds of milliseconds.

Thin access-points cannot operate autonomously and are tightly coupled to a
controller. Any problems experienced by the controller will affect the operation of
all the access-points under its management.

7.1 Ad-hoc Network

Wireless devices can connect to each other without an access-point. This is referred
to as ad-hoc mode. In this section, we show how to configure two GNU/Linux lap-
tops to form an ad-hoc network. The two laptops are a Dell Insprion and an Asus
Eee PC running Ubuntu 7.04 and Xubuntu 7.04 respectively (see Table 7.2).

On the Dell laptop, enter the command-line below (note that commands issued on
the Dell are preceded by the dell$ prompt and commands issued on the Asus have
the prompt asus$). This configures the mode as ad-hoc (as opposed to managed):

dell$ sudo iwconfig eth1 mode ad-hoc

Configure the ESSID with the command-line:

dell$ sudo iwconfig eth1 essid wnet

An attempt to configure the Eee PC in a similar way yields an error message.

asus$ sudo iwconfig ath0 essid wnet mode ad-hoc
Error for wireless request "Set Mode" (8B06) :

SET failed on device ath0 ; Invalid argument.

7.1 Ad-hoc Network 113

The following command shows that the device has a get_mode function, but
not a set_mode:

asus$ iwpriv ath0 | grep "[s|g]et_mode"
get_mode (8BE3) : set 0 & get 6 char

Whereas the wireless device on the Dell has both:

dell$ iwpriv eth1 | grep "[s|g]et_mode"
set_mode (8BE2) : set 1 int & get 0
get_mode (8BE3) : set 0 & get 80 char

Remove the ath0 interface:

asus$ sudo wlanconfig ath0 destroy

Create a new interface, setting it to ad-hoc mode:

asus$ sudo wlanconfig ath0 create wlandev wifi0 \
> wlanmode adhoc

This creates a wireless interface ath1 (note that it is in the state of Not-
Associated):

ath1 IEEE 802.11g ESSID:"" Nickname:""
Mode:Ad-Hoc Frequency:2.452 GHz Cell: Not-Assoc

iated
Bit Rate:0 kb/s Tx-Power=17 dBm Sensitivity=1/1
Retry:off RTS thr:off Fragment thr:off
Power Management:off
Link Quality:56/70 Signal level:-42 Noise level

=-98 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid

frag:0
Tx excessive retries:0 Invalid misc:0 Missed

beacon:0

Set the ESSID:

asus$ sudo iwconfig ath0 essid ahnet

The Asus is now associated with the Dell, forming an ad-hoc network (issuing
this command on the Dell for interface eth1 will result in a similar output):

ath1 IEEE 802.11b ESSID:"wnet" Nickname:""
Mode:Ad-Hoc Frequency:2.452 GHz Cell:

06:15:AF:8C:CE:D5
Bit Rate:2 kb/s Tx-Power=17 dBm Sensitivity=1/1
Retry:off RTS thr:off Fragment thr:off
Power Management:off
Link Quality:56/70 Signal level:-42 Noise level

=-98 dBm

114 7 Configuring Wireless Networks

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid
frag:0

Tx excessive retries:0 Invalid misc:0 Missed
beacon:0

Give the wireless interface on the Dell an IP address:

dell$ sudo ifconfig eth1 10.0.0.1 netmask 255.0.0.0

Configure the wireless interface on the Asus with an IP address in the same range:

asus$ sudo ifconfig ath1 10.0.0.2 netmask 255.0.0.0

Confirm communication between the two laptops:

asus$ ping -c 5 10.0.0.1
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
64 bytes from 10.0.0.1: icmp_seq=1 ttl=255 time=1.83 ms
64 bytes from 10.0.0.1: icmp_seq=2 ttl=255 time=1.92 ms
64 bytes from 10.0.0.1: icmp_seq=3 ttl=255 time=1.96 ms
64 bytes from 10.0.0.1: icmp_seq=4 ttl=255 time=1.88 ms
64 bytes from 10.0.0.1: icmp_seq=5 ttl=255 time=1.90 ms

--- 10.0.0.1 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time
3999ms
rtt min/avg/max/mdev = 1.833/1.902/1.965/0.051 ms

7.2 WEP

As mentioned above, WEP (wired equivalent privacy) has suffered from many secu-
rity issues and has since been deprecated in the 802.11 standard. Its usage, however,
is still fairly common. In this section, we show how to configure a wireless infras-
tructure network on an Cisco Aironet access-point. Enter configuration mode and
configure a dot11 ssid profile, thus:

dot11 ssid network-wep
authentication open mac-address mac_methods

Now configure the radio interface:

interface Dot11Radio0
encryption key 1 size 128bit 0 0123456789012345678901

2345 transmit-key
encryption mode wep mandatory
ssid network-wep
station-role root access-point

We authenticate and associate with this ESSID using the GNU/Linux command-
line:

7.3 WPA with Pre-shared Key 115

asus$ sudo iwconfig ath0 mode managed
asus$ sudo iwconfig ath0 essid key \
> 01234567890123456789012345

7.3 WPA with Pre-shared Key

WPA was an interim solution to 802.11i, introduced by the Wi-Fi Alliance. In this
section, we show how to set up WPA pre-shared key security on an Alcatel-Lucent
Omniaccess platform. Omniaccess APs are thin access-points and, therefore, down-
load their configuration from a centralised controller.

When a new controller is powered on, it runs an initial configuration sequence,
prompting the user for some basic details. This initial configuration sequence can be
accessed through the console. Connect to the controller’s console using a terminal
emulator (such as minicom) with the serial settings of 9600 baud, 8 bits, 1 stop bit
and no parity. The initial configuration procedure is described in Appendix B.

In configuration mode, define a virtual LAN (VLAN):

vlan 1001
interface vlan 1001
ip address 172.16.11.2 255.255.255.0

Configure the Ethernet interface:

interface fastethernet 1/0
switchport mode trunk
switchport trunk native vlan 1001
switchport trunk allowed vlan 1001
no shutdown

The next task is to provision an access-point. When a OAW-AP boots it attempts
to locate the master controller and download its configuration. If the access-point is
connected to the same layer-2 network as the controller then it can use the Alcatel-
Lucent discovery protocol (ADP) to find the controller. If the access-point and con-
troller are separated by a layer-3 router, then the access-point relies on a combination
of DHCP and DNS. The OAW-APs are factory-configured to connect to a controller
with a domain name of “aruba-master”. An entry for aruba-master must, therefore,
exist in the DNS server. The IP details for the access-point have to be provided by a
local DHCP server.

In order to avoid configuring auxiliary systems (such as DHCP or DNS), the
access-point can be configured statically. Connect to the access-point (using a ter-
minal emulator set to 9600 baud, 8N1) and power it up. The dialogue below will
appear on the screen

APBoot 0.0.8.7 (build 16693)
Built: 2007-11-03 at 16:59:28
AP-12x: OCTEON CN30XX-SCP revision: 2

116 7 Configuring Wireless Networks

Core clock: 500 MHz, DDR clock: 267 MHz (534 Mhz
data rate)
Power: POE
DRAM: 64 MB
Flash: 16 MB
Clearing DRAM...... done
BIST check passed.
Starting PCI
PCI Status: PCI 32-bit
PCI BAR 0: 0x00000000, PCI BAR 1: Memory 0x00000000 PCI
0xf8000000
Net: en0, en1
Radio: ar9160#0, ar9160#1

The autoboot sequence can be interrupted by hitting the enter key when this line
appears:

Hit <Enter> to stop autoboot: 0

This will drop out to the apboot prompt. Set the IP address, subnet mask and
default gateway:

apboot> setenv ipaddr 172.16.11.10
apboot> setenv netmask 255.255.255.0
apboot> setenv gatewayip 172.16.11.1

Set the IP address of the master controller:

apboot> setenv master 172.16.11.2

Configure the DNS server:

apboot> setenv serverip 192.168.1.2

Resume the access-point’s boot process with the command:

apboot> boot

Check the access-point is active on the controller:

(controller)#show ap active

Active AP Table

Name Group IP Address 11g Clients
---- ----- ---------- -----------
11g Ch/Pwr 11a Clients 11a Ch/Pwr AP Type
---------- ----------- ---------- -------
Flags Uptime
----- ------

7.3 WPA with Pre-shared Key 117

00:1a:1e:c9:59:dc default 172.31.2.17 0
AP:HT:1/15 0 AP:HT:104-/15 OAW-AP125
A 3m:27s

Flags: R = Remote AP; P = PPPOE; E = Wired AP
enabled;
A = Enet1 in active/standby mode;

L = Active Load Balancing Enabled; D =
Disconn.
Extra Calls On; B = Battery Boost On

X = Maintenance Mode; d = Drop Mcast/Bcast On

Num APs:1

Change the name of the access-point:

(controller)#ap-rename ap-name 00:1a:1e:c9:59:dc ap1

Show the AP database:

#show ap active

Active AP Table

Name Group IP Address
---- ----- ----------
11g Clients 11g Ch/Pwr 11a Clients 11a Ch/Pwr
----------- ---------- ----------- ----------
AP Type Flags Uptime
------- ----- ------

ap1 wtest-group 172.31.2.17
0 AP:HT:11/30 0 AP:HT:56-/30
OAW-AP125 A 13m:51s

Flags: R = Remote AP; P = PPPOE; E = Wired AP enabled;
A = Enet1 in active/standby mode;

L = Active Load Balancing Enabled; D = Disconn.
xtra Calls On; B = Battery Boost On

X = Maintenance Mode; d = Drop Mcast/Bcast On

Num APs:1

Enter configuration mode and configure dot1x authentication:

aaa authentication dot1x "wtest-wpa-dot1x"

Set up an AAA profile:

118 7 Configuring Wireless Networks

aaa profile "wtest-wpa-aaa-profile"
authentication-dot1x "wtest-wpa-dot1x"

Set up an SSID profile, specifying the WPA passphrase, operation mode and the
ESSID:

wlan ssid-profile wtest-wpa-ssid-profile
wpa-passphrase letallin
opmode wpa-psk-tkip
essid "wtest-wpa"

Configure a virtual access-point:

wlan virtual-ap wtest-wpa-vap
vap-enable
vlan 1001
ssid-profile wtest-wpa-ssid-profile
aaa-profile wtest-wpa-aaa-profile

Assign the virtual-ap configured above to the ap-group wtest-group:

ap-group "wtest-group"
virtual-ap wtest-wpa-vap

Exit configuration mode and assign ap1 to the group, wtest-group:

(controller)#ap-regroup ap-name ap1 wtest-group

Now we show how to configure a wireless device to connect using WPA. Here we
use the Asus Eee PC (if the Asus still has the configuration from the ad-hoc network
example, it might be a good idea to reboot).

From the GNU/Linux shell, we generate a passphrase and redirect the output to
a file wtest.conf

asus$ wpa_passphrase wtest letallin | tee wtest.conf
network={
ssid="wtest"
#psk="letallin"

psk=8b2daf45eca90b5d33080a75b3dfaf6bf9172e2e90
d9c58cf9643a7f55f74212
}

Edit wtest.conf such that the content is as follows:

ctrl_interface=/var/run/wpa_supplicant

network={
ssid="wtest"
scan_ssid=1
proto=WPA RSN
key_mgmt=WPA-PSK

7.4 Multiple SSIDs 119

pairwise=CCMP TKIP
group=CCMP TKIP

#psk="letallin"
psk=8b2daf45eca90b5d33080a75b3dfaf6bf9172e2e90

d9c58cf9643a7f55f74212
}

Run the supplicant with the command-line:

$ sudo wpa_supplicant -Dwext -iath0 -c wtest.conf

7.4 Multiple SSIDs

It is possible to operate multiple SSIDs on one access-point. Each SSID can offer
different security methods. In this section, we show how to set up a Cisco Aironet
for dual SSIDs. One SSID will be configured for WEP security and the other SSID
for WPA. Furthermore, traffic is mapped to different VLANs according to which
SSID the device is associated with (Fig. 7.1 shows how the SSIDs are mapped to
VLANs).

Enter configuration mode and configure the SSID for WEP devices:

dot11 ssid wtest-wep
vlan 1
authentication open

Then, configure the SSID for WPA:

dot11 ssid wtest-wpa
vlan 2
authentication open
wpa-psk ascii 0 letallin
authentication key-management wpa

Configure the radio interface:

interface Dot11Radio0
encryption vlan 1 key 1 size 128bit 0 012345678901234

56789012345 transmit-key
encryption vlan 1 mode wep mandatory
encryption vlan 2 mode ciphers tkip

Fig. 7.1 An Aironet AP
running dual SSIDs

120 7 Configuring Wireless Networks

ssid wtest-wep
ssid wtest-wpa
mbssid
station-role root
no keepalive

Configure the radio sub-interface for VLAN 1:

interface Dot11Radio0.1
encapsulation dot1Q 1 native
no ip route-cache
bridge-group 1
bridge-group 1 subscriber-loop-control
bridge-group 1 block-unknown-source
no bridge-group 1 source-learning
no bridge-group 1 unicast-flooding
bridge-group 1 spanning-disabled

Configure the radio sub-interface for VLAN 2:

interface Dot11Radio0.2
encapsulation dot1Q 2
no ip route-cache
bridge-group 2
bridge-group 2 subscriber-loop-control
bridge-group 2 block-unknown-source
no bridge-group 2 source-learning
no bridge-group 2 unicast-flooding
bridge-group 2 spanning-disabled

Now configure the Ethernet sub-interfaces for VLAN 1 and 2:

interface FastEthernet0.1
encapsulation dot1Q 1 native
no ip route-cache
no keepalive
bridge-group 1
no bridge-group 1 source-learning
bridge-group 1 spanning-disabled

interface FastEthernet0.2
encapsulation dot1Q 2
no ip route-cache
no keepalive
bridge-group 2
no bridge-group 2 source-learning
bridge-group 2 spanning-disabled

Configure the bridge interface:

7.5 Wireless Distribution System 121

interface BVI1
ip address 172.16.1.2 255.255.0.0
no ip route-cache

Note that both SSIDs will operate on the same radio frequency. On the Omniaccess
and Meru platform, multiple “virtual” access-points can be defined on a physcial
access-point. In this way, multiple SSIDs can be operated on different frequencies.

7.5 Wireless Distribution System

The distribution system (DS) for 802.11 is (typically) a wired network technology,
such as 802.3 or Ethernet. Some manufacturers, however, support a wireless distri-
bution system (WDS). WDS is not part of the 802.11 standard, though a number
of manufacturers use 802.11s mesh nomenclature to describe their WDS offering.
In this section, we show how to configure a WDS on a Meru Networks platform
(see Appendix B for instructions on how to perform the initial controller config-
uration). Meru calls this feature Mesh Enterprise. The network, however, does not
form a full mesh, but rather a hub-spoke configuration [26]. The network diagram in
Fig. 7.2 shows a “mesh” conprising two access-points. One access-point is a gate-
way and is connected to the controller by a wired LAN (in this case, Ethernet). The
other access-point is a leaf node and uses the 5 GHz wireless interface for the DS.
In this examples, we use AP150s which are dual radio access-points (some of the
Meru access-points do not support WDS, check the manual for more information).
One radio is for the 2.4 GHz band (802.11b/g) and the other is for the 5 GHz band
(802.11a).

Power up the two AP150s and connect them to the controller using an Ethernet
switch or hub. Once the access-points have completed their boot procedure, they
should come up Enabled and Online on the controller:

controller# show ap
AP ID AP Name Serial Number Op State Availability
Runtime Connectivity AP Role AP Model

7 AP-7 00:0c:e6:05:55:88 Enabled Online
3.5-53 L2 access AP150
8 AP-8 00:0c:e6:05:70:3d Enabled Online
3.5-53 L2 access AP150

Fig. 7.2 Wireless
distribution system

122 7 Configuring Wireless Networks

In our example, the access-points came up as AP-7 and AP-8. We will use AP-7
as the gateway and AP-8 as the leaf node. As the access-points are dual radio, they
have two Dot11Radio interfaces. The first interface if for the 2.4 GHz band and
the second for the 5GHz band. We will use the 5 GHz band as the back-haul for the
mesh network. Configure the radio interface of AP-7 so that the back-haul channel
is 44:

interface Dot11Radio 7 2
channel 44

Configure the gateway access-point (AP-7):

ap 7
connectivity l2-only
description gw1
role gateway
dataplane-encryption on
end

Configure the leaf access-point, specifying AP-7 as the parent access-point:

ap 8
connectivity l2-only
description n1
role wireless
parent-ap 7
dataplane-encryption on

Reload the access-points:

reload
Eventually, both access-points will come up on-line and enabled. Notice that the

access-points have assumed new names according to their description fields. That
is, AP-7 is called gw1 and AP-8 is called n1:

controller# show ap
AP ID AP Name Serial Number Op State Availability
Runtime Connectivity AP Role AP Model

7 gw1 00:0c:e6:05:55:88 Enabled Online
3.5-53 L2 gateway AP150
8 n1 00:0c:e6:05:70:3d Enabled Online
3.5-53 L2 wireless AP150

The leaf access-point n1 should be using the wireless back-haul (through gw1)
to access the controller. That being the case, disconnect the Ethernet cable of n1.
Configure a BSS for wireless devices to connect using WPA security (with pre-
shared key):

7.6 Wireless Bridge 123

security-profile wds-profile
allowed-l2-modes wpa-psk
encryption-modes tkip
psk key letallin

Configure an SSID:

essid wtest
security-profile wds-profile
no ess-ap 7 1

Note that we have disabled gw1 from providing a BSS on its 2.4 GHz interface.
This is merely to ensure that, when a wireless device connects to the BSS, it does
so on n1 and is, therefore, forced to use the WDS. Under normal circumstances, it
would be desirable for both gw1 and n1 to provide the BSS (for greater coverage),
in which case, the no ess-ap 7 1 command is omitted.

Using our Asus Eee PC, we associate with the BSS:

asus$ sudo wpa_supplicant -Dwext -iath0 -c wtest.conf

Verify that the wireless device is associated with n1:

controller# show station

MAC Address IP Type AP Name L2 Mode
L3 Mode Authenticated User Name Tag Client IP

00:15:af:8c:ce:d5 DHCP n1 wpa-psk
clear 0 172.16.50.83

7.6 Wireless Bridge

A bridge is a device that connects two networks (typically) at Layer 2 (Data Link
Layer). Packets are received by the bridge on one port and re-transmitted on another
port. Bridges have been used in wired LANs for many years. For example, the IEEE
802.1D [22] is a bridging standard for IEEE MAC layer LANS. The distinction
between a bridge and a router is that, with a bridge, packets do not have to traverse
a protocol stack and network devices are interconnected as though they were on the
same network.

An access-point performs a similar function to a bridge except that it connects a
set of clients (wireless devices) to a network as opposed to connecting two networks.
There are wireless devices that can connect to an access-point, as a client, and act
as a bridge for a wired network. The diagram in Fig. 7.3 shows an access-point
connected to the a DS (distribution system). A wireless bridge is associated with the
access-point and, in turn, connected to a wired LAN. Devices on the wired LANs
are interconnected via the wireless channel between the access-point and wireless

124 7 Configuring Wireless Networks

Fig. 7.3 A wireless bridge topology

bridge. This feature is useful if two wired LANs need to be connected but running
a cable between them is problematic.

In this section, we describe how to set up a wireless LAN bridge using two Cisco
Aironet APs. We one Aironet access-point the role of access-point. It is config-
ured as a root access-point (as shown in Fig. 7.3). The other Aironet access-point is
configured for the role of wireless bridge. We use WPA with a pre-shared key for
security. We describe the configuration of the root access-point first. Configure the
hostname of the access-point:

hostname br1

Next, assign an IP address and set the interface to administratively up (no
shutdown):

int BVI 1
ip address 10.0.0.1 255.255.255.0
no shutdown

Configure the ssid “wbridge”:

dot11 ssid bridge-test
authentication open
authentication key-management wpa
authentication client username br2 password 0 letmein
max-associations 1
wpa-psk ascii 0 letmein2

The configuration lines above, specify the name of the client (in this case br2)
and the password it must authenticate with (“letmein”). A pre-shared key is also
required (“letmein2”). For further security, we set the maximum associations to 1,
so that once the (legitimate) client has associated, no other devices may associate,
even if they supply the correct authentication password and pre-shared key.

Finally, configure the wireless interface setting the station-role as the root:

7.6 Wireless Bridge 125

interface Dot11Radio0
encryption mode ciphers tkip
ssid wbridge
station-role root
no shut

Configure the name of the Aironet access-point designated as the wireless bridge:

hostname br2

Configure the IP address:

int BVI 1
ip address 10.0.0.2 255.255.255.0
no shutdown

Configure the SSID (“wbridge”):

dot11 ssid wbridge
authentication open
authentication key-management wpa
authentication client username br1 password 0 letmein
wpa-psk ascii 0 letmein2

We specify the hostname of the root access-point (br1) with the corresponding pass-
word and pre-shared key.

Configure interface setting the station role as non-root:

interface Dot11Radio0
encryption mode ciphers tkip
ssid wbridge
station-role non-root
no shutdown

One the configuration is complete, br2 should associate with br1. This can be con-
firmed by the command:

(br2)#show dot11 associations

802.11 Client Stations on Dot11Radio0:

SSID [wbridge] :

MAC Address IP address Device Name
0022.9099.bf30 10.0.0.1 11g-bridge br1

Parent State
- Assoc

126 7 Configuring Wireless Networks

7.7 Build an Open Source Access-Point

This chapter describes how to build an AP using open source software. Any PC with
an appropriate wireless card can be used; however, there are a number of embedded
systems available which would be more suitable.

PCs and laptops tend to have extraneous hardware, such as hard disks, sound
cards, graphic adapters and DVD drives. Furthermore, the processing power (and
memory) within these devices is excessive for this sort of application. Embedded
devices consume less power and generate less heat (as well as noise) than a regular
PC or laptop. There are many examples of embedded systems designed specifically
for building network devices. In this chapter, we use a Soekris net4521 [39] which
has a 133 MHz AMD ElanSC520 processor, two Ethernet interfaces and two PCM-
CIA slots. A compact flash card is used instead of a hard disk. The installation
procedure is as follows:

• Build the root filesystem along AP application software.
• Compile and install the Linux kernel.
• Install the bootloader and root file system on to the compact flash.
• Configure the system to operate as an AP.

7.7.1 Root Filesystem

The root filesystem is a hierarchy of directories containing the operating system
applications, configuration files and the kernel. A typical modern GNU/Linux dis-
tribution is huge, comprising many gigabytes of data. A few years ago, the limited
size of compact flash cards (in the order of 64 to 128 megabytes) meant that it was a
challenge to build a complete operating system small enough to fit onto a card. The
directory hierarchy, along with the configuration files, had to be created manually
and individual packages had to be compiled from source. It was a painstaking task
to even build a minimal system. Adding new packages was complex because it often
required compiling a number of dependencies.

Nowadays, 1 gigabyte compact flash cards are relatively inexpensive. While still
too small for a full modern distribution, this does mean we do not have to be as
parsimonious with regard to size of the operating system. A great deal of time can
be saved by using the debootstrap application to create a small (if not minimal)
operating system.

For convenience we use environment variables, in this case, to define the direc-
tories under which we build the new system:

$ export BASE=${HOME}/ap
$ export SRC=${BASE}/src
$ export ROOT=${BASE}/root

The instructions below reference environment variables, so it is important that they
are assigned in the current shell. We must remember to re-assign them if we close
the current shell and start a new one. Create the directory structure in which to work:

7.7 Build an Open Source Access-Point 127

$ mkdir $BASE/{,src,root}

The ${ROOT} directory will be the root for the new system. We use the $SRC
directory in which to build the Linux kernel. We can specify which packages to
include along with the packages in the base system:

$ OPTS[0]="--include=grub,locales,pciutils,pcmciautils,
> udev,dnsutils,openssh-client,openssh-server,
> linux-wlan-ng,wireless-tools,wpasupplicant"

We can also specify packages to exclude:

$ OPTS[1]="--exclude=manpages,gcc-4.1-base,nano"

Create the system by running debootstrap thus:

$ sudo debootstrap ${OPTS[*]} etch ${ROOT}

7.7.2 Administration

We need to download firmware for the card we are using, in this case an ASUS
WL-100 (which is a Prism 2.5 card). Download the firmware with:

$ cd $BASE
$ wget http://www.red-bean.com/~proski/firmware/\
> 1.1.0.tar.bz2
$ wget http://www.red-bean.com/~proski/firmware/\
> 1.4.2.tar.bz2

Extract the firmware files:

$ tar jxvf 1.1.0.tar.bz2
$ tar jxvf 1.4.2.tar.bz2

Install them within the AP’s directory structure:

$ sudo cp sf010100.hex $ROOT/lib/firmware/
$ sudo cp sf010402.hex $ROOT/lib/firmware/

For convenience, we carry out the remaining instructions from within a chroot
“jail”:

$ cd $ROOT
$ sudo chroot.

Configure the filesystem information by entering the following lines into the
/etc/fstab file:

proc /proc proc rw,nodev,nosuid,noexec 0 0
tmpfs /dev/shm tmpfs defaults 0 0
tmpfs /tmp tmpfs defaults 0 0

128 7 Configuring Wireless Networks

Enable a getty process on the serial port by adding the line below in
/etc/inittab:

T0:23:respawn:/sbin/getty -L ttyS0 19200 vt100

In order to extend the life of the compact flash, it is necessary to reduce the
number of write operations to the filesystem. System logfiles are located in /log/var.
Mounting a temporary filesystem on /log/var avoids writes to the filesystem on the
compact flash, redirecting Create a file /etc/init.d/mountvar.sh, with the following
content:

#!/bin/sh

PATH=/lib/init:/sbin:/bin

TMPFS_SIZE=
[-f /etc/default/tmpfs] && . /etc/default/tmpfs

KERNEL="$(uname -s)"

. /lib/lsb/init-functions

. /lib/init/mount-functions.sh

do_start () {
domount tmpfs "" /var/log tmpfs \

-onoexec,nosuid,mode=0620
cd /var
/bin/tar xvf log.tar

}

case "$1" in
"")

echo "Warning: mountvar should be called with
the ’start’ argument." >&2 do_start

;;
start)

do_start
;;
restart|reload|force-reload)

echo "Error: argument ’$1’ not supported" >&2
exit 3
;;
stop)

No-op
;;
*)

echo "Usage: mountvar [start|stop]" >&2

7.7 Build an Open Source Access-Point 129

exit 3
;;
esac

Make the script executable:

chmod +x /etc/init.d/mountvar.sh

Create a symbolic link to the script in the /etc/rcS.d directory:

cd /etc/rcS.d
ln -s ../init.d/mountvar.sh S05mountvar

7.7.3 Configuring the Access-Point

In this subsection we describe how configure the access-point. Edit the /etc/hostapd/
hostapd.conf file and enter the following content:

bridge=br0
interface=wlan0
driver=hostap
logger_syslog=-1
logger_syslog_level=2
logger_stdout=-1
logger_stdout_level=2
debug=0
dump_file=/tmp/hostapd.dump
ssid=wtest
ctrl_interface=/var/run/hostapd

Now configure the Ethernet, wireless and bridge interfaces. Edit /etc/network/
interfaces:

auto eth0

auto wlan0
iface wlan0 inet static
wireless-mode master
wireless-essid wtest
fw_primary /lib/firmware/sf010100.hex
fw_secondary /lib/firmware/sf010402.hex

auto br0
iface br0 inet static
address 10.10.1.10
netmask 255.255.255.0
broadcast 10.10.1.255
bridge_ports wlan0 eth0

130 7 Configuring Wireless Networks

7.7.4 Installing Grub

We use Grub (GRand Unified Bootloader) to bootstrap the kernel. For my details on
Grub see [14]. Still in the chroot jail, create the directory /boot/grub:

mkdir /boot/grub

Copy files to the grub directory:

cp /usr/lib/grub/i386-pc/* /boo/grub

Create the Grub menu file /boot/grub/menu.lst and add the following content:

default 0
timeout 3

title 2.6.28.10
root (hd0,0)
kernel /boot/bzImage-2.6.28.10 ro \

root=/dev/hda1 console=ttyS0,19200n8

Exit the chroot jail:

exit

7.7.5 Compile the Kernel

In this subsection, we describe how to compile the Linux kernel. In this example,
we will use version 2.6.28.10. Download the source code with:

$ cd $SRC
$ wget http://www.kernel.org/pub/linux/kernel/v2.6/\
> linux-2.6.28.10.tar.gz

Unpack the source file and prepare to compile:

$ tar zxvf linux-2.6.28.10.tar.gz
$ cd linux-2.6.28.10/

Set the CFLAGS environment variable:

$ export CFLAGS="-march=i486 -O3"

Configure kernel options with the command below. Kernel options are selected
using the menu based application shown in Fig. 7.4.

$ make menuconfig

A full explanation of all of the kernel variables is beyond the scope of this book.
For more information, refer to [24]. You need to ensure that the Ext3 journalling
filesystem is built into the kernel (as opposed to being a loadable module). The
options below can be found under File systems:

7.7 Build an Open Source Access-Point 131

Fig. 7.4 Output of make menuconfig command

<*> Ext3 journalling file system support
[] Default to ’data=ordered’ in ext3 (legacy option)
[*] Ext3 extended attributes
[*] Ext3 POSIX Access Control Lists
[*] Ext3 Security Labels

Ensure PCI is configured as built-in to the kernel. Under Bus options, set the
following options:

[*] PCI support
<*> PCCard (PCMCIA/CardBus) support --->

Also, under PCCard (PCMCIA/CardBus) support, select:

<*> CardBus yenta-compatible bridge support

The Ethernet card is a National Semiconductor DP83815. The kernel option for
this driver can be found under Device Driver/Network device support/Ethernet (10
or 100 Mbit):

<M> National Semiconductor DP8381x series PCI
Ethernet support

Ensure the Host AP drivers are enabled. We are using an ASUS WL-100, which is
a Prism 2.5 cardbus device. The options below can be found under sections, Device
Driver/Network device support/Wireless LAN:

<M> IEEE 802.11 for Host AP (Prism2/2.5/3 and WEP/TKIP
/CCMP)

<M> Host AP driver for Prism2.5 PCI adaptors

132 7 Configuring Wireless Networks

Exit out of make menuconfig and save the configuration. Now compile the
kernel and modules:

$ make bzImage && make modules

Install the kernel by moving the following three files to the boot directory:

$ sudo cp System.map $ROOT/boot/System.map-2.6.28.10
$ sudo cp .config $ROOT/boot/config-2.6.28.10
$ sudo cp arch/i386/boot/bzImage \
> $ROOT/boot/bzImage-2.6.28.10

Finally, install the kernel modules:

$ sudo make modules_install INSTALL_MOD_PATH=$ROOT

7.7.6 Install Root Directory Structure onto Compact Flash

Use the tar command to “archive” the root directory structure:

$ cd $BASE
$ sudo tar zcvf root.tar.gz root/

Connect a compact flash (CF) card to the host machine. Unless the host machine
you are using has a built-in CF card reader, an external (typically USB) card reader
is required. After connecting the CF card, check the name of the device:

$ dmesg | tail
[4396.244886] sd 2:0:0:0: [sdb] 3928176 512-byte
hardware sectors (2011 MB)
[4396.247856] sd 2:0:0:0: [sdb] Write Protect is off
[4396.247867] sd 2:0:0:0: [sdb] Mode Sense:
0b 00 00 08
[4396.247872] sd 2:0:0:0: [sdb] Assuming drive cache:
write through
[4396.253841] sd 2:0:0:0: [sdb] 3928176 512-byte
hardware sectors (2011 MB)
[4396.256870] sd 2:0:0:0: [sdb] Write Protect is off
[4396.256881] sd 2:0:0:0: [sdb] Mode Sense:
0b 00 00 08
[4396.256886] sd 2:0:0:0: [sdb] Assuming drive cache:
write through
[4396.256898] sdb: sdb1

In our case, the CF card is called /dev/sdb and the first partition is /dev/sdb1 (most
probably, this will be a Windows FAT filesystem). If it has mounted automatically,
unmount it:

7.7 Build an Open Source Access-Point 133

$ sudo umount /dev/sdb1

Now run fidsk to create a partition table entry:

$ sudo fdisk /dev/sdb1

If there is a current partition table entry, delete it (if there is more than one, delete
them all):

Command (m for help): d
Partition number (1-4): 1

Create a primary partition:

Command (m for help): n
Command action

e extended
p primary partition (1-4)

p
Selected partition 1
First cylinder (1-992, default 1): 1
Last cylinder or +size or +sizeM or
+sizeK (1-992, default 992):
Using default value 992

Make the partition bootable:

Command (m for help): a
Partition number (1-4): 1

Write the partition table to the disk:

Command (m for help): w

Make an Ext3 filesystem:
$ sudo mkfs.ext3 /dev/sdb1

Tune the filesystem with the command:

$ sudo tune2fs -c0 -i0 /dev/sdb1

Mount the filesystem:

$ sudo mount /dev/sdb1 root

Untar the root directory structure onto the compact flash filesystem:

$ sudo tar zxvf root.tar.gz

We use Grub as the bootloader. Install the bootloader by running the command:

$ sudo grub

This takes us into an interactive session. Specify the device:

grub> device (hd0) /dev/sdb

134 7 Configuring Wireless Networks

Specify the root filesystem:

grub> root (hd0,0)

Install the bootloader in the MBR:

grub> setup (hd0)
Checking if "/boot/grub/stage1" exists... yes
Checking if "/boot/grub/stage2" exists... yes
Checking if "/boot/grub/e2fs_stage1_5" exists... yes
Running "embed /boot/grub/e2fs_stage1_5 (hd0)"... 15
sectors are embedded.
succeeded
Running "install /boot/grub/stage1 (hd0) (hd0)1+15 p
(hd0,0)/boot/grub/stage2 /boot/grub/menu.lst"...
succeeded
Done.

Quit Grub:

grub> quit

Unmount the compact flash card:

$ umount /dev/sdb1

Place the compact flash into the CF slot of the Soekris. Once it has booted it will
advertise the SSID for wtest.

7.8 Summary

In this chapter, we have shown how to configure a number of wireless networks. We
have used a number of manufacturers’ equipment; namely, Cisco, Alactel-Lucent
and Meru. Alactel-Lucent and Meru equipment is controller based (thin access-
point). While Cisco has controller based systems, we used thick access-points in our
examples. We also showed how to build an access-point from open source software
on a Soekris PC.

In all of our examples, we only demonstrated Open, WEP and WPA (PSK) secu-
rity. Full 802.11i (WPA2) security methods involve greater complexity. We dedicate
the next chapter to building an wireless network based upon enterprise security.

Chapter 8
Robust Security Network

This chapter describes how to set up a robust security network (RSN) association.
The diagram in Fig. 8.1 shows the network infrastructure for the RSN. We use an
Alcatel-Lucent Omniaccess controller as the NAS (network authentication server).
The Omniaccess switch (OAW-4504) is also the controller for a OAW-AP125 thin
access-points.

We use EAP-TLS for authentication. We need a number of supporting services;
that is, a RADIUS server and a database server. FreeRadius and MySQL are used for
the RADIUS database server servers, respectively. A DHCP server is also required
for serving IP details to (thin) APs and wireless clients. Table 8.1 gives the details
of the host machines and their respective IP addresses.

For convenience, we use Xen (running on a Debian distribution) to create mul-
tiple virtual machines in order to emulate a multi-server environment. Clearly, the
physical host on which Xen, and all the virtual machines runs, represents a single
point of failure. In reality, these services would run on separate physical machines.
Furthermore, it would be prudent to operate these servers in a high-availability (HA)
configuration. Detailed instructions of how to set up a HA environment is beyond
the scope of this book. Nevertheless, it would be fairly straightforward to build a
HA environment based upon the implementation presented in this chapter. HA for
the RADIUS server can be achieved by having multiple hosts running RADIUS.
The AP controller can be configured to use a list of RADIUS servers.

With FreeRadius, user account information can be configured in flat files or in
a database.1 Using a database (instead of flat files, which is the default) involves
greater complexity. However, if multiple RADIUS servers are used (for HA), then,
ideally we need to centralise the user account information (which we cannot do with
flat files). For this reason, we show how to setup a MySQL database server to hold
the RADIUS user account details.

The MySQL server, however, represents another single point of failure. This
problem can be overcome by implementing a MySQL cluster for HA and load bal-

1Alternatively, LDAP could be used.

A. Holt, C.-Y. Huang, 802.11 Wireless Networks,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-275-9_8, © Springer-Verlag London Limited 2010

135

136 8 Robust Security Network

Fig. 8.1 RSN architecture

Table 8.1 IP addresses
Hostname Address/mask Comment

Xen 172.16.20.2/24 Dom 0

Radius 172.16.20.70/24 RADIUS server

Mysql 172.16.20.79/24 MySQL server

Dhcp 172.16.20.57/24 DHCP server

Al-ctl 172.16.11.51/24 WLAN controller

ancing. Again, this is outside the scope of this book. The reader is referred to [33]
for details on MySQL clustering.

We tested the infrastructure using two laptops as wireless clients. We used a
DELL inspiron and an Eee PC running Ubuntu 7.04 and 8.04 respectively. For the
supplicant, we used the wpa_supplicant, which was installed using the distri-
bution’s package management system.

An RSN environment involves a number of separate (disparate) hardware and
software systems. Setting up an enterprise level wireless infrastructure is, therefore,
a complex process. At each stage of the process, we show how to test the various
components.

8.1 Installing FreeRadius

FreeRadius can be installed using a Debian distribution package management utility.
On the VM designated as the RADIUS server, issue the following command:

radius$ sudo apt-get install freeradius

The TLS module is not compiled by default. For this reason, we have to recom-
pile FreeRadius from source. Install the GCC compiler:

$ sudo apt-get install -y gcc g++

8.1 Installing FreeRadius 137

Also install these packages:

radius$ sudo apt-get install -y apt-src dpkg-dev
fakeroot

Install MySQL client:

radius$ sudo apt-get install -y mysql-client

Create a directory in which to work:

radius$ mkdir ~/src
radius$ cd ~/src

Download the FreeRadius source package:

radius$ apt-src install freeradius

In the file /src/debian/rules, edit the line that begins with the string “buildssl=”
so that the option “–without-rlm_eap_tls” reads, “–with-rlm_eap_tls”. In the file
~/src/debian/control, add “libssl-dev” and “libpq-dev” to the end of the line that
begins Build-Depends.

Comment out the current Build-Conflicts line:

#Build-Conflicts: libssl-dev

And add this line:

Build-Conflicts:

Now install libssl-dev and libpq-dev packages:

radius$ sudo apt-get install -y libssl-dev libpq-dev

Append this line to ~/src/debian/changelog:

* Add tls support for compilation

-- Alan Holt <aholt@ip-performance.co.uk> 30.10.2008

Build:

radius$ cd ~/src
$ sudo apt-src build freeradius

Create user, freerad:

radius$ sudo addgroup --gid=103 freerad
radius$ sudo adduser --uid=101 --gid=103 \
> --shell=/bin/false freerad

Install the freeradius and freeradius-mysql packages:

radius$ sudo dpkg -i freeradius_1.1.3-3_i386.deb
radius$ sudo dpkg -i \
> freeradius-mysql_1.1.3-3_i386.deb

138 8 Robust Security Network

Change the group and set the permission on the /var/run/freeradius/ directory:

radius$ sudo chgrp freerad /var/run/freeradius/
radius$ sudo chmod g+w /var/run/freeradius/

8.2 Configuring FreeRadius

The configuration files for FreeRadius are located in the /etc/freeradius directory.
Configure FreeRadius so that is allows the localhost (127.0.0.1) to be a client of
RADIUS server. An entry should already exist in the file /etc/freeradius/clients.conf.
Edit this entry so that it resembles:

client 127.0.0.1 {
secret = letmein
shortname = localhost
nastype = other

}

This will enable us to do preliminary testing of the FreeRadius installation. Con-
figure a test user by creating the file /etc/freeradius/users.test with the following
content:

test1 Auth-Type := Local, User-Password == "secret"
Reply-Message = "Hello, %u"

In the file, /etc/freeradius/users, add the line:

$INCLUDE users.test

Hangup signal forces FreeRadius to reload its configuration files:

$ sudo killall --signal=HUP freeradius

Now we can test FreeRadius usng the radtest application (which is a wrapper
for radclient):

radius$ radtest test1 secret localhost 1812 letmein
Sending Access-Request of id 161 to 127.0.0.1 port 1812

User-Name = "test1"
User-Password = "secret"
NAS-IP-Address = 255.255.255.255
NAS-Port = 1812

Now we run a test from a remote machine. We use the client host we created ear-
lier. We need to install the FreeRadius package for the radclient and radtest
applications. As we do not need TLS functionality in FreeRadius, we can simply
install the package using the package management utility:

client$ sudo apt-get install freeradius

8.2 Configuring FreeRadius 139

We do not want to run the RADIUS server on the client, so we shut it down:

client$ sudo /etc/init.d/freeradius stop

To prevent FreeRadius from starting up again when the host reboots, use the De-
bian runlevel configuration tool, rcconf (which can be installed in the usual way
with the package management utility). The client machine (IP address 172.16.20.81)
needs to be configured on the FreeRadius server as a RADIUS client. Add the fol-
lowing entry to the /etc/freeradius/clients.conf file on the radius machine:

client 172.16.20.81 {
secret = letmein
shortname = sta

}

For this, test we show how to view the FreeRadius debugging information. First, we
stop the current freeradius daemon:

radius$ sudo /etc/init.d/freeradius stop

Then, we run freeradius as a foreground process:

radius$ sudo /usr/sbin/freeradius -X
Starting - reading configuration files ...
reread_config: reading radiusd.conf
Config: including file: /etc/freeradius/proxy.conf
Config: including file: /etc/freeradius/clients.conf
Config: including file: /etc/freeradius/snmp.conf
Config: including file: /etc/freeradius/eap.conf
Config: including file: /etc/freeradius/sql.conf

:
:

Listening on authentication *:1812
Listening on accounting *:1813
Ready to process requests.

The -X option causes FreeRadius to output many lines of debugging messages. Run
radclient on the client:

client$ radclient -f rad.conf 172.16.20.70 auth letmein
Received response ID 81, code 2, length = 38

Reply-Message = "Hello, test1"

Note: we use radclient instead of radtest merely to demonstrate an alternative way
of testing the FreeRadius account. On radius the FreeRadius server outputs the fol-
lowing debug messages:

rad_recv: Access-Request packet from host 172.16.20.81:
1024, id=156, length=49

User-Name = "test1"
User-Password = "secret"

140 8 Robust Security Network

Processing the authorize section of radiusd.conf
modcall: entering group authorize for request 0
modcall[authorize]: module "preprocess" returns ok

for request 0
modcall[authorize]: module "chap" returns noop for

request 0
modcall[authorize]: module "mschap" returns noop for

request 0
rlm_realm: No ’@’ in User-Name = "test1", looking

up realm NULL
rlm_realm: No such realm "NULL"

modcall[authorize]: module "suffix" returns noop
for request 0
rlm_eap: No EAP-Message, not doing EAP
modcall[authorize]: module "eap" returns noop for

request 0
users: Matched entry DEFAULT at line 152
users: Matched entry test1 at line 1

modcall[authorize]: module "files" returns ok for
request 0
modcall: leaving group authorize (returns ok) for
request 0
rad_check_password: Found Auth-Type Local

auth: type Local
auth: user supplied User-Password matches local
User-Password
radius_xlat: ’Hello, test1’
Sending Access-Accept of id 156 to 172.16.20.81 port
1024

Reply-Message = "Hello, test1"
Finished request 0

8.3 Configure FreeRadius to use MySQL

Create a new virtual machine, mysql. Install mysql-server and mysql-client pack-
ages:

mysql$ sudo apt-get install mysql-server mysql-client

The password for the MySQL root account is not set at this point. For obvious
security reasons, we assign one:

mysql$ mysqladmin --user=root password letmein

In /etc/mysql/my.cnf, add the following lines to the [mysqld] section:

8.3 Configure FreeRadius to use MySQL 141

ssl-ca=/etc/mysql/cacert.pem
ssl-cert=/etc/mysql/mysql_cert.pem
ssl-key=/etc/mysql/mysql_key.pem

Also, in /etc/mysql/my.cnf, make the following edit to the file:

bind-address = 172.16.20.79

Using the MySQL shell, we create the radius database. Run the mysql client:

mysql$ mysql --user=root --password=letmein

Create the database:

mysql> CREATE DATABASE radius;

Create a radius account and configure for SSL authentication:

mysql> GRANT ALL ON radius.* TO "radius"@"radius"
-> IDENTIFIED BY "letmein"
-> REQUIRE subject "/C=UK/ST=Wilts/O=WLAN/CN=radius"
-> AND issuer "/C=UK/ST=Wilts/O=WLAN/CN=Root";

Flush the privileges and terminate the mysql session:

mysql> FLUSH PRIVILEGES;
mysql> exit

Restart the MySQL server:

mysql$ sudo /etc/init.d/mysql restart

Now, we need to configure radius to use the MySQL server. Install the
rad_cert.pem, rad_key.pem cacert.pem files to the directory /etc/freeradius/certs:

radius$ cd /etc/freeradius
radius$ sudo cp ~/rad_*.pem ~/cacert.pem certs

Add the lines below to the [client] section of the file /etc/mysql/my.cnf (on
radius):

ssl-ca=/etc/freeradius/certs/cacert.pem
ssl-cert=/etc/freeradius/certs/rad_cert.pem
ssl-key=/etc/freeradius/certs/rad_key.pem

Create the file, random:

radius$ sudo openssl rand -out random 128

Create the file, dh:

radius$ sudo openssl dhparam -check -text -5 -out dh
512 Generating DH parameters, 512 bit long safe prime,
generator 5
This is going to take a long time

142 8 Robust Security Network

..+......

....................+..................................
:
:

...................+............+......................

......++*++*++*++*++*++*
DH parameters appear to be ok.

Change the owner and group (do this as superuser rather than using sudo):

$ sudo su
cd /etc/freeradius
chown root:freerad certs/rad_*.pem
chown root:freerad certs/cacert.pem
chown root:freerad {dh,random}

Change the permissions:

radius# chmod 0640 certs/rad_*.pem
radius# chmod 0640 certs/cacert.pem
radius# chmod 0640 {dh,random}

Exit from the superuser account:

radius# exit

Set the following parameters in the file /etc/freeradius/sql.conf :

sql {
:

server = "172.16.20.70"
login = "radius"
password = "letmein"
radius_db = "radius"

:
}

Also in /etc/freeradius/sql.conf, uncomment the line:

sql_user_name = "%{Stripped-User-Name:
-%{User-Name:-DEFAULT}}"

And comment out this one:

sql_user_name = "%{User-Name}"

In the file /etc/freeradius/radiusd.conf, uncomment the line in the authorize{}
section:

sql

Also enable the sql setting in the accounting{} (and, optionally, in the
session{} and apost-auth{} sections). In the authorize{} sectionm
comment out the line:

8.3 Configure FreeRadius to use MySQL 143

files

Under the [client] section in the file /etc/mysql/my.cnf, enter the following lines:

ssl-ca=/etc/freeradius/certs/cacert.pem
ssl-cert=/etc/freeradius/certs/rad_cert.pem
ssl-key=/etc/freeradius/certs/rad_key.pem

We can run the following test to verify that the RADIUS server can connect to the
radius database on the MySQL server. If the command returns the current data, then
access to the MySQL server has been successful:

radius$ mysql --host=172.16.20.79 --user=radius \
> --password=letmein --execute="SELECT CURRENT_DATE();"
+----------------+
| CURRENT_DATE() |
+----------------+
| 2009-01-07 |
+----------------+

Create the tables for the radius database. There is a script in the FreeRadius
source directory for this:

radius$ cd ~/src/freeradius-1.1.3/doc/examples
radius$ mysql --host=mysql --user=radius \
> --password=letmein < mysql.sql

To examine the tables created by the script mysql.sql (and confirm that it has run
successfully), issue the following SQL statement:

$ mysql --host=172.16.20.79 --user=radius \
> --password=letmein radius --execute="SHOW TABLES;"
+------------------+
| Tables_in_radius |
+------------------+
| nas |
| radacct |
| radcheck |
| radgroupcheck |
| radgroupreply |
| radpostauth |
| radreply |
| usergroup |
+------------------+

Start FreeRadius in the foreground with debugging enabled:

radius$ sudo /usr/sbin/freeradius -X

144 8 Robust Security Network

8.4 Testing

Configure a test user in the tables of the radius database:

$ mysql --host=172.16.20.79 --user=radius \
> --password=letmein radius

Use the following SQL statement to enter the user, test2:

mysql> INSERT INTO radcheck
-> (UserName, Attribute, op, Value) VALUES
-> (’test2’,’Password’,’:=’, ’secret’);

Specify the Repy-Message:

mysql> INSERT INTO radreply
-> (UserName, Attribute, op, Value) VALUES
-> (’test2’,’Reply-Message’,’:=’, ’Hello, %u’);

Run a test from the host machine client:

client$ radtest test2 secret 172.16.20.70 1812 letmein
Sending Access-Request of id 208 to 172.16.20.70 port
1812

User-Name = "test2"
User-Password = "secret"
NAS-IP-Address = 255.255.255.255
NAS-Port = 1812

rad_recv: Access-Accept packet from host 172.16.20.70:
1812, id=208, length=38

Reply-Message = "Hello, test2"

The debug output from FreeRadius looks like this:

rad_recv: Access-Request packet from host 172.16.20.81:
1024, id=208, length=61

User-Name = "test2"
User-Password = "secret"
NAS-IP-Address = 255.255.255.255
NAS-Port = 1812

Processing the authorize section of radiusd.conf
modcall: entering group authorize for request 0
modcall[authorize]: module "preprocess" returns ok

for request 0
modcall[authorize]: module "chap" returns noop for

request 0
modcall[authorize]: module "mschap" returns noop for

request 0
rlm_realm: No ’@’ in User-Name = "test2",

looking up realm NULL

8.4 Testing 145

rlm_realm: No such realm "NULL"
modcall[authorize]: module "suffix" returns noop for

request 0
rlm_eap: No EAP-Message, not doing EAP
modcall[authorize]: module "eap" returns noop for

request 0
radius_xlat: ’test2’
rlm_sql (sql): sql_set_user escaped user --> ’test2’
radius_xlat: ’SELECT id, UserName, Attribute, Value,
op FROM radcheck WHERE Username =
’test2’ ORDER BY id’
rlm_sql (sql): Reserving sql socket id: 4
radius_xlat: ’SELECT radgroupcheck.id,radgroupcheck.
GroupName,radgroupcheck.Attribute,radgroupcheck.Value,
radgroupcheck.op FROM radgroupcheck,usergroup WHERE
usergroup.Username = ’test2’ AND usergroup.
GroupName = radgroupcheck.GroupName ORDER BY
radgroupcheck.id’
radius_xlat: ’SELECT id, UserName, Attribute, Value,
op FROM radreply WHERE Username =
’test2’ ORDER BY id’
radius_xlat: ’SELECT radgroupreply.id,radgroupreply.
GroupName,radgroupreply.Attribute,radgroupreply.Value,
radgroupreply.op FROM radgroupreply,usergroup WHERE
usergroup.Username = ’test2’ AND usergroup.
GroupName = radgroupreply.GroupName ORDER BY
radgroupreply.id’
rlm_sql (sql): Released sql socket id: 4
modcall[authorize]: module "sql" returns ok for

request 0
modcall: leaving group authorize (returns ok) for
request 0
auth: type Local
auth: user supplied User-Password matches local
User-Password
radius_xlat: ’Hello, test2’
Sending Access-Accept of id 208 to 172.16.20.81 port
1024

Reply-Message := "Hello, test2"
Finished request 0

If this is unsuccessful, try running radtest locally on radius.

146 8 Robust Security Network

8.5 Configure EAP

Configure /etc/freeradius/radiusd.conf. In the authorize{} section, making sure
the eap line is uncommented:

authorize {
:
eap
:

}

Check that eap is also set in the authenticate{} section:

authenticate {
:
eap
:

}

Check /etc/freeradius/eap.conf :

eap {
default_eap_type = md5
md5 {
}

}

In MySQL, insert table entries for wireless users. Configure test user test3
with an authentication type of EAP:

mysql> INSERT INTO radcheck
-> (UserName, Attribute, op, Value)
-> VALUES (’test3’,’Auth-Type’, ’:=’, ’EAP’);

Configure the password for test3:

mysql> INSERT INTO radcheck
-> (id, UserName, Attribute, op, Value) VALUES
-> (6, ’test3’,’User-Password’,’:=’, ’secret’);

Send FreeRadius a hangup signal to force it to reload the radius database:

$ sudo killall --signal=HUP freeradius

Now we can test EAP with MD5 authentication using the radeapclient.
Create a file (on the client machine), md5.conf with the content:

User-Name = "test3"
EAP-MD5-Password = "secret"
EAP-Type-Identity = "test3"
EAP-Code = Response
EAP-Id = 210

8.5 Configure EAP 147

Run radeapclient:

client$ radeapclient -x 172.16.20.70 auth
letmein <md5.conf

+++> About to send encoded packet:
User-Name = "test3"
EAP-MD5-Password = "secret"
EAP-Type-Identity = "test3"
EAP-Code = Response
EAP-Id = 210
Message-Authenticator = 0x00

Sending Access-Request of id 68 to 172.16.20.70
port 1812

User-Name = "test3"
Message-Authenticator = 0x000000000000000000000

00000000000
EAP-Message = 0x02d2000a017465737433

rad_recv: Access-Challenge packet from host
172.16.20.70:1812, id=68, length=80

EAP-Message = 0x01d30016041054e878544ca74d5ea3c
6a9309534b2d2

Message-Authenticator = 0x43c1911b9da95d9665ae5
9e9958ec1cf

State = 0x76385576c0744e98d52fd4552f83c217
<+++ EAP decoded packet:

EAP-Message = 0x01d30016041054e878544ca74d5ea3c
6a9309534b2d2

Message-Authenticator = 0x43c1911b9da95d9665ae5
9e9958ec1cf

State = 0x76385576c0744e98d52fd4552f83c217
EAP-Id = 211
EAP-Code = Request
EAP-Type-MD5 = 0x1054e878544ca74d5ea3c6a9309534

b2d2

+++> About to send encoded packet:
User-Name = "test3"
EAP-MD5-Password = "secret"
EAP-Code = Response
EAP-Id = 211
Message-Authenticator = 0x000000000000000000000

00000000000
EAP-Type-MD5 = 0x1034f472cd292173a3ba32c068d783

c7d0
State = 0x76385576c0744e98d52fd4552f83c217

148 8 Robust Security Network

Sending Access-Request of id 69 to 172.16.20.70 port
1812

User-Name = "test3"
Message-Authenticator = 0x000000000000000000000

00000000000
State = 0x76385576c0744e98d52fd4552f83c217
EAP-Message = 0x02d30016041034f472cd292173a3ba3

2c068d783c7d0
rad_recv: Access-Accept packet from host 172.16.20.70:
1812, id=69, length=51

EAP-Message = 0x03d30004
Message-Authenticator = 0x04e2f53c1e293e957ecb6

81e95eca0ee
User-Name = "test3"

<+++ EAP decoded packet:
EAP-Message = 0x03d30004
Message-Authenticator = 0x04e2f53c1e293e957ecb6

81e95eca0ee
User-Name = "test3"
EAP-Id = 211
EAP-Code = Success

We can see from the last line of the debug output that the authentication was suc-
cessful.

8.6 Configure TLS

Edit /etc/freeradius/eap.conf and configure the default EAP type to tls:

default_eap_type = tls

Also (in /etc/freeradius/eap.conf), configure the tls{} section:

tls {
private_key_password = letmein
private_key_file = ${raddbdir}/certs/rad_key.pem
certificate_file = ${raddbdir}/certs/rad_cert.pem
CA_file = ${raddbdir}/certs/demoCA/cacert.pem
dh_file = ${raddbdir}/dh
random_file = ${raddbdir}/random
fragment_size = 1024
include_length = yes

}

On the MySQL server (mysql run the mysql client command:

mysql$ mysql --user=radius --password=letmein radius

8.7 NAS Configuration 149

Create an account in the database for sta:

mysql> INSERT INTO radcheck
-> (UserName, Attribute, op, Value) VALUES
-> (’sta’,’Auth-Type’, ’:=’, ’EAP’);

Add an entry to the database so that the default action is to reject the request:

mysql> INSERT INTO radcheck
-> (id, UserName, Attribute, op, Value)
-> VALUES (100000, ’DEFAULT’,’Auth-Type’,’:=’,
-> ’Reject’);

mysql> INSERT INTO radreply
-> (id, UserName, Attribute, op, Value)
-> VALUES (100000, ’DEFAULT’,’Reply-Message’, ’=’,
-> ’%u not authorised’);

Force FreeRadius to reload the configuration files and the radius database:

$ sudo killall --signal=HUP freeradius

8.7 NAS Configuration

In this section we demonstrate hoe to configure the access-point controller to act
as a NAS. In this example, we use the Alcatel-Lucent Omniaccess controller. In
configuration mode, specify the RADIUS server:

aaa authentication-server radius radius
host 172.16.20.70
key letmein
enable

Configure the server group:

aaa server-group rsn-server-group
auth-server radius

Set AAA authentication:

aaa authentication dot1x rsn-dot1x

Configure the AAA profile:

aaa profile rsn-aaa-profile
authentication-dot1x rsn-dot1x
dot1x-server-group rsn-server-group

Specify the SSID profile. Here, we define the ESSID to be “wlan”:

wlan ssid-profile rsn-ssid-profile
essid wlan
opmode wpa2-aes

150 8 Robust Security Network

Set up the virtual AP:

wlan virtual-ap rsn-ap
ssid-profile "rsn-ssid-profile"
vlan 1001
aaa-profile "rsn-aaa-profile"

Specify the rsn-ap virtual access-point as part of the wlan ap-group:

ap-group wlan
virtual-ap "rsn-ap"

View the RADIUS server details:

show aaa authentication-server radius radius

RADIUS Server "radius"

Parameter Value
--------- -----
Host 172.16.20.70
Key ********
Auth Port 1812
Acct Port 1813
Retransmits 3
Timeout 5 sec
NAS ID N/A
NAS IP N/A
Use MD5 Disabled
Mode Enabled

From the NAS (Omniaccess controller), test the radius server:

(al-ctl) #aaa test-server pap radius test2 secret

Authentication successful

8.8 Wireless Client

The result of the scan below shows that the wlan SSID is active. Note, however,
that the scan reveals two instances of wlan (one for 802.11bg and one for 802.11a).
This is because we are using a dual radio access-point:

sta$ iwlist eth1 scan
eth1 Scan completed :

Cell 01 - Address: 00:1A:1E:86:13:A0
ESSID:"wlan" Protocol:IEEE
802.11bg Mode:Master Channel:11

8.8 Wireless Client 151

Encryption key:on Bit Rates:1
Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s;
6 Mb/s

9 Mb/s; 12 Mb/s;
18 Mb/s; 24 Mb/s; 36
Mb/s 48 Mb/s; 54 Mb/s

Quality=95/100 Signal level=-33
dBm Noise level=-33 dBm IE:
IEEE 802.11i/WPA2 Version 1

Group Cipher : CCMP
Pairwise Ciphers (1) : CCMP
Authentication Suites (1)
: 802.1X

Extra: Last beacon: 1660ms ago
Cell 02 - Address: 00:1A:1E:86:13:B0

ESSID:"wlan" Protocol:IEEE
802.11a Mode:Master Channel:40
Encryption key:on Bit Rates:6
Mb/s; 9 Mb/s; 12 Mb/s; 18 Mb/s;
24 Mb/s

36 Mb/s; 48 Mb/s;
54 Mb/s

Quality=83/100 Signal level=-51
dBm Noise level=-75 dBm IE:
IEEE 802.11i/WPA2 Version 1

Group Cipher : CCMP
Pairwise Ciphers (1) : CCMP
Authentication Suites (1)
: 802.1X

Create a directory to work in:

sta$ mkdir rsn
sta$ cd rsn

Copy the sta_cert.pem, sta_req.pem and cacert.pem files over to the wireless client
(place in the rsn directory). Create a configuration file wlan.conf for the wireless
supplicant:

WPA2-EAP/CCMP using EAP-TLS

ctrl_interface=/var/run/wpa_supplicant

network={
ssid="wlan"
identity="sta"
key_mgmt=WPA-EAP

152 8 Robust Security Network

proto=WPA2
pairwise=CCMP
group=CCMP
eap=TLS
ca_cert="cacert.pem"
client_cert="sta_cert.pem"
private_key="sta_key.pem"
private_key_passwd="certsecret"

}

Run the supplicant with the command-line:

$ sudo wpa_supplicant -Dwext -ieth1 -cwlan.conf

The wpa_supplicant command above generates many lines of output. If au-
thentication has been successful the last few lines of the output should resemble:

CTRL-EVENT-EAP-SUCCESS EAP authentication completed
successfully
WPA: Key negotiation completed with 00:1a:1e:86:13:a0
[PTK=CCMP GTK=CCMP]
CTRL-EVENT-CONNECTED - Connection to 00:1a:1e:86:13:a0
completed (auth) [id=0 id_str=]

The results of the iwconfig command on the device below indicates that the
authentication (and association) has been successful:

sta$ wconfig eth1
eth1 IEEE 802.11g ESSID:"wlan"

Mode:Managed Frequency:2.462 GHz Access
Point: 00:1A:1E:86:13:A0 Bit Rate:54
Mb/s Tx-Power:15 dBm Retry limit:15
RTS thr:off Fragment thr:off Power
Management:off Link Quality=92/100 Signal
level=-37 dBm Noise level=-38 dBm Rx
invalid nwid:0 Rx invalid crypt:0 Rx
invalid frag:0 Tx excessive retries:0
Invalid misc:3073 Missed beacon:0

This merely indicates that the initial open system authentication has been suc-
cessful. Confirmation of open system authentication can be gathered from the AP
controller:

(al-ctl) #show ap association

Flags: W: WMM client, A: Active, R: RRM client

PHY Details: HT: High throughput; 20: 20MHz; 40: 40MHz

8.8 Wireless Client 153

<n>ss: <n> spatial streams

Association Table

Name bssid mac
---- ----- ---
00:1a:1e:c0:61:3a 00:1a:1e:86:13:a0 00:18:de:a5:ca:c2

auth assoc aid l-int essid vlan-id tunnel-id
---- ----- --- ----- ----- ------- ---------
y y 1 10 wlan 1001 0x108a

phy assoc. time num assoc Flags
--- ----------- --------- -----
g 22m:28s 2 A

Num Clients:1

A successful open system authentication allows the device to associate. This does
not necessarily mean that the 802.1X authentication has succeeded. If 802.1X has
failed, user data will not be forwarded (regardless of a successful open system au-
thentication). We can gather further information from the controller. The command
below displays the supplicant information for 802.1X. The results show that the
802.1X authentication has succeeded:

(al-ctl) #show dot1x supplicant-info list-all

802.1x User Information

MAC Name Auth AP-MAC
------------ -------- ---- ------

Enc-Key/Type

00:18:de:a5:ca:c2 sta

Auth-Mode EAP-Type Remote
----------- --------- ------

Yes 00:1a:1e:86:13:a0

* * * * * * * */WPA2-AES Explict Mode EAP-TLS No

Station Entries: 1

Now that 802.1X authentication has been successful, we can obtain an IP address
(default route and DNS server) using DHCP:
$ sudo dhclient eth1

154 8 Robust Security Network

8.9 Summary

In this chapter, we described how to set up a robust security network. We used
FreeRadius as the authentication server. User accounting information was stored in
a MySQL database running on a separate server. In order to protect the exchange
of messages between RADIUS and database servers and prevent eavedropping, we
configured MySQL to use SSL. The other benefit of SSL is that authentication be-
tween the two servers require shared password and digital certificate verification.

EAP-TLS was implemented as it requires mutual authentication between the
wireless client and the authentication (RADIUS) server. WPA2 was specified to
ensure the strongest encryption (AES).

Chapter 9
MAC Layer Performance Analysis

In this chapter, we present a number of mathematical models of the 802.11 MAC
sub-layer and show how to build them using Maple. Using these models, we carry
out an analysis of the effects of the 802.11 MAC on performance.

9.1 Fragmentation

In a “hostile” RF environment, fragmentation can mitigate the harmful effects of
frame loss. Conversely, excessive fragmentation introduces high levels of overhead.
The maximum size of a MSDU is 2304 octets. The fragmentation threshold deter-
mines the maximum size of the MPDU (but is limited to 2312 octets). Setting the
fragmentation threshold (and, thus, the maximum size of the MPDU) effectively
disables fragmentation. The degree of fragmentation increases as the fragmentation
threshold decreases below the maximum size of the MSDU. Fragmentation with the
MAC sub-layer was described in Sect. 3.3.5 below.

The following analysis examines the trade-off introduced in setting the fragmen-
tation threshold. Consider the transmission of an MSDU over a wireless network.
The probability of an MSDU transmission failure Pmsdu, is given by the expres-
sion:

Fmsdu = 1 − (1 − (Fmpdu)
M−1)N (9.1)

Equation (9.1) is implemented in Maple with the function:

> Fmsdu := (M,N, Fmpdu) -> 1 - (1 - Fmpdu^(M-1))^N:

The expression below produces the graph shown in Fig. 9.1. It shows the proba-
bility of MSDU transmission failure (Fmsdu) for values of N (number of fragments
per MSDU) between 2 and 12 and M (maximum retransmission attempts) fixed
at 7.

> plot3d(Fmsdu(7,n,p), n=2..12, p=0..1,
labels=["N", "Fmpdu", "Fmsdu"], labeldirections=

A. Holt, C.-Y. Huang, 802.11 Wireless Networks,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-275-9_9, © Springer-Verlag London Limited 2010

155

158 9 MAC Layer Performance Analysis

of frame success is quite high (Plinks ≈ 0.99). This is due to the high retransmis-
sion limit of M = 7. For M = 4, the probability of a successful frame transmis-
sion is much lower: Plinks ≈ 0.89. There is a cost associated with reliability, in
that a high number of retransmissions, will add to the transmission delay of the
frame.

9.3 Throughput

When a device sends data, it is transmitted as one or more MSDUs, depending upon
the size of the data message. The MSDUs, in turn, are encapsulated in MPDUs. If the
size of an MSDU exceeds the maximum MPDU size, the MSDU is fragmented and
sent as multiple MPDUs. Here, we define a set of generic functions for fragmenting
messages. Consider a message of size s and a fragmentation threshold f . When the
message undergoes fragmentation, it is divided into zero or more fragments of size
f plus a runt fragment of size 0 ≤ srunt < f . The number of fragments nfrag (of
size f) is given by:

nfrag = �s/f � (9.3)

The size of the runt fragment is:

srunt = s mod f (9.4)

nfrags and srunt are implemented by the Maples functions below: Number of (addi-
tional) fragments:

> nfrags := (s,f) -> trunc(s/f);

nfrags := (s, f) → trunc

(
s

f

)
> runt := (s,f) -> s mod f;

runt := (s, f) → s mod f

To transmit a message of size s, the number of MSDUs of maximum size (MS-
DUsize) is given by the function:

> nmsdu := (s) -> nfrags(s, MSDUsize);

nmsdu := s → nfrags(s,MSDUsize)

The size of the MSDU runt is given by:

> msdurunt := s -> runt(s, MSDUsize);

msdurunt := s → runt(s,MSDUsize)

The function below generates a sequence of MSDU sizes for a given message of
size s:

9.3 Throughput 159

> msduseq := (s) -> piecewise((s mod MSDUsize) = 0,
[seq(MSDUsize, i=1..nmsdu(s))],
[seq(MSDUsize, i=1..nmsdu(s)), msdurunt(s)]);

msduseq := s → piecewise(s mod MSDUsize = 0,

[seq(MSDUsize, i = 1 . . .nmsdu(s))],
[seq(MSDUsize, i = 1 . . .nmsdu(s)),msdurunt(s)])

Define the maximum size of an MSDU (in bits):

> MSDUsize := 8 * 2304:

MSDUsize := 18432

The transmission of a 4 kilobyte message (32768 bits) results in two MSDUs,
one 18432 bits in size (equal to MSDUsize) and one of 14336 bits (the runt MSDU
because it is less than the MSDUsize):

> msduseq(32768);

[18432,14336]
An MSDU may be fragmented further into multiple MPDUs, resulting in zero or

more fragments The number of MPDUs is given by:

> nmpdu := (s) -> nfrags(s, MPDUsize);

nmpdu := s → nfrags(s,MPDUsize)

Where MPDUsize is the maximum size of an MPDU. The function for the runt
MPDU :

> mpdurunt := (s) -> runt(s, MPDUsize);

mpdurunt := s → runt(s,MPDUsize)

The function below generates a sequence of MPDUs

> mpduseq := (s) -> piecewise((s mod MPDUsize) = 0,
[seq(MPDUsize, i=1..nmpdu(s))],
[seq(MPDUsize, i=1..nmpdu(s)), mpdurunt(s)]);

mpduseq := s → piecewise(s mod MPDUsize = 0,

[seq(MPDUsize, i = 1..nmpdu(s))],
[seq(MPDUsize, i = 1..nmpdu(s)),mpdurunt(s)])

If we set the maximum MPDU size (MPDUsize) higher than the MSDUsize, then
the MSDUs will not be fragmented. Set the MPDUsize to 18496 bits:

> MPDUsize := 8 * 2312;

MPDUsize := 18496

Comparing the results above with the sequence of MPDUs, we can see that the
number and size of the MPDUs is the same as the sequence of MSDUs:

160 9 MAC Layer Performance Analysis

> mpduseq(32768);

[[18432], [14336]]
If, however, we set the MPDUsize to a value less than the MSDUsize, the frag-

mentation of MSDUs will occur:

> MPDUsize := 8 * 1500;

MPDUsize := 12000

The sequence of MPDUs is given by:

> F1 := mpsduseq(FILESIZE);

F1 := [[12000,6432], [12000,2336]]
Each MPDU needs to be acknowledged. The function below appends an ac-

knowledgment frame to a sequence of MPDUs:

> addack := (q) -> [seq(op([q[i],ACKsize]), i in q)];

> addack := q → [seq(op([qi,ACKsize]), i ε q)]
Define the size of the acknowledgment frame in bits:

> ACKsize := 112:

Show the sequence of MPDUs with acknowledgments:

> F2 := map(addack, F1);

F2 := [[12000,112,6432,112], [12000,112,2336,112]]
In RTS/CTS mode, and MSDU (and its corresponding sequence of MPDUs) is

proceeded by an RTS and CTS frame. Define RTS and CTS frame sizes (in bits):

> RTSsize := 160:
> CTSsize := 112:

The function below prepends an RTS/CTS sequence to each MSDU sequence of
MPDUs:

> rtscts := (q) -> map(op, [[RTSsize, CTSsize],q]);

rtscts := q → map(op, [[RTSsize,CTSsize], q])
The sequence of frames in RTS/CTS mode is given by:

> F3 := map(rtscts,F2);

F3 := [[160,112,12000,112,6432,112], [160,112,12000,112,2336,112]]
Now, we calculate the transmission time of each frame in the sequence. The

frame transmission time will depend upon the transmission rate over the wireless
channel. The function below returns transmission rate for a given mode of 802.11b:

9.3 Throughput 161

txrate := (mode) -> piecewise(mode=1, 1000000,
mode=2, 2000000,
mode=3, 5500000,
mode=4, 11000000,

1000000);

txrate := mode → piecewise(mode = 1,1000000,mode = 2,2000000,

mode = 3,5500000,mode = 4,11000000,1000000)

Each MAC frame is appended to a PLCP preamble and a PLCP header. The size
of those headers (in bits) is defined below:

> PREAMBLEsize := 144;

PREAMBLEsize := 144

> PLCPsize := 48;

PLCPsize := 48

In order to interoperate with legacy forms of 802.11, the PLCP preamble and
header are transmitted at either 1 or 2 Mb/s, regardless of the transmission rate of
the MPDU body. The max(2,mode) term ensure that the preamble transmission
speed is capped at 2 Mb/s. The PLCP preamble transmission time is defined as:

> tPLCPpreamble := (mode) -> PREAMBLEsize /
txrate(max(2,mode));

tPLCPpreamble := mode → PREAMBLEsize

txrate(max(2,mode))

Similarly, the function of the PLCP header transmission time is given by:

> tPLCPheader := PLCPheader / txrate(max(2,PLCPmode));

tPLCPheader := mode → PLCPsize

txrate(max(2,mode))

The function below gives the transmission delay of a MAC frame:

> txdelay := (data, mode) -> tPLCPpreamble
+ tPLCPheader
+ (data+FRAMEheader+FCS)/txrate(mode);

txdelay := (data,mode) → tPLCPpreamble(PLCPmode)
+ tPLCPheader(PMCPmode)

+ data + FRAMEheader + FCS

txrate(mode)

The FRAMEheader term is the size (in bits) of a MAC frame header, it defined
as:

> FRAMEheader := 224;

162 9 MAC Layer Performance Analysis

FRAMEheader := 224

We also need a 32-bit frame check sequence:

> FCS := 32;

FCS := 32

The function framedelay applies the txdelay function to a sequence MAC frames:

> framedelay := (q, mode) -> [seq(map(txdelay, i, mode),
i in q)];

framedelay := (q,mode) → [seq(map(txdelay, qi,mode), i ε q))]
We compute the sequence of delays involved in transmitting a frame (framedelay)

with the statement:

> D1 := framedelay(F3,3);

D1 :=
[[59

343750
,

28

171875
,

799

343750
,

28

171875
,

41

31250
,

21

171875

]
,[59

343750
,

28

171875
,

799

343750
,

28

171875
,

41

31250
,

21

171875

]]
We are fortunate to have, from an unrelated research project, an empirical value

for WLAN frame latency (φ). We derive frame latency as a function of the distance
between wireless devices. In [2], time-of-flight (TOF) measurements were presented
for frames over a wireless channel. The TOF of a frame between two wireless
devices with negligible separation was 410 clock ticks, where, for a 44 MHz clock,
one clock tick is approximately 0.023 µs. We define the CLOCKtick term:

> CLOCKtick := 1/44000000

CLOCKtick := 1

44000000
Each time the distance between two nodes was increased by 3.4 meters; the round

trip TOF increased by one clock tick. The distance that the signal travels in one
(44 MHz) clock tick is 6.8 meters, therefore the signal travels 3.4 meters per half a
clock tick. Define a function for latency:

> latency := (d) -> CLOCKtick * (410 + (d)/3.4)/2;

latency := d → CLOCKtick

(
410 + d

3.4

)
L20 := latency(20);

L20 := 0.000009451871657

Define the DIFS and SIFS times:

> aDIFSTime := 50/milliseconds;

aDIFSTime := 1

20000

9.3 Throughput 163

> aSIFSTime := 10/milliseconds;

aSIFSTime := 1

100000

After waiting for a DIFS, the transmitting device initiates a back-off period. We
use the analysis in [16] to derive a value for the average backoff interval tbackoff:

tbackoff =
k∑

i=1

φ(i)
CWi

2
· aSlotTime (9.5)

where, k is the maximum number of retries, aSlottime is the slot time and φ(i) is
the probability of a successful frame transmission after the ith attempt:

φ(i) = (1 − Ps)
i−1Ps (9.6)

Ps is the probability that a frame is successfully transmitted and is given by:

Ps = prts
s pdata

s (9.7)

ps is the probability of a successful RTS/CTS exchange:

prts
s = (1 − prts

e)(1 − pcts
e)(1 − prts

c) (9.8)

ps is the probability of a successful data/acknowledgment frame exchange:

pdata
s = (1 − pdata

e)(1 − pack
e) (9.9)

where:

• prts
e is the RTS frame error rate (FER)

• pcts
e is the CTS frame FER

• prts
c is the RTS collision rate

• pdata
e is the data frame error rate

• pack
e is the acknowledgment frame error rate

For the purpose of illustration, we give values to the FERs. The FER for the
data frame is set higher because data frames are typically higher than management
frame. Otherwise, the settings are somewhat arbitrary, and chosen for convenience:

> perts := 0.00001:
> pects := 0.00001:
> peack := 0.00001:
> pedata := 0.0001:

We also set the RTS frame collision rate:

> pcrts := 0.000001:

Calculate prts
s :

164 9 MAC Layer Performance Analysis

> psrts := (1 - perts) * (1 - pects) * (1 - pcrts);

prts
s := 0.9999790001

Calculate pdata
s :

> psdata := (1 - pedata) * (1 - peack);

pdata
s := 0.999890001

Calculate Ps :

> Ps := psrts * psdata;

Ps := 0.9998690034

The function for φ(i) (9.6) is given by:

> phi := (i) -> P_s * (1 - P_s)^(i-1); phi(4);

φ(i) := i → (1 − Ps)
i−1Ps

Set CWmin and CWmax:

> CWmin := 31;

CWmin := 31

> CWmax := 1023

CWmax := 1023

CW(i) is defined as:

> CW := (i) -> min(2^{(i-1)} * (CWmin+1) - 1, CWmax);

CW := i → min(2(i − 1)(CWmin + 1) − 1,CWmax);
Define a function for the average back-off interval:

> tBackoff := (k) -> sum(aSlotTime * phi(i) * CW(i)/2,
i=1..k);

tBackoff := k →
i=k∑
i=1

1

2
aSlotTimeφ(i)CW(i)

These delays are incorporated into the function below:

> adddelays := (q) -> map(op, [[aDIFSTime,tBackoff(7),
q[1]], seq([aSIFSTime,i, L20],
i in q[2..-1])]);

addelays := q → map(op, [[aDIFSTime, tBackoff(7), q1],
seq([aSIFSTime, qi,L20], i ε q2 .. −1)]);

Calculate the delays:

> D2 := map(adddelays,D1):

9.3 Throughput 165

Calculate the total delay in sending the file:

> DT := add(i, i in map(op, D2));

DT := 0.009225427811

Procedure returns delays for all four modes:

> Delay := proc(msgsize)
local mode,delays,F1,F2,D1;
delays := [];
for mode in [1,2,3,4]
do
F1 := map(addack, frameseq(msgsize));
F2 := map(rtscts,F1);
D1 := map(adddelays,framedelay(F2, mode));
delays := [op(delays), [txrate(mode)/megabits,

add(d, d in map(op, D1))]];
end do;
return delays;

end proc:

Calculate the delay to send a 10 megabyte file for each mode in 802.11b; that is,
at 1, 2, 5.5 and 11 Mb/s:

> delays := Delay(8*10*2^10);

delays :=
[

[1,0.09097819910], [2,0.04649819910],
[

11

2
,0.01819274451

]
,

[11,0.01010547177]
]

The MPDUSize is set to 2312 bytes, so there is no fragmentation. Create a graph
plot of delay against mode:

> G1 := pointplot(delays, connect=true,
labeldirections=["horizontal", "vertical"],
labels=["rate (Mb/s)", "delay (s)"], legend=[2312],
linestyle=SOLID, color=black,font=[times,roman,12]):

Change the MPDUsize to 1024 so that the MSDUs are fragmented. Create a graph
plot:

> MPDUsize := 8 * 1024:
> G2 := pointplot(Delay(8*10*2^10), connect=true,
labeldirections=["horizontal", "vertical"],
labels=["rate (Mb/s)", "delay (s)"], legend=[1024],
linestyle=DASH, color=black,font=[times,roman,12]):

Change the MPDUsize to 512, and create a graph plot:

166 9 MAC Layer Performance Analysis

Fig. 9.4 File transfer times
for varying degrees of
fragmentation

> MPDUsize := 8 * 512:
> G3 := pointplot(Delay(8*10*2^10), connect=true,
labeldirections=["horizontal", "vertical"],
labels=["rate (Mb/s)", "delay (s)"], legend=[512],
linestyle=DOT, color=black,font=[times,roman,12]):

The statement below produces the graph shown in Fig. 9.4:

> display(G1,G2,G3);

9.4 Summary

We have presented a number of models of the 802.11 MAC sub-layer in this chapter.
Using Maple, we have used them to investigate the effects of the MAC on perfor-
mance. First, we investigated the reliability of frame delivery with respect to the
retransmission and fragmentation thresholds.

Finally, we developed a model of the DCF using collision avoidance (RTS/CTS)
and analysed the effects of different fragmentation thresholds on performance.

Chapter 10
Link Rate Adaptation

Many factors affect the performance of a wireless communication channel; namely,
protocol overhead, congestion and link speed. In this chapter, we focus on the speed
of the wireless link. Wireless link speeds are governed by the effects of the environ-
ment on the transmitted signal.

802.11b is capable of transmitting at 11 Mb/s. Transmitters can drop the link
speed to 5.5, 2 or 1 Mb/s depending upon the quality of the channel. Similarly,
802.11a/g are capable of 54 Mb/s, but can drop the speed to 48, 36, 24, 18, 12, 11,
9 or 6 Mb/s. This function is called link rate adaptation. There is no link rate adap-
tation scheme specified in the 802.11 standard. Link rate adaptation is, therefore,
vendor dependent. Nevertheless, link rates will be selected based upon the received
signal strength and noise.

In this chapter, we present a number of models for radio signal loss. We incorpo-
rate these loss models into link rate adaptation models in order to analyse the affect
of RF conditions on the link speeds.

10.1 Walffish-Ikegami Model

In this section, we present the Walfish-Ikegami Model loss model, which applies to
urban environments, where the path loss is given by:

Lwi = FSPL + 10 log10(W) + 10 log10(f) + 20 log10(�hm) + L(φ) (10.1)

The parameters and values used are described below:

W : street width (10 m)
f : carrier frequency (2.412 GHz)
�hm: average roof top height above mobile antenna (2 m)

A. Holt, C.-Y. Huang, 802.11 Wireless Networks,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-275-9_10, © Springer-Verlag London Limited 2010

167

168 10 Link Rate Adaptation

L(φ) is the loss due to the angle of incident to the road φ and is given by:

L(φ) =

⎧⎪⎨
⎪⎩

−10 + 0.354 ∗ φ 0° ≤ φ < 35°

2.5 + 0.075(φ − 35) 35° ≤ φ < 55°

4 − 0.114(φ − 55) 35° ≤ φ < 55°

(10.2)

The WI function is the Maple representation of Lwi:

> WI := (f,d,W,phi,dh) -> FSPL(f,d,K) - 16.9 +
10*log10(W) + 10*log10(f) + 20*log10(dh) + L(phi);

WI := (f, d,φ,K) → FSPL(f,d,φ,K) − 16.9 + 10 log10(W)

+ 10 log10(f) + 20 log10(hd) + L(φ)

The free-space loss term FSPL, is defined in Sect. 2.2.1. The constant K deter-
mines the units for frequency and distance. In this example, frequency and distance
are in MHz and meters, respectively, thus:

> K := 20*log10(4*Pi*MHz/c): evalf(K);

−27.55221678

We define the L(φ):

L := (phi) -> piecewise(0 <= phi and phi < 35, -10
+ 0.354*phi, 35<= phi and phi < 55, 2.5 + 0.075
* (phi - 35), 55 <= phi and phi <= 90, 4 -
(0.114 * (phi - 55)));

L := φ → piecewise(0 ≤ φ and φ < 35,−10 + 0.354φ,35 ≤ φ and φ < 55,

2.5 + 0.075(φ − 35),55 ≤ φ and φ ≤ 90,

4 − (0.114(φ − 55)))

We compute the loss for a distance d , where 1 ≤ d ≤ 100 and angle of incident
0° ≤ φ ≤ 90°:

> wl := [seq(seq([d,phi,WI(2437,d,10,phi,2)], d=1..100),
phi=0..90)]:
The statement below produces the 3D graph shown in Fig. 10.1. The path loss in-

creases with an angle of incident up to 55°, then diminishes as the angle approaches
90°.

> pointplot3d(wl, axes=BOXED, font=[TIMES,ROMAN,12],
labels=["distance (m)", "angle (deg)", "loss (dB)"],
labeldirections=[HORIZONTAL, HORIZONTAL, VERTICAL]):

10.2 Berg Model

Another model for outdoor path loss in urban street environments is the Berg model
[38]. Consider the street plan example shown in Fig. 10.2. The filled circle denotes

10.2 Berg Model 169

Fig. 10.1 Walfish-Ikegami
model path loss

Fig. 10.2 Street plan

the access-point location in street s0. Signals propagate along adjoining streets as if
from “virtual” access-points located at the junctions. Here, we use the Berg model
to analyze the path loss of the back-haul links forming a WDS (wireless distribution
system). The path loss Lberg is given by:

Lberg = 20 log10
4πdl

λ
(10.3)

where l is the street number. The distance dl is given by the recursive function:

d0 = 0, dm = km · sm−1 + dm−1 l ≥ m > 0

k0 = 1, km = km+1 + dm−1 · qm−1 l ≥ m > 0
(10.4)

The angle of dependency to the adjoining street sm (to sm−1) is qm:

q0 = 0, qm(tm) =
(

q90°
φm

90

)v

l ≥ m > 0 (10.5)

170 10 Link Rate Adaptation

We follow the conventions in [38] and use, q90° = 0.5 and v = 1.5. We define
these constants in Maple:

> v := 1.5;

v := 1.5

> q90 := 0.5;

q90 := 0.5

The recursive terms q , d and k are defined as piecewise functions:

> q := (m) -> piecewise(m = 0, 0, q90 * angle[m]/90);

q := m → piecewise

(
m = 0,0,

1

90
q90 anglem

)
> d := (m) -> piecewise(m = 0, 0, k(m)*s[m] + d(m-1));

d := m → piecewise(m = 0,0, k(m)sm + d(m − 1))

> k := (m) -> piecewise(m = 0, 1,
k(m-1) + d(m-1)*q(m-1));

k := m → piecewise(m = 0,1, k(m − 1) + d(m − 1)q(m − 1))

Finally, the Berg loss model in Equation (10.3) is defined as:

> berg := (f,l) -> 20 * log10(4*Pi*f*d(l)/c);

berg := (f, l) → 20log10

(4πf d(l)

c

)
;

Using the street plan from Fig. 10.2, we analyze the path loss in an urban street
area for a network operating on a channel with a centre frequency of 5.32 GHz
(802.11a). The junction leading to street s1 is 40 m (along s0) from the access-points
and branches at an angle of 30°. The junction leading to s2 is 25 m down from the
s0/s1 junction and branches off at an angle of 45°. The path loss along street s0 is
modeled as a sequence of short “streets”, 10 m in length, at an angle 0°:

> s := [seq(10,i=1..12)];

s := [10,10,10,10,10,10,10,10,10,10,10,10]
> angle := [seq(0,i in s)];

angle := [0,0,0,0,0,0,0,0,0,0,0,0]
Calculate the path loss along street s0 (at 10 m intervals) and create a graph

object:

> loss1 := [seq([add(s[j],j=1..i), berg(5.32*10^9,i)],
i=1..nops(s))]:

> G3 := pointplot(loss1, connect=true, color=black,
legend=["street 0"]);

10.3 802.11b Link Rate Adaptation 171

Now calculate the path loss along street s1. The junction for s1 is 40 m from the
access-point. After the junction, we model s1 as a sequence of short streets at 0°
angles:

> s := [0,40,seq(10, i=1..8)];

s := [0,40,10,10,10,10,10,10,10,10]
angle := [0,30,seq(0, i in s[3..-1])];

angle := [0,30,0,0,0,0,0,0,0,0,0,0]
Calculate the path loss and create a graph object:

> loss2 := [seq([add(s[j],j=1..i),berg(5.32*10^9,i)],
i=2..nops(s))]:

> G4 := pointplot(loss2, connect=true, color=black,
linestyle=DASH, legend=["street 1"]);

Now calculate the path loss along street s2, where the junction for s2 is 25 m from
the junction of s1x at as angle of 45°:

> s := [0,40,25, seq(10, i=1..6)];

s := [0,40,25,10,10,10,10,10,10]
angle := [0,30,45, seq(0, i in s[4..-1])];

angle := [0,30,45,0,0,0,0,0,0]
Calculate the path loss and create a graph object:

> loss3 := [seq([add(s[j],j=1..i) , berg(5.32*10^9,i)],
i=3..nops(s))]:

> G5 := pointplot(loss3, connect=true, color=black,
linestyle=DASH, legend=["street 1"]);

The graph shown in Fig. 10.3 shows the path loss curves for each street and was
produced by the command:

> display(G3, G4, G5);

10.3 802.11b Link Rate Adaptation

For regulation purposes, we must consider the equivalent isotropically radiated
power (EIRP). EIRP is the (theoretical) power that would be emitted by an isotropic
antenna in the direction of maximum antenna gain. EIRP is given by the equation:

EIRP = Ptx − Lc + Gtx (10.6)

In Europe, the maximum legal EIRP is 20 dBm (100 mW). For the purpose of
this analysis, we assume that the transmitter is operating at the maximum legal limit
(e.g. 20 dBm).

172 10 Link Rate Adaptation

Fig. 10.3 Signal loss in an
urban area (Berg model)

Table 10.1 Modulation
techniques supported by
802.11b for signal-to-noise
ratios and bit-error-rate

SNR/dB BPSK QPSK CCK5.5 CCK11

1 1.2e−5 5e−3 8e−2 1e−1

2 1e−6 1.2e−3 4e−2 1e−1

3 6e−8 2.1e−4 1.8e−2 1e−1

4 7e−9 3e−5 7e−3 5e−2

5 2.3e−10 2.1e−6 1.2e−3 1.3e−2

6 2.3e−10 1.5e−7 3e−4 5.2e−3

7 2.3e−10 1e−8 6e−5 2e−3

8 2.3e−10 1.2e−9 1.3e−5 7e−4

9 2.3e−10 1.2e−9 2.7e−6 2.1e−4

10 2.3e−10 1.2e−9 5e−7 6e−5

11 2.3e−10 1.2e−9 7e−8 2.1e−5

12 2.3e−10 1.2e−9 1.2e−8 7e−6

13 2.3e−10 1.2e−9 1.7e−9,1 7e−6

14 2.3e−10 1.2e−9 1.7e−9 5e−7

First, we consider 802.11b (operating in the 2.4 GHz band). The data provided
in Table 10.1 shows the relationship between SNR (signal-to-noise ratio) and bit-
error-rate (BER) reported in [18] for modulation techniques supported by 802.11b.
The data rates for CCK5.5 and CCK11 are 5.5 and 11 Mb/s respectively. BPSK and
QPSK are from the original 802.11 standard and operate at 1 and 2 Mb/s respec-

10.3 802.11b Link Rate Adaptation 173

tively. We calculate the signal strength (in dBm) at the receiver:

Pr = EIRP − FSPL + Grx − Lc (10.7)

We use the free-space loss model (2.8) at f = 2.437 GHz. It is assumed that the
end-user device has an internal antenna and that Grx = Lc = 0. The signal-to-noise
ratio (SNR/dB) is, therefore, the difference between the receive power Pr and the
signal noise Snoise (in dB):

SNR = Pr − Snoise (10.8)

We define the bit error rates for BPSK in a list:

> BPSK := [1.2e-05, 1.0e-06, 6.0e-08, 7.0e-09,
2.3e-10, 2.3e-10, 2.3e-10, 2.3e-10, 2.3e-10,
2.3e-10,2.3e-10, 2.3e-10, 2.3e-10, 2.3e-10]:

The index to each BER value represents its corresponding SNR value. For exam-
ple, if we want the BER for an SNR of 4 dB:

> BPSK[4];

7.0 × 10−9

Similarly, we define the BER/SNR relationship for QPSK, CCK5.5 and CCK11
in their respective lists:

> QPSK := [5.0e-03, 1.2e-03, 2.1e-04, 3.0e-05,
2.1e-06, 1.5e-07, 1.0e-08, 1.2e-09, 1.2e-09,
1.2e-09, 1.2e-09, 1.2e-09, 1.2e-09, 1.2e-09]:

> CCK5 := [8.0e-02, 4.0e-02, 1.8e-02, 7.0e-03,
1.2e-03, 3.0e-04, 6.0e-05, 1.3e-05, 2.7e-06,
5.0e-07, 7.0e-08, 1.2e-08, 1.7e-09, 1.7e-09]:

> CCK11 := [1.0e-01, 1.0e-01, 1.0e-01, 5.0e-02,
1.3e-02, 5.2e-03, 2.0e-03, 7.0e-04, 2.1e-04,
6.0e-05, 2.1e-05, 7.0e-06, 1.7e-06, 5.0e-07]:

The link rate adaptation Rb for 802.11b is given by:

Rb =

⎧⎪⎪⎨
⎪⎪⎩

11 BER ≥ CCK11(SNR)

5.5 CCK11(SNR) > BER ≥ CCK5(SNR)

2 CCK5(SNR) > BER ≥ QPSK(SNR)

1 BER ≥ BPSK(SNR)

(10.9)

The Maple function that implements (10.9) is:

> Rb := (s,b) -> piecewise(round(s) < 1, 0,
round(s) > 14, 11,
b > CCK11[round(s)], 11,
b > CCK5[round(s)], 5.5,
b > QPSK[round(s)], 2,
b > BPSK[round(s)], 1, 0):

174 10 Link Rate Adaptation

Fig. 10.4 802.11b Link rate
adaptation versus SNR (dB)

We create graphs plots of the link rate against SNR for loss rates of 10−4, 10−6 and
10−8:

> G1 := plot(Rb(s,10e-4), s=0..15,
labeldirections=["horizontal", "vertical"],
labels=["SNR (dB)", "rate (Mb/s)"], legend=["10e-4"],
linestyle=SOLID, color=black), font=[times,roman,12]:

> G2 := plot(Rb(s,10e-6), s=0..15,
labeldirections=["horizontal", "vertical"],
labels=["SNR (dB)", "rate (Mb/s)"], legend=["10e-6"],
linestyle=DASH, color=black,font=[times,roman,12]):

> G3 := plot(Rb(s,10e-8), s=0..15,
labeldirections=["horizontal", "vertical"],
labels=["SNR (dB)", "rate (Mb/s)"], legend=["10e-8"],
linestyle=DOT, color=black,font=[times,roman,12]):

The statement below produces the graph shown in Fig. 10.4:

> display(G1,G2,G3);

We calculate the signal-to-noise ratio as a function of the received signal Pr and
the noise level. We derive Pr from the EIRP and the free-space loss model.

> SNR := (f,d) -> (EIRP - FSPL(f,d,K1)) - NOISE:

Set the EIRP and the noise level:

> EIRP := 20:
> NOISE := -90:

10.3 802.11b Link Rate Adaptation 175

Fig. 10.5 802.11b Link
adaptation for strong LOS
with noise at −90 dB

We create graph plots of link rate adaptation against distance (for a frequency f =
2.437 GHz):

> G4 := plot(Rb(SNR(2.437*10^9, d), 10e-4), d=10..5000,
labeldirections=["horizontal", "vertical"],
labels=["distance (m)", "rate (Mb/s)"],
legend=["10e-4"],
linestyle=SOLID, color=black,font=[times,roman,12]):

> G5 := plot(Rb(SNR(2.437*10^9, d), 10e-6), d=10..5000,
labeldirections=["horizontal", "vertical"],
labels=["distance (m)", "rate (Mb/s)"],
legend=["10e-6"],
linestyle=DASH, color=black,font=[times,roman,12]):

> G6 := plot(Rb(SNR(2.437*10^9, d), 10e-8), d=10..5000,
labeldirections=["horizontal", "vertical"],
labels=["distance (m)", "rate (Mb/s)"],
legend=["10e-8"],
linestyle=DOT, color=black,font=[times,roman,12]):

The graph in Fig. 10.5 shows the 802.11b link rate adaptation over distance for
various error rates. The graph is rendered using the Maple display command.

The results shows that, assuming a free-space loss model, long distances can be
achieved (even when European regulations are adhered to). We double the signal
noise and repeat the analysis. The graph in Fig. 10.6 shows the link rate adaptation
for NOISE = −87 dB.

176 10 Link Rate Adaptation

Fig. 10.6 802.11b Link
adaptation for strong LOS
with noise at −87 dB

10.4 Link Rate Adaptation in an Urban Area

We can examine link rate adaptation in urban environments by using the Walfish-
Ikegami model in (10.1). We consider receivers in households located perpendicular
and nearly perpendicular to the access-point (in the street). We define a signal-to-
noise ratio function which uses the Walfish-Ikegami loss model instead of the free-
space loss model:

> SNR2 := (f,d) -> EIRP - WI(2437,d,10,phi,2) - NOISE;

Now we set the angle from the access-point between the street and the wireless
device. Here, the device is perpendicular to the access-point in the street:

> phi := 90:

Create graph plots for various BER (frequency is expressed in MHz):

> H1 := plot(Rb(SNR2(2437, d), 10e-4), d=10..50,
labeldirections=["horizontal", "vertical"],
labels=["distance (m)", "rate (Mb/s)"],
linestyle=SOLID, color=black,font=[times,roman,12],
legend=["10e-4"]):

> H2 := plot(Rb(SNR2(2437, d), 10e-6), d=10..50,
labeldirections=["horizontal", "vertical"],
labels=["distance (m)", "rate (Mb/s)"],
linestyle=DASH, color=black,font=[times,roman,12],
legend=["10e-6"]):

> H3 := plot(Rb(SNR2(2437,d), 10e-8), d=10..50,

10.4 Link Rate Adaptation in an Urban Area 177

Fig. 10.7 Link adaptation of
802.11b in an urban area
(Walfish-Ikegami model).
The wireless device is located
perpendicular to access-point
(φ = 90°) in the street

labeldirections=["horizontal", "vertical"],
labels=["distance (m)", "rate (Mb/s)"],
linestyle=DOT, color=black,font=[times,roman,12],
legend=["10e-8"]):

Render the graph in Fig. 10.7 with the statement:

> display(H1,H2,H3);

We repeat the analysis above for φ = 55:

> phi := 55:

The graphs shown in Figs. 10.7 and 10.8 show link rate adaptation for the
Walfish-Ikegami loss model (at 90° and 55° respectively). It can be seen that the
results are more conservative than when using the free-space loss model. Perpen-
dicular to the road (φ = 90°), the maximum operating distance is approximately
60–80 m. At φ = 55° the operating distance of the channel is little more than 40–
50 m. At more acute angles (φ < 55°) the operating distance increases. For example,
at φ = 20°, the operating distance is around 50–65 m. This is due, mainly, to the sig-
nals travelling along (almost) the path of the street. We leave the reader to verify this
analysis. The graph in Fig. 10.9 shows how the link rate adaptation varies with angle
of incidence (for BER of 10−4).

178 10 Link Rate Adaptation

Fig. 10.8 Link adaptation of
802.11b in an urban area
(Walfish-Ikegami model) The
wireless device is located at
φ = 55° to the access-point in
the street

Fig. 10.9 Walfish-Ikegami
model link rate adaptation for
BER 10−4

10.5 802.11a Link Rate Adaptation

In this section we consider a 802.11a backhaul network. Two wireless routers form a
link in the 5 GHz band. Both devices have external antennas connected by low-loss
cable. For 802.11a, [6]. provides empirical data for link rate adaptation. Further-
more, it includes measurements for environments with multipath and packet errors.
Table 10.2 shows the relationship between SNR and the link rate.

10.5 802.11a Link Rate Adaptation 179

Table 10.2 802.11a Link
rate adaptation (empirical
data)

Fading Packet
error

Link rate

6 12 18 24 36 48 54

None None −2–3 3–6 6–9 9–12 12–16 16–18 18

Multipath None 0–5 5–12 n/a 12–19 19–22 22–27 27

Multipath 5% 7–10 10–15 15–16 16–21 21–24 24–26 26

We implement the link rate adaptation model in Table 10.2 as a Maple function
below. For no fading and no packet errors, the function is:

Ra1 := (s) -> piecewise(-2 < s and s <= 3, 6,
3 < s and s <= 6, 12,
6 < s and s <= 9, 18,
9 < s and s <= 12, 24,
12 < s and s <= 16, 36,
16 < s and s <= 18, 48,
18 < s, 54, 0):

Multipath fading and no packet errors:

Ra2 := (s) -> piecewise(0 < s and s <= 5, 6,
5 < s and s <= 12, 12,
12 < s and s <= 19, 24,
19 < s and s <= 22, 36,
22 < s and s <= 27, 48,
27 < s, 54, 0):

Multipath fading and 5% packet errors:

Ra3 := (s) -> piecewise(7 < s and s <= 10, 6,
10 < s and s <= 15, 12,
15 < s and s <= 16, 18,
16 < s and s <= 21, 24,
21 < s and s <= 24, 36,
24 < s and s <= 26, 48,
26 < s, 54, 0);

Create a graph of link rate adaptation against signal-noise-signal:

> I1 := plot(Ra1(s), s=-3..30,
legend=["no fade/no error"],
labels=["SNR (dB)", "rate (Mb/s)"],
labeldirections=["horizontal", "vertical"],
color=black, linestyle=SOLID):

> I2 := plot(Ra2(s), s=-3..30,
legend=["mpath fade/no packet error"],
labels=["SNR (dB)", "rate (Mb/s)"],
labeldirections=["horizontal", "vertical"],

180 10 Link Rate Adaptation

Fig. 10.10 802.11a link rate
adaptation versus SNR

color=black, linestyle=DASH):
> I3 := plot(Ra3(s), s=-3..30,
legend=["mpath fade/5% packet error"],
labels=["SNR (dB)", "rate (Mb/s)"],
labeldirections=["horizontal", "vertical"],
color=black, linestyle=DOT):

The graph shown in Fig. 10.10, rendered using the display command, shows
the link rate adaptation for various environments.

In this scenario, the power of the receive signal is given by:

Prx = EIRP − FSPL + Grx − Lc (10.10)

Note that antenna gain (Gtx) and cable loss at the transmit end are intrinsic to EIRP
and, therefore, do not feature in (10.10). Gains and losses due to the antenna and
cable are mitigated by an adjustment of the transmission power that is necessary
in order to comply with a region’s regulations. For the purpose of this example we
assume European regulations and set the maximum EIRP to 20 dB:

> EIRP := 20:

We define a signal-to-noise ratio function:

> SNR3 := (f,d) -> EIRP - FSPL(f,d,K1) + Grx - Lc
- NOISE:

We assume an antenna with a gain Grx = 6 dB and that the cable loss is Lc = 2 dB:

10.5 802.11a Link Rate Adaptation 181

Fig. 10.11 Link rate versus
distance for 802.11a

> Grx := 6:
> Lc := 2:

Set the noise level:

> NOISE := -87;

Create graphs of the effects of link rate adaptation over distance:

> I4 := plot(Ra1(SNR3(5.5*10^9,d,K1)), d=10..2000,
legend=["no fade/no packet error"],
labels=["distance (m)", "rate (Mb/s)"],
labeldirections=["horizontal", "vertical"],
color=black, linestyle=SOLID):

> I5 := plot(Ra2(SNR3(5.5*10^9,d,K1)), d=10..2000,
legend=["mpath fade/no packet error"],
labels=["distance (m)", "rate (Mb/s)"],
labeldirections=["horizontal", "vertical"],
color=black, linestyle=DASH):

> I6 := plot(Ra3(SNR3(5.5*10^9,d,K1)), d=10..2000,
legend=["mpath fade/5% packet error"],
labels=["distance (m)", "rate (Mb/s)"],
labeldirections=["horizontal", "vertical"],
color=black, linestyle=DOT):

The graph in Fig. 10.11 (rendered with the display command) shows how the
link rate drops as the distance between the devices increases.

182 10 Link Rate Adaptation

10.6 Link Rate Experiments

In this section, we present an experimental analysis of link rate adaptation. We in-
vestigate a point-to-point outdoor link between two buildings in an urban-city en-
vironment. The test environment comprises two Cisco Aironet 1300 series access-
points 16 dBi Yagi-Udo antennas. We use the Cisco linktest feature to investigate
the performance of an outdoor point-to-point wireless link. The modulation scheme,
and consequently the transmission speed, is determined by the link rate adaptation
function. The linktest command, however, allows the operator to override the
link rate adaptation and set the link rate at which the test is performed.

For example, the command below send 5000 packets of size 1024 at a rate of 2
Mb/s1:

#dot11 dot11Radio 0 linktest count 5000 packet-size
1024 rate 2.0

The results of the test above are automatically displayed on the console. If logged
in over the network, the results can be recovered with the command:

#show dot11 linktest

GOOD (0 % retries) Time Strength(dBm) SNR SNR Retries
msec In Out In Out In Out

Sent :5000, Avg 10 - 63 - 63 14 31 Tot: 2 5
Lost to Tgt: 0, Max 18 - 61 - 62 20 38 Max: 1 1
Lost to Src: 0, Min 9 - 65 - 65 10 11

Rates (Src/Tgt) 2Mb 5000/5000
Linktest Done in 51.956 msec

The results show the distribution (mean, maximum and minimum) of the re-
sponse times, signal strength and signal-to-noise ratio. In addition, they also show
the retransmission (retries) statistics. The Tot field shows all the retransmissions
for the entire test. It can be seen that there were only 5 retransmissions (for both the
in and out directions). The Max fields shows the maximum number of transmission
attempts incurred by a single packet (for both in and out directions). The test is re-
peated for a rate of 24 Mb/s. As we are only interested in the retransmission results,
we just show the Retries fields:

Retries
In Out

Tot: 30 10
Max: 2 2

1The command-line below should appear on a single line. The width of the page means that it
appears split over two lines.

10.6 Link Rate Experiments 183

It can be seen that the retransmissions are an order of magnitude higher than those
for 2 Mb/s. Retransmissions are even higher for 36 Mb/s

Retries
In Out

Tot: 469 2
Max: 40 2

However, when we attempt to run the test at 48 Mb/s, the console displays the fol-
lowing error:

*Mar 1 00:58:02.754: %DOT11-4-MAXRETRIES: Packet to
client 0022.9099.bf80 react
*Mar 1 00:58:02.755: %DOT11-6-DISASSOC: Interface
Dot11Radio0, Deauthenticatin

The test at this speed has resulted in a packet’s retransmission attempt reaching
the MAXRETRIES threshold, causing the link to disassociate. This means that the
channel conditions cannot support rates of 48 Mb/s or above. Even at 36 Mb/s, re-
transmission rates are high and could, at times, reach the MAXRETRIES threshold.
It would be advisable to limit the rate of the link to 24 Mb/s. In addition to the link

Table 10.3 Retransmissions
Direction Link rate (Mb/s)

2 5.5 11 24 36

In 2 5 20 30 469

Out 5 7 10 20 67

Fig. 10.12 Retransmissions
versus link rate

184 10 Link Rate Adaptation

rate test for 2, 24 and 36 Mb/s, we also ran the test for 5.5 and 11 Mb/s. The retrans-
mission frequency results are summarised in Table 10.3. The graph in Fig. 10.12
shows the effect of the link rate on frame retransmissions.

10.7 Summary

In this chapter, we developed a number of link rate adaptation models for 802.11
devices. We have shown how to implement two signal loss models; namely, the
Walffish-Ikegami and the Berg model. Along with published research data on link
rate adaptation, we have used these models to analyse wireless coverage under a
range of conditions.

Appendix A
Build a Xen Server

In this appendix, we describe how to set up Xen (Dom0) and how to configure the
virtual machines (DomUs) that we use in this book.

A.1 Install Xen

Download and install packages:

$ sudo apt-get install
xen-linux-system-2.6.18-4-xen-686 \
> libc6-xen

Download bridge utilities package:

$ sudo apt-get install bridge-utils

Reboot:

$ sudo reboot

$ uname -a
Linux xen 2.6.18-4-xen-686 #1 SMP Thu May 10 03:24:35
UTC 2007 i686 GNU/Linux

In /etc/xen/xend-config.sxp, uncomment the line:

(network-script network-bridge)

Install xen-tools:

$ sudo apt-get install xen-tools

In the file /etc/xen-tools/xen-tools.conf, change the kernel and initrd parameters to
reflect the system:

kernel = /boot/vmlinuz-2.6.18-4-xen-686
initrd = /boot/initrd.img-2.6.18-4-xen-686

A. Holt, C.-Y. Huang, 802.11 Wireless Networks,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-275-9, © Springer-Verlag London Limited 2010

185

186 A Build a Xen Server

Also, adjust the settings below:

dir = /home/xen
debootstrap = 1
size = 4Gb # Disk image size.
memory = 128Mb
swap = 128Mb
fs = ext3 # use the EXT3 filesystem
dist = etch # Default distribution
image = sparse # Sparse vs. full disk images.

Create a directory for xen guests:

$ sudo mkdir /home/xen/{,domains}

Here, we describe how to configure Xen to support multiple network (Ethernet)
interfaces. Add a logical bridge:

$ sudo brctl addbr xenbr1

Turn off spanning tree:

$ sudo brctl stp xenbr1 off

Set the learning state time to zero:

$ sudo brctl setfd xenbr1 0

Activate the bridge:

$ sudo ip link set xenbr1 up

Check the bridge interfaces:

$ /usr/sbin/brctl show
bridge name bridge id STP enabled interfaces
xenbr0 8000.feffffffffff no vif0.0

peth0
vif26.0
vif26.1

xenbr1 8000.000000000000 no

Add eth1 to xenbr1:

$ sudo brctl addif xenbr1 eth1

Configure /etc/xen/ipp-radius.cfg:

vif = [’bridge=xenbr0’, ’bridge=xenbr1’]

Create the script file /etc/xen/scripts/int2-script:

#!/bin/bash

dir=${dirname "$0")

A.2 DomU Configuration 187

$dir/network-bridge" start vifnum=0 \
netdev=eth0 bridge=xenbr0

$dir/network-bridge" start vifnum=1 \
netdev=eth1 bridge=xenbr1

In the file /etc/xen/xend-config.sxp, enter the line:

(network-script int2-script)

A.2 DomU Configuration

In this section, we provide details of the configuration of the DomU virtual machines
used in this book.

A.2.1 RADIUS Server

/etc/fstab:
/dev/hda1 / ext3 errors=remount-ro 0 1
/dev/hda2 none swap sw 0 0
proc /proc proc rw,nodev,nosuid,noexec 0 0

/etc/hostname:

radius

/etc/hosts:
172.16.20.70 radius
172.16.20.79 mysql
172.16.20.80 server
172.16.20.81 client sta

The following lines are desirable for IPv6 capable
hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts

/etc/network/interfaces:

188 A Build a Xen Server

iface lo inet loopback

The primary network interface
auto eth0
iface eth0 inet static
address 172.16.20.70
network 172.16.20.0
gateway 172.16.20.1
netmask 255.255.255.0
dns-nameservers 192.168.1.201 192.168.1.203

/etc/xen/raduis.cfg:

kernel = ’/boot/vmlinuz-2.6.18-4-xen-686’
ramdisk = ’/boot/initrd.img-2.6.18-4-xen-686’

memory = ’128’
root = ’/dev/hda1 ro’

disk
= [’file:/home/xen/domains/radius/disk.img,hda1,w’,\

’file:/home/xen/domains/radius/swap.img,hda2,w’]

name = ’radius’

vif = [’bridge=xenbr0’]

on_poweroff = ’destroy’
on_reboot = ’restart’
on_crash = ’restart’

A.2.2 MySQL Server

The files, /etc/hosts and /etc/fstab are the same as for the RADIUS server, described
in Sect. A.2.1 above.
/etc/hostname:

mysql

/etc/network/interfaces:

iface lo inet loopback

The primary network interface
auto eth0
iface eth0 inet static

A.2 DomU Configuration 189

address 172.16.20.79
network 172.16.20.0
gateway 172.16.20.1
netmask 255.255.255.0

/etc/xen/mysql.cfg:

kernel = ’/boot/vmlinuz-2.6.18-4-xen-686’
ramdisk = ’/boot/initrd.img-2.6.18-4-xen-686’

memory = ’128’
root = ’/dev/hda1 ro’

disk
= [’file:/home/xen/domains/mysql/disk.img,hda1,w’,\

’file:/home/xen/domains/mysql/swap.img,hda2,w’]

name = ’mysql’

vif = [’bridge=xenbr0’]

on_poweroff = ’destroy’
on_reboot = ’restart’
on_crash = ’restart’

A.2.3 DHCP Server

The files, /etc/hosts and /etc/fstab are the same as for the RADIUS server described
in Sect. A.2.1 above.
/etc/hostname:

dhcp

/etc/network/interfaces:

iface lo inet loopback

The primary network interface
auto eth0
iface eth0 inet static
address 172.16.20.57
network 172.16.20.0
gateway 172.16.20.1
netmask 255.255.255.0

/etc/xen/dhcp.cfg:

190 A Build a Xen Server

kernel = ’/boot/vmlinuz-2.6.18-4-xen-686’
ramdisk = ’/boot/initrd.img-2.6.18-4-xen-686’

memory = ’128’
root = ’/dev/hda1 ro’

disk = [’file:/home/xen/domains/dhcp/disk.img,hda1,w’,\
’file:/home/xen/domains/dhcp/swap.img,hda2,w’]

name = ’dhcp’

vif = [’bridge=xenbr0’]

on_poweroff = ’destroy’
on_reboot = ’restart’
on_crash = ’restart’

A.2.4 Test Client

The files, /etc/hosts and /etc/fstab are the same as for the RADIUS server described
in Sect. A.2.1 above.
/etc/hostname:

client

/etc/network/interfaces:

iface lo inet loopback

The primary network interface
auto eth0
iface eth0 inet static
address 172.16.20.81
network 172.16.20.0
gateway 172.16.20.1
netmask 255.255.255.0

/etc/xen/client.cfg:

kernel = ’/boot/vmlinuz-2.6.18-4-xen-686’
ramdisk = ’/boot/initrd.img-2.6.18-4-xen-686’

A.2 DomU Configuration 191

memory = ’128’
root = ’/dev/hda1 ro’

disk
= [’file:/home/xen/domains/client/disk.img,hda1,w’,\

’file:/home/xen/domains/client/swap.img,hda2,w’]

name = ’client’

vif = [’bridge=xenbr0’]

on_poweroff = ’destroy’
on_reboot = ’restart’
on_crash = ’restart’

Appendix B
Initial Configuration of Access-Point Controllers

The Alcalel-Lucent Omniaccess and Meru Network’s wireless range is controller
based. In this appendix, we show the initial configuration of the respective con-
trollers.

B.1 Alcalel-Lucent Omniaccess Controller

Connect to the controller’s console port with a terminal emulator application using
the settings: 9600 baud, 8 bits, no parity, 1 stop bit and no flow control.

After a number of boot statements, the configuration sequence starts. Enter the
name of the controller and IP address details. The switch-role needs to be set to
“master”:

Enter System name [OAW-4302]: controller1
Enter VLAN 1 interface IP address [172.16.0.254]:
172.16.50.101
Enter VLAN 1 interface subnet mask [255.255.255.0]:
255.255.255.0
Enter IP Default gateway [none]: 172.16.50.254
Enter Switch Role, (master|local) [master]: master

Select the appropriate country code. Do not select this option arbitrarily, as it con-
figures the wireless channels pursuant to that country’s regulations. Furthermore, if
you select the country code “US”, it cannot be changed1 For the purpose of this
example, we select “GB”:

Enter Country code (ISO-3166), <ctrl-I> for supported
list: GB

Confirm your selection:

1This is a peculiarity of the Omniaccess controller.

A. Holt, C.-Y. Huang, 802.11 Wireless Networks,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-275-9, © Springer-Verlag London Limited 2010

193

194 B Initial Configuration of Access-Point Controllers

You have chosen Country code GB for United Kingdom
(yes|no)?: yes

Configure the time and data and set the passwords:

Enter Time Zone [PST-8:0]:
Enter Time in GMT [10:05:01]: 10:13:00
Enter Date (MM/DD/YYYY) [3/12/2009]: 03//12/2009
Enter Password for admin login (up to 32 chars): admin
Re-type Password for admin login: admin
Enter Password for enable mode (up to 15 chars): admin
Re-type Password for enable mode: admin
Do you wish to shutdown all the ports (yes|no)? [no]:
yes

Note, the passwords are not echoed to the screen. The controller prompts you to
confirm the configuration details:

Current choices are:

System name: controller1
VLAN 1 interface IP address: 172.16.50.101
VLAN 1 interface subnet mask: 255.255.255.0
IP Default gateway: 172.16.50.254
Switch Role: master
Country code: GB
Time Zone: PST-8:0
Ports shutdown: yes

If you accept the changes the switch will restart!
Type <ctrl-P> to go back and change answer for any
question
Do you wish to accept the changes (yes|no)

Answer “yes” if the details are correct. The controller will then reboot:

Creating configuration... Done.

System will now restart!
:
:

B.2 Meru Controller

The serial console settings for the Meru controller are 115200 baud, 8 bits, no parity,
1 stop bit and no flow control. When the controller starts up, displays the following
output:

B.2 Meru Controller 195

Controller startup:

CPU: Intel(R) Pentium(R) 4 CPU 2.00GHz stepping 09
PCI: Device 00:1f.1 not available because of resource
collisions
PCI_IDE: (ide_setup_pci_device:) Could not enable
device.
hda: 512MB CompactFlash Card,

hda1 hda2 hda3
ICMP, UDP, TCP, IGMP
<6>EXT3-fs: INFO: recovery required on readonly
filesystem.
EXT3-fs: write access will be enabled during recovery.
kjournald starting. Commit interval 5 seconds
EXT3-fs: recovery complete.
EXT3-fs: mounted filesystem with ordered data mode.
Your system appears to have shut down uncleanly
Checking root filesystem
[/sbin/fsck.ext2 (1) -- /] fsck.ext2 -a /dev/hda2
/: clean, 5032/228928 files, 277150/457728 blocks
EXT3 FS 2.4-0.9.17, 10 Jan 2002 on ide0(3,2), internal
journal
Mounting local filesystems ...

Accepting reset requests...

Intel(R) PRO/1000 Network Driver - version 6.1.16
Copyright (c) 1999-2005 Intel Corporation.
e1000: 01:0d.0: e1000_validate_option: Flow Control
Disabled
e1000: 01:0d.0: e1000_check_options: Interrupt
Throttling Rate (ints/sec) set te
e1000: eth0: e1000_probe: Intel(R) PRO/1000 Network
Connection
e1000: 01:0e.0: e1000_validate_option: Flow Control
Disabled
e1000: 01:0e.0: e1000_check_options: Interrupt
Throttling Rate (ints/sec) set te
e1000: eth1: e1000_probe: Intel(R) PRO/1000 Network
Connection
Using /lib/modules/2.4.18-3-meruenabled/kernel/drivers/
net/e1000_6_1_6/e1000.o
Setting hostname: default

...no longer accepting reset requests.

196 B Initial Configuration of Access-Point Controllers

Starting Meru 3.4.2-135 wireless LAN services ...

ERROR : Cannot determine wireless subnet address.
System not fully operational.
Login as admin and use the "setup" command to correct
configuration errors.

default login:

Login as “admin” with password “admin” (the password is not echoed to the
screen):

default login: admin
Password:
The system is not fully operational

Run the controller setup function:

default# setup

Begin system configuration ...

Set the region:

Set country code:

Country code configuration for this machine.

The country code is currently set to: US

The default country code is “US”, at this point we elect to change it:

Would you like to change it [yes/no/quit]?: y

The supported countries are:
:
:

GB (United Kingdom)
:
:

** WARNING: Once set to anything other than US, you
will not be able to change*

In this example, we select “GB”:

Please enter a valid country code, or q to quit: GB

B.2 Meru Controller 197

The system is configured for the following ISO country
code: GB
Host Name configuration for this machine

We give the controller the hostname “controller”:

Set host name:

Please enter host name, or q to quit: controller
Is controller correct [yes/no/quit]?: y

We keep the default password, but we strongly advise changing it:

Passwords (keep defaults):

Currently default password is used for admin
Would you like to change the password [yes/no/quit]?:
no

Currently default password is used for guest
Would you like to change the password [yes/no/quit]?:
no

Configure networking:

Networking:

IP configuration for this machine.

Would you like to configure networking [yes/no/quit]?:
yes

Would you like to use Dynamic IP configuration (DHCP)
[yes/no/quit]?: no

Please enter the IP configuration for this machine.
Each item should be entered as an IP version 4 style
address in dotted-decimal
notation (for example, 10.20.30.40)

Enter IP address, or q to quit: 172.16.11.50
Is 172.16.11.50 correct [yes/no/quit]?: yes

198 B Initial Configuration of Access-Point Controllers

Enter netmask, or q to quit: 255.255.255.0
Is 255.255.255.0 correct [yes/no/quit]?: yes

Enter default gateway (IP), or q to quit: 172.16.11.1
Is 172.16.11.1 correct [yes/no/quit]?: yes

Would you like to configure a Domain Name Server
[yes/no/quit]?: no

Set the time:

Time:

The time is now Tue Aug 12 22:05:18 UTC 2008
Would you like to change the time zone for this machine
[yes/no/quit]?: yes
Please identify a location so that time zone rules can
be set correctly.
Please select a continent or ocean.
1) Africa
2) Americas
3) Antarctica
4) Arctic Ocean
5) Asia
6) Atlantic Ocean
7) Australia
8) Europe
9) Indian Ocean
10) Pacific Ocean
11) none−−I want to specify the time zone using the
Posix TZ format.
#? 8
Please select a country.
1) Aaland Islands 25) Latvia
2) Albania 26) Liechtenstein
3) Andorra 27) Lithuania
4) Austria 28) Luxembourg
5) Belarus 29) Macedonia
6) Belgium 30) Malta
7) Bosnia & Herzegovina 31) Moldova
8) Britain (UK) 32) Monaco
9) Bulgaria 33) Netherlands
10) Croatia 34) Norway
11) Czech Republic 35) Poland

B.2 Meru Controller 199

12) Denmark 36) Portugal
13) Estonia 37) Romania
14) Finland 38) Russia
15) France 39) San Marino
16) Germany 40) Serbia and Montenegro
17) Gibraltar 41) Slovakia
18) Greece 42) Slovenia
19) Guernsey 43) Spain
20) Hungary 44) Sweden
21) Ireland 45) Switzerland
22) Isle of Man 46) Turkey
23) Italy 47) Ukraine
24) Jersey 48) Vatican City
#? 8

The following information has been given:

Britain (UK)

The name of the time zone is ’Europe/London’.
Is the above information OK?
#? 1

The following command is the alternative way of
selecting the same time zone

timezone set Europe/London

Set system time for this machine.

Synchronize time with a Network Time Protocol (NTP)
server [yes/no/quit]?: yes

Please enter the name or IP address of an NTP server,
or q to quit: 130.88.203.2
Is 130.88.203.12 correct [yes/no/quit]?: yes

Upon completion, the controller reboots:

System configuration completed.
Do you want to commit your changes and reboot
[yes/no/quit]?: yes

Broadcast message from root (ttyS0) (Tue Aug 12
23:10:36 2008):

200 B Initial Configuration of Access-Point Controllers

Now rebooting system...
The system is going down for reboot NOW!
flushing ide devices: hda
Restarting system.

References

1. N. Abramson. Development of the alohanet. In IEEE Transactions on Information Theory,
volume 31.

2. Sam Bartels, John Monk, Alan Holt, and Chi-Yu Huang. Monitoring large management do-
mains with mobile agents, volume 4, pages 13–19, 1 2008.

3. Christian Bettstetter, Christian Hartmann and Clemens Moser. How does randomized beam-
forming improve the connectivity of ad hoc networks? In IEEE International Conference on
Communications, volume 5.

4. Vaduvur Bharghavan, Alan Demers, Scott Shenker and Lixia Zhang. MACAW: A media ac-
cess protocol for wireless LANs. In ACM SIGCOMM ’94, pages 212–225, 1994.

5. Jeffry B. Carruthers. In Wiley Encyclopedia of Telecommunications, pages 1–10. 2002.
6. Sayantan Choudhury and Jerry D. Gibson. Joint PHY/MAC based link adaptation for wireless

LANs with multipath fading. In IEEE Wireless Communications and Networking Conference,
volume 2, pages 757–762.

7. R.H. Coase. Federal Communications Commission. In Journal of Law and Economics, pages
1–40, 1959.

8. Jishu DasGupta, Karla Ziri-Castro, and Hajime Suzuki. Capacity analysis of MIMO-OFDM
broadband channels in populated indoor environments. In ISCIT ’07. International Symposium
on Communications and Information Technologies, pages 273–278, 10 2007.

9. Federal Communications Commission. FCC makes additional spectrum available
for unlicensed use, 11 2003. http://hraunfoss.fcc.gov/edocs_public/attachmatch/DOC-
241220A1.doc.

10. Federal Communications Commission. Part 15—Radio Frequency Devices—of the Commis-
sion’s Rules to Permit Unlicensed National Information Infrastructure (U NII) devices in the
5 GHz band, 2005.

11. Scott R. Fluhrer, Itsik Mantin, and AdiShamir. Weaknesses in the key scheduling algorithm
of rc4. In SAC ’01: Revised Papers from the 8th Annual International Workshop on Selected
Areas in Cryptography, pages 1–24. Springer, London, 2001.

12. Behrouz A. Forouzan. Introduction to Cryptography and Network Security. McGraw–Hill,
Berkeley, 2008.

13. P. Fuxjager, D. Valerio, and F. Ricciato. The myth of non-overlapping channels: interference
measurements in IEEE 802.11. In Wireless on Demand Network Systems and Services Con-
ference, 2007, pages 1–8, 2007.

14. Yoshinori K. Okuji. GNU Grub, 11 2009. http://www.gnu.org/software/grub/.
15. K. Halford, S. Halford, M. Webster, and C. Andren. Complementary code keying for rake-

based indoor wireless communication. In ISCAS 99. Proceedings of the 1999 IEEE Interna-
tional Symposium on Circuits and Systems, volume 4, pages 427–430, 7 1999.

A. Holt, C.-Y. Huang, 802.11 Wireless Networks,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-275-9, © Springer-Verlag London Limited 2010

201

202 References

16. Lee Heeyoung, Kim Seongkwan, Lee Okhwan, Choi Sunghyun, and Lee Sung-Ju. Available
bandwidth-based association in ieee 802.11 wireless lans. In Proceedings of the 11th Inter-
national Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
page 132.

17. IEEE 802.11 WG. IEEE 802.11i Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications. Amendment 6: Medium Access Control (MAC)
Security Enhancements, 07 2004. Reference number ISO/IEC 8802-11-2004.

18. Intersil. HFA3861B direct sequence spread spectrum baseband processor, 2 2002. http://www.
datasheetcatalog.org/datasheets/1150/76703_DS.pdf.

19. Institute of Electrical and Inc. Electronics Engineers. IEEE Standard for Information
technology-Telecommunications and information exchange between systems-Local and
metropolitan area networks-Specific requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications. Amendment 5: Spectrum and Trans-
mit Power Management Extensions in the 5 GHz band in Europe, 10 2003. IEEE Std 802.11h-
2003.

20. Institute of Electrical and Inc. Electronics Engineers. IEEE Standard for Information
technology-Telecommunications and information exchange between systems-Local and
metropolitan area networks-Specific requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications. Amendment 1: Radio Resource
Measurement of Wireless LANs, 6 2008. IEEE Std 802.11k-2008.

21. Institute of Electrical and Inc. Electronics Engineers. IEEE Standard for Information
technology-Telecommunications and information exchange between systems-Local and
metropolitan area networks-Specific requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications, 06 2007. IEEE Std 802.11-2007.

22. Institute of Electrical and Inc. Electronics Engineers. IEEE Std 802.d-2004, ieee standard for
Local and Metropolitan Area Networks: Medium Access control (MAC) Bridges, 06 2004.

23. P. Karn. MACA—a new channel access method for packet radio. In ARRL/CRRL Amateur
Radio 9th Computer Networking Conference, 1990.

24. Greg Kroah-Hartman. Linux Kernel in a Netshell. O’Reilly, USA, 2007.
25. Mourad Melliti, Salem Hasnaoui, and Ridha Bouallegue. Analysis of frequency offsets and

phase noise effects on an OFDM 802.11g transceiver. International Journal of Computer Sci-
ence and Network Security, 5:87–91, 2007.

26. Meru Networks Inc. Meru System Director configuration guide, release 3.5, 2008. http://
www.merunetworks.com/.

27. Metageek. Metageek, visualize your wireless landscape, 2009. http://www.metageek.net/.
28. Saikat Ray, Jeffrey B. Carruthers, and David Starobinski. RTS/CTS-induced congestion in ad

hoc wireless LANs. Wireless Communications and Networking, 3:1516–1521, 2003.
29. Claude E. Shannon and Warren Weaver. The Mathematical Theory of Communication. Uni-

versity of Illinois Press, Chicago, 1963.
30. S. Salam Shumona, Sabrina Islam, Sabrina Ralman, Fakhrul Alam, and Forruk Almed. Per-

formance of IEEE 802.11b wireless local area network. In ICECE 2004, 3rd International
Conference on Electrical & Computer Engineering, pages 283–286, 12 2004.

31. Samuel Sotillo. Extensible Authentication Protocol (EAP) Security Issues, 11 2007. http://
www.infosecwriters.com/text_resources/pdf/SSotillo_EAP.pdf.

32. William Stallings. Handbook of Computer Communications Standards, 2nd edition, volume 2.
Howard W. Sams, Carmel, 1990.

33. Falko Timme. How to set up a load balanced MySQL cluster. 3 2006. http://www.howtoforge.
com/loadbalanced_mysql_cluster_debian.

34. F.A. Tobagi and L. Kleinrock. Packet switching in radio channels: Part II—the hidden ter-
minal problem in carrier sense multiple access modes and the busy-tone solution. In IEEE
Transactions on Communications, 1975.

35. Ozan Tonguz and Gianluigi Ferrari. Ad Hoc Wireless Networks: A Communication-Theoretic
Perspective. Wiley, USA, 2006.

36. Bruce Tuch. Development of waveLAN an ISM band wireless WAN. In AT&T Technical
Journal, volume 72, pages 27–37, 07 1993.

References 203

37. Cabinet Official Committee on UK Spectrum Strategy. United Kingdom Frequency Allocation
Table, 2008. http://www.ofcom.org.uk/radiocomms/isu/ukfat/ukfat08.pdf.

38. Bernhard H. Walke, Lars Berlemann, Guido Hertz, Christian Hoymann, and Ingo Forkel.
Wireless communications—basics. In IEEE 802 Wireless Systems, pages 7–41. Wiley, New
York, 2006.

39. Soekris Engineering Inc. Welcome to Soekris Engineering’s website, 2008. http://www.
soekris.com/.

40. Dominic Welsh. Codes and Cryptography. Oxford University Press, Oxford, 2004.
41. A. Zelst. Per-Antenna-Coded Schemes for MIMO OFDM, volume 4, pages 2032–2836, 05

2003.

Futher Reading

1. B. Aboda, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz. RFC3738: Extensible Au-
thentication Protocol (EAP), 2004. http://www.ietf.org/rfc/rfc3748.txt.

2. George Athanasiou, Thanasis Korakis, and Leandros Tassiulas. An 802.11k compliant frame-
work for cooperative handoff in wireless networks. In EURASIP Journal on Wireless Commu-
nications and Networking, 7 2009.

3. Daniel J. Barrett and Richard E. Silverman. SSH The Secure Shell. O’Reilly, USA, 2001.
4. Stefano Basagni, Marco Conti, Silvia Giordano, and Ivan Stojmenovic. Mobile Ad Hoc Net-

working. Wiley, USA, 2004.
5. Mike Bauer. Securing your WLAN with WPA and FreeRadius, part I. Linux Journal, 48:36–

38, 2005.
6. Mike Bauer. Securing your WLAN with WPA and FreeRadius, part II. Linux Journal, 49:32–

36, 2005.
7. David M. Beazley. Python Essential Reference. New Riders, Indianapolis, 2000.
8. Christian Benvenuti. Understanding Linux Network Internals. O’Reilly, USA, 2006.
9. B. Boskovic and M. Markovic. On spread spectrum modulation techniques applied in IEEE

802.11 wireless LAN standard. In EUROCOMM 2000. Information Systems for Enhanced
Public Safety and Security, pages 238–241, 2000.

10. Michael Elizabeth Chastain. Ioctl numbers. Linux kernel source, filename: Documentation-
ioctl-numbers.txt, 10 1999.

11. D. Comer. Internetworking With TCP/IP Volume 1: Principles Protocols, and Architecture,
5 edition. Prentice Hall, Englewood Cliffs, 2006.

12. Carlton R. Davies. IPSec Securing VPNs. McGraw–Hill, Berkeley, 2001.
13. Angela Doufexi, Eustace Tameh, Andrew Nix, Simon Armou, and Araceli Molina. Hotspot

wireless LANs to enhance the performance of 3G and beyond cellular networks. In IEEE
Communications Magazine, volume 41.

14. Paul DuBois. MySQL, New Riders, Indianapolis, 2000.
15. Alan Flatman. Wireless lans: development in technology and standards, volume 5, pages 219–

224, 10 1994.
16. Robert Flickenger. Wireless Hacks. O’Reilly, California, 2003.
17. M.S. Gast. 802.11 Wireless Networks. O’Reilly, California, 2002.
18. Keith Haviland and Ben Salama. Unix System Programming. Addison–Wesley, Boston, 1987.
19. Carl W. Helstrom. Probability and Stochastic Processes for Engineers, 2nd edition. Macmil-

lan, New York, 1984.
20. Guido Hertz, Erik Weiss, and Bernhard H. Walke. Ieee 802.11 wireless local area networks.

In Bernhard H. Walke, Stefan Mangold, and Lars Berlemann, editors, IEEE 802 Wireless
Systems, pages 7–41. Wiley, USA, 2006.

21. Raj Jain. The Art of Computer Systems Performance Analysis. Wiley, New York, 1991.
22. Christopher A. Jones and Fred L. Drake. Python and XML. O’Reilly, USA, 2002.

A. Holt, C.-Y. Huang, 802.11 Wireless Networks,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-275-9, © Springer-Verlag London Limited 2010

205

206 Futher Reading

23. Oleg Kolesnikov and Brian Hatch. Building Linux Virtual Private Networks (VPNs). New
Riders, USA, 2002.

24. Mark Lutz. Programming Python, 3 edition. O’Reilly, Indianapolis, 2005.
25. S. Makridakis, S. Wheelwright, and R. Hyndman. Forecasting Methods and Applications, 3rd

edition. Wiley, New York, 1998.
26. Alex Martelli and David Axcher. Python Cookbook. O’Reilly, USA, 2002.
27. Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet switching for local

computer networks. Communications of the ACM, 19(5):395–404, 1976.
28. Max Moser. Hotspotting. Linux Magazine, 56:22–24, 2005.
29. C. Siva Ram Murphy and B.S. Manoj. Ad Hoc Wireless Networks, Architectures and Protocols.

Prentice Hall, New Jersey, 2004.
30. Thi Mai Trang Nguyen, Mohamed Ali Sfaxi, and Solange Ghernaouti-Heli. 802.11i encryption

key distribution using quantum cryptography. Journal of Networks, 1(5):9–20, 2006.
31. Alessandro Rubini and Jonathan Corbet. Linux Device Drivers, O’Reilly, USA, 2001.
32. Michael Schwartzkopff. Shutting out strangers: Securing network access with 802.1X, RA-

DIUS and ldap. Linux Magazine, 49:62–65, 2005.
33. Uwe Schwarz and Nils Magnus. Big mesh. Linux Magazine, 98:56–59, 2009.
34. W.R. Stevens. Advanced Programming in the Unix Environment. Addison–Wesley, Boston,

1992.
35. W.R. Stevens. TCP/IP Illustrated Volume 1, The Protocols. Addison–Wesley, Boston, 1994.
36. Andrew S. Tanenbaum. Computer Networks. Prentice Hall, New Jersey, 1989.
37. Mihalis Tsoukatos. Using a mysql database to store network data. Sys Admin, 16(6):6, 2007.
38. Srinivas Vegesna. IP Quality of Service. Ciscopress, Indianapolis, 2001.
39. John Viega, Matt Messier, and Chandra Pravir. Network Security with OpenSSL. O’Reilly,

USA, 2002.
40. Roger Weeks, Edd Dumbill, and Brian Jepson. Linux Unwired. O’Reilly, USA, 2004.

Index

802.11
Coordination functions, 39–50

802.11a, 61
802.11e, 46
802.11g, 61

DSSS-OFDM, 61
ERP-CCK/DSSS, 61
ERP-OFDM, 61
ERP-PBCC, 61
Protection mechanism, 61

802.11i
pre-RSNA, 99

802.11n, 51
Channel bonding, 66

802.16, 58
802.3, 36, 121

A
Abstract syntax notation 1 (ASN.1), 85
AC, see Access category
Access category (AC), 47
Ad-hoc network, 36, 112
ADP, see Alcatel-Lucent discovery protocol
ADSL, see Asynchronous digital subscriber

line
Advanced encryption system (AES), 80, 107
AES, see Advanced encryption system
Aircrack, 8
Aironet

dot11 ssid command, 114
interface Dot11Radio command, 114

AirSnort, 8
Alcatel-Lucent, 111

Alcatel-Lucent discovery protocol (ADP),
115

Aloha
Carrier-sense, 5
Half duplex, 5
Pure, 4
Slotted, 4

American National Standards Institute
(ANSI), 2

ANSI, see American National Standards
Institute

ARQ, see Automatic repeat request
ASN.1, see Abstract syntax notation 1
Asymmetric key cryptography, 76
Asynchronous digital subscriber line

(ADSL), 58
Automatic repeat request (ARQ), 44

B
Basic service set (BSS), 36
Beamforming, 66–71
BEB, see Binary exponential back-off
Berg model, 168
Binary exponential back-off (BEB), 43
Binary phase shift key (BPSK), 11
Binary phase shift keying (BPSK), 55
Bit error rates (BER), 11
Bluetooth, 3
BPSK, see Binary phase shift keying
Bridge priority tags, 47
BSS, see Basic service set
BTMA, see Busy tone multiple access

protocol

A. Holt, C.-Y. Huang, 802.11 Wireless Networks,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-275-9, © Springer-Verlag London Limited 2010

207

208 Index

Busy tone multiple access protocol
(BTMA), 7

C
CA, see Certificate authority
Carrier sense multiple access (CSMA), 5
Carrier sense multiple access with collision

avoidance (CSMA/CA), 40
Carrier sense multiple access with collision

detect (CSMA/CD), 3
CBC-MAC, see Cipher-block chaining

message authentication code
CCK, see Complimentary code keying
CCMP, see Counter-mode/CBC-MAC

protocol, 107
Certificate authority, 84
Certificate authority (CA), 84, 87, 88
CFP, see Contention free period, see

contention period
Channel bonding, 66
Cipher feedback (CFB), 74
Cipher-block chaining (CBC), 74
Cipher-block chaining message

authentication code (CBC-MAC),
107

Cisco, 111
Clause Shannon, 64
Clear-to-send (CTS), 7, 41, 61
Command

bvi, 82
chmod, 142
chown, 142
iwconfig, 112, 113
iwpriv, 113
wlanconfig, 113

Commands
apt-get, 137, 140
chroot, 127
debootstrap, 126, 127
dhclient, 153
echo, 75
fdisk, 133
grub, 133
iwlist, 151, 152
md5sum, 82
minicom, 115
mkdir, 127
mkfs.ext3, 133
mount, 133
mysql, 141

mysqladmin, 140
od, 79
openssl, 92
radclient, 138
radtest, 138
rcconf, 139
ssh, 76
tar, 133
umount, 133
wget, 79, 96
yes, 92

Complimentary code keying (CCK), 56, 61
Configuration files

/etc/fstab, 128
/etc/hosts, 187
/etc/inittab, 128
/etc/network/interfaces, 187
fstab, 187

Contention free period (CFP), 45
Contention period (CP), 45
Counter (CTR), 74
Counter-mode/CBC-MAC protool (CCMP),

106
CRC, see Cyclic redundancy check
Cryptography, 73

mode of operation, 74
Public key, 76
Symmetric key, 74

CSMA, see Carrier sense multiple access
CSMA/CA, see Carrier sense multiple

access with collision avoidance
CSMA/CD, see Carrier sense multiple

access with collision detect
CTS, see Clear-to-send
Cyclic redundancy check (CRC), 101

D
DAB, see Digital audio broadcasting
Data encryption system (DES), 80
DBPSK, see Differential binary phase shift

keying
DCF, see Distributed coordination function
DES, see Data encryption system
Dictionary attacks, 104
Differential binary phase shift keying

(DBPSK), 55
Differential quadrature phase shift keying

(DQPSK), 55
DIFS, see Distributed inter-frame spaces

Index 209

Digital audio broadcasting (DAB), 58
Digital certificates

certificate authority, 88
Digital video broadcasting (DVB), 58
Direct sequence spread spectrum (DSSS),

32, 51, 61
Distributed coordination function (DCF),

39–44
Distributed inter-frame spaces (DIFS), 40
Distributed system (DS), 36
DNS, see Domain name system
Domain name system (DNS), 86
DQPSK, see Differential quadrature phase

shift keying
DS, see Distributed system
DSSS, see Direct sequence spread spectrum
DVB, see Digital video broadcasting

E
EAP, see Extensible authentication protocol,

146
EAP over LAN (EAPoL), 104
EAPOL, see Extensible authentication

protocol over LANs
EAPoL, see EAP over LAN
Electronic codebook (ECB), 74
Encryption, 78

asymmetric key, 76
plaintext, 78
symmetric key, 74

ESS, see Extended service set
Ethernet, 36, 121
Exposed terminal, 6
Extended service set (ESS), 36
Extensible authentication protocol

EAP-LEAP, 104
EAP-MD5, 104
EAP-MSCHAPv2, 104
EAP-PEAP, 104
EAP-TLS, 105
EAP-TTLS, 105

Extensible authentication protocol (EAP),
104

Extensible Authentication Protocol (EAP),
146

Extensible authentication protocol over
LANs (EAPOL), 102

F
FCC, see Federal communications

commission
Federal communications commission

(FCC), 28
FHSS, see Frequency hopping spread

spectrum
Free-space loss, 20
FreeRadius

clients.conf, 138
eap.conf, 148
compile, 137
MySQL, 140

Frequency hopping spread spectrum
(FHSS), 32, 51–54

G
Gamma rays, 16
Gaussian frequency shift keying (GFSK), 53
GFSK, see Gaussian frequency shift keying

(GFSK)
Global positioning system (GPS), 81
GPS, see Global positioning system
Group transient keys (GTK), 105
GTK, see Group transient keys

H
HA, see High-availability
HCCA, see HCF controlled channel access
HCF, see Hybrid coordination function
HCF controlled channel access (HCCA), 48
Hidden terminal, 6
High-availability, 135
Hybrid coordination function (HCF), 45–50
Hyperlan/2, 58

I
IBSS, see Independent basic service set
ICI, see Inter-carrier interference
ICV, see Integrity check value
IEEE, see Institute of Electrical and

Electronic Engineers
IEEE 802.1D, 47
IEEE 802.1X, 102

supplicant, 103
IFFT, see Inverse fast Fourier transform
Independent basic service set (IBSS), 36
Industrial. medical and scientific (ISM), 29
Infrared (IR), 51

210 Index

Infrastructure mode, 36
Initialisation vector

Collisions, 101
Initialisation vector (IV), 106
Institute of Electrical and Electronic

Engineers (IEEE), 2
Integrity check value (ICV), 101
Inter-carrier interference (ICI), 60
International Organization

for Standardization (ISO), 2
International Telecommunication Union

(ITU), 84
Intersymbol interference (ISI), 60
Inverse fast Fourier transform (IFFT), 58
IR, see Infrared
ISI, see Intersymbol interference
ISM, see Industrial, scientific, medical
ISM, see Idustrial medical and scientific, 29
ISO, see International Organization for

Standardization
Isotropic antenna, 15, 22
ITU, see International Telecommunication

Union
IV, see Initialisation vector

K
KCK, see Key confirmation key
KEK, see Key encryption key
Key confirmation key (KCK), 105
Key encryption key (KEK), 105

L
LLC, see Logical link control
Logical link control (LLC), 2, 35

M
MAC, see Medium access control layer,

see Medium access control
MACA, see Multiple access collision

avoidance
MAN, see Metropolitan area networks
Man-in-the-middle attacks, 104
Master session key (MSK), 105
Maximum ratio combining (MRC), 62
Media access control (MAC), 4
Medium access control layer (MAC), 2
Medium access control (MAC), 35
Meru networks, 111
Message integrity check (MIC), 106

Metropolitan area networks (MAN), 3
MIC, see Message integrity check
Michael, 106
Microwaves, 16
MIMO, see Multiple input multiple output
MRC, see Maximum ratio combining
MSK, see Master session key
Multiple access collision avoidance

(MACA), 7
Multiple input multiple output MIMO, 8
Multiple-input, multiple-output (MIMO), 66
Multiple-input multiple-output (MIMO), 62
MySQL, 137, 140

/etc/mysql/my.cnf, 141
FLUSH PRIVILEGES, 141
SHOWS TABLES, 143

N
NAS, see Network authentication server
National Marine Electronics Association

(NMEA), 81
National Telecommunications Information

Administration (NTIA), 28
NAV, see Network allocation vector,

see Network access vector
Network access vector (NAV), 61
Network allocation vector (NAV), 40
Network authentication server (NAS), 103
NMEA, see National Marine Electronics

Association
Noise floor, 11
NTIA, see National Telecommunications

Information Administration

O
OFCOM, 27
OFDM, see Orthogonal frequency division

multiplexing
Omniaccess

dot1x supplicant-info, 153
show associations, 153

One-time pad cipher, 74
Open systems interconnection (OSI), 2
OpenSSL

-subj option, 90
ca command, 93
dhparam, 142
rand, 141
req, 88
req command, 88, 91

Index 211

OpenSSL (cont.)
x509 command, 90

Orthogonal frequency division multiplexing
(OFDM), 58, 62

OSI, see Open systems interconnection
Output feedback (OFB), 74

P
Packet binary convolution coding (PBCC),

56, 61
Pairwise master key (PMK), 105
Pairwise transient key (PTK), 105
PAN, see Personal area networks
PBCC, see Packet binary convolution coding
PC, see point coordinator
PCF, see Point coordination function
PCS, see Physical carrier sensing
Personal area networks (PAN), 3
Physical carrier sensing (PCS), 40
Physical layer convergence procedure

(PLCP), 4, 35
Physical layer convergence procedure

(PLCP) sub-layer, 51
Physical media dependent (PMD), 4
Physical medium dependent (PMD), 35
Physical medium dependent (PMD)

sub-layer, 51
PLCP, see Physical layer convergence

protocol, see Physical layer
convergence procedure

PMD, see Physical media dependent, see
Physical medium dependent, see
Physical medium dependent
sub-layer

PMK, see Pairwise master key
Point coordination function (PCF), 45
Point coordinator (PC), 45
Point-to-point protocol (PPP), 104
PPP, see Point-to-point protocol
Pre-RSNA, 99
Pre-shared key, 115, 124
Pre-shared key (PSK), 102
PRNG, see Pseudo-random number

generator
Pseudo-random number generator (PRNG),

101
PSK, see Pre-shared key
PTK, see Pairwise transient key
Public key cryptography, 76

Q
QAM, see Quadrature amplitude modulation
QPSK, see Quadrature phase shift keying
Quadrature amplitude modulation (QAM),

58
Quadrature phase shift keying (QPSK), 55

R
Radio waves, 16

ground waves, 17
Rayleigh distribution, 25
RC4, 79, 100, 106
Ready-to-send (RTS), 7
Receive sensitivity, 11
Request-to-send (RTS), 41, 61
Rice distribution, 25
Root certificate, 84
ROT13, 78
RTS, see Ready-to-send

S
Secure shell (SSH), 76
Short inter-frame space (SIFS), 41
Soekris, 126
Space-time codes (STC), 62
Spectral masks, 30
Split-channel reservation multiple access

(SRMA), 7
SRMA, see Split-channel reservation

multiple access
SSL

Distinguished name, 88
STC, see Space-time code
Superframe, 45
Switched diversity, 62
Symmetric key cryptography, 74

T
Temporal key(TK), 105
Time-of-flight (TOF), 162
TK, see Temporal key
TKIP, see Temporal key integrity protocol

countermeasures, 107
TKIP sequence counter (TSC), 106
TLS, see Transport layer security
TOF, see Time-of-flight
Traffic specification (TSPEC), 49
Tragedy of the commons, 34
Transmit opportunity (TXOP), 46

212 Index

Transport layer security (TLS), 148, 149
TSC, see TKIP sequence counter
TSPEC, see Traffic specification
TXOP, see Transmit opportunity

U
ULA, see Uniform linear array
Ultraviolet, 16
Uniform linear array (ULA), 68
UNII, see Unlicensed National Information

Infrastructure
Unlicensed National Information

Infrastructure (UNII), 30

V
VCS, see Virtual carrier sensing
Vernam cipher, 74
Virtual carrier sensing (VCS), 40
Virtual LAN (VLAN), 115
VLAN, see Virtual LAN

W
Walffish-Ikegami model, 167
WDS, see Wireless distributions system

WEP, see Wired equivalent privacy
Wi-Fi Alliance, 8
WiMAX, see 802.16
Wired equivalent privacy, 114
Wired equivalent privacy (WEP), 7, 99
Wireless bridge, 123
Wireless distributions system (WDS), 121
WPA

Pre-shared key, 124
WPA-PSK, 115

X
X-rays, 16
X.500

Distinguished name (DN), 85
X.509, 84–86, 90

Z
Zigbee, 3

	Team rebOOk

