
VoIP Hacks
By Theodore Wallingford
...
Publisher: O'Reilly
Pub Date: December 2005
ISBN: 0-596-10133-3
Pages: 326

Table of Contents | Index

Voice over Internet Protocol (VoIP) is gaining a lot of attention these days, as more companies and individuals
switch from standard telephone service to phone service via the Internet. The reason is simple: A single network
to carry voice and data is easier to scale, maintain, and administer. As an added bonus, it's also cheaper,
because VoIP is free of the endless government regulations and tariffs imposed upon phone companies.

VoIP is simply overflowing with hack potential, and VoIP Hacks is the practical guide from O'Reilly that presents
these possibilities to you. It provides dozens of hands-on projects for building a VoIP network, showing you
how to tweak and customize a multitude of exciting things to get the job done. Along the way, you'll also learn
which standards and practices work best for your particular environment. Among the quick and clever solutions
showcased in the book are those for:

gauging VoIP readiness on an enterprise network

using SIP, H.323, and other signaling specifications

providing low-layer security in a VoIP environment

employing IP hardphones, analog telephone adapters, and softPBX servers

dealing with and avoiding the most common VoIP deployment mistakes

In reality, VoIP Hacks contains only a small subset of VoIP knowledge-enough to serve as an introduction to the
world of VoIP and teach you how to use it to save money, be more productive, or just impress your friends. If
you love to tinker and optimize, this is the one technology, and the one book, you must investigate.

VoIP Hacks
By Theodore Wallingford
...
Publisher: O'Reilly
Pub Date: December 2005
ISBN: 0-596-10133-3
Pages: 326

Table of Contents | Index

 Copyright
 Credits
 About the Author
 Contributors
 Acknowledgments
 Preface
 Why VoIP Hacks?
 How This Book Is Organized
 Using Code Examples
 Chapter 1. Broadband VoIP Services
 Section 1.1. Hacks 17: Introduction
 Section 1.2. VoIP-Based Phone Service Providers
 Hack 1. Get Connected
 Hack 2. Use Pure VoIP Dialing with Your TSP
 Hack 3. Wire Your House Phones for VoIP
 Hack 4. Use a Softphone with a VoIP TSP
 Hack 5. Prioritize Packets to Improve Quality
 Hack 6. Got 911?
 Hack 7. Update Your VoIP ATA Firmware
 Chapter 2. Desktop Telephony
 Section 2.1. Hacks 827: Introduction
 Hack 8. Access Next-Gen Voice Features
 Hack 9. Track Vonage Account Info on Your Desktop
 Hack 10. Pick a Desktop VoIP Client
 Hack 11. Sound Like Darth Vader While You VoIP
 Hack 12. Grow Your Social Network with Gizmo
 Hack 13. Record VoIP Calls on Your Windows PC
 Hack 14. Handle Calls with Windows Software
 Hack 15. Let Your Mac Answer and Log Your Calls
 Hack 16. Run Phlink Even When Logged Off
 Hack 17. Greet Callers Differently Each Day

 Hack 18. Use Caller IDs in AppleScripts
 Hack 19. Control iTunes from Phlink
 Hack 20. VoIP While Fragging
 Hack 21. Google for Telephony Info
 Hack 22. Telephonize a Sound File
 Hack 23. Record an Audio Chat on Your Mac
 Hack 24. Create Telephony Sounds with SoX
 Hack 25. Mix the Perfect Announcement
 Hack 26. Sound Like a Pro Announcer
 Hack 27. Record a Videoconference
 Chapter 3. Skype and Skyping
 Section 3.1. Hacks 2840: Introduction
 Hack 28. Get Skype and Make Some New Friends
 Hack 29. Skype Your Outlook Contacts
 Hack 30. Skype People from the OS X Address Book
 Hack 31. Enable Site Visitors to Skype You
 Hack 32. Speak Jyve
 Hack 33. Teach Your Browser to Speak Jyve
 Hack 34. Carry Skype in Your Pocket
 Hack 35. Degunk International SkypeOut Calls
 Hack 36. From Podcasting to Skypecasting
 Hack 37. Answer Your Skype Calls, Even When You're Not Around
 Hack 38. Use Custom Rings and Sounds with Skype
 Hack 39. Emote by Sight and Sound with Skype
 Hack 40. Skype with Your Home Phone
 Chapter 4. Asterisk
 Section 4.1. Hacks 4158: Introduction
 Hack 41. Turn Your Linux Box into a PBX
 Hack 42. Attach a SIP Phone to Asterisk
 Hack 43. Connect a Phone Line Using an FXO Gateway
 Hack 44. Connect a Legacy Phone Line Using Zaptel
 Hack 45. Forward Your Home Calls to Your Cell Phone
 Hack 46. Selectively Forward Calls
 Hack 47. Report Telephone Activity with Excel
 Hack 48. Kindly Introduce Telemarketers to Mr. Privacy
 Hack 49. Build a Four-Line Phone Server
 Hack 50. Master Music-on-Hold
 Hack 51. Record Calls
 Hack 52. Get Your Daily Weather Forecast from Your Telephone
 Hack 53. Put a Happy Face on Asterisk Using AMP
 Hack 54. Run Asterisk Without Root, for Security's Sake
 Hack 55. Link Two Asterisk Servers with PSTN
 Hack 56. Link Several PBXs over the Internet
 Hack 57. Route Calls Using Distinctive Ring
 Hack 58. Tune Up Your Asterisk Logs

 Chapter 5. Telephony Hardware Hacks

 Section 5.1. Hacks 5971: Introduction
 Hack 59. Record Calls the Old-Fashioned Way
 Hack 60. Make IP-to-IP Phone Calls with a Grandstream BudgeTone
 Hack 61. Build a Custom Ringtone for Your Grandstream Phone
 Hack 62. Tweak Your Sipura ATA
 Hack 63. Build a Bat Phone
 Hack 64. Brew Your Own Zaptel Interface Card
 Hack 65. Build a Speed-Dial Service on Cisco IP Phones
 Hack 66. Power Cisco Phones with Standard Inline Power
 Hack 67. Customize Your Cisco IP Phone's Boot Logo
 Hack 68. Configure Multiple IP Phones at One Time
 Hack 69. Customize Uniden IP Phones from TFTP
 Hack 70. Control the Lights Using Your IP Phone
 Hack 71. Use a Rotary-Dial Phone with VoIP
 Chapter 6. Navigate the VoIP Network
 Section 6.1. Hacks 7287: Introduction
 Hack 72. Monitor VoIP Devices
 Hack 73. Inspect the SIP Message Structure
 Hack 74. Audit a Network's QoS Capabilities
 Hack 75. Graph Latency and Jitter
 Hack 76. Explore NAT Traversal
 Hack 77. Shape Network Traffic to Improve Quality of Service
 Hack 78. Create a Premium Class of Service
 Hack 79. Build a $100 PSTN Gateway in 10 Minutes or Less
 Hack 80. Make IP Phone Configuration a Trivial Matter
 Hack 81. Peek Inside of SIP Packets
 Hack 82. Dig into SDP
 Hack 83. Sniff Out Jittery Calls with Ethereal
 Hack 84. Log VoIP Traffic
 Hack 85. Secretly Record VoIP Calls
 Hack 86. Log and Record VoIP Streams
 Hack 87. Intercept and Record a VoIP Call
 Chapter 7. Hard-Core Voice
 Section 7.1. Hacks 88100: Introduction
 Hack 88. Build a Killer Telephony Server
 Hack 89. Build an H.323 Gatekeeper Using OpenH323
 Hack 90. Turn Your Linux Box into a Fax Machine
 Hack 91. Build an Inbound Fax-to-Email Gateway
 Hack 92. Teach Your Asterisk Box to Speak
 Hack 93. Build a Mac PBX
 Hack 94. Monitor Asterisk from Your Perl Scripts
 Hack 95. Build a SoftPBX with No Hard Drive
 Hack 96. Build a Standalone Voicemail Server in Less Than a Half-Hour
 Hack 97. Automate Your Voicemail Greeting

 Hack 98. Connect Asterisk to the Skype Network
 Hack 99. Forward Your Home Phone Calls to Skype
 Hack 100. Get Started with sipX
 Colophon
 Index

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: David Brickner Production Editor: Sanders Kleinfeld

Series Editor: Rael Dornfest Cover Designer: Marcia Friedman

Executive Editor: Dale Dougherty Interior Designer: David Futato

Printing History:

December 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are
registered trademarks of O'Reilly Media, Inc. The Hacks series designations,
VoIP Hacks, the image of a Morse code tapper, and related trade dress are
trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

Small print: The technologies discussed in this publication, the limitations on
these technologies that technology and content owners seek to impose, and
the laws actually limiting the use of these technologies are constantly
changing. Thus, some of the hacks described in this publication may not work,
may cause unintended harm to systems on which they are used, or may not be

mailto:corporate%40oreilly.com

consistent with applicable user agreements. Your use of these hacks is at your
own risk, and O'Reilly Media, Inc. disclaims responsibility for any damage or
expense resulting from their use. In any event, you should take care that your
use of these hacks does not violate any applicable laws, including copyright
laws.

ISBN: 0-596-10133-3

[M]

Credits
About the Author

Contributors

Acknowledgments

About the Author

Ted Wallingford is a senior network engineer with LCG Technologies Corp. in
Elyria, Ohio, and the author of Switching to VoIP (O'Reilly). Ted has led
installations of VoIP technology in the construction, manufacturing, and
networking industries. A periodic contributor to Macworld magazine and
VoIPfan.com, Ted is a strong advocate of open standards and Star Wars
movies. He updates the web site http://www.macvoip.com/ at least a couple of
times a year. Ted lives with his wife Kelly and two amazing kids, Jacob and
Madelyn, in suburban Cleveland.

http://www.macvoip.com/

Contributors

The following people contributed their writing, code, and inspiration to VoIP
Hacks:

Brian Degenhardt

Brian's experience in the high-tech industry includes work in such diverse
areas as network engineering, online media delivery, and console game
development. Currently he serves as CTO of Four Loop Technologies,
maker of the Switchvox PBX. Brian has contributed to numerous open
source projects, including the GIMP and the Squid web proxy cache. He
currently resides in sunny San Diego with his wife Tristan.

Kristian Kielhofner

Kristian is president of KrisCompanies (http://www.kriscompanies.com/), a
consulting firm based in Lake Geneva, Wisconsin, and creator of AstLinux,
a Linux distro configured specifically for Asterisk that features a very small
footprint. Kristian has been working with Linux professionally for more
than five years, since he began doing Linux system administration at the
age of 16. Kristian started KrisCompanies in 2004 to help local businesses
with their technology needs. In addition to creating AstLinux, he has also
been involved with AstShape and Polycom configuration files.

Andrew Latham

Andrew is a networking consultant who offers VoIP, IP networking, and
web development expertise via his web site, http://www.lathama.com/.

Dave Mabe

Dave (http://dave.runningland.com/)is an accomplished and largely self
taught engineer and writer who strives to create simple, elegant solutions
to complex problems. Dave has worked at AT&T in the communications
industry for eight years. Always looking to save a few keystrokes and

http://www.kriscompanies.com/
http://www.lathama.com/
http://dave.runningland.com/

mouse clicks, he is the kind of person who would rather spend several
hours inventing an automated solution than spend a few monotonous
moments each day performing a menial task. Dave has been using Asterisk
and other VoIP solutions for two years. He is the author of BlackBerry
Hacks (O'Reilly).

Joel Sisko

Joel has been a self-proclaimed network convergence professional since
1992. He is the founder and CEO of Convergence Center LLC, a company
focused on delivering the next generation of convergence-based
applications and communications systems for value-added voice and data
resellers.

Acknowledgments

The contributors who spent their very scarce time working on material for this
book have my earnest thanks. These gentlemen are truly talented networking
engineers, and their input and technical expertise were invaluable. Do
business with these guysthey are established knowledge leaders in this new
industry.

I'd also like to thank Mike Loukides, who recommended that I write VoIP Hacks
(or perhaps he merely succumbed to my nagging). He edited Switching to
VoIP, and he is the author or co-author of several excellent O'Reilly volumes,
including the highly useful Unix Power Tools and one of O'Reilly's earliest
technical books, System Performance Tuning. He's a pretty amazing pianist,
too.

VoIP Hacks was edited by David Brickner. David's editing is pragmatic,
politically incorrect, and to the point. I love that. I'll give David all the credit
for anything good about VoIP Hacks!

This book survived the criticisms of several tech reviewers, including Kristian
Kielhofner, Leif Madsen, and Jim Van Meggelen. Thank you for looking over my
work; your expertise added much to the book's accuracy.

I must heartily acknowledge my hometown crowd, too. My wife Kelly and my
friends at Pathway have given me plenty of much-needed encouragement. The
crew at LCG Technologies is a great bunch, too. I just barely squeaked this
book out thanks to my new workloadkeep up the great work, LCG. Thanks to
Brian Downey of The Linux Fix for his expert Linux support, as well.

Preface
Voice over IP, or VoIP, is a family of technologies that enables voice
applications and telephony to be carried over an Internet Protocol (IP) network
such as the Internet. These technologies include protocols, hardware and
software standards, and computer programs. VoIP is employed in telephony
applications, from analog phones to next-generation IP phones and wireless
headsets, and in desktop voice chat services, from web-based party-line chat
services (like Yahoo! Chat) to the well-known Skype desktop voice-calling
service.

VoIP has become an important technology that is integrating pervasively into
the popular culture. It is employed daily to drive new engines of
commerceeverything from business-class VoIP-powered calling services to
simple desktop chat tools such as Apple's iChat. Other high-profile companies
like eBay, Microsoft, Google, and AT&T offer applications and services that
utilize VoIP, too.

These big companies have recognized that the popular culture is moving to
VoIP services en masse, even as the telecom industry is being set on its ear by
scrappy young VoIP startups like Vonage, Packet8, and SpeakEasy.net. VoIP
services deliver telephony applications less expensively than the old phone
companies can hope to. This is because VoIP is free of the continually
burdensome legacy technology investment the old phone companies must
make to keep the "old" global phone network running. VoIP is also free of the
endless government regulations and tariffs imposed upon the old phone
companies.

In a nutshell, the way society looks at the voice network has changed. VoIP is
the enabler of the change, and tomorrow's global voice network is the
Internet.

This book contains only a small subset of VoIP knowledgeenough to serve as
an introduction to the world of VoIP and teach you how to use it to save
money, be more productive, or just impress your friends. My friends love my
on-hold music when they call my house; I love that when people call my
house, the call is connected to my notebook PC via Skype, no matter where I
am in the world. You'll learn how to do all of this and more. I hope this book
gets your mental gears turning and that your VoIP hacks are as enjoyable to
implement and customize as they were for me to write!

For more VoIP theory and detailed reference information about Voice over IP,
check out these great O'Reilly titles:

Switching to VoIP

Skype Hacks

Talk Is Cheap

Asterisk: The Future of Telephony

Practical VoIP Using Vocal

Why VoIP Hacks?

The term hacker has a bad reputation in the press. They use it to refer to
someone who breaks into systems or wreaks havoc with computers as their
weapon. Among people who write code, though, the term hack refers to a
"quick-and-dirty" solution to a problem, or a clever way to get something
done. And the term hacker is taken very much as a compliment, referring to
someone as being creative, having the technical chops to get things done. The
Hacks series is an attempt to reclaim the word, document the good ways
people are hacking, and pass the hacker ethic of creative participation on to
the uninitiated. Seeing how others approach systems and problems is often the
quickest way to learn about a new technology.

Since it is based in software, VoIP is overflowing with hack potential. If you
love to tinker and optimize, this technology offers a cornucopia of exciting
things to tweak and customize. As in the heyday of the World Wide Web,
fortunes will be made in the nascent VoIP industry, and lots of fun will be had
by voice hackers like you and me.

How This Book Is Organized

You can read this book from cover to cover if you like, but each hack stands on
its own, so feel free to browse and jump to the different sections that interest
you most. If there's a prerequisite that you need to know about, a cross-
reference will guide you to the right hack.

The book is divided into seven chapters, organized by subject:

Chapter 1, Broadband VoIP Services

In this chapter, you'll be introduced to some Internet-based VoIP phone
service providers who can help you replace your traditional phone line with
a cost-saving, feature-rich VoIP line.

Chapter 2, Desktop Telephony

Since VoIP is rooted in software, it has some wonderful uses on your
desktop PC or Mac. In this chapter, you'll learn how to customize and
maximize productivity-enhancing telephony applications.

Chapter 3, Skype and Skyping

Skype, the ubiquitous desktop voice-calling application, is one of the most
hackable desktop telephony tools, and therefore is worthy of an entire
chapter of hacks.

Chapter 4, Asterisk

Just as VoIP enables desktop telephony, it also enables enterprise
telephony. In this chapter, you'll learn how to install, configure, and hack
Asterisk, an open source PBX.

Chapter 5, Telephony Hardware Hacks

VoIP is rooted in software, but it is used with lots of different kinds of
hardwareeverything from next-generation IP phones to old-school rotary
phones. This chapter shows you how to add these devices to your VoIP
setupand how to customize them.

Chapter 6, Navigate the VoIP Network

Voice over IP is carried over the network using packets, just like
traditional data. With the advice in this chapter, you can monitor VoIP and
troubleshoot it using traditional admin tools.

Chapter 7, Hard-Core Voice

By the time you reach this chapter, you will have advanced to the
hallowed ground that's held by a very exclusive crowd: the community of
hard-core voice hackers.

Conventions Used in This Book

The following is a list of the typographical conventions used in this book:

Italics

Used to indicate URLs, filenames, filename extensions, and directory/folder
names. For example, a path in the filesystem will appear as
/Developer/Applications.

Constant width

Used to show code examples, the contents of files, console output, as well
as the names of variables, commands, and other code excerpts.

Constant width bold

Used to show user input in code and to highlight portions of code, typically
new additions to old code.

Constant width italic

Used in code examples and tables to show sample text to be replaced with
your own values.

Gray type

Used to indicate a cross-reference within the text.

You should pay special attention to notes set apart from the text with the
following icons:

This is a tip, suggestion, or general note. It contains useful supplementary information
about the topic at hand.

This is a warning or note of caution, often indicating that your money or your privacy
might be at risk.

The thermometer icons, found next to each hack, indicate the relative
complexity of the hack:

 beginner moderate expert

Using Code Examples

This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question
by citing this book and quoting example code does not require permission.
Incorporating a significant amount of example code from this book into your
product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: "VoIP Hacks by Ted
Wallingford. Copyright 2006, O'Reilly Media, Inc., 0-596-10133-3."

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite
technology book, that means the book is available online through the O'Reilly
Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets
you easily search thousands of top tech books, cut and paste code samples,
download chapters, and find quick answers when you need the most accurate,
current information. Try it for free at http://safari.oreilly.com.

How to Contact Us

We have tested and verified the information in this book to the best of our
ability, but you may find that features have changed (or even that we have
made mistakes!). As a reader of this book, you can help us to improve future
editions by sending us your feedback. Please let us know about any errors,
inaccuracies, bugs, misleading or confusing statements, and typos that you
find anywhere in this book.

mailto:permissions%40oreilly.com
http://safari.oreilly.com

Please also let us know what we can do to make this book more useful to you.
We take your comments seriously, and we will try to incorporate reasonable
suggestions into future editions. You can write to us at:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

To ask technical questions or to comment on the book, send email to:

bookquestions@oreilly.com

The web site for VoIP Hacks lists examples, errata, and plans for future
editions. You can find this page at:

http://www.oreilly.com/catalog/voiphks

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

To reach the author of this book, Ted Wallingford, you can send an email to:

ted@macvoip.com

Got a Hack?

To explore Hacks books online or to contribute a hack for future titles, visit:

http://hacks.oreilly.com

mailto:bookquestions%40oreilly.com
http://www.oreilly.com/catalog/voiphks
http://www.oreilly.com
mailto:ted%40macvoip.com
http://hacks.oreilly.com

Chapter 1. Broadband VoIP Services
Section 1.1. Hacks 17: Introduction

Section 1.2. VoIP-Based Phone Service Providers

Hack 1. Get Connected

Hack 2. Use Pure VoIP Dialing with Your TSP

Hack 3. Wire Your House Phones for VoIP

Hack 4. Use a Softphone with a VoIP TSP

Hack 5. Prioritize Packets to Improve Quality

Hack 6. Got 911?

Hack 7. Update Your VoIP ATA Firmware

1.1. Hacks 17: Introduction

Voice over IP (or VoIP for short) is a technology that allows Internet Protocol
(IP) networks like the Internet to be used to enable voice communication,
similar in some ways to a telephone. Some folks call VoIP IP telephonyand the
technology comes in many forms, from desktop communication software to
automated message recording and fax integration tools.

But in its simplest form, IP telephony enables you to place phone calls over the
Internet rather than over a traditional phone line. This is a pretty big deal,
since no long-distance charges or hefty federal access taxes are levied on
Internet-based phone calls. Plus, IP telephony lets you integrate your desktop
PC, your desk phone, and your cell phone in ways never before imagined. I'm
anxious to share the details with you in this book.

In the tradition of O'Reilly's Hacks book series, you'll be using short hacks, like
the basic ones in this chapter, to learn about Voice over IP and computer-
based telephony. I, and a number of my peers in the telecommunications
industry, have contributed some of the most useful, most educational, and
coolest projects to VoIP Hacks. Hopefully, beginning right here in this chapter,
you'll be saying, "I didn't know you could do that with VoIP!"

1.2. VoIP-Based Phone Service Providers

The Golden Age of broadband began with catchphrases like "surf the Web five
times faster" and with promises of ultra-fast music downloads. But in the late
1990s, few would have predicted that VoIP-based telephony would be one of
the biggest beneficiaries of once-hyped broadband technologies like cable
Internet and DSL. Sure, web surfing at "the speed of light" and downloading
music are greatbut can they save you money? Legally?

VoIP telephony canand does. For roughly half the cost of a traditional phone
line, you can subscribe to a VoIP telephony service provider rather than to a
phone company. You'll get a standard phone number that people from the non-
VoIP world can use to call youand you won't have to pay $5 a month extra for
voicemail and caller ID.

This chapter has a handful of hacks that will show you how to maximize your
broadband voice service. So, if you subscribe to a VoIP service provider, you're
ready to hack. If not, what are you waiting for? "Get Connected" [Hack #1]
describes some VoIP-based phone providers that you should evaluate as you
prepare to dive into VoIP Hacks.

Hack 1. Get Connected

If you've got broadband, you're already using the Internet for data
communication. Wouldn't it be great to use it for telephone calls, too?

Internet telephony service providers (TSPs) get your voice onto the Net, allow
you to make and receive phone calls just like traditional phone companies, and
tend to shrink your phone bill to boot. Some of these service providers give
you a basic, free service that enables you to call other users over the Internet.
Others allow you to make toll-free calls free of charge, but charge for local and
long-distance calls.

TSPs that allow you to call traditional telephone service subscribers do so by
connecting your standard home phone to the Net. Some TSPs also let you use
a special piece of software called a softphone to place calls with your PC. To
get connected to a TSP, you need a broadband Internet router configured as a
DHCP server, a spare Ethernet port either on your router or on a nearby
switch, and a good old-fashioned analog telephone.

TSPs are data centers with telephony servers that route calls to and from your
home network or broadband VoIP device. The real-time packets that carry
each call's sound over your broadband link use IP and User Datagram Protocol
(UDP) protocols, and the TSP communicates key moments in the calllike
dialing, connecting, and hanging upusing signaling protocols that are similar in
some ways to the ones your browser uses to surf the Web.

The VoIP device that most TSPs provide to connect your home phone is known
as an analog telephone adapter, or ATA. These little boxes allow you to
connect a residential-style analog phone to your broadband Internet
connection, and they are normally supplied by your VoIP TSP when you sign
up for their service.

In addition to an ATA, some TSPs permit you to place VoIP calls using the
following:

An IP phone

These telephones connect directly to an Ethernet network using a patch
cable or wireless link. They have an IP address as a PC would, and they

communicate with the VoIP TSP's data center over your Internet
broadband link.

A softphone

These are software programs that run on a PC and permit telephone-style
communication using your broadband link. They appear on your Windows,
Linux, or Mac desktop with graphical user interfaces that often resemble a
telephone, and they require that your PC have a microphone and
speakers.

For this hack, I'll concentrate on connecting to a TSP that provides an ATA,
allowing you to use an analog phone to place and receive calls via the
Internet. Table 1-1 lists domestic (U.S. and Canada) TSPs that provide
broadband VoIP calling.

"Bring your own device" means the TSP allows you to make phone calls across
its VoIP network using your choice of equipment, such as an IP phone, a PC, or
your own ATA. TSPs that don't allow you to bring your own device will provide
an ATA to make the connection.

Table 1-1. VoIP TSPs

Company Web site Bring your own device

AT&T CallVantage http://www.att.com/ No

BroadVoice http://www.broadvoice.com/ Yes

Broadvox Direct http://www.broadvoxdirect.com/ No

Net2Phone http://www.net2phone.com/ No

nikotel http://www.nikotel.com/ No

Packet8 http://www.packet8.net/ No

SOYO http://phone.soyo.com/ No

VoicePulse http://www.voicepulse.com/ Yes

Vonage http://www.vonage.com/ No

http://www.att.com/
http://www.broadvoice.com/
http://www.broadvoxdirect.com/
http://www.net2phone.com/
http://www.nikotel.com/
http://www.packet8.net/
http://phone.soyo.com/
http://www.voicepulse.com/
http://www.vonage.com/

Once you've subscribed to a VoIP TSP service (many allow you to subscribe on
the Web) and you've received your ATA in the mail, you'll probably be itching
to hook it up and use it. Most of the time, setting up an ATA is straightforward.
All ATAs have an Ethernet interface, for connecting to your network via an
eight-wire CAT5 patch cable with two RJ45 connectors, and one analog
telephone interface, for connecting to a residential-style, single-line phone
using a four-wire patch cable with two RJ11 connectors. 8x8 Inc.'s DTA-310,
standard equipment for Packet8 service, is such a device. So is the Sipura
SPA-2000 [Hack #62], pictured in Figure 1-1.

Figure 1-1. The front and rear panels of the Sipura SPA-2000
ATA

But other ATAs might offer additional capabilities. For instance, the Sipura
SPA-2000, standard equipment for VoicePulse service, offers an extra analog
phone connector, so you can easily connect two phones, or perhaps a phone
and an answering machine. As shown in Figure 1-1, the SPA-200's front panel
has two phone connectors and a status LED, which indicates whether one of
the analog phones is off the hook. The rear panel has an Ethernet connector,
an Ethernet activity/link indicator LED, and a DC power connector.

More elaborate ATA devices integrate broadband routing and firewall functions,
allowing you to consolidate your VoIP ATA and residential firewall into a single
unit. The Zoom 5567 is one of these. It has a broadband IP router with a
firewall, a four-port switch, an analog phone connector, and a pass-through
connector for placing calls on a traditional Bell phone line in the event the
Internet service fails.

So, depending on your service, setup could be a little more elaborate than just
connecting the phone and the Ethernet to your ATA. However, in most cases,
the ATA is a simple, no-frills device designed to accomplish one thingget your
analog phone connected to the world's biggest VoIP carrier network, the trusty

ol' Internet.

After you've gotten the ATA out of the package, find a good place for it. It
should be close to where you intend to use the analog phone, though a long-
enough phone cord would afford you more distance.(In "Wire Your House
Phones for VoIP" [Hack #3], you'll see how to use your house's existing
phone wiring to hook up several phones to a single ATA.) Your ATA also needs
to be close enough to your Ethernet switch or broadband router to connect to
it with a CAT5 patch cable.

Once connected, most ATAs will automatically register with your VoIP service
provider's server the first time they are powered up. Don't interrupt this
process. If the initial registration is interrupted, it could render your ATA
useless, and the TSP might need to exchange it for a new one. Some ATAs will
download firmware patches during the initial registration, too. Refer to your
ATA's instructions for indications on when this process is complete, making it
safe to power off the ATA. Usually, if you can hear a dial tone on the
connected phone, the process is complete and it's safe to place a call or power
down the ATA.

If you can't hear a dial tone on the connected phone, check that it is connected
to the appropriate port on the ATA. Make sure your broadband router is
configured as a DHCP server. Without DHCP running on your network, the ATA
will be unable to obtain an IP address, crippling it.

Many VoIP calling plans require that you dial the full 11-digit phone number, even if you're
just calling your next-door neighbor. So, if you make a lot of local calls, get used to dialing
your own area code a lot!

Once you hear a dial tone, it's probably best to investigate any features that
are included with your calling planvoicemail especially. Then, try calling a
buddy to see if you can hear any difference between a traditional call and a
VoIP one. Chances are that the person on the other end won't notice the
difference unless you tell him you're on a VoIP call. Then, he might say he
suspected you were on a cell phone. The sound quality on a VoIP call is only as
good as the network carrying it, and many unsuspecting participants mistake
VoIP calls for cell phone calls.

Hack 2. Use Pure VoIP Dialing with Your TSP

By using dialing shortcuts, you can keep your phone calls on the
Internet and avoid extra charges.

If you're able to make a phone call to a regular phone company subscriber
using your new VoIP service [Hack #1], you're ready to learn some cool TSP
tricks.

Your VoIP phone bill is probably lower than that of your friends who still use
traditional calling plans. But a lower phone bill isn't the only luxury that comes
with converting your service to VoIP. Because your call uses the Internet
rather than the public telephone network to route your call, you have access
to several cool dialing shortcuts when you call subscribers of other VoIP
services. When an IP network alone provides the pathway between caller and
receiver, it's said to be pure (or native) Voice over IP.

This can actually save you money, especially if you make a lot of international
calls. If you're a Free World Dialup (FWD) subscriber and you talk frequently
with your buddy in Mexico, who uses Vonage, using dialing shortcuts will keep
your calls pure VoIP and allow you to circumvent any related long-distance
calling charges that would be assessed if your calls were to traverse the Public
Switched Telephone Network (PSTN).

To make pure VoIP calls using your TSP's service, you have to be aware of the
dialing shortcuts your TSP provides to route calls to other TSP networks using
the Internetinstead of the PSTNas the carrier network. Most VoIP TSPs will
assume your call is destined for the PSTNjust because it's an 11-digit phone
number. So these shortcuts tell the TSP that you don't want to route your call
to the PSTN. Instead, you want to route it over the Internet to another VoIP
TSP.

Why do this? If you have an unlimited calling plan, it won't really save you any
money. The call probably won't sound any better either. But this technique
does conserve your TSP's public telephone network capacity when you use
pure VoIP rather than VoIP-to-PSTN calling. If your VoIP TSP bills you by the
minute, it might not charge for calls that don't use its PSTN capacity. Plus, it's
just cool to let the Internet replace the Bell System for your phone calls.
Here's how.

VoIP services such as FWD, Vonage, IAXTel, VoicePulse, and Packet8 offer

dialing shortcuts to allow calls between their customers. If you're a Packet8
subscriber, you can reach any FWD subscriber by dialing 0451 and the six-digit
FWD number assigned to that subscriber (FWD subscribers don't have
traditional 11-digit phone numbers because the service doesn't provide PSTN
calling).Consult Table 1-2 for a rundown of the VoIP dialing shortcuts that you
can use to route calls between the various VoIP services.

Table 1-2. Pure VoIP dialing between TSPs using the Internet

Desired action Dialing shortcut

Call an IAXTel user from FWD *-1-700 and the seven-digit IAXTel number

Call a Vonage user from FWD **-2431 and the full 11-digit Vonage PSTN number

Call an FWD user from Vonage 0110393 and the six-digit or five-digit FWD number

Call an FWD user from Packet8 0451 and the six-digit FWD number or five-digit FWD number

Call a Packet8 user from FWD **898-1 and the full 11-digit Packet8 PSTN number

Call a VoicePulse user from FWD 1-700-900-0000 and the full 11-digit VoicePulse PSTN number

Call an IAXTel user from
VoicePulse 1-700 and the seven-digit IAXTel number

Call an FWD user from
VoicePulse

1-700-9 and the six-digit FWD number, or 1-700-99 and the five-digit FWD
number

Hack 3. Wire Your House Phones for VoIP

You can use your home phone wiring to connect all your home phones
to your VoIP service.

If you're happy with your VoIP service, you might want to consider replacing
your existing land-line telephone service with that of your new VoIP TSP. This
means you must provide a dial tone to all of your analog phones using the ATA
instead of a connection from the phone company. Your problem is that most
ATAs have only a single analog phone connector, limiting you to just one
phone. Radio Shack sells two-wire phone splitters that you can use to connect
two analog phones to the same jacksuch as the one on your ATAbut this isn't
an ideal solution. Who wants telephone patch cables snaking across the floor,
anyway?

Emergency 911 service is required on all VoIP lines sold in the U. S. But since VoIP TSPs
handle emergency call routing differently than the old Bell system, it's best to check with
your TSP to determine how they handle 911 calls. This way, you'll know what to expect
should you need to dial 911.

Fortunately, you already have all the wiring you need throughout your house
to share a single VoIP provider's service with multiple analog phones. The
phone wiring in most homes is a two-wire or four-wire cable that runs from
the telephone company's point of entry, called the demarc, to various rooms in
the house. In these rooms, a standard modular phone jack provides a place to
connect a phone using an RJ11-equipped telephone patch cable. Modular jacks
can support up to two phone lines, since analog residential telephony requires
only two wires per line. The vast majority of telephone company subscribers
use only a single phone line, though.

The analog wiring in the home provides a single-loop parallel circuit, which
means that you can piggyback modular jacks off each other. If you need to
connect a phone in a new room, you just locate the nearest modular jack and
run the wiring to it, instead of running the wiring from the new room all the
way to the demarc. In the same way, you can connect the ATA to any modular
jack in the house, and all of the analog phones connected to the other jacks
will be able to use the service provided through the ATA.

Before you do this, however, it's very important to disconnect the wires from
the phone company at the demarc, because the electric current supplied over
the phone-company lines could damage the ATA. It's best to find the demarc
while your phone company service is activethat way, you can hear the dial
tone disappear when you've disconnected the right pair of wires at the demarc.
Find your demarc, usually a gray or brown box mounted on the exterior of the
building. Inside the box is a cross-connect terminal with screw taps. On one
side of the terminal are the wires going into the building. On the other side
are the wires from the phone company.

Carefully disconnect the wires from the phone company; the dial tone on the
modular jacks inside the building should disappear.(You can take a cordless
phone with you to the demarc to listen while you're working.) Even if your
phone company lines are deadthat is, you have no phone company serviceit's
still a good idea to disconnect them. Disconnecting the wires from the phone
company side of the demarc will prevent electrical damage to your ATA in the
event the phone company turns the lines back on by mistake.

Don't accidentally disconnect your DSL line! If you have DSL Internet access from the
phone company, you might not be able to disconnect your phone company voice service
without inadvertently severing the DSL connection, too. Sometimes DSL runs on the same
pair of wires as a traditional analog phone service. If you have DSL, it must be on a
separate pair of wires from your voice phone line, or this hack won't work, and you will
have disconnected your Internet service to boot! Cable Internet subscribers can hack
without this worry.

If you're attempting this hack in an apartment, it might be a little tougher.
Your lease agreement might prohibit you from making wiring changes like this.
In some jurisdictions, the phone company itself or building codes might
prohibit this type of wiring hack. If you're not sure, call the phone company
and ask that a lineman come out to disconnect the wiring.

Once disconnected from the demarc, mark the pair of wires with a tag that
reads, "Phone company: Do not reconnect." This will prevent a well-meaning
phone company service technician from reconnecting your line and frying your
ATA.

Assuming your phone company disconnect was successful, you can now
connect the ATA into any RJ11 modular jack on the premises. This will let you
hear the dial tone generated by the ATA and make VoIP calls through any
phones that are connected to the other modular jacks throughout your home.

Most ATAs are designed to handle the power requirements of only a phone or
two, so check with the manufacturer of your ATA to see if you can reliably
connect more. I have two analog phones and two cordless phones (which
receive their power separately, anyway) connected to an 8x8 DTA-310, and I
don't experience any problems.

Devices that use analog modems to communicate on traditional phone lines, like older TiVo
boxes and fax machines, can't be used with the analog service provided by an ATA. The
fault lies with the analog-to-digital conversion of VoIP codecs, not with the modem itself.

Hack 4. Use a Softphone with a VoIP TSP

Get started with prevalent and freely available SIP softphones.

Depending upon which TSP you choose for your broadband VoIP service, your
service agreement might limit you to using only analog phones connected to
an ATA. However, if you have a lenient Bring Your Own Device (BYOD) service
agreement, your TSP will allow you to use your choice of IP telephony access
devices. This might mean you can use an IP phone, a PC softphone, an ATA of
your choosing, or even your own telephony server (Chapter 4 is dedicated to
this proposition) with the TSP's service. This hack will show you how to use
Counterpath's X-Lite softphone with your TSP. But first, a little background on
telephone networks, both analog and VoIP.

When you subscribe to broadband VoIP service, what you're really doing is
buying a single pathway through the TSP's network. Likewise, when you
subscribe to traditional phone service, you're really just leasing a telephone
line. With that line, you can use cordless phones, corded analog phones,
answering machines, fax machines, modems, and all kinds of other access
devices. These different analog devices all use the same electrical access
signaling to communicate with the phone company. You could think of this
analog protocol as even more primitive than the Morse code. It's simple, but
it's what allows analog phone devices to place and receive calls.

If legacy telephony devices are more primitive than the Morse code, Session
Initiation Protocol (SIP), the predominant VoIP access signaling protocol, is
light-years ahead of both. SIP is a suite of media-signaling software specs that
define how streaming media devices (and applications) should interact.

The most significant of modern streaming media apps is IP telephony, of
course, which brings me to my point.

Unlike old-fashioned telephone signaling, which is Plug and Play (PnP), using a
softphone is a bit more involved. To understand how a softphone works (or an
ATA or IP phone, for that matter), you must have a simple grasp of SIP.
Although SIP is a sprawling specification with dozens of proposed spinoffs and
major revisions, you need to know only a few things to get by with a SIP
softphone.

SIP is a lot like Simple Mail Transfer Protocol (SMTP). If you're comfortable
with that, SIP will make a lot of sense to you. Like SMTP, SIP clients (the

phones) send packet messages to SIP servers (such as proxies and telephone
systems) or to other SIP clients (such as other SIP phones). In these packet
messages are headers, strings of data that form requests for specific
functionality from the device on the receiving end. The requests could be to
establish a phone call, or merely to let a SIP server know that the phone
making the request is available to receive calls. Another function of these
requests is authentication. On many systemslike your broadband TSP's VoIP
networkthe calling device must register and pass a username/password
authentication to place or receive calls.

1.6.1. Different TSPs, Different Policies

SIP softphones, such as CounterPath's X-Lite, have many, many built-in
features. They can signal call transfers, place callers on hold, and even do
conference calling so that three or more parties can talk together. But whether
these features are enabled by your TSP is another issue. To conference-call,
for example, you might need to pay for an extra "line." Bear in mind that from
one VoIP service provider to the next, even a feature-heavy softphone product
could be impotent (and then there are those TSPs, such as Packet8, that don't
support softphones at all).

1.6.2. Install the Softphone

To get X-Lite, download it from http://www.counterpath.com/. X-Lite is, in
fact, a scaled-down freeware version of X-PRO, but for the purposes of this
hack, the feature disparity between versions makes no difference. Installation
is straightforward. On Windows, run the installer package, and on the Mac,
drag the X-Lite program icon into your Applications folder. Once installed,
launch X-Lite, step through its Audio Tuning Wizard, and look at its user
interface. By some strange coincidence, it resembles a nice-looking business
phone. Imagine that.

http://www.counterpath.com/

Vonage Users, Beware

If you're a Vonage subscriber, you can download the Vonage-branded version of X-Lite's commercial
counterpart, called X-PRO, from your account page on Vonage's web site. If you're using Vonage,
you're limited to using Vonage's version of X-PRO, and you won't have nearly the flexibility that the
non-Vonage version of the software provides. Indeed, once you have the Vonage version running,
the only administrative customization you can do is to change your username and password. You
can't really get at the softphone's SIP guts because Vonage's version keeps all that stuff off-limits
to the end user. Those seeking a deep hacking experience should probably consider BroadVoice
instead. Unlike Vonage, BroadVoice openly supports noncrippled softphones such as X-Lite.

1.6.2.1. Setting up the basics.

After you've gotten through X-Lite's Audio Tuning Wizard, you're ready to dive
into the SIP configuration settings. These define how the softphone will
authenticate and interact with your TSP's SIP server. To access X-Lite's
configuration settings, click the button to the right of the CLEAR button on X-
Lite's main window, as shown in Figure 1-2.

Figure 1-2. X-Lite's main window looks a bit like a cellular
phone

When the configuration window appears, double-click System Settings, and
then double-click Network This to bring up the network configurations (Figure
1-3). Find the Provider DNS Address setting and change its value to the DNS
server provided by your VoIP TSP (not your Internet Service Provider, or ISP).
Your VoIP TSP might require the use of its own DNS because its SIP resources
might be on a private domain that cannot be resolved through the public DNS
system. If your VoIP TSP didn't provide a DNS address, you can leave this
setting blank.

Figure 1-3. X-Lite's network configuration window

Click the Back button in the lower-left corner of the screen to get back to the
prior window. Here, you'll need to double-click SIP Proxy to open the SIP Proxy
Settings window. Double-click Default, and you'll be able to configure the
softphone to use a SIP proxy server, which is located at your VoIP TSP and
routes your softphone's calls. The X-Lite softphone can use more than one SIP
proxy, but in most situations, you'll need to use only one. This list describes
the settings you will need to configure:

Display Name

Your name, or as much of it as you can fit.

User Name

The SIP username provided by your TSP. This is likely to be your phone
number, including the area code.

Authorization User

This is normally the same as the SIP username provided by your TSP,
though some TSPs might issue a distinct authorization username. In
circumstances where multiple phones with their own phone numbers are
authorized for the same subscriber, the two usernames might vary.

Password

The password you and your TSP established when you set up your VoIP
account.

Domain/Realm

This tends to be the domain name associated with your SIP user URI,
which is similar to an email address. For
4403281414@sip.broadvoice.com, your domain/realm would be
sip.broadvoice.com. Your TSP will issue you an appropriate realm name if it
supports the use of softphones.

SIP Proxy

This is the address of the proxy server that will handle all your VoIP
registration activitythings like authentication and notifying the server that
you're available to receive calls. Unlike a SIP URI, which always contains
sip in the domain, the SIP proxy address can be any valid host-name.
Again, your TSP will provide you the address to use when you sign up.

mailto:4403281414%40sip.broadvoice.com

Outbound Proxy

This address is used to handle SIP requests that are bound for other SIP
domains. Since most VoIP TSPs don't support calling other realms using
SIP, and generally only support calls to and from the public telephone
network, an outbound proxy isn't necessary. But BroadVoice, for one,
requires that you configure an outbound proxy addressand in its case, it's
the same address as that used for the SIP proxy setting.

Use Outbound Proxy

This setting tells X-Lite whether you want to treat all SIP requests as
though they are destined for another realm. This effectively circumvents
the SIP proxy for any activity other than registration, though if the two
proxies have the same address, as in BroadVoice's configuration, it doesn't
matter what this setting is set to. The choices are Always and Never, in
case you were wondering.

Some TSPs have more than one SIP proxy, and they might
allow you to choose among them. To determine which one
to use, ping them all. The one with the least amount of
variance from one ping packet to the next is the one you
want.

Register

This setting tells X-Lite whether you want the SIP client to authenticate
and register with the SIP proxy server. It's very uncommon not to register,
and you won't get very far with your VoIP service if you don't. So
definitely set this one to Always.

For most TSPs, you can leave the rest of the settings unchanged. For a more
detailed description of X-Lite's settings, you can download a PDF user manual
from CounterPath's web site, http://www.counterpath.com/.

1.6.3. Make the Call

http://www.counterpath.com/

When the X-Lite phone has successfully registered with the TSP's proxy, its
main window will display a message like "Logged InEnter a Phone Number."
Now, you should be able to type in a valid public telephone network number
(try your cell phone for an easy test, if you have one). The service should
function at least as well as it would via an ATA and analog phone, with one
possible exceptionecho. Echo is common with softphones if you're using your
PC speakers to listen to the person on the other end of the call. If you
experience echo when you speak, use a pair of headphones to cancel the
acoustic feedback loop.

Hack 5. Prioritize Packets to Improve Quality

Voice traffic competes for available bandwidth on your broadband
connection. If there is not enough bandwidth, packets get dropped.

VoIP media streams require a constant, uninterrupted data flow. This data flow
is composed of UDP packets that each carry between 10 and 30 milliseconds of
sound information. Ideally, each packet in a media stream is evenly spaced
and of the same size. In a perfect world, a packet never arrives out of
sequence or gets dropped. Voice over IP media packets are framed in a highly
precise, performance-sensitive way, described in more detail in Switching to
VoIP (O'Reilly). Dropped packets and packet jitter (packets arriving out of
order) cause problemsbig problemsfor an ongoing call. These problems can
cause the voices on the call to sound robotic, to cut in and out, or to go silent
altogether.

Most of the packet-drop problems you'll encounter while VoIPing will be the
fault of your bandwidth-limited ISP connectionthe link from the ISP's network
to your broadband router. If you're downloading songs to your iPod, surfing
the O'Reilly Network, and patching your World of Warcraft client all at once,
you won't have enough bandwidth left over to support a VoIP call, but there's
a way to curb all those applications' thirst for bandwidth so that you can still
VoIP successfully. Read on.

To maximize call quality, the network connection carrying VoIP media packets
must be as reliable and consistent as possible. The data link to the ISP should
treat all voice media traffic with high priority. That is, a VoIP packet gets
handled first, as it is more important than another packetsay, for your
BitTorrent upload. If the data link is swamped and is out of capacity to carry
any more data, less important packets are discarded before more important
ones. The net resultfor high-priority services like voiceis better Quality of
Service, or QoS. Several standards exist to ensure that QoS can occur in a
broadband VoIP setup, chief among them: Type of Service (ToS) and 802.1p.

If your broadband router is relatively new, it might support these standardsso
enabling packet prioritization is just a matter of flipping some configuration
switches.

1.7.1. Prioritize Packets on a Linksys Broadband Router

ToS is a feature of Ethernet switches that permits packets tagged as high
priority to be handled first, maximizing their QoS. 802.1p is a similar concept,
but tends to hang around on routers, not switches. The Linksys BEFSR81
broadband router is a device that supports 802.1p. It sells for less than $100
USD online, and you can probably find one secondhand on eBay for even less.

In fact, setting up priorities on this router is a snap, thanks to Linksys's usual
snazzy web-based interface. Once you get the router unboxed and hooked up,
use the web interface to locate the QoS screen. (You'll see it after you click on
the Advanced Configuration button and the QoS tab.)

The QoS screen contains two sections: one that allows you to establish
queuing priorities for packets depending on their TCP/UDP port numbers, and
one that allows you to alter the queuing priority depending upon which
Ethernet switch port the traffic originated from. That is, since this router has a
built-in switch, you can prioritize some of its eight Ethernet ports using the
lower half of the QoS screen.

1.7.1.1. Prioritize RTP traffic.

Most VoIP media streams are carried by Real-time Transport Protocol (RTP)
packets. To raise the priority of RTP traffic, enter the port numbers 5004 and
5005, each on its own line, in the section labeled "Application-based QoS," and
click on the High Priority radio button for each. After restarting the router, all
RTP traffic sent from the router will be handled before any other traffic. This
technique is especially good if your LAN has multiple VoIP devices that send
media streams through the router.

1.7.1.2. Prioritize all the traffic from your VoIP ATA.

If you have only a single VoIP device to support, like a TSP-provided ATA, it
might be best if you tell the router to prioritize traffic by Ethernet port instead
of by application, as in the preceding paragraph. Specifically, you want your
router to prioritize traffic that comes from the Ethernet port where your ATA is
connected. To do so, use the High Priority and Low Priority radio buttons for
the numbered Ethernet ports. Set them up however you want and reset the
router.

1.7.1.3. Prioritize all the traffic from an attached Ethernet switch.

By setting the priority of a particular Ethernet port, you are telling the router
to prioritize anything from the device connected on this port, even if this
device is another switch. So, an easy way to give priority to all your dedicated
VoIP devices, like IP phones and ATAs, is to connect them all to the same
switch and then connect that switch to a high-priority Ethernet port on the
router.

1.7.2. Prioritize Traffic on a Standalone Switch

Many workgroup Ethernet switches offer QoS features that used to be found
only on advanced "managed" switches. These days, inexpensive switches like
the NETGEAR GS605 provide support for ToS and 802.1p. By placing such a
switch between your broadband router and your VoIP device, with voice traffic
prioritized, you can ensure that outbound voice streams get sent to your
broadband router before anything else.

1.7.3. What Happens When VoIP Passes Your Router

Unfortunately, no matter how well prioritized and orderly your VoIP media
traffic is when it's forwarded by your broadband router, it still might get
slowed down, ripped up, and otherwise tattered as it makes its way across the
Internet. The same is true of media packets that come from the Internet to
your routerthe packets carrying the voice of the person speaking to you. Since
you're receivingnot transmittingthose packets, you can't really prioritize them.
That's the responsibility of the routers that carried the packet to your
routerand many routers on the Net these days are ignorant of QoS.

In short, you can control traffic sent from your network, but not traffic sent
from other networks to yours. At first blush, this sounds like a threat to
broadband VoIP, but over the last few years, many have discovered that the
outbound traffic is all you really need to prioritize to have success with a
broadband TSP. This is because most broadband ISPs limit the amount of
outbound bandwidth available to each customer to discourage customers from
hosting high-traffic services on their residential broadband connections.

So, there's less available bandwidth to you for sending than for receiving. The
VoIP media stream most likely to suffer as a result is the outbound stream, the
one carrying your voice to the person on the other end of the call. As such, it's
appropriate to prioritize outbound traffic to overcome the limits many ISPs
force on outbound bandwidth.

Hack 6. Got 911?

For a multitude of technical and political reasons, Internet TSPs have
been slow to make reliable Emergency 911 dispatch dialing available
for their customers. Here's how to know if you've got it.

If you recently signed up for VoIP telephone service, the likelihood of you
having 911 service is low, but some TSPs do offer it. The fastest way to find
out if your TSP offers it is to contact them and ask. Vonage, for instance,
supports 911 call routing to most public safety jurisdictions, but you've got to
activate this "feature" first. Here's a snippet from Vonage's end-user
agreement:

You acknowledge and understand that 911 dialing does not function unless
you have successfully activated the 911dialing (sic) feature by following
the instructions from the "Dial 911" link on your dashboard, and until such
later date, that such activation has been confirmed to you through a
confirming email. You acknowledge and understand that you cannot dial
911 from this line unless and until you have received a confirming email.
2.5 Failure to Designate the Correct Physical Address When Activating 911
Dialing
Failure to provide the current and correct physical address and location of
your Vonage equipment by following the instructions from the "Dial 911"
link on your dashboard will result in any 911 communication you may
make being routed to the incorrect local emergency service provider.

This is a heavy-handed contract item, but what it means is that you have to
use Vonage's prescribed, email-based activation routine to use its 911 call
routing. Of course, I'm not a lawyer, and I can't provide an attorney's
interpretation of this agreement, so contact Vonage if you're unsure about it.
Other providers might handle 911 call routing similarly, so make sure you ask
before you sign up if 911 is a highly important feature.

The best way to deal with this intimidating contract is to know firsthand
whether your TSP has you set up for 911 calling, or be ready for an
emergency in case it doesn't. That's what you're about to do.

1.8.1. The Problems with VoIP Emergency Dialing

With a traditional phone line, the power for the line and phone comes from a
central power source at the phone company's exchange switch. This means
that even during isolated power outages, you can still make and receive
callsincluding 911 calls. With VoIP, your electric company and in-house
electrical circuits provide the power. If a circuit blows or the electrical supply
fails, you won't be able to make any calls.

This would also be the case if your Internet connectivity failed or experienced
a VoIP-prohibitive traffic jam. You wouldn't be able to make calls, or you might
not be able to hear or be heard. Neither would be acceptable in an emergency
calling situation, yet broadband VoIP TSPs can't prescribe a solution to this
problem. This is because the TSP doesn't control the traffic between your VoIP
device, your ISP, and the rest of the Net that provides the data transport
between your VoIP device and the TSP. Unfortunately, there aren't many
solutions to these issues.

1.8.2. Hack a Compromise Solution

In the event of an emergency, you're going to want to know you can pick up
the phone and reach help quickly. You can do a few things to ensure this.

1.8.2.1. Keep a Plain Old Telephone Service (POTS) line for 911 calls.

By keeping a traditional phone line hooked up, you ensure that you can reach
911 using "the old phone," and you provide a line that your VoIP ATA might be
able to use for 911 dialing. Many VoIP ATAs and VoIP-integrated broadband
routers, such as the Zoom X5V and V3 routers, allow you to connect a
standard POTS line that 911 calls can be routed to in case of an emergency.
Check with your VoIP TSP to see if it supports this kind of connection.

1.8.2.2. Program your VoIP device with speed dial to mimic 911.

If you absolutely can't keep a POTS line around (or you prefer not to bear the
expense of one merely for 911 dialing), you might be able to get your VoIP
equipment to somewhat mimic the real thing:

Program speed-dial buttons or key combinations on your IP phone or
softphone that will auto-dial the local fire department or dispatch center
via its regular, non-911 number. You should be able to obtain the local 10-

digit phone number for the emergency dispatcher by contacting the
administrative office of your local fire department. Ask them to give you
the phone number of the line where 911 calls are answered. If you get
lucky, the person you ask will know what VoIP is and will understand why
you're asking, but don't count on it.

If that's a dead end, you can program speed-dial buttons or key
combinations (maybe even 9-1-1 itself) into your IP phone or softphone as
a shortcut for calling a trusted neighbor or family member. This isn't
exactly emergency dispatching, but it's better than nothing.

1.8.2.3. Use a cell phone for 911.

Like a POTS line, a cell phone can often be used effectively to reach the 911
dispatcher, but check with your cell phone carrier to make sure 911 service is
available and reliable in your service area. Just because wireless 911 service
has been mandated by the Federal Communications Commission doesn't mean
it works everywhere, so check with your carrier to be sure.

1.8.2.4. Use a good old-fashioned permanent marker.

If all else fails, using a felt-tip permanent marker, write the full 10-digit phone
number of the local public safety dispatcher on every phone in your house that
uses your VoIP service. Don't write it on tape or sticky labels adhered to the
phone, because they will eventually peel off, and you never know when you'll
need that important phone number.

Hack 7. Update Your VoIP ATA Firmware

An ATA with up-to-date firmware will have fewer problems.

"Yesterday, I made phone calls through my VoIP TSP all day long! But today, I
don't even hear a dial tone when I pick up the phone!" grumbled the frustrated
consumer, regretting having replaced his local telephone service with a slickly
advertised VoIP service from a California company called Ownage. This was the
third or fourth time his VoIP service had quit working. So he grabbed his cell
phone and frantically called the Support Department at Ownage.

The tech who answered wasn't especially helpful. She listened to the customer
describe his recurring problem and then told him the same thing Support had
been telling him ever since the first time the dial tone disappeared: "Sir, can
you reboot your analog telephony adapter by removing the power cord and
then plugging the power cord back in again after a few seconds? That should
take care of the problem."

"But I do that every time. Ma'am, I bought this VoIP Hacks book that taught
me how to wire my ATA into my home phone wiring so that I could replace my
local phone service with Voice over IP, and now I'm very frustrated because
every few weeks, I pick up the phone and the dial tone is gone. I have to run
downstairs and reboot my ATA before I can place any calls, and I'm a little
frustrated," the exasperated customer said. "Why is this happening?"

"Well, it's actually quite simple. The ATA receives an IP address from your
DHCP server, which runs on your broadband router," she explained. "And your
broadband router receives an address from your Internet provider's DHCP
server. That IP address can change sometimes, when your DHCP lease expires,
breaking the UDP socket that connects your ATA with our network here at
Ownage."

"In English, please?" the customer said.

"Well, the problem occurs because your ISP assigns you a dynamic address
that periodically changes," the support tech explained. "When it changes, the
ATA loses communication with our VoIP server."

"So, it's my ISP's problem?"

"No, not exactly. Most ISPs use dynamic addresses for residential broadband

customers to prevent them from, say, hosting their own servers. So, they have
their reasons for using dynamic addresses, and there's little we can do about
it," she told him.

"Then what do I do to stop it from happening again?" the customer asked.

"I'm glad you asked," she replied. "You can download the latest firmware patch
for our ATA, which should make the ATA automatically reregister with our
server whenever it loses communication. That would be the best thing to do."

"Is there anything else I can do?"

"If you'd like to hack a solution, you could build a system that can perform a
regular, timed reboot of your ATA. Or you could cron a shell script that dials
into a Dataprobe AutoPALthis is a really cool device that lets you remotely
reboot thingsor you could…."

But he cut her off. "OK, I think I'll just download the firmware patch. Can I get
it from your web site?" he asked.

"Of course. Is there anything else I can do for you today?"

"I don't think so," he said.

"Thanks for calling Ownage, sir. Have a good day," she said, and they both
hung up. Satisfied, the customer picked up a pen and jotted down the entire
conversation in the hopes of someday publishing it in a book about VoIP.

You can find out more about the Dataprobe AutoPAL at
http://www.dataprobe.com/power/auto_pal.html.

1.9.1. The Hack

Updating ATA firmware is a great way to stay on top of known performance
issuesand it might allow you to take advantage of new telephony features
introduced by your TSP. Most telephony hardware vendors tend to make their
systems more stable with each release, so understanding your TSP's prescribed
method for installing firmware patches onto your ATA is important. I've chosen
Packet8 for this example. Refer to your specific TSP's support site for details

http://www.dataprobe.com/power/auto_pal.html

on its update procedures.

1.9.1.1. Get the firmware update.

Packet8, for one, offers a Windows executable that you can download from its
web site (http://web.packet8.net/download). This tool will automatically
identify your Packet8-provided DTA-310 ATA, download the patch, and install
it. If you prefer not to use the tool, you can install the patch using the Packet8
ATA's web interface. Instead of downloading the executable installer tool, just
download the firmware file. Save it and remember the path where you saved
it.

1.9.1.2. Locate your ATA.

Next, if you don't know your ATA's IP address, use Packet8's IP-address
identification service to find out what it is. This will be helpful if you've
forgotten it, or if your ATA is configured to get its IP address via DHCP. Simply
pick up your phone and dial 0120003. This will play back a recorded greeting
that includes your ATA's IP address.

Next, go to that address with your web browser, using a URL like this:
http://10.1.1.200, replacing 10.1.1.200 with your ATA's actual address.

When the ATA welcome page appears, click the Upgrade Firmware link. Click
the Browse button to locate the firmware image file you downloaded earlier.
Then, click Start Firmware Upgrade. After your ATA has rebooted, the update
will be finished.

http://web.packet8.net/download

Chapter 2. Desktop Telephony

2.1. Hacks 827: Introduction

To take advantage of computerized telephony, you don't need a VoIP gateway,
a fancy Internet Protocol (IP) phone, or an open source PBX (though those are
certainly fun, hackworthy telephony goodies). Your desktop PC can be the
nerve center of all your voice communications, replacing your telephone, your
caller ID display, your answering machine or voicemail, and possibly even your
phone bill (some VoIP services will bill you electronically).

Some pretty amazing software goodies are available to make your voice
communication life a real joy. Programs like Gizmo Project and Skype let you
make voice calls to buddies around the globefor free. Some of these programs
have built-in voicemail and call recording, and most are cross-platform,
offering support for Mac, Windows, and Linux.

Hardware contraptions and telephony automation software bring even more
exciting capabilities to the table. With a telephone-line interface for the Mac or
a voice modem in a Windows PC, all you need is the right software to tie your
phone completely to your desktopbut don't forget your wireless headset.
VoIPing is much cooler when you aren't physically bound to your PC.

So don't delay; dig in to this grab bag of desktop telephony ideas. They're just
the tip of the iceberg.

Hack 8. Access Next-Gen Voice Features

Broadband VoIP providers like Vonage don't just provide phone
service. If you know where to find the features, they integrate with
other applications on your desktopand with your digital life.

When you subscribed to your amazing new VoIP telephone service, you might
have missed the fact that, along with your new Internet calling, money-saving
VoIP service, you also picked up some nifty desktop telephony enhancements.
Most of the broadband VoIP phone service providers give you some cool extras
that you'd never get with a traditional phone companystuff like web-based
account management, voicemail-to-email integration, and even softphone
calling from your desktop. Did you know…?

2.2.1. Vonage Users Can Call Any Outlook Contact with One
Click?

Vonage lets you place calls to your Outlook contacts with a special piece of
software, an add-in called Click-2-Call, which comes on the Vonage software
CD. Install it and launch Outlook. You'll notice that your Outlook contacts now
have a Click-2-Call option in their Actions menu. Clicking this option dials the
contact's phone number via your Vonage analog telephone adapter (ATA) and
then connects the call with your phone. Pick it up; you should hear your call
ringing in the handset, waiting for your contact to answer.

2.2.2. BroadVoice Users Can Use a Web-Based Tool to
Place and Manipulate Calls?

If you're a BroadVoice subscriber, you've got some really cool web-based call-
management tools at your disposal. Thanks to BroadVoice Call Manager, a
web-based tool that BroadVoice gives you access to when you sign up, you can
use a web page to control your voicemail, enable and disable call forwarding,
and even tell BroadVoice how to handle your incoming calls based on their
caller IDsmaybe you want to forward certain callers to one number, while
allowing your BroadVoice voicemail to handle other callers. Nifty, eh?

2.2.3. You Can Automatically Dump Unwanted Girlfriends
and Boyfriends Using a VoIP-Based Service?

Sad, but true. Hey, if you can get a date using the Web, why not dump people
the Internet way, too? VoicePulse, a broadband VoIP carrier, provides the VoIP
network framework for a service that will help you handle unwanted advances
like a dating champ. You don't have to be a VoicePulse subscriber to use the
service, though. Any phone userVoIP, traditional, or cellcan dump somebody
the high-tech way.

Let's say you're at a party and some doofus asks you for your phone number.
Give the doofus the local number you find at RejectionHotline.com
(http://www.rejectionhotline.com/numbers_and_cities.php), rather than your
real number. When the dork calls for a date, he or she will instead get a
professional rejection courtesy of the Rejection Hotline.

Aside from being cruelly entertaining, the Rejection Hotline provides a great
demonstration of a large-scale soft-based voice system. By the time you're
done with this book, you'll probably have enough VoIP chops to start your own
version of the Rejection Hotline.

2.2.4. Broadvox Direct Users Can Use Find-Me-Follow-Me
so that They Can Be Reached Wherever There's a Phone?

You bet! When you subscribe to the Broadvox Direct VoIP service, you get a
web-based toolset that lets you configure a find-me-follow-me call list. That
way, when folks call your home phone, the service can attempt to track you
down on your cell phone, at Mom's housewherever you might be.

http://www.rejectionhotline.com/numbers_and_cities.php

Hack 9. Track Vonage Account Info on Your Desktop

This tiny desktop tool helps keep track of your minutes and voicemails,
too.

If you've never used Konfabulator (now known as Yahoo! Widgets) or Apple's
Dashboard widget system, you should try it out. Widgets are very simple,
specialized desktop apps that provide short, useful information in real time.
They can be floating windows, or they can be embedded into your desktop.
Remember Active Desktop from 1997, which let you dock an informational web
page into your Windows desktop? Well, widgets are about nine times better.

The widget experience is best with Yahoo! Widgets, a widget framework that
seamlessly integrates with Mac OS X and Windowsspecifically, Mac OS X 10.2
and higher, or Windows 2000 and XP. Literally thousands of different widgets
are available that run on both Mac and Windowseverything from weather
reports and stock tickers to cute little iPod remote controls and telephony-
related goodies. One such goody is the must-have vonageGauge widget by
Martin Koistinen, which gives you a one-glance update of your remaining
Vonage minutes, as well as a count of voicemails waiting to be listened to
(Figure 2-1).

2.3.1. Installing Yahoo! Widgets

It's quite worth your while to install Yahoo! Widgets, even if you can't benefit
from vonageGauge. Throughout this book, I reference a number of other cool
Yahoo! Widgets that will aide you in your telephony travails. The place to start
is http://widgets.yahoo.com/. Here, you can download a version of the Y!
Widgets system for either platform.

To install on Windows, just run the installer that you downloaded. To install on
Mac OS X, drag the Konfabulator icon (which might eventually become the Y!
Widgets icons) from the downloaded DMG volume folder into your system's
Applications folder. Then, launch it by double-clicking it.

Figure 2-1. The vonageGauge widget in action

http://widgets.yahoo.com/

You'll be stepped through a wizard that helps you decide where you want to
store downloaded widgets as your inevitable widget addiction grows. When the
wizard is complete, Konfabulator/Yahoo! Widgets will automatically launch its
default set of widgets. Now, to try out vonageGauge.

2.3.2. Installing the Vonage Widget

Download the vonageGauge widget from
http://www.widgetgallery.com/view.php?widget=36334 and save it in a
temporary folder or in the standard spot where you put downloaded files.
Unzip the download (or mount it by double-clicking it, if on a Mac) and copy
the enclosed widget file to the widget folder you selected during installation.

Mac users can launch the widget with no further issues. Windows users,
however, must do some manual configuration due to lack of SSL support for
the curl web utility in the Windows version of Konfabulator. Don't worry,
though. This is hardly a painful thing to fix. You need this because Vonage's
web site requires (as it should) SSL encryption to be employed when accessing
account information.

To rectify the matter, download the most recent version of curl from its web
site, http://curl.haxx.se/latest.cgi?curl=win32-ssl. From the downloaded zip
file, note the files curl.exe and curl-ca-bundle.crt, as you'll need them in a
moment.

Then grab the needed SSL libraries, ssleay32.dll and libeay32.cll, from
http://www2.psy.uq.edu.au/~ftp/Crypto/. The libraries will be located in a
binaries directory on one of the FTP mirrors listed here. The specific file you

http://www.widgetgallery.com/view.php?widget%3D36334
http://curl.haxx.se/latest.cgi?curl%3Dwin32-ssl
http://www2.psy.uq.edu.au/%7Eftp/Crypto/

need to download will have a name like SSLeay-X.X.X-DSA.msw32.zip. From
inside this zip file, copy the two SSL dll files to the Konfabulator wbin folder
located at \Program Files\Pixoria\Konfabulator\UnixUtils\usr\local\wbin.

Copy the two files from the curl download here, too. In total, you should have
copied four files into this folder.

2.3.3. Gauging Your Vonage Utilization

Launch the widget by double-clicking its icon in your widgets folder. The
thermometer-like display shows you how many minutes are remaining on your
monthly plan. The more minutes you use, the lower the height of the
"mercury" in the thermometer. This can help you conserve your utilization and
spread your usage out to control your Vonage burn rate. Note that if you have
an unlimited plan, this isn't really doing much for you, aside from showing you
how many voicemails you have waiting.

To listen to unheard voicemails, double-click the text at the bottom of the
thermometer, and your web browser will launch Vonage's services page, where
you can hear them.

Hack 10. Pick a Desktop VoIP Client

There's no shortage of fantastic VoIP software for Windows, Mac, and
Linux. But which one (or two) do you need?

VoIP applications tend, like email, to have a few servers facilitating interaction
on behalf of many clients. In the case of email, those clients are applications
like Microsoft Outlook, Eudora, and Apple Mail. But in Voice over IP, clients can
be standalone devices, like IP phones and interface boxes (ATAs like those
described in Chapter 1), or desktop applications like softphones or instant-
messaging apps. The information in this hack will help you decide which VoIP
client is right for you.

Some VoIP clients use well-known standards such as the Session Initiation
Protocol (SIP) and are designed for use with your choice of VoIP service
providers. Others are designed specifically to attach only to a certain service
such as AOL Instant Messenger (AIM). Still others are built using open
standards but are hard-wired to work with only certain services; Yahoo!
Messenger uses SIP but works only with the Yahoo! service. That is, you can't
use the VoIP features of Yahoo! Messenger with your own choice of VoIP
service providers.

Some VoIP clients are quite functional "out of the box," such as Skype, which
provides a user-friendly wizard to sign you up for Skype service and get you
logged in. With others, such as X-Lite and GnoPhonewhich are designed for
use with your choice of service providers, or even with your own VoIP
serveryou really need to know what you're doing to get much use out of them.
Since X-Lite and GnoPhone aren't officially sanctioned for use with a particular
provider, you've got to know how to configure them yourself.

2.4.1. Meet H.323, SIP, and IAX

VoIP clients and servers use three common standards for signaling call events.
(These events might be the beginning and end of a call, an attempt to join a
voice conference, or looking up a phone number to discover the best way to
reach a particular user on a VoIP network.) These three communication
protocols are H.323, SIP, and IAX. Very rarely does a single client support
more than one of these protocols (Firefly is an exception, and provides support
for both SIP and IAX). Having a basic grasp of the different protocols will help

you choose a VoIP client.

2.4.1.1. H.323: the earliest VoIP standard.

An H.323 client, such as Microsoft's Net-Meeting, really is good only in a
corporate telephone system environment. It was once fashionable to use
H.323 to have voice conversations with buddies over the Internet, but the rise
of broadband firewall routerswhich break the H.323 signaling protocoland the
growth of better protocols such as SIP led to a backslide in NetMeeting's
popularity as a personal VoIP tool. Microsoft has since replaced much of the
functionality of NetMeeting in its Windows Messenger IM software. So unless
you need a softphone that works with your H.323-based PBX system (like an
early-model Nortel PBX or Cisco media gateway), you're probably best served
by foregoing H.323-based software.

GnomeMeeting is a very NetMeeting-like application for Linux.

2.4.1.2. SIP: the dominant VoIP standard.

SIP has become the dominant multimedia communication protocol, used by an
overwhelming majority of VoIP service providers and professional phone
system vendors. Aside from voice, you can use SIP components to signal video
and instant-messaging conversations, too. I'll concentrate on SIP as it applies
to voice, though.

There are two kinds of SIP VoIP clients: those that allow you to connect to a
VoIP system of your choice and those that are programmed for use only with a
certain provider. SIP-supporting VoIP client software includes products such as
Yahoo! Messenger, Apple iChat, sipXphone, Firefly, GnoPhone, Gizmo Project,
and lots of others.

2.4.1.3. IAX: a really cool VoIP protocol.

Inter-Asterisk Exchange protocol (or IAX, pronounced eex) is used by a
growing number of VoIP client programs and service providers. The coolest

thing about IAX is that it's firewall-proof. In situations where SIP and H.323
are rendered inoperable by NAT firewalls like your home broadband router,
IAX shines. The only problem is finding a service provider with which to use
IAX (visit http://www.teliax.com/ to learn about one that offers an IAX-based
VoIP telephone service). IAXPhone and Firefly use IAX.

2.4.2. Understand VoIP Client Features

You ultimately will decide on a VoIP client based on features and compatibility.
While one VoIP client might support the protocol you needsay, SIPit might not
support the features you need. iChat and X-Lite are both SIP software, but you
can't use iChat with your own VoIP server; you need X-Lite for that. (If you're
reading this book from front to back, you might be wondering if I'm planning
to show you how to build a VoIP server. For the record, I am, but not until
Chapter 4.)

Then again, the protocol or innards of the software might make absolutely no
difference to you (plenty of folks use Skype, which doesn't use a standard
protocol at all). Table 2-1 is a matrix of VoIP client software and their features
and compatibility.

Table 2-1. VoIP client software compared

Software Mac Windows Linux Uses
SIP

Uses
H.323

Uses
IAX

Uses with your own
server

License
type

Gno-Phone No No Yes Yes No No Yes Open
source

IAX-Phone Yes Yes Yes No No Yes Yes Open
source

Skype Yes Yes Yes No No No No Free-ware

sip-Xphone No Yes No Yes No No Yes Open
source

AIM Yes (no VoIP
features) Yes No No No No No Free-ware

iChat Yes No No Yes No No No Free

X-Lite/X-
PRO Yes Yes No Yes No No Yes Free/Comm

http://www.teliax.com/

Firefly No Yes No Yes No Yes Yes Free

Gizmo
Project Yes Yes Yes Yes No No No Free

Net-meeting No Yes No No Yes No Yes Free

Gnome-
Meeting No No Yes No Yes No Yes Open

source

As you work through the hacks in this and the following chapters, you'll
become very comfortable with the differences and similarities of these
programsand you'll have an even better feel for their strengths and
weaknesses. A quick Google on any of these program names will get you to a
place where you can download and install the program. And, speaking of
Google, to get the most out of Google when using telephony, read "Google for
Telephony Info" [Hack #21].

Hack 11. Sound Like Darth Vader While You VoIP

Using Audio Voice Cloak, you can sound like Darth Vaderor like Alvin
and the Chipmunkswhile you talk online.

Star Wars Episode III: Revenge of the Sith hit the screens right around the
time I first tried this hack. When I filed into the very first midnight screening
of the movie at my local cineplex, I was particularly excited by the prospect of
again hearing the voice of the galaxy's most dysfunctional father. There's just
something about James Earl Jones and the flange effect.

After all, who hasn't looked into a mirror in a private moment and said, "I am
your father!" a few times? OK, maybe you're not as big a Star Wars geek as I
am, but if you are a closet Wookiee lover, I've got the perfect hack for you to
use the next time you chat with fellow fans.

If you think spy movies are cooler than Star Wars movies, you can also use this hack to
make yourself sound like one of those disguised-voice phone informants that sound a lot
like, well, Darth Vader.

Gold Software's nifty voice-changing tool, Audio Voice Cloak, lets you tweak
your speaking voice, adding pitch shifting, EQ, echo, and other sound effects in
real time (Figure 2-2). If you have Windows, you're in luck (Mac folks, see the
sidebar). Download and install AVC from
http://www.goldsoftware.com/downloads5903.html. Launch it and, after the
shareware commercial, you'll be able to click the All Controls button to reveal
all of the sound-altering controls available to you. The program uses the
default microphone input, so if you're using a nonstandard microphone
channel for your telephony or online chat, you'll need to click the Recording
Source button and select the right input.

Figure 2-2. Audio Voice Cloak's main interface

http://www.goldsoftware.com/downloads5903.html

While you tinker with AVC's settings, you can monitor yourself with the aptly
titled Monitor Your Voice button. Beware: you'd better put on a pair of
headphones, or you'll get feedback.

To get the most authentic Vader imitation (short of hiring Ben Burtt, the
famed sound effects guru from Lucasfilm), you'll want a slightly southerly pitch
shift (drag the pitch slider down a notch or two) and a flange effect (click the
Flange Off button to toggle it on). Finally, click the Center button on the
Equalization panel to flatten (or "reset") the equalizer. Then, monitor your
speech to hear how you sound. You should have the familiar, convincing tone
of a half-machine Sith lord.

Now, fire up your Yahoo! chat client or AIM and surf on over to the closest
chat room. Since AVC passes the modified audio through in real time, you can
chat live as Darth, ot you can raise the pitch shift to sound like a chipmunk.
And don't discount the immaturity factor: if you have kids who chat with their
buddies online, this could be a lot of fun!

Voice Alterations on a Mac

If you're a Mac user and you want to achieve the same voice alterations that Audio Voice Cloak
makes possible for Windows users, you'll need to get your hands on a tool for Mac OS X called
Soundflower. This awesome piece of software allows you to pipe audio intoand out ofapplications in
realtime.

The "pipes" carrying the audio are logical OS X sound devices, so you can use them with any audio
apps that support Core Audio, the standard sound framework on OS X. You can create a pipe to
carry your raw audio into Pro Tools Free or Logic Express, run it through whatever real-time
transformations you like, including pitch shift and flange for the Vader effect, and then send it out
to your softphone or chat application using another pipe.

For more information on Soundflower, check out http://www.macupdate.com/info.php/id/14067.

http://www.macupdate.com/info.php/id/14067

Hack 12. Grow Your Social Network with Gizmo

If you love Skype but hate the fact that it isn't open and standards-
based, you'll be right at home with Gizmo.

Gizmo Project, sponsored by SIPphone Inc. (http://www.sipphone.com/), seeks
to create a free, peer-to-peer softphone with instant messaging à la Skype,
but without the proprietary hindrances of Skype. In this regard, Gizmo does an
excellent job. Its features are the same on Mac, Windows, and Linux, toowhich
means no more waiting two months for Windows only features to show up in
the Mac and Linux clients, something Skype users are accustomed to. Another
cool plus that Gizmo brings to the table is free voicemail, something Skype has
yet to offer.

To get started with Gizmo, hook up your headset and microphone, and
download and install the client for your platform from
http://www.gizmoproject.com/. Launch the Gizmo app, and register for your
Gizmo name from the login screen. This name is both your login ID and the
name that other Gizmo callers will use to call you. Once you're logged in, set
up your user profile, as in Figure 2-3.

Figure 2-3. Gizmo's profile dialog

http://www.sipphone.com/
http://www.gizmoproject.com/

Don't forget to check the "List my profile in the White Pages for public
searches" checkbox if you'd like to hear from other Gizmo users. Otherwise,
they won't be able to find you when searching Gizmo Project's central user
database. If you'd like to search for some buddies to add to your contact list,
start by clicking the Search button in Gizmo's main window. Its search
function, which is similar to but less elaborate than that of Skype, shows you
the city, state, and country of each user, if they've entered that information in
their profile. Gizmo also has a big selection of rather cool built-in avatars
(buddy icons), or you can select your own image file to use.

Placing a voice call with Gizmo is as easy as entering the Gizmo name of the
person you want to talk to and clicking the round phone icon in the upper right
of the main interface window. If you don't yet have any buddies in your
contact list, a great place to start is the Gizmo Project Party Line, which you
can call by typing partyline in place of a normal Gizmo name. Calling the Party
Line connects you to other folks in a voice chat room who might be able to
help you start your social network with Gizmo. If there's nobody in the Party
Line chat room at the outset of your call, you'll literally hear crickets chirping
(how appropriate).

2.6.1. Extra Gizmo Features

Gizmo comes with a few extra features not available with a default install of
Skype.

2.6.1.1. Map It.

Have you ever wanted to know where the person you're talking to is located?
When you're in a call, click the Map It icon, and you'll see a very nice satellite
photo with lines drawn between the estimated locations of the call's
participants, as in Figure 2-4.

Figure 2-4. Gizmo's Map It function

2.6.1.2. Record It.

Podcasters rejoice! Folks who've been looking for an easy way to record their
VoIP calls from Skype and other softphone apps need look no further than
Gizmo Project, which has the built-in ability to record all calls without the need
for any other software. As a call is in progress, if you want to record it, just
click the circular record button at the top of the conversation pop-out window
that appears at the outset of each call. Recorded calls are saved in a WAV
audio file on the desktop by default (you can change this location in Gizmo's
preferences).

2.6.1.3. Gauge It.

At the bottom of Gizmo's main window is an icon that looks like the signal-
strength icon you might be familiar with from your cell phonea row of vertical
bars that indicate the quality of the connection to the phone network. In
Gizmo's case, the bars represent the quality of the voice pathway your
Internet connection provides. If you double-click the icon, you'll get a pop-up
dialog that gives you more details about your available bandwidth, and you'll
find out Gizmo's opinion of your Internet connection (apparently Gizmo
doesn't particularly care for mine; see Figure 2-5).

Figure 2-5. Gizmo tells you how well it expects to perform
using your broadband connection

2.6.2. Share the Love

If you've come this far with Gizmo and still haven't placed an actual call, why
not use that 25-cent call-out credit that SIPphone Inc. provides and call a
buddy to tell him about it. Do this by typing your friend's phone number into
the top drop-down list and clicking the round phone button. After a few
seconds, your friend's phone will ring and you'll be able to talk for as long as a
quarter will allowwhich isn't long, so you might want to purchase more call-out
credits by clicking the Out icon on Gizmo's Home tab.

2.6.3. Also Worth Checking Out

If you're really into desktop VoIP and you'd like to experiment with other
standards-based messaging apps, I recommend JAJAH in addition to Gizmo. It's
a Windows-based SIP softphone application that lets you call traditional phone
numbers, like Gizmo, but also supports the IAX protocol and Skype, giving it
the ability to communicate with several VoIP networks simultaneously.

I've always had to maintain several instant-messaging accounts to keep in
touch with all of my online buddies on Yahoo!, AIM, and ICQ. To avoid running
several instant-messaging clients, I have adopted Trillian, a Windows-based
instant-messaging client that can talk to all of these networks, letting me
manage all my IM activity from a single interface. (A similar Mac multinetwork

IM tool is Adium.)

As Skype, Gizmo, and other VoIP networks grow, you'll probably need to
attach to them simultaneously, as you would in the realm of IM. JAJAH lets
you connect to VoIP networks using several major standardsSIP, IAX, and
Skypesimultaneously, saving you from having to run several VoIP clients at
the same time.

Hack 13. Record VoIP Calls on Your Windows PC

Unless you're using Gizmo, you probably can't record your VoIP calls
without a little outside software assistance.

If you constantly forget things (which I do), or you're a private investigator
(which I'm not), you might have wondered how to record calls so that you can
listen to them later. Recording calls on traditional phones and IP phones is a
simple matter of analog electronics (see Chapter 5), but recording softphone
and instant-messenger voice calls is another matter entirely. Of course, you
can set an old-fashioned tape recorder on your desk and press the Record
button, but come on! In our digital world, there's got to be a better way, right?

Of course there is. You can find a handful of useful recorder apps at
http://www.download.com/ and http://www.downloadsquad.com/ that can
record WAV files and MP3s from any sound input or output on your Windows
PC. One such application is Total Recorder, developed by High Criteria (Figure
2-6). In its default configuration, Total Recorder will record only the output
(the person on the other end of the call), but not your voice.

To alleviate this, click Total Recorder's Recording Source and Parameters
button and then check the "Record also input stream" checkbox. This way,
your recording will be sure to contain both sides of the call. The "Remove
silence" checkbox will enable a feature that doesn't save moments of silence
into the recording. This might be useful if you record a ton of calls and review
them regularly, as waiting through unneeded silence would certainly slow this
process and use up more hard-disk space.

A real time-saver is found by checking "Convert using Recording Parameters
specified below" and then clicking the Change button. In the dialog window
that appears, you can adjust the sound resolution and the output format. Just
about every sound codec you'd want is supported, from Windows Media to
MP3. For even more sound-conversion goodness, be sure to check out "Create
Telephony Sounds with SoX" [Hack #24].

Figure 2-6. Total Recorder can save audio recordings from
MSN Messenger, Yahoo! Messenger, AIM, Skypeyou name it

http://www.download.com/
http://www.downloadsquad.com/

Hack 14. Handle Calls with Windows Software

Have your PC screen your calls and take your messages with handy
Windows tools.

If you've got a Windows PC with a standard modem (it doesn't have to be a
voice modem), you can use some really cool software applications that can
identify incoming calls, with their caller ID information shown on your
Windows desktop. (Mac users can use Phlink for this purpose [Hack #15].)
Some of these apps can even respond to incoming calls so that you don't have
to.

This kind of application is a lot of fun, because while it technically doesn't use
any VoIP components (it's still strictly legacy phone technology), it will give
you an idea of how much power you as a phone user have when you use
software to enhance telephony applications. After all, your phone service is
merely an application, and you'll be using a PC application to enhance it.

You'll need caller ID service enabled on your phone line if you want your PC to handle your
calls in this way.

2.8.1. PhoneTray Free and PhoneTray Dialup

A cool freeware app that provides a caller ID pop-up window in the Windows
system tray is appropriately named PhoneTray Free. In addition to the pop-up
display, PhoneTray will log all incoming callshandy when you've been out, and
you want to know whom to call backand it has a feature called Privacy
Manager that lets you block calls from certain callers (Figure 2-7). PhoneTray
also has a handy scheduler to establish your "quiet time," so you aren't
receiving annoying calls in the middle of the night. While these features might
be available from your local phone company, you can certainly save a few
bucks by implementing them yourself with a PC tool like PhoneTray. The only
hardware requirement is a modem connected to your phone line.

Figure 2-7. PhoneTray Free's Privacy Manager

Figure 2-7. PhoneTray Free's Privacy Manager

For a small premium, PhoneTray's developer will sell you a version of the
package, called PhoneTray Dialup, which works with caller IDenabled modems.
Using this feature, if you're a dial-up Internet user, you can receive caller ID
signals on your PC desktop while remaining online. You can obtain PhoneTray
from http://www.traysoft.com/.

2.8.2. Call411

Another nifty free application that handles caller IDs in your Windows
workspace is Call411. While this app doesn't have the elaborate interface or
the extensive call-handling options of PhoneTray, it's an effective, no-frills tool
for displaying caller IDs, as shown in Figure 2-8. You can associate a custom
ringtone with each caller ID if you like, and Call411 will even audibly
announce incoming callers' phone numbers if you wish. You can obtain Call411
from http://www.soft411.com/company/Soft411/Call411.htm.

http://www.traysoft.com/
http://www.soft411.com/company/Soft411/Call411.htm

Figure 2-8. Call411 is a basic caller ID display tool

Tools like PhoneTray and Call411 are ideal for traditional phone service, but should work
OK with VoIP services like Vonage and Packet8, too, since their ATA behaves just like a
traditional phone line, with caller ID and all.

2.8.3. Call Soft and Call Soft Pro

If and when you outgrow Call411 and PhoneTray's features, and you find
yourself wanting a complex voicemail and auto-attendant to handle your calls,
you can graduate to a more capable commercial application such as Call Soft
Pro, available from TOSC (http://www.toscintl.com/) and shown in Figure 2-9.
This full-featured telephony system lets you tap into many of the standard
calling features on your phone line. Even things like distinctive ring are
supported. Call Soft Pro is a message recorder and interactive voice-response
tool, so your callers can be prompted to select which voicemail box they'd like
to record their message in. If you've got a large household, this can be a

http://www.toscintl.com/

godsend. Mom and Dad can have the generic family voicemail greeting, and
teenagers Todd and Susie can feel cool because they have their own individual
voicemail greetings. With distinctive ring enabled on your phone line, the kids
can even have their own separate phone number, and Call Soft Pro will
recognize their ring pattern and play their special greeting.

TOSC makes a scaled-down version of Call Soft Pro called Call Soft, which is geared more
toward home users and lacks many of the automation features of the Pro version.

Figure 2-9. Call Soft Pro is a comprehensive message recorder
and telephony package for Windows desktops

The program also offers a searchable call log, can receive faxes (which are
saved as bitmapped files so that you can view or print them), and turns your
PC into a speakerphone so that you can listen to calls through your PC's audio
output and speak into your PC's microphone input. This allows you to use your
PC as a phone and to record your conversations, instead of merely using it for
automated call processing. Of course, there's a good bit of that in Call Soft Pro,
too. Automatic forwarding of recorded messages via email is supported, and

Call Soft Pro can provide music-on-hold for your callers, too.

Hack 15. Let Your Mac Answer and Log Your Calls

Ovolab's amazingly simple Phlink telephony package lets you do some
really cool stuff on your Maclike answer calls and remotely control
your Mac with a telephone call.

Watching Steve Jobs pitching the digital lifestyle at Macworld Expo is a favorite
pastime of Mac enthusiasts. In fact, there's little that Mac users love more
than watching the leader of the Mac world tout new developments and cool
little tweaks in Apple's flagship iLife applications: iTunes, iPhoto, iDVD, iMovie,
and GarageBand. But for all the pomp and circumstance surrounding these
ravishing rollouts, Apple seems to have missed a critical component of the
digital lifestyle, one that was around long before DVDs or MP3stelephony.

Fortunately, an Italian company called Ovolab has created a really cool
application that serves as the missing telephony link for iLife. Phlink is a
hardware-software combination that answers calls with a voicemail greeting,
logs them, and even allows you to set up AppleScripts that you can control
remotely from a touch-tone phone. The hardware piece of the Phlink setup is a
USB device with two RJ11-type ports, one for your standard phone line and
another for your analog legacy telephone. The software component (available
at http://www.ovolab.com/phlink/) consists of an application that looks like
iTunes (see Figure 2-10). You get all of this for less than the cost of dinner (at
a really nice restaurant).

Installing Phlink is a snap. Just plug the USB interface into an available spot
on your Mac or its keyboard. There's no power adapter to worry about,
thankfully. Plug your phone line into the "line" port on the USB interface, and
plug your analog phone into the "aux" port. Then, drag the Phlink icon from
the included CD-ROM to your Mac's Applications folder.

Figure 2-10. Phlink's main interface

http://www.ovolab.com/phlink/

2.9.1. Pop-Up Caller ID Notifications

In Phlink's Preferences window (available by clicking Preferences from the
Phlink menu), you can enable an option that shows you a pop-up window with
the caller IDs of incoming calls on your screen, so you can decide whether you
want to answer them without having to even take your eyes off the screen, let
alone leave your desk.

What's cooler than that? Well, how about telling your Mac to answer the call so
that you can get on with what you're doing and not be bothered with
answering the phone. To do so, just click on the round phone button in the
Phlink action window, as shown in Figure 2-11. This starts the greeting to the
caller and records the caller's message.

Figure 2-11. Phlink's action window

2.9.2. Custom Greetings

When Phlink answers each incoming call, it looks in the Phlink Items folder in
the Library/Application support folder of your user profile for a file called
greeting.txt. If it finds the file, it uses the Mac's built-in speech synthesis to
speak the words in the file to the incoming caller. To modify this greeting,
simply refill the contents of this file with whatever you like.

If Phlink can't find the greeting.txt file, it looks in the same directory for
greeting.aif or greeting.mp3. Whichever of these files is present is played back
to the caller. To create your own audio greeting, use a recording program
(such as Cacophony [Hack #22]) to record and mix this greeting as you see
fit.

To get files into the right format for a greetingi.e., AIF or MP3use SoX. Refer to "Create
Telephony Sounds with SoX" [Hack #24] for tips.

2.9.3. Answer Fax Calls

Phlink can answer fax calls. In the Preferences window on the Fax tab is a
checkbox to enable automatic answering of incoming fax calls. You can have
the Mac OS X fax viewer handle the faxes, or use the script option to handle
them yourself. And speaking of scripting, now that you've covered the basics of
Phlink, let's begin customizing!

Hack 16. Run Phlink Even When Logged Off

Phlink is a great application, but it's a desktop program, not a server
app that's made to run in the background. So, when you log off, it
shuts down and can't answer callsunless you customize it to do so.

To get Phlink to launch upon login is really easyjust make it a login item for
your user account in OS X Preferences. But getting Phlink to stay running
even after you've logged out is a challenge. Of course, Phlink is most useful
when it's running at all times, so you need to be able to do this.

Thankfully, for every unique need there's an equally unique hack. In this case,
we're going to launch Phlink under a different user account. This user account
will be automatically logged in at boot time, allowing the Phlink application to
launch in that user account. Then, we'll create an Apple-Script login item to
switch to the user-selection screen automatically, giving you the option of
logging in as any user you want.

To get started, open up System Preferences and click the Accounts preference
pane. Click the + icon to create a new account, and call it Phlink. Make sure it
is set to log in automatically upon startup. Now, log in as this user. Be sure to
enable Phlink as one of its login items. To enable login items for the Phlink
user, return to System Preferences and select the Login Items tab. Now you
can add Phlink to and remove it from this list, causing it to launch whenever
the user phlink logs in.

Now, launch the AppleScript editor, and create a script with this single line:

 do shell script "/System/Library/CoreServices/Menu \\ Extras/User.menu/
 Contents/Resources/CGSession suspend"

The purpose of this one-line AppleScript is to present the user-switching dialog
on the screen. We'll use this AppleScript to get back to the traditional login
screen once the Phlink user has logged in and the Phlink app has launched.
Save this AppleScript and then make it a login item for the user phlink. (Be
sure it's listed after the Phlink login item.) Then, save and exit Preferences.

Now you're ready to try it. Reboot your Mac. If all goes well, your Mac will log
in as the Phlink user automatically, launch Phlink, and return you to the

screen where you can choose which user to log in as (or the username and
password prompt, if that's how your Mac is configured).

Now, Phlink will handle your calls even while you're logged in as another user,
or logged off altogether, because it's running as its own user in the
background.

Hack 17. Greet Callers Differently Each Day

Many voicemail systems let you use a different greeting depending on
the day of the week or the time of day, but not Phlinkthat is, unless
you know how to use cron.

As you know from "Let Your Mac Answer and Log Your Calls" [Hack #15], a
file in the /Library/Application Support/Phlink Items directory contains your
outbound greeting. Either it's greeting.txt (for a synthesized voice greeting),
or it's an audio file in the form of greeting.aif or greeting.mp3. But suppose
you want to use a different greeting depending on the day of the week.

Thank goodness for cronthe trusty Unix relic is a workhorse. Assuming you
have all of your daily greetings stored in the same place, you can create a
script that cron can use to update the greeting based on the day of the week.
Here's the directory listing on my machine:

 Mac-Mini:/Library/Application Support/Phlink Items kelly$ ls -al
 total 328
 drwxr-xr-x 10 tedwalli admin 340 Jun 9 22:39 .
 drwxrwxr-x 16 root admin 544 Jun 6 19:50 ..
 -rw-r--r-- 1 tedwalli admin 6148 Jun 6 19:50 .DS_Store
 -rw-r--r-- 1 tedwalli admin 94 Jun 6 19:50 greeting.txt
 -rw-r--r-- 1 tedwalli admin 755002 Jun 9 22:39 greeting_friday.aif
 -rw-r--r-- 1 tedwalli admin 740222 Jun 9 22:39 greeting_monday.aif
 -rw-r--r-- 1 tedwalli admin 700101 Jun 9 22:39 greeting_thursday.aif
 -rw-r--r-- 1 tedwalli admin 694450 Jun 9 22:39 greeting_tuesday.aif
 -rw-r--r-- 1 tedwalli admin 801006 Jun 9 22:39 greeting_wednesday.aif
 -rw-r--r-- 1 tedwalli admin 154102 Jun 6 19:41 ring.aif

Now, create a quick shell script like this one, for each day of the week:

 #!/bin/sh
 ## This script is for Monday.
 cd "/Library/Application Support/Phlink Items"
 cp f greeting_monday.aif greeting.aif

Save each daily shell script in a convenient place, perhaps in a cronjobs folder
in the user profile of that phlink user we made in "Run Phlink Even When
Logged Off" [Hack #16]. Don't forget to make them executable (run chmod 755
* in the directory where you've put them). Then, add each file to the last
column of the /etc/crontab file, which defines scheduled Unix activities that
should run in the background on Mac OS X. In this example, the daily file
rotation occurs at 6:30 a.m. from Monday through Friday (the Friday greeting
remains in place until Monday morning):

 # cron jobs to rotate the phlink greeting
 30 6 * * fri ~phlink/cronjobs/Friday.sh
 30 6 * * mon ~phlink/cronjobs/Monday.sh
 30 6 * * tue ~phlink/cronjobs/Tuesday.sh
 30 6 * * wed ~phlink/cronjobs/Wednesday.sh
 30 6 * * thu ~phlink/cronjobs/Thursday.sh

Now, your Phlink setup will have a different greeting depending upon the day
of the week.

Hack 18. Use Caller IDs in AppleScripts

One of Phlink's AppleScript hooks occurs when incoming calls arrive,
which means you can create actions to handle how those calls are
handled.

If Phlink didn't have AppleScript support, it wouldn't be nearly as cool as it is.
In fact, when I first fired up the Phlink application, I looked at the minimal
interface and thought to myself, "Is that it?"

The fact is that Phlink's most awesome functionality is in its AppleScript object
model. By using Phlink's functions in tandem with other AppleScript aware
applications, you can do some very cool telephony automation, from music-on-
hold to greeting callers with the Mac's speech synthesis in interactive stages.
Anything you can retrieve into an AppleScript variable from other Mac apps,
you can pass into Phlink functions for interaction with callers. The only limit,
then, is your imagination.[1]

[1] For an unrelated affirmation of the limitlessness of the human spirit, visit http://www.zombo.com.

As I got into setting up these voice AppleScripts, I was reminded of the interprocess
communication goodness of the vintage Arexx scripting language on my old Amiga 4000
computer. I got to thinkingwouldn't it be cool to do some voice hacks on that 25 MHz
classic? Then I realized that the Amiga's pokey 680x0-vintage processors don't even have
enough processing power to encode and decode modern audio codecs! My hopes of
splashing the cover of O'Reilly's Make magazine with a really tasty Amiga VoIP hack were
dashed, and I returned to the 21st century realm of VoIP Hacks.

A great place to start building Phlink AppleScript hacks is with caller ID. When
Phlink receives an incoming call, the first script Phlink calls is ring, which you'll
create in the /Library/Application Support/Phlink Items directory. The call
doesn't have to be answered to execute this script; the line just needs to ring.

Now, while I'm not going to give you a full-blown explanation of AppleScript
(O'Reilly's AppleScript: The Definitive Guide does a far better job than I could
hope to, anyway), these examples should suffice to let you hack Phlink. Since
we're starting out with the ring script, take a look at this example, which
announces the caller ID of the call while it's ringing:

http://www.zombo.com

 on incoming_call given callername:theName
 if the Name is ""
 return true
 else
 say ("You are receiving a call from " & theName) as string
 return false
 end if
 return callAgain
 end incoming_call

It will probably take two rings before caller ID information is transmitted from
the phone company (it tends to come between rings), but Phlink calls the ring
script until it returns false, as in the previous example. An even cooler use of
the ring script is to retrieve the caller's Address Book entry based on the caller
ID signals received:

 on incoming_call given callername:theName
 if the Name is ""
 return true
 else
 tell application "Address Book"
 set selectedPerson to (the name of the person \
 whose name contains theName)
 end tell
 end if
 return callAgain
 end incoming_call

Hack 19. Control iTunes from Phlink

If you have a ton of iTunes tracks just sitting there on your hard drive,
why not put them to work in Phlink.

One of the coolest things about Phlink is its AppleScript abilities. Much like
PhoneValet and other desktop telephony packages, custom scripting is where
all the fun lies. Sure, letting folks record their voicemail onto your computer is
fun, but integrating the other stuff on your computer with the phonethat's
even better. You've seen how to do some basic database interaction between
Phlink and the Address Book [Hack #18]. That's a great starting point for this
hack, because it introduces the events that can trigger scripts within Phlink. If
you haven't been there already, check it out, come back, and I'll be waiting
here with this iTunes hack.

Your iTunes music library makes the perfect source for on-hold music, or just
for a cool telephone gimmick like a "remote phone jukebox." The following
AppleScript will actually search through your iTunes music library and find
non-copy-protected songs (i.e., songs imported from CDs or MP3 files, and not
purchased online) to play for the caller:

 on do_action given call:my_call
 tell application "iTunes"
 set track_found to false
 set num_retries to 0
 repeat until track_found
 set my_track to some file track of library playlist 1
 if (kind of my_track contains "Protected") is false then
 set track_found to true
 else
 set num_retries to (num_retries + 1)
 if num_retries > 100 then
 exit repeat
 end if
 end if
 end repeat
 set my_song_file to the location of my_track
 end tell
 tell application "Ovolab Phlink"
 tell the_call to play (my_song_file as alias)
 end tell

 end do_action

my_song_file is a variable that stores the location of a song to play for the caller,
which is triggered to play in the fourth-from-last line in the script. You can
trigger this bit of AppleScript from any of Phlink's event-handling scripts (ring,
greeting, hangup, etc.). The Ovolab Phlink user manual, written by fellow
O'Reilly author Matt Neuberg, provides a scholarly introduction to all of
Phlink's event-handling scripts.

2.13.1. Automatically Pause iTunes, Resume iTunes

Ovolab provides the following script to pause iTunes music playback when the
phone rings. (This script is really cool. As Forrest Gump would say, that's
about all I have to say about that.) Save it as ring.scpt (or modify your
existing ring) and put it in the Phlink Items directory:

 on incoming_call given call:the_call
 set my_paused to false
 tell application "Finder"
 if (exists of (every application process whose creator type \
 is "hook")) is true then
 tell application "iTunes"
 if player state is playing then
 set my_paused to true
 pause
 else
 set my_paused to false
 end if
 end tell
 end if
 end tell
 tell application "Ovolab Phlink"
 tell the_call
 make new bag with properties \
 {name:"pauseitunes", waspaused:my_paused}
 end tell
 end tell
 return false
 end incoming_call

Now, to resume iTunes automatically when the phone call is hung up, add this
to your hangup script:

 on do_action given call:the_call
 tell application "Ovolab Phlink"
 tell the_call
 try
 if waspaused of bag "pauseitunes" is true then
 tell application "Finder"
 if (exists of (every application process whose \
 creator type is "hook")) is true then
 tell application "iTunes" to play
 end if
 end tell
 end if
 end try
 end tell
 end tell
 end do_action

For more fantastic Phlink scripting magic, be sure to visit the message board at
http://www.ovolab.com/, and for some more cool ideas for iTunes/Phlink
scripting, visit the source of several of these scripts,
http://www.gunsmoke.com/scot/home_automation/phlink.html.

http://www.ovolab.com/
http://www.gunsmoke.com/scot/home_automation/phlink.html

Hack 20. VoIP While Fragging

This sure beats typing "OWNED!" in an in-game chat window.

If you're like most übergeeks (and I say this as an admitted übergeek), there
might be no pastime more satisfying to you than online gaming. Indeed, it's
hard to beat the pure excitement of fragging your best friend with a rocket
launcher in Quake or laying down the Horde smack onto a World of Warcraft
n00b. Of course, if you're a Ventrilo or Teamspeak user, you can use Voice
over IP to rub it in your opponent's face verbally when you crush him.

Ventrilo and Teamspeak provide hands-free conference calling designed for
online gaming. This way, teammates can coordinate their strategies verbally,
communicating by mouth without interrupting their in-game action, rather
than by typed messages, which can be a real distraction. Nothing's a greater
mood killer than having to stop to type a chat message to call for a rescue,
only to get hit from behind by a stray rocket while typing your plea.

One great feature of both Ventrilo and Teamspeak is their "push-to-talk"
capability. This allows you to treat them like a walkie-talkiecutting out the
background noise that would otherwise be transmitted if the chat were always
live. With this feature, you can even forego headphones if you keep your
transmissions brief so as to discourage echo.

2.14.1. Ventrilo

Ventrilo, from Flagship Industries (http://www.ventrilo.com/), is a team voice
chat system that uses the Global System for Mobile (GSM) codeca very
bandwidth-conservative codec that's excellent for use with games (you don't
want your voice traffic to create in-game lag, so a codec like GSM is perfect).
Ventrilo has client and server components. The client runs on Windows and
Mac OS X, and the server runs on Mac OS X, Windows, and Linux. A version of
the client for Linux is said to be in development.

To run the Windows client, you'll need DirectX 8.1 or later (available from
Microsoft and standard with Windows XP and above). The Mac client requires
OS X Version 10.3.2 or higher. You'll also need a microphone and a pair of
headphones (the headphones are superior to using freestanding speakers,
because ambient noise from the speakers will "spill" into the microphone,

http://www.ventrilo.com/

creating really annoying echo for your game-playing buddies).

2.14.2. Teamspeak

Teamspeak (http://www.goteamspeak.com/) is similar in purpose to Ventrilo,
though its web-based chat room administration tools are more advanced, and
its bent toward gaming is a lot more obvious (Ventrilo professes to be useful
for other things in addition to gaming). Teamspeak uses the Speex codec,
which, like GSM, is very lean on bandwidth, making it a good choice for lag-
sensitive gamers.

Teamspeak offers clients and servers for Windows and Linux. They're fully
interoperable with each other. Like Ventrilo, Teamspeak requires DirectX 8.1
(or later), and its designers insist on a pair of headphones to reduce echo. Also
offered is a hosted, pay-for-play service based on the software.

Though not officially sanctioned by the designers of Teamspeak, a great Mac
client called Teamspeex has been developed. You can download it from
http://www.savvy.nl/blog/download.

2.14.3. Skype

Perhaps the easiest way to VoIP while fragging is with Skype. This desktop
voice chat package supports conference calls with five participantsperfect for
maintaining open communications for a marauding patrol of Halo warriors
behind enemy lines. Skype has several things going for it: it has handsfree
operation, making it ideal for gaming; it's fully cross-platform (even Linux has
a client); and it's stable.

But since only five conference participants at a time are permitted in Skype
(four plus the person hosting the conference), you aren't going to accomplish
your entire 500-person EverQuest guild meetings using Skype. That kind of
scalability is something you'd need Teamspeak for. For small conferences,
Skype is adequate. Perhaps it's no coincidence that the maximum size of a
quest group in World of Warcraft is five membersideal for a Skype conference.
Just be sure the host PC has plenty of horsepower and a solid broadband
Internet connection.

Skype for Windows runs on Windows 98 and up, while Skype for Mac runs on
Mac OS X 10.2 and up. For more Skype details, sift through the delicious
goodies in Chapter 3.

http://www.goteamspeak.com/
http://www.savvy.nl/blog/download

2.14.4. The Skype Alternatives

Gizmo Project, which is a lot like Skype but uses industry-standard SIP for call
signaling, is (as of Version 1.0) very limited in terms of conferencing. In fact,
it doesn't have any VoIP-based conferencing built in at all. Conference calling
using SIP requires a centralized conference-mixing server, a complexity that
makes Skype preferable to Gizmo for in-game conferencing.

Google Talk (http://talk.google.com/) is another Skype alternative. Like Gizmo
Project, Google Talk, which has two-party voice calling features, supports a
well-known standard for call signaling, called Jabber. And like Gizmo Project,
Google Talk is free. iChat can be configured for use with the Google Talk
Jabber network, as can various other IM clients such as Trillian and Adium. So
you aren't confined to using Google's Windows-only client if you want into the
network. But that's where the pros end and the cons begin. Like Gizmo,
there's no way to do conference calls. And worse still, voice chat between
official Google Talk clients and non-Google clients such as iChat doesn't work
at all. So Google Talk's usefulness as an in-game voice conferencing tool is,
well, nonexistent.

2.14.5. The Hardware

To have voice communication while blasting the competition to bits, you're
going to need headphones and a microphone. The mic can be built into the
headset, or it can be freestanding. But, definitely use headphones. They'll
cancel the acoustic feedback you would get if you were using regular speakers,
and they'll substantially reduce annoying echo. Your gamer buddies will thank
you. There's nothing quite as unnerving as a VoIP-enabled four-player round
of Warcraft III when one of the players is echoing like crazy. Friends don't let
friends frag without headphones.

http://talk.google.com/

Hack 21. Google for Telephony Info

Harness the world's most knowledgeable search database for your
own voice purposes.

Near the end of the dotcom boom, a little search engine startup called Google
was born. Today Google dominates search on the Internet. Though Google has
moved into the realm of VoIP with Google Talk, its new IM client, the
company's best offering to telephony is still its famously useful search engine,
Google.com.

2.15.1. Mine for Phone Numbers

If you're looking for a particular phone number, or for a group of phone
numbers to be used in telemarketing or fundraising applications, a great place
to start is with Google. (And a really smart next step is the National Do Not
Call Registry [http://www.donotcall.gov/] if you plan to solicit the folks you're
calling. Once a call recipient informs you that his number is on the list, it's
illegal for your organization to call him again.) Here are some Google search
queries that you can use to turn up phone numbers.

Suppose you want to turn up numbers in a given area code and prefix. You can
form your Google query like so:

"(440) 328" OR "440-328"

The quotation marks surrounding the two expressions tell Google to treat
them each literallythat is, to return only instances of the entire expression
("(440) 328") and not mere instances of the elements within the expression
((440) or 328).

Google will return web page hits that contain occurrences of the area code 440
and the prefix 328 (you might get some non-telephone-related stuff, too) in its
two most common forms: with parentheses, and with a hyphen. Of course, the
results you get from that query might require a lot of interpretation and
massaging before you can really use the phone numbers that you've turned up
in an automated dialing app or something similar.

http://www.donotcall.gov/

2.15.2. Complete That Phone Number

Sometimes the results from a Google phone number search can be fast, useful,
and simple to interpret. Let's say you need to call somebody in your
neighborhood, like the local pizza parlor. Let's also say that you know the
pizza shop's phone number begins with the area code that's common in your
neighborhood. Bang a query like this into Google and you'll have the whole
phone numberand your pizzain no time:

Hungry Howie's Lakewood 216

By giving Google the name of the pizza place, the city it's in, and the area
code you expect its phone number to have, the first Google result is (almost)
always the right oneand the entire phone number you're looking for usually
shows up in the short synopsis on Google's results page, so you don't even
need another click. Hey, when you're craving pizza, time is of the essence,
right?

2.15.3. Telephone Privacy Check

While you're perusing Google's phone number department, you might want to
see if your phone number is in the Google search index. If it is, your privacy
could be in question. Try Googling your phone number, with and without
punctuation, and see what results come back. You might even turn up
somebody who has published your phone number without your authorization.
This isn't entirely likely, but I remember a couple of years ago when a list of
thousands of valid credit card numbers made it into the Google index, so it's
not out of the question.

2.15.4. Research VoIP History on Google Groups

Probably the best historical newsgroup search tool on the Web, Google Groups
lets you go back in time to search for public correspondence about all kinds of
topics, including Voice over IP. By surfing to Google Groups
(http://groups.google.com/), I was able to find that the first mention of VoIP
on record occurred in early 1996 and that the first mention of Voice over IP
dates back to early 1995. A good deal of early IP telephony research is

http://groups.google.com/

probably quoted in the Google Groups archives, so if you're interested in the
history of VoIP, this is a fantastic source. After all, as Gavin DeGraw sings,
"Part of knowing where I'm going is knowing where I came from."

Hack 22. Telephonize a Sound File

This trick is useful for taking on-hold music for a test drive, or just for
making recordings sound like they're coming through a telephone.

Whenever you work with telephony, be it desktop telephony apps or full-
fledged IP phone systems, you're bound to encounter prerecorded sounds;
things like on-hold messages, voicemail greetings, and even elevator music
are often generated by computerized telephony applications. You might even
need to create sounds that can be used with these apps. Generating your own
telephony-ready sounds is a snap using desktop recording software. You can
even resample your recordings so that you'll know exactly how they'll sound in
a VoIP environment. This way, you can "preview" them.

Sound-effects producers who need to make somebody's voice sound as though
it's being heard through a telephone employ a technique called downsampling.
This gives recordings that tinny telephone flavor. For a perfect phone-sound
simulation, you'd also need to chop the high and low frequencies of the sound
using an equalizer tool, but downsampling alone produces a pretty convincing
"phone sound." Here's how it's done.

The easiest way to downsample a sound is by using a simple sound editing tool
such as Richard Bannister's Cacophony for Mac OS X, or Windows Sound
Recorder, which comes with Windows. In essence, you open the sound file,
change its sampling resolution to 8 bits per sample and 8,000 samples per
second, and then save the file. (On a standard telephone call, there are 8 bits
per sample and 8,000 samples per second in the media stream.) This matches
your prerecorded sound to the sampling resolution of a typical phone call.

In Figure 2-12, an MP3 sound file has been opened in Cacophony. Its left and
right waveforms are displayed, since it's a stereo sound.

Figure 2-12. An MP3 file opened in Cacophonyready to
"telephonize"

Clicking Cacophony's Resample function displays the Resample dialog, which
lets you specify the exact factors you'll use to downsample the sound. All
telephony applications are mono, not stereo. All legacy telephone equipment
(and most VoIP equipment, too) uses a sampling resolution of 8 bits and 8,000
Hz, as shown in Figure 2-13. Once these settings are made, clicking OK
dismisses the Resample dialog and performs the downsampling on the sound
file.

In Figure 2-14, the resulting sound waveform is telephonized. Listen to it now
and hear the difference. It sounds much flatter, less crisp, and possibly more
robotic. It sounds like you're hearing it through a telephone, which is the idea
here.

If you are considering putting on-hold music or background music on your VoIP system,
this technique will let you hear roughly how it's going to sound. Some musical recordings
might sound very poor once they've been downsampled, but now you'll know how they
sound before your callers do.

Figure 2-13. Cacophony's Resample function lets you
downsample sounds from hi-fi to "tele-fi"

Figure 2-14. The resulting waveform is a mono, low-fi sound

Hack 23. Record an Audio Chat on Your Mac

Have you ever wished you had a recording of a past conversation?

Recording incoming audio from any application is a snap on Mac OS X, as long
as you have Ambrosia Software's free trial version of WireTap Pro or Rogue
Amoeba's Audio Hijacktwo applications that permit you to siphon audio
produced by desktop applications into sound files in real time. In this case,
we'll use the X-Lite softphone [Hack #4] and Wiretap 1.0 to make an AIFF
sound file that contains an incoming caller's side of the conversation. With this
hack, you can record an audio chat on your Mac.

To make a recording that mixes both ends of the conversationyour voice and the caller's
voiceyou'll need more elaborate sound-recording software, like the pay-for version of
Ambrosia's WireTap (WireTap Pro), or Rogue Amoeba's Audio Hijack Pro. Both applications
allow you to record from the Mac's audio output (for grabbing the caller's voice) and its
audio input (for grabbing your voice).

First, we'll need to get WireTap
(http://www.ambrosiasw.com/utilities/wiretap/) set up to make the recording.
Since the audio fidelity of a phone call on the X-Lite softphone isn't likely to be
higher than 8-bit/8 kHz, we'll configure WireTap to save using the same
fidelity. Once you've launched WireTap, go to Preferences from its application
menu and note the soundcompression settings. By default, the fidelity will be
44.1 kHz stereo and 16 bit sampling depth, as shown in Figure 2-15. Click the
Settings button to change that.

As shown in Figure 2-16, you can drop the sample rate and depth to match an
appropriate level for a telephone call (and consequently make your AIFF
recording smaller). There's no point in saving 16-bit recordings if the audio
coming from the recorded call is only 8 bits deep, and there's no point in
creating a stereo recording of a phone call. Once you've made the changes,
click OK to dismiss the Sound Settings window, and close the Preferences
window, too, if you wish.

Next, fire up your X-Lite softphone (this will also work with Skype and iChat),
and make sure it is registered to send and receive calls with your VoIP
provider, as described in "Use a Softphone with a VoIP TSP" [Hack #4]. Then,

http://www.ambrosiasw.com/utilities/wiretap/

call somebody or have somebody call you. As the call begins, click the red
circle (record) button in WireTap's floating window, shown in Figure 2-17. This
will start an AIFF recording of the current audio output, including the audio
coming from the softphone. When the call concludes, click the square (stop)
button.

Figure 2-15. WireTap's Preferences window

Figure 2-16. WireTap's sound settings

Figure 2-17. WireTap's recording controls; pretty simple

If you didn't disable the option to launch the recording automatically upon
completion, it should immediately appear in a QuickTime window for you to
listen to.

Hack 24. Create Telephony Sounds with SoX

Use the Swiss Army knife of sound-conversion utilities for your VoIP
setup.

Though dozens of utilities are available for converting and tweaking audio
files, the cross-platform open source audio tool called SoX really stands out. If
you've got a Linux or BSD PC, chances are pretty good that you've got SoX
installed. Windows and Mac users will have to download a compatible version
of SoX from http://sox.sourceforge.net/. And since SoX is a command-line
utility, you'll need to be at least a mediocre typist to get through this hack and
the next two hacks. You'll also need to know how to get to a command line on
your particular platform. On Windows, this means running the MS-DOS
prompt. On the Mac, it's the Terminal. Linux and BSD users need only to fire
up xterm. This hack will show you the ins and outs of using SoX to convert
audio files from one format to another, add audio effects, and telephonize your
audio through downsampling.

2.18.1. File Format Conversion

File format conversion is perhaps SoX's biggest strength. You can use SoX to
convert from one format to another (WAV, AIFF, etc.) and from one encoding
to another (uLaw, MP3, etc.). It even supports some fossilized sound formats
like 8SVX and .voc. All of this format support is helpful if you want to use a file
that you have only in some oddball format that your telephony software can't
use.

In most telephony applications, like voicemail and interactive voice response
(IVR), where recorded voice prompts are the user interface, you'll encounter
sounds in one of a few encoding formats:

GSM

An encoding commonly used on cell networks and in Voice over IP calls.
This is the de facto encoding used by Asterisk voicemail greetings and
other announcements.

http://sox.sourceforge.net/

uLaw or aLaw

The two most common 8-bit pulse code modulation formats; they are most
frequently used in legacy telephony, such as T1 voice connections and
digital PBX telephone systems. uLaw is common in North America, and
aLaw is common in Europe.

To convert a sound file from one format to another, there are two ways to go.
SoX can recognize the input and desired output formats merely by parsing the
filename extensions you provide, as in the following example:

$ sox basic _instructions.ulaw basic_instructions.gsm

This syntax takes basic_instructions.ulaw and creates a GSM-encoded file
called basic_instructions.gsm. Of course, if the file you're converting doesn't
have a file extension in its name, you can express your intentions more
explicitly:

$ sox t gsm another_brick t aif another_brick_in_aiff_format

By specifying the encoding type with the -t option, you can tell SoX specifically
how to convert the file, regardless of filenames and extensions. But that's not
all you'll find SoX useful for.

2.18.2. Adding Sound Effects

Aside from converting files between formats, SoX can add some cool effects,
too. Equalization, reversal, chorus, reverb, time shifting, and vibrato are some
of the most commonly used effects options. Some of these effects are probably
more useful in a pro audio environment than in VoIP, but there are uses for
audio effects even in telephonylike an on-hold message that hypes a particular
product or event. Such an announcement might benefit from a little reverb or
delay. Just think about some of the sound effects used in monster-truck
advertisements beckoning your attendance on SundaySunday-Sunday!
Consider the following syntax, which adds reverb to a sound:

$ sox bigFootSunday.aif bigFootSundayVerb.aif reverb 1 1000 15

This example takes bigFootSunday.aif and adds 1,000 milliseconds of reverb
with a 15-millisecond delay before saving the file as bigFootSundayVerb.aif.
You can combine sound effects, too. So, for instance, you can place a reverb
and an EQ effect together:

$ sox gilmour.aif gilmour.aif reverb 1 1200 30 highpass 1000

The reverb effect is followed by a high-pass filter, which is an EQ technique
that trims (reduces) samples below a certain frequencyin this case, 1 kHz. You
can experiment with the high-pass and low-pass features to trim frequencies,
letting you obtain a number of cool effects. Make your music sound like it's
coming through a megaphone or, with a little reverb, make it sound like you're
singing in the shower. Now, it's up to you to find an appropriate venue for all
this aural awesomeness in your VoIP setupper-haps in your Skype answering
machine [Hack #37].

2.18.3. Resample and Re-Level Sounds

The SoX bag of tricks has many compartments. Aside from EQ, effects, and
format conversion, you can use SoX to downsample sounds, as in the
Cacophony example earlier in this chapter [Hack #22]. SoX can also alter a
sound's volume level (amplitude level).

To alter the sample rate, use the -r option and specify the desired sample rate
in kilohertz. Of course, you can decrease (downsample) or increase the sample
rate, but increasing the sample rate won't result in a higher-fidelity sound.
This example takes a file called bytor.wav and downsamples it to 8 kHz:

$ sox bytor.wav r 8000 bytor_8khz.wav

To alter a sound's amplitude, or volume level, use the -v option. This example
increases the volume of the sound by 25% (using a negative value will
decrease the volume):

$ sox v 0.25 bytor.wav bytor_loud.wav

Hack 25. Mix the Perfect Announcement

Put SoX to work mixing different sound filesmusic, spoken wordsto
make the ultimate announcement message.

Are you looking for an easy way to make a seriously cool announcement for
your Skype answering machine or outgoing voicemail greeting on your
Asterisk VoIP server? You could buy a copy of a high-end audio package like
Logic Express for all its cool sound-mixing and effects abilities. Even some of
the simpler sound editing tools let you merge files, but (if you have Unix)
chances are good that you've already got SoX! If you're on a Mac or Windows
box, you're only a download away from having it, so take the MacGyver
approach and save some cash. (Mac, Windows, and Linux users can get SoX
from http://sox.sourceforge.net/.)

In this little project, we'll mix an announcement message with some
background music, and then trim the resulting file to just the right length, all
using the SoX toolset. Finally, we'll save it in the appropriate sound format.

To get started, find a piece of music that you think will make good background
musicpreferably something that has no lyrics to interfere with the spoken
message you'll be mixing in. The music can be in any format SoX can
handle.wav, .mp3, whatever. If you can, note the length (in minutes and
seconds) of the music file, as this could come in handy later. To figure out the
length, just launch the file in your favorite sound player. It should show you
the length.

If you use copyrighted music for commercial or nonprivate use, you'll need permission from
the artist who created the music, or you'll have to pay royalties for using the music!

Next, record your announcement using Windows Sound Recorder, Cacophony,
or your favorite sound recorder. Drop the resulting file in the same folder with
your music file. Ohand you might want to note its length, too. Use these two
commands to perform some conversions on your raw audio files:

$ sox bg_music.mp3 r 14400 c 1 bg_music.wav
$ sox announce.wav r 14400 c 1 announce.wav

http://sox.sourceforge.net/

These two commands grab the files, resample them both to 14,400 kHz, and
make them mono (-c 1), not stereo sounds, ready to be mixed together. The
following command mixes the two resultant files into a single file:

$ soxmix bg_music.wav announce.wav mixed.wav

If you find that the background music is too loud or soft, you can adjust it and
remix the files:

$ sox bg_music.wav v -0.25 bg_music_quiet.wav
$ soxmix bg_music_quiet.wav announce.wav mixed.wav

Then, all that's left is to get the file into the format you need for your
telephony application. If it's for an Asterisk announcement, you'll probably
want it in GSM format at 8,000 kHz:

$ sox mixed.wav r 8000 mixed_for_asterisk.gsm

Converting to other formats as opposed to GSM is as simple as changing the
extension on your final filename.

Hack 26. Sound Like a Pro Announcer

Do you want to have a deep, commercial-sounding voice on your
greeting messages? Here's how.

You might think it takes a ton of natural talent to sound like one of those
professional, deep-voiced commercial announcers that you hear in the on-hold
messages of big companies. But all it really takes is adherence to a few simple
guidelines for clear speech…and maybe a little hacking talent.

First, the speech guidelines. Commercial announcers usually speak much more
slowly and concisely than would be appropriate for normal conversation. As a
result, they are very easy to understand and follow. Radio announcers often
place almost lopsided stress on the words they want to emphasize, too. So, if
your recorded announcements are sales pitches, you'll want to speak
concisely, slightly more slowly than normal, and with great stress on the words
you'd like to emphasize. You'll also want to smile while you record yourself. It
seems odd at first, but a smiling announcer conveys a different attitude than a
blank-faced one. A high school or college speech textbook might be a good
source if you really want to hack your speaking ability!

Now, on to the hack. By now, you've probably used SoX to convert files from
one format to another, but did you know SoX can deepen your voice like a pro
announcer? To do this, you'll need to use SoX's shift (pitch) effect, which takes
a positive or negative integer as an argument. If positive, the integer will
increase the pitch of the sound by the number of steps specified. The higher
the number, the higher the pitch will be. The lower the number, the lower the
pitch will be. In this case, we're going for pro announcer, not chipmunk, so
start with a value of -2 and work your way down until it's deep, but not
artificial-sounding:

$ sox announce.gsm announce_lower.gsm pitch -2

Hack 27. Record a Videoconference

Snapz Pro X lets you record video and audio togetherthe perfect way
to record a video conference.

The term VoIP usually refers to Voice over IP, but it could easily mean Video
over IP, too, since video conferencing is such a popular use for the Internet
today. Tools such as Yahoo! Messenger and Apple iChat allow you to do face-
to-face video conferences across the Internet, but one thing neither of these
tools allows is recording your conferences. Fortunately, Ambrosia Software's
Snapz Pro X lets you create a QuickTime file of any onscreen activities,
including a video conference. Unfortunately, it runs only on Mac OS X, so
Windows and Linux users are out of luck.

You can download a copy of Snapz Pro X from http://www.ambrosiasw.com/. It
will install as a background application that you can summon with a special
key combination that you'll assign right after it installs, the first time it runs.
When Snapz's main window appears, click the Movie button. Here, you can
configure the size and aspect of the capture, as well as the frame rate that will
be used in the saved video file and whether to include sound from the audio
output (the conference participants' voices) or microphone input (your voice).

You can crop, resize, and drag Snapz's viewfinder so that it wraps tightly
around the area of the screen you want to record. Just don't drag the window
you're recording from out of the area of this viewfinder, as it remains in a
fixed size, shape, and location throughout the recording (unless you've
configured it to follow your mouse movements, which is probably not a good
idea when recording from a video chat window). Once you've got everything
positioned just right, press the Return (Enter) key, and Snapz will prompt you
for a filename. Enter this and click OK, and recording will begin and will
continue until you summon Snapz again using the key combination you
established during installation.

Unless you change Snapz's default settings, the saved QuickTime file will
appear in the Preview immediately after the recording is complete. If you want
to view it later, just call it up from the Finder.

To burn a video DVD of a Video-over-IP conference, record it with Snapz and then import
the QuickTime file into iDVD.

http://www.ambrosiasw.com/

Chapter 3. Skype and Skyping

3.1. Hacks 2840: Introduction

If you don't already use Skype, you really don't know what you're missing.
Skype is the predominant desktop VoIP application: a softphone and a peer-to-
peer (P2P) network that operate over the Internet to link people of all stripes
around the globe. In fact, Skype has become a verb as well as a noun. You can
use Skype to call people, or you can Skype peoplehence this chapter's title.
Ohand you don't have to worry about finding somebody to call (that's been my
problem with iChat AV), since Skype has been downloaded 150 million times
and averages anywhere from 1 million to 2 million people logged in at a time.

Skype lets you make free, Internet Protocol (IP)-based phone-style calls to any
other Skype user and allows you, through optional paid services called
SkypeOut and SkypeIn, to place and receive calls to and from regular phones
via the Public Switched Telephone Network (PSTN). Skype's sound quality is
often reported to be superior to that of a traditional telephone, to boot.

Skype has several things going for it that other VoIP softphone solutions don't.
It's the only P2P softphone application that runs on Windows, Mac, Pocket PC,
and several flavors of Linux (Fedora, SuSE, Debian, and Mandrake, anyway).
It's also the only softphone application that implements its own network and
signaling protocol.

There's a reason for this proprietary characteristic of Skype's design despite all
the great open VoIP standards such as Session Initiation Protocol (SIP). Since
Skype uses its own P2P network and proprietary signaling protocol, it can get
around the biggest problems facing the open-standard SIP protocol, which
often breaks when used on phones that have to connect to the Internet
through a broadband firewall router. SIP was designed without firewalls in
mind, so SIP-based VoIP can prove frustrating for home users who just want to
call a friend without a lot of technical hassle. By solving this problem, Skype
has become the most widely used desktop VoIP application in the world. This
might be why Skype's official slogan is "it just works."

Yet this is also why Skype inspires some controversy. VoIP advocates want to
leverage Skype's ubiquity to advance VoIP's popularity, but to do this it needs
to support the open standard for VoIP signaling: SIP. Perhaps at some point,
Skype will provide for SIP compatibility or open the proprietary Skype
signaling standard so that VoIP hackers can bridge the gaps between SIP-
based apps and the Skype network.

Perhaps Skype's coolest feature isn't a feature at all. The Skype application
programming interface (API) is a development framework that allows

programmers to build übercool add-ons for the Skype network. I've pointed out
a few of the coolest ones in this chapter.

3.1.1. How Skype Works

Unlike centralized voice networks like Yahoo! Chat and MSN Messenger, Skype
uses a P2P network. This means that call routing is handled by a collective,
serverless group of PCs running the Skype client software. As peers on the
same network, each Skype node is responsible for routing calls on behalf of
other nearby nodes. This gives its proprietors advantages over traditional, SIP-
based VoIP telephony service providers (TSPs). For instance, Skype has less
centralized infrastructure to maintain, compared to a VoIP TSP like Vonage,
which has to have server capacity dedicated to every call it handles.

There are some centralized features in the global Skype network, of course.
The contact search function wouldn't work so hot if it weren't able to query a
global database of user information. Centralized functionality like this is
clustered around Skype supernodes, which are actually just PCs like yours that
are running Skype. Like a P2P file-sharing network, centralized search
functions are facilitated using certain member PCs that are elected to have
specific duties, like cataloging user data for searches and facilitating the logon
process.

3.1.2. What It Does and Doesn't Do

Skype is largely feature-complete on all the platforms it officially supports,
which makes it preferable for voice chat to something like Yahoo! Chat, which
is a web-based party-line system that really works only with Windows. Skype
is great for two-party direct voice calls, multiparty conference calls with up to
fifty participants, and text chatting. Even cooler is the fact that Skype's user
directory has advanced search functions, so you can find somebody of a certain
age, gender, name, or country.

But Skype doesn't have the social networking depth of the Yahoo! system, so if
you're looking for a voice chat "room" where people can freely come and go
from the conversation, Skype is inferior to Yahoo! Chat. And unlike the Yahoo!
and iChat instant messaging tools, there's no built-in support for
videoconferencing. For that, you'll need to download and install one of the
video add-ons [Hack #39].

3.1.3. What About Security?

As an ethically concerned VoIP hacker, you're probably wondering if this P2P
network is secure. The answer is that Skype is and isn't secure. The fact that
Skype encrypts all call signaling and media transmission does point to security,
but the fact that your calls are routed using anonymous PCs that are members
of the Skype P2P network points to lack of security. As computers become
faster and faster, it might someday be trivial to crack Skype's encryption, and
when that day comes, the P2P network itself will be a security flaw. For the
time being, Skype is fortunately quite secure, so dig in. One hundred fifty
million downloaders can't be wrong. If you need more information than what is
provided in this chapter, take a look at Skype Hacks (O'Reilly).

Hack 28. Get Skype and Make Some New Friends

Looking for like-minded buddies on the Net? Look no further than
Skype's built-in contact search function.

You can obtain the Skype software at http://www.skype.com/. Though it's
available for the Pocket PC [Hack #34], it is best to have your first Skype
experience using a desktop operating system: Windows, Mac OS X, or Linux.
The Pocket PC version is really nifty, but not entirely practical. Nor is it very
customizable. So download one of the desktop OS versions from Skype's web
site and install it.

Windows users will need Windows 2000, XP, or newer. Linux users will need
SuSE, Fedora Core, Debian, or Mandriva (consult Skype's web site to find out
precisely which kernel versions are supported). Mac OS X users will need
version 10.3 (Panther) or newer. On all platforms, 256 MB of RAM is a
reasonable minimum, though you might be able to get by with less.

3.2.1. Set Up Skype

Once you've downloaded Skype, setting it up is as simple as running its
installer (Windows) or dragging its application icon to the Applications folder
(Mac). On all platforms, the Skype installer is practically foolproof.

(You'll find that ease of use is Skype's middle name; for instance, you can call
a person simply by double-clicking his name.) The first time you run Skype,
you can set up a new Skype username, or reuse an existing one to log in.
Creating a Skype account is free, though some Skype features, such as
voicemail, require a paid subscription.

3.2.2. Find Someone to Talk To

The quickest way to find someone to talk to is to ask a real-life friend for his
Skype username. Of course, if you don't have a real-life pal to Skype, you can
search the Skype user directory for a lonely soul willing to talk to someone.
Seriously, Skype has a mode called Skype Me that users can enable, which
says they are willing to talk to anyone who comes calling. To find people
willing to talk, click the Add button in Skype's main window; then click the

http://www.skype.com/

magnifying glass icon to display the search window. Here, you'll see a
checkbox labeled "Search for people in 'Skype Me' mode." Enabling this option
before clicking Search will hopefully display users looking for buddies to call
them. Double-click a search result to call that person.

One reason people have embraced Skype globally is because of its integrated
social network. People are able to find each other through Skype's built-in
contact search (available through Contacts/Search for People). If you're
looking for somebody with whom you can speak German, for example, it
usually takes only a single visit to this window to find users in Germany with
the status of Skype Me.

Of course, if your objective is to learn German (or Mandarin, or Japanese… you
get the idea), you can search the Skype online forums at
http://forum.skype.com/ for "learn German" or "learn Japanese." You'll find
bilingual users who would love for you to Skype them, with whom you can try
out your linguistic chops. A casual perusal of the Skype Me forum will put you
in touch with thousands of other folks who are endpoints on the social
networkendpoints with various interests:

Pets (http://forum.skype.com/viewtopic.php?t=29213)

Chinese genealogy (http://forum.skype.com/viewtopic.php?t=29029)

CB radio (http://forum.skype.com/viewtopic.php?t=28119)

If you really want somebody to Skype you, post a message in one of these
forums, and before too long, you'll have a buddy list that's a mile long (or a
mile longer). Maybe you'll even learn some Swahili.

3.2.3. Still Don't Know Whom to Call? Meet Kerli

Here's something you'll find useful on both the desktop and mobile editions of
Skype: the official (though minimally documented) Skype echo test service.
This automated Skype service is a user named echo123 that records a 10-
second sample of your voice and then plays it back for you to listen to. This
will give you a rough idea of how well your Skype setup is working, and
whether it is working.

According to blog lore, the voice that is heard in the sound-test announcement is

http://forum.skype.com/
http://forum.skype.com/viewtopic.php?t%3D29213
http://forum.skype.com/viewtopic.php?t%3D29029
http://forum.skype.com/viewtopic.php?t%3D28119

purported to belong to Kerli, a young Estonian woman.

There are also Chinese and Japanese sound-test users that you can call, each
with their own pleasant-sounding announcements. To sound-check in Chinese,
try Skyping echo-chinese. If you'd like to sound-check in Japanese, try
soundtestjapanese.

These sound-test users offer another neat trick. If you send the text message
callme, they'll call you to initiate the sound check. This will help you verify that
your Skype is fully workingthat you can place and receive calls, hear and be
heard.

3.2.4. A Solution for Those Inevitable Antisocial Moments

Sometimes you just don't want to be bothered. That's why Skype tells you who
is calling so that you can opt to ignore their calls. Then again, you might
accept a call, thinking it's going to be a short one, only to hear the caller
blather on about something about which they mistakenly believe you care. In
times like these, you need a way out of the call. Luckily, there's Gotta Go, a
Yahoo! Widget that plays a sound (like a fire alarm, for example) that gives
you just the excuse you need to end the call. The calling party hears the
sound, giving legitimacy to your claim that you've "gotta go!"

Check it out at http://www.widgetgallery.com/view.php?widget=27970.

http://www.widgetgallery.com/view.php?widget%3D27970

Hack 29. Skype Your Outlook Contacts

Place Skype calls from Outlook, and even log your phone calls.

If you spend much time using Microsoft Office, Outlook is likely your email
program of choice. And if you're an Outlook user, you can leverage Skype
directly within Outlook, allowing you to use your Outlook address book to
contact Skype buddies. All of this Office-integrated goodness comes by way of
the Skype Toolbar for Outlook add-on, a program that combines Office and
Skype APIs to turn your emailer into the world's coolest softphone.

The hardest part of the setup process is the download, which you can grab
from http://share.skype.com/directory/skype_toolbar_for_outlook_(beta)/. I
think it's safe to assume that once this software is no longer in beta, you can
remove the _(beta) from that URL. Once you've downloaded the software and
stepped through the installer, you'll be eager to press buttons and turn knobs.

3.3.1. Your New Outlook Toolbar

The first thing you'll probably notice when you launch Outlook is that it has a
new toolbar that looks like the one shown in Figure 3-1. The first button on
the bar launches Skype, and the second button provides a drop-down menu
that lets you change your Skype status (very handy) and export your Outlook
contacts to Skype's buddy list.

Figure 3-1. The Skype Toolbar for Outlook

http://share.skype.com/directory/skype_toolbar_for_outlook_%28beta%29/

This export process, pictured in Figure 3-2, is a little shaky, but it does its job
of matching users from the global Skype directory to your existing Outlook
contacts with passable accuracy, though at a snail's pace (it took my batch of
only 48 contacts about 10 minutes).

The next toolbar item changes depending on the contact of the message or the
contact selected. Say you're navigating your Inbox and you open a message
from somebody whose phone number is in your address book. This button
changes to show the phone number of the person who sent the mail and
enables you to Skype-call that contact (via SkypeOut) with one click. If the
contact is in your Skype buddy list, this button will call the contact via his
Skype name. If you have neither a phone number in your address book nor a
buddy list entry for this contact, the button will attempt to look up the
contact's Skype name via the Skype directory. So you're covered in any event,
unless your contact doesn't have a telephone or a copy of Skype installed. The
last button on the toolbar, an A, lets you launch a text chat with the current
contact, too.

Figure 3-2. Exporting your contacts to Skype

3.3.2. Journal Your Skype Calls

What could be more useful than tracking when and whom you Skyped? This
capability is actually built into Skype, via its call list feature. But using Out-
look's Journal feature to track the whens and whos of Skype is far more useful.
The Journal puts Office events (and now Skype events) in a chronological,
searchable view that resembles a timeline and provides a sort of audit trail for
changes made to files, messages, and contacts within Microsoft Office. Long
after a particular message, contact, or Skype call has been deleted, the journal
still retains a record of itwhen it happened, who called (or who you called),
and how long. But the Journal option for Skype isn't enabled unless you tell it
you want itan option you'll find when you click the Configuration option
located in the drop-down menu on the Skype Toolbar for Outlook.

If you'd like a slightly different approach to saving a log of calls made and
received with Skype, try Avantlook
(http://share.skype.com/directory/avantlook/view/), another Skype toolbar
add-on for Outlook. Instead of using the Office Journal, it actually stores
Skype events as items in its own searchable, sortable message folder.

http://share.skype.com/directory/avantlook/view/

Hack 30. Skype People from the OS X Address Book

Using AppleScript and the Mac OS X Address Book, you can Skype any
phone number in your address book with two mouse clicks.

Though the Skype API provides some power tools for Skype hackers on the
Mac, you can do quite a bit with Skype using plain-old AppleScript. This is
great, since not all hackers prefer the same tools (or, if you're like me, you've
stubbornly refused to understand C). In "Skype Your Outlook Contacts" [Hack
#29], you saw a few different ways to tie Windows-based Outlook to Skype.
You can do the same thing for the Mac OS X Address Book with a little bit of
assistance from trusty old AppleScript.

Thanks to the simple but awesome script shown in the next section, it's a snap
to call any of your Mac OS X Address Book contacts using Skype.

3.4.1. The Code

For starters, you'll want to key the following script into the AppleScript Editor.
You can find the AppleScript Editor in your Mac's Applications folder:

 using terms from application "Address Book"
 on action property
 return "phone"
 end action property

 on action title for p with e
 return "Call with Skype"
 end action title

 on should enable action for p with e
 return true
 end should enable action

 on perform action for p with e

 set x to value of e as string
 if character 1 of x is not "+" then
 set x to "+1" & x

 end if

 set SKYPEurl to "callto://" & x
 tell application "Skype"
 get URL SKYPEurl
 activate
 end tell
 return true
 end perform action
 end using terms from

3.4.2. Running the Code

In the AppleScript Editor, save this code as an AppleScript in your user's
Library/Address Book Add-ins folder. Then, fire up the OS X Address Book and
find a contact with a phone number, as shown in Figure 3-3.

Figure 3-3. The Mac OS X Address Book

Now, right-click (or Ctrl-click) the contact's phone number. The contextual
menu should contain an option labeled Call with Skype if you've done
everything correctly up until this point. Clicking that option will cause Skype to
attempt a call to the phone number in the contact record. Note that you'll need

to have SkypeOut credit to call a PSTN phone number using Skype.

Remember those Skype pay services I mentioned at the beginning of this chapter?
SkypeOut is one of them. It lets you call old-fashioned phone numbers from your Skype
client for just a few cents a minute. You can buy minutes ahead of time from
http://www.skype.com/.

Even though the Address Book's phone fields are referred to as numeric in
nature throughout the Address Book AppleScript documentation, you can enter
alphanumeric values for any phone field. So, if you want to Skype somebody
from your address book using their Skype name rather than their PSTN phone
number, just enter their Skype name into a phone number field in the Address
Book. That will work just fine.

http://www.skype.com/

Hack 31. Enable Site Visitors to Skype You

Want to make it easier for folks to Skype you? Put a Skype Me link on
your web site or blog, and your visitors will chime in.

Chances are if you have a web site, you have more than enough HTML skills to
pull off this simple hack. If visitors to your web site have Skype installed on
their computers, they already have the Callto URI handler set upin other words,
they can click a link on your page to call you using Skype. Here's an example
of such a link, at the upper-left corner of the page in Figure 3-4.

Figure 3-4. A Skype Me link embedded in a web page

The nifty Skype Me graphic is provided by the good folks at Skype, so all you
need to do to create this link is plug in a bit of HTML with your Skype
username, like this:

 <img src="http://goodies.skype.com/graphics/skypeme_btn_small_blue.gif"
 border="0">

You'll need to replace Your_Skype_Name with your own Skype namehopefully that
was obvious to you. The image I've used in Figure 3-4 is blue (believe it or
not). If blue isn't your color, you can visit http://www.skype.com/community/
for a host of other colors, sizes, and styles of ready-made Skype Me graphics.
Once you stick one of these buttons on your home page, all Skype users need
do is click it, and seconds later, you'll receive a Skype call.

If the user clicking your Skype link doesn't have Skype installed and is on a Windows
machine, the Callto handler will try using NetMeeting instead! For this reason, you should
add a Skype download link for them and suggest visitors install it before they try to Skype
you using your link.

http://www.skype.com/community/

Hack 32. Speak Jyve

Skype is not just a communications tool; it's a social-networking
platform, too.

Skype inherits many of the cool features of instant messaging, including
presence, that useful list of status names that your buddies can use to see
whether you're available to chat. This includes status indicators that tell if you
are Away, Busy, or Availableand, of course, Skype Me, which allows you to
connect to people around the world interested in chatting with strangers. But
wouldn't it be cool if you could put a status indicator on your web site so that
folks would know whether it's a good time to Skype you?

Thanks to Jyve, you can do precisely that. Jyve is a social-networking service
for Skype that adds some pretty useful features to an already great
application. (If your social life is in need of new features, though, you might
need the input of something other than Jyve.) Aside from being able to publish
your status on your home page, visitors to your page will be able to request a
phone call (a Skype or old-fashioned phone call) from you via a text message
that is sent to your Skype client. That way, even if you aren't there to chat,
the message will be waiting on your screen when you return.

Jyve even provides the equivalent of a V-Card contact record for your web
site, which Jyve calls a Q-Card. It's a web page hosted by Jyve that contains
your Skype information and a form that visitors can use to text-message you
(even if they don't have Skype). Using a bit of JavaScript pasted onto your
home page, you can integrate your Q-Card into your web site.

A V-Card is a small file that contains contact information for a certain person, like a "virtual
business card." V-Cards are used by email programs, for the most part.

3.6.1. Get Signed Up

Does all this web-enabled Skype goodness sound like fun? I'm sure it does, but
first things first. To use Jyve's service, you've got to create an account on the

Jyve server. To do so, surf over to http://www.jyve.com/ and find the "Get
your Skype Card Here" link on the main page. Here, you'll have to fill out a
pretty standard membership form. On the following page, you'll be able to
create and customize your Q-Card. You can preview your Q-Card, too. Though
it's optional, you should upload some kind of portrait; the Q-Card looks a bit
bare without a picture.

3.6.2. Make Jyve a Buddy

You might be wondering how Jyve is able to keep tabs on your Skype status,
since only Skype buddies can see your Skype presence information. You're
completely rightonly Skype buddies can see if you're "Available" or "Hacking
your Volkswagen." So, to share this info with people who view your Jyve Q-
Card, you'll need to make Jyve a buddy in your buddy list. To do this, click the
Add button and type jyve01 for the buddy's Skype name (or type what Jyve
instructs you to type on your account page).

3.6.3. Add Jyve's HTML to Your Web Page

On your account page, click the Get HTML button, and you should get a text
box with some HTML that looks like this:

 <a href="javascript:void(0)" onClick='window.open("http://jyvesolutions.
 jyve.com/Qcard/your_name.htm",
 "QCard","menubar=no,scrollbars=no,height=500,width=800")'>
 <img src="http://jyvepresence1.com/qzoxy/your_name.png"
 border="0">

This bit of HTML, when placed in the source of your own web page, will put
your portrait on the web page with a link to your Q-Card, which will open in a
new window when clicked. Figure 3-5 shows you an example of a Q-Card
embedded in a web page using the preceding HTML.

3.6.4. Start Jyving

The Q-Card in Figure 3-5 is being used to send a text message. This is ideal for
enabling people to get in touch with you, even if they don't have Skype,

http://www.jyve.com/

because they can enter their call-back number, and it will be sent to you in the
text message. This could be a great customer-service tool for your company
web site, or just a nice novelty item for your personal blog. Figure 3-6 shows
what an incoming Jyve text message looks like.

Figure 3-5. A Jyve Q-Card

Figure 3-6. A Jyve text message sent from the Q-Card

Hack 33. Teach Your Browser to Speak Jyve

With a little extra help from the Jyve web browser plug-in, you can
extend Skype's presence features to your web browser.

If you've signed up for a Jyve account, you already know how cool the Jyve Q-
Card is. But with the Jyve web browser plug-in, you can take Jyve's intimate
use of Skype's presence features to the next level. This might mean being able
to receive a Skype instant message whenever somebody visits a certain page
on your web site, or even letting people send you a voicemail from your web
site. Unfortunately, to enable these features, your web site visitors must
install the Jyve browser plug-in, which works only with Windows. You can get
the plug-in at http://www.jyve.com/.

Once installed, the Jyve plug-in enables a number of new protocol prefixes
that allow your web browser to trigger different kinds of Skype functionality.
These prefixes include IMTO:, SVMTO:, and CREATECONFCALL:. Using these prefixes and
a bit of HTML, you can create links on your personal web page that leverage
some of Skype's coolest features, like instant messaging and voicemail.

Like SkypeOut and SkypeIn, Skype Voicemail is a paid service. To use voicemail features,
you'll need to have paid for Skype Voicemail service.

3.7.1. Add Skype Instant Messaging to Your Web Site

To create a link on your site that allows surfers to send you an instant
message, use the IMTO: prefix and the following code:

 <script src="http://plugin.jyve.com/js/plugin.js"></script>
 <img src='http://jyvetools.jyve.com/
 IMTO.gif' border='0'
 onclick='setENDown();'>

http://www.jyve.com/

3.7.2. Track Visits to Your Site by Jyve Users

You can create a trigger on a web page that sends text messages to you when
the web page is visited, without allowing the surfer to compose or add to them.
The visitor won't see an instant message window, either. The idea here is to
send you a message when somebody hits a certain page on your site. Using
the following JavaScript in one of your page body's onLoad events, you can use a
"pop-under" window to send you a Skype instant message automatically
whenever a visitor with the Jyve plug-in visits:

 <script language="JavaScript">
 <!-
 function popunder() {

 pu = window.open("SENDIMTO://voiphacks~I visited your site!", "default");
 pu.blur();
 window.focus();
 pu.close();
 }
 //-->
 </script>
 <body onLoad="javascript:popunder()">

3.7.3. Simplify Communication for Visitors to Your Site

The best thing you can do if you want to keep in touch with somebody is get
into their buddy list and vice versa. If you'd like to have a link that lets the
surfer add you as a contact to his Skype contacts list, try a link like the
following, which pops up a dialog confirming the addition of you as a new
contact in her list:

 <script src="http://plugin.jyve.com/js/plugin.js"></script>
 <img src='http://jyvetools.jyve.com/
 addcontact.gif' border='0' onclick='setENDown();'>

Finally, to make a link that allows surfers to send you a Skype voicemail
(sorry, the Skype Answering Machine, a free voicemail alternative to Skype's

official Voicemail service, won't work with the Jyve SVMTO: prefix), try a link like
this one:

 <script src="http://plugin.jyve.com/js/plugin.js"></script>
 <img
 src='http://jyvetools.jyve.com/sendvoicemail.gif' border='0'
 onclick='setENDown();'>

If you don't like the premade graphics that Jyve provides (in the tags),
you can use your own or substitute text instead.

3.7.4. Trigger Conference Calls from the Web

Skype also includes a function that lets you create a link that starts a
conference call with the Skype users of your choosing. This might be useful for
somebody who hosts a regular conference call with the same people every
weeklike an editor and her authors. By keeping a central link on a web page
that all the attendees can access, the weekly conference can still go on, even if
the regular host isn't available to set it up. A fill-in member need only click the
link to launch the conference call. Try a link like the following:

 <script src="http://plugin.jyve.com/js/plugin.js"></script>
 <img
 src='http://jyvetools.jyve.com/sendvoicemail.gif' border='0'
 onclick='setENDown();'>

Just put a tilde (~) between each contact in the link. When clicked, the Jyve
plug-in will use the Skype client of the clicker to host the conference call.

Hack 34. Carry Skype in Your Pocket

Turn your Pocket PC PDA into a wireless VoIP phone.

You can use your WiFi-enabled Pocket PC as your personal Skype portable
phone. Well, not any Pocket PC; only a Pocket PC running Windows Mobile
2003 will work. And it'll need a 400MHz processor, too. Pretty hefty specs, I
know. But to do cool things, you need cool hardware, right? (The sizzling HP
iPAQ hx4700 Pocket PC has an XScale processor that cruises along at a cool
624 MHz, incidentally.)

Grab PocketSkype from http://www.skype.com/products/skype/pocketpc/ and
install it on your Pocket PC device using ActiveSync. Once you've installed it,
you should be able to Skype people using the Pocket PC in the cradle, sharing
your PC's network connection. The PocketSkype user interface, shown in
Figure 3-7, is similar to the desktop versions.

Figure 3-7. Skype for Windows Mobile 2003

PocketSkype works equally well uncradled, provided you have an 802.11b or
better wireless connection. This is plenty of bandwidth for Skype calling, but
keep in mind a couple of things:

http://www.skype.com/products/skype/pocketpc/

Using wireless will drain your Pocket PC's battery.

Wireless LAN will add some delay to your voice signal transmission, often
resulting in noticeable lag during the conversation. (To test the sound of
your Skype calls, read "Get Skype and Make Some New Friends" [Hack
#28].)

The range of most wireless LANs is a few hundred feet (less than that
indoors), so your PocketSkype will only be as mobile as your LAN allows.

Pocket PCs aren't known for their stunning wireless reception, so if you plan to
rely on your PocketSkype setup, invest in an extended-range base station. Try
to use a channel that performs very well (try pinging over your wireless LAN
and watch for jitterbig variances in the ping time; this is bad), and locate the
base as close to the center of its desired range as possible. If you can't cover
the entire area, connect a WLAN extender like Apple's AirPort Express in the
area the base station doesn't cover. Or, use a couple of base stations.

3.8.1. Don't Forget Wireless Security

To make sure your neighbor can't inadvertently access your wireless LAN from
his patio, and possibly make his own Skype calls on your dime, you'd better
secure your wireless access point. This is good practice even if you don't use
Skype.

There are three ways to do this. Either restrict the MAC hardware addresses
allowed to connect to your base station, or use a Wireless Encryption Protocol
(WEP) shared key to keep your neighbor's hands off your wireless LAN. The
third way is to use both techniques. This is the most secure method of all.

To find out the MAC address on your Pocket PC, power it up and tap Start.
Then tap Settings, and then the System tab on the bottom of the screen. Next,
tap the WLAN icon (it might say "iPAQ WLAN" depending on your brand of
Pocket PC). Then tap the Status button. The MAC address will be listed near
the bottom of the screen. Add it to your wireless base station's access list.

Hack 35. Degunk International SkypeOut Calls

With SkypeOut, you can easily make international long-distance calls,
but keeping track of international country codes isn't so easy. Neither
is keeping track of calling rates, which vary from one country to the
next.

The SkypeOut service is one of several paid services (SkypeIn, Voicemail, etc.)
that Skype provides for its users. The service lets you place calls to regular
phone numbers on the PSTNthat's the telephony network still used by
everybody who isn't as cool as you are.

SkypeOut minutes are purchased in advance, and, at least for international
calls, their rate is quite competitive. You can SkypeOut to any existing phone
numberyour buddy's cell phone in Uruguay or dear old mom in Kalamazoo.
The trick isn't merely calling folks; it's remembering how to dial their numbers.
If you already do a lot of international calling, you're probably familiar with
the system of country codes that exists to route calls around the globe.
Country codes are dialed before area codes as a part of the receiving party's
phone number. But there are almost as many country codes as there are
countries, so you might appreciate this shortcut to help you remember how to
dial international numbers on Skype.

At http://www.skype.com/products/skypeout/rates/, Skype maintains a nifty
script that allows you to enter the local phone number (including area code)
and select the country. Then, the script shows you exactly how to dial it using
Skype, as in Figure 3-8. Just follow the steps on the page: enter the phone
number and pick a country. Besides learning how to dial the number, you'll
also get a handy SkypeOut rate quote for calls to this number (in euros).

Figure 3-8. The SkypeOut Dialing Wizard

http://www.skype.com/products/skypeout/rates/

To convert from euros to the currency of your choice, you've got a couple of
options. You can go the web-based route, using a site like
http://www.xe.com/ucc/, the Universal Currency Converter. Or, if you're a Mac
OS X 10.4 (Tiger) user, you can launch the handy Unit Converter widget in the
Dashboard. For more information about the Dashboard and other cool Mac
goodies, pick up a copy of Mac OS X Tiger: The Missing Manual (O'Reilly).
Whether it's currency conversion for SkypeOut or just checking the weather
forecast, widgets are really nifty. Windows and Mac users alike should take a
look at Yahoo!'s really cool widget framework (formerly known as
Konfabulator) at http://widgets.yahoo.com/.

http://www.xe.com/ucc/
http://widgets.yahoo.com/

Hack 36. From Podcasting to Skypecasting

With some simple recording tools, you can easily integrate Skypeand
other VoIP calling softwareinto your podcasts.

Audio blogging, or podcasting, as it's called, is a form of amateur radio
broadcasting that uses the Web as a means of distribution, just as blogging is a
personal form of journalism that uses the Web for distribution. Podcasters
record their broadcasts in MP3 audio files, and their audience downloads them
for listening on a PC, iPod, or other portable MP3 player.

The art and science of podcasting deserves its own book. Fortunately, a great one is
available. For a more detailed explanation of podcasting, check out Podcasting Hacks
(O'Reilly).

3.10.1. If You Build It, They Will Come

Creating cool content for podcasts isn't always easy. Without a broadcast
license, it's not a simple thing to use (legally, anyway) copyrighted music in
podcasts, since their distribution is heavily protected by the long legal arm of
the Recording Industry Association of America (RIAA), the same folks who
dumped millions into suing harmless teenagers who download Cold-play
singles that sell for 99 cents apiece through iTunes. But I digress.

The point is that podcasts can get old really quickly unless you have a constant
flow of good audio content, and this doesn't come easily. Fortunately, the talk
format, which is stridently avoided by most of those downloading teenagers I
mentioned earlier, is a content miracle. It won't get you in trouble with the
RIAA, either.

But you don't need to have Rush Limbaugh's golden microphone or Howard
Stern's subtle wit to master the talk format in your podcasts. You just need to
be able to record your Skype (or MSN Messenger, or AIM) VoIP conversations,
call them "interviews," and podcast them! You can also use your computer to
record your traditional phone calls for podcast purposes, using tools like Phlink
[Hack #15].

3.10.2. Mac Podcasting Tools

Using a tool like WireTap [Hack #23], grabbing the audio from a Skype
conversation is a snap. Then it's just a matter of editing it down (the talk
format isn't forgiving of coughing fits or belches) and converting it to MP3
format. Using Cacophony or GarageBand, you can insert the recorded
interview into the middle of a podcast, or give it some bumper music just like
the pro talkers.

Another cool app for recording audio from VoIP conversations on Mac OS X is
Soundflower (http://www.cycling74.com/products/soundflower.html). This app
actually lets you treat the output of any application as a sound input device in
other applications, so you can use it to record Skype conversations and to
process them later on so that they sound differently. With GarageBand, for
instance, you can add reverb to a live sound input before adding it to the
podcast. Or you can run it through EQ, compress it, or do a host of other cool
stuff to it to whip it into shape for your own radio show.

Great for sound effects, GarageBand, in concert with Soundflower, could be
the makings of the ultimate radio drama podcast. You can apply reverb, echo,
and pitch shifting to sound inputs in GarageBand, taking your dramatic podcast
to the Grand Canyon, or to a village of squeaky-talking munchkins as in The
Wizard of Oz.

3.10.3. Windows Podcasting Tools

A great place to start on your quest to make the ultimate Skypecast is Total
Recorder Standard Edition, a Windows shareware tool that you can grab from
http://www.highcriteria.com/. Like its Mac counterpart, WireTap, Total
Recorder lets you intercept audio from one or more channels, like the sounds
from a Skype conversation, and save it to a file that you can integrate into
your Skypecast.

As you can see in Figure 3-9, the creators of Total Recorder were thoughtful
enough to create the "Record also input stream" option, which automatically
mixes the microphone input channel with the sound output you're recording,
simplifying the task of recording your Skypecast (that is, unless you don't want
your voice to be heard during the interview). Once you've saved a WAV file
with your interview, you can edit it into the rest of your podcast using
Windows Sound Recorder or your favorite sound editor.

http://www.cycling74.com/products/soundflower.html
http://www.highcriteria.com/

Then, if your editor doesn't support saving the whole thing as an MP3, you can
run the finished WAV version through SoX (see Chapter 2 for a refresher on
SoX) to make it ready for publishing to the Web:

 $ sox my_skypecast.wav my_skypecast.mp3

Figure 3-9. Total Recorder's parameters dialog

Chances are that your Linux box already has SoX installed. If not, or if you
don't have a Linux box, you can grab SoX for Windows at
http://prdownloads.sourceforge.net/sox/sox12177.zip?download.

3.10.4. Three's a Crowd

One of Skype's knock-dead features is its multiparty conference-call support.
Up to fifty participants can talk together, just like a traditional conference call.
By recording a conference call, you can create a podcast-friendly "panel

http://prdownloads.sourceforge.net/sox/sox12177.zip?download

discussion." Even better, if you use Alex Rosenbaum's Skype Answering
Machine software to greet callers while you're away [Hack #37], you can
even use Skype to do the broadcasting, via the greeting the Skype Answering
Machine plays for callers as they Skype you. Check out the next hack for the
details.

3.10.5. Experiment Your Way to a Perfect Skypecast

A lot of variables are involved in recording a podcast. Many of the fundamental
techniques of voice recording carry over from the radio broadcasting industry.
The human voice is very dynamic. It's very quiet one moment, and very loud
or boomy the next. Yet, the human ear prefers a much more controlled aural
dynamicthat is, we'd rather listen to the human voice at a consistent volume
level, especially when there's background noise. That's why professional radio
broadcasts are compressed, or processed so that the quiet moments are louder
and the loud moments are quieter. This way, the sound is at a much more
consistent volume level (traditional phone calls work in much the same
manner).

Microphones matter. A microphone with a windscreen (that afro-shaped
sponge you see on news reporters' microphones) will reduce the
unprofessional-sounding harshness caused when pronouncing the letters f and
p. A microphone with a wide frequency response range will pick up more of
your voice than a laptop's built-in mic or a cheap $9 USB mic. Of course, a
good mic on your desk won't help your interviewee sound any better. They'll
need a good mic, too.

Using different voice chat tools (iChat, Skype, Yahoo! Chat, etc.) will certainly
deliver different levels of compression and equalization, and you might
discover that you prefer one over the other. Using different post-processing
tools (GarageBand, AcidPro, etc.) will afford you greater flexibility in making
your podcast sound the way you want it to. But don't expect any of these
applications to have the magical "podcast preset." You'll need to experiment
until it sounds like what you think a broadcast should sound like. If you're
talking a lot, listen to talk radio for inspiration (not only with respect to
production, but also the subject matter).

3.10.6. See Also

Podcasting Hacks (O'Reilly)

Hack 37. Answer Your Skype Calls, Even When You're Not
Around

Thanks to the Skype API, Windows and Mac developers can create
useful tools to extend the functionality of the Skype platform. One such
tool is the Skype Answering Machine for Windows.

Skype makes you ultimately accessible. In fact, if you log into your Skype
account using Skype clients on three different computers (on three different
continents) simultaneously, any Skype calls to you will alert you on all three
computers at once. You can answer such calls on any of the three, to boot!

But sometimes you might not want to be bothered. Say that you're out on
your million-dollar pleasure yacht in some exotic port being fed plump red
grapes while lounging behind your Ray-Bans. Now would not be a good time to
receive a Skype alert (unless it is from the ship's master chef, informing you
that your filet mignon is ready).

Times like this call for the Skype Answering Machine (SAM), at least if you're a
Windows user (though the Skype API exists for Mac, SAM is only for Windows).
This software add-on for Skype is a fully featured answering machine that can
record your callers' messages, and even greet unknown callers differently from
callers that are already in your buddy list. Grab it from
http://www.freewebs.com/skypeansweringmachine.

Any time you add a new Skype add-on, like SAM, Skype will prompt you to grant
permission for the new add-on to access Skype. This is a security precaution that's built
into Skype, so don't be alarmed. If you've used Windows for any length of time, you're
probably quite accustomed to these security warnings.

It's a tiny download. Close Skype before you run the installer. Once it's
installed, you'll see a small, green SAM icon in your system tray. Double-click
it to launch the user interface, and the first thing you'll see is SAM's call-log
dialog. This is where each of your calls will be logged and you can listen to the
messages that folks leave you. Click the Options tab, as shown in Figure 3-10,
to see where the fun settings are.

http://www.freewebs.com/skypeansweringmachine

Figure 3-10. Skype Answering Machine's Options tab

You can tweak the answering delay time and select your own recording to use
as the outgoing greeting. SAM supports only WAV files, but you can record
those easily enough using the Windows Sound Recorder. But since SAM also
answers calls with a text message, you can specify the text to use as your
"auto-away" message. You can also set the maximum length of incoming
recordings. The Advanced button will allow you to establish a second
configuration set for calls originating from folks that aren't in your buddy list,
as shown in Figure 3-11.

Figure 3-11. Skype Answering Machine's Advanced Options
dialog

3.11.1. Let Windows Automatically Rotate Your Greetings

If you want to use a different greeting depending on the time of day, similar to
the daily rotation used in "Greet Callers Differently Each Day" [Hack #17]
you can use a batch file combined with Windows Scheduled Tasks to rotate the
greetings at predetermined intervals. In this case, let's do an a.m./p.m.
rotation, meaning we'll need just two greetings. You can set up a single
Windows batch file to swap two previously recorded greeting files stored in a
\greetings directory:

 cd \greetings
 copy /Y greeting.wav greeting_tmp.wav
 copy /Y greeting_bak.wav greeting.wav
 copy /Y greeting_tmp.wav greeting_bak.wav
 del greeting_tmp.wav

Now, copy your p.m. greeting to greeting.wav, and we'll schedule this to run
beginning at noon using Scheduled Tasks, available from Start All Programs

 Accessories System Tools Schedule Tasks. Set the task to start at
12:00 p.m., and enter the full path to the batch file you created earlier. Click
Advanced, and you'll see a dialog like the one in Figure 3-12.

Figure 3-12. Windows Scheduled Task's Advance Schedule
dialog

Check the Repeat Task checkbox, and set this task to run every 12 hours.
Then click OK, and click OK again on the preceding Scheduled Tasks window.
Now, every day at noon and midnight, beginning at noon today if it's morning,
your Skype Answering Machine greeting files will be swapped.

3.11.2. Skype's Voicemail Service

If you're using Skype on a platform that doesn't support the Skype API, or if
you would prefer a voicemail solution that allows you to retrieve your
voicemail messages from anywhere (not just from your Skype PC), you should
consider Skype's subscription-based Voicemail service. You can sign up for the
service at https://secure.skype.com/store/member/login.html.

https://secure.skype.com/store/member/login.html

Hack 38. Use Custom Rings and Sounds with Skype

Skype allows you to use your own sounds to alert yourself to incoming
calls and eventswith a few gotchas.

One of the most popular downloads (and purchases) for cell phones are
customized ringtones. This feature is available for Skype too, with none of the
proprietary nonsense pushed on you by your cell-phone carrier; you can use
just about any WAV file as a Skype ringtone. (On a Mac, an AIFF file will
suffice, too!) But not just any WAV file will make Skype happy: stereo WAVs
won't work, as the WAV needs to be monaural (one channel). Thankfully, you
can use a common recording tool to convert your stereo WAV file so that it can
work with Skype.

If you've got SOund eXchange (SoX) installed (see "From Podcasting to
Skypecasting" [Hack #36] to find out where to get the Windows version) on
your Windows, Mac, or Linux machine, you're ready to convert files to mono:

 C:\> sox stereo_file.wav c 1 mono_file.wav

SoX's -c option knocks that stereo file down to one channel, perfect for use
with Skype. If you'd like to convert an MP3 file into a mono WAV file, just
specify the WAV file extension for the destination file's name:

 C:\> sox stereo_file.mp3 c 1 mono_file.wav

Drop the file created by SoX into a directory where you can access it from
Skype, and pull up Skype's Options dialog. To do so on Windows, select
Options from the Tools menu in Skype (Figure 3-13). To do so on a Mac, select
Preferences from the Skype application menu (Figure 3-14).

Figure 3-13. Skype for Windows Sound Alerts options dialog

Figure 3-14. Skype for Mac OS X Events options dialog

When the preferences window appears, click Sound Alerts (Windows) or Events
(Mac). Here, you can browse to the sound file you'd like to assign as your
ringtone. The Mac version even allows you to have Skype use OS X's speech
synthesizer to announce the name of the incoming caller, if you like.

It's not just the incoming call event that you can disassociate from the default

alert sound, either. Thumb through the event list to check out all the possible
combinations.

Hack 39. Emote by Sight and Sound with Skype

In this modern age of voice and video, emoticons are not forgotten and
have become equally modern.

In the early days of text-based chat, we developed text expressions like :) and
=(to show signs of happiness and dissatisfaction, respectively. We called these
emotion indicators, emoticons, or simply emotes. And unless you've never
chatted online, never talked to an Internet user, or never seen the film You've
Got Mail with Meg Ryan and Tom Hanks (or one of its several knockoffs),
chances are good you know what emoticons are. Today, with voice chat
augmenting text chat and video chat and with webcams becoming
commonplace, the old-fashioned emoticon seems plain out of place. It's small,
monolithic, and, well, underwhelming. Emoticons just don't convey as much
emotion as a speaking voice or the human face, which is what you hear or see
when you Skype folks using voice or video facilities.

You're about to use Skype add-ons to enable audio emotes, 3-D avatars, and
video chat, making old-school text emotes seem downright archaic. The tools
I've looked at are all built around the Skype API for Windows, though, so if
you've got a Mac (for which the Skype API has only just been introduced),
you'll be watching the action from the sidelines.

3.13.1. Adding Sound and Video Emoticons

Sound emotes and 3-D avatars are two really cool add-ons for Skype that can
enhance the social aspect of the Skype experience. Sound emotes are
essentially just prerecorded sounds that you trigger as a part of your normal
sound transmission so that the person on the other end of the conversation
can hear them. As with old-fashioned text emoticons, sound emotes can be
just the thing you need to lighten up a conversation, or just to raise the
silliness level a bit. (Yes, even I, the ever-stodgy VoIP aficionado, have been
known to be silly once in a great while.)

To get started with sound emotes, you'll need to pick up a copy of Porto
Ranelli's HotRecorder 2.0 for Windows (http://www.hotrecorder.com/). This
ad-supported shareware application lets you select from a small batch of
prerecorded sound emotes, including applause, a room full of people laughing,
a baby cryingin other words, a wisecrack for every occasion. Also included in

http://www.hotrecorder.com/

HotRecorder is a voicemail utility for Skype (I prefer Skype Answering
Machine, though) and a sound recorder, so you can add your own sound
emotes. To play them back during a Skype conversation, just click the one you
want from the selection on the Emotisounds tab in the HotRecorder
application. For some real fun, try importing sound clips from your favorite
movies.

That's just sound, though. To bring the visual aspect of emoticons into the 21st
century, download a copy of 3D Avatar Messenger
(http://share.skype.com/directory/skype_3d_avatar_messenger/view) and
install it on your Windows PC. It's kind of hard to describe what this application
does, though Yahoo!'s IMvironments are probably the closest analogy. Figure
3-15 shows the application's interface.

3D Avatar Messenger is a Java application that uses the Skype API to send
animated, three-dimensional emoticons involving a cartoon character that has
several characteristics that you can manipulatehair, shirt, and pants color, and
gender (though it appears you'll be stuck with red shoes no matter what). The
coolest part about 3D Avatar Messenger is how it displays your character in
the same window as your conversation partner's character, allowing you to
interact with him. The application is limited to two participants at a time, of
course, and it's the most fun to use during a Skype voice conversation.

To install it, unpack the zip file you'll find at the URL mentioned earlier and
execute its run.bat file, either by double-clicking or executing at the command
prompt. This will launch the Java interpreter and allow the program to run.
Once it's up and running, you'll need to find a partner who also has it
installeda husband or wife will work well (hey, it works for me). Otherwise,
you'll be emoting by yourself, as in Figure 3-15.

Figure 3-15. Skype 3D Avatar Messenger enhances VoIP calls
with an animated alter ego

http://share.skype.com/directory/skype_3d_avatar_messenger/view

3.13.2. Sometimes There's No Substitute for Video

If you want to use your webcam to enhance your Skype calls with real-time
video, just like the video viewer screens on Star Trek[1] (only lower
resolution), point your browser to two of the coolest video-on-Skype plug-ins:

[1] Star Wars holograms look cooler than Star Trek video screens, but I'm afraid there aren't any hologram plug-ins
for Skype yet.

Festoon (http://www.festooninc.com/)

video4IM (http://www.video4im.com/)

At the moment, both work only with the Windows version of Skype, but
considering the recent release of the Skype API for the Mac, I suspect we'll see
some video goodies for Mac Skype very soon.

To be seen by your Skype buddies, you'll need a webcam connected. Logitech,
Microsoft, Sony, and Creative all sell USB webcams that are suitable for Skype
video. You don't need a webcam to see the video from your buddy's webcam,
of course.

http://www.festooninc.com/
http://www.video4im.com/

Hack 40. Skype with Your Home Phone

Combine high-tech VoIP with a low-tech analog phone to make VoIP
palatable to even your technology-phobic spouse.

If you've worked with Skype for very long, you've probably become
accustomed to its (mostly) good sound quality and friendly interface. However,
I always have a hard time with how it feels to be speaking to a computer.
Instead of the secure feeling of an old-school phone receiver, I am
uncomfortable speaking into a USB headset or, worse still, speaking into my
PowerBook's built-in microphone. For once, I just wish I had a good old-
fashioned analog phone to slide up next to my earyes, even for Skype calls.

Fortunately, this is now possible. Using the Actiontec Internet Phone Wizard, a
USB device for Windows PCs, you can integrate Skype with your old-fashioned
residential-style phone. The device is sort of an analog telephone adapter
(ATA) that allows your PC to act as a gateway between the analog phone and
the Skype network. Too cool.

3.14.1. Make the Connection

For this hack, you'll need a computer running Windows 2000 or newer and the
Actiontec Internet Phone Wizard, pictured in Figure 3-16, which needs to
connect to your PC's USB port. The two RJ11 ports on the device's back allow
you to connect it to an analog phone and a plain-old telephone line. This pass-
through connection allows you to place certain calls on your ordinary phone
line if you prefer. That connection can also handle emergency calls (911),
which is important, since Skype has no provision for 911 call routing.

Perhaps the wizard's most valuable characteristic is the way it translates
Skype's features so that a traditional telephone can use them. For instance,
when you receive a Skype call, the phone will ring and you can answer it;
later, while you're still on that call, if you receive a second Skype call, your
phone will use a call waiting signal to let you know another call is ringing in.
This way, you can switch between two Skype callers as you would with call
waiting on a legacy telephone line.

Figure 3-16. Actiontec's Internet Phone Wizard

Also supported are conference calling and speed-dial integration. This way, you
still can access your Skype buddies who have alphanumeric names by dialing
your telephone keypad, which has only telephone numbers. The wizard's
included software lets you associate speed-dial numbers with contacts in your
Skype buddy list, simplifying the act of calling them. Once you've run
Actiontec's installer, your Skype buddy list will have an additional option in its
contextual (right-click) menu: the Assign Speed-Dial option, shown in Figure
3-17. Click this option to define which two-digit speed-dial number to associate
with each member of your buddy list. That way, when you want to Skype them
using the attached phone, you need only press the speed-dial numbers.

Finally, the Internet Phone Wizard has two LEDs that indicate what type of call
you're engaged in: a Skype call or a regular phone line call. It gets its power
from the USB port, so that's one less power adapter to worry about, too. For
more information about the Internet Phone Wizard, see its manufacturer's web
site at http://www.actiontec.com/. To see how you can use the Internet Phone
Wizard to provide Skype network access to an Asterisk PBX system, check out
"Connect Asterisk to the Skype Network" [Hack #98].

Figure 3-17. Skype's contextual menu with the Internet Phone
Wizard installed

http://www.actiontec.com/

Chapter 4. Asterisk

4.1. Hacks 4158: Introduction

The Linux domain of free software is a land flowing like milk and honey with
telephony hacksthe hackers' Promised Land, so to speak. Of course, many of
these hacks translate to BSD, and even to Mac OS X, since they're cast from a
similar Unix mold.

In this chapter, I'll cover Asteriskthe open source telephony server designed
originally for Linux, but now available for Mac OS X and BSD. Asterisk is a
workhorse, a flexible, open system that's the telephony equivalent of Apache,
the world's most widespread web server.

Because of its modularity and flexibility, Asterisk is as much a platform as is
Linux. It's sort of become the cornerstone of Linux-based telephony, thanks to
a vibrant developer community and a sound, open source foundation.

4.1.1. Getting Telephony Devices Connected to Asterisk

Besides implementing "pure VoIP"voice calls over packet networks like the
Internet or your Internet Protocol local area network (IP LAN)Asterisk can also
handle legacy telephone technologies, such as analog phones and phone lines,
T1 lines, and various kinds of legacy signaling methods. A large and growing
selection of PC expansion (PCI) cards are available that facilitate connecting
analog phones and phone lines to an Asterisk server. So, if you want, you can
build an Asterisk server that doesn't use VoIP at alljust legacy technologies
like analog phones. Or you can build a server that bridges those previous-
generation devices with Voice over IP.

The Asterisk software is maintained by Digium, Inc. (http://www.digium.com/),
a manufacturer of many of the interface cards (and VoIP gateway devices)
Asterisk supports. You can certainly use other interface cards with Asterisk,
such as those manufactured by Sangoma and VoiceTronix. These
manufacturers provide drivers for Asterisk's Zaptel driver framework that
allow Asterisk to use them.

4.1.1.1. To FXO or to FXS, That Is the Question

To use traditional analog telephones and lines with an Asterisk server, you'll
need to understand the difference between FXO and FXS. Their definitions are
a source of some confusion, even among telecom folks. FXS (foreign exchange

http://www.digium.com/

station) interfaces are used to connect telephones, which are FXS devices. FXS
interfaces cause the Asterisk server to appear like the telephone company's
central office switch when you plug in a phone. FXO (foreign exchange office)
interfaces, on the other hand, are used to make your Asterisk server appear
like a telephone so that you can connect it to the central office switch.

So, FXO interfaces connect your server to the phone company, and FXS
interfaces connect your server to analog phones. Keep this distinction in mind
as you work through the hacks in this chapter.

FXS and FXO interfaces are manufactured by many companies, including Intel,
Digium, Sangoma, and Cisco, and they come in a variety of hardware flavors,
too: PCI cards, rack-mountable enclosures, and tiny little single-line
"converter boxes" that are reminiscent of Ethernet media converters. Though
these interfaces are self-contained, standalone devices, they tend to be called
media gateways, or just gateways.

For IP phones and Internet-based connections to the phone company, there is no
FXO/FXS vernacular and no legacy signaling involved at all. When there's no legacy
signaling, it's called pure VoIP.

4.1.1.2. And Then There Was T1

Digital circuits that employ the T1[1]carrier (the most widespread type of
digital telecommunications connectivity) can also be used to connect legacy
phones to the Asterisk server, and to connect the Asterisk server to central
office switches. Depending upon your needs and on what is available from your
phone service provider, you might employ a primary rate interface (PRI) to
hook up to 23 phone lines at a time to an Asterisk PBX, all on a single T1.
Likewise, you can connect a T1 to an FXO interface box (a media gateway) to
connect analog phones to the server, or you can connect a T1 to a device
called a channel bank to connect 24 legacy analog phones or analog phone
lines.

[1] In Europe, T1s are called E1s, use a different voice codec, and have 30 phones lines.

I've chosen hacks that will let you experiment with Asterisk while avoiding the
relatively high cost and management overhead of T1s, though. I don't have a

T1 in my home or in my business test lab, and I don't expect you to, either.
Fortunately, though, lots of other great sources of information about T1 are
available. For starters, check out T1: A Survival Guide (O'Reilly). Then, when
you're ready to integrate legacy digital telecom into Asterisk, check out
Switching to VoIP (O'Reilly) and Asterisk: The Future of Telephony (O'Reilly)
for the details. You'll also get a much deeper exploration of Asterisk and
enterprise telephony, to boot!

Now, let's get hacking, shall we?

Hack 41. Turn Your Linux Box into a PBX

Install and test the Asterisk open source telephony server on your
Linux PC.

Some RPM packages are available to simplify Asterisk's installation, but
manual compilation is relatively easy. So I'm going to show you how to
download, compile, and install Asterisk the "old-fashioned" way. The
development branch you'll download from is stable, though once you get
comfortable with Asterisk, you'll want to jump out on the bleeding edge and
try the developer releases, too. Each release tends to introduce something
new and worthwhile, even if it's not in the stable branch yet.

The easiest place to download the Asterisk software is the CVS repository at
Digium, the company responsible for Asterisk and some of the hardware
components that work with it. To access the CVS repository, you'll need to be
logged into your Linux computer at a shell prompt as root. Type these
commands to run the CVS check-out routine and download the source code:

$ cd /usr/src
 $ export CVSROOT=:pserver:anoncvs@cvs.digium.com:/usr/cvsroot
 $ cvs login
 $ cvs checkout zaptel libpri asterisk

Alternatively, you can specify a particular version of Asterisk:

$ cvs checkout -r v1-2 zaptel libpri asterisk

When prompted, use anoncvs as a password. If you don't use /usr/src as the
local location for compiling programs, substitute the appropriate path. The CVS
client you're running here will create the /usr/src/asterisk directory that
contains all the Asterisk source code. Once the download completes, you are
ready to begin compiling.

Asterisk consists of several software components for Linux. Not all of these
packages are required, as some of them are drivers for Digium's interface
cards. If you aren't planning to use Digium's cards, you'll need to build only

the last of the three, asterisk:

libpri

A driver module that supports Zaptel-compliant interface cards (described
in this chapter's introduction) so that ISDN and PRI trunks can be
interfaced with Asterisk

zaptel

A driver module that allows legacy telephone line interfaces cards that
provide FXO, FXS, and T1/E1 signaling to be used with Asterisk

asterisk

A modular software daemon that provides telephony, management, and
call-accounting features, including voicemail, Session Initiation Protocol
(SIP) telephone support, dial plan, and so on; in a nutshell, Asterisk is an
all-software PBX

If you're wondering about these technical terms, don't worry. As you
experiment with Asterisk and learn more about VoIP, they'll become very
familiar. For now, just compile and install all three packages.

After you run the CVS download, the source code for each Asterisk software
component is sitting in its respective directory in /usr/src. Let's compile each
software component by issuing the following commands. Again, you need to
compile zaptel and libpri only if you're planning on using legacy or Digium
interface cards. Many of the examples in this book use legacy devices, so it's
probably a good idea to compile them all right now. Here is the sequence of
commands:

cd zaptel
 # make clean ; make install
 # cd ../libpri
 # make clean ; make install
 # cd ../asterisk
 # make clean ; make install

Do compile Zaptel before you compile Asterisk, or else Zaptel features will be missing from
the Asterisk build. What is Zaptel, you ask? Keep reading….

It should take 20 minutes at most to complete the whole build on an average
PC. Once built, Asterisk is ready to use. But you can't race a Ferrari without a
training lap on the test track, and you can't really use Asterisk until you
understand the basics of configuring it. So it's time for driving school. To get
started, run this command in the Asterisk source directory:

 # make samples

This creates a basic sample set of Asterisk configuration files and places them
in /etc/asterisk. You might want to peruse these filesespecially extensions.conf
and sip.conf, where you'll likely be spending a lot of time.

If you've used an RPM package or some other precompiled Asterisk distribution
(or if you've obtained a Linux distribution with Asterisk already installed), you
can still obtain the source distribution files from Digium's CVS repository and
issue only the make samples command. This will give you the sample configuration
files without actually rebuilding Asterisk on your PC.

4.2.1. Start and Stop the Asterisk Server

The Asterisk program has two modes of operation: server mode and client
mode. The server is the instance of Asterisk that stays running all the time,
handling calls, recording voicemails, greeting callers while users are away, and
so on. The client is the instance of Asterisk that allows you to monitor and
manipulate the server while it runs. The mode the program uses depends on
how Asterisk is invoked at the command prompt or within a shell script.

To launch Asterisk in server mode, execute this command:

 # asterisk -vvv &

The more v's, the more verbose Asterisk's console output will be.

To connect Asterisk in client mode on the local machine already running in
server mode, execute this command:

 # asterisk r

Once the Asterisk client is connected to the Asterisk server, you can use
Asterisk's command-line interface to issue queries and commands about the
telephony server. These include listing calls in progress, listing used and
unused channels, and stopping the Asterisk server.

You can shut down the server using one of several Asterisk CLI commands:

Restart now

Restart when convenient

Stop now

Stop when convenient

The "restart" commands stop and then restart the Asterisk server process,
which can be helpful in situations where the server's configuration has
changed significantly and needs to be restarted. The "stop" commands just
shut down the Asterisk server process. You'll have to execute the Asterisk
program in server mode to get it running again.

The "now" and "when convenient" arguments tell Asterisk how quickly to shut
down or restart. If you want to interrupt the current calls and tasks in progress
on the server, "now" is appropriate. If you want Asterisk to wait until all the
calls and tasks are finished and there is no call activity at all, "when
convenient" is appropriate. Generally, especially if you're planning to have any
callers besides yourself on the system, get in the habit of using "when
convenient."

All of these commands ultimately shut down Asterisk. If you make a configuration change
that doesn't require a complete restart, like a change to a certain phone extension, you

can just use reload at the Asterisk prompt.

4.2.2. Linux-Specific Start and Stop Scripts

Depending on your particular flavor of Linux, be it Fedora, Debian, SuSE, or
something else, you'll find your system's normal startup scripts in a place
that's unique to each flavor. Fortunately, Asterisk's Makefile has an option that
lets you automatically generate start and stop scripts that are specific to your
flavor of Linux. In your Asterisk src directory, just issue the command make config,
and the scripts will be installed. These scripts start and stop not only Asterisk,
but also the Zaptel drivers, if you've compiled them.

As it stands at this point, your Asterisk server won't be especially useful. You'll
be able to explore the Asterisk command prompt with asteriskr, but the truly fun
stuff, like hooking up phone lines and phones, is still to come. To try out
Asterisk's cool demonstration routineslike interactive voice response (IVR) and
an Internet-based VoIP callyou've got to configure a phone of one sort or
another to access the Asterisk server. Keep reading!

Hack 42. Attach a SIP Phone to Asterisk

Asterisk is a phone system. But it won't do you much good without
some phones connected.

You're about to use a SIP telephone to access the de facto auto-attendant
greeting and to access a brief demonstration of an Inter-Asterisk Exchange
(IAX) trunk over the Internet. Sound like too much? Don't worry; most of this
is already configured with Asterisk out of the box. The toughest part for a VoIP
beginner will be making sure Asterisk is willing to answer SIP callsand that's
pretty easy.

You won't need a regular phone line for this hackjust a SIP phone, Asterisk, and an
Internet connection.

SIP is one of several standards that allow IP voice endpoints and application
servers such as Asterisk to establish, monitor, and tear down media sessions
across the network. Asterisk uses SIP to facilitate calls on behalf of SIP-based
IP phones such as the BudgeTone 101, the Cisco SIP IP Phone 7960, and the
Avaya 4602. I've chosen the BudgeTone 101 hardware because it's cheap, but
you can go even cheaper and apply this hack using a softphone like the X-Lite
[Hack #4], which is free.

The Sipura SPA-841 is another excellent low-cost SIP phone.

4.3.1. Configure a Grandstream BudgeTone 101 IP Phone

The BudgeTone 101 phone has a Menu key, an LCD display, and two arrow
keys that you use to navigate its configuration menu options: DHCP, IP
Address, Subnet Mask, Router Address, DNS Server Address, TFTP Server
Address, Codec Selection Order, SIP Server Address, and Firmware Versions

(called Code Rel on the phone's screen). When you get to the option you want,
you press the Menu key to select it, and then you enter the numeric data
required for each option using the keypad. Use this menu only to set up the IP
address, subnet mask, and router (default gateway) address.

To get the phone enabled for the next configuration step, turn off DHCP and
assign an IP address, subnet mask, and router address.

More advanced configuration is performed using the BudgeTone's built-in web
configuration tool. When you access the IP address you assigned to the phone
using your web browser, you'll be prompted to log in to the phone. The default
password is admin.

Then, you'll be confronted with a big page of configuration options. Many of
these options are available only through this interface, not from the phone's
keypad menu. After you apply your configuration changes, you need to power-
cycle the BudgeTone.

Some IP phones offer a Telnet interface rather than (or in addition to) a webb-
ased one. To use these tools, you must connect to the phone with a Telnet
client rather than with a web browser. In any event, once you've set the
network configuration on the BudgeTone, ping its address from another host
on the same network subnet to make sure it's speaking Transmission Control
Protocol/Internet Protocol (TCP/IP).

4.3.2. Set the IP Phone to Use a SIP Server

The IP phone, whose address I'll assume is 10.1.1.103, must be set to use
your Asterisk box as a SIP server if you're to interact with the Asterisk demo.
In your test lab, the IP phone should refer to the IP address of the Asterisk
server (10.1.1.10, say) being used as its SIP server. Configure the SIP User ID
setting as 103, too. For the DTMF Mode option, select SIP Info. Then apply the
config changes and reboot the IP phone. (The same configuration options are
supported by other makes of SIP phone, too.) The configuration page for a
BudgeTone phone that has been configured to use a local SIP server (your
Asterisk box) is shown in Figure 4-1.

Figure 4-1. A Grandstream BudgeTone that has been
configured to use a SIP server at 10.1.1.10

4.3.3. Allow the IP Phone to Place Calls Via Asterisk

Until you authorize a SIP phone to communicate with Asterisk using Asterisk's
SIP configuration file, you will always receive SIP error messages when trying
to dial to (or through) the Asterisk server. This is Asterisk's way of ignoring
what it sees as an unauthorized endpoint. Unlike traditional PBXs, which tend
to give network access to any phone connected on an active port, SIP servers
tend to enforce some securityusually in the form of password authentication.

So tell the Asterisk server to stop ignoring requests from your IP phone.
Asterisk, the softPBX, refers to IP phones and other SIP devices as channels.
SIP channels (or peers, if you like) are defined in Asterisk's configuration file,
/etc/asterisk/sip.conf. To enable the phone as configured in Figure 4-1, add the
following to the end of this file:

 [defaultsip]
 type=friend
 context=default
 username=103
 fromuser=SIP Phone
 callerid=103
 host=10.1.1.103
 nat=no
 canreinvite=yes

 dtfmode=info
 disallow=all
 allow=ulaw

The preceding configuration settings add the 10.1.1.103 IP phone that
matches the configuration of the Grandstream BudgeTone. Take note of the
username, callerid, and host values, which resemble each other (103) in this case. They
don't need to resemble each other, however, because there's no relation
between a phone IP address and its SIP username or caller ID. These can all
be completely different.

One of the biggest differences between SIP and its predecessor, H.323, is that SIP
identifies its phone endpoints (or terminals in H.323-speak) by IP address (and port
number) exclusively, whereas H.323 still relies on their Ethernet MAC hardware addresses.
This makes SIP more flexible!

There are two ways to enable the configuration change you've just made. One
is to restart Asterisk:

 # asterisk -rx restart

Bear in mind that restarting your softPBX might be acceptable at home or
even in a small office environment, but you'd better make sure no calls are in
progress if you restart it in any production environment, lest you draw the ire
of angry phone users. Perhaps a better way to handle the addition of a new
endpoint to the softPBX is the reload method. To do this, issue the Asterisk
reload command using the -rx shell option:

 # asterisk rx reload

Or log into the Asterisk CLI (as in "Turn Your Linux Box into a PBX" [Hack
#41]) and issue the Asterisk reload command:

 pbx*CLI> reload

No calls are interrupted when the reload occurs. This should keep everyone
who is using the system at that moment happy.

Now, you can place calls to the Asterisk server and to the other peers and
channels that will be connected to it. The default configuration installed with
Asterisk when you compiled it allows for several interesting demonstrations of
its capabilities using a SIP phone. (You also can try them using an analog
phone, if you have a Zaptel card installed and a phone hooked upbut that's
another project [Hack #44].)

4.3.4. Listening to Asterisk

In its default configuration, Asterisk has an auto-attendant that can route
calls. To try it out, take the IP phone off the hook and dial 2. Then dial the
BudgeTone's Send button. You will hear a friendly voice saying, "Asterisk is an
open source, fully featured PBX and IVR platform…."

Try this demo while watching the call progress on Asterisk's console by issuing asterisk vvvvvr
at a Unix shell before beginning the call.

While listening to the automated attendant greeting, dial 500. This will cause
the Asterisk server to greet you, connect you to a server at Digium, Inc. using
the Internet, and allow you to listen to another automated greetingthe one
being played back by a production Asterisk PBX at Digium's office. This
connection does not use the Public Switched Telephone Network (PSTN) at all,
but rather, a Voice over IP "trunk" that is set up on the fly by Asterisk.

The Voice over Internet demo requires User Datagram Protocol (UDP) port 4569. If you're
using a firewall or NAT device, be sure it permits outbound traffic on this port. Most
broadband routers will permit this type of traffic by default.

You can also perform an echo test by dialing 600, and you can access
Asterisk's built-in voicemail service by dialing 8500. This will give you at least

some idea of how your voice sounds when it's been processed and played back
for the person on the other end of a call.

Hack 43. Connect a Phone Line Using an FXO Gateway

The easiest way to interface Asterisk to a standard phone linelike the
traditional phone line in most homesis by using a telephone media
gateway.

There are essentially two ways to connect a traditional, non-IP phone devicebe
it an analog phone, a digital phone interface, or a telephone lineto the Asterisk
system. The first way is via the Zaptel telephony framework, a driver standard
that permits telephony interfaces to be used with Asterisk. (Oddly, Zaptel's
inventor, Jim Dixon, named his creation after the early 20th century Mexican
revolutionary, Emilano Zapata.)

Zaptel engineering is a very deep subject that warrants its own hack [Hack
#44], and even its own book (such as O'Reilly's Asterisk: The Future of
Telephony), so we're going to start with the other way of connecting non-IP
phone devices to Asterisk: via media gateways. Once you've got this down,
you can move on to the wonderful world of Zaptel.

A media gateway is a device that offloads the responsibility of hardware
interfacing from the server. It converts non-IP signaling into VoIP signaling
and vice versa. Media gateways don't need driver frameworks like Zaptel to
support connecting phone lines or other legacy technology. They come ready
to install on the network, with no software to compile. Just plug, configure,
and go. Connecting legacy phones and phone lines to Asterisk via a media
gateway is decidedly easier than using Zaptel, so that's the route we're taking
here.

The analog telephone adapter (ATA) pictured in Figure 1-1 of "Get Connected"
[Hack #1] is a media gateway, since its job is to connect an analog phone to
a VoIP service provider's SIP server over the Internet. In this case, though, we
want to do the reverse of that. We want to connect a telephone company line
to our own server. We'll do it using a Clipcomm CG-200 media gateway, an
inexpensive, Korean-made gateway that supports connecting up to two phone
lines (the CG-400 supports up to four).

When complete, the phone line, connected to the media gateway, will be
answered automatically by the Asterisk server, and a greeting message will be
played for the caller.

4.4.1. Configure the Gateway

The Clipcomm CG-200 and CG-400 are similar to other phone media
gateways: they provide an Ethernet interface (or two) and two or more FXO
ports that each allow you to connect a telephone line. But unlike some other
gateway hardware, the Clipcomm has a fantastic web-based configuration
interface, as shown in Figure 4-2.

Figure 4-2. The Clipcomm's web-based configuration interface

Let's assume you've already set up the TCP/IP basics on your Asterisk server
machine and on your media gateway. Make sure you can ping back and forth
between them, too. Then, accessing the VoIP configuration page on the
Clipcomm, enter the Asterisk server's IP address into the SIP Server field.
Enable SIP Registration and enter the Asterisk server's IP address again into
the Registrar and Outbound Proxy fields. This will cause the media gateway's
SIP client to register with the Asterisk server.

Registration is the process by which a SIP client is authenticated with the SIP server and is
also the means by which the SIP server knows how to reach the endpoint in case it needs
to route a call to it. Just as a TCP/IP device can register with a DHCP server, a SIP client
can register with a SIP server, called a registrar.

Now, you'll need to tell the media gateway what credentials (username and
password) to use for each phone line you're going to be "passing through" to
the Asterisk server. If you're just connecting a single line, you need only
establish credentials for VoIP1. (VoIP2, VoIP3, and VoIP4 correspond to the
second, third, and fourth phone lines you can connect.)

The User ID tends to be a phone number. When this User ID is dialed by a
caller, it signifies that this SIP endpoint should be called. This differs from the
Authentication ID, which is used to register the SIP endpoint with the Asterisk
server. Authentication ID and User ID needn't be the same, but they often are.
In this case, we've chosen 7711 for both. This is the number we'll use later
with Asterisk to handle calls to and from the phone line that's connected to
this media gateway.

Click the Save and Restart command button to reboot the media gateway.
Then click Supplementary Function. This will pull up a page similar to the one
in Figure 4-3.

Figure 4-3. The Clipcomm's supplementary function
configuration page

On this page, you can see the FXO channels that correspond to the VoIP
channels. They're called PSTN1, PSTN2, etc., and they represent the two or

four RJ11 jacks on the gateway's back panel. To get incoming calls from the
attached phone line to be forwarded automatically to the SIP server on the
Asterisk machine, click the radio button under PSTN1, labeled Call Forwarding
to VoIP. Now, when calls come into the Clipcomm from the phone-company
line, they'll be answered automatically, and the Clipcomm will attempt to route
them through to the Asterisk server. Don't forget to save this configuration.

If we wanted SIP calls outgoing from Asterisk to the Clipcomm to be forwarded to the
PSTN, we would need to enable Call Forwarding to PSTN for each VoIP channel, too. Keep
this in mind for the next hack.

4.4.2. Configure an Asterisk SIP Peer for the Gateway

Asterisk refers to SIP endpoints as SIP peers, and it uses /etc/asterisk/sip.conf
to establish settings for them: everything from usernames and passwords to
basic audio preferences. Our objective here is to establish a SIP peer
configuration for the media gateway we've just configured. So, using your
favorite text editor, add the following to your sip.conf file:

 [7711]
 callerid="Outside Line" <200>
 canreinvite=no
 context=default
 dtmfmode=rfc2833
 host=dynamic
 port=5060
 type=friend
 username=7711

Notice how the bracketed heading and the username setting of 7711 match the
media gateway's User ID and Authentication ID settings, respectively.

4.4.3. Make Asterisk Answer Automatically

Now, save sip.conf and open up /etc/asterisk/extensions.conf. This file tells

Asterisk what to do whenever a user dials a phone number. It contains the
"dial plan" that guides the system-wide call-handling functionality of the
Asterisk server. In the [default] section of the file, comment everything out and
add these lines:

 exten => s,1,Answer
 exten => s,2,Playback(abandon-all-hope)
 exten => s,3,Hangup

Save the file and launch (or relaunch) Asterisk:

 # asterisk -rx reload

Now, calling the phone number of the line connected to the media gateway will
result in the call being answered by the Asterisk server. You'll hear a voice
message, and then the call will be hung up.

Hack 44. Connect a Legacy Phone Line Using Zaptel

You don't need to buy a VoIP phone to make use of Asteriskuse your
home phone instead.

About a dozen interface cards support the Zaptel standard, allowing you to
connect something as simple as a two-wire analog telephone, or something as
sophisticated as a digital T1 breakout box (called a channel bank) for
connecting digital business phones. In this hack, you'll see how to connect a
phone line using such an interface cardeither an X100P or a TDM400P, both
manufactured by Digium.

To build a Linux PBX that can communicate with the PSTN (the network that
90 percent of the world still uses for telephony), you'll need at least one trunk
channel to communicate with the FXS interface in the phone company's
central office switch. This channel will provide you with a dial tone from your
local phone company, so calls to and from the PSTN can be handled by the
Asterisk server. There's not much to setting up an FXO channel with Asterisk.
One way, covered in this hack, is to install an X100P, TDM400P, or similar FXO
line card in the Asterisk server. (The other way is to use an FXO media
gateway [Hack #43]).

The connection from your premises to the phone company's switch is called the local loop.

4.5.1. Install an Interface Card

To get started, you'll need to obtain an Intel i537-based FXO interface card
such as the Digium X100P. (If you'd like to save a few bucks and build your
own X100P clone, check out "Brew Your Own Zaptel Interface Card" [Hack
#64].) Install the X100P card into your PC's PCI bus (sorry Mac users, you're
stuck using a media gateway, as covered in the previous hack) and connect an
RJ11 standard phone patch cord from the wall jack of an active telephone
company Plain Old Telephone Service (POTS) line into the appropriate port of
the X100P. On the X100P, this port is the one marked with an etching of a
telephone wall jack.

Now, download and compile the Zaptel driver and Asterisk [Hack #41]. This
creates the zaptel and wctdm modules, which need to be loaded during startup, by
adding this code to the script that launches Asterisk, right before the line
where Asterisk itself is launched:

modprobe zaptel
modprobe wctdm
 /etc/rc.d/init.d/asterisk start

By now, the card is in a PCI slot on the Asterisk server, the phone line is
connected, and you've compiled and installed the Zaptel drivers. Your next
step is to define the FXO trunk connection as a channel that is usable by
Asterisk. Once defined, you can reference the channel within your Asterisk
call-routing scheme. The POTS line can serve as the full-time gateway for all
PSTN calls and all telephones in your home or office. Or the POTS line can just
be a connection mechanism so that the Asterisk server can answer incoming
calls on the POTS line if they aren't answered by a person within a certain
number of rings. But first, the FXO connection must become a named Asterisk
channel.

Each voice channel in Asterisk has a number. This number consistently
represents the same channel throughout all of Asterisk's configuration files
and in its logging output. The numbering of voice channelsespecially those that
require a dedicated piece of interface hardware in the serveris determined by
the order in which their drivers are loaded and the order in which they are
identified in the PC's PCI bus. Figuring out which card is whichsay, in a
situation where you have just installed three or four X100P cards, each with
its own POTS linecan require a bit of trial and error. In this project, we're
using only one card and one line, so it should be a breeze.

The voice channel we're going to create will be called Zap/1-1. Asterisk follows
a similar convention when naming all voice channels, even if they aren't
analog phone line channels. The channel name is divided into two pieces. The
first piece, Zap/1, refers to the physical Zaptel interface channel (which is
either an FXO/FXS interface or a PRI channel). The second piece, -1, refers to
the line number (more on multiple-line interfaces later).

For Zaptel interfaces that support only a single line, you can refer to them without the line
numberi.e., Zap/1 and not Zap/1-1.

Assuming you haven't touched the Asterisk configuration files since running
make samples in the first Asterisk hack, you'll have to make only two quick config
changes to fire up your POTS line. The first change is in /etc/zaptel.conf. Add
the following lines to the end of the file:

 fxsks=1
 loadzone=us
 defaultzone=us

The first line tells the Zaptel configuration program, ztcfg, to set the X100P card
to use FXS Kewlstart signalinga variation of conventional FXS loop-start
signaling. The number 1 is referenced because only one Digium card is
installed, and it has only one channel, like the X100P card, so it's card number
one and its channel will be 1 as well. If two cards were installed side by side,
the first line would say fxsks=1-2 instead. If there were more than one channel
per card (like the TDM400P), a single channel number would be used for each
channel on that cardi.e., fxsks=1-4 for a card with four lines attached. fxsks=1-8

would work fine if you had two TDM400Ps installed with four FXS modules
apiece. The next two lines in the code snippet localize the FXS signaling
functionality of the X100P interface with loadzone and defaultzone. Other valid zones
include fr, de, and uk.

Now, you might be asking yourself, "Why am I configuring the FXO interface
card to use FXS signaling?" The answer is simple: to communicate with the
FXS device interface at the central office, the local interface must use FXS
signaling. Recall from this chapter's introduction that only FXS devices can
receive signals meaningfully from FXO devices, and vice versa.

To alleviate confusion over FXS/FXO kernel module naming, wcfxs has been deprecated in
favor of wctdm in releases of Asterisk later than 1.0.5.

The next change you need to make is in the /etc/asterisk/zapata.conf file. The
sample configuration should be completely commented out (comments are
denoted by semicolons at the beginning of the line). If it's not commented out,
place a semicolon at the front of each line. Then, add the following lines to the

end of the file:

 context=default
 signalling=fxs_ks
 usecallerid=yes
 echocancel=yes
 callgroup=1
 pickupgroup=1
 immediate=no
 channel=>1

The first line tells Asterisk what set of assumptions to make (i.e., what
"context" to choose) when handling calls coming in on the POTS line. The
second line tells Asterisk (not ztcfg) what type of signaling the X100P has been
set to use. The following lines turn on a few traditional telephony
featurescaller ID, echo cancellation, and other stuff that's covered in more
detail later. The last line assigns all the previous settings to channel 1. The
assignment of these inherited settings uses the => assignment operator rather
than just an equals sign (=). The Asterisk configuration parser doesn't
distinguish between them; the convention is merely for ease of human
readability.

Contexts are Asterisk's way of meaningfully grouping call-flow scenarios. A context
describes what behavior is caused by dialing 1 at the outset of a call, while another context
describes what behavior is caused by dialing 1 at some point thereafter. These contextual
behaviors are defined in /etc/asterisk/extensions.conf.

You'll need to make one more quick change to Asterisk's sample configs:
change the Zap/g2 definition for $trUNK in extensions.conf to Zap/1. (This step
might not be necessary with earlier versions of the sample config.) This will
allow outbound dialing to be directed to the correct channel, Zap/1, the one
that represents the connection to the PSTN.

Now, since you've added a new hardware interface, you must restart Asterisk.
Once you've done that, try calling the POTS line you've connected to the
X100P using a second phone line or your cell phone. After a few rings,
assuming you haven't changed the configuration, Asterisk will answer and you
should hear the familiar demo greeting that you heard in "Turn Your Linux Box

into a PBX" [Hack #41]. If you examine Asterisk's console output during this
demo, you'll see something like this:

 -- Starting simple switch on 'Zap/1-1'
 -- Executing Wait("Zap/1-1", "1") in new stack
 -- Executing Answer("Zap/1-1", "1") in new stack
 …
 -- Playing 'demo-abouttotry'
 -- Executing Dial("Zap/1-1", IAX@/guest@misery.digium.com/s@default) in new stack
 …

Through the console output, you can trace every step Asterisk took to
recognize, answer, and process the incoming analog call from the PSTN and to
connect it using the IAX protocol to a remote server across the Internet. Note
that although this chapter is about legacy, circuit-switched telephony, we're
using IAX to get our feet wet with VoIP. Plus, the IAX demo is so easy to run
with Asterisk "out of the box" (it isn't broken by broadband routers the way
SIP often is) that it's a great way to demonstrate how a VoIP signaling protocol
can be used with legacy signaling on the PBX.

Hack 45. Forward Your Home Calls to Your Cell Phone

Using Asterisk, you can create a simple call forwarder, so calls to your
home can follow you whenever you go.

Asterisk is a programmable platform in the same way that the Apache Web
Server is. There are many ways to program Asterisk, but all of them connect
in some way to the core of Asterisk's functionalityits so-called "dial plan." The
dial plan begins (and usually ends) in /etc/asterisk/extensions.conf. Using the
dial plan, you can program how your softPBX should behave, which phones
should ring when different digits are dialed, how long they should ring, and
what to do if nobody answers when they ring.

So, it's actually pretty straightforward to program the dial plan to forward all
incoming calls from a certain line to another phone number via a second line.
There are many uses for this, including having your phone calls follow you
wherever you go, as well as using the Asterisk server as a screen so that you
don't have to give people the number you are forwarding to. This is a great
way to keep your cell phone or parents' home phone number private. The
Asterisk server will dial the cell phone on the second line and then bridge (or
conference) the two lines together for the duration of the call.

The hardest part about setting up this configuration is connecting two lines (or
two SIP peers acting as lines [Hack #43] to the Asterisk server. Once that's
done, the forwarding part is simple. But before we get to that, let's check out
the configuration for the two lines.

Let's assume that two SIP peers are connected to the Asterisk server, vis-à-vis
a media gateway with two SIP clients, like the Clipcomm used earlier [Hack
#43]. The sip.conf configuration for these peers would look something like
this:

 [7711]
 callerid="Outside Line 1" <200>
 canreinvite=no
 context=incoming
 dtmfmode=rfc2833
 host=dynamic
 port=5060
 type=friend
 username=7711

 [7712]
 callerid="Outside Line 2" <201>
 canreinvite=no
 context=default
 dtmfmode=rfc2833
 host=dynamic
 port=5060
 type=friend
 username=7712

Line 1 is SIP peer 7711, and line 2 is SIP peer 7712. Let's say that the line
we're going to receive calls on is line 1, and the line we're going to use to call
the cell phone is line 2. Note context=incoming. This creates a context within
Asterisk for incoming calls to arrive. Now, open up extensions.conf so that you
can create a dial plana set of instructions that tell Asterisk what to do in this
incoming contextto correspond to peer 7711's incoming context setting:

 [incoming]
 exten => s,1,Dial(SIP/7712/${CELL_PHONE},30)
 exten => s,2,Playback(abandon-all-hope)
 exten => s,3,Hangup

Since sip.conf indicates that all incoming calls from SIP peer 7711 should enter
the incoming context, we've created that context in the dial plan (as shown in
the previous code snippet). Using the special s extension, whose purpose is to
incorporate into the context incoming calls that haven't been triggered by a
user dialing an extension number (calls like those incoming from the outside
world), we can specify three steps to deal with the call:

1. Dial the cell phone number on the second SIP peer (7712). You can specify
the numberfor instance, 1-440-864-8604instead of using the ${CELL_PHONE}

variable, since we haven't really covered variables yet. The 30 specified in
the first command says to attempt to bridge (conference) the call on the
two lines for up to 30 seconds before giving up.

2. If the call isn't bridged because the Dial command times out, the Playback

command will play a greeting. In this case, I've specified a greeting called
abandon-all-hope.

3. If either of the previous steps cannot be completed, the caller will be
disconnected.

So, when an incoming call from SIP peer 7711 hits the server, SIP peer 7712
(the "second line") will be directed to call your cell phone and attempt to
bridge the call.

I know what you're thinking: "Why wouldn't I just use my phone line's built-in
call-forwarding service to do this?" My answer is "Selectively Forward Calls"
[Hack #46].

Hack 46. Selectively Forward Calls

You can pass caller ID signals into Asterisk, and have them acted on
appropriatelyincluding auto-ignoring the people you don't want to
speak to.

By making some clever use of Asterisk's built-in caller ID channel variable and
a little workflow logic, it's easy to turn your call-forwarding project from the
previous hack into something even more useful. In this hack, we'll make
Asterisk forward calls to your cell phone only if they're from a certain caller ID.
That way, you need only be bothered with answering your cell phone if dear
old Mom is calling (or your boss).

Asterisk refers to the one or more voice communication links of a phone call as
channels. So, when a call-forwarding setup that uses two SIP peers is active,
it's said to use two channels. Each channel has with it a number of channel-
specific variables that contain information about the ongoing call. When the
call ends, the channels, and these channel-specific variables, disappear. One of
these variables is ${CALLERIDNUM}, which contains the phone number of the calling
party, as signaled by the calling peer. (On the PSTN, caller ID signals originate
from the exchange switch of the calling party.) We can use this variable to
figure out whether we want to forward a call.

Unless you're paying for caller ID service, your Asterisk server won't receive caller ID
signals, and this hack won't work. Some phone companies (and just about all VoIP service
providers) include caller ID for free.

Consider the following:

 [incoming]
 ; Priority 1: Check to see if the call is Mom's home phone.
 ; If so, go to priority 5; if not, continue to priority 2.

 exten => s,1,GotoIf($["${CALLERIDNUM}" = "3138853352"]?5:2)

 ; Priority 2: See if the call is Mom's cell phone.
 ; If so, go to priority 5; if not, continue to priority 3.

 exten => s,2,GotoIf($["${CALLERIDNUM}" = "3132981848"]?5:3)

 ; Priority 3 and 4: This call's not Mom, so just drop it.
 exten => s,3,Playback(carried-away-by-monkeys)
 exten => s,4,Hangup

 ; Priority 5: Dial my cell phone for 30 seconds to connect Mom.
 exten => s,5,Dial(${MYCELLPHONE},30)

 ; Priority 6 and 7: If not answered in time, drop the call.
 exten => s,6,Playback(carried-away-by-monkeys)
 exten => s,7,Hangup

Note the syntax of the GotoIf command. If you're familiar with logic control
structures in programming, the ? should look like a "then" in an if-then
workflow statement. A colon (:) separates the then-target from the else-
target. The targets correspond to the step numbers in each of the exten

directives, of course.

If you think Asterisk dial-plan syntax is atrocious, well, you're right. Don't get
too hung up on it now, though. There are some good references out there for
Asterisk dial-plan commands, including http://www.voip-info.org/ and the
unforgettable classic, Switching to VoIP (O'Reilly). For now, just keep hacking,
and you'll get comfy.

4.7.1. Hacking the Hack

With a little modification, you should be able to forward incoming calls to
different numbers, depending on their caller ID values. Just rearrange the
previous example so that each GotoIf numbered target step contains a Dial

command with a different phone numberone for Mom, one for Dad, etc. You
can even forward calls with no caller ID signals (like those from telemarketers)
to a fun destination [Hack #48].

http://www.voip-info.org/

Hack 47. Report Telephone Activity with Excel

With a little help from Microsoft Excel, you can dig into your CDRs,
chart your top callers, and create utilization records for the users of
your PBX server.

Most commercial softPBX systems provide a detailed logging mechanism for
keeping track of when and to whom calls were made and received. Asterisk
provides this, too. In /var/log/asterisk/cdr-csv/Master.csv, a flat text log of all
call activity is retained. It's a snap to import this into Excel or your favorite
spreadsheet for analysis. You can download the file from your server using
FTP, or you can run the following command to email it to you (keep in mind
that large logfiles might not work well with this trick):

 # cat /var/log/asterisk/cdr-csv/Master.csv | mail me@mydomain.com

Of course, replace me@mydomain.com with your email address. If your Linux
server has sendmail or a similar Simple Mail Transfer Protocol (SMTP) agent
running (most do), the contents of the file will be emailed to you. You can then
copy and paste them into Excel, as shown in Figure 4-4. Place the cursor on
column A, row 1 before pasting.

Figure 4-4. A portion of the Asterisk ASCII call-detail-record
(CDR) logfile, copied and pasted into the Macintosh version of

Excel

Once you paste the text or open the file, select column A by clicking the A
column heading. Then use Excel's Text to Columns function, on its Data menu.
This will launch a wizard that will help you organize the text file into columns
so that it's actually useful within Excel. You'll see a preview of the text you
pasted in the bottom portion of the window that appears. Leave the Delimited
radio button selected and then click Next.

Select Comma as a delimiting character, make sure no other delimiters are
selected, as in Figure 4-5, and click Finish. Now, you're ready to label the
column headings according to their purposes. Insert a blank row at the top of
the spreadsheet, and you can label them as outlined in Table 4-1.

Figure 4-5. The second step of the Text to Columns Wizard
breaks up the CDR log text into meaningful cells of data

Table 4-1. Asterisk CDR default fields

CDR field Description

Account code A tag that can be used in billing and analysis

Source: The unique identifier of the endpoint placing the call

Destination: The unique identifier of the endpoint receiving the call

Context*: The dial-plan context of the call (more on this later)

Caller ID: The calling-party identification signals supplied by the calling endpoint

Incoming Channel: The voice channel that routes to the caller

Destination Channel: The voice channel that routes to the receiver

Application*: The Asterisk software function handling the call

Last Data Sent to Application*: Information the application uses to connect the call

Start Time: The time of first contact from the caller to the softPBX

Answered Time: The time the receiving endpoint answered, if applicable

End Time: The time of the end of the call, regardless of whether it was answered

Duration: The length, in seconds, from the first contact to the end time

Billable Duration: The length, in seconds, of connected, billable time during the call

Disposition: The last known status of the call during this application

AMA Flags*: Automated Machine Accounting flags, used by some telephony billing software

The field names marked with an asterisk (*) record Asterisk proprietary
information. For example, the Application field might not have a meaningful
correlation on another softPBX because not all softPBXs refer to telephony
functions as applications.

The idea here is that once the CDR is imported into Excelor another data-
analysis toolyou can interpret it in interesting ways. Suppose you want to
figure out which customer places the most calls to your technical support
department. You can count occurrences of that customer's caller ID in the
CDR. Or, if your teenage daughter is receiving a dozen calls a day, you can bill
her accurately for them!

With CDRs in Excel, Crystal Reports, or even a homegrown Perl program, a
savvy telephony administrator can do the following:

Determine which channels are used the most and the least

Determine which endpoints are called most often

Calculate the percentage of outgoing calls that are out of your area code

Create a list of calls, broken down by endpoint

Create an invoice for a paying subscriber to the softPBX

Asterisk's CDRs can also be stored in PostgreSQL, MySQL, and even syslog, depending
upon the modules you compile and install.

4.8.1. Creating a Call Report

One of Excel's coolest features is the Pivot Table Report. I actually used Excel
for years without touching this menu option, passing over it dozens of times,
until one day I had to build a sales report for an application I'd been
developing. I had a choice between coding the report myself, building it in a
tool like Access, or performing the analysis in Excel. The only problem with
that last option was that I didn't know how to do the analysis in ExcelI knew
only that it could be done.

So, I turned to the Pivot Table Report (or should I say, Iahempivoted to it) and
built a sales summary in five minutes, which to this day is still in use at the
office where I built it. Needless to say, I've sworn by the Pivot Table Report
function ever since. I never knew what I was missing out on by passing over
that peculiarly intimidating Excel menu option. And, when it comes to those
telephony logs, the Pivot Table Report function ever since. I never knew what I
was missing out on by passing over that peculiarly intimidating Excel menu
option. And, when it comes to those telephony logs, the Pivot Table Reports,
you can generate some very cool call-activity analysis. List your top callers.
List your top system users. Or just figure out your total long-distance and local
utilization down to the minute to verify your phone bills.

We'll do one report that sums activity (in minutes) by caller and a second
report that adds a breakdown of the total minutes for every phone number
called by each caller. To get started, we'll first need to get our hands on the
Asterisk CDR logfile, as described at the beginning of this hack. Next, we'll
insert a blank row at the top of the worksheet and key in the names of the
CDR fields at the top of each column, as shown in Figure 4-6. This will be
needed to make the Pivot Table Report. (The names of the CDR fields are laid
out in Table 4-1.)

Once the CDR columns are labeled, select Data Pivot Table Report. Now,
you'll get a wizard. Click Next on the first step, where you'll find yourself being
prompted to provide the name of a data range where the source data exists. In
this case, the source data is the first sheet in the workbookthe one that
contains the CDR data. Select this sheet and drag-select all of the columns

that contain CDR data. Then, return to the wizard window and click Next. The
final step asks you where you want to put the report; choose the option to
place it in a new worksheet. Then, click Finish. As shown in Figure 4-7, you'll
now have a pivot-table toolbar with the names of your CDR columns on it.

Figure 4-6. The CDRs, imported into Excel

Figure 4-7. A pivot-table toolbar with Asterisk CDR fields

Now, you can drag those column names from the pivot-table toolbar to the left
and right columns of the blank Pivot Table Report worksheet. Dragging to the
left pivot-table column treats the data from that CDR column as a group label.
If you're familiar with Crystal Reports or Access, data grouping in reports

should be a friendly concept. If not, read onyou're in good hands. Dragging to
the right column of the Pivot Table Report worksheet treats the data from the
CDR column as summary data.

It's probably easier just to start dragging column headings and see what
happens. Start by dragging the Source column to the left column in the pivot
table. Next, drag the Duration column to the right column in the pivot table.
These two drags will build a report like the one in Figure 4-8, which shows a
sum of minutes for each caller on the system over the period of time covered
by the CDR worksheet.

In Figure 4-8, the majority of callers are PSTN phone numbers (the 10-digit
numbers), though the majority of minutes are from private extensions (104,
200, etc.). Extension 200 has the most minutes261. Of course, this report
doesn't tell us how extension 200 spent all those minutes (whom 200 was
talking to), so let's drag another CDR heading from the toolbar to the lefthand
column. Drag the Destination column, and the report will now show the minute
totals of each phone number to whom each caller placed calls, as shown in
Figure 4-9.

Figure 4-8. A Pivot Table Report that shows all the minutes of
call activity on the system, broken out by caller

Experiment with the other columns. What can Excel tell you about your call
activity? With these reports, you'll have a handle on precisely who called
whom, and when. That way, if your mom ever says, "Why don't you ever call?"
you'll have the perfect response: "Mom, we talked 108 minutes last week
alone, and 96 minutes the week before!"

Figure 4-9. A Pivot Table Report that shows detailed minute
totals for each extension, for every phone number called

Hack 48. Kindly Introduce Telemarketers to Mr. Privacy

If you enjoy being contacted by anxious telephone pitchmen promising
a lower interest rate or offering a great deal on term life insurance
while you're just sitting down to dinner, skip this hack.

Using techniques similar to those in "Selectively Forward Calls" [Hack #46],
it's possible to discern between phone numbers that supply a caller ID and
those that don't. This is different from merely identifying a certain caller ID
number and then handling it. What we're doing here is shoveling all
unidentified calls into a certain action.

If you like, you can even have your phone server handle these calls without
interrupting you, putting a decisive end to those annoying dinner-hour calls
from "Private" or "Unknown." Using a great little feature in Asterisk, the
PrivacyManager command, we can fight fire with fire. This dial-plan command
screens calls as described earlier, identifying the caller ID, or forcing the
calling party to enter a caller ID if none is provided at the outset of the call.
Best of all, everything can happen without your phone ever ringing, saving
you from the aggravation of a sales pitch when you're trying to enjoy a filet
mignon.

Consider the following from the [default] context, in extensions.conf:

 exten => s,1,PrivacyManager
 exten => s,2,Dial(Zap/2,30)
 exten => s,3,Hangup
 exten => s,102,Hangup

The first priority of this extension contains the PrivacyManager command, which
prompts the user to enter his 10-digit telephone number if no caller ID signals
have been sent on the channel to identify the caller. If the caller doesn't enter
his phone number, he gets dumped to priority 102 (100 plus the current
priority), where the call is disconnected using the Hangup command.

When telemarketers call you, pretend you're Scarface, brandishing your Privacy Manager
and saying, "Say hello to my little friend."

If the caller does successfully enter his 10-digit phone number, the dial plan
proceeds to the next priority. In the previous example, a Dial command rings a
phone connected to a Zaptel card (that's what's referenced by Zap/2) for 30
seconds before giving up and disconnecting the call if nobody answers.

4.9.1. Hacking the Hack

You can combine this hack and "Selectively Forward Calls" [Hack #46] to
maintain privacy, and to pick and choose functionality based on caller IDfor
instance, forwarding calls based on who's calling. And as shown here, you can
make sure you know who's calling, with your new friend, Mr. Privacy:

 [incoming]
 exten => s,1,PrivacyManager
 exten => s,2,GotoIf($["${CALLERIDNUM}" = "3138853352"]?6:3)
 exten => s,3,GotoIf($["${CALLERIDNUM}" = "3132981848"]?6:4)
 exten => s,4,Playback(carried-away-by-monkeys)
 exten => s,5,Hangup
 exten => s,6,Dial(${MYCELLPHONE},30)
 exten => s,7,Playback(carried-away-by-monkeys)
 exten => s,8,Hangup
 exten => s,102,Playback(carried-away-by-monkeys)
 exten => s,103,Hangup

Hack 49. Build a Four-Line Phone Server

Create a simple, fully functional small-office PBX.

An Asterisk server can be the nerve center of two kinds of telephony
networks: an all-VoIP network that uses only IP-based connections to route
calls, or a hybrid VoIP/legacy network that uses both IP and time division
multiplexing (TDM) technologies to route calls.

In this hack, you'll use a Digium TDM400P card to turn your Asterisk server
into a full-blown PBX that can support up to four legacy phones (or four legacy
phone lines) at a time. These legacy devices will be able to call, and be called
by, VoIP phones. This setup is depicted in Figure 4-10.

Figure 4-10. Asterisk as a simple small-office PBX

The TDM400P card has four modular interfaces that can host either FXO or
FXS modules. FXO modules allow you to connect phone lines to your server,
and FXS modules let you connect phones. You can use any combination of FXO
and FXS modules (up to four) on a single TDM400P, so you can connect two
analog phones and two phone lines, or one phone line and three analog
phones, and so on. When you purchase the TDM400P card, you can specify
what combination of interfaces you'd like. Here's the main thing to remember,
so you don't get the wrong configuration: the redcolored FXO modules connect

phone lines, and the green-colored FXS modules connect phones. So, if you
want three analog phones to share a single analog phone line, you would use
three FXS modules and one FXO module.

The Linux driver framework that allows Asterisk to use the TDM400P card is
called Zaptel, and if you worked your way through "Turn Your Linux Box into a
PBX" [Hack #41], you've already got the Zaptel drivers installed. Since these
drivers don't yet work with Mac OS X, you'll be able to use the TDM400P card
only on i386 Linux. I'll cover enabling the drivers in a moment.

If you're using certain servers, the TDM400P might not be compatible with certain Dell
PowerEdge servers. Also, some Intel equipment has known issues with the TDM400P card.
So check Digium's web site (http://www.digium.com/) to be sure: you could save yourself
some time and aggravation. VoiceTronix makes alternative cards that you might want to
consider, too.

But first, you need to get the card installed. This is pretty straightforward. If
you've got a spare PCI slot, you're ready to snap the card into place. There are
four numbered modules on the card, which correspond to the four numbered
eight-wire jacks on the case plate of the card. Before inserting the card,
screwing down the back brace, and replacing the PC's cover, you might want to
note which jacks are for connecting phones and which are for connecting
phone lines. It's hard to know once the case is on.

There's one more thing to connect after the TDM400P is slipped into place: a
four-wire hard-drive power cable that runs from one of the PC's power leads to
a power connector on the card. This cable brings power to the card above and
beyond what's available from the PCI bus so that the card can provide ring
voltage to any phones that are connected. You don't need to connect this little
power cable if you aren't using FXS modules.

Once the card is in and your Linux box is booted up, you'll need to make sure
the Zaptel drivers that were compiled when you first installed Asterisk are
loaded before Asterisk is launched as a part of your normal system startup. To
accomplish this, execute these commands before Asterisk is launched, perhaps
in /etc/rc.d/rc.local:

 /sbin/modprobe zaptel
 /sbin/modprobe wctdm
 ztcfg

http://www.digium.com/

Note the difference between this startup routine, which provides driver support
for both analog phones and analog phone lines, and that of "Connect a Legacy
Phone Line Using Zaptel" [Hack #44], which provides driver support only for
phone lines. The addition of wctdm is the difference.

Run make config in your Zaptel and Asterisk source directories to create startup scripts that
are customized for your Linux distribution.

The wcfxs driver needs to be modprobed only if you're using FXO modules
(with phone lines attached), and the wctdm driver needs to be modprobed only
if you're using FXS modules (with analog phones attached). The ztcfg
application tests the Zaptel driver configuration and returns nothing if it's
valid. If there's a hardware error or a problem with the Zaptel configuration
files, which we're about to discuss, ztcfg will return an error description to the
standard error output.

The /etc/zaptel.conf settings tell the Zaptel driver framework which modules
on the TDM400P card are which. For a card with two FXO and two FXS
modules, a configuration file like this would be used:

 ; zaptel.conf example
 loadzone = us
 defaultzone=us
 fxsks=1,2
 fxoks=3,4

The numbers assigned, 1 through 4, are channel numbers that Asterisk will
use to refer to activity on each module. Within Asterisk, each legacy interface
port on the TDM400P has its own channel. Since the point of this hack is to
build a four-line phone server, we're going to assume that all of the channels
are using the same type of signaling:

 ; zaptel.conf example
 loadzone = us
 defaultzone=us
 fxsks=1,2,3,4

In this case, there are four FXO interfaces, to which we're going to connect
one phone line apiece. fxsks (FXS Kewlstart) signaling is specified because the
phone company switch to which these phones connect expects us to be using a
telephone. Ordinarily, telephones interface to that phone-company switch
(called a foreign exchange office in signal-ese) using electro-mechanical line
signaling (called FXS signaling in Asterisk slang). Hence, our switch will be
pretending to be a phone by using FXS signaling on its FXO interfaces.
Confused yet? No worriesonce your server is up and running and your
TDM400P is functioning as planned, you'll probably never need to mess with it
again.

Now that you've saved zaptel.conf, bring up /etc/asterisk/zapata.conf in a text
editor and make sure it resembles this example precisely:

 [channels]
 language=en
 context=default
 signalling=fxs_ks
 usecallerid=yes
 hidecallerid=no
 callwaiting=yes
 callwaitingcallerid=yes
 threewaycalling=yes
 transfer=yes
 callreturn=yes
 group=1
 channel => 1
 channel => 2
 channel => 3
 channel => 4

This block of config fine-tunes the settings of the four Zaptel channels that are
provided by the card (for a concise description of what all of these settings do,
check out Chapter 17 of O'Reilly's really amazing book, Switching to VoIP).
Save this file before proceeding.

4.10.1. Set Up Incoming Calls

Now, pay a visit to /etc/asterisk/extensions.conf. Here, you'll need to adjust
the default context section of the file so that incoming calls on the four lines
can be handled appropriately.

Take a look at this sample default context section in extensions.conf, which
deals with incoming calls from the TDM400P-connected phone lines (and from
any other channels that point to the default context):

 [default]
 exten => s,1,Dial(SIP/100,30)
 exten => s,2,Voicemail(100)
 exten => s,3,Hangup

So, as of right now (or at least after you reboot your Asterisk box or load the
kernel modules manually), incoming phone calls to the connected phone lines
will ring on the SIP phone configured as SIP peer 100. For a refresher on SIP
peers, refer back to "Connect a Phone Line Using an FXO Gateway" [Hack
#43].

4.10.2. Set Up Station-to-Station Calls

If you'd like your SIP phones to be able to call each other, be sure to add the
following extension to the default context:

 exten => _1XX,1,Dial(SIP/${EXTEN},30)
 exten => _1XX,2,Voicemail(${EXTEN})
 exten => _1XX,3,Hangup

The _1XX pattern matches any phone numbers dialed that are three digits long
and begin with 1. It deals with them by attempting to ring the SIP peer that is
registered with a user ID that matches the extension number dialed, and then
sends them to the appropriate voicemail box after 30 seconds if the SIP peer
doesn't answer.

4.10.3. Set Up Outgoing Calls

Now, you've got to make it so that any connected phones can place calls using
the four lines that you've just hooked up to the installed FXO modules. This is
accomplished by a special pattern-matching extension in those phones'
contexts. For SIP phones, this is established in sip.conf. Let's say that a SIP
phone's context is [private-phones]. To allow this SIP phone to dial out using your
newly connected phone lines, you'll need to make sure there is a context in
extensions.conf that looks something like this:

 [private-phones]
 exten => _NXXXXXX,1,Dial(Zap/g1/${EXTEN})
 exten => _NXXXXXX,2,Congestion
 exten => _1NXXNXXXXXX,1,Dial(Zap/g1/${EXTEN})
 exten => _1NXXNXXXXXX,2,Congestion
 exten => 911,1,Dial(Zap/g1/911)
 exten => 911,2,Congestion

The string patterns _NXXXXXX and _1NXXNXXXXXX are actually masks designed to
identify phone numbers that are 7 and 11 digits long, respectively. This way, if
the dialed number is 7 or 11 digits long, Asterisk knows it must dial the
number (represented by the variable ${EXTEN}) using the group of four phones
(Zap/g1) you previously defined in zapata.conf. The 911 extension performs call
routing to the phone company's Public Safety Answering Point (PSAP), via the
standard 911 phone number. (In countries other than the United States, local
jurisdictions will use different numbers for this purpose, so check with your
local emergency dispatch authority to find out what number to use.)

Add a _011X extension to enable international dialing.

Of course, none of this is going to work until the drivers are loaded and the
dial plan is reread by Asterisk, so give your machine a reboot, or load the
modules and restart Asterisk manually. Then, call and be calledon the cheap.
The coolest thing about the PBX you've just built is its cost effectiveness. To
buy a four-line business phone system new is usually more expensive than
equipping an Asterisk box like you've done in this hack. Plus, you've got access
to Asterisk's programmable dial plan and application programming interfaces
(the Asterisk Gateway Interface and Asterisk Manager API), giving you a
metric ton more capabilities than a low-end commercial PBX.

Hack 50. Master Music-on-Hold

"Can you hold on a minute?" the operator asks. Suddenly you're
listening to Frank Sinatra singing "New York, New York." Before you
know it, you're tapping your finger and the wait doesn't seem so bad.

Few things are more dreaded among telephony end users than the short yet
foreboding phrase, "Please hold." Perhaps what bothers folks is that they never
know quite how long they're going to be on hold, or maybe it's the notion that
they're going to have to re-explain themselves to a whole new person who
winds up on the line after the hold time is over with. Fortunately, music-on-
hold makes that wait time a little bit more tolerable.

Asterisk gets its music-on-hold sound signals from MP3 files that are decoded
and piped to Asterisk by one of two supported MP3 players: Mpg123 and MPEG
Audio Decoder (MAD). In this hack, I'm going to use MAD because there are
some well-documented security issues with Mpg123 that have yet to be dealt
with. (Of course, if you'd like to use Mpg123, you can just issue make mpg123 from
your Asterisk source directory.) To get MAD, start at
http://mad.sourceforge.net for a list of mirror sites to download the MAD
distribution. You'll need three pieces: the ID3 library, the MAD library, and the
madplay application. Each is in a separate archive that you'll need to
download, unpack, and install as follows:

 # cd /root
 # mkdir mad
 # cd mad
 # wget http://kent.dl.sourceforge.net/sourceforge/mad/madplay-0.15.2b.tar.gz
 # wget http://internap.dl.sourceforge.net/sourceforge/mad/libmad-0.15.1b.
 tar.gz
 # wget http://peterhost.dl.sourceforge.net/sourceforge/mad/libid3tag-0.15.
1b.tar.gz
 # tar xvzf madplay-0.15.2b.tar.gz
 # tar xvzf libmad-0.15.1b.tar.gz
 # tar xvzf libid3tag-0.15.1b.tar.gz
 # cd libid3*
 # ./configure
 # make
 # make install
 # cd ../libmad*
 # ./configure

http://mad.sourceforge.net

 # make
 # make install
 # cd ../madplay*
 # ./configure
 # make
 # make install

Now, type madplay and press Enter. If you get a "failed to load" message about
one of the library files, as shown here, the installation routine might have put
the libraries in the wrong location:

 madplay: error while loading shared libraries: libid3tag.so.0: cannot open
 shared object file: No such file or directory

If this is the case, try moving them. On my system, I had to move them to
/usr/lib:

mv /usr/local/lib/libmad.so* /usr/lib
 # mv /usr/local/lib/libid3tag.so* /usr/lib

Once madplay executes without any error notices, you're ready to go on to the
next step. You've got to tell Asterisk's voicemail module that you want it to use
madplay as its preferred player. Comment out the default line in the
/etc/asterisk/musiconhold.conf file, and add an entry like this in its place:

 default => custom:/var/lib/asterisk/mohmp3/,/usr/local/bin/madplay \
 --mono -R 8000 --output=raw

This tells Asterisk to use the madplay application to stream random MP3 files
from /var/lib/asterisk/mohmp3 in mono at a forced sample playback rate of 8
MHz (perfect for telephony).

Though you don't need the Zaptel driver or card for a SIP-only setup, music-
on-hold bridging is dependent on the Zaptel driver framework's built-in timing
code, and you won't hear much music on hold unless you load either a real

Zaptel driver (for a real Zaptel card) or the Zaptel ztdummy driver, which is
meant to fill in on machines that don't have an actual Zaptel board installed.
Lucky for you, when you compiled the Zaptel drivers [Hack #41], you also
unwittingly compiled ztdummy. How convenient. Put these commands in
/etc/rc.d/rc.local before Asterisk loads if you have no Zaptel card installed:

 modprobe zaptel
 modprobe ztdummy

Next, make a test extension that lets you listen to some on-hold music. Place
an entry like this in /etc/asterisk/extensions.conf in the most appropriate
context:

 exten => 100,1,MusicOnHold(30)
 exten => 100,2,Hangup

The idea here is that when you dial 100 in this context, you'll get 30 seconds
of hold music before the server disconnects your call. Save the changes to
/etc/extensions.conf, and go ahead and reboot your Linux box (or modprobe
ztdummy and restart Asterisk).

4.11.1. Hacking the Hack

You can assign different groups of phones and phone lines to their own music-
on-hold classes (classes define selections of recordings that you can assign to
groups of peers) so that they hear different music. A group of SIP phones can
be in one music-on-hold class, and a group of Zaptel-connected phone lines
can be in another.

Add as many classes as you like (such as default, as shown earlier) to the
musiconhold.conf file, and then "point" your various Zaptel channels and SIP
phones at those classes. For Zaptel channels, you'll configure this in
zapata.conf. The first two Zaptel channels are pointed at the Stevie-Ray class, and
the second two are in the BB-King class:

 [channels]
 language=en
 context=default

 signalling=fxs_ks
 usecallerid=yes
 hidecallerid=no
 callwaiting=yes
 callwaitingcallerid=yes
 threewaycalling=yes
 transfer=yes
 callreturn=yes
 group=1
 musiconhold=Stevie-Ray
 channel => 1-2
 musiconhold=BB-King
 channel => 3-4

4.11.2. Hacking the Hack Some More

If you'd like to use a streaming MP3 Internet radio station instead of a group
of MP3 files for your on-hold music source, make an entry like this in
musiconhold.conf to create a class:

 default => /var/lib/streaming,http://64.236.34.196:80/stream/1040

Now, create the directory /var/lib/streaming and leave it empty, and this class
will play back the streamed audio after your next Asterisk restart.

Hack 51. Record Calls

Pitch the microcassette and stick-on microphone. With Asterisk, all
you need to record a phone call is Monitor().

There are two ways to record calls with Asterisk. One way is to use a
softphone that supports call recording or some other client-side desktop
solution (in fact, "Secretly Record VoIP Calls" [Hack #85] describes precisely
this scenario). The other way is to have Asterisk do all the recording and have
SoX do all the mixing. SoX, short for SOund EXchange, is the Swiss army knife
of sound-conversion tools. It allows all kinds of format conversion, resampling,
and mixing, topics covered in more detail in "Create Telephony Sounds with
SoX" [Hack #24].

To record a call with Asterisk, you can use the built-in Monitor dial-plan
command. In extensions.conf, any extension can be monitored as follows:

 exten => s,1,Answer
 exten => s,2,Monitor(wav,most-recent-call,M)

This example creates a WAV file called most-recent-call-ext in
/var/spool/asterisk/monitor. The M argument causes the call to be mixed
automatically so that caller and receiver can both be heard in the same file.
Without the M, Monitor would just create two different files, most-recent-call-in-
ext and most-recent-call-out-ext. ext represents the extension that the caller
dialed to trigger this Monitor to begin with.

SoX must be installed for the M option to work. Without SoX, Asterisk cannot output
automatically mixed call recordings. Most of the major Linux distributions provide a SoX
package as an installation option.

4.12.1. Hacking the Hack

If you want to keep every call you record without overwriting already-recorded
WAV files, you'll need to come up with an automatic way of uniquely naming
every file that Monitor creates. The best way to do this is probably to base the
filename off of the current system date and time. Not only does this make
them unique, but it also affords you an easy way to find files by date and time
later on when you need them. This example uses the ${DATETIME} variable to
produce a file whose name is something like 112205-09:45:42-40:

 exten => 40,1,Answer
 exten => 40,2,Monitor(wav,${DATETIME},M)

Once the files are recorded, you can use cron to automatically archive them
with gzip, or even use the mail command to send them to an email address,
much as you did with faxes in "Build an Inbound Fax-to-Email Gateway"
[Hack #91].

Hack 52. Get Your Daily Weather Forecast from Your
Telephone

The Weather Channel has "Local on the 8s" every 10 minutes, but why
wait 10 minutes for your forecast when you can be listening to it on
your IP phone right now?

Aside from cataloging sea species and running a really great tsunami readiness
web site, the National Oceanic and Atmospheric Administration (NOAA) also
operates the National Weather Service. Those are the guys from whom
excitable TV meteorologists get their severe weather warning and watch
information. But TV weather guys don't have an exclusive on NOAA's weather
data feeds.

At NOAA's web site, http://www.noaa.gov/, localized weather data is published
in text-file feeds that are updated regularly. Your Asterisk server can grab
these feeds and, thanks to Festival [Hack #92], read you a weather report
based on their contents. Have a look at this example:

 exten => 50,1,Answer
 exten => 50,2,System(/usr/bin/curl -s \
 ftp://weather.noaa.gov/data/forecasts/city/oh/cleveland.txt \

 | text2wave weather-feed.wav
 exten => 50,3,Wait(1)
 exten => 50,4,Playback(/tmp/weather-feed.wav)
 exten => 50,5,System(rm /tmp/weather-feed.wav -f)
 exten => 50,6,Hangup

The extension 50 grabs the text feed for Cleveland, Ohio, using the curl
application, and immediately converts it using text2wave, a piece of the
Festival distribution, into a WAV, which it plays back using Asterisk. If you
want to keep tabs on the weather in a few different cities, you can create an
extension for each.

If you don't have curl, grab it from http://curl.haxx.se/.

http://www.noaa.gov/
http://curl.haxx.se/

Hack 53. Put a Happy Face on Asterisk Using AMP

When you've got Apache and MySQL on your Asterisk PBX, you've got
the makings of a web-based administration interface for your whole
phone system.

Since Asterisk runs on Unix, it is able to leverage many of the niceties of a
modern Unix environment: shell scripts, Perl programs, sockets, and so on.
Historically, one of the chief shortcomings of Unixand of Linux in particularis
the lack of a graphical user interface (GUI). Asterisk shares Unix's general
inferiority in the user-interface department. But there's something you can do
about it.

Asterisk Management Portal (AMP) gives you some real interface power tools:
a web-based configuration tool suitable for nontechnical administrators,
database routines for storing and retrieving the PBX's dial plan, and some
handy preconfigured call flow and fax features that make day-to-day life with
Asterisk much easier. For instance, AMP lets you upload music-on-hold files
using a web interface and lets you create IVR menus without having to type
them directly into extensions.conf or to program Asterisk macros.

4.14.1. How AMP Works

AMP provides a web-based GUI using Apache and connects to Asterisk using a
combination of techniquesmost notably, via the Asterisk Manager API. It uses
PHP to build the web pages you interact with, and it controls Asterisk with code
written in Perl. MySQL provides a repository where the entire dial-plan
configuration is stored, retrieved, and modified by the web interface.

4.14.2. The Setup Process

AMP has a ton of software prerequisites, as you can see. But it's fairly easy to
install. The basic steps are spelled out here and are detailed in the following
sections:

1. Get the prerequisites, including Apache and MySQL.

2. Install Perl modules and custom telecom tools.

3. Build the MySQL database.

4. Run AMP's install script and finish up.

4.14.2.1. Get the prerequisites.

A few dependencies are standing between your Linux server and AMP. Check
to make sure that your Linux box is running Apache, libtiff, MySQL with
development libraries installed, PHP (version 3 or higher), OpenSSL, Perl,
ncurses, SoX, and curl. If you're running a Red Hat 7 or later distribution, you
should have all of these packages either preinstalled or available via RPM. If
you're not using Red Hat, chances are still pretty good that you've got
everything you need, because most of these packages are either commonplace
or required by Asterisk, and therefore are already installed on your machine.

Before you can go any further, though, you need to be certain that your
Asterisk instance is running as a nonroot user. To do so, follow the
recommendations in "Run Asterisk Without Root, for Security's Sake" [Hack
#54], because the rest of the AMP installation is going to assume your
Asterisk instance runs as a nonprivileged user. But keep your finger on this
page, because there's a lot more to do!

4.14.2.2. Install Perl modules and telecom tools.

You can download AMP from http://amportal.sourceforge.net. Unpack the AMP
source distribution using tar (there are numerous examples of tar-unpacking
throughout this book) into the /usr/src/ directory. Once it's unpacked, install
the Net: Telnet Perl module from CPAN, which allows Perl-based packages such as
AMP to use Telnet sockets:

perl -MCPAN -e "install Net::Telnet"

Now, to enable AMP's music-on-hold upload feature, you can use vi to make a
few modifications to the PHP configuration (PHP 4 users might need to
substitute /etc/php4/apache2/php.ini in place of /etc/php.ini). The idea here is
to increase the upload_max_filesize value to 20M and to change the corresponding
LimitRequestBody value to 20000000. This way, you'll be able to use AMP to upload large
files, like music-on-hold MP3s.

http://amportal.sourceforge.net

vi +482 /etc/php.ini upload_max_filesize=20M
 # vi +14 /etc/httpd/conf.d/php.conf LimitRequestBody 20000000

If you've already modified your PHP configuration files, these commands will not work
correctly, and you should find the appropriate lines manually instead.

Next, you'll need to install the Asterisk Perl modules for Asterisk, like this:

wget http://asterisk.gnuinter.net/files/asterisk-perl-0.08.tar.gz
 # tar xvgf asterisk-perl-0.08.tar.gz
 # cd asterisk-perl-0.0.8
 # perl Makefile.PL
 # make all
 # make install

Then, grab a couple more Perl modules from CPAN and install them (these
enable the forwarding of faxes received, if you want AMP to handle faxes):

perl -MCPAN -e "install IPC::Signal"
 # perl -MCPAN -e "install Proc::WaitStat"

To make sure that AMP's email integration works correctly, grab a copy of the
MIME Construct package from Roderick Schertler
(http://search.cpan.org/src/ROSCH/mime-construct-1.9) and unpack it to /root
or /usr/src, whichever you prefer. Then, from the directory where it's been
unpacked, install it as follows:

make Configure.PL
 # make install

To add fax-receiving support to AMP, install the spandsp package per the
instructions in "Turn Your Linux Box into a Fax Machine" [Hack #90]. Then,

http://search.cpan.org/src/ROSCH/mime-construct-1.9

you'll need to set up the MySQL CDR interface for Asterisk. (When you
downloaded the Asterisk CVS, this was downloaded to /usr/src/asterisk-
addons.)

cd /usr/src/asterisk-addons
 # make clean
 # make
 # make install

4.14.2.3. Configure the MySQL database.

Now you're getting to the meat of the hack: the MySQL database for storing
the CDRs and AMP's replica of the Asterisk configuration. To set this up, blow
the dust off your latent MySQL skills, and issue the following commands:

/usr/bin/mysql_install_db
 # /etc/init.d/mysqld start (or /etc/init.d/mysql start)
 # mysqladmin -u root password 'db_root_pwd'
 # mysqladmin create asteriskcdrdb -p
 # mysql --user=root --password=db_root_pwd asteriskcdrdb < \
 /usr/src/AMP/SQL/cdr_mysql_table.sql
 # mysqladmin create asterisk -p
 # mysql --user root -p asterisk < /usr/src/AMP/SQL/newinstall.sql

The text files directed to MySQL's standard input are provided as a part of the
AMP distribution, and they contain all the queries needed to set up AMP's
database. Now, launch the MySQL client:

mysql --user root -p

Once you get to the mysql prompt, you can begin entering the access privileges
for the database:

 mysql> GRANT ALL PRIVILEGES ON asteriskcdrdb.* \
 TO asteriskuser@localhost IDENTIFIED BY 'amp109';

 Query OK, 0 rows affected (0.00 sec)

 mysql> GRANT ALL PRIVILEGES ON asterisk.* \
 TO asteriskuser@localhost IDENTIFIED BY 'amp109';

 Query OK, 0 rows affected (0.00 sec)

 mysql> quit

4.14.2.4. Run AMP's install script and finish up.

About the only conventional part of this configuration is AMP's shell script for
installing its standard files, which you need to run now:

/usr/src/AMP/install_amp

Finally, add /usr/local/lib to the /etc/ls.so.conf file, which will include the
spandsp fax libraries you loaded earlier. Add the following lines to your
/var/lib/asterisk/.bash_profile file:

PATH=$PATH:/usr/sbin:$HOME/bin
 # export PATH
 # export LD_LIBRARY_PATH=/usr/local/lib

Then open /etc/rc.d/rc.local in your favorite text editor. Replace the line that
currently loads Asterisk (probably something like asterisk vvv &) with this:

 /usr/sbin/amportal start

Are you still reading? Excellent! You've just installed AMP. Now, to try it out,
you can restart Asterisk, Apache, and MySQL, or you can just reboot to
achieve the same effect. Once your reset or reboot is done, point your browser
to http://AsteriskServerAddress. You'll be greeted with the Asterisk Management
Portal, the ultimate Asterisk GUI. Now, go have fun configuring. (If you want

this page to be secured by a username and password, you can use Apache's
htpasswd utility. For more info on this, check out http://www.apache.org/.)

http://www.apache.org/

Hack 54. Run Asterisk Without Root, for Security's Sake

Running a critical service as root makes a security-minded sysadmin
squirm. But it doesn't have to be that way. Asterisk doesn't need to
run as the all-powerful root user.

By default, Asterisk runs as rootthe user account with total, unrestricted
power. This is generally considered a bad idea, as an exploit to Asterisk can
lead to someone taking over your entire machine. To avoid this, the Apache
Web Server doesn't usually run as root. This hack shows you how to run
Asterisk as a less-godly user.

To do so, create a user called asterisk. In the following command, I use the
Red Hat adduser command:

adduser -c "Asterisk PBX" -d /var/lib/asterisk asterisk

Next, you'll need to alter Asterisk's Makefile, located at
/usr/src/asterisk/Makefile. Using your favorite text editor, find the ASTVARRUNDIR

constant in the file, and alter its definition to match what follows:

 ASTVARRUNDIR=$(INSTALL_PREFIX)/var/run/asterisk

The directory referenced here needs to be writeable by the user running
Asterisk, just as the directory normally used should be writeable only by root.
By changing the setting, you're allowing Asterisk to use a directory that can be
written by its own nonroot user account. Now, recompile Asterisk using this
sequence of commands:

cd /usr/src/asterisk
 # make clean ; make install

Once the recompile and install are done, you'll need to make sure the new
user account has appropriate permission to several Asterisk-related
directories, including the one you referenced in the altered Makefile:

chown -R asterisk:asterisk /var/lib/asterisk
 # chown -R asterisk:asterisk /var/log/asterisk
 # chown -R asterisk:asterisk /var/run/asterisk
 # chown -R asterisk:asterisk /var/spool/asterisk
 # chown -R asterisk:asterisk /dev/zap
 # chmod -R u=rwX,g=rX,o= /var/lib/asterisk
 # chmod -R u=rwX,g=rX,o= /var/log/asterisk
 # chmod -R u=rwX,g=rX,o= /var/run/asterisk
 # chmod -R u=rwX,g=rX,o= /var/spool/asterisk
 # chmod -R u=rwX,g=rX,o= /dev/zap
 # chown R root:asterisk /etc/asterisk
 # chmod -R u=rwX,g=rX,o= /etc/asterisk

You can now launch the Asterisk server from the new user account, or from
root using the su command:

su asterisk -c /usr/sbin/safe_asterisk

Finally, you'll need to adjust the safe_asterisk script so that it uses the new
user account to launch Asterisk, rather than root. To do so, open
/usr/sbin/safe_asterisk in your favorite text editor, and add su asterisk -c before
each instance of an asterisk command. Be sure to leave the commands
unchanged, aside from prefixing them with the su command.

Once these steps are taken, Asterisk will have only as much power as you
grant the asterisk user. Would-be attackers might be able to crash Asterisk,
but in so doing, they won't be able to gain access to root's credentials.

Hack 55. Link Two Asterisk Servers with PSTN

You don't have to have dedicated point-to-point lines to link two PBX
systems. Just use the PSTN phone lines that are already connected to
them, and you can simulate a direct link.

You can build a two-office unified dial plan using two Asterisk servers. This
way, a user need only dial the extension of the user at the other office to
reach him, instead of calling that office's main number, waiting for prompts,
and then dialing the user's extension. Asterisk can handle all of these steps
automatically, routing the call to the other office's PSTN trunk, waiting until
it's answered, and dialing the recipient's extension to complete the connection.
Figure 4-11 illustrates just such a configuration.

Figure 4-11. Two offices with PBXs connected to the PSTN

Ordinarily, if a West user wanted to reach an East user, he'd have to pick up
his phone, dial the phone number of the East office, wait for an answer, and
then request that user, either by speaking with a receptionist or by dialing
that user's extension. This awkward process is shown in Figure 4-12. Direct
Inward Dial could shorten the process, but the dialing user still wouldn't be
able to reach his co-worker using a convenient, four-digit extension.

Figure 4-12. Figure 4-12. A caller has to dial a lot of digits to
reach his intended recipient at the other office

4.16.1. The Configuration

We'll use the same dial-plan extension-numbering convention as shown in
Figure 4-12. Phones at the East office will be 30003099; phones at the West
office will be 34003499. Have one SIP phone register with the East server and
the other SIP phone with the West server (our West user will be using the
phone that registers with the West server, and the East user will be using the
East-registered phone). The following code shows the SIP peer config for 3001
at the East office:

 # East office sip.conf
 …
 [3001]
 callerid="East User" <3001>
 canreinvite=no
 context=default
 host=dynamic
 mailbox=3001
 secret=3001
 type=friend
 username=3001

The following code represents the SIP peer config for 3401 at the West office:

 # West office sip.conf
 …

 [3401]
 callerid="West User" <3401>
 canreinvite=no
 context=default
 host=dynamic
 mailbox=3401
 secret=3401
 type=friend
 username=3401

With these first two configs committed, the SIP phones can now register with
their respective Asterisk servers and place calls in their own default contexts.
But they still can't call each other without dialing a lengthy PSTN phone
number, waiting for the auto-attendant, and dialing the extension on the
answering Asterisk system. To get around that, we can tell both Asterisk
servers to route calls bound for the extension-number range of the other office
out through the PSTN and automatically dial the extension on the answering
system, as follows. We'll start with the dial-plan config for the East office:

 # East office extensions.conf
 …
 [default]
 exten => _34XX,1,Dial(Zap/1/5551340,35,mD(${EXTEN}))

And we'll institute a mirror of that config so that West office users can dial
30XX extensions:

 # West office extensions.conf
 …
 [default]
 exten => _30XX,1,Dial(Zap/1/5551300,35,mD(${EXTEN}))

Let's dissect this exten directive. First, _30XX is a wildcard expression that
matches any number dialed that begins with 30. 1 is the extension priority.
The Dial command tells Asterisk to dial the number of the other office on the
Zap/1 channel and to wait for up to 35 seconds for the call to be answered. Then,
the D(${EXTEN}) option tells the Dial command to send DTMF digits representing the

extension number that was dialed by the user. ${EXTEN} is an Asterisk variable
that always contains the extension number used for the current call. Finally,
as with all Dial commands, the call will be connected after the DTMF digits are
sent.

The net result of this config is that the users at West can dial 30013099 to
reach the users at East, and the users at East can dial 34013499 to reach the
users at West, all without any PSTN dialing or auto-attendant interaction.
Here, the PSTN trunks are used like private trunks to connect two switches,
while the dial plan makes it easy for the users.

4.16.2. Control Caller ID When Using PSTN Trunks

In the preceding example, the receiving PBX doesn't know the extension
number of the party who is calling, because the calling PBX supplies the caller
ID signals for the Zaptel channel and phone line being used, not the caller ID
signals for the extension that originated the call. So, the receiving user will
see that she is getting a call from the "other office," but she won't know which
user is calling her.

Using some Asterisk dial-plan wizardry, you can preserve the original caller's
caller ID information throughout the interswitch calling process:

 # West office extensions.conf
 …
 [default]
 exten => _30XX,1,SetCIDNum(${EXTEN})
 exten => _30XX,2,Dial(Zap/1/5551300,35,mD(${EXTEN}))

In this case, Asterisk will supply the originating extension number as the caller
ID number. SetCIDNum establishes the caller ID number for outgoing channels on
the current extension. This config would, of course, have to be mirrored for
the East office, too:

 # East office extensions.conf
 …
 [default]
 exten => _34XX,1,SetCIDNum(${EXTEN})
 exten => _34XX,2,Dial(Zap/1/5551340,35,mD(${EXTEN}))

To override the phone company's caller ID, you'll need to be using PRI signaling, and the
phone company will have to permit you to supply your own caller ID information.

There you have it: a two-office Asterisk PBX network that uses existing
telephone lines to simulate a direct link between the two sites.

Hack 56. Link Several PBXs over the Internet

Since wide area networking is the cornerstone of IP networking, VoIP
can be extended outside the local area network. Six PBXs on six
continents all managed by one person? No problem.

One of the beauties of VoIP is the last two lettersIP. IP stands for Internet
Protocol, and IP is the protocol that makes the Internet and private wide area
networks (WANs) possible. It provides the fundamental addressing and routing
scheme that keeps data traffic flowing around the globe.

Just as people have been setting up VPNs to link remote offices' LANs over the
Internet, you can now use the Internet to link several remote PBXs to create
one large interconnected voice network. This will enable extension-to-
extension calling from one office to another, over the Internet, all at no cost
per call. Asterisk is the perfect solution for this purpose.

Keeping VoIP secure as it travels the globe is no simple matter. You can use Internet-
based VPNs, but they can degrade quality. A more expensive and more reliable alternative
to secure global VoIP trunks might be a managed VPN service or a frame relay service.

I will assume that you already have Asterisk in use as the PBX at all of your
offices. If this is not the case, you might want to look into setting up an
Asterisk gateway machinea server that provides VoIP enablement for a legacy
PBX (see "Build a Four-Line Phone Server" [Hack #49] and "Connect a
Legacy Phone Line Using Zaptel" [Hack #44] for ideas on how to use legacy
TDM interface cards).

Now let's assume:

You have three offices: one in Chicago, one in Tokyo, and one in London.

None of the offices has more than 99 separate extensions.

They all have 24/7 Internet connectivity.

They all have static IP addresses.

Their Asterisk installs are directly on the Internet, or the network
administrator has forwarded/passed UDP port 4569 to the Asterisk server
in each location.

It is worth pointing out that the last three items do not necessarily have to be
the case. With all of Linux's power, you can actually work around those issues.
While this is too much information for me to cover here, you can use the
"register" feature of IAX with dynamic IP addresses, even those behind NAT! A
simple Google search should return the necessary details to use register
statements successfully to work around those problems.

Let's also assume that none of your locations has overlapping extensions. That
is, each location has globally unique extension numbers. For the purposes of
this hack, we are going to assume that your extensions are set up like so:

Chicago

81XX (where XX is 0199)

Tokyo

82XX

London

83XX

So your first extension in Chicago is 8101, and your last possible extension in
London is 8399.

If your extensions are not set up like this, it will probably be to your
advantage to renumber. As you will see, this method has one big advantage:
unless every extension is globally unique, it's more difficult for each Asterisk
server to route calls.

The beginning "8" signifies an internal extension. I begin with this to

standardize on four-digit extensions so that an internal extension is readily
recognized as being a free internal call, as opposed to an outside call to the
pizza place. (This prefix helps Asterisk figure out where to route the callto an
internal user or to the phone company.) Using the same numbering
convention around the world will make your life easier. When you bring that
new office in Stockholm online, you just have to assign it the 84XX range and
update your Asterisk servers, and the phones around the world will
automatically recognize it as a valid range.

If you have not already done so, let's set up some basic DNS records for this
system. We are going to create several A records in our existing DNS zone,
twidgets.com. These A records are going to be called chicago.twidgets.com,
tokyo.twidgets.com, and london.twidgets.com. They should each point to the
static IP address of the Asterisk server at each respective location.

Once DNS is set up properly, verify basic IP connectivity by using the ping

command to each location, from each location. Ping Tokyo from Chicago and
London. Ping London from Tokyo. You get the drift. This is what you should
have so far:

Table 4-2.

City Hostname Extension block

Chicago chicago.twidgets.com 81XX

Tokyo tokyo.twidgets.com 82XX

London london.twidgets.com 83XX

4.17.1. Configuring the Dial Plan

On each Asterisk server, you need to add a matching extension for each dial
pattern. So, log into your server in Chicago and add the following to your
[internal] context in /etc/asterisk/extensions.conf:

 exten => _82XX,1,Dial(IAX2/guest@tokyo.twidgets.com/${EXTEN},20)
 exten => _82XX,2,Congestion
 exten => _83XX,1,Dial(IAX2/guest@london.twidgets.com/${EXTEN},20)
 exten => _83XX,2,Congestion

Let's take a look at what we have done so far. In the first line, we're telling
Asterisk to create an extension that matches anything in the 82008299 range.
(Remember those X's from before? They signify to Asterisk any digit between 0
and 9.) The first thing that Asterisk should do is try to reach that extension at
the Tokyo office by using the IAX protocol (Version 2) with the username
guest. The guest username is just a placeholder. You can use a more
descriptive name if you want.

The IAX protocol is a signaling protocol, like SIP, which is more efficient at trunking multiple
simultaneous calls between the same two locations.

If that extension at the Tokyo office is unreachable for any reason, Asterisk
will return congestion. Congestion is usually signaled to the user as what is called
"fast-busy." If you have ever left a POTS phone off the hook for too long, you
have heard a fast-busy.

4.17.2. Adding the Remote Locations

Save extensions.conf and reload Asterisk with asterisk -rx reload. If the servers in
Tokyo and London have been set up with those extensions, go ahead and try
calling them. They won't be able to call you back yet, but you should at least
be able to verify that you now have direct dial around the world (for free)!

You should now repeat this process on your Asterisk servers in London and
Tokyo. For brevity's sake, I will give abridged versions of the preceding
instructions for the Tokyo and London offices.

For Tokyo, edit /etc/asterisk/extensions.conf and add the following to your
internal context:

 exten => _81XX,1,Dial(IAX2/guest@chicago.twidgets.com/${EXTEN},20)
 exten => _81XX,2,Congestion
 exten => _83XX,1,Dial(IAX2/guest@london.twidgets.com/${EXTEN},20)
 exten => _83XX,2,Congestion

Save extensions.conf and reload Asterisk with asterisk -rx reload.

For London, open /etc/asterisk/extensions.conf and add the following to your
internal context:

 exten => _81XX,1,Dial(IAX2/guest@chicago.twidgets.com/${EXTEN},20)
 exten => _81XX,2,Congestion
 exten => _82XX,1,Dial(IAX2/guest@tokyo.twidgets.com/${EXTEN},20)
 exten => _82XX,2,Congestion

Save extensions.conf and reload Asterisk with asterisk -rx reload.

Hopefully, after this hack, you have realized that with four lines of
configuration on three Linux boxes around the world, Asterisk can
revolutionize the way your organization communicates. What would have been
incredibly difficult and expensive to do just a few years ago has now been
reduced to a few pages in a book. It's truly amazing!

Kristian Kielhofner

Hack 57. Route Calls Using Distinctive Ring

Do you have only one phone line, but wish you could use two phone
numbers with your Asterisk server? Try distinctive ring.

Distinctive ring is a feature offered by some phone companies that permits you
to use two or three phone numbers with the same POTS line. Depending on
which number is dialed, the ring signal will differ, causing the ring to sound
unique for each number. This feature allows parents to avoid answering their
teenagers' incoming calls. With a fax/voice ring switch device, you can use
distinctive ring as an inexpensive way to receive both fax and voice calls on a
single line.

Distinctive ring is a legacy signaling solution. That is, it works only with POTS. On VoIP
trunks, such functionality would be handled by out-of-band signaling.

With Asterisk, you can use distinctive ring to route calls automatically from the
PSTN trunk to a specific phone or group of phones. Or, the distinctive ring can
just be passed through to all of the phones on the private network, which will
ring distinctively, and the intended recipient can answer her call on any
available phone.

You can configure each Zaptel channel to detect up to four different distinctive
signals. The first thing you'll need to do is open zapata.conf and add this
configuration to the section for the trunk in question:

 usedistinctiveringdetection=yes

Enabling distinctive ring on a Zaptel channel will cause a slight delay before Asterisk can
answer incoming calls, because the distinctive ring signals can take up to five seconds for
the Zaptel channel to detect.

The signals used by distinctive ring consist of analog electrical
cadencesvariations in voltage that cause analog phones to produce certain ring
patterns. Asterisk uses the dring attribute in zapata.conf to describe the signals.
Unfortunately, these signals vary from one regulatory jurisdiction to the next,
and you'll have to figure out what value to give dring attributes yourself.

Here's how. When an incoming call is received on a POTS interface, Asterisk
records the ring pattern in Asterisk's verbose logging output (assuming you
launched Asterisk with -vvvv on the command line). Use the tail command with its
-f option to watch your logfile for changes as they occur:

tail -f /var/log/asterisk/full

While tail is following the logfile, call each number that causes distinctive rings
on your POTS lines. When the POTS interface senses the ring pattern, a log
entry will appear containing Asterisk's representation of it: a string of digits
made up of three values separated by commas. Each value represents a
duration of ringing, such that each ring pattern could have up to three rings of
varying length in a one- or two-second time span. The pattern repeats at
regular intervals until the call is answered.

This string supplies a value to the dring argument in zapata.conf. Repeat this
process until you've identified the strings needed for each phone number
associated with your POTS line. Here's a sample config in zapata.conf that
describes two distinctive ring signals and assigns them different contexts in the
dial plan:

 usedistinctiveringdetection=yes
 dring1=325,95,0
 dring2=95,0,0
 dringcontext1=TedsCalls
 dringcontext2=JakesCalls
 channel =>1

Distinctive ring features outside North America can use caller ID signaling instead of ring-
pattern signaling to indicate which phone number is being called. Check with your
telephone company to see how they support distinctive ring.

The Zaptel channel's configuration will tell Asterisk the context into which
distinctively rung calls are sent. In this example, we've used a POTS line with
two ring signals and two corresponding contexts. Now, we've got to create
those contexts in the dial plan. Here's a sample that accomplishes that in
extensions.conf:

 [TedsCalls]
 exten => s,1,Dial(SIP/201,30)
 exten => s,2,Voicemail(201)

 [JakesCalls]
 exten => s,1,Dial(SIP/202,30)
 exten => s,2,Voicemail(202)

There! Ted's distinctive ring will send Ted's calls to SIP/201, and Jake's
distinctive ring will send them to SIP/202.

Hack 58. Tune Up Your Asterisk Logs

How much log detail is too much? That depends on whom you ask.
Asterisk's log output can be pretty granular, which is bad for disk
utilization and good for troubleshooting.

Log analysis should be the core of your daily system monitoring and security
activities. Like other softPBX servers, Asterisk supports flexible logging,
providing several levels of logging detail in several different files. It also
supports using syslog.

By default, Asterisk stores its logs in /var/log/asterisk.

You configure Asterisk logging in the /etc/asterisk/logger.conf file, which
Asterisk reads at boot time or whenever it is started. The first section of the
file is [general], where you can assign a value to the dateformat option to specify
what date format to use in Asterisk's logs. To figure out the syntax of the data
formats, read the manpage for strftime() by running man strftime.

The next section, [logfiles], describes which files should be used for logging output
and how detailed each should be. The syntax for this section is:

 filename => level,level,level…

Consider the following logging configuration:

 [general]
 [logfiles]
 messages.log => notice,warning,error
 debug.log => notice,warning,error,debug,verbose

In this example, messages.log will contain a digest version of Asterisk's logging

output, and debug.log will get everything in minute detail. Be careful with
logs, thoughAsterisk won't start once the logfiles reach 2 GB in size. On a busy
system, a file like the preceding debug.log would hit that size pretty quickly, so
make sure your logfile rotation includes Asterisk.

If you use console as a logfile name, Asterisk will assume you mean the console
device, not an actual logfile. So, if you add this to the [logfiles] section, the
desired level of logging will be output to the console session where Asterisk is
launched:

 [logfiles]
 console => warning,error

Some attackers cover their tracks by removing commonly used logfiles that
could contain evidence of their tampering with the system. So it's generally a
good idea to keep logfiles in a nondefault place. That way, if an attacker uses
an automated program to remove logfiles, the program will be less likely to
find and destroy Asterisk.

If you were an intruder and wanted to control Asterisk, you might start by attacking the
Asterisk Managerthe remote API that allows users who've provided the right password to
control certain aspects of Asterisk's operations via a TCP connection. If your Asterisk
server is open to the Internet, pay special attention to Asterisk Manager log entries.

To change Asterisk's default log location, edit /etc/asterisk/asterisk.conf and
change the astlogdir directive to a path of your choosing. (Then make sure that
path has appropriate permissions to allow Asterisk to write files in whichever
path you choose.) A sample asterisk.conf follows:

 [directories]
 astetcdir => /etc/asterisk
 astmoddir => /usr/lib/asterisk/modules
 astvarlibdir => /var/lib/asterisk
 astlogdir => /var/log/asterisk
 astagidir => /var/lib/asterisk/agi-bin
 astspooldir => /var/spool/asterisk
 astrundir => /var/run/asterisk

Syslog can be a target for Asterisk logging output, too. To enable it, use a syslog

keyword in the [logfiles] section, similar to the console keyword:

 syslog.local0 => warning,error

Chapter 5. Telephony Hardware Hacks
Section 5.1. Hacks 5971: Introduction

Hack 59. Record Calls the Old-Fashioned Way

Hack 60. Make IP-to-IP Phone Calls with a Grandstream BudgeTone

Hack 61. Build a Custom Ringtone for Your Grandstream Phone

Hack 62. Tweak Your Sipura ATA

Hack 63. Build a Bat Phone

Hack 64. Brew Your Own Zaptel Interface Card

Hack 65. Build a Speed-Dial Service on Cisco IP Phones

Hack 66. Power Cisco Phones with Standard Inline Power

Hack 67. Customize Your Cisco IP Phone's Boot Logo

Hack 68. Configure Multiple IP Phones at One Time

Hack 69. Customize Uniden IP Phones from TFTP

Hack 70. Control the Lights Using Your IP Phone

Hack 71. Use a Rotary-Dial Phone with VoIP

5.1. Hacks 5971: Introduction

One of the reasons VoIP is such a positive evolutionary step for
telecommunications is that it employs a highly distributed, software-centric
design philosophy. It has the extensibility and programmability of the Internet,
putting telephony power back into the hands of the users, not the phone
companies. It is programmabilitysoftwarethat makes IP telephony such a killer
application.

Yet, critical parts of voice telecommunications are entirely in the domain of
hardware. This chapter focuses mainly on hardware hacks: projects with a
decidedly piquant, earthy flavor; projects that deal with analog telephone
adapters (ATAs), phone line gateways, and "bat phones." You won't need much
in the way of 'l33t coding skills, but you'll use some basic Perl. Have some
Ethernet patch cables and Velcro handy. Oh, and it might help to have a bottle
of XML on ice if the mood is right.

In this chapter, you're going to be looking at VoIP and legacy telephony
hardwareeverything from state-of-the-art Internet Protocol (IP) phones to
vintage rotary-dial candlestick phonesand how to get them working together.
You might also pick up some handy tips for your cell phone, as well.

Hack 59. Record Calls the Old-Fashioned Way

Digital and IP phone handsets are analog inside, which means you can
use a transducer microphone to record a phone call.

It's fairly easy to record from a standard telephone using an inline recorder
switch. These devices allow you to record the analog audio signal on a
standard Plain Old Telephone Service (POTS) line or a handset-to-deskset line
using an analog recording device like a microcassette recorder or a personal
dictation recorder. An easy way to use one of these recorder switches to
produce a digital recording of a call is to connect the mono audio output to
your computer's microphone line-in.

Most of these switches (such as Radio Shack's model 43-1237) offer a 1/8-inch
male audio connector, which is perfect for use with a PC sound card or a Mac
line-in, which both tend to be 1/8-inch female connectors. Just plug the
recorder switch into the phone line and your computer's audio input, and
you've got an instant call recorder in the form of your favorite audio recording
program (such as Windows Sound Recorder).

Since inline recorder switches work only with analog lines, you can't use them
to record calls on digital or IP telephones. If you want to use your PC to record
from these devices, you'll need something a little more James Bondish, like a
transducer pickup. This is a microphone that you stick to the outside of your
telephone handset, on the back of the receiver, that is sensitive enough to
record the audio inside the handset. Since even digital and IP telephones use
purely analog handsets, a transducer pickup can record them all. Some
pickups (such as Radio Shack's model 44-533) include a built-in suction cup
that adheres easily to the handset. Like a recorder switch, these pickups
provide a 1/8-inch mini plug that you can mate with your sound card's audio
line-in jack to make digital recordings.

Recording phone calls can get you in trouble unless all parties on the call are aware that
the call is being recorded. Check your local laws before recording any phone calls.

5.2.1. See Also

"Record VoIP Calls on Your Windows PC" [Hack #13]

"Record an Audio Chat on Your Mac" [Hack #23]

Hack 60. Make IP-to-IP Phone Calls with a Grandstream
BudgeTone

With minimal effort, Grandstream's BudgeTone series of IP phones can
make and receive calls on your networkeven without a PBX server.

In most enterprise VoIP setups, you have a PBX that connects all of the
phones on the network. The PBX acts as a centralized signaling authority and
access-control server for all of the telephone users. But some IP phones don't
need a PBX at all. They can call each other directly by way of an IP address.
You're about to make a direct IP-to-IP call with a BudgeTone hardphone.

A hardphone is an IP phone that isn't a softphone. It looks just like an ordinary business
phone, but plugs directly into an Ethernet local area network (LAN).

The Grandstream BudgeTone 100 phone model has a Menu key, an LCD
display, and two arrow keys that you use to navigate its configuration menu
options: DHCP, IP Address, Subnet Mask, Router Address, DNS Server Address,
TFTP Server Address, Codec Selection Order, SIP Server Address, and
Firmware Versions (called Code Rel on the phone's screen). When you get to
the option you want, you press the Menu key to select it, and then enter the
numeric data required for each option using the keypad. Use this menu only to
set up the IP address, subnet mask, and router (default gateway) address,
because you'll be doing the rest of the phone's configuration using its web
interface.

To get the phone enabled for the next configuration step, turn DHCP off and
assign an IP address, subnet mask, and router address.

You can perform more advanced configuration using the BudgeTone's built-in
web configuration tool. When you use your web browser to access the IP
address you assigned, you'll be prompted to log in to the phone. The default
password is admin.

Then, you'll be confronted with a big page of configuration options, many of
which are available only through this interface, not from the phone's keypad
metu. For this project, the only settings we're concerned with are the codec

selection ones. Configure the first (highest-priority) codec to be "PCMU" if
you're in North America or "PCMA" if you're elsewhere in the world. That's all
we're going to cover about codecs for now. After you apply any configuration
changes, you need to power-cycle the BudgeTone.

Some IP phones offer a Telnet interface rather than a web-based one. To use
these tools, you must connect to the phone with a Telnet client rather than a
web browser. In any event, once the network configuration is set on the IP
phone, ping its address from another host on the same network subnet to
make sure it's speaking Transmission Control Protocol/Internet Protocol
(TCP/IP).

Many VoIP devices need access to a time clock. The network time protocol (NTP) server
we've chosen is time.nist.gov. More NTP servers are available from the list at
http://www.nist.gov/.

5.3.1. Make an IP-to-IP Phone Call

With both IP phones connected to the same Ethernet switch, or directly
connected (to each other) using a crossover patch cable, make a note of the IP
address you've established for each. In this example, we'll use 10.1.1.103 for
the receiver and 10.1.1.104 for the caller. If you have your phones configured
for DHCP, give them this static configuration instead.

The BudgeTone can place IP telephone calls from one IP endpoint directly to
another without the need for a VoIP call-management server. This is known as
IP-to-IP calling. Since each IP phone has a unique identification characteristic
within the scope of the networkan IP addressone phone can call the other by
IP address as if it were a phone number.

Now, to dial by IP address. All IP addresses are 12 decimal digits long, even if
preceding zeros aren't visible when notated. Conversely, the dots (.) that are
normally included in a notated IP address are not dialed. So, on the
BudgeTone phones, 10.1.1.103 is dialed as:

 010 001 001 103

http://www.nist.gov/

To dial, take the phone off the hook so that you hear a dial tone, and then
press the Menu key, dial the address of your second phone according to the
convention just shown, and press the Send or Redial button. Of course, nobody
would want to dial 12-digit IP addresses to place phone calls all the time; call
management servers, like Session Initiation Protocol (SIP) registrars, provide
more elegant dialing conventions. However, dialing by IP address does allow
you to circumvent call management and make a direct VoIP connection
between two endpoints.

When the receiving phone rings, have somebody answer the call. If you can
hear them talk through your IP phone's handset, you've just made your first
successful VoIP phone callsort of the IP equivalent of Bell and Watson's first
phone call back in 1876.

If the receiving phone doesn't ring, you might have to check the IP address
you dialed, check the phone's configuration to make sure it is listening on the
default port for SIP5060and make sure SIP registration is turned off. These
options concern the Grandstream's use with a PBX server, which isn't a factor
in this case.

5.3.2. Mounting the Grandstream on the Wall

For practical, day-to-day use, Grandstream, shown in Figure 5-1, has a few
shortcomings. At the top of my "bug list" for the Grandstream 101 is its half-
baked support for being hung on the wall (in addition to sitting flat on the
desktop). I say half-baked because Grandstream provides screw holes for
hanging the phone on the wall, but it doesn't provide a notch to keep the
handset on the phone when it's hanging. So, the handset just slips off the
phone when you attempt to set it upright.

Figure 5-1. The Grandstream BudgeTone is a great, cheap SIP
phone

This won't do. I've envisioned two ways to deal with this problem. First, you
can go the Velcro route. Apply about a square centimeter of Velcro adhesive
hook strip to the handset, at the point where a normal wall-hanging handset's
notch would be. At the corresponding position on the phone itself, put the
same amount of Velcro latch strip so that when you hang up the handset, it
actually stays in place.

The second way to deal with the wall-hanging problem, which is probably a
longer-lasting or more durable approach, is to drill a small hole in the phone
base at the point where the wall-hanging notch should be. The hole should be
about one-third of an inch to three-quarters of an inch in diameter. Then,
again, at the corresponding spot on the handset, screw into the plastic casing a
very short, round-headed screw. The head of the screw, if small enough to fit
into the hole you drilled, should keep the handset firmly latched onto the
phone's base. Not pretty, but it works.

Hack 61. Build a Custom Ringtone for Your Grandstream
Phone

Sure, your cell phone has a custom ringtone, but does your IP phone?
With a little help from Perl, you'll able to load any sound you like onto
the Grandstream phone.

If you carry a cell phone, you've no doubt changed your ringtone once or
twice. From a sample of a vintage mechanical ringer to a recording of a C-3PO
line from Star Wars, ringtones have become central to pop-culture
communication. So why can't you customize the ringtone on a Grandstream IP
phone, one of the cheapest and most popular SIP hardphones available?

Well, since you asked, you can. It just takes a little hack job.

The Grandstream's firmware stores the ringtone in its own odd format, a uLaw
sound file with a custom header at the beginning of it. It's simple enough to
make a uLaw sound file; just use SoX [Hack #24]. But to add the header, a
little Perl magic is needed.

5.4.1. The Code

This script was written by Tony Mountifield, and its purpose is to create a
Grandstream-compatible ringtone file:

 #!/usr/bin/perl
 $filename = shift or die "need output filename\n";
 undef $/; # slurp whole file at once…
 $audio = <>; # … like this
 $filesize = 512 + length $audio;
 if ($filesize & 1) {
 # length odd, add a zero byte (should never happen)
 $audio .= chr(0);
 }
 die "Audio file too large\n" if $filesize > 65536;

 # this is the format for the header
 $headerfmt = "n n n C4 n C C C C a22 n x216 n n x36 a216";

 # get the current date and time
 ($min, $hour, $day, $month, $year) = (localtime)[1..5];
 $year += 1900;
 $month += 1;

 # create the header, with zero for the checksum
 $header = pack $headerfmt,
 0, # 0000
 $filesize/2,
 0, # put checksum in later
 1,0,0,1, # version
 $year, $month, $day, $hour, $min,
 $filename,
 0, # 0000 or 00C8 - why?
 256, # 0100
 $filesize/2,
 "Grandstream standard music ring";

 # sanity check
 $headerlen = length $header;
 die "header length wrong ($headerlen)\n" unless $headerlen == 512;

 # add the audio
 $header .= $audio;

 # compute the checksum
 $checksum = unpack "%16n*", $header;
 #printf "checksum before = %04x\n", $checksum;

 # insert it in the correct place
 substr($header,4,2) = pack "n",-$checksum;

 # ensure the new checksum is zero
 $checksum = unpack "%16n*", $header;
 #printf "checksum after = %04x\n", $checksum;
 die "checksum failed\n" unless $checksum == 0;

 # write the file
 open F, ">$filename" or die "can't open output file $filename: $!\n";
 print F $header;
 close F;

5.4.2. Running the Code

To use this program, save it as makering.pl, make it executable (chmod 755

makering.pl), and pipe a uLaw sound file into it in a shell, like so:

 $ sox my_sound -r 8000 -c 1 -t ul - rate | makering.pl ring1.bin

In this example, the file my_sound will be resampled to 8000 Hz and will be
piped in uLaw format to the standard input of makering.pl, which is the Perl
script shown earlier. The enhanced output is then saved as ring1.bin. Upload
this file to the /tftpboot directory of your Grandstream's TFTP server and then
reboot your Grandstream. (For some tips on setting up a TFTP server, see
"Make IP Phone Configuration a Trivial Matter" [Hack #80].) With a fun new
ringtone, your IP phone is now as cool as your cell phone.

Hack 62. Tweak Your Sipura ATA

If you own a Sipura ATA, you've got a veritable softPBX hiding in that
slick plastic enclosure. If only you knew how to set it up!

Sipura Technology, now a division of Cisco, makes some very powerful
telephony devices. With hundreds of options and many potential combinations,
literally thousands of possible configurations are available. While I can't cover
them all here (for obvious reasons), I can give you a few examples to get your
mind working.

5.5.1. Configure the Sipura by Dialing

Sipura's line of products has a powerful interactive voice-response (IVR)
system built in that gives you administrative access to many of the ATA's
features. In fact, the IVR will probably be one of your first experiences with
Sipura's ATAs. The IVR (like the web interface) has quite a few options.
Thankfully, Sipura publishes a user guide that details all of the available
options in the IVR menu, as well as in the web configuration screens. In fact,
so many options are available that the user guide was 87 pages long at the
time of this writing! You can find this document in the Support section of
http://www.sipura.com/.

After unpacking the Sipura and connecting the cables, you should pick up your
phone and dial ****. This will connect you to the Sipura Configuration Menu.
You will be asked to enter an option. But what option to enter? Table 5-1 will
get you started.

Table 5-1. Configuration options for the Sipura, via IVR

Option name Option
name Valid options Notes

DHCP status 100 None

Check IP address 110 None Reads current IP

Set static IP
address 111 IP address; enter IP, using *

to input periods

http://www.sipura.com/

Check network
mask

120 None

Set network
mask 121 Same as Set static IP address

Check gateway IP 130 None Reads current IP

Set gateway IP
address 131 Same as Set static IP address

Check DNS
server 160 None

Set DNS server
IP address 161 Same as Set static IP address

User" reset 877778 None Resets all of the "user-changeable" settings to their
defaults. Use with caution!

"Factory" reset 73738 None Resets all of the available configuration options to their
defaults. Use with caution!

Remember to add a trailing # for each option. So, for example, to have the
Sipura read its current IP address, you should enter **** and then 110#.
Another thing to remember: when you are entering IP addresses for the
device, default gateway, and DNS server, use the * key to represent periods
(.). So, you'd enter the IP address 10.1.1.50 as 10*1*1*50#.

5.5.2. Various Tweaks

After you have the Sipura connected to your network and you know its IP
address, you can get to its web interface. If you're used to dealing with web
interfaces for Network Address Translation (NAT) firewalls and the like, the
Sipura web interface, shown in Figure 5-2, is probably unlike anything you've
seen. Most people that use the web interfaces of small-office/home-office
(SOHO) NAT/firewall/router devices are shocked when they see the web
interface on a Sipura. Here, I will attempt to point out the most common and
useful, yet often overlooked, web interface parameters.

To reach the web interface, simply enter the Sipura's IP address in your web
browser. Once you see the gray status screen, click the Admin link in the top

right-hand corner. When the page refreshes, click Advanced. You should see
several more tabs appear. Now we are ready!

While I fully encourage you to review the user guide and browse the
configuration pages, I have summarized in Table 5-2 my "Top 10 Sipura
options" for your hacking pleasure.

Figure 5-2. The Info tab on the Sipura ATA's web interface

Table 5-2. Top 10 Sipura options

Tab title Option
name

Recommended
value Explanation

System Primary NTP
Server pool.ntp.org Sets the SPA's clock automatically.

System Admin
Password Make it up! Sets the admin password.

SIP SIP T1 .52 Sets the SIP timeout value. Crank this up for high-latency network
connections.

Regional Time Zone Your time zone Sets the SPA's time zone.

System Syslog
Server

IP address of
syslog server
on your
network

Very useful for debugging.

Provisioning Upgrade
Enable Yes Will use the URL from "Upgrade Rule" to upgrade the SPA's firmware

automatically.

Provisioning Provision
Enable Yes

This requires the Sipura profile compiler. If you have more than 10
SPAs, you should be able to obtain this tool to aid in configuration.
Contact Sipura for more information.

X Line
RTP
TOS/DiffServ
Value

Varies

This controls the IP TOS value for Real-time Transport Protocol (RTP)
or audio packets from the SPA. When used in conjunction with
intelligent switches and routers, this can ensure excellent voice quality
on your network.

X User VMWI Ring
Splash Len 0

This is a common request. It will disable the "splash ring" for voicemail
notifications. Otherwise, your analog phone will chirp every so often if
you have a voicemail. Very annoying.

X Line Preferred
Codec Varies Sets the preferred voice codec to use. Various codecs are available

with quality/bandwidth trade-offs.

5.5.3. Dial-Plan Magic

Of all of the options on the Sipura, the dial plan lets you be the most creative.
The dial plan is a string of characters that tell the Sipura how to treat
callswhere to send them, any digits to add (or remove), etc. In its most basic

use, the dial plan controls when to send calls.

VoIP devices are much like cell phones. You have to "send" the number as a
whole to the remote server. But how does the ATA know when you are done
entering digits? On the Sipura line of ATAs, this is controlled by two more
parameters that you should be familiar with. They are called Interdigit Short
Timer and Interdigit Long Timer, and you can find them on the Regional tab.
Interdigit Short Time specifies the delay (in seconds) for sending numbers that
match a string found in the dial plan. Interdigit Long Timer specifies the delay
(also in seconds) for sending numbers that do not match the dial plan. Here is
an example:

 Line 1 Dial Plan: (7xxx)
 Interdigit short time: 3 seconds

This means that when I dial 7104, the Sipura will send that number to the
remote SIP server 3 seconds after I press 4. If I were to dial 2627638123, the
Sipura would send that number to the remote SIP server 10 seconds after I
entered 3 because there is no pattern matching that number. Let's take a look
at a more complete example:

 Line 1 Dial Plan:
 ([2-9]xx[2-9]xxx|[2-9]xx[2-9]xxxxxx|1[2-9]xx[2-9]xxxxxx|011[2-9].|7xx|7xxx)
 Interdigit short time: 3 seconds
 Interdigit long time: 10 seconds

This example matches NANPA 7-digit, 10-digit, and 11-digit dialing. It also
includes NANPA international dialing, as well as matches for three- and four-
digit extensions beginning with 7. This way, most standard dialing, as well as
extension dialing, will be covered by this dial plan, thus matching the
Interdigit Short Timer of 3. I should point out that if you want a number dialed
immediately, regardless of whether it matches the dial plan, you can add # to
the dial string. Thus, in the previous example, 12345678# will send 12345678
to the remote server immediately, even though it does not match the dial-plan
string. It's probably worth pointing out that there is a limit to how long a dial-
plan string can be. A dial-plan string has a maximum length of 2,047
characters. On the Sipura SPA-3000, you can have eight dial-plan strings for
the Public Switched Telephone Network (PSTN) line. The limitation for those is
511 characters each.

5.5.4. Advanced Dial-Plan Examples

Here are some more-advanced dial-plan examples:

 (<111:1002@192.168.0.22:5061)

This is a slight modification of the dial-plan string from "Build a Bat Phone"
[Hack #63]. This string will call extension 1002 on the Sipura at
192.168.0.22 on port 5061. However, it will do this only if you dial 111. This
is a very inexpensive way to set up a PBX with no SIP server at all. You could
take several Sipuras with static IP addresses and assign them extensions. You
could even include an SPA-3000 for single-line POTS termination/origination.
Here is a more complete version of the preceding code:

 (<111:1002@192.168.0.11:5061>|<112:112@192.168.0.12:5061>|<113:
 113@192.168. 0.13:5061>)

If you had this same dial plan on every device, you would be able to call
between them simply by dialing 111, 112, and 113.

This example is another slight modification. Essentially, here we are adding
1847 to any number that the user dials as seven digits:

 (<:1847>[2-9]xx[2-9]xxx|1[2-9]xx[2-9]xxxxxx|011[2-9].|7xx|7xxx|xx.)

The following configuration will work on the SPA-3000 only:

 ([49]11<:@gw0>|*xx<:@gw0>|[2-9]xxxxxx<:@gw0>|[2-9]xx[2-9]xxxxxx<:@gw0>
 |1800xxxxxxx<:@gw0>|18[6-8][6-8]xxxxxxx<:@gw0>|7xx|7xxx|1[2-9]xx[2-9]xxxxxx|011[2-9].)

The following list explains what this dial plan does for you:

Calls to 411 and 911 go to the PSTN via the POTS line.

*xx (e.g., *69) goes out via POTS.

Seven-digit and ten-digit calls go out via the POTS line.

Toll-free calls go out via POTS.

Three- and four-digit extensions are sent to the first SIP server defined.

Eleven-digit long-distance numbers are sent to the first SIP server.

International dialing is sent via SIP as well.

Here is yet one more advanced dial plan:

 ([49]11<:@gw0>|[2-9]xxxxxx|[2-9]xx[2-9]xxxxxx|1800xxxxxxx|18[6-8][6-
 8]xxxxxxx|7xx|7xxx|1[2-9]xx[2-9]xxxxxx|<9:>xx.<:@gw0>)

This is very similar to the previous plan, however any calls prefixed with 9 that
are longer than three digits will be sent via the POTS line.

These are limited examples of what you can do with the Sipura line of ATAs.
After more experimentation, you will quickly realize how much fun you can
have with a $70 ATA!

Kristian Kielhofner

Hack 63. Build a Bat Phone

Do you think Bruce Wayne uses VoIP to receive emergency calls from
the Mayor of Gotham? Of course he does. He's that cool (his car is OK,
too).

If you've worked your way through "Tweak Your Sipura ATA" [Hack #62],
you know Sipura Technology makes some very powerful and flexible ATAs. So
powerful, in fact, that you can use them to set up a point-to-point "hot line"
with no SIP proxies or registrars.

A "bat phone" (or automatic ring-through in the telco world) is best known
from the popular Batman television series. Batman would have such a burning
desire to speak with the commissioner that he didn't even have time to dial.
The simple act of picking up the phone automatically connected him to the
designated remote station.

Here is what you will need to get this going with your two Sipuras:

Two Sipura ATAs

As of this writing, the 841, 1000, 1001, 2100, 2000, and 3000 were
widely available, but Sipura has just been acquired by Cisco, so these
model numbers could change.

Static IP addresses or dynamic DNS

Each Sipura will need to know where the other is. On a simple LAN, this is
incredibly easy. Just assign static IP addresses, and move on. Over the
Internet, behind NAT and/or firewalls, this task can get complicated. While
it's too much to cover here, you will want to look into port forwarding and
dynamic DNS.

5.6.1. First Things First

Take out one of your shiny new Sipuras. This will be called ATA1. Connect the

phone (to line 1 if you have more than one line) and Ethernet cables. Then
connect the power. If your LAN uses DHCP, the Sipura will acquire its IP
address using DHCP. If you pick up your telephone, you should here a dial
tone. Enter ****. You should hear a not-so-friendly voice say the words
"Sipura configuration menu." At this point, you should enter 110#. The same
"friendly" voice should come back and read you your IP address. Make a note
of it.

While DHCP does make it easier to attach new devices, it makes it harder to keep track of
them. Once you get into the web interface, you should assign a static address, or use the
static mapping features of your DHCP server to assign the ATAs the same IP addresses at
all times.

After you have made note of the IP address for ATA1, repeat the process for
your other Sipura, ATA2. For the rest of this hack, we'll assume ATA1 and
ATA2 have the respective IP addresses 192.168.1.101 and 192.168.1.102.

After you have the IP addresses of your Sipura devices, fire up a web browser
on a machine connected to the same LAN. Using your web browser, enter the
IP address of ATA1. You should see a gray screen filled with status
information. Open another window (or tab) and enter the IP address of ATA2.
You should see a similar (if not identical) screen, with the exception of the
different IP addresses. Now we're ready to have some real fun!

5.6.2. Configure the Sipuras

The dial plan on the Sipura ATAs is one of the more attractive features of the
SPA line of products [Hack #62]. It is the dial plan that is going to make this
hack possible. In your web browser for ATA1, click on the Admin link in the top
right-hand corner. You should see several more options become available.
Then click Advanced. You should see even more options become available.

Next, click the Line 1 tab and scroll down to Username. Enter ata1. Do the same
for Display Name. Scroll down to Dial Plan. In the Dial Plan edit box, erase
what is currently there and replace it with the following:

 (S0<:ata2@192.168.0.102:5060>)

Save your changes. Now, for ATA2. Switch over to the ATA2 browser window,
and click Admin and Advanced again. Now, move over to the Line 1 tab, and
down to Username and Display Name. Fill in ata2 for both. Again, scroll down
and fill the Dial Plan box, this time using the values for ATA1:

 (S0<:ata1@192.168.0.101:5060>)

Again, save your changes. Now, any time you pickup either phone connected
to line 1 on ATA1 or ATA2, it will automatically call the phone attached to line
1 on the other ATA.

5.6.3. Hacking the Hack

Nothing says "Holy phone mod, Batman!" like a bright-red rotary-dial phone
with the mechanical dial wheel removed. Replicas of such phones are actually
available on eBay, as are plans to build ones that have flashing lights, too. But
for this hack, all you really need to do for an authentic red bat phone[1] is the
following:

[1] I've since learned that "true" bat phones not only are red, but must also reside in a glass cake cover when not in
use.

1. Find a cheap, old rotary-dial phone at a garage sale or in the attic.

2. Remove the dial wheel and discard it.

3. Carefully remove the electromechanical guts of the phone and set them
aside.

4. Use some bright-red, plastic-friendly Krylon Fusion spray paint to turn that
vintage monster red, like a tomato. Allow it to dry, of course.

5. Put the phone guts back into the newly blushing enclosure, reconnect to
your Sipura bat phone ATAs, and use that hotline to your heart's content.

Kristian Kielhofner

Hack 64. Brew Your Own Zaptel Interface Card

With a little tweaking, a very common fax/modem card can become a
clone of the single-line X100P interface card.

The Digium X100P foreign exchange office (FXO) card, used to connect a
single phone company line to an Asterisk server, is actually an Intel V.92
Data/Fax/Voice modem card. One visual comparison between an Intel V.92
Winmodem PCI card and an official X100P, and it's obvious that the two cards
are identical. So, using the less-expensive modem card in place of an X100P
card is not only possible, it's downright easy.

The Intel 537EP chipset is a V.92 PCI modem chip family. Many modems are
built on the Intel 537EP chipset, but this hack is known to work only with the
Intel V.92 Winmodem card.

The critical thing about using an Intel V.92 modem card that has not been
purchased from Digium as an X100P, but otherwise looks the same, is that the
vendor ID encoded into the card will read differently, breaking the original
Zaptel driver and rendering the card useless. Fortunately, there are two ways
around this. The most obvious solution is to hack the code of the driver. Before
you compile Asterisk and Zaptel from the Digium CVS archive [Hack #41],
you'll need to edit the zaptel/wcfxo.c file.

Here's the existing code snippet you'll need to change:

 static struct pci_device_id wcfxo_pci_tbl[] __devinitdata = {
 { 0xe159, 0x0001, 0x8085, PCI_ANY_ID, 0, 0, (unsigned long) &wcx101p },
 { 0x1057, 0x5608, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcx100$ };

Change this section in zaptel/wsfxo.c to this:

 static struct pci_device_id wcfxo_pci_tbl[] __devinitdata = {
 { 0xe159, 0x0001, 0x8085, PCI_ANY_ID, 0, 0, (unsigned long) &wcx101p },
 { 0xe159, 0x0001, 0x8086, PCI_ANY_ID, 0, 0, (unsigned long) &wcx101p },
 { 0x1057, 0x5608, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcx100$ };

The line added in the middle will allow the Zaptel wcfxo driver to work with
standard Intel V.92 Winmodem boards (while still keeping the driver
compatible with official Digium X100P cards). Recompile the Zaptel drivers
[Hack #41], and your Intel V.92 cards can be used as FXO interfaces. Pretty
neat, eh?

The other, more difficult way to enable this feat is by modifying the boards
themselves. This means re-creating the same modification that Digium does
when it modifies Intel cards to create so-called genuine X100P cards. Remove
the resistors marked R13 and R19 by unsoldering them. But be careful, and
don't expect to return your Intel V.92 card, as its warranty will now be invalid.

Hack 65. Build a Speed-Dial Service on Cisco IP Phones

Cisco's 7900 series IP phones have some powerful programmable
firmware that you can harness for your own unique purpose,
answering the age-old question, "Doesn't this LCD display seem a bit
large for just caller ID?"

That expensive Cisco phone on your desk has some great hidden capabilities.
Additional tools and toys that lurk beneath the 79xx's gray exterior could
increase your productivity and foster some innocent fun. I'm talking about
things like automated weather reports on the phone's display, simple menu-
driven applications (like a time card, say), and just about anything else you
can program using an XML web site.

In fact, you'll probably build so many cool tools and toys that you'll need a way
to sort through them, like a directory or a menu. Using the Cisco VoIP phone's
XML application capability, you can set up such a directory.

For this hack, you're going to use XML to create your own custom menus that
access hidden features of the Cisco phone. To make your menu appear on the
phone, you'll need to configure the phone to look for your custom menu file.

Cisco phones, like most IP phones, have a Flash storage device onboard that is
checked and optionally updated at every startup. During startup, the phones
contact a TFTP server and attempt to download settings stored in files on the
server [Hack #80]. By setting the services_url property on the phone's console to
the URL of your menu, you can configure the phone to load your custom menu
upon its next reboot. To set this property, press the Settings button on the
Cisco phone. Then, select Unlock Config and use the keypad to enter the
password (the default is cisco). Next, select the XML URL option, followed by the
Services URL option. Enter the URL, like the following example, using the
phone's keypad (you enter slashes and colons by cycling through the # and *
keys):

 http://lathama.com/services/cisco/

Now, when the phone boots, it will attempt to load a menu for the Services
button by accessing an XML file at the URL. You can also set this URL in a
configuration file on the TFTP server. (If you do neither, the Services button

will be rather useless, as it doesn't default to any built-in settings.) Edit the
SIPDefaults.cnf file on the TFTP server to set the Services URL. Use an entry
like this:

services_url: "http://lathama.com/services/cisco/"

Leave the ending slash in there. It will tell the web server to grab the default
or index file. Testing this with a web browser will be difficult, as the XML has
no headers to tell the browser what is going on. Create a file called index.html
(default.htm for Windows web servers) on a nearby web server that's
accessible at the URL you supplied to the phone, and fill it with XML content
like this:

 <CiscoIPPhoneMenu>
 <Title>My New Menu</Title>
 <Prompt>Prompt This</Prompt>

 <MenuItem>
 <Name>Menu Item</Name>
 <URL>http://domain/cisco/services/menuitem.xml</URL>
 </MenuItem>

 <SoftKeyItem>
 <Name>Soft Key</Name>
 <URL>http://domain/cisco/services/softkey.xml</URL>
 <Postition>1</Posititon>
 </SoftKeyItem>

 </CiscoIPPhoneMenu>

This sample shows you a simple yet slick method of loading a menu. When you
press the Settings button on the phone, the menu shows up as simple text
bars and allows you to arrow-down or up to the option you choose, using the
phone's navigation controls and softkeys. After you make a selection, the
listed URL is queried. This convention is the formula behind what Cisco calls
services. You can think of services as the little applications (stock tickers,
games, etc.) on modern cellular phones. The Cisco phones split the phone
directory off as its own service (available through the Directory button rather
than the Services button), but that shouldn't stop you from making your own

directory with this hack.

The menus are simple to create, but you'll need to become familiar with the
strange tags. If you're not familiar with XML, the <CiscoIPPhoneMenu> tag, which is
used to enclose Cisco phone menu structures, might seem a little strange to
work with. I would have just used <Menu>, but that might not work in newer
firmware. Menus contain one or more menu items denoted with the tag
<MenuItem>. A softkey type of menu that uses the <SoftKeyItem> tag also is
available. Softkey menus use the buttons on the side of some of the phones
(the 7960, for example, has six on the right and four at the bottom of the
display). Some of the older Cisco phones do not have the extra buttons, so for
compatibility with all of Cisco's IP phones, stickto simple menus.

Inside <MenuItem> are easy tags, such as <Name> and <URL>. These are
casesensitive on some current firmware versions. <Name> is what shows up as
the item's name, and <URL> is what it will request if the user selects the menu
option. Notice that the http:// part is in the URL, but FTP URLs will work, too.

Now, on to your first menu. Start the following example and adjust it to suit.
Let's say you use the extension of the phone for the title, to allow you and
your friends or users to know the extension at any time. Break up the menu
into chunks that you can handle:

 <CiscoIPPhoneMenu>
 <Title>EXT 1234</Title>

 <MenuItem>
 <Name>PIM</Name>
 <URL>http://domain/cisco/services/pim.xml</URL>
 </MenuItem>

 <MenuItem>
 <Name>Work</Name>
 <URL>http://domain/cisco/services/work.xml</URL>
 </MenuItem>

 <MenuItem>
 <Name>Play</Name>
 <URL>http://domain/cisco/services/play.xml</URL>
 </MenuItem>

 </CiscoIPPhoneMenu>

So you now have three sections to add things into. Work on PIM first, and add
a list of favorite restaurants (hey, you'll want to reward yourself with a pizza
when this is through!). Go to the pim.xml file on the web server. Add some
local and not-so-local places, and then allow the menu to dial the number for
you. To keep my favorite places safe, I'll suggest fictional restaurants and
phone numbers. (Actually, if you're in the Detroit area, nothing beats National
Coney Island!)

 <CiscoIPPhoneMenu>
 <Title>EXT 1234 - PIM</Title>

 <MenuItem>
 <Name>Restaurants</Name>
 <URL>http://domain/cisco/services/pim.xml</URL>

 </MenuItem>

 </CiscoIPPhoneMenu>

 <CiscoIPPhoneDirectory>
 <Title>EXT 1234 PIM - Restaurants</Title>

 <DirectoryEntry>
 <Name>Larrys Latkes</Name>
 <Telephone>18005551212</Telephone>
 </DirectoryEntry >

 <DirectoryEntry >
 <Name>Timbos Nacho World</Name>
 <Telephone>18665551212</Telephone>
 </DirectoryEntry >

 <DirectoryEntry >
 <Name>Drunken Cow Steak House</Name>
 <Telephone>18775551212</Telephone>
 </DirectoryEntry >

 </CiscoIPPhoneDirectory>

Look at all that's changed. You are now using the <CiscoIPPhoneDirectory> tag to show

the dial and other buttons at the bottom of the screen. You also are now using
<DirectoryEntry> rather than <MenuItem>, and <Telephone> rather than <URL>. To complete
the hack, edit the work.xml and play.xml files.

Andrew Latham

Hack 66. Power Cisco Phones with Standard Inline Power

To avoid lock-in with Cisco-only phones and switches, learn how to
power Cisco phones from non-Cisco switches.

IP phones can be powered through their Ethernet connections. The standard
for this inline power is called 802.3af, and many equipment manufacturers
support itexcept for Cisco, which uses its own proprietary inline power method.
Because of this, you can match Cisco IP phones only with Cisco-powered
switches (unless you use Cisco's only phone model to support 802.3afthe
7970). This is an unfortunate form of vendor lock-in, but all is not lost. You
can do a couple of things to get Cisco IP phones to draw power from non-Cisco
switches.

If your budget permits, the obvious (though proprietary) solution to this
problem is to use Cisco PoE switches to power the phones. Some other switch
makers, like Foundry Networks, also support Cisco's proprietary PoE standard.
If you can't afford to forklift your switches, you might instead want to power
your Cisco phones by way of a power injector, which is a patch panel that adds
inline power to a CAT5/CAT6 cable connection. Consider Cisco PoE-compatible
injectors like those made by PowerDsine (http://www.powerdsine.com/).

But, if you can't do that either, do the next best thing: hack.

Hacking inline power will almost certainly void your IP phone's warranty, and probably your
switch's or power injector's, too. A short circuit could fry your switch and phone if you're
not careful. Proceed with caution!

By changing some wires on a standard UTP Ethernet patch cable, you can
make a compatibility cable that lets you plug Cisco IP phones into any 802. 3af
source, as shown in Figure 5-3. Essentially, you are flipping wires 4 and 7, and
5 and 8. Be advised, this technique could void the warranty of your phone and
your switch.

Figure 5-3. The wiring diagram for a hacked PoE cable

http://www.powerdsine.com

Make sure your switch lets you program, port by port, which ports get power
and which ones don't, because in a native Cisco PoE solution, Cisco IP phone
power requirements are "auto-detected," so power can turn itself on and off as
necessary on each port. There's no such provision when using a hacked cable
to supply 802.3af power to a Cisco PoE-using phone. If this is a problem, and
802.3af won't work with the hacked cable, try using a device that does the
two-pair flip but also works with auto-detection, such as 3Com's 48-volt
IntelliJack switch converter, part number 3CNJVOIPCPOD.

The Cisco 7970 IP phone does support 802.3af power sources, unlike the more popular
(and less expensive) 7960 and 7940 phones.

Hack 67. Customize Your Cisco IP Phone's Boot Logo

Change the logo on your Cisco IP phone, and reflect your inner geek's
refined sense of monochrome style.

Have you ever wished you could change the boot-up logo on your cell phone?
Have you ever wanted to use custom graphics on your appliances' LCD
screens? Most Linux geeks love to plaster Tux the Penguin, the official mascot
of Linux, all over the placeand what better place than a hackable display? If
you're like me and you have a thing for the penguin, allow our underdressed
friend to show himself on your Cisco VoIP phones.

First, the facts: when most IP phones boot, they look for configuration files on
a nearby TFTP server and download them to configure the phone further
[Hack #80]. The configuration files allow the specification of a logo, along
with other tweakable goodies. By editing or adding the logo_url setting in a
phone's configuration file, you can dictate which logo the phone should use.
The storage or location for this logo varies depending on the version of the
firmware that's loaded on your phone, but you should be able to specify a
standard HTTP URL to point the phone toward its logo. (This kind of hack is
also possible on other phones, so look it up.) Here's the specific setting for a
Cisco configuration file:

 logo_url: "http://domain/cisco/logo.bmp"

As you can see, the URL points to a bitmap picture (logo.bmp). So far, this looks
to be a simple hack, and with a few notes, it will stay that way. The image that
the phone downloads is on a server, so it needs to find the server somehow. In
other words, make sure the phone's DNS server setting is right so that it can
resolve the hostname you provide in place of the domain place-holder in the URL.

The image size and color are also important. If you use an image with the
wrong size or aspect, it will come out looking a bit funky on your Cisco's LCD.
The default size for the display on the Cisco 7960 is 133 x 65 pixels, so that
would be a good place to start. The image should be monochrome, at least for
the 7960. Color is supported on newer models, like the 7970G. (You can
always specify a different URL in your color phone's config files that points to a
color version of the same image if you need to support color and monochrome
displays.) The older and current phones will alter an image to fit the screen

and color if it does not match. This auto-correction might not be perfect, so
you might want to run your image through Photoshop or the GNU Image
Manipulation Program (GIMP) to meet the size and color requirements.

When I did this hack, I used a PNG-format picture of Tux the Penguin. Tons of
great images like this are available at http://images.google.com/. I opened my
image in the GIMP to have a look. Then I resized the happy fellow so that his
height matched the height of the LCD, 65 pixels. Finally, I converted to
grayscale and saved. Figure 5-4 shows the finished product. Cute, isn't he?

Figure 5-4. The Tux logo, as he appears on a Cisco 7960's
display

I then simply uploaded the file to my web server, at the URL specified in my
7960's TFTP configuration file. The next time I booted up my 7960, there was
Tux, happy as usual.

Andrew Latham

http://images.google.com/

Hack 68. Configure Multiple IP Phones at One Time

Uniden's IP phones, like the UIP200, are excellent business-grade
telephones that can be mass configured by TFTPthat is, if you know
how.

As you might have already gathered, you can configure IP phones in three
ways: directly, using the phone's LCD and buttons; through a web or Telnet
interface; or via a configuration file the phone downloads from a TFTP server
during boot-up. Those three methods are presented in order of the level of
detail to which you can administer the phone, with TFTP configuration allowing
the most precise control. Once you've got a TFTP server running [Hack #80],
you need only drop the right text files onto your TFTP server to mass-
configure your IP phones.

The Uniden IP phones don't offer the trademark high-end look and feel of the
Cisco 7900 series of phones, but they do provide a good value nonetheless. At
half the price of a typical Cisco SIP phone, the Uniden UIP200 SIP phone
supports all of the standards fundamental to a VoIP LAN: inline power, SIP,
and several of the key audio codecs. Getting a UIP200 onto the network and
doing useful things with your softPBX is a snap, with the help of mass
configuration via TFTP.

5.11.1. Get the Uniden on the Network

To get started, I'll assume your UIP200 is connected to your Ethernet LAN and
is powered up. You might want to use a static IP configuration on the phone
(as opposed to DHCP), so pop into the Uniden's Quick Setup utility by pressing
the phone's Menu key. Use the directional arrow keys to access the Network
Settings menu. Then, press the Menu key to select it. Now, press the down
arrow until you reach IP Address; then press Menu again. Now, you can key in
the IP address, substituting stars (*) for periods. Press Menu to accept the
address, and then arrow down to the Subnet Mask and enter the appropriate
value for your LAN. Repeat this process for the Default GW option, entering
the right value for your LAN's default gateway (probably the address of the
nearest router).

Next, use the arrow keys to select DNS Server 1, press Menu, and enter the IP
address of the nearest DNS server. Then, reboot the phone by powering it off

and on. Try pinging the phone's IP address from a nearby PC to see if it's
communicating with the network.

5.11.2. Connect the Uniden to TFTP

To alter the phone's automatic configuration mode (i.e., TFTP-based
configuration), you need to unlock the configuration menu. To do so, press the
phone's Menu key and press the down arrow until you reach Unlock Config.
Press Menu again. You'll be prompted for a password, which you can enter
using the number pad (on most UIP200 firmware versions, the password is
2002). Press the Menu key to confirm the entered password.

Next, press the up arrow until you reach Network Settings. Press Menu; then
press the up arrow until you reach TFTP IP Address. Press Menu, enter the
address of your TFTP server, and then press Menu again to confirm it. Now,
press the Cancel key to go back to the main menu. Use the arrows to find
Phone Settings, and press Menu. Then, it's the arrows again until you find
Auto Config. Press Menu, and then press the up arrow to set Auto Config to
Enabled. Press Menu, press Cancel, and then press Menu twice to reboot the
phone. On the next boot, the phone will look to your IP address to find its SIP
and telephony configuration.

5.11.3. Build a Uniden Configuration File

The best way to learn Uniden SIP configuration is to step through the Uniden
configuration files. But before we do so, let me go over the basic structure a
Uniden UIP200 phone looks for when booting up and searching for its config on
a TFTP server. First, the phone expects to find a file called unidencom.txt,
which describes the operational characteristics that apply to all phonesthings
like site-wide audio settings, addresses of SIP proxies (softPBX servers, that
is), DNS servers, and the like. The phone will also look for a file called
uniden<MAC>.txt, where <MAC> is the MAC hardware address of the phone. So
there is a single unidencom.txt file, and there are many uniden<MAC>.txt files.

I'll step you through the key settings found in unidencom.txt:

ProxyServer 10.1.1.10
 ProxyServerPort 0
 OutboundProxy1 10.1.1.10
 OutboundProxy1Port 0

The proxy settings tell the phone which SIP server to deal with when resolving
dialed numbers and attempting to connect calls. ProxyServerPort allows you to
override the default SIP UDP port of 5060, if your softPBX is configured this
way (not likely). OutboundProxy1 allows you to specify that you want to use a
different SIP server for nonlocal calls. In most cases, OutboundProxy1 will be the
same as ProxyServer.

Registrar1 10.1.1.10
 Registrar1Port 10.1.1.10

Like a SIP Proxy, which routes calls, a SIP Registrar also handles connections
from SIP phones, but for a different reason. A SIP Registrar keeps tabs on SIP
users and informs requesting callers as to where a particular SIP user can be
found (i.e., what IP address that user is registered from). You can specify a
different registrar. But in most cases, this will also be the same address as
your SIP Proxy, as proxies and registrars tend to be on the same server more
often than not.

 DnsServer_1 10.1.1.10

This setting lets you override whatever DNS server address you provided in
the Quick Setup menuunless the phone is using DHCP, in which case it will use
whatever DNS server is recommended by the DHCP server when it acquires its
address.

 RegisterExpireSec 3600
 RegisterRetrySec 90

These settings tell the phone how often to register with the SIP registrar, and
how often to retry failed registrations.

SipPort 5060

SipPort tells the phone which UDP to use when listening for SIP messages, such
as incoming calls. 5060 is the default, and in most scenarios, you want to
leave it at 5060.

 G711MuTxPacketLength 20
 G711MuJitterBufferLength 10
 G711ATxPacketLength 20
 G711AJitterBufferLength 10
 G729TxPacketLength 20
 G729JitterBufferLength 10

The Uniden's three supported codecs are G.711 muLaw, G.711 aLaw, and
G.729. The G.711 codecs are standard 64 Kbps PCM bitstream codecs that
mimic the sound framing technology used by the legacy time division
multiplexing (TDM) equipment on the public telephone network. G.729 is a
high-compression codec that requires about half the bandwidth of G.711.
These settings allow you to tweak the packet length (in milliseconds) of each
codec. Adjusting the packet length (also called the packet interval) changes
how large each sound packet will be. Shorter lengths will yield smaller
packets, but will require greater bandwidth because they incur more Ethernet
and IP overhead. (For a great description of how packet intervals and
overhead interact, if I do say so myself, pick up O'Reilly's Switching to VoIP.)

The jitter buffer settings tell the UIP200 how many milliseconds of sound data
to record before transmitting to overcome the commonplace network
instability known as jitter. In all reality, you might not need to touch any of
these settings, though it is certainly fun to toy around with the jitter buffer
length if your wide area network (WAN) link is particularly jittery.

DiffServMode OFF
 DefaultDiffServParam 192
 RTPDiffServParam 160

DiffServ is a Quality of Service (QoS) mechanism that uses a policy-based
approach to enforcing different classes of service on the same WAN. It's not a
bad idea to switch DiffServMode to ON, but don't expect this to increase the quality
of your phone calls over the Internet, as most Internet routers don't support
the DiffServ standard. Class of service is useful only in a controlled enterprise
environment.

 VlanMode Disable
 VlanID 1
 PcVlanID 2

Virtual LANs, or VLANs, are a way Ethernet switches can segment traffic to
create logically independent networks on the same equipment. In most
enterprise VoIP scenarios, there are separate VLANs for voice and data traffic.
These settings allow you to specify which VLAN ID to join the phone with. And
since the phone has a built-in Ethernet switch for piggyback connection of a
PC, you can specify the PC's VLAN, too. That way, even though phone and PC
are connected on a single uplink cable, they can still be on separate VLANs.
This functionality is common on most IP phones that double as Ethernet
switches. Remember that since we're talking about unidencom.txt, the VLANs
specified here will apply to all phones that use this TFTP server.

 TftpAddress 10.1.1.10

Just in case the DHCP server ever crashes and the phone can't acquire a TFTP
server address from it, you can set the address of the TFTP server here.

 TimeZone -6
 EnableDST YES
 EnableSNTP YES
 SntpServerIP 10.1.1.10
 SntpRetrySec 1800

These settings control the time and date configuration on the phone. TimeZone

sets the local time zone of the phone, expressed as an offset of Greenwich
Mean Time. In this case, the phone is 6 hours behind because it's in the
Eastern time zone. EnableDST allows the phone to switch from Eastern Daylight
Time to Eastern Standard Time automatically, and vice versa, and SntpServerIP

and SntpRetrySec enable the phone to use Simple Network Time Protocol to
synchronize its clock with the other devices on the network.

PreferredCodec g711u,g711a,g729
 Language English

The PreferredCodec setting tells the phone which codecs you prefer to use when
connecting calls. If the device on the other end of the call is deemed not to
support your preferred codec, the phone goes to the next one in the list.
G.711 uLaw is most common in the United States, and G.711 aLaw is common
elsewhere in the world. G.729 is a bandwidth-conserving codec. If this phone
is going to be used by a road warrior or telecommuter with unpredictable
bandwidth capacity, or used over a small (128 kbps at the least) wide area
link, you might consider putting G.729 at the front of this list. Uniden's
firmware doesn't like spaces in this list, by the way.

Language tells the phone which language to use for the menu prompts. Your
choices are English, Spanish, and French (sorry, übergeeks: no Klingon).

StunServerAddr 0.0.0.0
 StunServerPort 3478

Simple Traversal of UDP NATs (STUN) is a protocol that helps IP phones deal
with the problem of Network Address Translation (NAT), a common technique
employed by many firewalls to mask a group of privately addressed devices
(like IP phones) behind one or more public IP addresses. The protocol is dealt
with in more detail in Chapter 6. Leaving StunServerAddr at 0.0.0.0 disables the
UIP200's STUN client, and StunServerPort allows you to override the default port
number.

 DirectIpDialing No

To enable direct dialing by IP address (so that you can call another IP phone
by its address rather than its phone number), as shown in the example given
in "Make IP-to-IP Phone Calls with a Grandstream BudgeTone" [Hack #60],
change this setting to Yes.

 AdminPassword 1234/5678

The AdminPassword setting allows you to change the menu password rapidly on all
of the phones that get their configs from this TFTP server. The format is

oldpassword/newpassword.

Hack 69. Customize Uniden IP Phones from TFTP

Use unique configurations on each IP phone, and while you're at it, do
some firmware revision control, too.

There are two files for each Uniden IP phone on the TFTP server: one that's
shared by all of the phones on the network (unidencom.txt, described in
"Configure Multiple IP Phones at One Time" [Hack #68]) and one that's
exclusive to each phone on the network. These exclusive, phone-specific config
files, whose filenames contain the names of their corresponding phone's MAC
hardware address, control the firmware and hotkey setup of that particular IP
phone. I'll step you through a sample Uniden phone-specific config file, as it
might appear on your TFTP server:

 AutoFirmwareUpdate YES
FirmwareFileName uip200_455enc.pac
FirmwareVersion BS4.55

Enabling AutoFirmwareUpdate with a YES will cause the phone to attempt a firmware
patch automatically when it boots. It will try to grab (and install) the firmware
package specified by FirmwareFileName from the TFTP server. The desired firmware
version is specified by FirmwareVersion, and the phone will grab the firmware file
you specify only if the version is different from the version currently running
on the phone.

 MyLcdDisplay Maddie's Phone
 MyDialNumber 1138
 DisplayName Madelyn
 UserNameForProxy 1138
 PasswordForProxy uniden
 UserNameForRegistrar 1138
 PasswordForRegistrar uniden

MyLcdDisplay determines what greeting to display on the phone when it is waiting
to call or be called, and MyDialNumber determines what number to display. DisplayName

attempts to set the caller ID name to be used on outgoing calls, if the softPBX

supports this. UserNameForProxy, PasswordForProxy, UserNameForRegistrar, and PasswordForRegistrar

establish the login credentials to be used when the phone logs into the SIP
servers that handle its calls (proxies and registrars are often hosted on the
same server, so the credentials are often identical).

 ProgrammableKey1 OneTouchDial
 ProgrammableKey2 TwoTouchDial
 ProgrammableKey3 CallForward
 ProgrammableKey4 DoNotDisturb
 ProgrammableKey5 VMA
 ProgrammableKey6 Mute

The ProgrammableKey1 through ProgrammableKey8 settings allow you to assign functions
to the UIP200's hotkey. Here's what the possible values do:

OneTouchDial

Causes the phone to dial a phone number (supplied in the OneTouchKey

settings later in the file).

TwoTouchDial

Causes the phone to dial a phone number that's associated with one of the
10 digit keys on the dial pad (these 10 numbers are supplied later in the
file).

CallForward

Enables call forwarding, if supported by the softPBX to which the phone is
connected.

DoNotDisturb

Causes the phone not to ring, even when calls are received (if voicemail is

available courtesy of your SIP proxy, it will answer calls instead;
otherwise, the calling party gets a busy signal).

VMA

Voice Mail Access. Causes the phone to dial a number associated with
retrieving voicemail messages. The exact number is specified later in the
file.

Mute

This is a standard telephone mute setting that disables the microphone in
the phone so that it won't pick up input on your end.

 OneTouchKey1 18005551212
 OneTouchKey2 411
 TwoTouchDigit0 3000
 TwoTouchDigit1 3001
 TwoTouchDigit2 3002

You use the OneTouchKey1 through OneTouchKey4 settings to supply the phone
numbers that are used with up to four ProgrammableKey settings, so you can set up
to four of the UIP200's eight hotkeys to be one-touch dialing keys. The
TwoTouchDigit0 through TwoTouchDigit9 keys, on the other hand, are used to set up two-
touch dialing (first the hotkey, and then a number key on the dial pad). Values
supplied here become the phone numbers that are called whenever a two-
touch dial occurs.

 VmaDirectCallNo 8080
 VmwiLampIndicator Enable

VmaDirectCallNo tells the phone what number to call when the VMA hotkey is
pressed. VmwiLampIndicator, when Enabled, permits the phone to light its message-
waiting indicator light. It's probably not a good idea to disable this one.

Once you've got this file set up the way you like, save it in the format
uniden<MAC>.txt, where <MAC> is the Ethernet hardware address of the phone it
applies to. Then, reboot the phone!

Hack 70. Control the Lights Using Your IP Phone

Using an X10 phone controller, you can turn your lights on and off from
the comfort of your IP phone.

X10 home-control interface equipment has been a favorite pastime of geeks
for decades. Since the early days of 8-bit hobby computers, you've been able
to automate your home using your keyboard (and later, your mouse). X10
interface controllers connect to lights and other appliances in your house, and
your computer can send serial commands to the controllers to turn them on
and off and adjust voltage like a dimmer. Some X10 interfaces even offer
telephone-based user interfaces, letting you control them by calling them with
your phone.

There are a few ways to integrate X10 controls with an Asterisk phone system.
The integration method depends on the type of X10 controller purchased. For
this hack, I chose the X10 TR16A phone controller that operates by DTMF
digits. Ordinarily, you would hook a phone line to it and then call that phone
line with a standard phone to operate the TR16A. But, with Asterisk, you can
connect directly to the TR16A as if you yourself are the phone company. Then,
controlling the TR16A is as simple as a dial-plan hack in Asterisk.

The Asterisk system I used to connect to the TR16A contains a single Wild-card
TDM400P using two foreign exchange station (FXS) modules and one FXO
module. The system has one analog phone and one SIP-enabled Polycom
IP500 phone. The SIP phone is the one I used as my "remote control"the
phone from which I sent my commands to the X10 controller.

I performed the following steps to integrate the TR16A with the Asterisk
system.

For the TR16A controller:

1. I connected it to a suitable 120VAC outlet.

2. I set the Answer delay switch to Minimum.

3. I set the controller to the appropriate house code.

4. I set the four-digit PIN to verify access when accessing the unit. (The
device includes instructions on how to do this.)

5. I used a modular cord to connect from the RJ11 port to the Asterisk FXS
port.

For the Asterisk system:

1. I assigned the FXS port an extension number using an Asterisk Dial

command.

2. I set the SIP peer for the IP phone to pass digits in-band (dtmfmode=inband).

3. I set the SIP peer for the IP phone to use the G.711 uLaw codec.

Here's the bit from /etc/asterisk/extensions.conf that you would use, assuming
the FXS port is Zap/1:

 exten => 100,1,Dial(Zap/1)

Here's the bit from /etc/asterisk/sip.conf:

 [200]
 username=200
 secret=200
 type=friend
 dtmfmode=inband
 disallow=all
 allow=ulaw

Verifying if the setup is correct requires a few test calls. Use the Polycom IP
phone to call the controller. Go off-hook on the IP phone and dial the
extension number assigned to the controller (100 in this example). The line
will ring for about 15 seconds before the controller will answer. When the
controller answers, you will hear three beeps. Enter your PIN code, and then a
second set of three beeps will confirm that you entered the proper PIN code.
After the second set of three beeps, enter the module number you want to
control, followed by * or # to turn the module on or off, respectively.

I mentioned that there are a few ways to integrate X10 controls with Asterisk.
Using the TR16A, I demonstrated how you could connect to an Asterisk phone
system using an FXS port and an IP phone to operate the X10 controller. X10
has another controller known as the CM15A. The CM15A connects to your local

PC using a USB cable, and it boasts a free SDK that you can use to write
custom scripts. Using the Asterisk system's IVR function, you can program
Asterisk to run a script. In turn, that script can control the X10 modules,
allowing for a pure software-based solutionthat is, no FXS interfacing
necessary.

5.13.1. Hacking the Hack

To have Asterisk dial the PIN code for you automatically, add it to the
extension definition that dials the controller (assuming your PIN is 1212), so
that it dials your pin automatically after connecting:

 exten => 100,1,Dial(Zap/1,30,D(1212))

Joel Sisko

Hack 71. Use a Rotary-Dial Phone with VoIP

Or "How Grandma Mabel Learned to Love Voice over IP."

What do a 19th-century Missouri undertaker and SIP have in common? The
common thread is their ability to connect two parties without a third party
intervening. That is, they both serve an intermediary role between caller and
callee, signaling the call and providing a pathway for its sound signals.

In 1891, a Missouri undertaker, Almon B. Strowger, was granted a patent for
an electromechanical device called a stepper switch. The stepper switch
allowed the calling party to control whom he would connect to without the
need for an operator. Today, that control mechanism might be analogized to a
phone number. But the important point is that Strowger's invention made it
possible to connect phone calls without a telephone operator's intervention.

SIP promotes the ability to call a party without the need for a SIP gateway or
gatekeeper, as long as you know the recipient's sip@ address, called a SIP
Uniform Resource Indicator (URI). To pay homage to the pioneering Mr.
Strowger, we have included this hack to connect a rotary phone, such as a
1920 Western Electric candlestick phone (Figure 5-5), to a VoIP network.

First, let me give you a quick overview of how a rotary phone works. The
rotary phone provides signaling to the central office by establishing a flow of
current and then interrupting the flow momentarily to signal a pulse. The
number of pulses produced in a given time period represents the number being
dialed. Five pulses represent the number 5.

Adding a rotary phone to a VoIP network is a relatively painless process, as
long as you can build an intermediary gateway that understands pulse
signaling and SIP, and can signal both legs of the call. What can be painful is
finding a VoIP device that supports rotary or "pulse" dialing. That's why you
might be better off building this gateway yourself.

5.14.1. Do Pulse with an IAXy

The Digium IAXy FXS gateway supports pulse dialing, providing a simple and
complete solution. In fact, the IAXy is a complete gateway in and of itself: it
has an analog phone port on one side and an Ethernet RJ45 port on the other,

complete with a little Inter-Asterisk Exchange (IAX) user agent built in.

Figure 5-5. A 1920s vintage Western Electric candlestick
phone

The Digium IAXy supports pulse dialing out of the box. Configure
/etc/asterisk/iax.conf with some entries that will allow the IAXy to be used as a
peer:

 [rotary]
 type=peer
 username=asterisk
 secret=supersecret

In this case, I used rotary as the IAX peer name. All you need to do, once this
config is done, is register the IAXy with your Asterisk server as the IAX user
asterisk. The rotary phone connects to the IAXy. Now you can use the rotary
phone as you would any valid endpoint in your dial plan by routing calls to
IAX/rotary using a Dial command.

5.14.2. Do Pulse with a Wildcard

If you opt to use Digium's Wildcard TDM400 with an FXO module installed,
you'll need to add a line of code to the /etc/asterisk/zapata.conf file on the
Asterisk phone system. In the Zaptel channel section of zapata.conf for this
particular FXO channel, the following bit of config will enable the FXO port to
support pulse dialing:

 pulsedial=yes

Once you have modified the zapata.conf file, connect your home line to the
FXO port. To test, go off-hook and try dialing an extension off the Asterisk
system from the rotary phone. Remember that using a rotary phone takes a
little longer to dial, so be patient. Once you have confirmed that you can dial
internally, access the outside line configured for pulse dialing and call
someone.

5.14.3. "Pass Through" Pulse Dialing Signals

With many of the other VoIP product manufacturers, the rotary end-to-end
solution is not as easy to configure or operate. Most VoIP gateways support
pulse dialing on the FXO connections to the phone company. But they typically
do not support pulse dialing with the FXS connections (i.e., the phones). A
simple hack to overcome this limitation, at least in theory, is available on
some of these gateways. One could assign a dedicated FXO port that is enabled
for pulse dialing directly to an FXS port. The FXS port in turn would
automatically seize the outside line when the rotary phone goes off-hook. In
this way, the pulse signals sent by the phone are "passed through" to the
phone line.

The drawback of this configuration is that you will not be able to dial internal
extensions directly. Oh, and you'll be scratching your head if your local central
office doesn't support pulse dialing! Make sure your local central office
supports pulse dialing, or this hack definitely won't work.

5.14.4. Do Pulse Without Any Special Hardware

If none of the previous solutions turns your crank, there's yet another way you
can use your classic rotary-dial phone with modern telephony services like
VoIP and your tone-dialing-only phone company. If you have Yahoo! Widgets

(formerly Konfabulator), you can actually do tone dialing via your rotary
phone with the help of your Windows PC or Mac. Download and install Harry
Whitfield's totally 'leet DTMF Dial widget
(http://www.widgetgallery.com/view.php?widget=35922).

By taking your old-school phone off the hook and holding its mouthpiece up to
your computer's speakers while dialing on the widget, the DTMF tones this
widget generates will be sent through the phone line to the phone company
(or to your VoIP ATA if you use a VoIP service). Just make sure the volume on
your computer is up high enough for the mouthpiece to pick up the sound of
the tones.

Joel Sisko

http://www.widgetgallery.com/view.php?widget%3D35922

Chapter 6. Navigate the VoIP Network

Section 6.1. Hacks 7287: Introduction

Hack 72. Monitor VoIP Devices

Hack 73. Inspect the SIP Message Structure

Hack 74. Audit a Network's QoS Capabilities

Hack 75. Graph Latency and Jitter

Hack 76. Explore NAT Traversal

Hack 77. Shape Network Traffic to Improve Quality of Service

Hack 78. Create a Premium Class of Service

Hack 79. Build a $100 PSTN Gateway in 10 Minutes or Less

Hack 80. Make IP Phone Configuration a Trivial Matter

Hack 81. Peek Inside of SIP Packets

Hack 82. Dig into SDP

Hack 83. Sniff Out Jittery Calls with Ethereal

Hack 84. Log VoIP Traffic

Hack 85. Secretly Record VoIP Calls

Hack 86. Log and Record VoIP Streams

Hack 87. Intercept and Record a VoIP Call

6.1. Hacks 7287: Introduction

Switching to Voice over IPespecially in an enterprise environmentis wrought
with perils that you won't experience on a non-VoIP network. Real-time
applications like voice require a high-quality, real-time network. And, at least
by itself, traditional Internet Protocol (IP) networking gear doesn't fully deliver
on that promise. Fortunately, you can apply some old toolssuch as Perl and
Etherealto VoIP networking to troubleshoot and improve your IP network.

When problems occur, your trusty old network troubleshooting apps will come
to the rescue. In this chapter, you'll use Ethereal to sniff Session Initiation
Protocol (SIP) signaling messages as they traverse the network inside of User
Datagram Protocol (UDP) packets. If you're a seasoned hacker or a timid script
kiddie, you can start with this chapter's Perl scripts, which graph and monitor
VoIP activity on the network. You'll also be able to monitor latency and
jitterthe two things VoIP admins want to avoid like the plagueusing standard
IP networking commands.

If you play your cards right, you might even learn how to beat a SIP-mangling
firewall. (OK, you don't have to play cards at all. Just read "Explore NAT
Traversal" [Hack #76].) I'll also show you how to clandestinely monitor and
record actual VoIP phone callsthe IP equivalent of a phone tap.

Hack 72. Monitor VoIP Devices

The only thing worse than having a VoIP service outage is being the
last to know about it.

It's the phone company's job to monitor traditional telephony links. Some
legacy phone vendors, such as Avaya, even monitor their PBXs in the field via
phone links back to their support headquarters. But no such convenience
exists for downtime-wary VoIP administrators. Thanks to Perl, though, good
system monitoring for VoIP is within your grasp. In this hack, you'll develop a
Perl script that monitors SIP hosts over the network and reports back on their
availability.

This script determines that the SIP host is alive by sending a SIP OPTIONS
packet to the remote host and receiving a response. This determines not only
whether the host is reachable via the network, but also whether the SIP
application on the other end is listening and responding to requests.

6.2.1. The Code

Your Perl development environment will need the Time::HiRes module for this
hack. Grab it from http://search.cpan.org/dist/Time-HiRes/:

 #!/usr/bin/perl
 use IO::Socket;
 use POSIX 'strftime';
 use Time::HiRes qw(gettimeofday tv_interval);
 use Getopt::Long;
 use strict;

 my $USAGE = "Usage: sip_ping.pl [-v] [-t] [-s <src_host>] [-p <src_port]
 <hostname>";

 my $RECV_TIMEOUT = 5; # how long in seconds to wait for a response

 my $sock = IO::Socket::INET->new(Proto => 'udp',
 LocalPort=>'6655',
 ReuseAddr=>1)

http://search.cpan.org/dist/Time-HiRes/

 or die "Could not make socket: $@";

 # options
 my ($verbose, $host, $my_ip, $my_port, $time);
 GetOptions("verbose|v" => \$verbose,
 "source-ip|s=s" => \$my_ip,
 "source-port|p=n"=> \$my_port,
 "time|t" => \$time) or die "Invalid options:\n\n$USAGE\n";

 # figure out who to ping
 my $host = shift(@ARGV) or die $USAGE;
 my $dst_addr = inet_aton($host) or die "Could not find host: $host";
 my $dst_ip = inet_ntoa($dst_addr);
 my $portaddr = sockaddr_in(5060, $dst_addr);

 # figure out who we are
 $my_ip = "127.0.0.1" unless defined($my_ip);
 $my_port = "6655" unless defined($my_port);

 # callid is just 32 random hex chars
 my $callid = ""; $callid .= ('0'..'9', "a".."f")[int(rand(16))] for 1 .. 32;
 # today's date
 my $date = strftime('%a, %e %B %Y %I:%M:%S %Z',localtime());
 # branch id - see rfc3261 for more info, using time() for uniqueness
 my $branch="z9hG4bK" . time();

 my $packet = qq(OPTIONS sip:$dst_ip SIP/2.0
 Via: SIP/2.0/UDP $my_ip:$my_port;branch=$branch
 From: <sip:ping\@$my_ip>
 To: <sip:$host>
 Contact: <sip:ping\@$my_ip>
 Call-ID: $callid\@$my_ip
 CSeq: 102 OPTIONS
 User-Agent: sip_ping.pl
 Date: $date
 Allow: ACK, CANCEL
 Content-Length: 0

);

 # send the packet
 print "Sending: \n\n$packet\n" if $verbose;

 send($sock, $packet, 0, $portaddr) == length($packet)
 or die "cannot send to $host: $!";
 my $send_time = [gettimeofday()]; # start the stopwatch
 my $elapsed;

 # get the response
 eval
 {
 local $SIG{ALRM} = sub { die "alarm time out" };
 alarm $RECV_TIMEOUT;
 $portaddr = recv($sock, $packet, 1500, 0) or die "couldn't receive: $!";
 $elapsed = tv_interval($send_time); # stop the stopwatch
 alarm 0;
 1;
 } or die($@);

 # print our output
 if ($verbose) {
 printf("After (\%0.2f ms), host said: \n\n\%s\n", $elapsed*1000,
 $packet);
 }
 elsif ($time) {
 printf("%0.2f\n", $elapsed*1000);
 }
 else {
 print("$host is alive\n");
 }

6.2.2. Running the Code

Execute this script using a command like this:

 # ./sip_ping.pl 192.168.0.123

If you see output like this, the SIP host is indeed running:

 192.168.0.123 is alive

Using the -v option with this command gives more verbose outputspecifically,
the contents of the SIP response and the round-trip latency (in milliseconds) of
the SIP message exchange.

You can work this technique into other monitoring tools and run it periodically
to inform yourself of any outages. Because the majority of commercial VoIP
service providers use the SIP protocol, it can be quite useful. You can even use
this script to monitor remote SIP handsets and softphone applications, because
all SIP hosts, if implemented correctly, respond in the same manner to the
request this script sends.

Brian Degenhardt

Hack 73. Inspect the SIP Message Structure

SIP is the predominant signaling standard among VoIP carriers and
VoIP enabled PBX systems, so it might be a good idea to know
something about it, beyond what the acronym stands for.

SIP is a conversational, connectionless signaling protocol. In English, that
means that SIP uses a two-way data conversation, generally using a UDP
socket. Its message structure is similar to that of Simple Mail Transfer Protocol
(SMTP) or HTTP messages, which also contain headers and a payload. SIP
serves many purposes in a telephony environment, including setting up and
tearing down VoIP phone calls.

Poking around the VoIP network with Perl is a great way to learn about SIP's
message structure. Besides monitoring the availability of hosts, you can use
the script from "Monitor VoIP Devices" [Hack #72] as an investigation tool for
understanding how the SIP protocol works. Using the -v switch, you can see the
full output of a SIP interaction:

 # ./sip_ping.pl v 192.168.0.123

The preceding command sends the following SIP message to the specified host:

OPTIONS sip:192.168.0.123 SIP/2.0
 Via: SIP/2.0/UDP 127.0.0.1:6655;branch=z9hG4bK1116720069
 From: <sip:ping@127.0.0.1>
 To: <sip:192.168.0.123>
 Contact: <sip:ping@127.0.0.1>
 Call-ID: 0436a2258bedd74d8618e587446810c9@127.0.0.1
 CSeq: 102 OPTIONS
 User-Agent: sip_ping.pl
 Date: Sat, 21 May 2005 05:01:09 PDT
 Allow: ACK
 Content-Length: 0

The response from the remote host is as follows:

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 127.0.0.1:6655;branch=z9hG4bK1116720069;received=192.168.0.52
 From: <sip:ping@127.0.0.1>
 To: <sip:192.168.0.123>
 Call-ID: 0436a2258bedd74d8618e587446810c9@127.0.0.1
 CSeq: 102 OPTIONS
 Contact: <sip:102@192.168.0.123:5060;line=j522azny>
 User-Agent: snom200-3.56m
 Accept-Language: en
 Accept: application/sdp
 Allow: INVITE, ACK, CANCEL, BYE, REFER, OPTIONS, NOTIFY, SUBSCRIBE, PRACK,
 MESSAGE, INFO
 Allow-Events: talk, hold, refer
 Supported: timer, 100rel, replaces
 Content-Length: 0

Notice the plain-text structure of a SIP message packet. Both the request and
the response contain very human-readable headers. This is no accident. The
body responsible for SIP, the IETF, has a history of advocating human-
readable protocols. As a result, SIP avoids machine-friendly ASN.1 encodings
such as those used by SIP's predecessors.

The response captured here is from a Snom 200 SIP hardphone. The User-Agent

field indicates that it's running version 3.56m of Snom's firmware. Note the
Allow, Allow-Events, and Supported headers showing all of the different SIP functionality
that this host supports. This is the intended purpose of the OPTIONS request in
SIP: to determine the functionality of a remote SIP service.

OPTIONS is just one of several methods (by the way, methods is SIP's word for
requests) that SIP implements. The INVITE method is used to establish calls, and
the SUBSCRIBE method is used with presence capabilities like user availability and
location. These methods are akin to GET and POST in HTTP. And like HTTP, the
host receiving the methods has a variety of numeric responses. In this case,
200 represents that the method was successful, and the response message
contains the desired information. Like HTTP, the response for "resource not
found" is 404. So, if a SIP INVITE was sent for a user that didn't exist on a
particular SIP device, the response would be a 404.

If you point this script at other SIP hosts, you'll see a large variety of
responses due to the variation in behavior of different SIP implementations on
the Internet and due to the variations in available functionality from one SIP

host to the next. A SIP video-conferencing device might not support the same
methods (as listed on the Allow line) as a SIP phone, for example.

6.3.1. See Also

The official SIP specification at http://www.faqs.org/rfcs/rfc3261.html

Switching to VoIP (O'Reilly)

Practical VoIP Using VOCAL (O'Reilly)

Brian Degenhardt

http://www.faqs.org/rfcs/rfc3261.html

Hack 74. Audit a Network's QoS Capabilities

Networks without Quality of Service (QoS) measures aren't always
suitable to carry voice traffic. So how do you know whether a network
path supports QoS?

Using pathping and traceroute during peak traffic periods, you'll be able to
establish whether a particular IP route is a good place for time-sensitive traffic
like VoIP media streams. You'll know the jitter and latency qualities of the
network, you'll have identified problem routers and potential traffic
bottlenecks, you'll know whether each router supports Resource Reservation
Protocol (RSVP, a QoS standard that allows network bandwidth to be reserved
for each call), and you'll know how well the network supports 802.1p
precedence tagging. (I explain what 802.1p is in this hack; keep going!)

Though Linux is better equipped to provide VoIP services and to serve as a
base for troubleshooting, Windows does have a nifty command-line tool that
you can use to determine if IP routing supports basic class-of-service
measures. pathping, which ships with Windows 2000 and Windows XP, lets you
see how well your Internet provideror your corporate networksupports 802.1p
and RSVP. This makes pathping a particularly useful Windows-only VoIP
networking tool.

On non-Windows boxes, though, you still have traceroute, of course. While not
implicitly a QoS measurement tool, traceroute can gather useful performance
data from the VoIP network.

6.4.1. Using pathping

pathping is similar to traceroute. It first determines the IP route along all hops
from the host where it's running to the host at which it's targeted. Then, it
collects information from each hop along the way, like latency times, and
displays what information it has collected. The following command returns the
hostname and IP address from each hop along the route to the destination, if
each hop provides an ICMP response:

 C:\> pathping www.broadvoxdirect.com

The output shows the route to the destination, similar to traceroute:

 Tracing route to www.bigvoxdirect.com [65.67.129.23]
 over a maximum of 30 hops:
 0 kelly-6aizy9qd1.ce1.client2.attbi.com [10.1.1.202]
 1 10.1.1.1
 2 10.248.164.1
 3 bic01.elyehe1.oh.attbb.net [24.131.64.38]
 4 12.244.65.61
 5 12.125.176.121
 6 gbr2-p70.phlpa.ip.att.net [12.123.137.26]
 7 tbr1-p012601.phlpa.ip.att.net [12.122.12.101]
 8 tbr1-cl8.n54ny.ip.att.net [12.122.2.17]
 9 ggr2-p300.n54ny.ip.att.net [12.123.3.58]
 10 so-1-0-0.gar4.NewYork1.Level3.net [4.68.127.5]
 11 ge-2-1-0.bbr1.NewYork1.Level3.net [64.159.4.145]
 12 so-0-0-0.mpls1.Cleveland1.Level3.net [209.247.11.134]
 13 ge-6-0.hsa1.Cleveland1.Level3.net [209.244.22.98]
 14 BIGVOX-DIS.hsa1.Level3.net [64.156.66.10]
 15 penguin.bigvoxdirect.com [65.67.129.23]

The following example, which uses the T option, checks to see whether each
router along the path supports 802.1p precedence tags. These tags are used
by routers and switches to prioritize real-time, delay-sensitive packets such as
the UDP datagrams commonly used in VoIP. The more hops along a route that
support 802.1p, the better off your VoIP quality on that route is likely to be,
because those routers can prioritize voice data over nonvoice data.

 C:\> pathping www.bigvoxdirect.com T
Checking for connectivity with Layer-2 tags.

 1 10.1.1.1 OK.
 2 10.248.164.1 OK.
 3 24.131.64.38 OK.
 4 12.244.65.61 OK.
 5 12.125.176.121 OK.
 6 12.123.137.26 General failure.

The output from pathping first shows the route, like the previous example, but

also adds the 802.1p feedback as far along the route as possible. Not all
devices along every route support 802.1p. In this example, the sixth hop does
not, because the router isn't configured for IP Type of Service (ToS) and
802.1p. Since the 802.1p header can't be carried past the sixth hop,
subsequent hops cannot be tested for 802.1p support.

The -R option will do a similar check for RSVP support, in a similar fashion. You
aren't nearly as likely to find RSVP-supporting hops on the public Internet as
you are 802.1-aware hops. But, if RSVP is configured on a private network,
you can use pathping to help you evaluate that network's hardware readiness
for QoS. It will tell you which routers support RSVP and which routers need to
be either reprogrammed or upgraded to support it.

6.4.2. Measure the Latency Time and Jitter on a Call Path

The cumulative latency on a route is a good indicator of how latent it is and,
therefore, how well it will work as a VoIP call path. An easy way to record
latency between hops (routers) on a route is by using traceroute (on Windows,
tracert).

Using traceroute, you can discover the route to the host at the specified
address, send several ICMP packets to each hop on the route, and then be
shown the following:

The highest round-trip latency to each router, in milliseconds

The lowest round-trip latency to each router

The average round-trip latency to each router

The IP address and/or hostname of each router

Whether an ICMP ping response was received from each router

The syntax for traceroute is very simple:

 # traceroute www.macvoip.com
 Tracing route to www.macvoip.com [65.31.69.11]
 over a maximum of 30 hops:

 1 1 ms 1 ms 1 ms 10.1.1.1

 2 14 ms 13 ms 18 ms 10.248.164.1
 3 18 ms 16 ms 12 ms bic01.elyehe1.oh.attbb.net [24.131.64.38]
 4 19 ms 21 ms 34 ms 12.244.65.61
 5 31 ms 23 ms 24 ms 12.244.72.70
 6 25 ms 26 ms 28 ms tbr1-p012401.phlpa.ip.att.net [12.123.137.45]
 7 32 ms 27 ms 27 ms tbr1-cl8.n54ny.ip.att.net [12.122.2.17]
 8 28 ms 28 ms 34 ms ggr2-p300.n54ny.ip.att.net [12.123.3.58]
 9 31 ms 30 ms 28 ms att-gw.ny.aol.net [192.205.32.218]
 10 32 ms 28 ms 43 ms bb2-nye-P1-0.atdn.net [66.185.151.66]
 11 29 ms 47 ms 34 ms bb2-vie-P12-0.atdn.net [66.185.152.201]
 12 64 ms 48 ms 62 ms bb2-chi-P6-0.atdn.net [66.185.152.214]
 13 60 ms 60 ms 62 ms RR-DET.atdn.net [66.185.141.98]
 14 59 ms 54 ms 66 ms os0-0.fmhlmi1-rtr1.twmi.rr.com [24.169.225.65]
 15 57 ms 53 ms 63 ms ig0-1.fmhlmi1-ubr5.twmi.rr.com [24.169.225.22]
 16 64 ms 66 ms 68 ms www.thelinuxfix.com [65.31.69.11]

Whether on Linux, Windows, or Mac, traceroute's output tends to be the same.
This sample output is from Windows, but all traceroutes show you the
minimum, average, and maximum latency to each hop along the route.

Not all IP networks permit ICMP trafficor traceroutes in particularbecause some
system operators prohibit them for security reasons. Most routes across the
Internet should provide a valid response when using the traceroute command.
As you examine the output from the traceroute command, pay special
attention to the variance in highest and lowest latency times (not the average
latency time). This variance is a good, rough estimate of jitter between each
hop. (If you don't know what jitter is, don't freak out! Just refer to "Sniff Out
Jittery Calls with Ethereal" [Hack #83].)

Keep in mind, though, that the latency and jitter patterns of VoIP traffic
(which is UDP and very consistent in nature) can vary from your readings
here, since traceroute uses ICMP packets that are very bursty in nature. The
routers along the route that you're evaluating might already be configured to
treat VoIP traffic with greater precedence, but at least you'll get an idea of the
general service conditions along the route.

6.4.3. See Also

http://www.microsoft.com/ technet for more information on pathping

http://www.microsoft.com/

Hack 75. Graph Latency and Jitter

Use sip_ping.pl to record latency and jitter data in a nice, pretty graph.

It's time to step beyond the basic ping and traceroute, and to graph packet
flow using Perl. In "Monitor VoIP Devices" [Hack #72], you saw how to
determine the availability of a SIP host using Perl and the SIP OPTIONS
packet. The next logical step is to time how long it takes to receive a response
to monitor the latency on the link between you and the device you're
monitoring. This hack uses the script from "Monitor VoIP Devices" [Hack
#72], but this time you use the t option to time the round trip:

 # ./sip_ping.pl t 192.168.0.123
 50.77

This shows me that it took almost 51 milliseconds for my Snom handset to
respond to a SIP request. This isn't a terribly useful test, however, considering
I'm timing this response from my desktop computer hooked up to phone's
built-in switch. Latency (and its cousin, jitter) starts to be an issue when your
VoIP traffic passes out of your local area network (LAN) and traverses the wide
Internet. For every router that your VoIP traffic passes through, there is a
chance for your VoIP packets to be delayed or, worse, dropped. You can use
the traceroute (tracert on Windows) application to see how many hops it takes
to get from your computer to a remote VoIP provider. Here is an example from
my PC to a SIP-based Internet telephony provider:

 # traceroute sip.example.com
 traceroute to sip.example.com (172.16.15.15), 30 hops max, 38 byte packets
 1 192.168.0.1 (192.168.0.1) 0.213 ms 0.189 ms 0.194 ms
 2 10.69.128.1 (10.69.128.1) 12.113 ms 12.343 ms 22.133 ms
 4 10.25.25.25 (10.25.25.25) 7.280 ms 7.777 ms 9.138 ms
 5 sip.example.com (172.16.15.15) 74.124 ms 77.450 ms 77.033 ms

This shows that my VoIP traffic has to pass through five routers every time I
make a call. If any router gets congested or starts having problems, my call
quality can suffer. Though knowing about troublesome routers along the path

is important, to keep things simple, you can focus most of your concern on the
time delay between yourself and the destination host. To determine this you
can use the ping utility:

 # ping sip.example.com
 PING sip.example.com (172.16.15.15) 56(84) bytes of data.
 64 bytes from 172.16.15.15: icmp_seq=0 ttl=53 time=74.4 ms
 64 bytes from 172.16.15.15: icmp_seq=1 ttl=53 time=74.4 ms
 64 bytes from 172.16.15.15: icmp_seq=2 ttl=53 time=79.0 ms
 64 bytes from 172.16.15.15: icmp_seq=3 ttl=53 time=75.4 ms
 64 bytes from 172.16.15.15: icmp_seq=4 ttl=53 time=77.8 ms

This shows that there is a 74 to 78 ms delay between my computer and the
remote VoIP server. This delay is called latency. In the context of VoIP traffic,
it's not always a bad thing to have consistent latency. Imagine if I consistently
have 100 ms of latency on my call. That is, it takes one-tenth of a second for
my speech to reach the ears of the person I am talking to. This isn't terribly
noticeable. However, if this 100 ms delay suddenly evaporated to 50 ms and
then jumped back to 100 ms, this would definitely create audible abnormalities
in my speech. Every time it sped up, the audio would skip over the slower
packets that hadn't arrived yet. Every time it slowed down, there would be a
slight pause, waiting for more audio to arrive. This is called jitter, and this is
the true source of quality problems on the VoIP frontier. However, this is not
to say that latency is not an important measurement. Latency measurements
can be a basis for measuring the potential for jitter. For example, say I have
two hosts: one with 200 ms of latency and one with 5 ms of latency. A 20%
variation in latency will result in 40 ms of jitter from the first host, and only 1
ms of jitter from the second.

One way to deal with jitter is to use a jitter buffer, a device that basically
delays playing or sending on the audio packets for a short period of time to
cushion against any delayed or out-of-order packets. As the packets arrive, the
buffer grows and shrinks to accommodate variations in their latency, thus
smoothing out their perceived latency. While jitter buffers are an excellent
tool for improving audio quality on VoIP traffic, they still come with the cost of
added latency in the call. It is preferable to eliminate the jitter on the network
altogether, if possible.

One big source of jitter and latency is network congestion. Let's suppose that
you're on an important VoIP call, when somebody on your network decides to
download the latest movie trailer, instantly using up all of your bandwidth.

Suddenly your VoIP packets have to wait in line behind the movie trailer
packets, causing a change in latencyi.e., jitter. One solution to this problem is
to use QoS policies on your router. This is the practice of prioritizing some
types of network traffic ahead of others. QoS works well because some
network traffic, like downloading movie trailers or checking your email, is not
affected by small changes in latency or jitter, and other services, like VoIP
traffic, are.

This uncovers a flaw in our use of traceroute and ping to measure latency.
Because ping traffic is not the same as VoIP traffic, some routers' QoS policies
might treat them differently. Hence the need for our Perl SIP ping utility
[Hack #72]. As it uses SIP, it provides a much better estimate for measuring
VoIP latency and jitter. In addition to network latency, it will also measure any
latency injected into the system by the SIP application listening on the other
end.

However, since SIP-based VoIP relies heavily upon another protocol altogether
to carry the actual audio streamsReal-time Transport Protocol (RTP)measuring
latency and jitter merely by sending SIP messages isn't foolproof. Yet, since
SIP and RTP are almost always UDP (and ping packets are not), this kind of
measurement is better than using ping and traceroute. Plus, many VoIP-aware
routers give the same preference to SIP as they do to RTP, so the results you
get using this technique might not be too far off.

6.5.1. The Hack

Timing the round trip of SIP with Perl is only half of this hack. The second half
is using a Unix program called RRDtool
(http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/) to graph the data.
RRDtool is a generic utility for graphing data over time. You'll need to build it
by following the instructions at the author's web site.

Once you've installed RRDtool on your Linux PC, you'll use it to graph the SIP
latency of three different SIP providers. The first thing to do is create the rrd
database file, which RRDtool will use to accumulate the data you'll graph later:

 $rrdtool create voiphacks.rrd -s 300 DS:provider1:GAUGE:300:U:U \
DS:provider2:GAUGE:300:U:U DS:provider3:GAUGE:300:U:U \
RRA:MAX:0.5:1:10000

http://people.ee.ethz.ch/%7Eoetiker/webtools/rrdtool/

This says that we will take 10,000 samples of SIP ping time. One ping will
happen every 5 minutes until 10,000 pings have occurred. There are three
data sources, one for each of three providers that will be guinea pigs with
which to build the graph. You will notice that this creates a file called
voiphacks.rrd. This is the database file that will be storing the latency
measurements. The next step is to make the measurements. The following
shell script will launch an instance of RRDtool, taking latency measurements
from the three providers using our sip_ping.pl utility once every 5 minutes:

 #!/bin/sh
 SIP_PING="../sip_ping.pl -t"

 while /bin/true; do
 PROVIDER1=`${SIP_PING} sip.provider1.com 2>/dev/null || echo "INF"`
 PROVIDER2=`${SIP_PING} sip.provider2.com 2>/dev/null || echo "INF"`
 PROVIDER3=`${SIP_PING} sip.provider3.com 2>/dev/null || echo "INF"`
 rrdtool update voiphacks.rrd N:${PROVIDER1}:${PROVIDER2}:${PROVIDER3}
 done

You can run this in the background on a Unix system. Don't forget to make
your script executable (chmod 755 filename.sh) and put it in a place where it can be
seen by any startup scripts if you decide to have it run on system boot. If
you'd like to run the script periodically, you can add it to your /etc/crontab file
so that the cron daemon can run it automatically according to your own
timetable. After you have accumulated a day's worth of data, you can graph
the results:

 $rrdtool graph pingtimes_daily.gif -v "milliseconds" \
 --title="Latency over 1 day" -s now-1d -w 875 -h 475 \
 DEF:provider1=voiphacks.rrd:provider1:MAX \
 DEF:provider2=voiphacks.rrd:provider2:MAX \
 DEF:provider3=voiphacks.rrd:provider3:MAX \
 LINE2:provider1#882222:"Provider 1" LINE2:provider2#228822:"Provider 2" \
 LINE2:provider3#222288:"Provider 3"

This will produce a graph of a full day's results, taken at five-minute intervals
(Figure 6-1). If you'd like to graph a longer period of time, you can change the
-s option to something like now-1w for a week, or now-1m for the results graphed
over a month. The manpage for rrdgraph has some more examples that show

how to tweak the output.

Figure 6-1. A graph of latency and jitter across a VoIP link

This graphs latency measured over time. To determine jitter, you can examine
the variation in the line on the graph for each host. If it's a consistent 80 ms
flat line, there's little likelihood of jitter. If it bounces all over the place, it's
more likely that you'll experience jitter on a call.

Because this script takes a sample only every five minutes, it doesn't provide
the truest possible measurement of the type of jitter that will affect a VoIP
call. But since it's very difficult to trigger UDP datagrams at a real-world rate
of 20 to 50 per second using the sip_ping.pl and RRDtool tools, measuring
latency over time will have to suffice. Plus, with that many samples, you'd
have a ton of numbers to crunch to figure out the utilization trends over a
long span of time, like days, weeks, or years. By compromising short-term
accuracy and taking samples only every five minutes, it's easy to look at
latency over long spans of time.

Brian Degenhardt

Hack 76. Explore NAT Traversal

Network Address Translation (NAT) poses a fundamental problem for
VoIP. But like so many problems, the first step toward a solution is
realizing you've got a problem.

Have you ever tried a Voice over IP application that purports to let you talk to
your buddies over the Net, only to fire it up and not be able to call them or,
worse yet, to hear only dead silence on the other end? Chances are, the VoIP
application is being broken by your firewall router.

NAT is most often used to permit computers that are on private networks behind firewall
routers to access services on the public Internet without having to have public IP
addresses.

The Internet is designed such that most private networks that have access to
the Internet do so using a device called a NAT firewall. By using NAT,
computers on the private networks are afforded a certain amount of security
when accessing the Internet, because the NAT firewall can block certain
network services and log all access attempts. The most common form of NAT is
called masquerading, which uses a public IP address on the firewall's external
interface to conceal all of the computers connected to the private interface. In
this way, those computers "masquerade" as the firewall to the outside world.

The problem with this practice is that it breaks applications that rely on that
public IP address. When a private computer makes a request, the server
handling the request might attempt to respond to the requester using the
firewall's public IP address rather than the requestor's private IP address,
which is unknown to the responding server. This wreaks havoc on many
protocols, including the file transfer protocol (FTP) and SIP.

Indeed, SIP's poor NAT traversal capabilities are famous. That is, if you have a
router that does NAT, as most broadband routers do, it can potentially cause
problems with using SIP. This is because the SIP protocol requires SIP hosts to
instruct each other on how they can be reached by using the Via header,
which looks like this:

 Via: SIP/2.0/UDP 127.0.0.1:6655

This can cause issues when your SIP host places its internal IP address in the
Via header instead of the external address of the NATing router. There are a
plethora of solutions to this problem, including Simple Traversal of UDP NATs
(STUN) and RFC 3581. STUN is a client-side technique used to determine the
correct external IP address and port, which are then placed in the Contact
header. RFC 3581 is a server-side solution where the server responds to the
host that sent it the packet instead of the host in the Contact header. You can
see this in action by using the sip_ping.pl script from the previous hack:

./sip_ping.pl -v proxy01.sipphone.com | grep Via
 Via: SIP/2.0/UDP 127.0.0.1:6655;branch=z9hG4bK1116737044
 Via: SIP/2.0/UDP
 127.0.0.1:6655;rport=14328;received=66.27.57.228;branch=z9hG4bK1116737044

Note the addition of the rport and the received parameters in the response of this
ping. These show the remote port and IP address, respectively. While our
client stated to the server that its Contact is 127.0.0.1 port 6655, the remote
host decided to send the packet back the way it came, to 66.27.57.228 on port
14328.

Some router manufacturers have tried to get into the game and transparently
rewrite SIP packets that pass through them. Although this was borne out of
good intentions, it can cause problems on certain SIP implementations when
the returning response does not match what was transmitted. If you're trying
to use SIP behind a firewall and you aren't aware that that well-meaning
firewall has altered your transmissions, it will be next to impossible to get
around the fundamental problem of SIP using other, more generally accepted
solutions (like STUN; more on that later). Here is an example of a SIP packet
sent through a router with SIP translation enabled:

./sip_ping.pl -v proxy01.sipphone.com | grep Via
 Via: SIP/2.0/UDP 127.0.0.1:6655;branch=z9hG4bK1116737081
 Via: SIP/2.0/UDP 10.1.1.5:6655;branch=z9hG4bK1116737081

Note that since the packet was rewritten, the remote host's RFC 3581

implementation did not insert the received and rport fields. However, when the
packet returned, a different IP address was inserted in the Via header. This
can be especially troublesome on hosts with multiple IP addresses, as the
router rewriting the headers might be assuming that all responses should go to
one host. This can be a good thing when you have a single SIP device on the
private network, but it's a bad thing when you've got a whole building full of
SIP phones. If the router is rewriting SIP headers arbitrarily, it won't be
possible for all of these phones to receive their SIP responses.

The sip_ping.pl script takes two additional arguments (-s, for source, and -p, for
port) that you can use to explore NAT traversal. These are the source IP
address and the source port to be placed in the Via and Contact headers. By
taking the rport and received addresses of the preceding example, we can rewrite
the headers correctly to make it appear as though our packet is coming from
the external interface of the NAT firewall:

./sip_ping.pl -v s 66.27.57.228 p 14328 proxy01.sipphone.com | grep Via
 Via: SIP/2.0/UDP 66.27.57.228:14328;branch=z9hG4bK1116737949
 Via: SIP/2.0/UDP 66.27.57.228:14328;branch=z9hG4bK1116737949

This now specifies the correct external IP address and port in the Via header.
By specifying the public IP and port, we can now traverse NAT, even when
contacting remote hosts that do not support RFC 3581. This is a great example
of how we can get around the NAT problem with SIP.

Now, if only our SIP clientthe phonewere smart enough to employ this
technique itself, our SIP phone would appear as though it were outside the
firewall to the remote SIP devices it calls. That's where the STUN protocol
comes into play.

6.6.1. Get STUNned

STUN is an IETF recommendation that allows SIP clients to connect to a STUN
server on the Internet to determine what address and port the connecting
client appears to have from behind a NAT host. This way, the client can send
the appropriate SIP Via headers, and, at least in theory, the SIP devices it calls
will be able to respond by sending packets to the client's NAT firewall. Once a
SIP device sends response packets to the NAT firewall, it's up to the firewall to
forward them to the appropriate client on the private network.

So, there are two steps to hacking out a functional STUN server. First, set up
and configure the server. Second, configure your NAT firewall so that it
forwards inbound VoIP traffic to your SIP phone.

To build a STUN server, you'll need a Unix box (Linux, BSD, Mac OS X, etc.)
that has a non-NATted connection to the Interneti.e., it has a public IP
address. There is a Win32 version of STUN, too, but compiling on Unix is a lot
less trouble. You can obtain the STUN server software from
http://sourceforge.net/projects/stun/. Download and unpack it into your Unix
machine's /usr/src/ directory; then compile and install it like this:

 # wget http://kent.dl.sourceforge.net/sourceforge/stun/stund_0.94_Oct29.tgz
 # cd /usr/src
 # tar xvzf stund_0.94_Oct29.tgz
 # cd stund
 # make
 # cp server /usr/sbin/stund
 # /usr/sbin/stund &

That last command launches the STUN server. Make a note of your STUN
server's internal IP address (on a small network, this is probably your default
gateway), as you'll need to provide it to your SIP phone as the STUN server
address.

6.6.2. But What About RTP?

So, STUN will allow your SIP client to know what to put in the SIP Via header,
but remember that the VoIP call also relies upon RTP (an entirely different
protocol) for transporting the voice packets. These packets must flow on two
separate UDP sockets: one from you to the person you're calling and one from
that person back to you. NAT breaks this, too! To make sure your SIP phone
can receive voice packets behind the NAT box, you'll need to tell the NAT box
to forward incoming RTP traffic to your SIP phone's IP address.

For the sake of this example, I'm going to use the X-Lite softphone, a free
STUN-aware SIP softphone for Mac and Windows. Download it from
http://www.counterpath.com/ and install it. (Review "Use a Softphone with a
VoIP TSP" [Hack #4] for a quick refresher.) If you want to attempt this hack

http://sourceforge.net/projects/stun/
http://www.counterpath.com/

with another softphone, be sure it supports both SIP and STUN, or no cigar.

Get the IP address of the computer where X-Lite is installed. Make a note of it
(I'll use 10.1.1.50 for this example). You'll need to tell your NAT firewall to
forward all VoIP traffic to this address. If your NAT box runs Linux, you can
use the following commands to forward all the inbound VoIP traffic to
10.1.1.50your IP phone. This assumes the Internet-facing interface is eth0 and its
address is 201.101.1.1, so replace that address to suit your firewall:

 # iptables -t nat -A PREROUTING -p udp -i eth0 -d 201.101.1.1 \
 --dport 5060 -j DNAT --to 10.1.1.50:5060
 # iptables -A FORWARD -p udp -i eth0 -d 10.1.1.50 --dport 5060 \
 -j ACCEPT
 # iptables -t nat -A PREROUTING -p udp -i eth0 -d 201.101.1.1 \
 --dport 5061 -j DNAT --to 10.1.1.50:5061
 # iptables -A FORWARD -p udp -i eth0 -d 10.1.1.50 --dport 5061 \
 -j ACCEPT
 # iptables -t nat -A PREROUTING -p tcp -i eth0 -d 201.101.1.1 \
 --dport 5000 -j DNAT --to 10.1.1.50:5000
 # iptables -A FORWARD -p tcp -i eth0 -d 10.1.1.50 --dport 5000 \
 -j ACCEPT
 # iptables -t nat -A PREROUTING -p tcp -i eth0 -d 201.101.1.1 \
 --dport 5001 -j DNAT --to 10.1.1.50:5001
 # iptables -A FORWARD -p tcp -i eth0 -d 10.1.1.50 --dport 5001 \
 -j ACCEPT

Now, any inbound SIP (ports 5060 and 5061) or RTP (ports 5000 and 5001 in
this example) traffic will be forwarded directly to host 10.1.1.50, where your SIP
softphone is running. (Ordinarily, you wouldn't need to forward the SIP ports
for outbound calls to work; STUN takes care of that as long as the SIP client
can use STUN.)

For a list of VoIP-related port numbers, refer to "Log VoIP Traffic" [Hack #84].

Next up is configuration of the STUN client in the softphone. Launch X-Lite and

configure it as you normally would; then add the private address of your NAT
machine, which is now running a STUN server as well, to the Primary STUN
Server entry of X-Lite's preferences dialog. Now, call somebody outside your
private network to see if it works (if that person is also behind a NAT, it might
not!).

Hack 77. Shape Network Traffic to Improve Quality of
Service

There's a reason why the Public Switched Telephone Network (PSTN)
has been the dominant global voice network for a century: Quality of
Service.

VoIP is a wonderful technology. It enables all kinds of features and portability
options that are not available with traditional telephony technologies.
However, unlike traditional telephony, VoIP has some inherent quality issues.
By the time you finish reading this hack, you'll know how to tackle the quality
problem with the VoIP engineer's best weapon: the Linux kernel's built-in
router.

On the traditional telephone network, every single call has a dedicated time
slot using a technology called time division multiplexing (TDM). With TDM, a
circuit is divided into several time slots, each with its own dedicated slice of
bandwidth. This is what ensures that your call is the only call in that time slot,
and that after all of the time slots are used, the circuit is at top capacity and
no further calls will be allowed.

With VoIP, your call is converted into thousands of small datagrams (or
packets, if you please). These packets are then queued up on a device (your
computer, analog telephone adapter [ATA], router, etc.) and thrown out over
the wire, with no guarantee that they will even reach their ultimate
destination, wherever that might be. You can see how this might cause
problems with voice quality, especially when other data traffic on that same
link is vying for that link's limited capacity (or "bandwidth," depending on your
preferred vernacular).

This is especially problematic with consumer access technologies such as cable
modem or DSL. In a typical residential or small-office setup, you will have one
relatively high-speed link to the Internet, and that link is responsible for
carrying email, web surfing, and even the occasional big download of a CD-
ROM image or something. Now try to put voice traffic on this link.

Humans are very sensitive to delay when listening to speech. If one web site
on your computer loads 250 ms slower than another web site, you're not really
going to notice. However, if there is a 250ms delay in a conversation, you'll
perceive that as a very annoying delay, and it will make ordinary conversation

difficult.

With all of this traffic on one link, how can I make sure that someone
downloading a song from iTunes does not cause the audio on my VoIP call to
suffer? It's easy, with a technology referred to as Quality of Service (QoS).
QoS is a general term applied to a family of technologies that essentially
manipulate the first in, first out (FIFO) queues on devices. Remember that PC
from before, or that router or ATA? Normally, all of the IP traffic from that
device will be placed into a FIFO queue for delivery to the remote endpoint.
With QoS, we can manipulate that queue and pass judgment on packets
matching certain attributes that move them to the front of the line, regardless
of what time they got in, because they are more important to us. This is what
you'll do with your VoIP packets.

A router with Linux (i.e., a PC with two Ethernet interfaces and Linux
installed) will help us. When you place this router between two networkssuch
as the Internet and your LANyou can use it to enforce QoS measures.

Thanks to the wonderful folks at http://www.lartc.org/, I was able to create a
traffic-shaping script that works very well for prioritizing VoIP traffic. It is
called AstShape, and it is included in the AstLinux distribution. However, you
can use it in any Linux distribution that includes iproute2. This should be just
about any major, modern distribution out there today.

The first thing you need to do is visit my web site,
http://www.kriscompanies.com/, and click on Downloads Asterisk
AstShape. The AstShape script will begin downloading, and should finish very
quickly. After you have saved it to your hard disk, copy it onto your router in a
place like /usr/local/sbin. Whatever directory you pick, make sure that it is in
your $PATH. You can see your $PATH by executing echo $PATH from the command
prompt.

Once you have AstShape "installed," make it executable by running the
following:

 # chown root:root astshape ; chmod 750 astshape

This will ensure that no one other than root can run this script. Open AstShape
in your favorite text editor, and take a look around. I will show the first few
lines of AstShape and explain their meanings:

Set this to the downstream speed of your connection (in kilobits). Use a speed

http://www.lartc.org/
http://www.kriscompanies.com/

test like the one available at http://toast.net/ to get an accurate idea of your
connection's actual speed; for instance, the overhead of PPPoE accounts for an
approximate 10%13% drop in speed from what is advertised by many
consumer DSL packages. Test and test often! Also, you will want to set this
number to about 85% of your actual test speed. (See the sidebar "VoIP QoS"
for an explanation.)

 DOWNLINK=5500

http://toast.net/

VoIP QoS

Most broadband service providers configure their networks for bulk traffic speed. They know that to
most customers, speed is measured by how many KB/s their web browser displays when
downloading a large file. However, this is not the whole story. With VoIP, a measurement called
latency is far more important.

The best possible way that I have ever heard to describe the concept of latency is the Concorde
(R.I.P.) versus Boeing 777 analogy. The British Airways Concorde can get 92 people from New York
to London in about 3.5 hours. The Boeing 777 can get 440 people from New York to London in
about 6.5 hours. Which is faster? If you had to transfer a large number of people (using only one
plane), the 777 would be "faster," even though it travels at half the air speed of the Concorde. If
you had to transfer a small number of people very quickly, the Concorde would be "faster." This
applies to VoIP very well. When you are downloading a large file from a remote web server, you will
be dealing with fewer, very large packets. With VoIP, you are dealing with many more, much smaller
packets. In fact, with some VoIP codecs, the size of the Ethernet/IP/UDP header is much larger than
the codec payload itself (G729 being a good example)!

So, VoIP is the Concorde and most everything else is the Boeing 777. What does this have to do
with limiting the speed of your connection by 15%? Simple. By limiting the speed of your connection
by 15%, we are (hopefully) ensuring that the FIFO queues outside of your control do not fill up
completely. Anyone who has ever used VoIP on a cable modem or DSL line knows what happens
when someone else using that connection begins downloading a very large file. The user on the VoIP
connection experiences large gaps in audio transmission, sometimes lasting several seconds. This is
because the FIFO queues on your cable/DSL modemand on your Internet Service Provider's (ISP's)
CMTS/DSLAMfill completely with web traffic, and your tiny little VoIP packet is at the end of the line.
Because we can't control these FIFOs like we can our Ethernet interface, we have to place a hard
limit on the amount of traffic.

However, not all hope is lost. If you are an ADSL subscriber using Linux, you should look into the
S518 ADSL board from Sangoma Technologies. For around $115 USD, you can have an internal PCI
form factor ADSL modem that you have complete control over. When you use it with the PPPoE
client software from Roaring Penguin, you can eliminate your SpeedStream kludge of a modem and
gain the enhanced speed, logging, and feature set provided by the S518. I highly recommend it to
anyone already using ADSL and Linux. Plus, you don't have to cap your link speed at 85%, as the
queuing on the S518 can be controlled from Linux!

Set this to the upstream speed of your connection. Use the Internet speed test
results from before, and again subtract 15% from your results. The best way
to determine this number is by testing, testing, testing:

 UPLINK=550

This is your external network deviceprobably eth0 or etH1. However, if you are
using the Sangoma S518 mentioned in the sidebar "VoIP QoS" (or dial-upin
which case you must really love torturing yourself), this will probably be ppp0:

 DEV=eth1

This is a list of ports, separated by spaces to be added to the VoIP class. This
class of traffic is given highest possible priority. 4569 is the port for IAX2,
Asterisk's native Inter-Asterisk Exchange (IAX) protocol. Do notdo notput 5060
here, ever (more on this later)!

 VOIPPORTS="4569"

This is a list of ports to be given "interactive" priority. This is the next highest
level of priority, and by default it includes two common ports used for SIP
signaling. Please note that with common SIP devices, signaling (SIP) and audio
transmission (RTP) take place in two (or more) separate UDP connections and
do not travel on the same port. Many people make the mistake of adding port
5060 to their highest class of service for QoS. This does nothing for audio
quality, and merely assures that SIP messaging (call setup, status, etc.) is
given highest priority. While SIP is a time-sensitive protocol, RTP audio is
much more so! Also, you might be thinking of adding port 22 (SSH) to this list.
Don't do it just yet. You'll need to have more tricks up your sleeve for SSH:

 INTPORTS="5060 5061"

This is a list of source ports to be added to the "bulk" class of service. This
should include all traffic that tends to be large, sustained downloads/uploads.
You might ask why port 22 (SSH) is listed here. As I mentioned before, we
have some special instructions for SSH later on. Adding port 22 here
essentially covers file transfers using SSH, not SSH shell sessions:

 NOPRIOPORTSRC="25 22 80 110 143 943"

This is the same as the NOPRIOPORTSRC line, except it refers to destination ports:

 NOPRIOPORTDST="25 22 80 110 143 943"

6.7.1. The Actual Script

Here I will go over the actual commands from AstShape and attempt to break
them down. If you are not interested in modifying AstShape beyond adjusting
the preceding values, you do not need to read this section. If you need to do
more tweaking, or are just plain curious, read on!

This line installs the root hierarchical token bucket (HTB) queue and points
default traffic to the 30 class:

 tc qdisc add dev $DEV root handle 1: htb default 30

This line defines the queue used for VoIP. As I say in the script, this is the
"Crown Prince of Bandwidth." Nothing has higher priority than VoIP in
AstShape:

 tc class add dev $DEV parent 1:1 classid 1:10 htb rate \
 ${UPLINK}kbit burst 6k prio 1

The same for the "interactive class":

 tc class add dev $DEV parent 1:1 classid 1:20 htb rate \
 ${UPLINK}kbit burst 6k prio 2

The default class:

 tc class add dev $DEV parent 1:1 classid 1:30 htb rate \
 $[9*$UPLINK/10]kbit burst 6k prio 3

The bulk class:

 tc class add dev $DEV parent 1:1 classid 1:40 htb rate \
 $[8*$UPLINK/10]kbit burst 6k prio 4

Now that we have our queues defined, we need to assign traffic to them.

Any IP packets with TOS=0x18 belong in the VoIP class:

 tc filter add dev $DEV parent 1:0 protocol ip prio \
 10 u32 match ip tos 0x18 0xff flowid 1:10

Any IP packets with TOS=0x10 (minimum delay) belong in the interactive class:

 tc filter add dev $DEV parent 1:0 protocol ip prio \
 20 u32 match ip tos 0x10 0xff flowid 1:20

By default, most SSH client/server programs will set the IP TOS field to 0x10.
How convenient!

Add DNS to "interactive," too:

 tc filter add dev $DEV parent 1:0 protocol ip prio \
 21 u32 match ip sport 53 0xffff flowid 1:20
 tc filter add dev $DEV parent 1:0 protocol ip prio \
 22 u32 match ip dport 53 0xffff flowid 1:20

DNS is a very time-sensitive protocol, where delays in name resolution can
usually be noticed by a user or application very easily. Also, DNS queries are
not very large, so it is to our benefit to add them to a higher class of service.

You will see several lines that talk about Transmission Control Protocol (TCP)
ACKs. These are TCP acknowledgments, and they won't be covered in this
book. Trust AstShape (and me) by leaving this alone.

Finally, we assign whatever is left to the earlier default class:

 tc filter add dev $DEV parent 1: protocol ip prio \
 30 u32 match ip dst 0.0.0.0/0 flowid 1:30

As you can see, AstShape is a very simple yet powerful traffic QoS script. A big
thanks goes to the folks at LARTC for providing WonderShaper, which
AstShape was based on. For more information on traffic shaping/QoS under
Linux, please visit the LARTC web site at http://www.lartc.org/.

Kristian Kielhofner

http://www.lartc.org/

Hack 78. Create a Premium Class of Service

You can produce high-octane voice service for premium users by
building distinct classes of service.

In this hack, we will be using the AstShape script that we played with in
"Shape Network Traffic to Improve Quality of Service" [Hack #77]. However,
you'll now be prioritizing just one class of voice traffic over another. This is
particularly useful when you need to segment two groups of users, regardless
of the applications they're running. In the other hack, I showed you how to
prioritize voice for everybody. But suppose you want to prioritize it only under
certain circumstances. If you were going to launch a service like Skype, where
users can make free calls to other Skype users and pay for calls to non-Skype
users, you would want to provide the highest possible quality for the paying
users, right?

Let's say that you have a VoIP service that allows callers to interconnect with
the PSTN (like Skype) and with other VoIP users on the Internet. Let's also say
that you have two pricing levels. The "economy" pricing level does not
guarantee quality (and is less expensive, or perhaps free), but the "premium"
pricing level does (and costs more in return). I will show you how you can
implement this using a slightly modified version of AstShape.

There are two ways Linux traffic control can build classes of service: by port number and
by ToS headers.

First, I am going to assume you've got a PC with two Ethernet interfaces
loaded up with Linux, and the ability to control the IP ToS bits or port numbers
used by the VoIP devices you're going to support, be they IP phones or VoIP
servers. This is absolutely critical. All we are going to use to separate the two
levels of our traffic are the IP ToS bits or UDP/TCP port numbers, so without
that ability, this hack will be less than useful (and not much fun either).

But how do you know if you can control the port numbers used by VoIP
applications? Just about all VoIP software lets you control the port numbers
employed by the signaling protocol (SIP) and the voice stream (RTP). Asterisk
lets you adjust these settings in /etc/asterisk/sip.conf, and IP phones and

softphones like X-Lite have user-configurable port-number preferences.

To view or adjust the range of RTP ports used by Asterisk, take a peek inside
/etc/asterisk/rtp.conf.

As I mention in other hacks, SIP is just the call signaling protocol. RTP is the
protocol that carries voice and other data (video, images, data, etc). The port
numbers used by RTP are pseudo-randomly selected from a predefined port
range. In Asterisk, this can be configured in /etc/asterisk/rtp.conf. Actually,
the default range of 1000020000 is considered by many to be too wide for
most installs. Please adjust according to the size of your installation.

Altering the ToS bits can be a little trickier. Most IP phones and VoIP services
tag media packets with the highest possible priority, so forcing them to
"downgrade" some of the packets into a lower class of service is hard. Ideally,
you'll build your premium and economy service classes using the port number
rather than the ToS bits.

Once you have met these conditions, you are ready to proceed. Surf over to
http://www.kriscompanies.com/. Go to Downloads, and then Asterisk, and then
locate AstShape (Provider). Download it to your machine, place it somewhere
in your $PATH (like /usr/local/sbin), make it executable (chmod +x astshape-provider),
and optionally change the name to something that you will remember. Let's
take a look at the script, shall we?

6.8.1. Get Started with AstShape Provider

Open AstShape Provider in your favorite text editor. If you have ever seen
AstShape, you will notice that AstShape Provider is actually smaller and
simpler. That's because we are assuming that all this router will handle is VoIP
traffic. There are no provisions for handling other types of traffic, and, as the
script says, you will want to block this traffic with iptables or some other
firewall. There are four possible knobs to turn, and they look conspicuously
like those in plain-vanilla AstShape.

This is the speed (in kilobits) of your Internet connection. This value can be
best determined by testing, and testing often. This will be the hardest part:

 LINKSPEED=1000

http://www.kriscompanies.com/

This is the wide area network (WAN) interface on which to do QoS:

 DEV=eth1

What you have here is a list of ports, separated by spaces, that will be placed
in "Class 1." This is the premium (more important) class of service. I've chosen
5000 and 5001 for my premium class's ports:

 #Class 1 priority ports
 CLASS1PORTS="5000 5001"

Next, you have a list of ports, separated by spaces, that will be placed in "Class
2," the economy class. In this class, I've put ports 10000 and 10001:

 #Class 2 priority ports
 CLASS2PORTS="10000 10001"

Once you have these values set to the correct port numbers, save the script
and exit. Now all you have to do is run it:

./astshape-provider

You shouldn't see any errors. The ./astshape-provider status command will list the
queues that have been defined.

6.8.2. Explaining the AstShape Provider Script

What is this doing? How does this work? What if I need more? Hold on! Slow
down! The AstShape Provider script is actually quite simple. Let me break it
down for you on a line-by-line basis:

Here you can see that the first packet queue set up by tc is known as the root

queue. I've told tc to use HTB queuing. This is just one of many packet-queuing
techniques supported by the Linux kernel:

 tc qdisc add dev $DEV root handle 1: htb default 30

This says to slow everything to $LINKSPEED to prevent queuing at our ISP. Traffic
class prioritization works only if you aren't being speed-limited by the router
on the other end of the connection:

 tc class add dev $DEV parent 1: classid 1:1 htb \
 rate ${LINKSPEED}kbit burst 6k

Now, I'll add the first class of service, the premium one, as shown earlier:

 tc class add dev $DEV parent 1:1 classid 1:10 htb \
 rate ${LINKSPEED}kbit burst 6k prio 1

Here I'll the second class of service, the economy one, as shown earlier:

 tc class add dev $DEV parent 1:1 classid 1:20 htb \
 rate ${LINKSPEED}kbit burst 6k prio 2

Finally, I'll added the "default" class, as shown earlier. This is where undefined
traffic will falli.e., anything not on the ports I specified in the previous section:

 tc class add dev $DEV parent 1:1 classid 1:30 htb \
 rate $[9*$LINKSPEED/10]kbit burst 6k prio 3

The following command makes IP packets that have the IP TOS header set to 0x19

match Class 1, our premium class. Remember that if you're prioritizing by port
number, you might have no need to prioritize by the ToS header. So, you
might be able to skip this line, especially if you have no control over your ToS
headers, as discussed earlier:

 tc filter add dev $DEV parent 1:0 protocol ip \
 prio 10 u32 match ip tos 0x19 0xff flowid 1:10

The following line says that any packets with an IP TOS header equal to 0x18 will
match class two, the economy class. This isn't foolproof either; not all packets
even have a ToS header value inserted. Starting to get the idea?
Discriminating by port numbers is more consistent and easier to manage than
discriminating by ToS bits, but there it is, so you can see how it's done:

 tc filter add dev $DEV parent 1:0 protocol ip \
 prio 20 u32 match ip tos 0x18 0xff flowid 1:20

The simple loop shown in the following snippet makes sure that the ports
defined in the $CLASS1PORTS variable match Class 1:

 for a in $CLASS1PORTS
 do
 tc filter add dev $DEV parent 1:0 protocol ip \
 prio 11 u32 match ip dport $a 0xffff flowid 1:10
 tc filter add dev $DEV parent 1:0 protocol ip \
 prio 11 u32 match ip sport $a 0xffff flowid 1:10
 done

Likewise, the simple loop in the following snippet makes sure that the ports
defined in the $CLASS2PORTS variable match Class 2:

 for a in $CLASS2PORTS
 do
 tc filter add dev $DEV parent 1:0 protocol ip \
 prio 24 u32 match ip dport $a 0xffff flowid 1:20
 tc filter add dev $DEV parent 1:0 protocol ip \
 prio 24 u32 match ip sport $a 0xffff flowid 1:20
 done

The following code says that any traffic not matching the other rules is "bulk"

and ends up in the bulk class, neither economy nor premium:

 tc filter add dev $DEV parent 1: protocol ip \
 prio 30 u32 match ip dst 0.0.0.0/0 flowid 1:30

For any type of commercial service, you will certainly want to work on this
script a bit. Smart users could cheat you by hacking their IP ToS headers or by
using a different port number to "stow away" in the premium class. So,
regardless of how you implement classes of service, you'll also need to ensure
that users of your service are authenticated with usernames and passwords,
and you'll need to emphasize good logging so that you always know who's
using which levels of service and so that nobody breaks the rules.

Kristian Kielhofner

Hack 79. Build a $100 PSTN Gateway in 10 Minutes or Less

The Sipura SPA-3000 is a marvel of engineering. For less than a
hundred bucks, you can interface your phone line with your VoIP
network. What's cooler than that?

When your phone line is connected to your plain-old analog phone, it works
and works well. But when it's connected to your VoIP network, it takes on a
whole new personality. Suddenly you can do all kinds of cool stuff.

This hack will show you how to connect a PSTN phone line to an Asterisk-
based VoIP network using the Sipura SPA-3000 ATA. This device is like other
ATAs in that it has one FXS port. However, the SPA-3000 has a trick up its
sleeve: a single FXO port as well. Not only does it have the hardware, but
Sipura's firmware is actually quite flexible, allowing you to do all kinds of
things to impress your friends and make life easier (hopefully). For this hack
you'll need an Asterisk machine nearby [Hack #4].

I am going to demonstrate this hack using Asterisk and the SPA-3000. But
because the SPA-3000 speaks SIP, you can just as easily use it in conjunction
with most other SIP-compatible devices out there. (In fact, the Clipcomm CG-
200 gateway [Hack #43] would make a fine substitute.)

The Asterisk server has a sip.conf file that allows calls to be placed into the
default context from remote SIP endpoints. I am going to assume that you
want incoming calls to the FXO port on the Sipura to be forwarded to an
extension on that existing Asterisk server; I'm using 1000 for this hack. I'm
also assuming the Sipura and the Asterisk server are on the same LAN and the
server's IP address is 192.168.1.1.

On your Asterisk server, open up /etc/asterisk/sip.conf and create a new entry
at the bottom of the file:

 [spa3k]
 type=friend
 username=spa3k
 secret=spa3k ;<----- Pick a new password and write it down!
 dtmfmode=rfc2833
 host=dynamic
 context=default
 nat=yes

 allow=all

Save sip.conf and reload Asterisk with asterisk -rx reload. If you would like to place
outbound calls using your new SPA-3000, continue reading. Otherwise, you
can skip ahead to the section "Configuring the Sipura." Next we will need to
edit /etc/asterisk/extensions.conf. Underneath the [globals] section, add a new
line:

 TRUNK=SIP/spa3k

If you already have a TRUNK variable defined, it is up to you to figure out how
you want to mix and match your existing trunk(s) with your SPA-3000. Now,
scroll down to the bottom of the file and add a new section here:

 [spa-trunk]
 exten => _NXXXXXX,1,Dial(${TRUNK}/${EXTEN},20)
 exten => _NXXXXXX,2,Congestion

 exten => _NXXNXXXXXX,1,Dial(${TRUNK}/${EXTEN},20)
 exten => _NXXNXXXXXX,2,Congestion

 exten => _1NXXNXXXXXX,1,Dial(${TRUNK}/${EXTEN},20)
 exten => _1NXXNXXXXXX,2,Congestion

 exten => _011.,1,Dial(${TRUNK}/${EXTEN},20)
 exten => _011.,2,Congestion

 exten => _NXX,1,Dial(${TRUNK}/${EXTEN},20)
 exten => _NXX,2,Congestion

This dial plan will enable NANPA-style dialing of local, 10-digit local, long-
distance, international, and emergency/information services from your system
to the SPA-3000. You will want to make sure to include this new section in
your local phone configuration. So, if your SIP phones, as defined in sip.conf,
are in the "local" context, you will want the local context in extensions.conf to
contain this line:

 include => spa-trunk

This will enable your SIP phones to use your new PSTN gateway. Save
extensions.conf and reload Asterisk with asterisk -rx reload.

6.9.1. Configuring the Sipura

Once you have unpacked the Sipura, connect your POTS telephone line to the
RJ11 jack labeled LINE, connect an analog telephone to the RJ11 jack labeled
PHONE, connect Ethernet, and then power up. Once the Sipura has powered
up, dial **** from the analog telephone. As soon as you hear the voice
prompt, dial 110#. The answering voice will read back the SPA-3000's IP
address.

Moving to your PC, enter the SPA-3000's IP address in your web browser. You
should see a gray screen with some status information. In the upper right-
hand corner, click Admin, and then click Advanced. You should see a wealth of
new options appear.

Move over to the PSTN Line tab. Table 6-1 shows you the values to fill in for
this page.

Table 6-1. Values to place in the PSTN Line configuration

Field name Value

Proxy IP address of Asterisk server

Username spa3k

Display Name spa3k

Password spa3k

Register Yes

Make Call without Register No

Ans Call without Register No

Dial Plan 8 (S0<:1000)

PSTN Ringthrough No

PSTN Default DP 8

PSTN Answer Delay 8

After you have entered these changes, click "Submit all changes." The Sipura
will reset, and once it reboots, you should have a fully functioning SIP/PSTN
gateway, connecting calls between your Asterisk server and the PSTN.

Kristian Kielhofner

Hack 80. Make IP Phone Configuration a Trivial Matter

Trivial File Transfer Protocol (TFTP) servers are simple, stripped-down
file storage servers that play a role in VoIP networks that's anything
but trivial.

When an IP phone is first powered up, it goes through a boot-up sequence
that's similar to that of a PC. While most PCs boot up from a functional
configuration that's stored locally, an IP phone's configuration can be
controlled remotely by an administrator, who can store each configuration in a
central repository. IP phones use the TFTP protocol to retrieve updated
configurations from that repository, known as a TFTP server.

With a TFTP server, you can centrally store and manage an entire network's
worth of IP phone configurations. Merely placing a particular phone's
configuration file on the TFTP server will change the phone's functionality to
match the new configuration file the next time the phone is booted. Many
ATAs can be configured this way, too. In addition, firmware updates for IP
phones and ATAs can be delivered by TFTP. So clearly, understanding a little
about TFTP and learning how to set up such a server is useful for any VoIP
network.

6.10.1. Set Up a TFTP Server

TFTP servers can be hosted on Windows, Mac, Linux, and BSD machines (and
on Cisco routers, too), and there's a host of free software (and plenty of good
shareware) to enable a basic TFTP server for your test lab. For a more robust
TFTP server, use the age-old tftpd software that's included in most Unixes.

To set up a simple TFTP server on Windows, download TFTP Desktop from
Weird Solutions. This is a limited version of Weird's commercial Windows TFTP
server, and it allows one transfer at a timeenough to satisfy the needs of a
VoIP network with a half-dozen IP phones or so. (You can find TFTP Desktop at
http://www.weirdsolutions.com/weirdSolutions/pages/02products/download/index.htm

Mac users can turn to my favorite TFTP server, Fabrizio La Rosa's aptly named
TFTP Server, available at http://www.macupdate.com/info.php/id/11116. Like
TFTP Desktop for Windows, this application creates a basic TFTP server with a
simple graphical user interface (GUI), but it does so using Mac OS X's built-in

http://www.weirdsolutions.com/weirdSolutions/pages/02products/download/index.htm
http://www.macupdate.com/info.php/id/11116

TFTP daemon, meaning there are no limits to how much traffic it can handle.
You just tell TFTP Server what folder you want to share using TFTP, and that's
it.

Linux and other Unix users can probably find a fully functional TFTP server
already on their systems. To be sure, issue a tftpd & at the root command
line. If you don't get a "command not found" response, you've got the TFTP
daemon, and you just have to figure out how to make it work. Thankfully,
there's nothing to it. Just create a directory to create your TFTP repository
(commonly /tftpboot), and launch the TFTP daemon like this:

 # mkdir /tftpboot
 # chown nobody /tftpboot
 # tftpd l s /tftpboot &

This will launch the TFTP server (which on many Linux systems runs as the
phantom user nobody for security reasonshence the chown to give nobody
permission to the TFTP directory). Any files placed in /tftproot will be
accessible from a TFTP client, such as the one built into IP phones.

6.10.2. Understand IP Phone Configuration

The syntax of the phone configuration files saved on the TFTP server varies
from one make of IP phone to the next. That is, Cisco has a different
configuration-file structure than Uniden, for example. But they all bear a few
things in common.

First, most IP phone configuration files are regular text files that look like a
Unix .conf file or an old-fashioned Windows .ini file. Second, most IP phones
support two methods of configuration by TFTP: default and phone-specific.

Default configuration files apply to all phones of a specific make that connect
to the TFTP server. Phone-specific configuration files apply only to an
individual IP phone. These tend to be denoted by the IP phone's MAC hardware
address in the filename of the configuration file. So, if you were to browse
through the contents of a typical TFTP server on a VoIP network, you'd see at
least one filename without a MAC address (the default configuration) and a
handful of files that have MAC addresses in their filenames, denoting them as

phone-specific configurations. Most IP phones will revert to the default
configuration automatically if no phone-specific file exists on the TFTP server.
Other phones will include settings from the default configuration file if they
aren't mentioned in the phone-specific file.

Uniden's IP phones generally follow this convention. Take a look at this sample
/tftpboot directory:

 uniden00e01102ffb7.txt uniden00e01103000a.txt unidenBase.txt
 uniden00e01102ffc3.txt uniden00e01103001c.txt unidencom.txt
 uniden00e01102ffca.txt uniden00e01103001f.txt

This directory contains several phone-specific configuration files (the
unidenXXXXXXXXXXXX.txt ones) and a default configuration file,
unidencom.txt. unidencom.txt covers the networking configuration of the
phones (specifically, SIP proxies). So, if you wanted a particular config to
affect all the phones (unless overridden in the phone-specific configs), you
would place that config in unidencom.txt. Cisco, Grandstream, and others use
a very similar model to Uniden. For some tips on Cisco and Uniden TFTP
configuration, check out the hacks in Chapter 5. (The unidenBase.txt file is
there just as a template from which to generate future phone-specific config
files.)

Hack 81. Peek Inside of SIP Packets

When the going gets tough, the tough sniff packets.

Adding VoIP to any network can be a daunting challenge, but accomplishing
the task can seem particularly impossible when problems begin to arise. To
help troubleshoot any network problems, being proficient with the use of
network-analysis tools can provide some restful nights. Ethereal is a network-
analysis tool that allows for the "sniffing" or capturing of data packets on the
network. Ethereal has some VoIP-specific features, too. By digging deep into
VoIP signaling conversations with Ethereal and assessing SIP traffic problems
using a conventional call-flow graph, you'll reveal the source of many
problems you're likely to encounter. Because of the dominance of SIP, this
exercise will concentrate on using only the features of the Ethereal sniffer that
support analyzing this protocol rather than any of the protocols that came
before it (MGCP, H.323, etc.). Feel free to learn those other protocols if you
like, but know that almost every commercial VoIP provider uses SIP (when I
say almost, I mean 95% or more).

You can use Ethereal to inspect network traffic from the Ethernet layer all the
way up to the application layer. Packets are captured in a buffer and are
displayed on the screen. Filters can be applied to restrict the capture to
packets matching a certain source, destination, size, protocol, or service.

To obtain Ethereal, download it from http://ethereal.com/ and install it on
your Windows, Mac, or Linux box. The screenshots and examples here assume
the Windows version.

On a switched network, a nonadministrative user can only capture packets
being sent to or from his own machine. So, to keep things simple, this hack
monitors traffic for the SIP softphone known as X-Lite [Hack #4]. Both X-Lite
and Ethereal will need to be running on the same machine. If you're using a
nonswitched network, like a hub, Ethereal can observe packets not bound for
or originated from your PC, which means you'll be able to monitor all VoIP
traffic without restrictions. But for now, I'll assume you can monitor traffic
only on your own PC.

Another way to view packets bound for other PCs on a switched Ethernet network is to
use a technique known as port spanning. With port spanning, you can program an
Ethernet switch to let you snoop traffic on ports other than the one where your PC is
connected. Check out Cisco IOS in a Nutshell (O'Reilly) for an introduction to port

http://ethereal.com/

spanning.

To demonstrate SIP packet observation with Ethereal, we'll set up a filter that
allows us to capture SIP registration signals in two scenarios: one for a
successful SIP registration and another for a failed SIP registration. As in the
other projects, the SIP server's IP address is 10.1.1.10. In this instance,
Asterisk is used as the SIP server.

X-Lite offers excellent diagnostic logging, too. Some of the packets you observe with
Ethereal in this project will correlate with entries in the X-Lite diagnostic log, which you can
view by selecting Diagnostics from the right-click menu in X-Lite's UI.

6.11.1. Configure the SIP Softphone

If you're setting up X-Lite for the first time, you'll need to click the
Configuration button, right of the center, next to the Clear button (see Figure
6-2). Once you click this button, you'll see the Configuration menu.

In the Configuration menu, double-click Menu and then select System Settings
 SIP Proxy [default]. This will take you to the SIP client configuration, as

shown in Figure 6-3. Here, you can configure the softphone to register using a
number and/or password to match what you've established in the dial-plan
configuration on the SIP server.

Once configured, the SIP softphone will automatically register with the SIP
registrar as soon as you close the Configuration menu. If registration was
successful, you'll see Logged In in the UI display, as shown in Figure 6-2. If it
wasn't, make sure the SIP proxy profile called [default] is enabled and is
configured to match a SIP account on the server.

6.11.2. Configure Ethereal

Once Ethereal is installed, launch it. Next, begin a capture by selecting
Capture Start. This will show you the Capture Options dialog, shown in

Figure 6-4. To limit the kind of traffic that Ethereal will capture, you'll need to
use a filter string. Ethereal has a rather sophisticated syntax for this string,
which instructs Ethereal what to capture and what to ignore. This syntax is
explored more in Managing Security with Snort and IDS Tools (O'Reilly).

Figure 6-2. The X-Lite softphone's user interface

In this case, our SIP server is 10.1.1.10, and the standard port for SIP traffic
is UDP 5060. We want to capture traffic in both directionsthat is, to the SIP
server and to the softphone running on the same host as Ethereal. Here is the
string that achieves this:

 host 10.1.1.10 and udp port 5060

Check the "Update packets in real time" and "Automatic scrolling in live
capture" options to see the packet capture log occur immediately instead of
waiting until the capture session is complete. Then, click OK, and the main
capture window will appear. You're now ready to observe your SIP registration
attempts.

6.11.3. Observe SIP Registration

Now, restart X-Lite. It will attempt to register automatically with the SIP
server upon startup. By the time X-Lite says you're "Logged In," you can stop
the packet capture by clicking Ethereal's Capture Stop menu item.

Figure 6-3. X-Lite's SIP client configuration

The main capture window should be filled up with a number of packets, as
shown in Figure 6-5.

In this instance, Ethereal shows the first packet, packet number 1, as a SIP

REGISTER method. Newer versions of Ethereal, such as the 0.10.7 version used
here, can parse SIP packets and tell you which methods and responses they
contain. Packet 4 is a second registration request (the first one failed because
X-Lite tries anonymous registration first).

Packet 5 is the 100 TRying SIP response sent from the SIP server back to the
softphone. Packet 6 is the 200 OK SIP response sent from the SIP server back to
the softphone, indicating that the registration was successful. Packet 7 is a SIP

NOTIFY method asking for username 204 at the SIP registrar. Packet 8 is the 200

OK response. At this point, registration is complete. The additional packets (9
and 10) are keep-alive packets that X-Lite sends to its SIP registrar. Not all

SIP phones do this.

The bottom pane of the main capture window shows the actual hexencoded
content of the packet and the ASCII-encoded content of the packet that
corresponds to it. The hex is on the left, and the ASCII is on the right. This is
where you can usually pick out problems: an incorrect password or a botched
username would be easy to spot this way.

Figure 6-4. Ethereal's Capture Options dialog

Figure 6-5. An Ethereal capture of a SIP registration

6.11.4. Observe Registration Failure

Outside the test lab, you probably won't have occasion to capture SIP packets
unless something is working incorrectly. But then, why else would you need a
packet sniffer? Simulating a registration failure is very easy. Just alter the
registration username of the SIP proxy profile in X-Lite to one that doesn't
match a SIP peer on the SIP server. (Be sure that your softPBX requires SIP
clients to use a username and password; you can configure Asterisk to allow
anonymous registration!) Then, start the Ethereal capture with the filter string
used earlier, restart X-Lite, and watch the registration crash and burn.

6.11.5. Capture SIP Statistics

Once you have saved a capture file, you should be left with a trace screen that
looks something like Figure 6-6, showing all the data packets captured.

Figure 6-6. An Ethereal packet capture log

To help sort through all this captured data, you will use Ethereal's handy SIP
statistics tool by navigating to Statistics SIP. This tool produces a simple
report on the statistics of the SIP messages sent and received on the interface,
as shown in Figure 6-7.

Figure 6-7. Ethereal's SIP statistics dialog

Ethereal has many built-in tools for filtering and colorizing data traces, but it
can be a bit overwhelming to digest all of the data at once. To help network
administrators graphically view the call flow of a SIP signaling conversation,
navigate to Statistics VoIP Calls. You are presented with a list of captured
voice calls, from which graphs like the one in Figure 6-8 can be produced.

The illustration technique used in Figure 6-8 is a standard way of representing
data conversations. In Chapter 7 of O'Reilly's Switching to VoIP, the details of
SIP signaling are covered with a half-dozen examples that are graphed in this
fashion. A standard convention of a SIP call-flow graph is the direction arrow.
In this example, there are many of them: one for each SIP message sent.
When you click on one of the arrows, it automatically drills down to the
specific packet regarding that part of the call flow in the trace window. This is
fantastic for literally stepping through the signaling steps of call setup and
tear-down.

Figure 6-8. A SIP call, graphed by Ethereal

Joel Sisko

Hack 82. Dig into SDP

No SIP-based telephone call happens without Session Description
Protocol, and there's an SDP message inside every SIP Invite.

Knowing what SDP messages look like will help you identify the cause of failed
calls that are rooted in incompatible phones. That's right; if the phones (or
softphones) calling each other with SIP don't have (or aren't configured to use)
the same media codecs, they won't be able to talk to each other! Of course,
the phone isn't going to say, "Hey dude, I don't have the right codec!" It's
more than likely just going to give you a busy signal. So you'll need to dig into
SDP to find out if a mismatch of media capabilities is to blame.

SDP is an essential part of SIP call signaling. Its elements are text tokens sent
in SIP packets with the SDP content-type header. These tokens advertise the
capabilities and requirements of each endpoint according to the parameters of
the application, be it a telephone call, instant message, or something else.

During call setup, specifically during the SIP INVITE method, the SDP payload is
sent from one endpoint to the other. A SIP 200 OK response indicates agreement
with the SDP parameters, and a 4xx response indicates disagreement or
incapability. For a much deeper discussion on SIP, have a peek inside my
book, Switching to VoIP (O'Reilly).

6.12.1. Inspect Successful Capabilities Negotiation

Using Ethereal configured with the same filter string from "Peek Inside of SIP
Packets" [Hack #81], you can capture a successful capabilities negotiation. In
its default configuration, Asterisk supports G.711 so that just about any IP
phone, including X-Lite, can place calls to it. In this case, X-Lite will be used to
call Asterisk extension 201, and the SDP exchange for this call will be
captured.

If you don't have such an extension on your dial plan, you can call Asterisk's
default auto-attendant demo at extension 500 instead. (If you've removed this
extension in your hacking of Asterisk, just run a make samples from your
Asterisk source directory [Hack #41] to get the default config back again.)

When you place the call on X-Lite, use Ethereal to capture the SIP packets and

zero in on the SDP content carried in the INVITE methods and 200 OK responses.
In Figure 6-9, you can see that the call setup was successful.

Figure 6-9. Ethereal can parse SDP content so that it's easier
for you to troubleshoot call setup problems

Packet 5 is the authenticated INVITE method. The user in this example is calling
SIP user 201. Included in packet 5 is an SDP payload. Ethereal indicates this in
its Protocol column in the top packets pane of the main capture window, shown
in Figure 6-9. Packet 6 is the 100 TRying response. Packet 7 is the OK response,
which also includes an SDP payload. If there's a codec match in the media
attributes list of the SIP INVITE and the 200 OK response (shown in the bottom

pane), all that's needed is a SIP ACK method sent by the caller to confirm
agreement on the first matching attribute. That's what packet 8 is.

6.12.2. Inspect Failed Capabilities Negotiation

If there was no capabilities match, call setup would fail. This scenario can be
produced easily by temporarily crippling the capabilities of the Asterisk server.
To make it impossible for the X-Lite softphone to negotiate an audio stream
with the Asterisk server, you can disallow all codecs supported by X-Lite and
permit only Global System for Mobile (GSM) codecs, which X-Lite doesn't
support. Take a look at this snippet of /etc/asterisk/sip.conf, which does just
that:

 [general]

 port = 5060 ; Port to bind to (SIP is 5060)
 bindaddr = 0.0.0.0 ; Address to bind to (all addresses on machine)
 disallow=all
 #allow=ulaw
 #allow=alaw
 #allow=gsm

The G.711 and GSM codecs have been commented out. This simulates a codec
capabilities mismatch, so the SIP client won't be able to pass the SDP
negotiation and call setups will fail. (Don't forget to issue a "reload" command
at the Asterisk command line.) Now, we can run the capture again while X-Lite
tries to call extension 500. (In Ethereal, select Capture Start.) Only this
time, the call will fail because there's no suitable codec common to both the
caller (X-Lite) and the receiver (Asterisk).

Packet 7 is shown in Figure 6-10. It's a SIP INVITE carrying SDP content that
includes a list of a tokens. These represent media attributes, or capabilities.
Ethereal presents the SDP content in a parsed, hierarchical fashion.

The raw ASCII SDP payload of this SIP packet, which can be seen in X-Lite's
diagnostic log, actually looks like this:

 …
 content-Type: application/sdp
 User-Agent: X-Lite release 1103m

 Content-Length: 290
 v=0
 o=203 146336832 146337009 IN IP4 10.1.1.201
 s=X-Lite
 c=IN IP4 10.1.1.201
 t=0 0
 m=audio 8000 RTP/AVP 0 8 3 98 97 101
 a=rtpmap:0 pcmu/8000
 a=rtpmap:8 pcma/8000
 a=rtpmap:3 gsm/8000
 a=rtpmap:98 iLBC/8000
 a=rtpmap:97 speex/8000
 a=rtpmap:101 telephone-event/8000
 a=fmtp:101 0-15

Figure 6-10. The bottom pane of the capture window shows
the media attribute list: the SDP text payload that advertises

the capabilities of the calling endpoint

The capabilities are listed with a reference number following the rtpmap

keyword. 0 pcmu/8000 indicates that 0 is the reference number that RTCP will later
use to refer to this G.711 uLaw at 8000Hz capability. The other capabilities are
advertised with other numbers. (These numbers are reserved like commonly
used port numbers in TCP/IP, and they can be overridden.)

In Figure 6-11, you can see that the 200 OK response sent by the receiver to the
sender has an SDP payload that presents no audio codecs at all in its media
attributes. This is because they have been purposefully disabled, of course.
Packet 10 is the customary SIP ACK method acknowledging receipt of the 200 OK

and giving the go-ahead for RTP to begin. But without any matching SDP
media attributes to establish the RTP media channel, the receiver selects
attribute reference number 101 using SDP's m token. 101 means that no valid
capabilities match. RTCP will report to the calling endpoint a few seconds later
that no media channel exists, and the receiver "hangs up" with a SIP BYE

method in packet 12.

Figure 6-11. The bottom pane of the capture window shows
the media attribute list: SDP's listing that advertises the

capabilities of the receiving endpoint, in this case Asterisk

Don't forget to re-enable the codecs after doing this experiment, or you'll have a real

problem to troubleshoot!

Call-signaling issues can be frustrating, especially when using a mixed bag of
SIP products from different vendors and vintages. Just like for revealing SDP
failures and authentication problems, packet capture is the best tool for
exposing any and all signaling problems.

Hack 83. Sniff Out Jittery Calls with Ethereal

I have seen the enemy, and its name is Jitter.

One of the biggest concerns when using VoIP is packet jitter. Jitter is the
difference in time that packets take to arrive at the final destination. The
greater the difference, the worse your calls will sound, and the more you'll
want to hang up that phone and return to a traditional telephone system. But
it doesn't have to be that way. Instead of throwing your hands up and giving
up on the converged network dream, you can just get serious about the jitter
problem, and the first step is identifying instances of jitter on your network.

You've seen how to do this in a "big-picture fashion" using RRDtool and
sip_ping.pl [Hack #75], but that technique has a few shortcomings. Though it
gives you a long-term assessment of jitter conditions on the network, it
doesn't do so using RTP, the protocol that carries real voice payloads, and it
takes samples only every five minutes, meaning that you can't assess the
jitter conditions for any given call. This is where Ethereal can really help you
out.

6.13.1. Identify Jitter

If you've looked at "Graph Latency and Jitter" [Hack #75], you've already
seen the face of the enemy. With some help from Ethereal, you can zero in on
jitter and prepare to squash it like a bug.

When you're examining jitter, you're mainly concerned with RTP packets. To
use Ethereal here, you must first locate an RTP packet in the trace file screen.
(You'll need to have grabbed a packet sniff like the one you grabbed in "Peek
Inside of SIP Packets" [Hack #81].) Once you find an RTP packet in the trace
file screen, navigate to Statistics RTP Stream Analysis. Figure 6-12
shows the report analysis.

Figure 6-12. An Ethereal RTP stream analysis lets you know if
you have the jitters

By examining the stream analysis, you can see that, at least in this particular
sequence, the jitter is nearly nonexistent, staying well below a rate of 1 ms. In
a problem scenario, jitter would need to be 10 to 20 ms at a minimum to be
audibly perceived (of course, the codec has a lot to do with how much jitter
the human ear can tolerate; G.711 is highly resilient to jitter, and G.729 is
less so).

6.13.2. The Jitter Solution

Once you've got the jitters, the only way to get rid of them is to implement
QoS at the points on your network from which jitter is originating. Typically,
these are routers, VoIP servers, or extremely busy switches. More than a
dozen different QoS specifications are available (among them DiffServ, RSVP,
VLAN, and IP Precedence, to name a few), and there are probably twice that
many ways to implement them. So how do you choose?

Good question. There's no simple answer, because each specification is aimed
at a different solution. RSVP is a bandwidth reservation technique for WANs,
and Virtual LAN (VLAN) is a traffic-segmentation technique for LANs. Both
have implications for QoS that are deserving of their own book (I like the
hardcover classic, Quality of Service (Cisco)).

Jitter might in fact be a losing battle, depending on how you use VoIP and
where your VoIP calls travel. If they go across a network jurisdiction that's out
of your control, like the Internet, it might be impossible to provision QoS, and
you might never get acceptable voice quality. The moral of this story is very

basic: you can perfect VoIP quality on private, controlled networks, but on the
Internet, it's a crapshoot.

Joel Sisko

Hack 84. Log VoIP Traffic

A Linux PC's built-in IP router and firewall, NetFilter, can be a useful
tool for logging VoIP traffic.

In a scenario where several satellite offices on a WAN (or the Internet) are
linked together as an IP telephony network, origin- and destination-based
logging is crucial, because it will tell you which office is using the most VoIP
capacity, which is using the least, and when it's all being used.

When a Linux NetFilter firewall is used to protect a group of enterprise VoIP
servers or just as a gateway router for a segment where VoIP is used, a lot of
VoIP-related events can be monitored and logged. Logging from the firewall is
useful for the security-minded, but it's important for other reasons, too. It lets
you get a feel for which remote networks and hosts are communicating with
your VoIP services and how often they are doing this. This will improve your
understanding of bandwidth consumption and traffic patterns on your network,
besides giving you a keener awareness of security.

6.14.1. Logging with NetFilter

NetFilter's default configuration provides for no logging. If you want a
particular type of packet loggedsay, from a specific network or on a specific
portyou must tell NetFilter to log it. When a packet is logged, its pertinent
information is sent to syslog to be stored. syslog is the system-wide logging
daemon that is a staple in most Unix-variant operating systems.

Logging packets using NetFilter doesn't save the contents of the packetsjust information
from the packets' headers! If you want to capture packets, you'll need other software, like
Network Associates' Sniffer or the open source tool Snort.

To enable logging, you must set up a rule that specifies which packets you
want to log. The following rule says to log all packets sent to the machine
running the NetFilter firewall (keep in mind that this will eat up tons of
storage space fast!):

 # iptables A INPUT j LOG -log-prefix "Log it all baby."

The log prefix options allows you to specify what will appear at the beginning
of the log entry for each packet. That way, when you comb through lengthy
databases of these entries, you can find specifically what you're looking for.
The following rule is very broad; it captures any and all SIP traffic going
through the firewall (FORWARD chain) and logs it:

 # iptables A FORWARD p udp -dest-port 5060,5061 j LOG \
 --log-prefix "SIP"

Let's say that you are operating a SIP proxy that facilitates VoIP calling via SIP
directly to two other proxies. Let's also say that all three SIP proxies are in the
same organization and that a site-to-site VPN is used to connect them all. The
three proxies support three VoIP LANs at separate offices. The LANs they
support have the network addresses 10.1.0.0/16, 10.2.0.0/16, and 10.3.0.0/16, as in
Figure 6-13. The configuration examples given in this section are assumed to
be running on the firewall in the 10.1.0.0 network.

Figure 6-13. Three physically separate softPBXs connected by
an Internet VPN

Assuming a VoIP WAN like the one in Figure 6-13, it's possible to do some
interesting logging and prefixing. Say you want to log SIP traffic by remote

network. You can use the following commands to tag inbound and outbound
traffic:

 # iptables A FORWARD P udp s 10.2.0.0/16 -dest-port 5060 j \
 LOG --log-prefix "FromDetroit"
 # iptables A FORWARD P udp d 10.2.0.0/16 --dest-port 5060 -j \
 LOG --log-prefix "ToDetroit"
 # iptables -A FORWARD -p udp -s 10.3.0.0/16 --dest-port 5060 -j \
 LOG --log-prefix "FromChicago"
 # iptables -A FORWARD -p udp -d 10.3.0.0/16 --dest-port 5060 -j \
 LOG --log-prefix "ToChicago"

This example tags all the Detroit traffic separately from the Chicago traffic,
making it easier to discern later on when you're viewing the packet log.

A simple modification to the previous example would allow you to log RTP
traffic (port 8000 or whatever your endpoints use). On a strategically placed
Linux firewall, this could provide valuable information about bandwidth
consumption at the Detroit and Chicago sites in the example.

Another technique is to differentiate VoIP traffic that is to/from the private
network from that which is to/from the Internet or another foreign VoIP
network:

 # iptables -A FORWARD -p udp -s 10.0.0.0/8 --dest-port 5060,8000 \
 -j LOG --log-prefix "Private VoIP"
 # iptables -A FORWARD -p udp -d 10.0.0.0/8 --dest-port 5060,8000 \
 -j LOG --log-prefix "Private VoIP"
 # iptables -A FORWARD -p udp -s 0.0.0.0/0.0.0.0 --dest-port 5060,8000 \
 -j LOG --log-prefix "Internet VoIP"
 # iptables -A FORWARD -p udp -d 0.0.0.0/0.0.0.0 --dest-port 5060,8000 \
 -j LOG --log-prefix "Internet VoIP"

In this example, private trafficthat is, traffic to or from a 10.x.x.x hostis tagged
separately from Internet traffic, which is indicated by the catch-all network
address 0.0.0.0.

In a VoIP network that's connected to the Internet but doesn't use the Internet
as a call path, it would be a good idea to log all VoIP traffic originating from
the Internet. Such traffic could be an indicator of system abuse, just as email
systems are abused by spammers. Logging this type of traffic would tip you off
to somebody trying to originate long-distance phone calls from your
systemsomething I've encountered in the field myself.

To dig into your VoIP traffic, consult Table 6-2, which is a list of commonly
used VoIP port numbers, by protocol.

Table 6-2. Commonly used VoIP ports

Service Standard port numbers

SIP 5060, 5061 (usually UDP)

H.323 2099, 2517, and 2979 UDP and TCP

MEGACO/H.248 2944 and 2945 TCP and UDP

TFTP 69 TCP and sometimes UDP

Asterisk Manager API 5038 TCP

RTP Varies often among 5000, 5001, 10000, and 10001; always UDP

IAX 5036 and 4569 UDP

6.14.2. Read and Analyze VoIP Traffic Logs

Once you've used iptables to tell NetFilter to catch some VoIP traffic and log it,
the log data is stored in the kernel facility of a syslog database file, where it
can be retrieved using the dmesg command on Red Hat Linux. Other operating
systems might provide different tools for viewing system logs.

When packets are logged, several bits of information about each packet are
stored:

The protocol of the packet (UDP, TCP, ICMP, etc.)

The date and time the packet traversed the NetFilter chain where it was
logged

The size of the packet

The source and destination addresses and ports (sockets)

The originating MAC hardware address (when the packet comes from an
Ethernet interface)

Of course, the prefix that you specify in the --log-prefix option, if any

dmesg, an application for reading kernel logging messages like the ones you
captured earlier, provides flat text output that you can redirect to a file or pipe
into another application for further filteringlike grep. Suppose you want to
isolate the traffic prefixed with "Chicago" into a file by itself. You can use this
command:

dmesg | grep Chicago >chicagoVoIP.txt

Or, better yet, email that log to somebody, perhaps so that they can import it
into a spreadsheet for further analysis. In the following example, hitting Ctrl-C
will stop the dmesg application, and an email will be sent containing the
"Chicago" entries:

dmesg | grep Chicago | mail chicagoVoIPadmin@example.com

By combining good logging with good, high-level network traffic assessment
[Hack #75], you'll have an excellent grip on what's happening beneath the
application layer on your VoIP network. You'll know how it all works, because
you'll have many techniques to observe VoIP packet flow, including the packet
logging I've just described.

6.14.3. See Also

"Graph Latency and Jitter" [Hack #75]

"Peek Inside of SIP Packets" [Hack #81]

"Sniff Out Jittery Calls with Ethereal" [Hack #83]

Hack 85. Secretly Record VoIP Calls

G.711 uLaw is the most common codec used in enterprise VoIP, but
it's far from secure.

The G.711 codec is the de facto standard for voice encoding on VoIP networks,
because the earliest VoIP gear and software didn't have enough processor
power for real-time transcoding from one codec to another. This means that if
a call were to originate on the PSTN and terminate on a VoIP device, the
entire call would have to be in the same codec. The codec that's always been
used on the (North American) PSTN is G.711 uLaw. Unfortunately, even as
Cisco CallManagerarguably the world's first enterprise VoIP platformbecame
popular, it was painfully clear that running G.711 uLaw across the Internet
was a very insecure thing to do.

That's because the RTP packaging convention used by most VoIP systems
doesn't encrypt the media stream of a call, making it the aural equivalent of
clear text, ripe for outside snooping. Using tcpdump and a copy of vomit (Voice
over Misconfigured Internet Telephones), you can actually capture phone calls
midstream and convert them into WAV files. How's that for security? (I argue
that it's actually harder to secretly record calls with VoIP than it is on the
PSTN, but let me digress here….)

To clandestinely record a G.711 uLaw phone call, you'll need to be able to run
tcpdump, the common packet capture utility, or its Windows counterpart,
windump. This means you'll need to be a privileged user on the machine you're
going to record from (for Windows, this means Administrator; for Unix, it
means root).

You'll also need the ability to view network traffic to and from the host(s)
participating in the call. This means running the capture on one of the hosts
directly, programming your switch to let you monitor the port where one of
the hosts is connected, or (gasp!) connecting both hosts to a hub, where you
can capture packets to your heart's content. To put this in plain English, unless
you're using a hub or a specially configured switch, you'll be able to record
calls only from a device that's actually on the call pathi.e., the caller's host,
the receiver's host, or a VoIP server in the middle of the conversation.

6.15.1. The Hack

It's possible to do this hack on Windows (you'll need the same WinPCap library
you used when you installed Ethereal on your Windows PC [Hack #81]; you
did install Ethereal already, right?). However, I'll assume you're using Unix,
since tcpdump is a standard Unix utility and because it's easier to install vomit
on Linux or BSD than it is on Windows.

6.15.1.1. Compile and install libdnet and libevent.

To download, compile, and install the libdnet and libevent libraries, required by
vomit, log in as root and use these commands:

cd /usr/src
 # wget http://ufpr.dl.sourceforge.net/sourceforge/libdnet/libdnet-1.10.tar.gz
 # tar xvfz libdnet-1.10.tar.gz
 # cd libdnet-1.10
 # ./configure
 # make
 # make install
 # cd ..
 # wget http://www.monkey.org/~provos/libevent-1.1a.tar.gz
 # tar vzxf libevent-1.1a.tar.gz
 # cd libevent-1.1a
 # ./configure
 # make
 # make install

Obviously, this is just a sequence of commands to fetch the libraries, open the
archives, and compile the source code within.

6.15.1.2. Compile and install vomit.

Next, grab the vomit tarball and compile it on the same machine, again as
root:

cd /usr/src
 # wget http://vomit.xtdnet.nl/vomit-0.2c.tar.gz
 # tar zvfx vomit-0.2c.tar.gz
 # cd vomit-0.2c
 # ./configure

 # make
 # make install

6.15.1.3. tcpdump some packets.

When I did this hack, I did it on my Asterisk server running on Linux. This
simplified the capture process, since all I had to do was set up an extension on
the Asterisk server that answered the call immediately and produced some
audio. (For a refresher on doing this, flip back to "Attach a SIP Phone to
Asterisk" [Hack #42].) Once the extension was in place, I started tcpdump
like this:

tcpdump w test.file

When you use this command, it will create a dump file in the current directory
that contains every IP packet sent or received by the default interface. This file
is going to get big pretty quick, so run this command only for as long as is
necessary to capture the call you're placing to the server. Then, at the
conclusion of the call, hit Ctrl-C to stop tcpdump.

6.15.1.4. "Wave" goodbye to privacy.

Now, here's the truly fun part. The point of vomit is to pick the G.711 RTP
packets out of the dump file created by tcpdump (test.file, as shown earlier)
and string them together into a WAV file. Try it:

vomit r test.file > test.wav

Run that WAV file through SoX if you need it in another format [Hack #24],
and off you go. Just don't record any calls without full knowledge of the
participants, or you could find yourself in legal trouble.

Hack 86. Log and Record VoIP Streams

Biblically speaking, there's not a whole lot that Cain and Abel had to do
with Voice over IP. But the program that bears their names is a really
cool VoIP tool.

If you're not a Unix fan or you just don't have the time to compile vomit and
its dependencies to record a call, I've got the solution for you. There's a
program for Windows called Cain & Abel. It uses the WinPCap library (just like
Ethereal) for packet sniffing, network device identification, password recovery,
reconnaissance, and literally dozens of other intriguing tasks. Cain & Abel is
literally a Swiss army knife of handy networking goodies.

Not least among these goodies is a VoIP call sniffer/recorder that's slicker than
a wet rock. It provides a sortable, date-and timestamped list view that logs
any VoIP calls it picks up during a sniff. It assumes that any RTP traffic is VoIP
and attempts to decode it and record it into a WAV file. According to the Cain
& Abel web site (http://www.oxid.it/cain.html), the program can decode calls
in uLaw, aLaw, ADPCM, LPC, GSM, iLBC, and a host of other codecs. Of course,
it can't interpret any streams that are encrypted, so it's still nearly impossible
to record a Skype call from another host.

Cain & Abel has a ton of password-cracking and networking-snooping stuff built in, so be
sure to abide by the local policy of the network you're working on, or you could end up in a
heap of trouble.

6.16.1. The Easy Way to Intercept Calls

To record a call from the local computer where Cain & Abel is runningthat's the
easiest wayinstall the program on a machine with X-Lite or a comparable
softphone that can place calls in one of Cain & Abel's supported codecs. Of
course, this technique will only allow calls placed to and from this machine. It
will not sniff out calls between other computers or IP phones.

Fire up Cain & Abel. Then, select the Configuration menu option in Cain & Abel
to launch the Cain & Abel configuration dialog. It's shown in Figure 6-14. Click

http://www.oxid.it/cain.html

the Filters and Ports tab and check the SIP/RTP entry to ensure that you'll be
capturing VoIP traffic. Then click OK.

Figure 6-14. The Cain & Abel Filters and Ports list

When the Configuration dialog disappears, click the Start/Stop Sniffer icon on
the toolbar. Now, place a phone call on the locally running softphone. This
could be X-Lite, Firefly, NetMeeting, or whatever, as long as it uses SIP or
H.323 for signaling and RTP for voice transmission (just about all VoIP
applications do). Click the Sniffer tab, then the VoIP tab (on the bottom of the
GUI) to reveal the call list.

Notice that as you place and receive VoIP calls on the machine where Cain &
Abel is sniffing, your call log will begin to fill with entries on the VoIP tab, as
shown in Figure 6-15. The call log will tell you the source and destination IP
addresses of the media stream used in the VoIP call, the codec that is
employed (if Cain & Abel recognizes it), and the port numbers involved in the
RTP media path.

Figure 6-15. The Cain & Abel VoIP call log

After you stop the sniffer by clicking the Start/Stop Sniffer button on the
toolbar again (it toggles sniffing on and off), you'll see the filenames where
Cain & Abel has saved the recorded calls. The WAV files produced by Cain &
Abel end up in \Program Files\Cain\VoIP, and you can play them by opening
them in your favorite sound player, or by right-clicking them here in the Cain
& Abel GUI.

6.16.2. The Tricky Way to Intercept Calls

If you want to record a call between two devices that can't run Cain & Abel,
like a call between two IP phones or a call from a Mac softphone to a Linux
softphone, the method described in the previous section won't work. Instead,
you need to enable your Ethernet switch to "share" packets destined for the
devices involved in the VoIP call with your PC running Cain & Abel. With your
PC connected to a particular port, a typical managed Ethernet switch allows
you to "listen in" on traffic on the other portslike the ports where a VoIP call
participant is connected.

On a nonswitched network, like a hub, you can use the "easy way" to monitor any device
that's connected to the hub.

Cisco switches use a technique called Port SPAN to mirror the packets sent or
received on one port to another port. In this manner, the switch administrator

can inconspicuously capture all traffic on any port he chooses. To record a VoIP
call, you'll need to set up port spanning between your PC's port and the target
VoIP device's port. For the moment, I'm going to assume you're eloquent
enough with Cisco configuration that you can at least get into your switch's
command prompt and Enable mode. If you've no idea what this means, you
might want to invest in James Boney's insightful Cisco IOS in a Nutshell
(O'Reilly).

Let's say the VoIP device we want to record packets from is connected to port
5 on the switch. Use this command to mirror packets into what Cisco calls a
"SPAN Session," a place we can retrieve them from on another port:

 Switch(config)# monitor session 1 source interface fastethernet 5/1

Now, traffic to and from port 5 is mirrored to SPAN Session 1. Next, we need
to reflect that traffic to the port where the sniffing PC is connectedsay, port 4:

 Switch(config)# monitor session 1 destination interface fastethernet 4/1

So now, traffic from port 5 will also occur on port 4, where the Cain & Abel PC
can sniff it. (Don't forget a "write mem" if you want to keep the switch
configured this way permanently.) Now you can use Cain & Abel (and vomit,
for that matter) to record calls that traverse your switched network, even if
you can't install a recorder on one of the participating VoIP devices.

Hack 87. Intercept and Record a VoIP Call

This is the ultimate sneaky way to intercept and record VoIP calls.

I'm going to demonstrate why people say VoIP isn't secure. If you've got a
laptop and a patch cable, you can record calls from a Cisco CallManager IP
telephony network or even from a Vonage subscriber. More specifically, you'll
be doing so without the need for port spanning on the switch [Hack #86] and
without installing a recorder or sniffer on the device you're trying to record
[Hack #85].

Instead, you'll be resorting to a tactic that's, well, unnatural. In fact, if you do
this outside the test lab, it could be considered unethical, too, so be careful. I
am about to teach you how to secretly listen in on other users' VoIP calls
without having any direct contact with their VoIP phones or PCs and without
being the administrator of the local network. Be advised, though, I'm not
recommending that you ever do this in the field. I'm just passing on some
knowledge I picked up while working as a networking consultant.

6.17.1. Get to Know Cain & Abel

While you're here, make sure you've read "Log and Record VoIP Streams"
[Hack #86], which introduces the software tool I'll be using to make all this
happen: Cain & Abel. If you don't know Cain & Abel, go back a hack, read it
through, and you'll be able to proceed with confidence.

Now, on to the hack.

An Ethernet switch has anywhere from 4 to 48 ports where Ethernet devices
like PCs and IP phones can connect. Each device connected to the switch has a
32-bit hexadecimal address, called a MAC address. Ordinarily, the switch
knows which port to send a particular packet to because address resolution
protocol (ARP) has been used by the sender (or by the closest router) to
address the packet to the correct MAC address. All the switch has to do to get
the packet to the right destination is transmit it on the port where the device
with a matching MAC address is connected.

The secret to recording another person's VoIP calls is in making the switch
think your MAC address is a valid destination for the VoIP traffic that's bound

for that person's VoIP device. Specifically, when the sending device uses ARP
to resolve the IP address of the intended recipient, your PC must respond by
saying, "I am the holder of that IP address; send the data to me!" This hack,
which rather goes against the prescribed way an Ethernet LAN is supposed to
work, is called ARP poisoning. The result is that your PC intercepts the packets
destined for the intended MAC address, so you can do with them whatever you
like.

Once intercepted, the packets must be forwarded to the correct MAC address,
or a denial of service will occur on the device you're snooping. In the case of
VoIP, your PC can record (or play in real time) the media stream before
passing the packets to the actual intended receiver. A classic man-in-the-
middle hack, this technique is simplified by the outstanding network tool, Cain
& Abel.

To get started, use Cain & Abel's host-discovery tool. Click the Sniffer tab and
then the Hosts tab at the bottom of the GUI. Then, click the + in the toolbar.
This will pop open a dialog where you can tell Cain & Abel to discover all of the
devices on your network. I used it to discover the IP and MAC addresses of my
Cisco 7960 phone (10.1.1.104) and my Asterisk server (10.1.1.10). Both are
listed in Figure 6-16.

Figure 6-16. Cain & Abel's list of discovered hosts on the LAN

You're discovering all of these hosts and resolving their actual MAC addresses
because Cain & Abel will need these details to perform the ARP poisoning.
Once you can see the host you want to monitor in the list, click the ARP tab
and then click the + toolbar icon again. You'll see the New ARP Poison Routing
dialog, as shown in Figure 6-17.

Figure 6-17. Cain & Abel's ARP Poison Routing dialog

Select the host you want to snoop on the left, and then select one or more of
the destinations related to that host on the right. This way, you'll be poisoning
ARP requests for the snooped hosts only if they're sent from certain IP
addresses. I don't recommend that you ARP poison a large groupthis could
cause difficulties on the network, including a rather comprehensive denial of
serviceso stick to one IP address on the left and one on the right until you've
got the hang of it.

Ideally, the address on the right will be the host on the other end of the call,
but it doesn't have to be. If the VoIP call is to a user on the Internet
somewhere (via the default gateway), you would choose the IP address of your
Internet router on the right side. In fact, if you wanted to sniff your Vonage
calls, you would pick the address of your Vonage ATA on the left, and the
address of your Internet router on the right. Once you've got a pair of
addresses selected for monitoring, click OK.

Now, start the sniffer and the ARP poison router by clicking the Start/Stop
Sniffer icon and the Start/Stop APR icon (which looks like a radiation symbol).
Wait for a VoIP call to be placed on the targeted hostor place one yourself on
that hostand watch the call list in the VoIP tab. In a moment, an entry will pop
up, indicating that the call is in progress and is being recorded into a WAV file
by Cain & Abel, as shown in Figure 6-18.

Figure 6-18. A call has been logged and recorded in Cain &
Abel using ARP poisoning to intercept it

Pretty amazing, eh? One more thing: I can't emphasize enough how unethical
this hack would be if performed in an environment where you aren't
authorized to take these actions. I strongly urge you to be responsible with
this type of hack and keep yourself out of trouble while you learn about VoIP
security. Unless you have administrative authorization and the express right
to monitor users' calls on the network where you're working, you should keep
ARP poisoning confined to the test lab.

Chapter 7. Hard-Core Voice

Section 7.1. Hacks 88100: Introduction

Hack 88. Build a Killer Telephony Server

Hack 89. Build an H.323 Gatekeeper Using OpenH323

Hack 90. Turn Your Linux Box into a Fax Machine

Hack 91. Build an Inbound Fax-to-Email Gateway

Hack 92. Teach Your Asterisk Box to Speak

Hack 93. Build a Mac PBX

Hack 94. Monitor Asterisk from Your Perl Scripts

Hack 95. Build a SoftPBX with No Hard Drive

Hack 96. Build a Standalone Voicemail Server in Less Than a Half-Hour

Hack 97. Automate Your Voicemail Greeting

Hack 98. Connect Asterisk to the Skype Network

Hack 99. Forward Your Home Phone Calls to Skype

Hack 100. Get Started with sipX

7.1. Hacks 88100: Introduction

If you've been involved in Linux VoIP hacking for very long (hey, you made it
to Chapter 7, so you've been around a while), you're probably already quite
familiar with Asterisk, the open source PBX (and the predominant open source
VoIP platform). Aside from Asterisk, tons of open source voice networking
projects are out there, including OpenH323, GnuGK, sipX, SIP Express Router,
OhPhone, SaRP, and GnoPhone. Try Googling some of these. You'll find there's
enough open source VoIP stuff to keep you busy for a while.

New VoIP projects arrive weekly at SourceForge.net, so this chapter
represents only a partial smattering of what's out there. There's no question
that the open source world is a voice hacker's paradise, a realm of mission
critical, high-stakes, real-time applications with very little tolerance for
underperformance, and SourceForge is crawling with new ways to take
advantage of real-time, converged networks for mission-critical voice apps.

Being a voice hacker is sort of like being a network marine. You've got to train
hard to spot issues that don't show up in other, less loss-sensitive kinds of
networking. You've got to be "first to fight" when problems occur on a voice
network, because voice users will pick up on network slowdowns and outages
before plain-old data users. It takes thick skin and quick thinking to join the
ranks of the voice hacker.

I've saved some of the coolest and toughest "hard-core hacks" for the last
chapter because I wanted to ease you into them. You'll need a pretty good
understanding of the Session Initiation Protocol (SIP), Asterisk, and Linux to
get through this chapter unscathed. So, if you haven't read the first six
chapters, it would be a good idea to do so now. Have some fun with those
hacks, and when you're ready to get serious, come on back.

Do you want to build and harden the ultimate PC-based telephone server? Do
you want to master the old VoIP standard, H.323? How about building a fax-
to-email gateway? How about building a PBX server with no hard disks, or
bridging a SIP network with the Skype network?

I'm willing to bet you'll rise to the challenge.

Hack 88. Build a Killer Telephony Server

Using any old PC with Linux is great way to experiment and learn
about Internet Protocol (IP)-based telephony, but to implement a
production server, you'll need some slightly bigger iron, and you'll
need it hardened.

In my travels as a networking consultant, I get to visit a lot of enterprise data
centers. These range from meager, stuffy, 100-degree closets crammed with
desktop PCs that accidentally became servers, surrounded by a spaghetti pile
of crummy cabling, to the 2,000-square-foot, raised-floor, uncomfortably cool
server rooms with halon fire-prevention systems and row after row of racks
filled with quad-processor servers.

When I have an opportunity to work in a modern, decked-out environment,
I'm thankful that I'm not crammed in an undersized, overheated closet
searching in vain for a free port on an incorrectly labeled Ethernet switch
where I can plug in my PowerBook. It never ceases to amaze me just how little
some folks seem to care about the environmental state of their critical data
and communications equipment. As long as things keep running, I suppose
they aren't likely to balk at the sorry state of their servers.

But with a critical application like telephony, from which humans have come to
expect 100% reliability over many decades, a dilapidated hodge podge of PC
equipment sitting under a leaky roof just isn't going to work. A desktop-gone-
server isn't going to cut it either.

Fortunately, you're about to find out how to build a voice server right. This
means selecting the right PC or commercial telephone PBX chassis, connecting
it to the right components, choosing the right operating system, and hardening
it. And that means following a principled philosophy of stability, high
availability, and compatibility.

7.2.1. The Three Things That Matter Most in Telephony

When building a server for an enterprise telephone system, you should keep
three areas of focus in mind. Here they are, in my order of importance:

Stability

The predictable, reliable operation of the server. Downtime should be
nonexistent, and responsiveness should be instant.

High availability

The server (and network) must be adequate to host real-time applications
without a noticeable impact when server resources are shared among
many users. The server must also be able to survive a hard disk or power-
supply failure without interruption to the hosted application.

Compatibility

The server, OS, and installed voice services must support well-known
standards to be adaptable to changes in the business, such as growth,
strategic partnerships, and geographic moves.

7.2.1.1. Creating stability.

To provide the utmost stability, a server's environment must be kept cool, with
a room temperature of 65 to 75 degrees Fahrenheit. It should be kept dry
(duh) and connected to a protected power source with a battery backup. Large
environments should consider a backup power generator with an automatic
transfer switch. The switches and routers that provide connectivity to the
server should be on protected power, too.

The server should also be well hardened against potential denial-of-service
attacks, which you'll do shortly.

7.2.1.2. Creating high availability.

To assure that the server is always available and that its voice services aren't
affected by internal hardware failures like failed disk drives and power
supplies, you should design redundancy into each server. A RAID 5 disk array
with four or more hard disks provides a "hot spare" so that you can swap out a
failed drive without having to shut down the server (you can also consider
building a server with no hard disks [Hack #95]). Redundant power supplies

allow the same hot-swap ability in case a power supply bites the dust. There
are other techniques for high-availability, too, like clustering.

7.2.1.3. Building in compatibility.

If you want to future-proof your voice server, don't bother building it on
software that doesn't support the open standards needed to make it
interoperable with other servers. Specifically, your software needs to support
SIP and Real-time Transport Protocol (RTP). This means sticking with a highly
compatible VoIP platform like Asterisk or sipX, or carefully evaluating a
commercial solution.

7.2.2. Size and Select a Voice Server

If you've chosen a commercial softPBX like the Avaya Media Server or Cisco
CallManager, you're pretty much pinned to the sizing guidelines provided by
the manufacturer. When you build it yourselfon Linux or BSDyou've got total
control over scalability.

With that said, there's really no hard and fast rule for determining how much
processor power your server needs. I've run small workgroup (5- to 10-user)
Asterisk servers on Pentium II machines. A large workgroup with hundreds of
phones connected would certainly need a much beefier computer.

VoIP can be a very light load on a PC, or an immense one. If you have five SIP
phones connected to a single Asterisk server, all using the simplest codec
(uLaw), a Linux server with a slower processor (Pentium II or newer) and 256
MB of RAM is probably just fine. But if you have 50 SIP phones using three or
four different codecs and attaching to the Public Switched Telephone Network
(PSTN), you'll need at least a 2 GHz Pentium 4 or equivalent with 1 GB of
RAM.

SIP-to-SIP calls are much less processor-intensive than SIP-to-Zaptel calls.
Conference calls are more processor-intensive than normal two-party calls,
and bandwidth-preserving codecs like the G.729 are the biggest processor
hogs of all. If you have a great need to support highly compressed codecs on a
lot of phones, and you'll be attaching your Asterisk server to the PSTN or to
legacy phones using Zaptel, you'll need more speed, more RAM, and then
more speed again.

To relieve the burden on a softPBX, try offloading processor-intensive tasks to

dedicated hardware. Try to maintain an all-SIP, all-uLaw environment on your
softPBX. Let off-board equipment like SIP-to-PSTN gateways (such as the
Clipcomm [Hack #43]) handle codec-processing tasks to preserve capacity on
the softPBX.

7.2.3. Select an OS and Harden It

If you're building a Linux voice server, there's not much point using an older
Linux distribution. So get a recent revision of Fedora Core, burn it to CD-ROMs
(four of them), and install it, keeping a few things in mind about all of those
optional software packages the installer will prompt you about:

The more optional packages you install, the less room you'll have for
things like voicemail and logfiles, both of which are important in the world
of telephony, right?

The more optional packages you install (like the X WindowSystem), the
more security risks you take. Security is a good thing, right?

The more optional packages you install, the less dedicated processing
power your server will have for telephony purposes. (Are you starting to
see a pattern here?)

Once Fedora Core is up and running, you're ready to start hardening. Though
I've geared this discussion toward an Asterisk server, it is principally accurate
for any softPBX.

Why not use Windows for a phone server? Well, as it turns out, Windows doesn't support
nearly the selection of free, high-quality telephony software such as Asterisk, sipX,
OpenH323, and other open source, server-side stuff. It also turns out that Windows itself
comes towing a rather pricey license fee. So I figured I'd stick to what you can download
from the Net without breaking the bank. The less money you spend on licensing fees, the
more you can spend on other parts of your telephony solution.

When hardening a server, you need to examine two basic aspects of the soft-
PBX: the software that's installed and the software that's running. In terms of
hardening the software that's installed but not running or not needed, the
course of action is quite simple: remove it.

7.2.3.1. Remove unnecessary software.

That means getting rid of Bind if you're not using it, removing Apache if it isn't
needed, and unloading MySQL if you've no need for it. Just because the
software isn't running doesn't mean you can't use it to facilitate a sophisticated
security exploit, so remove it altogether if you don't absolutely need it.

Since we're dealing with Asterisk, you can disable a number of modules to
reduce the risk of security exploits. Asterisk provides modules for all kinds of
signaling protocols and telephony applications, and you might not need them
all. Use the noload directive in /etc/modules.conf to specify those that you'd like
to disable:

 noload => pbx_kdeconsole.so
 noload => chan_modem.so

In this case, the two modules being disabled are the KDE log console module,
which provides a graphical console for the KDE desktop environment, and the
modem module, which is used for ISDN connectivity with Asterisk. Keeping
unnecessary modules from loading also conserves memory on the server.

7.2.3.2. Clean up xinetd.

xinetd is Fedora's catchall daemon for Telnet, finger, and a number of other
Unix network applications. (It's the successor to inetd.) Its configuration files,
in /etc/xinetd.d, are used to enable or disable support for a long list of
network-access services. Use this configuration directory to disable all but
those that you absolutely need. Here's the contents of a file in this directory,
/etc/xinetd.d/imap, controlling the imap daemon:

 service imap
 {
 disable = yes
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/imapd
 log_on_success += HOST DURATION
 log_on_failure += HOST
 }

This particular service is disabled, per the disable = yes line. Check all the files in
this folder for the disable=yes line, or, if you prefer, you can altogether remove
the config files for the services you don't need.

The idea is to eliminate unnecessary Transmission Control Protocol/Internet
Protocol (TCP/IP) listeners, reducing the likelihood of an attacker discovering
vulnerability. So, if you don't need Telnet, the Trivial File Transfer Protocol
(TFTP), talk, and finger, for goodness sake, disable them. The fewer services
that have listening ports, the more secure your server will be.

7.2.3.3. Optimize the local firewall on the softPBX.

To build a local firewall policy on the softPBX server, you'll need to identify
which VoIP protocols you're using and plan a policy based on the kind of TCP
and User Datagram Protocol (UDP) port access needed by each one. Table 7-1
lists the important protocols and their respective ports.

Table 7-1. Ports used for each VoIP protocol

Protocol Ports

SIP 5060 (TCP) and 5061 (TCP and UDP)

H.323 Both TCP and UDP on ports 2099 and 2517

H.332 Video
(a.k.a. H.263) TCP and UDP on port 2979

MEGACO/H.248 TCP and UDP on ports 2944 and 2945

TFTP TCP and UDP on port 69

ASTMAN 5038 (TCP)

RTP
Depends on configuration of capabilities negotiation preferences of the endpoint RTP
implementation; many RTP agents use 5000/5001, 5004/5005, 10000/10001, 8000/8001, or
high-numbered ports

IAX 5036 (UDP)

RSVP TCP and UDP 3455

RTSP TCP and UDP on ports 1756, 1757, 4056, and 4057 (RTSP can vary by session like RTP)

So, if you are using SIP, you need to permit inbound SIP signaling on UDP
ports 5060 and 5061.

Consider the following iptables policy commands:

 iptables P INPUT j DROP
 iptables A INPUT p UDP -dport 5060-5061 j ACCEPT
 iptables A INPUT p UDP --dport 5036 j ACCEPT
 iptables A INPUT p UDP -dport 5004 j ACCEPT
 iptables P OUTPUT j ACCEPT

This set of iptables commands manipulates the kernel's firewall such that the
server can accept only RTP, Inter-Asterisk Exchange (IAX), and SIP traffic; all
outbound traffic (OUTPUT chain) is permitted. This policy is based only on UDP
port numbers. If incoming traffic isn't on ports 5060, 5061, 5036, or 5004, it
is dropped. A truly hardened server would restrict outbound traffic, too.

For more information about securing VoIP, refer to Switching to VoIP
(O'Reilly).

Hack 89. Build an H.323 Gatekeeper Using OpenH323

H.323 is a VoIP signaling protocol that predates SIP by five or six
years, but its use in commercial telephony and desktop conferencing
apps (NetMeeting, for instance) is widespread.

OpenH323 is an open source implementation of the H.323 signaling protocol
suite, managed by Quicknet Technologies, the same company that makes the
Internet Phone Jack line of analog interface cards. OpenH323 is distributed in
binary and source code forms for both Linux and Windows, though a crafty
hacker should be able to get it running on a BSD-ish OS, too.

This project will allow a Microsoft NetMeeting H.323 softphone and an
OpenH323 OhPhone softphone to place calls through an H.323 gatekeeper
running on a Linux computer. In this example, I'll use Microsoft NetMeeting on
Windows XP and OhPhone on Mac OS X.

Although OpenH323 provides a framework of tools for developing H.323
servers and endpoints, it also natively implements a complete H.323 gateway,
MCU, and endpoint. Here's a partial list of software packages that accompany
OpenH323:

OpenGK

A simple H.323 gatekeeper server example

OhPhone

An H.323 softphone for Linux and Windows (OhPhoneX is the Macintosh
version)

OpenMCU

An H.323 conference bridge server

PSTNgw

An H.323 gateway server

Each requires the base distributions of OpenH323 and its prerequisite, PWLib,
a project-specific class library.

7.3.1. Installing OpenH323

A Pentium III clocked at 600 MHz should be sufficient to handle the role of a
small-scale H.323 gatekeeper. The PC should be running Linux (though H.323
is also Windows compatible) and can be the same PC that runs Asterisk, if you
like.

The best place to get OpenH323 is from its maintainer's web site,
http://www.openh323.org/code.html. Compiling all of these elements is
straightforward on Linux. (If you want to run OpenH323 on Windows, use the
precompiled executables. The instructions I'm providing are for Linux.)

First, download and install PWLib. Save pwlib_1.5.2.tar.gz (or the filename
appropriate for the version you download) to /root as the root user. Then,
unzip and untar it:

tar xvzf pwlib_1.5.2.tar.gz

Now, you'll need to set some environment variables so that the OpenH323
software knows where to find the PWLib libraries:

PWLIBDIR=$HOME/pwlib
 # export PWLIBDIR
 # OPENH323DIR=$HOME/openh323
 # export OPENH323DIR
 # LD_LIBRARY_PATH=$PWLIBDIR/lib:$OPENH323DIR/lib
 # export LD_LIBRARY_PAT

If you plan to make this H.323 setup permanent, you should add the preceding
environment variable commands to .bash_profile in /root. Now, build the
PWLib distribution by using make:

http://www.openh323.org/code.html

cd $PWLIBDIR
 # ./configure
 # make opt
 # make install

Next, download the main OpenH323 file to /root. Then, unzip and untar it,
substituting the filename that's appropriate for the version you download:

tar xvzf openh323_1.12.2.tar.gz

Now, build OpenH323:

cd $OPENH323DIR
 # ./configure
 # make opt
 # make install

The developers recommend a 128 MB swap partition to complete the build
error-free. This need is minimized if you have enough physical RAM; 256 MB
of physical RAM should be plenty. This build could run for 30 minutes or more,
so enjoy a delicious beverage.

7.3.2. Set Up the GNU Gatekeeper

Once the OpenH323 build is finished, you need to download and compile the
OpenH323 Gatekeeper (gnugk) software. Don't confuse this with the opengk
software that comes as a part of the OpenH323 distribution. This gatekeeper
comes from a different source altogether but is built using the same libraries
as opengk. The big difference is that gnugk is a much more complete
implementation of a gatekeeper, and opengk is a reference example and is not
very useful yet.

First, download and save the gnugk source code from
http://www.gnugk.org/h323download.html into /root. It will be named gnugk-
2.0.8.tgz or something similar. After the download is finished, build the gnugk
package:

http://www.gnugk.org/h323download.html

tar xvzf gnugk-2.0.8.tgz
 # cd openh323gk
 # make opt

Now, issuing the gnugk command will launch the gnugk gatekeeper. If you
receive an error indicating shared libraries cannot be located, make sure
you've got those environment path variables set in your login profile. If you
run into compiler errors, try grabbing the x86 Linux executable from the
gnugk site. Regardless of whether you compile it yourself, copy the contents of
the package's bin directory into /usr/sbin and the contents of its etc directory
into /etc, as follows:

cd openh323gk
 # cp bin/* /usr/sbin
 # cp etc/gnugk.ini /etc

To install a sample config file that allows any endpoint to register with the
gatekeeper, copy etc/proxy.ini also:

cp etc/proxy.ini /etc

proxy.ini is far more permissive than the default configuration file, and it will
allow you to register unauthenticated (i.e., passwordless) endpoints. Now, you
can run gnugk with the config file in /etc by issuing the following:

gnugk c /etc/gnugk.ini

7.3.3. Register an H.323 Softphone Using OhPhoneX

If you're using a Windows PC, chances are you already have Microsoft
NetMeeting. This is a very capable softphone, and it works well with
OpenH323. In fact, the next section describes how to set it up.

But since the OpenH323 project produces a phone, too, we'll use it. That

phone is called OhPhone, and it's distributed as an executable for Linux,
Windows (http://www.openh323.org/), and Mac
(http://xmeeting.sourceforge.net/).

These examples use screen grabs from the Mac OS X version. The Linux and
Windows versions have only a text-based UI, but for those platforms,
GnomeMeeting and MS NetMeeting make great alternatives.

The first thing you'll need to do with OhPhoneX is access its Preferences menu
option. The Gatekeeper tab of the Preferences window will allow you to specify
a gatekeeper, username, password, alias, and E.164 address (phone number),
as shown in Figure 7-1.

In Figure 7-1, the address of the gatekeeper is 10.1.1.10. The ID is a
superficial, freeform ID used like caller ID. The User Alias/ID is required only if
gnugk is configured for authenticating registration attempts. The password
field is optional; its use is policy-dependent, as gnugk accepts blank
passwords. Finally, the E.164 number is the phone number to which the
endpoint is registering and, ultimately, the phone number that will be used to
route calls to this softphone. Be sure to check the "Use gatekeeper" check box,
too.

When you close the Preferences window, click the Start Phone button and then
click the Console button. You'll see whether the softphone's registration
attempt with the H.323 gatekeeper was successful. The console log of
OhPhoneX, shown in Figure 7-2, contains the details of the registration
attempt.

Now, if you register a second softphone from a second PC, you can call back
and forth between them using the gatekeeper as the E.164 alias translator.
This works the same way with H.323 hardphones. Callers dial the E.164 digits,
and the gatekeeper provides the E.164 "resolution" that allows the software in
the phone to do its H.225, H.245, and RTP signaling to facilitate the call.

Figure 7-1. OhPhoneX's Preferences window has all the
options an H.323 endpoint could possibly need to register

with a gatekeeper

http://www.openh323.org/
http://xmeeting.sourceforge.net/

Once a call is in progress, the Connection Stats window shows the status of the
call in excellent detail, as in Figure 7-3.

7.3.4. Register an H.323 Endpoint Using NetMeeting

Microsoft NetMeeting is an H.323 softphone application that comes packaged
with Windows Me, 2000, and XP. To run it on XP, however, you'll have to
perform a slight hack to activate it. Select Start Menu Run, type conf, and
click OK. Then, select "Put a shortcut to NetMeeting on my desktop" in the
wizard that follows. Once this is done, NetMeeting is activated on Windows XP
just as it would normally be on Windows 2000.

To configure NetMeeting to register with the gatekeeper, inside NetMeeting
click Tools Options. This will display the Options dialog, where you can click
the Advanced Calling button. The Advanced Calling Options dialog box will
appear, as in Figure 7-4. Check the boxes next to "Use a gatekeeper to place
calls" and "Log on using my phone number." In the "Phone number" field,
enter the address of the gatekeeper, as well as the E.164 address you'd like to
use.

Figure 7-2. OhPhoneX's console log can help you troubleshoot
the registration process

Figure 7-3. OhPhoneX's Connection Statistics window tells
you which codec your call has selected and how much

bandwidth it's using

Figure 7-4. The NetMeeting Advanced Calling Options dialog
box allows you to configure gatekeeper registration

Microsoft NetMeeting is a very worthwhile H.323 softphone, and it's quite
customizable. It allows video calling as well as audio calling, and it has a built-
in T.120 whiteboard and instant-messaging (text chat) applications. You can
tweak the codec-selection preferences by choosing Audio from the Options
dialog and then clicking Advanced. The codec-selection dialog is shown in
Figure 7-5. If you're really looking to restrict codec selection, most compliant
gatekeepers allow you to do it centrally.

7.3.5. Make the Call

Once both phones are registered with the gatekeeper, you can call between
them using their E.164 numbers, since they're on the same zone. Now, if you
like, download OpenAM from the OpenH323 project to set up an H.323-based
personal message recorder.

Figure 7-5. NetMeeting ships with a selection of five codecs,

Figure 7-5. NetMeeting ships with a selection of five codecs,
including G.711 (uLaw/aLaw) and G.726 (ADPCM)

Hack 90. Turn Your Linux Box into a Fax Machine

Have you ever wished you could handle fax traffic with your Linux
machine?

Asterisk offers a built-in fax-detection mechanism. This allows you to handle
faxes that are sent to your Asterisk box on a Plain Old Telephone Service
(POTS) line connected via a Zaptel interface. It's Asterisk's Answer() command
that triggers the fax detection. If an incoming fax is detected, Asterisk
automatically transfers the call to the special extension called fax, if it exists.

To use this special extension, you'll need to compile and install the spandsp
package. Download the latest version from ftp://ftp.opencall.org, and unzip the
file into /usr/src/spandsp. To compile it, issue these commands:

./configure --prefix=/usr
 # make; make install
 # cp app_rxfax.c /usr/src/asterisk/apps
 # cp app_txfax.c /usr/src/asterisk/apps
 # cp Makefile.patch /usr/src/asterisk/apps
 # cd /usr/src/asterisk/apps
 # patch <Makefile.patch

If you're worried about the security concerns associated with compiling as root, you can
use a nonroot account to compile spandsp.

These commands compile the spandsp package, which provides a source code
patch for Asterisk. As such, you'll need to recompile Asterisk now:

cd /pathtoasterisksource/ asterisk
make clean ; make install

The next step to faxing with Asterisk is to enable fax detection on the Zaptel

ftp://ftp.opencall.org

channel you want to use for faxing. This doesn't stop the channel from being
used for normal voice calls; it just enables the channel to discern fax calls
from normal calls. To enable this function, be sure that the channel's section in
/etc/asterisk/zapata.conf has this entry:

 faxdetect=both

The valid parameters for the faxdetect option are incoming, outgoing, both, and no. By
default, fax detection is disabled.

7.4.1. Receiving Faxes

Now, consider the following snippet from a dial plan:

 [incoming-local]
 exten => s,1,Answer
 exten => s,2,Dial(SIP/202,45,rm)
 exten => s,3,Voicemail(202)

 exten => fax,1,SetVar(TIFFILE=/var/spool/faxes/thisfax.tif)
 exten => fax,2,rxfax(${TIFFILE})

In this context, the Answer() command triggers fax detection. If the call isn't a
fax, the dial plan calls for a call to SIP peer 202. If it is a fax, the fax extension
takes over, saving the fax image into a TIFF file located in /var/spool/faxes.
Another script can then process the file in any way you see fit, perhaps
printing it immediately, like this:

 exten => fax,1,SetVar(TIFFILE=/var/spool/faxes/thisfax.tif)
 exten => fax,2,rxfax(${TIFFILE})
 ; dump the FAX file to the default printer and remove the FAX file
 exten => fax,3,System('tiff2ps ${TIFFILE} | lpr')
 exten => fax,4,System('rm ${TIFFILE}')

tiff2PS is a utility provided in the libtiff package, a library for dealing with TIFF files. It's a

standard part of many Linux distributions, Red Hat included.

7.4.2. Sending Faxes

Receiving faxes with Asterisk is quite a bit easier than sending them, because
when receiving them, the work of scanning them into digital form is done
already. This is the part neither Asterisk nor spandsp addresses. However,
these packages can very easily fax a TIFF file. So it's up to you to get that TIFF
file in a path where spandsp can grab it.

This can happen in any number of ways. You can create a simple web interface
that allows you to upload TIFF files to the server, or, if you have the right
software, you can just scan them directly using the Linux machine. I don't
recommend either of these approaches, however, because neither of them
provides a straightforward way of telling Asterisk where to send the fax from
the outside application or script that's handling the scanning and packaging.

Without a lot of hacking, Asterisk just doesn't make a good day-to-day,
occasional-use fax server for outbound fax transmittals. There are better
solutions to this need already. One of them is HylaFAX, a freely available fax
server for Linux and BSD operating systems. HylaFAX can use standard
fax/modems, which also makes it cheaper to implement than Asterisk with
(comparatively expensive) Digium voice cards. You can obtain HylaFAX from
http://www.hylafax.org/.

http://www.hylafax.org/

Hack 91. Build an Inbound Fax-to-Email Gateway

Once you start faxing with your Linux box, why stop there? This hack
shows you how to route faxes automatically into emails and PDF files.

In the previous hack, you built a configuration to direct all incoming faxes
from Zaptel channels to a file, which, in turn, you could automatically print.
But, if the server were working on behalf of many possible fax recipients, you
would have to rely on the incoming fax's cover sheet to know which recipient
it's destined for. Worse still, someone would have to go to the printer, pick up
the fax, and hand-deliver it to the correct person.

There's a better way, of course: email. It's just as easy to email that TIFF file
to somebody's inbox as it is to print it. Here is a dialing plan that will do just
that:

 exten => fax,1,SetVar(TIFFILE=/var/spool/faxes/thisfax=${CALLERIDNUM}.tif)
 exten => fax,2,rxfax(${TIFFILE})
 ; email the FAX file to the receptionist and then delete it
 exten => fax,3,SetVar(EMAIL=receptionist@oreilly.com)
 exten => fax,3,System('mewencode -e ${TIFFILE} | mail -s FAX ${EMAIL}')
 exten => fax,4,System('rm ${TIFFILE}')

This configuration receives the fax, MIME-encodes it using the mewencode

command (a standard part of most Linux distributions), and emails it to the
email address stored in the ${EMAIL} variable. This is a catchall solution; it sends
every fax that's received to the same recipient, who can then forward it (and
screen it if necessary) to the appropriate person based on the content of each
fax message.

7.5.1. Automatic Fax Routing

To have the Linux server automatically route each fax to the right recipient
(instead of having a certain email user doing it), we must have a way of
associating each fax with the correct recipient. We'll have to associate a
certain line (or a certain DID) with each user so that whenever a fax is
received on that line (or DID), we'll know where to route it. Each phone line's

number, or each DID number, if we're using a primary rate interface (PRI), will
become a single user's fax number.

To associate a DID with a particular user's email address, we can use an LDAP
inquiry. An LDAP client library for Linux, openldap, provides applications with
the ability to access LDAP servers and perform such inquiries. Your LDAP
server might be an Exchange or Lotus Domino server where directory
information is stored. The Red Hat distribution includes OpenLDAP binary
package and the OpenLDAP developer package.

But you'll need more than just the LDAP client library. You'll also need an
actual LDAP client for Asterisk, such as Sven Slezak's LDAPget package.
Download it from http://www.mezzo.net/asterisk/ and unzip it into the
Asterisk source directory, /usr/src/asterisk.

Next, as root, copy the app_ldap.so file into /usr/src/asterisk/apps. Then, use a
text editor to add app_ldap.so to the list of applications that begins with APPS=
in /usr/src/asterisk/apps/Makefile. While you have the Makefile open, add the
following rule just above the app_voicemail.so line:

 app_ldap.so : app_ldap.o
 $(CC) $(SOLINK) -o $@ $< -llber -lldap

Now, LDAPget is ready to be compiled. Save your changes in the text editor
and exit back to the shell, where you'll issue these commands to compile the
package:

cd /usr/src/asterisk
 # make; make install

If Asterisk isn't currently running, start it. Then, go to the Asterisk command
line and load the LDAPget module (alternatively, you can just restart Asterisk):

 pbx*CLI> load app_ldap.so
 pbx*CLI> show application LDAPget

The show application command will confirm that the module is installed and loaded
by showing you a brief description of the LDAPget dial-plan command. Now, you

http://www.mezzo.net/asterisk/

can set up the LDAP inquiry your dial plan will use to get email addresses
based on the DID provided by ${EXTEN}. To set up this query, open
/etc/asterisk/ldap.conf. It might not exist yet, since you've only just compiled
the LDAP module. Create an entry like this in ldap.conf:

 [mailfromdid]
 host = ldap.oreilly.com
 user = cn=root,ou=People,o=oreilly.com

 pass = jarsflood
 base = ou=Addressbook,o=oreilly.com
 filter = (&(objectClass=person)(|(fax=%s)))
 attribute = email
 convert = UTF-8,ISO-8859-1

This configuration will cause an LDAP inquiry to ldap.oreilly.com, asking for an object
of the person class with the attribute fax equal to the value of the %s token (which
will be replaced with the DID at runtime). The attribute setting tells the
inquiry which attribute from the object to return as a value to the dial plan's
variable. This might seem confusing right now, but it should be clearer once
you see howthe LDAPget command is used in the dial plan.

In the context where your incoming PSTN calls begin (specified in
zapata.conf), you can capture the DID from the ${EXTEN} variable and use it to
supply an argument to an LDAP inquiry. If the inquiry is successful, Asterisk's
LDAP client will return the email address with which the fax number (i.e., DID)
is associated, as in this snippet of extensions.conf:

 [incoming-pstn]
 exten => s,1,SetVar(DID=${EXTEN})
 exten => s,2,Answer
 exten => s,3,Ringing
 ; allow 4 seconds for the FAX detection
 exten => s,4,Wait(4)
 ; if no FAX, send this call to be handled elsewhere
 exten => s,3,GoTo(incoming-voice)

 ; here's the fax handling extension, which sends the call to the
 ; 'inc-fax' context
 exten => fax,1,Goto(inc-fax,1,1)

 [inc-fax]
 exten => s,1,SetVar(TIFFILE=/var/spool/faxes/${DID}.tif)
 ; The 'mailfromdid' LDAP inquiry is defined in Asterisk's ldap.conf file.
 exten => s,2,LDAPGet(EMAIL=mailfromdid/${DID})
 ; If the LDAP inquiry succeeds, priority will be 2+1.
 exten => s,3,rxfax(${TIFFILE})
 exten => s,4,GoTo(105)
 ; If the LDAP lookup fails, priority will be 2+101.
 exten => s,103,SetVar(EMAIL=receptionist@oreilly.com)
 exten => s,104,rxfax(${TIFFILE})
 ; Now, e-mail the FAX file to whichever e-mail address was decided upon.
 exten => s,105,System('uuencode ${TIFFILE} uuenc | mail -s FAX ${EMAIL}')
 exten => s,106,System('rm ${TIFFILE}')

 [incoming-voice]
 ; non-fax calls are handled here

The result of all of this compiling and config tuning is that different email
recipients now have assigned fax numbers on the PRI (or assigned POTS lines
for their exclusive use as inbound fax lines). When you send a fax to Todd's
fax number, Todd receives the email. When you send it to Susie's, Susie
receives the email, and so on. Of course, it's up to you to populate your LDAP
server with the right information and to make sure the inquiry config in
ldap.conf matches your LDAP server's schema.

Don't have an LDAP server? You can use Asterisk's built-in database commands to resolve
DIDs to email addresses. Chapter 17 of Switching to VoIP (O'Reilly) contains a command
reference that covers these dial-plan commands.

7.5.2. Hacking the Hack

In the previous hack, you used the tiff2ps command to create a printable version
of the fax, but with a few extra steps, you can turn a TIFF into a PDF file, too.
PDF can be preferable to TIFF when using email, as we are in this project.
Consider the following dial-plan changes to the [inc-fax] context:

 exten => s,105,System('tiff2ps -2eaz -w 8.5 -h 11 ${TIFFILE}| ps2pdf \
 >${TIFFILE}.ps')
 exten => s,106,System('uuencode ${TIFFILE}.ps uuenc | mail -s FAX ${EMAIL}')
 exten => s,107,System('rm -f ${TIFFILE}*')

Now, instead of just encoding the TIFF file and emailing it, the file is converted
to a PostScript file and then to a PDF file, before being uuencoded and emailed
to the appropriate recipient.

Hack 92. Teach Your Asterisk Box to Speak

Sometimes you just don't want to get off the couch and walk to the
caller ID display. Your Linux server understands and wants to help.

My first exposure to synthesized speech was on a Commodore 64; the speech
demo took an eternity to load off a floppy diskette, and the speech sounded
like an English as a Second Language student was speaking it directly into a
pillow. Today, with DSP and decades of additional speech programming
research in the bag, synthetic speech is much more passable, and folks are
constantly coming up with novel uses for it.

In Detroit, I have a buddy whose Linux server used to announce logfile entries
and tell him when the doors around his house were opened and closed. While
this speaking server was mysteriously silenced right around the time he got
married, I still love his hack. Adapting speech capability around Asterisk is a
logical use for two of my favorite pieces of open source software: Asterisk and
Festival, the University of Edinburgh's speech synthesizer. With a little bit of
dial-plan configuration, your Linux Asterisk server will be announcing your
incoming calls in no time (and announcing a whole bunch of other stuff, if you
want).

Mac OS X users will find that Festival is similar in some ways to the Say command on OS X,
though Festival provides much more functionality to Asterisk than Say does. For example,
you cannot use Say to speak to callers, as you can with Festival.

First, you'll need a sound card installed and working in your Linux box. Most
commercial distributions of Linux (Red Hat, Debian, etc.) make sound card
configuration a straightforward affair. Next, get your hands on the Festival
source code at http://www.cstr.ed.ac.uk/projects/festival/download.html. Find
a link to download it, and save it from your browser, or use wget to grab it (and
its supporting Speech Tools libraries):

wget http://www.cstr.ed.ac.uk/downloads/festival/1.95/festival-1.95-beta.
 tar.gz
wget http://www.cstr.ed.ac.uk/downloads/festival/1.95/speech_tools-
 1.2.95beta.tar.gz

http://www.cstr.ed.ac.uk/projects/festival/download.html

wget http://www.cstr.ed.ac.uk/downloads/festival/1.95/festlex_CMU.tar.gz
wget http://www.cstr.ed.ac.uk/downloads/festival/1.95/festlex_POSLEX.tar.gz
wget http://www.cstr.ed.ac.uk/downloads/festival/1.95/festvox_kallpc_16k.
 tar.gz

Once you've downloaded Festival, you should unpack, compile, and install it
with these commands:

tar xvzf speech_tools-1.2.95-beta.tar.gz
 # tar xvzf festival-1.95-beta.tar.gz
 # cd speech_tools
 # ./configure
 # make; make install
 # tar xvzf festlex_CMU.tar.gz
 # tar xvzf festlex_POSLEX.tar.gz
 # tar xvzf festvox_kallpc16k.tar.gz
 # cd festival
 # patch -p1 </usr/src/asterisk/contrib/festival-1.4.3-diff
 # cd ../festival
 # ./configure
 # make; make install

The make; make install commands take the longestupward of five minutes each on
my trusty old garage-built Pentium III machine. Of course, if you've already
compiled and installed Asterisk [Hack #41], installing Festival will seem fast.

While you're waiting for the compile to complete, let me give you a quick
Festival crash course. Festival has an interactive mode, where you can issue
speech commands, as well as an "execute and exit" mode, where you can pass
instructions to it from the Unix shell. Simply executing festival in a shell will put
you in interactive mode, where you can interact with the speech synthesizer:

 festival> (SayText "Hello world .")
 festival> (tts "text-file.txt ")

The SayText command simply causes Festival to speak the quoted text using your
PC's sound card, and the tts command speaks the contents of the text file

indicated. By the way, if you'd like to quit interactive mode and return to the
shell, hit Ctrl-D.

When you execute Festival from the command line, you've got some cool
functionality at your disposal. Executing with --pipe causes Festival to take
commands from standard input. Recent builds of Festival also include the
text2wave application, which generates Wave-format sound files from text
input.

7.6.1. The Hack

For Asterisk to support text-to-speech via Festival, you have two approaches.
The first is to use Asterisk's built-in Festival() command, which is a standard part
of the Asterisk distribution, when patched for Festival as described earlier. To
get to this command, you might need to recompile Asterisk after the Festival
patch has been applied. The Festival installation instructions provided earlier
show how to apply this patch. In the Asterisk extensions.conf file, the Festival

command simplifies the playing of synthetic speech for callers:

 exten => s,1,Answer
 exten => s,2,Festival('Hello caller. My name is Mr. Synthetic.')

To greet a caller by name, use Asterisk's built-in caller ID variables:

 exten => s,1,Answer
 exten => s,2,Festival('Hello ${CALLERIDNAME}. My name is Mr. Synthetic.')

The Festival command allows you to send speech to callers, but not to the sound
card. To do that, you'll need to pump some output from Asterisk to the Festival
application at the appropriate time in the dial plan. Using Asterisk's System()

command, you can trigger all kinds of activity in the Unix shell from within
Asteriskincluding, of course, Festival activity. Take a look at this Festival shell
command, which simply speaks the quoted text through the PC's sound card:

echo "Hello world" | festival --tts

This causes the text output of the echo command to flow to Festival's standard
input. It is then spoken using the audio output of the sound card. Commands
like this really give Asterisk some cool speech abilities. Say you wanted to
have your Asterisk server announce the caller ID of each incoming call:

 exten => s,1,System(echo "You are receiving a call from {$CALLERIDNAME}" \
 | festival -tts)
 exten => s,2,Dial({$DEFAULTPHONES})

7.6.2. Mac the Hack

If your Asterisk server runs on a Macintosh [Hack #93], you can do the caller
ID announcements using the Mac Unix command, Say, instead of Festival. One
of the coolest things about the Mac's built-in speech synthesis is its selection of
different voice styles; males, females, whispers, and hysterical laughing all
make Mac speech a lot of fun. In fact, you can use the Say command's -v option
to use those different voices, depending on the variables of the call. Here,
different voices are used depending on which phone is being dialed:

 exten => 10,1,System(say v Agnes Kelly, you have an incoming call.)
 exten => 10,2,Dial({$KELLYSPHONE})
 exten => 20,1,System(say v Hysterical Jake, you have an incoming call.)
 exten => 20,2,Dial({$TEDSPHONE})

The preceding sample uses the Agnes voice to announce Kelly's calls and the
Hysterical voice to announce Jake's calls.

Hack 93. Build a Mac PBX

The Mac mini is a very tiny and rugged PC, making it a great small-
office PBX.

When Apple introduced the Mac mini, most onlookers were pleased to see a
smaller machine with plenty of muscleenough to handle a few dozen VoIP
phone calls at a timeeven though most observers didn't have VoIP in mind for
it. At less than $500, the mini is great for the cost-conscious, and for those
who don't trust the likes of Windows in a real-time application like IP
telephony, a Mac provides a secure, friendly alternative. Of course, there are
comparably equipped "small" PCs, but none with the tiny (two inches tall, and
six by six inches square) form factor of the Mac mini. So, if you need a space-
conscious, cheap VoIP server, you need look no further than the mini.

Would you rather use an Xserve with this hack? Great idea! The Xserve has faster
processors and a RAID hard-drive array. This means high-performance PBX action. It also
has an extra Ethernet interface and a swappable power supply, making it better in mission-
critical situations than the mini.

But, since the Mac mini has no card slots (and since multichannel PCI
telephony drivers are not available for OS X), attaching analog phones and
phone lines to a Mac mini isn't the same as in a traditional, PCI-equipped
server chassis, where you can snap foreign exchange office/foreign exchange
station (FXO/FXS) cards into place to connect phone lines. This is where VoIP
comes in handy. Just because the Mac mini can't connect directly to analog
lines and phones doesn't mean you can't use them with it.

You can connect analog lines and phones to a Mac mini by way of an analog
telephone adapter (ATA) or an FXO gateway device. An ATA will connect an
analog phone to an Ethernet network, and an FXO gateway will attach a phone
line to the Ethernet network. These devices provide a signaling proxy that
allows analog phones and lines to be used with VoIP servers like that Mac mini
PBX we're about to set up. The Clipcomm CG-410 referenced elsewhere in this
chapter is one such devicean FXO gateway device.

This hack works on any Mac with OS X 10.2 or higher. To get started, let's

download an installation package for a Mac-compatible distribution of Asterisk.
The one I like was built by Benjamin Kowarsch, a Mac telephony hacker. You
can download it from http://www.astmasters.net/ or
http://www.macvoip.com/. You'll probably want to grab the latest version
available from one of those sites. Unpack it (StuffIt should prompt you to
unpack it as soon as you download it) and launch the Asterisk.pkg file. This
package looks like most Mac installer packages. Step through the Introduction,
Read Me, and License screens; agree to the license; and select the volume
where you want to install Asterisk (Figure 7-6). Your boot volume is the only
place you can install Asterisk, so don't bother yourself with trying to figure out
how to install it elsewhere. Besides, unless you like time-consuming
nondefault settings that require the constant attention of a Unix snob, the
boot volume should be adequate.

The quickest way to launch Asterisk (on any system), once it's installed, is to
issue this command:

$ sudo /usr/sbin/asterisk -vvvc

The more v's you tack on, the more verbose Asterisk's debugging output will
bevery useful when troubleshooting things.

If you've issued this command in the OS X terminal and received the following
message, or something similar, you weren't using the root account when you
launched Asterisk:

Logger Warning: Unable to open log file '/var/log/asterisk/messages':
Permission denied

Figure 7-6. The Asterisk installer package

http://www.astmasters.net/
http://www.macvoip.com/

You'll need to be root, the all-powerful Unix administrator account, to launch
Asterisk as installed by the installer package. Becoming root on OS X isn't as
simple as it is on Linux, however. The root account itself is actually hidden
away and disabled until you go in and "turn it on" manually. This practice is
generally frowned upon, as using the root account gives you enormous
capacity to harm your Mac's filesystem and settings, so don't say I didn't warn
you. We're just going to do this once, so you can see how it's done to launch
Asterisk, and then we'll return to the safe zone of nonroot access. As the
default user (the first user created when you first installed OS X on your Mac),
open a terminal and issue this command:

$ sudo passwd root

You'll be prompted for a password. This password will establish the root user's
password so that you can use the root account from now on. Yes, that simple
command "turns on" the root account. Now, you should be able to launch
Asterisk on the Mac using the preceding Asterisk command. If you get a few
screens full of log output that eventually ends up at a PBX prompt, you've
launched Asterisk successfully.

Yet even after all that, Asterisk won't be set to start automatically every time
you boot your Mac, so you'll need to make sure it's launching every time. This
is easy. In /System/Library/StartupItems, create a folder called Asterisk.

In that folder, create a text file called Asterisk and place the following code
inside:

 #!/bin/sh

 ##
 # Ted's Asterisk Telephony Server Startupitem
 ##

 . /etc/rc.common

 StartService ()
 {
 echo "Starting Asterisk telephony"
 /usr/sbin/asterisk -vvvg &
 }

 StopService ()
 {
 echo "Stopping Asterisk telephony"
 /usr/sbin/asterisk -rx "stop when convenient"
 }

 RestartService ()
 {
 echo "Restarting Asterisk"
 StopService
 StartService
 }

 RunService "$1"

This script handles the proper startup (and shutdown) of Asterisk when the
system boots (and shuts down). Likewise, rebooting your Mac PBX will also
automatically shut down and restart Asterisk. Before you reboot, though, you'll
also need to create a file called StartupParameters.plist in the same foldera
text file with the following contents:

 {
 Description = "Asterisk";
 Provides = ("Asterisk");

 Uses = ("Disks", "NFS");
 }

Once those two files are in place, give your OS X machine a reboot, and your
Mac PBX is built. Now all you need is somebody to call.

Hack 94. Monitor Asterisk from Your Perl Scripts

If you've used Linux (or FreeBSD or Mac OS X or Solaris) for longer
than an hour, chances are good you've used Perl. Now, use Perl to
monitor and control your Asterisk PBX.

The Perl module of choice for Asterisk is appropriately called asterisk-perl. It
provides connections between the Asterisk Gateway Interface (AGI) and the
venerable scripting language named after a misspelled maritime phenomenon.
It also links Perl with Asterisk's Manager interface, a socket application
programming interface (API) that lets you control and monitor Asterisk by
sending messages to it on a TCP port5038 to be exact.

For ad hoc interaction with the Asterisk Manager, you can telnet to that port
on your Asterisk serverif the manager is enabled, that is. To ensure Asterisk
Manager is indeed running and able to respond to your requests so that your
Perl programs will actually do something once asterisk-perl is installed, you
need to pay a visit to /etc/asterisk/manager.conf. Make it look roughly like
this, being sure to include enabled=yes and to add a section like the [hansolo] one to
define a username and password with which to access the Asterisk Manager
later on:

 ;
 ; Asterisk Call Management support
 ;
 [general]
 enabled = yes
 port = 5038
 bindaddr = 0.0.0.0

 [hansolo]
 secret = falcon
 deny=0.0.0.0/0.0.0.0
 permit=127.0.0.1/255.255.255.0
 read = system,call,log,verbose,command,agent,user
 write = system,call,log,verbose,command,agent,user

You'll need to restart Asterisk (run asterisk rx as root at the shell prompt) to

commit these config changes. Next, you'll need to install the Asterisk Perl
module. Download, compile, and install it as follows:

wget http://www.netdomination.org/mirror/asterisk.gnuinter.net/ \
files/asterisk-perl-0.08.tar.gz
 # tar xvzf asterisk-perl-0.08.tar.gz
 # cd asterisk-perl-0.08
 # perl Makefile.PL
 # make all
 # make install

Now, pop into your asterisk-perl source directory and check out the Asterisk
Manager example in the examples directory. It's called manager-test.pl, and it
demonstrates how to poke Asterisk with Perl. For it to work, though, it will
need to be authenticated as a legitimate Asterisk Manager API user, and that
means adjusting the beginning of the script to match the username and
password you put in /etc/asterisk/manager.conf. Open manager-test.pl and
make the username and password match:

 $astman->user('hansolo');
 $astman->secret('falcon');
 $astman->host('localhost');

localhost is used to specify the host that the Perl script will connect to in order to
send messages to the Asterisk server; in this case, it'll connect to the same
machine as the one where the script is running. Run the script like this:

./manager-test.pl

If you place a call to any of the channels on the Asterisk server, the script will
give you output like this, via its connection to Asterisk Manager:

 Event: Newchannel
 Uniqueid: 1121992811.1
 Callerid: <unknown>
 Channel: Zap/3-1
 State: Ring
 Event: Newexten

 Channel: Zap/3-1
 Context: default
 1121992811.1:
 Extension: s
 Application: Answer
 appdata: Uniqueid
 Priority: 1
 Event: Newstate
 Callerid: "Cleveland OH" <4403281441>
 Channel: Zap/3-1
 State: Up
 Uniqueid: 1121992811.1

This output says that the Asterisk server has received a call from 440-328-1441 on
channel Zap/3, assigned it a unique ID (for tracing it among the other Asterisk
Manager output), and indicated that it is being handled by extension s (the
default extension) in the default context. The State: Ring bit indicates that the
channel is merely ringing and hasn't yet been answered. The Application: Answer line
indicates that, in accordance with the dial plan in /etc/extensions.conf, this call
is being handled by the Answer() command. Quite a lot of useful information for
a short, simple Perl program.

Besides viewing status output (using the eventloop method of the Asterisk:: Manager

class), you can also use the asterisk-perl Perl extensions to issue commands to
Asterisk. Consider this simple Perl script:

 #!/usr/bin/perl
 use lib './lib' '/..lib';
 use Asterisk::Manager;
 my $astman = new Asterisk::Manager;
 $astman->user('hansolo');
 $astman->secret('falcon');
 $astman->host('localhost');
 $astman->connect || die $astman->error . "\n";
 print STDERR $astman->command('iax show peers');

The output of this script, at least on my Asterisk server, which has a single
permanent IAX peer set up, looks like this:

 Name/Username Host Mask Port Status
 mtech/199 68.46.190.45 (S) 255.255.255.255 4569 Unmonitored

Of course, with the command method of the Asterisk::Manager class, you can send
any Asterisk console command and get its output. So, you can grab the whole
dial plan using show dialplan or zaptel show channels to show all the current Zaptel activity
on the system. Once you get that output, you've got to parse it. Otherwise,
your Perl program won't be able to do much more than print it out. So I
recommend that you brush up on those great Perl text-parsing functions.

If you're familiar with the Asterisk Manager API command structure, you can
also send API commands, allowing you to originate phone calls, hang up and
transfer calls in progress, and do other fun things. There's a nice Asterisk
Manager API reference at the end of my book Switching to VoIP (O'Reilly).
There nowyou have the tools to build an Asterisk empire using Perl and Perl
alone. Go now, and conquer.

Hack 95. Build a SoftPBX with No Hard Drive

You don't really need a hard disk to run a phone system; even an IP-
based softPBX doesn't need a hard drive. A CompactFlash-based PC
will do the trick.

Sometime around September of 2004, I was looking at one of PC Engines'
WRAP boards and wondering how well it could run Asterisk. Knowing that I
would not want to run a full-size distribution, I started pulling apart a Gentoo
install, removing components that are not critical to the functionality of
Asterisk. After a fairly significant amount of work, I was left with a slimmed
down Gentoo that fit on a 256MB CompactFlash card (which was the smallest
that I had at the time) and would run mounted, read-only. After working on
the init system and writing some extra scripts, I decided to put it up on my
web site just in case someone else found it interesting or useful. I decided to
call it AstLinux, version 0.1.0. After about 4,000 downloads, I think that I had
my answer, and AstLinux was born!

By 2005, I realized that to make AstLinux truly spectacular, I was going to
have to make it smaller and more flexible. Work on AstLinux 0.2.x began.
After messing around quite a bit with different build systems and
methodologies, I found and stuck with a wonderful combination of crosstool
and PTXdist. After some serious time and effort, AstLinux was reborn, and this
time it came in at just under 27 MBsmall enough to fit on a 32MB CF card.

This hack will show you how to use AstLinux to create a softPBX system that
doesn't require a hard drive. Read the next section to find out the kinds of
features you can fit into such a tiny system.

7.9.1. Current Features of AstLinux

As of this writing, AstLinux has the following features:

DHCP server/client

File transfer protocol (FTP) server

TFTP server

Asterisk (with zaptel and libpri)

Sangoma WANRouter with voice time division multiplexing (TDM) support

Web server with HTTPS

Administration via console, serial console, SSH, or web graphical user
interface (GUI)

Network time protocol (NTP) client/server

VPN support (IPSEC IKE and OpenVPN)

SPI firewall (iptables with my astfw script)

Quality of Service (QoS; my AstShape script)

NFS client/server

Linux 2.6 kernel

Caching DNS proxy/server (dnsmasq)

Additionally, AstLinux now runs on everything from the Soekris net4801/ PC
Engines WRAP series of Single Board Computers (SBCs) to Dell rack mount
gear. Pretty much any modern machine using PC hardware is now supported
by the AstLinux i586 image.

7.9.2. AstLinux's Keydisk

One of the more interesting concepts of AstLinux is the use of a single
configuration file and the concept of a keydisk. In AstLinux, you can configure
almost all of the system (with the exception of Asterisk itself) in one
configuration file, /etc/rc.conf./etc/rc.conf is a very simple text file with VARIABLE

NAME = VALUE pairs. So, for instance, to set the IP address on the external
interface, you would uncomment EXTIP and change it to the desired network
address. You will also want to change EXTNM, etc., but I will cover that in more
detail later.

Now for the keydisk. This is a perplexing concept to some people, and it can be
difficult to explain. Think of it as a personality, similar to a SIM card in a
Global System for Mobile (GSM) phone. The partition that AstLinux resides in
is purely for AstLinux. No user files or configuration is stored there; this is how
it can stay mounted read-only and how the system can still function. Also, it
provides a ton of flexibility and allows for some very interesting uses of
AstLinux.

When the system first boots, you will see several entries in the GRUB
bootloader. They all boot AstLinux; they just pass different arguments to the
kernel that the startup scripts then look at to determine what to do. One of
these arguments is astkd=. So, for the USB keydisk, astkd should equal /dev/sda1.
To use another partition on the system, just fill in the path to that partition.

7.9.3. Hardware Requirements

To use AstLinux, you will need at least the following:

A Soekris net4801/PC Engines WRAP board (net4801 image) or any
modern PC hardware with a Pentium or better processor

A CompactFlash IDE adapter (i586 image)

A USB CF adapter (or an IDE adapter)

A computer already running Linux or Windows

A CompactFlash card of 32 MB or larger (a 256 MB SanDisk is
recommended)

A PC with two Ethernet devices (one is acceptable, as discussed shortly)

7.9.4. Install from Windows

I have tried very hard to make AstLinux as easy to install and configure as
possible. The simplest way to get started is to go to the AstLinux web site at
http://www.astlinux.org/ and look for the Downloads section. Once there, you
should find the Windows install package, which you will want to download and
save to a local disk. Once you run the install package, follow the prompts until

http://www.astlinux.org/

it notifies you of a successful installation. Under the Programs group in the
Start menu, you should see a new entry called AstLinux, with shortcuts to
creating CFs and some documentation.

Attach your USB CF adapter (with CF inserted) and click on the shortcut for
the image that you would like to create. A screen will appear, prompting you
to select a target disk. This is the harder part of the install, because many
people don't know one disk from the other. What I can tell you is that it is
usually the last disk listed, but I cannot be sure because all machines are
different. One thing to note is that by default, the CF writing utility will refuse
to write to disks larger than 800 MB. This will prevent you from accidentally
overwriting your hard disk (which should be much larger than 800 MB).

Once you have selected your disk, follow the remaining prompts until you see
the progress counter write the entire image and the words "Press any key to
continue" appear. You can now safely remove the USB adapter.

Although your fresh, new CF is now ready to be used, I would like you to take
a look through the AstLinux User Guide, which is also available from the
AstLinux Programs group. Because AstLinux was created from scratch, it bears
little resemblance to any existing distributions, and the User Guide attempts to
familiarize the user with its features and configuration.

7.9.5. Install from Linux

As stated earlier, go to the Downloads section of http://www.astlinux.org/.
Here you should find compressed (gzipped) versions of the AstLinux images.
Download the image you would like and save it to a place on your hard drive.
Connect your USB CF adapter (with CF inserted), and look in
/var/log/messages to see what device it was assigned. If you don't have any
other USB or SCSI disks attached to the system, it should be located in
/dev/sda. That is what I will assume, but make sure to note whether your
CompactFlash card is located in a different device. To verify the location of
your CF card, type the following:

fdisk -l /dev/sda

You should see the partition table and drive layout information for your CF
card. Now it's time to burn the image. At the command prompt as root, type
the following:

http://www.astlinux.org/

gunzip -c /path/to/imagefile.img.gz > /dev/sda

where /path/to/imagefile.img.gz is where you downloaded the image file to and /dev/sda is
where your CF card is located. After the command completes and you are
returned to the shell prompt, you can remove your USB CF writer. As with my
Windows installs, I highly recommend that you read the AstLinux User Guide.
Because you didn't download a package, you should go back to
http://www.astlinux.org/ and download the User Guide to familiarize yourself
with AstLinux.

7.9.6. Install from CD-ROM

The newest way to install AstLinux is via a more traditional means: an install
from CD-ROM. As with the other versions of AstLinux, you can download the
install CD-ROM image from the Downloads section of http://www.astlinux.org/.
Once you have downloaded the ISO image, you can write it to a CD-ROM
under Windows using such tools as Nero. Under Linux, cdrecord (or a graphical
frontend such as K3b) works quite well.

Once you have written the ISO image, insert the CD in the drive of your soon-
to-be-AstLinux machine. Make sure that the machine is set to boot from CD-
ROM, and power on. Once the machine boots, you should see a very simple
instruction screen. Typing install and pressing Enter will start the AstLinux
installer. It will attempt to detect any hard drives in the system and prompt
you as to which one you would like to install to. You should choose your
selection carefully, as AstLinux will overwrite any data on that disk!

Actually, the install portion will also detect USB CF writers as hard disks (sda, sdb, sdc,
etc.). This way, you can boot the machine from the CD and write to an AstLinux
CompactFlash card without ever touching the machine's hard drive!

7.9.6.1. Don't install at all!

While someone who is serious about setting up an AstLinux/Asterisk server
would not use this method in production, the same AstLinux CD-ROM image

http://www.astlinux.org/
http://www.astlinux.org/

used in the preceding section can also be used as a Live CD. This is actually
the default! Once you have created the CD, you simply boot the machine and
accept the defaults. Hopefully, in a matter of moments, you will be running
AstLinux without having to overwrite your hard drive. And hopefully you will
like what you see and decide to run the installer as mentioned earlier in this
hack!

7.9.6.2. More about the AstLinux CD-ROM.

The AstLinux CD-ROM also includes a nifty Windows Autorun portion that will
give you access to the AstLinux User Guide, a link to the web site, and the
tools and utilities provided by the Windows install package. Try it out!

7.9.7. Boot Time

After reading the User Guide, it's time to boot! Insert the CF, make sure that
the machine will boot from the CF, and power on! After POST, you should see
the GRUB menu with a few options available. For now, it's probably best to
select the first entry. By default, AstLinux will attempt to obtain an IP address
via DHCP on the first Ethernet interface that it finds, and it will statically
configure the second interface with an RFC 1918 private address to do
Network Address Translation (NAT). If this is not optimal for your situation, I
will show you how to change this once the system boots.

After the usual kernel messages go by, you should finally get to a login
prompt; log in with the username root and the password astlinux. Now that you
are logged in, it's time to set up your system.

The first thing you are going to want to do is set up your keydisk. As
mentioned before, a keydisk is a separate partition or device that AstLinux will
use to store your configuration. I am going to assume that you are using a
second Flash drive (such as a USB pen drive) for a keydisk and that the USB
Flash drive is the Linux device /dev/sda. (When you boot with the CF disk, it is
considered an IDE device and should appear on your system as /dev/hdaso,
don't think I'm asking you to overwrite your CF disk.) Verify that Linux can see
the keydisk by typing the following:

fdisk -l /dev/sda

You should see the partition table for your device. Make sure to take a good,
hard look at it, because now is the time to tell you that in a matter of
moments, we will be erasing everything on that device! If this is not OK,
remove the USB drive and chose another one. If it is OK to lose all of the data
on this Flash drive, move on to the next paragraph.

Now that we have those warnings out of the way, let's finally create your
keydisk by typing the following:

genkd

The genkd script will take care of finding the device, partitioning it, formatting
it, and copying some base configuration files to it. You should see some status
information and messages go by, but it should be finished in no time,
returning you to the command prompt. If you would like to verify it was
successful, type the following:

ls /mnt/kd

You should see a file there called rc.conf. If it's there, you should now type
reboot to restart the system and begin using the keydisk. If it's not there, make
sure that your device really is /dev/sda, and that it is connected, etc.

Once the system has booted back up, you can start making configuration
changes. The /etc/rc.conf file is where you are going to want to begin to look.
In an attempt to keep AstLinux small, I've included only the vi text editor, as it
was part of the BusyBox collection of utilities I was already using
(http://www.busybox.net/). If you're not comfortable editing text files with vi,
you can use the web interface. To use the web interface, make sure that you
are using a machine on the internal interface of the AstLinux machine (eth1)
and that you have obtained a DHCP address from the AstLinux machine. Once
you have done this, simply point your web browser to https://pbx (this
resolves only if you got your DHCP information from the AstLinux machine, so
be sure you are connected to the right interface). You will be prompted for a
username (admin) and password (astlinux). Go to General, then Setup, and then
"Edit rc.conf." The rc.conf file should open up in a small text edit window inside
your browser. Make any necessary configuration changes, including setting the
EXTIP family of variables. To apply these changes, simply save the file and
reboot the system. In future versions of AstLinux, so many reboots won't be
necessary, but for now it is always nice to know that the system will come

http://www.busybox.net/

back up after you have made your changes.

7.9.8. PBX-Only Mode (or Help! I Have Only One Ethernet
Interface!)

As noted earlier, you don't really need two Ethernet interfaces. If you don't
want to use AstLinux as a router, you need only one interface when you
configure AstLinux for PBX-only mode. PBX-only mode will prevent AstLinux
from attempting to configure your internal interface (eth1), and it will prevent
the startup of certain services that are not necessary (iptables, routing, QoS,
DHCP, etc.).

You can configure PBX-only mode by commenting out INTIF= in rc.conf and
rebooting. Note that the configuration for EXTIF still applies as usual to your
first Ethernet interface, eth0.

7.9.9. Wrap-Up

After the system boots, you should verify IP connectivity. You can do this by
using the ping command to attempt to reach a remote system. So, try typing ping
www.google.com. You should see ping replies. If you do not, you might be
having Internet issues, or you might have to configure a static IP address.

If the ping is successful, you have correctly set up AstLinux! Feel free to log
into the system through the console or SSH and take a look around. Explore
the web interface, as a lot of neat things are happening there. If you have any
questions, you can always go to the AstLinux-Users mailing list at
http://lists.kriscompanies.com/. Enjoy!

Kristian Kielhofner

http://www.google.com
http://lists.kriscompanies.com/

Hack 96. Build a Standalone Voicemail Server in Less Than
a Half-Hour

If you're a decent typist, it might take you only 15 minutes.

Asterisk comprises many quality applications, and voicemail is one of them. In
fact, Asterisk is perhaps best known for the feature set of its voicemail system.
In this section, I will demonstrate how you can harness Asterisk's extremely
powerful voicemail application in 30 minutes or less. This way, everybody in
your house (or your office) can have a customized voicemail greeting and
message recorder, even if they don't have a desktop phone. Think of this as a
road-warrior voicemail solution.

First, you will need to download my Asterisk distribution, AstLinux. AstLinux is
made to run from CompactFlash, but it doesn't have to be that way.
(Incidentally, if you'd like to run it from CompactFlash, check out "Build a
SoftPBX with No Hard Drive" [Hack #95]. Pay attention to the keydisk
portion, as you'll want one for this hack!) But because we want our voicemail
server to be as reliable as possible, I am going to assume that you have a fair
amount of storage spaceCompactFlash or hard diskavailable for use on this
hack.

To build a standalone voicemail server, you'll need the following:

A standard PC with AstLinux

An IDE-to-CF adapter

A CompactFlash card of 32 MB or greater (a 256MB SanDisk is
recommended)

Depending on what type of technology you are going to integrate this server
with, your hardware needs will vary. If you are looking for an all-VoIP solution
(possibly for use with another SIP PBX/proxy, etc.), you won't need any
additional hardware, and you can skip ahead to the actual setup.

However, if you will be interfacing with a legacy PBX, you will need to get
yourself some PSTN interface hardware. For some options, visit
http://www.digium.com/ and http://www.sangoma.com/. The PCI interface

http://www.digium.com/
http://www.sangoma.com/

cards from Digium and Sangoma allow you to connect to a legacy PBX using
POTS lines or T1s. (For a crash course in configuring a Digium TDM card, read
"Connect a Legacy Phone Line Using Zaptel" [Hack #44].)

Now for the nitty-gritty. After you have AstLinux running (and have made a
keydisk), you need to do away with the default Asterisk configuration. There is
just too much there for this simple task. You can blowit away by using this
simple command (oh, and if there's anything in this file you want to keep, back
it up first):

echo > /etc/asterisk/extensions.conf

You then need to add some basic meat back into extensions.conf. Open
extensions.conf in a text editor (vi is included by default) and add the
following:

 [general]
 static=yes
 writeprotect=yes
 autofallback=no

 [globals]
 VMBASE=8XXX

 [default]
 include => vmserv

 exten => i,1,Hangup
 exten => t,1,Hangup

 [vmserv]
 exten => _${VMBASE},1,Voicemail(u${EXTEN}@vmserv)
 exten => _${VMBASE},2,Hangup

 exten => _9${VMBASE},1,VoicemailMain(${EXTEN:1}@vmserv)
 exten => _9${VMBASE},2,Hangup

The first two lines under [general] tell Asterisk never to overwrite this file with
something you tell it dynamically. This is a good idea. The next line tells

Asterisk never to try to guess what to do if no action is assigned. For this
simple configuration, it won't make much difference, but it is generally a good
idea.

The line under [globals] is what you will want to pay the most attention to. Here,
we are setting a variable named VMBASE that will contain the value of our
mailboxes. In this configuration, we are creating a range of extensions that
will map into a range of voice mailboxes. At this point, that range is 80008999
(8XXX). If this does not match what you have or need, change it now, as we will
be using this variable throughout this hack.

Underneath [default], we are telling Asterisk to include the separate section
[vmserv]. We are also defining what to do when a call goes to an invalid
extension or times out: hang up on them!

The [vmserv] context is where the magic happens. We are using the variable
${VMBASE} to create a range of extensions. We are also telling Asterisk that when
we get a call for one of those extensions, we should put that call into the voice
mailbox of that extension, which has the same number. We will play back the
unavailable greeting from that mailbox and hang up on the caller when he is
finished leaving a message.

So how do we retrieve these voicemails? Simple; all you have to do is call into
the Asterisk system and add a 9 before your mailbox number. So if your
mailbox number is 8000, extension 8000 will allow callers to leave a message
in mailbox 8000. To check mailbox 8000, you will call extension 98000. There
are many ways to do this, and I suggest that you look into Asterisk substrings
and extensions.conf to get a better idea. But for now, save extensions.conf
because we are done here.

7.10.1. Create the Voice Mailboxes

Now that we have told Asterisk what to do with incoming calls, we need to tell
Asterisk what voice mailboxes we want. The voicemail application is configured
with the fileyou guessed itvoicemail.conf. As we did before, open it with vi or
the web editor.

In the [general] section, uncomment forcename=no and set it to forcename= yes. This
option enables Asterisk to force a new user to record his real name when he
first accesses his voicemail. Asterisk determines whether a user is new by his
PIN. If his PIN and voice mailbox are identical, Asterisk will guide him through
setting up his voice mailbox. Scroll down to the bottom of voicemail.conf, and

create a new section that looks like this:

 [vmserv]
 8000 => 8000,Lisa Hayes,lisa@rt.com
 8001 => 8001,Rick Hunter,rick@rt.com
 8002 => 8002,Lynn Minmei,lynn@rt.com
 8003 => 8003,Max Sterling,max@rt.com
 8004 => 8004,Miriya Sterling,miriya@rt.com

Here, you are creating five voice mailboxes for a fictional group of five folks.
The fields in voicemail.conf map out like so:

 mailbox number => PIN,Real Name,E-mail address

There are many more options, but you will have to dig deeper into Asterisk on
your own time to discover them. You have only 30 minutes to get this done for
me to be true to the title of this hack!

Now, all that remains is actually creating the directory structure for the
mailboxes. AstLinux includes the addmailbox script from the contrib/scripts
directory of the Asterisk source code. It is extremely easy to use and will do all
the work for you based on your input. At a shell prompt, simply type addmailbox
to get started. It will ask you for the voicemail context. Enter vmserv. It will
then ask you for the mailbox number. Enter 8000. Congratulations! You just
gave Lisa Hayes a mailbox. To create mailboxes for the rest of the users,
simply rerun addmailbox, replacing 8000 with 8001, 8002, and so on.

7.10.2. Final Setup

If you would like to use the voicemail-to-email functionality provided by
Asterisk and AstLinux, you will need to edit the /etc/rc.conf file and fill in the
variable SMTP_SERVER with the IP address or hostname of an SMTP server that will
relay mail for your Asterisk server. If you are delivering email to only one
domain name, you can use the SMTP server for that domain name, as it will
accept mail for it from any system. After making any other configuration
changes, you will want to reboot your server to verify its configuration.

Now, how are you going to get your callers into this system? If you have a SIP

platform, you simply need to send the callers into the PBX with a simple SIP
URL, such as 8000@<IPAddress of Asterisk server>. This SIP URL will put the
caller into Lisa Hayes's mailbox.

If you are using PSTN hardware (POTS/T1/E1/etc.), you are going to need to
set up Zaptel and Zapata [Hack #44]. The same principles as before still
apply; just make sure that you are sending callers into the default context
when they ring in on Asterisk's Zaptel channels. And there you have it: a
state-of-the-art voicemail system using all open source components, done in
30 minutes or less.

Kristian Kielhofner

Hack 97. Automate Your Voicemail Greeting

Use an AGI script with Asterisk to update your voicemail greeting
automatically.

In the business world, people often update their voicemail greeting on a daily
basis. For example, you might call a co-worker and be greeted with "You've
reached the desk of Bob Smith. Today is Tuesday, August 16, and I am in the
office today." You can imagine Bob's routine when he gets into the office in the
morning: he verifies the current date, rehearses his new message a couple of
times, and then calls into his voicemail and updates it. He probably stumbles
over the words a couple of times, so he probably has to start over at least
once.

This takes far more effort and time than I am willing to commit just to update
the current date in my voicemail greeting. I've got more fun things to work on
than that! Here's how you can use an AGI script with Asterisk and some home
automation to keep your voicemail greeting up to date automatically, without
lifting a finger.

7.11.1. Create the Sound Files

You can always use Asterisk's built-in text-to-speech engine to speak your
message for you, but that is a little too cold. Instead, with a little work, you
can have Asterisk play the appropriate sound files that you've recorded with
your own voice. I used the sound recorder that comes with Windows to record
several sounds: one for each day of the week (wday1.wav for Monday,
wday2.wav for Tuesday, etc.); one for each month of the year (month1.wav
for January, month2.wav for February, etc.); and one for each day of the
month (1.wav for the first, 2.wav for the second, etc.). You'll also want to
record a beginning for your greeting, and two different endings, one for when
you're in the office and one for when you are out. I named these files
start.wav, endnormal.wav, and endooo.wav.

When speaking these months and days, you might be surprised how difficult it is to get
the words to flow together without sounding choppy. I finally started saying an entire date
and then cropping the file at the appropriate place to get it to flow better when Asterisk
plays it.

By default, Asterisk doesn't have a codec to play .wav files. Instead of
installing a new codec, you can use the SoX sound converter [Hack #24]
(http://sox.sourceforge.net/) to convert the files into the .gsm format that
Asterisk can play with its default installation. Use the following command to
convert a .wav file into a .gsm file:

$ sox foo.wav -r 8000 foo.gsm resample ql

After you've converted all your sound files, create a directory called vm-
sounds in /var/lib/asterisk/sounds and copy the files into it.

7.11.2. Motion Detection Code

I set up a motion detector right under my desk in my office. I use an excellent
home automation package called MisterHouse (http://www.misterhouse.net) to
monitor the motion detector. I know that if there is no motion in my office
between 8 a.m. and 9 a.m., I am probably not going to be in the office that
day. Here's the code file I give to MisterHouse to write a file if I'm in the office
between those times:

 $office_movement = new X10_Item('A1'); # A1 is the X10 code

 my $office_presence_start = "8:00 AM";

 my $office_presence_end = "9:00 AM";
 my $office_presence_file = "office.presence.txt";

 if (time_now($office_presence_start)) {
 # reset the file
 unlink $office_presence_file;
 }

 if (state_now $office_movement eq ON
 and time_greater_than($office_presence_start)
 and time_less_than($office_presence_end)) {
 open PRESENCE, ">$office_presence_file";
 print PRESENCE time();
 close PRESENCE;

http://sox.sourceforge.net/
http://www.misterhouse.net

 }

Save the previous code in a file and place it in the MisterHouse code directory.
You'll need to reload MisterHouse to have it start using your code.

7.11.3. Dialing Greeting Code

Here is the code I use to control the creation of my dialing greeting. Note that
it requires the Asterisk::AGI Perl module:

 #!/usr/bin/perl
 use strict;
 use Asterisk::AGI;

 my ($sec,$min,$hour,$mday,$mon,
 $year,$wday,$yday,$isdst) = localtime(time);
 my $yyyymmdd = sprintf ("%04d%02d%02d",$year+1900,$mon+1,$mday);
 my $month = $mon + 1;

 my $vm_sound_dir = "vm-sounds";
 my $office_presence_file = "/path/to/file/office.presence.txt";

 my $AGI = Asterisk::AGI->new;
 my %input = $AGI->ReadParse;

 my $greeting_start = "start";
 my $greeting_end_in_office = "endnormal";
 my $greeting_end_out_of_office = "endooo";
 my $weekday_sound = "wday" . $wday;
 my $mday_sound = $mday;
 my $month_sound = "month" . $month;

 my @files_to_play = ();
 push @files_to_play, $greeting_start;
 push @files_to_play, $weekday_sound;
 push @files_to_play, $month_sound;
 push @files_to_play, $mday;

 if (-e $office_presence_file or $hour == 8) {
 push @files_to_play, $greeting_end_in_office;

 } else {
 push @files_to_play, $greeting_end_out_of_office;
 }

 foreach my $sound (@files_to_play) {
 $AGI->verbose("Playing sound $sound");
 $AGI->stream_file("$vm_sound_dir/$sound");
 }

Save the code to a file named vmautomate.pl and place it in the
/var/lib/asterisk/agi-bin directory. Add the following lines to your
extensions.conf file, where 8001 is your extension and 100 is your voice mailbox
number:

 exten => 8001,1,Dial(SIP/8001,20,rt)
 exten => 8001,2,AGI(vmautomate.pl)
 exten => 8001,3,Voicemail,100

After you reload Asterisk, when you call your extension, your phone will ring
for 20 seconds and then the AGI script will run. Depending on the time of the
day and the presence of $office_presence_file, you should hear the appropriate
greeting. You should replace your "regular" voicemail greeting with the default
greeting so that it flows properly once it reaches the Voicemail directive.

It doesn't take long to imagine some cool functionality with AGI scripts. For
example, you can take this a step further and have an AGI script that reads
your calendar that you've published with iCal to see whether you're scheduled
to be out of the office that day. You can even have Asterisk announce to a
caller when you have free time during that particular day and suggest that the
caller try back then.

Dave Mabe

Hack 98. Connect Asterisk to the Skype Network

They said it couldn't be done without the Skype API. They were wrong.

Wouldn't it be great if your Asterisk server could place calls to (and receive
calls from) the Skype network? Imagine the possibilities: putting your Skype
buddy list within reach of the Asterisk dial plan so that all your calls can be
routed to the appropriate Skype buddy depending on what you dial on your
Asterisk-connected phone. Well, that dream is now a realitywith a few gotchas.

The first gotcha is that you'll need to use a little bit of legacy technology
(FXO/FXS interfacing) to set up the connection. The second gotcha is that
you'll need a Windows PC sitting next to your trusty Asterisk server, and that
Windows PC will need to have Skype running and an Internet Phone Wizard
USB interface attached. The final gotcha is that the Internet Phone Wizard
must already have speed-dial numbers associated with the members of your
Skype buddy list [Hack #40]. You would need this anyway if you were going
to use the Internet Phone Wizard for its intended purpose: connecting a
traditional analog phone to the Skype network via a Skype client on the USB
host PC.

Connect a standard RJ11 phone cord from the telephone jack on the Internet
Phone Wizard to an FXO port on your Asterisk box. This FXO port can be on a
Digium TDM400P, a Digium X100P, or a Sangoma WANPIPE PCI card (several
examples for setting up the TDM400P are given in Chapter 4). Configure the
Zaptel channel for this FXO port as you normally would if you wanted to
connect the Asterisk server to a standard phone line. (The standard phone line
is going to be substituted by the connection from the Internet Phone Wizard.)

Next, you'll need to add your Internet Phone Wizard speed-dial numbers to
your Asterisk dial plan so that they'll be dialed via the Zaptel FXO channel.
(Remember, I'm assuming you've already set up your speed-dial numbers on
Skype using the Internet Phone Wizard, so if you haven't, flip back to "Skype
with Your Home Phone" [Hack #40].) In the default Asterisk context for the
phone you're going to be calling from, add something like this:

 Exten => 71,1,Dial(Zap/1/71)
 Exten => 72,2,Dial(Zap/1/72)
 Exten => 73,3,Dial(Zap/1/73)

If you had buddies with speed-dial numbers of 71, 72, and 73, the Asterisk
server would attempt to call them on Skype via the connected Internet Phone
Wizard. Of course, all the Asterisk box sees is the Zaptel interface. To be even
slicker, you can assign an entire range of numbers to be used for Skype
purposes. Here, I've set aside 80 through 89. The dial plan will always dial
these extensions on the Zaptel interface, passing the extension number
through to the Internet Phone Wizard as dialed digits:

 exten => 8X,1,Dial(Zap/1/${EXTEN})

To get calls from Skype routed into your Asterisk dial plan, all you need to do
is modify the default context of the Zaptel channel you've used to connect the
Internet Phone Wizard. Refer to "Connect a Legacy Phone Line Using Zaptel"
[Hack #44] for an example that points out how to do this. Now, if you really
want to get fancy with Asterisk and Skype, check out the next hack.

Hack 99. Forward Your Home Phone Calls to Skype

For those times when you really, really need to stay in touch.

This is just plain cool. If you've come this far with Asterisk and the Internet
Phone Wizard, you've unlocked a world of wicked-cool hack potential. To get
you primed for your journey to Aster-Skype hackatopia, let me show a very
simple dial-plan modification that will simultaneously ring your incoming
phone calls on your locally connected phones as well as on your Skype phone.
In /etc/asterisk/extensions.conf, consider the following:

 exten => s,1,Dial(SIP/100&SIP/200)

This extension will dial the two phones connected on SIP peers 100 and 200,
and connect the call to whichever peer answers first. But let's say an Internet
Phone Wizard is connected to channel Zap/2 [Hack #98]. Now, you can
actually dial those two phones and a Skype speed-dial alias from your buddy
list:

 exten => s,1,Dial(SIP/100&SIP/200&Zap/2/99)

Now, whoever is associated with speed-dial number 99 in your Skype buddy
list will also receive a call (through the Skype network), courtesy of the
Internet Phone Wizard that you've hooked up to a Zaptel FXO port (Zap/2) on
the Asterisk machine. So, if this was your default context for incoming calls
from your home phone line (connected to Asterisk via another channel), your
incoming home phone calls would also ring on the Skype client that was logged
in as the buddy in your list.

Ideally, this buddy is a second Skype account you've set up, because Skype
doesn't let you "call yourself." So, I would set up Ted1 and Ted2 as Skype
buddy names and then have the Internet Phone Wizard's Skype client log in as
Ted2, while I go about my normal business logging in as Ted1. In essence, my
home phone calls will be forwarded from Skype user Ted2 to Skype user Ted1.

Hack 100. Get Started with sipX

Asterisk, like Cisco CallManager and other softPBX platforms,
implements SIP as a method of supporting SIP phones and trunks, but
does not employ the SIP design philosophy. Yet SIP and SIP alone can
replace your entire PBX system. Enter sipX.

Like Asterisk, the sipX project implements a call-management server for Linux,
implements a voicemail server with message-waiting indicators, and allows
you to build a voice network of SIP phones. Unlike Asterisk, sipX does it
exclusively using SIP. This means that external interface gateways must be
used to communicate between sipX and non-SIP networks (the PSTN, H.323,
etc.). In a minute, at least if you follow this little outline, you'll be installing
sipXpbx, a comprehensive SIP PBX server.

SipXpbx brings some cool functionality to the table, including a built-in web-
based administration tool, two SIP softphones (sipXPhone and sipXez-Phone),
and a suite of interoperability testing tools. Awesome stuff! Perhaps most
important, sipX implements the following components of a SIP network
according to the official IETF SIP specifications (unlike Asterisk, which only
implements certain parts of a SIP network):

Registrar

A SIP server that keeps track of SIP clients by tracking the IP addresses
where they're located and the usernames associated with each
registration; a directory of active SIP clients, if you will

Proxy

A server that relays SIP messages and media streams between disparate
networks

Client

A user agent that uses SIP for telephony, text messaging, voice chat, or

some other media applications

7.14.1. sipX's Requirements

sipX runs on Linux. There's presently some limited support for BSD, but
Windows and Mac users, at least for the moment, are out of luck. An installer
is available for Fedora Core 3, a distribution of Linux put forth by Red Hat. In
fact, Fedora Core 3 is an ideal environment for sipX; 256 MB of RAM and 500
MB of available disk space are plenty for setting up a sipX test lab.

When setting up Linux for sipX, be sure to install the PostgreSQL database as
well as the Apache Web Server, both of which sipX utilizes.

7.14.2. Install sipXpbx

Get logged on to your target machine as root. I'm going to assume that you're
running Fedora Core 3. For other distributions, such as Fedora Core 2 and
Gentoo Linux, see the official sipX compatibility list at
http://www.sipfoundry.org/. First, download and run the sipX Fedora Core 3
install script:

wget http://www.sipfoundry.org/pub/sipX/sipXpbx-2.8.1-fc3.sh .
 # sh ./sipXpbx-2.8.1-fc3.sh

When prompted by the script, answer y and be sure to enter a password for
the sipxchange user that the script creates. That's all there is to installing sipXpbx.

Next, you've got to generate an SSL certificate for sipX to use:

mkdir $HOME/sslkeys
 # cd $HOME/sslkeys
 # /usr/bin/ssl-cert/gen-ssl-keys.sh
 # /usr/bin/ssl-cert/install-cert.sh server-01
 # /usr/bin/ssl-cert/install-ssl-keystore.sh server-01

Use the default password of changeit, and answer yes when the script asks
whether you trust the certificate.

http://www.sipfoundry.org/

7.14.3. Launch sipXpbx

Starting and stopping sipXpbx is a snap. Use the service command like this to
start sipX, and replace start with stop to stop it:

service sipxpbx start

If sipXpbx complains about HTTPD syntax errors the first time you try to
launch it, just give your Fedora machine a reboot.

7.14.4. Finish sipXpbx Setup by Web Interface

sipX uses the JBOSS application server as the foundation of its excellent web-
based GUI. To access the web-based site installation wizard in your web
browser, visit the following URL, replacing sipx.your.domain with the address of your
sipX server:

 http://sipx.your.domain:8080/pds/ui/install/install.jsp

On the web page that appears, enter installer as the username and password as
the password. Then click continue, and you'll be greeted by the sipX
Configuration Server, as shown in Figure 7-7.

Here, you'll want to enter your friendly organization name, your server's DNS
domain name, a simple authentication realm name (of your own choosing),
and an alphanumeric PIN that will later serve as your administrator password
on sipX. Click Submit, and after a few moments, you should be looking at the
standard login prompt.

Use the username superadmin and the password you established on the PIN
prompt in the preceding page. Click Submit, and watch as sipXconfig loads the
administrative GUI.

This is where extra RAM and a fast processor will really come in handy. Unlike
Asterisk and the Asterisk Management Portal, which use Perl and PHP and run
swiftly on a minimally configured machine, sipXconfig is a highly sophisticated
set of Java applications that really call for heavy-duty server hardware. A

Pentium 4 PC with at least 512 MB of RAM should be sufficient to run
sipXconfig at an acceptable pace.

Figure 7-7. sipX's initial configuration screen

7.14.5. Register for the Administration Guide

To expand your sipX prowess beyond installation, you should get your eyes on
the sipX Administration Guide. But to do this, you've got register with the chief
commercial sponsor of the sipX project, Pingtel. The URL for registration is
https://secure.pingtel.com/registration/registerUser.jsp.

https://secure.pingtel.com/registration/registerUser.jsp

Colophon
Our look is the result of reader comments, our own experimentation, and
feedback from distribution channels. Distinctive covers complement our
distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The tool on the cover of VoIP Hacks is a Morse code tapper. Also known as a
telegraph key, this electrical switching device is used to send Morse code over
electrical wires.

The old-school variety of telegraph key, glamorized in many classic films, was
the straight key, a simple contraption fashioned from a bar with a knob
fastened atop one end. When the knob was depressed, the bar completed an
electrical circuit, and current flowed through the telegraph wires. By rapidly
forming and breaking this circuit, telegraphers could transmit a series of
signals, conventionally known as "dits" and "dahs" (or, more colloquially,
"dots" and "dashes"), which spurred an electromagnet on the receiving end to
produce clicking noises that could be recorded to paper tape or deciphered
directly by skilled operators.

Unfortunately, design constraints of the straight key limited its transmission
capabilities to a mere 20 words per minute. Additionally, the vigorous "brass
pounding" required of early telegraphers sometimes led to a repetitive stress
injury called glass arm, known today as carpal tunnel syndrome.

Sanders Kleinfeld was the production editor, and Audrey Doyle was the
copyeditor for VoIP Hacks. Sanders Kleinfeld proofread the book. Philip
Dangler and Claire Cloutier provided quality control. Ellen Troutman Zaig
wrote the index.

Marcia Friedman designed the cover of this book, based on a series design by
Edie Freedman. The cover image is from the Classic Business Equipment CD in
the Classic Photographic Image Object Library. Linda Palo produced the cover
layout with Adobe InDesign CS using Adobe's Helvetica Neue and ITC
Garamond fonts.

David Futato designed the interior layout. This book was converted by Keith
Fahlgren from Microsoft Word to Adobe FrameMaker 5.5.6 using open source
XML technologies. The text font is Linotype Birka; the heading font is Adobe
Helvetica Neue Condensed; and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert
Romano, Jessamyn Read, and Lesley Borash using Macromedia FreeHand MX
and Adobe Photoshop CS. This colophon was written by Sanders Kleinfeld.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

3Com's 48-volt IntelliJack switch converter
3D Avatar Messenger
8-bit pulse code modulation formats
802.1p
 support by standalone Ethernet switches
802.1p precedence tagging
 checking support with pathping
802.3af standard for inline power
8x8 Inc.'s DTA-310
911 emergency service 2nd 3rd 4th 5th
 compromise solutions
 problems with VoIP emergency dialing
 TSPs and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

access signaling by analog devices
access signaling protocol (SIP)
ACK method (SIP) 2nd
Actiontec Internet Phone Wizard
Address Book 2nd 3rd
ADSL subscribers using Linux
aLaw encoding
Ambrosia Software
 Snapz Pro X
 WireTap Pro
AMP (Asterisk Management Portal) 2nd 3rd 4th
 configuring MySQL database
 downloading and installing
 Perl modules
 running install script
 setup process
 software prerequisites
analog modems
analog phones and phone lines
analog telephones
 connecting to Asterisk server
 connecting to SPA-2000 ATA
 hooking up to Skype network 2nd
 placing and receiving calls via the Internet
animated
Answering Machine 2nd 3rd 4th
 rotating greetings with Windows
AOL Instant Messenger (AIM)

Apache
 use by AMP web-based GUI
Apple
 AirPort Express
 Mac mini 2nd 3rd 4th
Apple iChat
AppleScript
 caller ID for Phlink
 calling Address Book contacts with SKype 2nd 3rd
application-based QoS
ARP (Address Resolution Protocol)
ARP poisoning 2nd
Asterisk 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st 32nd
33rd 34th 35th 36th 37th 38th 39th 40th 41st 42nd 43rd 44th 45th 46th 47th
48th 49th 50th 51st 52nd
 attaching SIP phone 2nd
 connecting legacy phone line using Zaptel 2nd
 connecting PSTN phone line using Sipura SPA-3000 ATA 2nd
 connecting standard phone line using FXO gateway 2nd
 connecting telephony devices to
 connecting to Skype network
 dial plan
 commands
 for PBXs linked over the Internet
 Monitor command
 routing Skype calls to
 faxes 2nd 3rd
 forwarding home calls to your cell phone 2nd
 four-line phone server 2nd 3rd 4th 5th
 getting daily weather forecast
 installing and testing server on Linux PC 2nd 3rd 4th
 integrating X10 controls with phone system 2nd

 LDAP client
 linking servers with PSTN 2nd
 configuration
 Mac mini PBX
 monitoring from Perl scripts 2nd
 music-on-hold 2nd 3rd
 PrivacyManager
 recording calls 2nd
 reporting telephone activity with Excel
 routing calls with distinctive ring 2nd 3rd
 software components for Linux
 teaching Asterisk box to speak 2nd 3rd 4th
 tuning up logs
 voicemail greeting updates 2nd 3rd 4th
 voicemail server
 web-based administration interface 2nd
asterisk (modular software daemon)
Asterisk Gateway Interface
Asterisk Manager API
 commands
asterisk-perl module
 Asterisk Manager example
Asterisk::AGI Perl module
Asterisk::Manager class
AstLinux 2nd 3rd 4th 5th 6th 7th
 addmailbox script
 current features
 hardware requirements
 installing from CD-ROM
 installing from Linux
 installing from Windows
 keydisk

 PBX-only mode
AstShape Provider script 2nd
AstShape script 2nd 3rd 4th
ATAs (analog telephone adapters)
 automatic registration with VoIP service provider
 choosing your own
 connecting analog phones to Mac mini PBX
 connecting to your network
 connection to modular phone jack 2nd
 keeping firmware up to date 2nd
 listing of ATAs that provide
 media gateway
 number of phones connected
 placement of
 providing dial tone to your analog phones
 Sipura SPA-3000
audio chat 2nd
audio fidelity
Audio Hijack
Audio Voice Cloak
auditing for VoIP network
 QoS (Quality of Service)
 using traceroute
authentication
Authentication ID
Authorization User setting (X-Lite)
auto-attendant for calls (Call Soft Pro)
automatic call answering
automatic ring-through 2nd
Avantlook
avatars (buddy icons)
Away

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

base stations (extended range) for wireless LANs
bat phone (automatic ring-through) 2nd 3rd 4th
Bring Your Own Device (BYOD) service agreement
broadband router 2nd
broadband routing in ATAs
broadband VoIP service
BroadVoice
 support of configurable softphones
 web-based tool to place and manipulate calls
Broadvox Direct VoIP service
 web-based toolset to configure find-me-follow-me call list
buddy list (Skype)
BudgeTone 101 IP phone 2nd 3rd 4th
Busy
BYE method (SIP)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

cable modems
cables
 connecting ATA to your network
 RJ11-equipped telephone patch cable
Cacophony (sound-editing tool)
 using in podcasting
Cain & Abel 2nd 3rd 4th
 ARP poisioning used to intercept call 2nd
call detail records (CDRs) 2nd 3rd 4th 5th 6th
call events
call forwarding
 from phone company lines to Asterisk server
 home phone calls to Skype
 home phone calls to your cell phone 2nd
call quality 2nd 3rd 4th
call sniffer/recorder
Call Soft Pro application
call-out credits (Gizmo)
Call411 application
caller ID
 controlling for Asterisk PBX when using PSTN trunks
 having Asterisk server to announce
 identifying calls without
 in Phlink AppleScripts
 pop-up caller ID notification (Phlink)
 prompting user to enter
 Windows software for

calls
 handling with Windows software 2nd 3rd 4th
 recording VoIP calls on Windows PC
 recording VoIP calls with Gizmo
CDRs (call detail records) 2nd 3rd
cell phones
 using for 911 service
CG-200 and CG-400 media gateways
channel bank 2nd
channels
 FXO 2nd
 legacy interface ports on TDM400P card
chorus effect (SoX)
Cisco IP phones
 customizing boot logo
 powering with standard inline power
Cisco switches
classes
Click-2-Call (Vonage)
clients 2nd
 communication protocols
 comparison of features and compatibility
 Gizmo
 H.323 clients
 IAX (Inter-Asterisk Exchange)
 understanding features
Clipcomm CG-200 and CG-400 media gateways
CM15A controller
codecs
 compatibility for SIP phones 2nd 3rd 4th 5th
 G.711
 PreferredCodec SIP setting
 processor power and

 selection
 supported by Uniden IP phone
command line interface (CLI)
command-line interface (CLI)
CompactFlash-based PC 2nd 3rd
compatibility
compression
compromise solutions
 911 emergency service
 POTS line
 speed dialing with VoIP device
 emergency 911 service
 POTS line
conference calls
 Skype
 Skype users
 TSP policies on
congestion
 signaled by Asterisk
 source of jitter and latency
connecting telephony devices to
 Asterisk
 FXO or FXS interfaces
 T1
Contact header
contact search
contexts (Asterisk)
 dialing out on legacy phone lines connected to Asterisk PBX
 editing for TDM400P-connected phone lines
 incoming
CounterPath
 web site
country codes for international calls

credentials
cron utility
curl utility 2nd
 required for AMP
currency conversions
CVS repository for Asterisk (at Digium)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Dashboard widget system (Apple)
Dataprobe AutoPAL
date format for Asterisk logs
demarc (telephone company entry point)
 disconnecting wires from phone company
desktop telephony 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
16th 17th 18th 19th 20th 21st 22nd 23rd 24th
 Audio Voice Cloak
 choosing VoIP client 2nd 3rd 4th
 creating telephony sounds with SoX
 getting info with Google
 Gizmo Project
 Mac 2nd 3rd 4th 5th 6th
 recording audio chat on Mac 2nd 3rd
 tracking Vonage account info 2nd 3rd
 VoIP 2nd 3rd
DHCP
 IP address assignment to ATAs
 problems with changes in dynamic IP addresses
 turning off for BudgeTone IP phone
DHCP server 2nd
Dial command
dial plan
 Asterisk
 Sipura ATA 2nd 3rd
dialing by IP address
dialing shortcuts for pure VoIP 2nd

DIDs
DiffServ (QoS mechanism) 2nd
digital telecommunications (T1)
digital telephones
Digium
 TDM400P card 2nd
Direct Inward Dial
DirectX
Display Name setting (X-Lite)
distinctive ring 2nd 3rd 4th
dmesg command
DNS Address setting for TSP provider (X-Lite)
DNS records for Asterisk servers
DNS server
 Grandstream BudgeTone IP phone
 Uniden IP phone
Do Not Call Registry
Domain/Realm setting (X-Lite)
downsampling
 recordings of audio chats
dropped packets
DSL
 avoiding accidental disconnection
 voice traffic over
dynamic IP addresses

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

echo
 on Ventrilo voice chat system
 with softphones
echo command output
echo test service
effects
eight-wire CAT5 patch cable with two RJ45 connectors
electrical damage to the ATA from phone-company lines
email
 routing faxes into
 voicemail-to-email functionality
email integration
emergency 911 calls
emergency 911 service 2nd 3rd
emoticons 2nd
 adding sound and video emoticons
 real-time video
encodings
 mixed voice and music file for announcement
equalization
 SoX effect
 voice chat tools
Ethereal 2nd 3rd 4th 5th 6th 7th 8th
 capturing failed capabilities negotiation
 capturing successful capabilities negotiation
 observing SIP registration
 SIP registration failure

 sniffing out jittery calls 2nd 3rd
Ethernet connections
Ethernet interface
Ethernet port
Ethernet switches
 ToS feature
euros
extended-range base station for wireless LAN
extensions.conf file
 context for SIP phones dialing out on Asterisk PBX with legacy phone lines
 context section
 dial plan for SIP peer incoming context
extra features
 Gizmo Project
 Map It
 Record It

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

fast-busy
fax calls
fax machine
 turning Linux box into 2nd 3rd
 using analog modems over traditional phone lines
fax-receiving support for AMP
fax/modem card
faxes 2nd
Festival (speech synthesizer) 2nd 3rd
 reading weather report
Festoon
FIFO (first in
file format conversion (sound files)
find-me-follow-me call list
Firefly
 support for SIP and IAX
firewall functions in ATAs
firewalls
 IAX and
 NAT
 NetFilter 2nd 3rd
 optimizing local firewall on softPBX
 SIP and
Flash storage device
forums
four-line phone server
 Asterisk
 setting up incoming calls

 setting up outgoing calls
four-wire patch cable with two RJ11 connectors
FWD (Free World Dialup)
FXO (foreign exchange office)
 channel
 Digium X100P FXO card
 gateway connecting phone line to Asterisk 2nd 3rd 4th
 gateway device connecting analog phones to Mac mini PBX
 interface card 2nd
 modifying FXO channel for pulse dialing
 modules on TDM400P card
FXS (foreign exchange station)
 Digium IAXy FXS gateway
 interfaces

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

G.711 codec
games
GarageBand
gateways
Gauge It (Gizmo Project)
genkd script
Gizmo Project 2nd 3rd 4th 5th 6th
 conferencing limitations
 downloading and installing client
 extra features
 placing a call
 support for SIP
Global System for Mobile
GnoPhone 2nd
GNU Gatekeeper (gnugk)
GnuGK
Google
 images
Google Groups
Google Talk
GotoIf command
Gotta Go widget
Grandstream BudgeTone
 making IP-to-IP phone calls 2nd
 mounting on the wall
Grandstream IP phones 2nd 3rd
graphical user interfaces (GUIs)
 Asterisk

 web-based sipX GUI
graphing jitter and latency data (RRDtool) 2nd
greeting messages
 different message each day
 mixing different sound files for
 voicemail 2nd
greeting script 2nd
GSM (Global System for Mobile) codec 2nd 3rd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

H.323 softphone
 SIP
H.323 standard
 building H.323 gatekeeper using OpenH323 2nd 3rd 4th 5th
 VoIP clients
Hangup command
hangup script
hardening a server
 cleaning up xinetd
 removing unnecessary software
hardware 2nd 3rd 4th
 configuring multiple IP phones at one time 2nd 3rd
 controlling house lights from IP phone 2nd
 creating a Zaptel interface card
 custom ringtone for Grandstream phone 2nd
 customizing Uniden IP phones from TFTP 2nd
 IP-to-IP phone calls with Grandstream BudgeTone 2nd 3rd
 recording calls from standard phone on a PC
 Sipura ATA 2nd 3rd
 using rotary-dial phone with VoIP 2nd
headers 2nd
headphones
high availability (telephony server)
high priority for voice media traffic
historical newsgroup search tool (Google Groups)
HotRecorder 2.0 for Windows
HP iPAQ hx4700 Pocket PC
HylaFAX

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

IAX (Inter-Asterisk Exchange) protocol 2nd
 register feature with dynamic IP addresses
 support by JAJAH
 used with legacy signaling on Asterisk PBX
 VoIP clients
IAXy FXS gateway
iChat
ICMP packets
ID3 library
iLife applications
images
IMTO: prefix
incompatible phones
inline power
inline recorder switches
installing and testing server on Linux PC
 Asterisk
 Linux-specific start and stop scripts
 starting and stopping server
instant messaging
 recording voice calls on Windows PC
 Skype instant messaging
integrating Skype into
 podcasting
 experimenting for perfect Skypecast
 Mac podcasting tools
 Windows podcasting tools
Intel 537EP chipset

Intel V.92 Data/Fax/Voice modem card
interactive voice response (IVR)
 Sipura ATA
interface cards
international calls
Internet
 routing calls over using pure VoIP dialing 2nd 3rd
 using to link several remote Asterisk PBXs 2nd 3rd 4th
Internet Phone Wizard 2nd 3rd
INVITE method (SIP) 2nd
IP addresses
 setting for Uniden IP phones
IP phones 2nd
 allowing to place calls via Asterisk
 configuration with TFTP 2nd 3rd
 configuring BudgeTone 101
 recording calls on your PC
 setting to use SIP server
IP Precedence
IP telephony
IP telephony access devices
IP-to-IP calling
 enabling for Uniden IP phone
iptables
 policy commands for kernel firewall
iTunes
 controlling from Phlink 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Jabber protocol
JAJAH
JavaScript
JBOSS application server
jitter
 buffer settings for Uniden IP phone
 network congestion as source of
jitter buffers
Journal feature (Outlook)
Jyve 2nd 3rd
 creating account
 HTML to embed Q-Card in your web page
 making a Skype buddy
 web browser plug-in

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Kewlstart signaling
 FXS (foreign exchange station)
 configuring for FXO interface card
Kewlstart signaling (FXS) 2nd
keydisk (AstLinux) 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

language setting
LARTC
latency 2nd
 graphing over time with RRDtool
 measuring on a route
LDAP inquiry to associate DIDs with email address 2nd 3rd
LDAPget package
libdnet library
libevent library
libpri module
libtiff
line number (Asterisk voice channel)
linking serveral PBXs over the Internet
 Asterisk
 adding remote locations
 configuring dial plan
Linksys BEFSR81 broadband router
Linux
 finding TFTP server
 NetFilter firewall 2nd 3rd
 PBX that communicates with the PSTN 2nd 3rd 4th 5th
 Skype
 turning into an Asterisk PBX
local public safety dispatcher
logging
 configuring for Asterisk
 VoIP traffic 2nd 3rd 4th 5th

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

MAC addresses
 Pocket PCs
Mac OS X
 installing vonageGauge
 podcasting tools
 recording videoconference with Snapz Pro X
 Skype 2nd
 Skype Events options dialog
 Soundflower
 widgets
Macintosh
 answering and logging your calls 2nd 3rd 4th 5th 6th 7th 8th 9th
 Asterisk server caller ID announcement using Say command
 building PBX with Mac mini 2nd 3rd
 SoX utility
MAD (MPEG Audio Decoder)
madplay command
Map It (Gizmo Project)
masquerading
Master.csv file
media gateways
methods (SIP)
mewencode command
microphones
 for Skypecasts
 voice communication with gaming
Microsoft Excel 2nd 3rd 4th 5th

MIME Construct package
MisterHouse
mixing sound files with SoX
modem card
modular phone jacks
 ATA connection to
Monitor dial-plan command
MP3s
 Asterisk music on hold
 editing for telephony with Cacophony
 recording on Windows PC
 streaming Internet radio station for music on hold
MPEG Audio Decoder (MAD)
Mpg123 player
music
 downsampling sound files for telephony
 mixing with spoken greeting message
music-on-hold
 Asterisk 2nd 3rd
 assigning different phones/lines to different music classes
musiconhold.conf file
MySQL
 CDR interface for Asterisk

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

NAT (Network Address Translation) exploring NAT traversal 2nd 3rd 4th 5th 6th
 STUN protocol
National Do Not Call Registry
National Oceanic and Atmospheric Administration (NOAA)
native Voice over IP
ncurses
Net::Telnet Perl module
NetFilter 2nd 3rd
NetMeeting
 registering H.323 endpoint 2nd
NOAA (National Oceanic and Atmospheric Administration)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

OhPhone 2nd
OhPhoneX
online forums
online gaming 2nd
OpenGK
OpenH323 2nd 3rd 4th 5th 6th
 downloading and compiling OpenH323 Gatekeeper (gnugk)
 installing
 software packages
OpenLDAP
OpenMCU
OpenSSL
operating system
OPTIONS method (SIP) 2nd
Outbound Proxy setting (X-Lite)
Outlook 2nd 3rd
Outlook contacts
Ovolab

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

packet interval
packet jitter
packets
 prioritizing to improve VoIP quality
panel discussion
Party Line (Gizmo Project)
Password setting (X-Lite)
pathping tool 2nd 3rd
PBXs
 Asterisk server supporting four legacy phones 2nd 3rd 4th 5th
 building Mac PBX
 linking several Asterisk PBXs over the Internet 2nd
PC expansion (PCI) cards
PC softphones
PCI interface cards
PCMA codec
PCMU codec
PDF file
peer-to-peer (P2P) network
peers
 configuring IAXy for use as
 SIP
Perl
 Grandstream-compatible ringtone script
 script investigating how SIP works
 script monitoring SIP hosts on VoIP system 2nd 3rd 4th
 script recording latency and jitter data
 scripts to monitor Asterisk PBX 2nd

Phlink 2nd 3rd 4th 5th 6th 7th 8th 9th
 caller IDs in AppleScripts
 controlling iTunes
 custom greetings
 greeting callers differently each day
 running when you are logged off
phone numbers
 searching for your own phone number
phone service
phone service providers
phone-company lines
phones
PhoneTray Dialup application
PhoneTray Free application
PHP
 modifying configuration files for AMP music-on-hold
ping utility
 latency measure
 measuring latency
pitch effect
Pivot Table Report (Excel) 2nd 3rd
plain old telephone service (POTS) line for 911 calls
Plug and Play (PnP)
Pocket PC
Pocket PC version of Skype
PocketSkype
podcasting
 integrating Skype into 2nd 3rd 4th
 Mac OS X tools for
Polycom IP500 phone
port (default) for SIP
port numbers
 used by VoIP applications
 VoIP
Port SPAN

port spanning
ports
 SipPort setting
 used for VoIP protocols
post-processing tools for podcasts
PostgreSQL database
POTS (Plain Old Telephone Service) line connecting to FXO interface card
power injector
power over Ethernet (PoE)
power supplies
PowerDsine
presence
primary rate interface (PRI)
prioritizing packets 2nd 3rd
 on Linksys broadband router
 received packets and
 RTP traffic
privacy check for your phone number
PrivacyManager command
proprietary signaling protocol
Provider DNS Address setting (X-Lite)
proxy servers 2nd
PSAP (Public Safety Answering Point)
PSTN (Public Switched Telephone Network)
 avoiding with pure VoIP dialing
 interface hardware
 interfacing your phone line with VoIP network 2nd 3rd
 linking Asterisk servers with
 dial-plan configuration 2nd
 Linux PBX that communicates with 2nd
 placing/receiving calls to and from Skype network
PSTNgw
Public Safety Answering Point (PSAP)
pulse dialing
 support by Digium IAXy FXS gateway

 support by Digium Wildcard TDM400
pure or native Voice over IP
pure VoIP
pure VoIP dialing between TSPs 2nd 3rd
PWLib libraries

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

QoS (Quality of Service)
 auditing for VoIP network 2nd 3rd 4th
 graphing latency and jitter
 using pathping 2nd 3rd
 DiffServ
 implementing where jitter originates
 improving by shaping network traffic 2nd 3rd 4th 5th 6th
 prioritizing some types of network traffic
 WAN interface for
quality of Internet connection to phone network (Gizmo)
quality of VoIP calls 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

radio broadcasting
RAID 5 disk array
rebooting the ATA
Record It (Gizmo Project)
recorder applications
recorder switches
recording
 a videoconference
 audio from VoIP conversations on Mac OS X
recording calls
 Asterisk 2nd
 audio chat on your Mac
 on your Windows PC
Recording Industry Association of America (RIAA)
recording software
redundant power supplies
Register setting (X-Lite)
registrar
registration 2nd
Rejection Hotline
remote phone jukebox
requests
residential-style
responses to SIP methods
restart commands (Asterisk)
reverb effect (SoX)
reversal effect (SoX)
RFC 3581
ring script

 pausing iTunes for calls
ringtones
 for Grandstream phone
Rogue Amoeba's Audio Hijack
root user account
rotary-dial phones
 for bat phone
RRDtool 2nd 3rd
RSVP (Resource Reservation Protocol) 2nd
 checking support with pathping
RTP (Real-time Transport Protocol)
 control of port numbers
 NAT and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

S518 ADSL board from Sangoma Technologies
SAM (Skype Answering Machine) 2nd 3rd
sample set of Asterisk configuration files
sampling resolution for phone calls
SaRP
Say command
Scheduled Tasks (Windows)
SDP (Session Description Protocol) 2nd 3rd 4th 5th
 inspecting successful capabilities negotiation
search engine
security
 Asterisk
 global VoIP trunks
 Skype network
 wireless LAN
sendmail
services (Cisco)
shift (pitch) effect
show application command
signaling
 FXO/FXS devices
 pulse signaling
signaling protocols
 Skype
Simple Mail Transfer Protocol (SMTP)
SIP (Session Initiation Protocol) 2nd
 calling a party without using SIP gateway or gatekeeper
 configuration of Uniden IP phone 2nd 3rd 4th 5th

 controlling port numbers
 default port
 examining SIP packets with Ethereal 2nd 3rd 4th 5th 6th 7th 8th
 firewalls and
 inspecting SIP message structure 2nd 3rd
 packet sent through router with SIP translation enabled
 poor NAT traversal capabilities
 use by VoIP clients
 X-Lite configuration settings 2nd 3rd 4th
SIP Express Router
SIP peers
 configuring for media gateway
 connected to the Asterisk server
SIP phone 2nd 3rd 4th 5th
 enabling IP phone to place calls via Asterisk 2nd 3rd
 testing Asterisk
SIP phones
SIP Proxy setting (X-Lite)
SIP Uniform Resource Indicator (URI)
sip.conf file
sip_ping.pl script
 recording latency and jitter data 2nd 3rd 4th
 server responding to host sending packet instead of host in Contact header
SIPphone Inc.
Sipura ATAs
 building a bat phone 2nd 3rd 4th
 tweaking
 dial plan 2nd 3rd
Sipura SPA-2000 ATA
Sipura SPA-3000 ATA 2nd 3rd
sipX 2nd 3rd 4th
 finishing sipXpbx setup by web interface
 implementation of components of a SIP network

 installing sipXpbx
 launching sipXpbx
 requirements
sipXphone
Skype 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st 32nd
 capabilities and limitations of
 contact search function
 custom rings and sounds
 download site
 emoticons 2nd
 how it works
 ignoring or ending calls
 integraging into podcasts 2nd 3rd
 Jyve social networking service 2nd 3rd
 Jyve web browser plug-in 2nd
 logging calls with Outlook Journal feature
 placing calls from Outlook 2nd
 putting Skype Me link on your web site or blog
 searching user directory for contacts
 security
 signaling protocol
 SkypeOut international calls
 using WiFi-enabled Pocket PC as portable phone
 using with gaming
 Voicemail service
Skype Me mode
Snapz Pro X
sniffing or capturing packets with Ethereal 2nd 3rd 4th 5th 6th 7th
Snom 200 SIP hardphone
softPBX 2nd
softphones
 echo

 recording conversations with WireTap
 using with a VoIP TSP 2nd 3rd 4th
 installing X-Lite 2nd 3rd 4th
sound codecs
sound emotes
sound files
 converting between formats with SoX
 converting with SoX
 creating for voicemail greetings
 uLaw
Sound Recorder
sound recorders
Soundflower 2nd
SourceForge
SoX (SOund eXchange) 2nd 3rd 4th 5th 6th
 adding sound effects
 converting .wav file to .gsm
 deepening your voice on greeting messages
 mixing recorded Asterisk calls
 resampling and re-leveling sounds
 sound-file format conversion
spandsp package 2nd
 sending faxes
speech guidelines for professional-sounding announcements
speech synthesis 2nd 3rd 4th
speed-dial service on Cisco IP phones 2nd 3rd
Speex codec
SSL support
stability (telephony server)
standalone Ethernet switches
standards
standards for signaling call events
station-to-station calls
stepper switch
stop commands (Asterisk)

streaming media devices
streaming MP3 radio station for music on hold
Strowger
STUN (Simple Traversal of UDP NATs) 2nd
 building STUN server
supernodes (Skype)
SVMTO: prefix
switches
syslog database file
System() command (Asterisk)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

T1
tail -f command
TCP/IP listeners
TCP/UDP port numbers
tcpdump 2nd 3rd
TDM (time division multiplexing)
 64Kbps PCM bitstream codecs that mimic
 dedicated time slots for calls
 interface cards
TDM400P card 2nd 3rd 4th
team voice chat system (Ventrilo)
Teamspeak (for gaming)
telemarketer calls 2nd
telephones
 analog phones
 wiring your house phones for VoIP 2nd 3rd
telephony hardware 2nd 3rd
telephony info
telephony server 2nd 3rd 4th 5th
 H.323 gatekeeper 2nd
 procesor power needed
 selecting and hardening an OS 2nd 3rd 4th
 three areas of focus
telephony-ready sound files
Telnet interface 2nd
text expressions for happiness and dissatisfaction
text message to answer Skype calls
text messages
TFTP Desktop

TFTP servers
 configuration files for IP phones
 IP phone configuration 2nd
 mass-configuring Uniden IP phones
 setting address for
 SIPDefaults.cnf file
TIFF file
tiff2ps utility 2nd
time division multiplexing (TDM)
time shifting effect (SoX)
Time::HiRes Perl module
TiVo boxes
ToS (Type of Service) 2nd
 using to prioritize class of voice traffic 2nd
TOSC
Total Recorder
 adjusting sound resolution and output format
Total Recorder Standard Edition
TR16A phone controller
traceroute 2nd
traditional phone service
traffic-shaping script (AstShape) 2nd 3rd 4th
transducer pickup
Trillian (instant-messaging client)
TSPs (telephony service providers)
 SIP proxies
 SIP-based
 using softphone with 2nd
tuning up logs
 Asterisk
 changing default storage location
 size of logfiles
tweaking
 Sipura ATAs

 configuration options via IVR
 top 10 options
 web interface
two-wire phone splitters
Type of Service (ToS) 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

UDP (User Datagram Protocol)
uLaw or aLaw encoding
uLaw sound file
Uniden IP phones
 mass configuring by TFTP
Unit Converter widget
Universal Currency Converter
Unix
Use Outbound Proxy setting (X-Lite)
User ID
User Name setting (X-Lite)
using with a VoIP TSP
 softphones
 differing policies
UTP Ethernet patch cable

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

V-Cards
V.92 PCI modem chip family
Ventrilo
verbose logging output (Asterisk)
Via header
vibrato effect (SoX)
video conference
video-on-Skype plug-ins
video4IM
visual emoticons
VLANs (Virtual LANs)
voice mailboxes
voice recording techniques
voice server 2nd 3rd 4th 5th 6th
 H.323 gatekeeper
voicemail
 Asterisk service
voicemail alternative for Skype
voicemail and auto-attendant (Call Soft Pro)
voicemail server (standalone) 2nd 3rd 4th
Voicemail service (Skype)
VoicePulse
 service to dump unwanted girlfriends or boyfriends
VoIP (Voice over IP)
 getting connected 2nd 3rd
 programming device to mimic 911
 telephony service providers
VoIP networks
 building PSTN gateway 2nd

 creating premium class of service 2nd 3rd 4th 5th
 intercepting and recording a VoIP call 2nd 3rd
 logging and recording VoIP streams 2nd 3rd
 logging VoIP traffic 2nd 3rd 4th 5th
 monitoring VoIP devices 2nd
 peeking inside SIP packets 2nd
 secretly recording calls
vomit (Voice over Misconfigured Internet Telephones) 2nd
Vonage
 911 service
 calls to Outlook contacts with one click
 vonageGauge widget
 X-PRO commerical counterpart of X-Lite
vonageGauge widget
 Vonage
 using

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

WAV files
 using as custom Skype ringtones
wcfxo.c file
wcfxs driver
wctdm driver
wctdm module
weather forecast
web browsers 2nd
web sites
 simplifying communication for visitors
 tracking visits from Jyve users
web-based call-management tools (BroadVoice)
web-based GUI
webcams for Skype real-time video
Weird Solutions
WEP (Wireless Encryption Protocol)
widgets 2nd 3rd
 Gotta Go
 installing Yahoo! Widgets
 vonageGauge
WiFi-enabled Pocket PC
Wildcard TDM400
Windows Mobile 2003
Windows systems
 call-handling software
 Messenger IM software
 podcasting tools
 Skype 2nd

 Skype Answering Machine (SAM)
 Skype Sound Alerts options dialog
 widgets
windump
Wireless Encryption Protocol (WEP)
wireless LAN
WireTap Pro
workgroup Ethernet switches

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

X-Lite softphone 2nd 3rd
 installing
 SIP configuration settings 2nd 3rd 4th
 making the call
 user manual
X-PRO (Vonage version of X-Lite)
X10 phone controller 2nd 3rd
X100P FXO card
XML files 2nd 3rd 4th

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Yahoo! Chat
Yahoo! Messenger
Yahoo! Widgets 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q]
[R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zapata.conf file
 distinctive ring
 settings of channels provided by TDM400P card
Zaptel driver framework (Asterisk) 2nd 3rd
Zaptel drivers
Zaptel interface cards
Zaptel interface channels
 configuring to detect distinctive signals
zaptel module 2nd
Zaptel-compliant interface cards
zaptel.conf file
Zoom 5567 (ATA)
ztcfg application
ztdummy driver

	VoIP Hacks
	Table of Contents
	Copyright
	Credits
	About the Author
	Contributors
	Acknowledgments

	Preface
	Why VoIP Hacks?
	How This Book Is Organized
	Using Code Examples

	Chapter 1.€ Broadband VoIP Services
	Section 1.1.€ Hacks 17: Introduction
	Section 1.2.€ VoIP-Based Phone Service Providers
	Hack€1.€Get Connected
	Hack€2.€Use Pure VoIP Dialing with Your TSP
	Hack€3.€Wire Your House Phones for VoIP
	Hack€4.€Use a Softphone with a VoIP TSP
	Hack€5.€Prioritize Packets to Improve Quality
	Hack€6.€Got 911?
	Hack€7.€Update Your VoIP ATA Firmware

	Chapter 2.€ Desktop Telephony
	Section 2.1.€ Hacks 827: Introduction
	Hack€8.€Access Next-Gen Voice Features
	Hack€9.€Track Vonage Account Info on Your Desktop
	Hack€10.€Pick a Desktop VoIP Client
	Hack€11.€Sound Like Darth Vader While You VoIP
	Hack€12.€Grow Your Social Network with Gizmo
	Hack€13.€Record VoIP Calls on Your Windows PC
	Hack€14.€Handle Calls with Windows Software
	Hack€15.€Let Your Mac Answer and Log Your Calls
	Hack€16.€Run Phlink Even When Logged Off
	Hack€17.€Greet Callers Differently Each Day
	Hack€18.€Use Caller IDs in AppleScripts
	Hack€19.€Control iTunes from Phlink
	Hack€20.€VoIP While Fragging
	Hack€21.€Google for Telephony Info
	Hack€22.€Telephonize a Sound File
	Hack€23.€Record an Audio Chat on Your Mac
	Hack€24.€Create Telephony Sounds with SoX
	Hack€25.€Mix the Perfect Announcement
	Hack€26.€Sound Like a Pro Announcer
	Hack€27.€Record a Videoconference

	Chapter 3.€ Skype and Skyping
	Section 3.1.€ Hacks 2840: Introduction
	Hack€28.€Get Skype and Make Some New Friends
	Hack€29.€Skype Your Outlook Contacts
	Hack€30.€Skype People from the OS X Address Book
	Hack€31.€Enable Site Visitors to Skype You
	Hack€32.€Speak Jyve
	Hack€33.€Teach Your Browser to Speak Jyve
	Hack€34.€Carry Skype in Your Pocket
	Hack€35.€Degunk International SkypeOut Calls
	Hack€36.€From Podcasting to Skypecasting
	Hack€37.€Answer Your Skype Calls, Even When You're Not Around
	Hack€38.€Use Custom Rings and Sounds with Skype
	Hack€39.€Emote by Sight and Sound with Skype
	Hack€40.€Skype with Your Home Phone

	Chapter 4.€ Asterisk
	Section 4.1.€ Hacks 4158: Introduction
	Hack€41.€Turn Your Linux Box into a PBX
	Hack€42.€Attach a SIP Phone to Asterisk
	Hack€43.€Connect a Phone Line Using an FXO Gateway
	Hack€44.€Connect a Legacy Phone Line Using Zaptel
	Hack€45.€Forward Your Home Calls to Your Cell Phone
	Hack€46.€Selectively Forward Calls
	Hack€47.€Report Telephone Activity with Excel
	Hack€48.€Kindly Introduce Telemarketers to Mr. Privacy
	Hack€49.€Build a Four-Line Phone Server
	Hack€50.€Master Music-on-Hold
	Hack€51.€Record Calls
	Hack€52.€Get Your Daily Weather Forecast from Your Telephone
	Hack€53.€Put a Happy Face on Asterisk Using AMP
	Hack€54.€Run Asterisk Without Root, for Security's Sake
	Hack€55.€Link Two Asterisk Servers with PSTN
	Hack€56.€Link Several PBXs over the Internet
	Hack€57.€Route Calls Using Distinctive Ring
	Hack€58.€Tune Up Your Asterisk Logs

	Chapter 5.€ Telephony Hardware Hacks
	Section 5.1.€ Hacks 5971: Introduction
	Hack€59.€Record Calls the Old-Fashioned Way
	Hack€60.€Make IP-to-IP Phone Calls with a Grandstream BudgeTone
	Hack€61.€Build a Custom Ringtone for Your Grandstream Phone
	Hack€62.€Tweak Your Sipura ATA
	Hack€63.€Build a Bat Phone
	Hack€64.€Brew Your Own Zaptel Interface Card
	Hack€65.€Build a Speed-Dial Service on Cisco IP Phones
	Hack€66.€Power Cisco Phones with Standard Inline Power
	Hack€67.€Customize Your Cisco IP Phone's Boot Logo
	Hack€68.€Configure Multiple IP Phones at One Time
	Hack€69.€Customize Uniden IP Phones from TFTP
	Hack€70.€Control the Lights Using Your IP Phone
	Hack€71.€Use a Rotary-Dial Phone with VoIP

	Chapter 6.€ Navigate the VoIP Network
	Section 6.1.€ Hacks 7287: Introduction
	Hack€72.€Monitor VoIP Devices
	Hack€73.€Inspect the SIP Message Structure
	Hack€74.€Audit a Network's QoS Capabilities
	Hack€75.€Graph Latency and Jitter
	Hack€76.€Explore NAT Traversal
	Hack€77.€Shape Network Traffic to Improve Quality of Service
	Hack€78.€Create a Premium Class of Service
	Hack€79.€Build a $100 PSTN Gateway in 10 Minutes or Less
	Hack€80.€Make IP Phone Configuration a Trivial Matter
	Hack€81.€Peek Inside of SIP Packets
	Hack€82.€Dig into SDP
	Hack€83.€Sniff Out Jittery Calls with Ethereal
	Hack€84.€Log VoIP Traffic
	Hack€85.€Secretly Record VoIP Calls
	Hack€86.€Log and Record VoIP Streams
	Hack€87.€Intercept and Record a VoIP Call

	Chapter 7.€ Hard-Core Voice
	Section 7.1.€ Hacks 88100: Introduction
	Hack€88.€Build a Killer Telephony Server
	Hack€89.€Build an H.323 Gatekeeper Using OpenH323
	Hack€90.€Turn Your Linux Box into a Fax Machine
	Hack€91.€Build an Inbound Fax-to-Email Gateway
	Hack€92.€Teach Your Asterisk Box to Speak
	Hack€93.€Build a Mac PBX
	Hack€94.€Monitor Asterisk from Your Perl Scripts
	Hack€95.€Build a SoftPBX with No Hard Drive
	Hack€96.€Build a Standalone Voicemail Server in Less Than a Half-Hour
	Hack€97.€Automate Your Voicemail Greeting
	Hack€98.€Connect Asterisk to the Skype Network
	Hack€99.€Forward Your Home Phone Calls to Skype
	Hack€100.€Get Started with sipX

	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

