

Richard Blum

Network Performance
Open Source Toolkit

Using Netperf, tcptrace,
NIST Net, and SSFNet

01 433012 FM.qxd 6/16/03 9:06 AM Page i

Executive Publisher: Robert Ipsen
Executive Editor: Carol Long
Assistant Developmental Editor: Adaobi Obi Tulton
Editorial Manager: Kathryn Malm
Managing Editor: Pamela M. Hanley
Text Design & Composition: Wiley Composition Services

This book is printed on acid-free paper. ∞

Copyright © 2003 by Richard Blum. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8700. Requests to the Pub-
lisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:
permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, inci-
dental, consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo, and related trade dress are trademarks or
registered trademarks of Wiley Publishing, Inc., in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of
their respective owners. Wiley Publishing, Inc., is not associated with any product or ven-
dor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-43301-2

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

01 433012 FM.qxd 6/16/03 9:06 AM Page ii

This book is dedicated to my grandmother, Margaret Gordon.
Sorry, grandma, it’s not a mystery novel—but then again,

in a way, maybe it is.

“Trust in the Lord with all your heart and lean not on your own
understanding; in all your ways acknowledge him,

and he will make your paths straight.”

Prov. 3:5-6 (NIV)

01 433012 FM.qxd 6/16/03 9:06 AM Page iii

01 433012 FM.qxd 6/16/03 9:06 AM Page iv

Acknowledgments xvii

Introduction xix

Part One Network Performance Primer 1

Chapter 1 Defining Network Performance 3
The Elements of Network Performance 4

Availability 4
Using Availability Statistics 5
Using Large Ping Packets 7

Response Time 8
Response-Time Factors 9
Determining Response Time from Ping Packets 9
Using traceroute for Redundant Paths 10

Network Utilization 11
Network Throughput 12
Bandwidth Capacity 14

Methods of Collecting Performance Data 15
Querying Network Devices 16

How Tools Query Devices 16
Values to Query 17

Watching Existing Traffic 18
Generating Test Traffic 19

Summary 20

Chapter 2 Watching Network Traffic 21
Catching All the Traffic 21

The libpcap Library 22
Downloading and Installing libpcap 22
Using libpcap 23

Contents

v

01 433012 FM.qxd 6/16/03 9:06 AM Page v

The winpcap Library 24
Downloading and Installing winpcap 24
Developing Applications with winpcap 25
Using winpcap 25

The tcpdump Program 25
Installing tcpdump 26

Linux RPM Installation 26
Downloading the Source Code 27

Using tcpdump 27
The WinDump Program 31

Downloading and Installing WinDump 31
Using WinDump 31

Filtering Packets with tcpdump and WinDump 33
The Analyzer Program 35
The Ethereal Program 37

Downloading and Installing Ethereal 38
Using Ethereal 38

Summary 40

Chapter 3 Network Device Utilization 41
The net-snmp Package 41

Downloading and Installing net-snmp 42
Using net-snmp Utilities 44

snmpget 45
snmpgetnext 46
snmpwalk 47
snmpdelta 48

Standard Network Performance MIBs 49
Data Rates 49
Error Rates 51

Using Vendor MIBs 52
The CISCO CPU MIB 53
Using the Cisco CPU MIB 55

Summary 57

Part Two Network Performance Tools 59

Chapter 4 netperf 61
What Is netperf? 61

TCP Network Performance 62
UDP Network Performance 62

Downloading and Installing netperf 63
Downloading netperf 63
Installing the netperf Package 63

Running netserver 65
Using netserver in Standalone Mode 66
Autostarting netserver 67

netperf Command-Line Options 68

vi Contents

01 433012 FM.qxd 6/16/03 9:06 AM Page vi

Measuring Bulk Network Traffic 70
TCP_STREAM 70
UDP_STREAM 71

Measuring Request/Response Times 72
TCP_RR 73
TCP_CRR 75
UDP_RR 75

Using netperf Scripts 76
Summary 77

Chapter 5 dbs 79
dbs Features 79

The Components of dbs 80
The dbs Output 80

Before Installing dbs 81
The ntp Program 81
The gnuplot Program 82

Downloading and Installing dbs 82
Running the dbsd Program 84
Configuring Command Files 86

Sender and Receiver Commands 87
The Pattern Command 88
Sample Sender and Receiver Sections 89

Test Commands 90
Performing Tests 90

Define the Test Environment 91
Create the Command File 91
Run the Test 93
Analyze the Data 94

Summary 97

Chapter 6 Iperf 99
Iperf Features 99

The Components of Iperf 100
The Iperf Program 100
The jperf Front End 100
The Iperf library 101

Iperf Tests 101
Iperf Output 102

Downloading and Installing Iperf 103
Downloading the Source Code 104
Compiling the Source Code 104
Installing iperf 104

Using Iperf 105
Starting the Iperf Server 105

Standalone Mode 105
Daemon mode 106

Contents vii

01 433012 FM.qxd 6/16/03 9:06 AM Page vii

Performing Simple Tests 106
Testing TOS Traffic 108
Testing UDP Traffic 109
Testing Multicast Traffic 111
Testing a File Transfer 112
Testing TCP Window Sizes 113
Using jperf 114

Summary 115

Chapter 7 Pathrate 117
Using Statistics to Measure Bandwidth 118

How Pathrate Works 118
Initial Phase 118
Phase I 118
Phase II 119

How Pathload Works 119
Using Pathrate 120

The Pathrate Programs 120
Downloading Pathrate 121
Compiling Pathrate 121
Starting the Pathrate Server 122
Starting the Pathrate Client 122

Pathrate Test Output 123
Quick Termination Mode 123
Full Testing Mode 124

Initial Phase Results 125
Phase I Results 125
Phase II Results 126

Using Pathload 127
Pathload 127
Downloading and Configuring Pathload 127
Starting the Pathload Server 128
Starting the Pathload Client 128

Pathload Output 129
Requested Fleet Parameters 129
Loss Rate per Stream 130
Server Fleet Parameters 130
Context Switches 131
Packet Discards 131
Relative One-Way Packet Delay Trend 131
Fleet Aggregate Trend 132
State Variable Updated 133
Final Test Results 133

Summary 134

viii Contents

01 433012 FM.qxd 6/16/03 9:06 AM Page viii

Chapter 8 Nettest 137
What Is Nettest? 137

The lblnettest Application 138
Certificates and Keys 139
The ACLFile File 139
Test Applications 139

The OpenSSL Package 140
Downloading and Installing Nettest 142

Downloading Nettest 142
Before Compiling 143

Define All Test Hosts 143
Modify the Source Code 144

Compiling and Installing Nettest 145
Creating Certificates and Keys 146

Creating a Certificate Authority 147
Creating the Client Certificate and Key 148
Creating the Server Certificate and Key 149

Creating the ACLFile File 149
Using Nettest 150

Starting a Nettest Session 151
Performing Tests 152

Summary 154

Chapter 9 NetLogger 155
What Is NetLogger? 156

NetLogger APIs 156
NetLogger Host and Network Monitoring Tools 156
NetLogger Log File 157
NetLogger Graphical Tool 158

Downloading and Installing NetLogger 158
Source Code Distribution File 158
Binary Distribution File 160

Using the APIs 160
Functions 160

Open 160
Write 162
Close 163

Libraries 164
Using nlv 165

Types of nlv graphs 165
Configuring nlv 167

The bltGraph.pro File 167
The nlv-main.cfg File 167
The nlv-keys.cfg File 169

Summary 173

Contents ix

01 433012 FM.qxd 6/16/03 9:06 AM Page ix

Chapter 10 tcptrace 175
What Is tcptrace? 175

Console Mode 176
Graphical Mode 177

Downloading and Installing tcptrace 178
Using tcptrace in Console Mode 179

Using Basic Command-Line Options 179
Standard Session Output 179
tcptrace Filters 183

Using Module Options 185
Graphical Programs 187

xplot 187
jPlot 188

Using tcptrace in Graphical Mode 189
Standard Graphs 189

Throughput Graph 189
Time Sequence Graph 191

Traffic Module Graphs 193
Summary 194

Chapter 11 ntop 197
What Is ntop? 198

Traffic Measuring 198
Data Received 198
Data Sent 199
Network Throughput 199

Traffic Monitoring 200
Statistics 200
IP Traffic 201
IP Protocols 201

Before Installing ntop 202
Creating the ntop User ID 203
Loading Support Software 203

Downloading and Installing ntop 204
Compiling and Installing gdchart 205
Compiling ntop 206

Running ntop 206
Starting ntop for the First Time 207
ntop Command-Line Parameters 208
Using ntop Command-Line Parameters 209

Monitoring Network Traffic 209
Analyzing a tcpdump Dump File 210

ntop Access Log File 211
Viewing ntop Data 211

Connecting to ntop 211
Watching Hosts 212
Watching Network Traffic 214

Summary 215

x Contents

01 433012 FM.qxd 6/16/03 9:06 AM Page x

Chapter 12 Comparing Network Performance Tools 217
Tools for Testing the Network 218

Bulk Data Transfers 218
Using Pathrate to Find the Network Bottleneck 219
Using netperf to See Actual Network Bandwidth 221
Using ntop to Analyze Network Traffic 223
Using NetLogger to Analyze Host Functions 225

Request/Response Traffic 225
Using netperf to Simulate HTTP Traffic 227
Using tcptrace to Watch HTTP Sessions 228

Analyzing Production Traffic 229
Analyzing an FTP Session 230

Using tcptrace 230
Using ntop 233

Analyzing a Telnet Session 234
Using tcptrace 235
Using ntop 237

Summary 237

Part Three Application Performance Tools 239

Chapter 13 Measuring Application Performance 241
Methods of Testing Network Applications 242

The Test Network 242
Production Network 243
Network Emulation 243

Network Traffic Generator 244
Network Emulation Device 244

Network Simulation 245
Discrete Event 246
Analytical 246

Modeling Network Problems 246
Bandwidth Constraints 247
Packet Errors 248
Lost Packets 248
Out-of-Order Packets 249
Delayed Packets 250

Modeling Network Devices 251
Hubs 251
Switches 252
Routers 253

Quality of Service 254
Weighted Fair Queuing 254
Stochastic Fair Queuing 254
Random Early Detection 255

Firewalls 255

Contents xi

01 433012 FM.qxd 6/16/03 9:06 AM Page xi

Wide Area Networks 256
Modeling Point-to-Point Networks 256
Modeling Packet-Switching Networks 257

Wireless Networks 257
Summary 258

Chapter 14 dummynet 259
What Is dummynet? 260

Dummynet Features 260
Using the dummynet Host 261

The ipfw Application 263
Creating New Rules 264

Rule Number 264
Rule Probability 265
Rule Action 265
Rule Logging 266
Rule Definition 266

Listing Rules 266
Removing Rules 267

dummynet Rules 268
dummynet Commands 268

Bandwidth 269
Delay 269
Random Packet Loss 270
Queue Size 270

Configuring WFQ 271
Configuring Multipath Links 271

Installing dummynet 271
Kernel Options 272
Building a New Kernel 273
Installing PicoBSD 273
Controlling dummynet 274

Testing dummynet 275
Setting Network Delays 275
Setting Network Bandwidths 277

Summary 277

Chapter 15 NIST Net 279
What Is NIST Net? 279

NIST Net Emulations 280
Bandwidth Limitation 280
Packet Delay 281
Packet Reordering 281
Packet Loss 281
Packet Duplication 282
Packet Diversion 282

The NIST Net Kernel Module 282

xii Contents

01 433012 FM.qxd 6/16/03 9:06 AM Page xii

The NIST Net Configuration Tools 285
The NIST Net Optional Tools 286

mungebox 287
nistspy 287

Downloading and Installing NIST Net 288
Downloading NIST Net 288
Compiling NIST Net 288

Getting the Required Files 289
Compiling the Source Code 290

Loading NIST Net 291
Using NIST Net 292

Using cnistnet 292
Using xnistnet 295

Creating Rules 296
Modifying Rules 297

Summary 298

Chapter 16 Network Traffic Generator 301
What Is Network Traffic Generator? 301

How Network Traffic Generator Works 302
The Core Modules 302
The Protocol Modules 303
The Payload Modules 303
The Response Modules 304

The Network Traffic Generator Programs 304
Command-Line Interface 304
X Windows Interface 305

Generating Network Traffic 306
Bulk Data Transfers 306
Client/Server Transactions 307
Connectionless Communication 308

Downloading and Installing the Package 308
Downloading 308
Before Compiling 309

fastdep 309
Kylix Libraries 310

Compiling and Installing 311
Using Network Traffic Generator 312

Command-Line Options 312
Server 312
Client 313

Setting Up a Test 315
Test Host Placement 316
Test Host Configuration 316

Watching the Test Traffic 317
Summary 320

Contents xiii

01 433012 FM.qxd 6/16/03 9:06 AM Page xiii

Chapter 17 ns 321
What Is ns? 321

Network Simulator Programs 322
ns 322
nam 323
xgraph 324

Network Model Elements 324
Network Nodes 324
Network Links 325
Network Agents 326
Network Applications 327

ns Modeling Language 329
Downloading and Installing ns 330

Downloading 331
Compiling and Installing 332
Validating the Installation 332

Performing a Network Simulation 332
Creating the Simulation Model 333
Running the Simulation 336
Using nam 338
Using xgraph 339

Summary 340

Chapter 18 SSFNet 343
What Is SSF? 344

Entities 344
Processes 344
Events 345
In Channels 345
Out Channels 345

What Is SSFNet? 345
Libraries 345
Domain Modeling Language (DML) 346

Networks 347
Hosts 349
Links 350
Routers 351
Protocols 352

Downloading and Installing SSFNet 353
Downloading 354
Installing 354
Creating a Development Environment 355

Using SSFNet 356
Creating a Model 356
Running the Simulation 360
Interpreting the Results 362

Summary 364

xiv Contents

01 433012 FM.qxd 6/16/03 9:06 AM Page xiv

Chapter 19 Comparing Application Performance Tools 365
Modeling the Production Environment 365

The Production Network 366
Modeling the Network 367

Using ns 368
Building the Model 368
Running the Model 371
Interpreting the Results 372

Using SSFNet 374
Building the Model 374
Running the Model 377
Interpreting the Results 379

Using dummynet 379
Building the Emulation Environment 379
Running the Emulation 380

Using NIST Net 381
Building the Emulation Environment 381
Running the Emulation 383

Final Results 383
Summary 384

Appendix Resources 387

Index 391

Contents xv

01 433012 FM.qxd 6/16/03 9:06 AM Page xv

01 433012 FM.qxd 6/16/03 9:06 AM Page xvi

First, all glory, honor, and praise go to God, who through His Son makes all
things possible, and who gives us the gift of eternal life.

I would like to thank all the great people at Wiley Publishing, Inc. for their
help, guidance, and professionalism. Thanks to Carol Long, the Acquisitions
Editor, for offering me the opportunity to write this book, and to Adaobi Obi
Tulton, the Assistant Developmental Editor, for both helping guide this book
along, and working to help make the paragraphs make sense. Also many
thanks to Carole McClendon at Waterside Productions for her help in arrang-
ing this opportunity for me.

Finally, I would like to thank my parents, Mike and Joyce Blum, for their
dedication and support, and my wife Barbara and daughters Katie Jane and
Jessica for their faith, love, and understanding, especially while I was writing
this book.

Acknowledgments

xvii

01 433012 FM.qxd 6/16/03 9:06 AM Page xvii

01 433012 FM.qxd 6/16/03 9:06 AM Page xviii

The job of the network administrator is complicated. If you are a network
administrator, not only are you responsible for installing and maintaining the
wires, hubs, switches, and possibly routers and firewalls, but you must also
ensure that they all work efficiently together. Of course, this all must be done
within the constraints of a budget, which these days is often smaller than what
you really need to accomplish the job. The goal of this book is to show you
some freely available tools that can be used to help monitor and troubleshoot
a network, providing you with a toolkit of programs to use when problems
arise.

The network administrator is often the first line of defense whenever any-
thing behaves oddly on the network. Even when there is no clear-cut culprit,
the network administrator has to prove that the network is not at fault. Net-
work performance is often a difficult thing to measure. What is fast perfor-
mance for one application can often be slow for another. It is your job to ensure
that the network and the network applications are performing properly for
your environment. This book is intended to help you with this task.

Overview

Network performance has been studied for many years, which has produced
lots of theoretical work on how network traffic is affected by network load.
Unfortunately, for the average network administrator in charge of the com-
pany network, equations and theories do not help solve real-world problems,
such as slow network application performance. Instead, what is required is

Introduction

xix

01 433012 FM.qxd 6/16/03 9:06 AM Page xix

real-world tools that can monitor and analyze network behavior, to identify
the cause of network performance problems and determine how to quickly
(and usually, cheaply) fix them.

With the explosion of Open Source software in recent years, many free
applications are becoming available that can help the average network admin-
istrator. Usually these applications can be easily downloaded, configured, and
used to help determine both network performance and network application
performance. Money that companies used to have to spend on network per-
formance tools can now be used to purchase equipment to actually solve net-
work problems.

Most Open Source applications are written for the Unix platform. In the
past, this was a huge restriction, especially for network administrators who
didn’t happen to have a big Unix box lying around. However, with the popu-
larity of free Unix distributions such as Linux and FreeBSD, anyone can have
a Unix platform for Open Source applications. Now, for little or no money,
network administrators can have a fully functional network monitoring and
analysis toolkit at their fingertips. This provides opportunities for network
troubleshooting that previously were only available with expensive high-end
systems.

How This Book Is Organized

This book is divided into three sections. The first section presents a network
performance primer, showing some of the basic elements that affect network
performance, and explaining how to use some simple Open Source tools to
monitor them.

Chapter 1, “Defining Network Performance,” describes the techniques used
by the Open Source tools to monitor network performance. Understanding
how the tools work makes it easier to understand the output, and to determine
what solutions can be used to solve any problems detected.

Chapter 2, “Watching Network Traffic,” presents some Open Source tools
used for monitoring network traffic, in both the Unix and Windows environ-
ments. Monitoring network traffic is often an excellent troubleshooting tool
when looking for network performance problems.

Chapter 3, “Network Device Utilization,” discusses how to use the Simple
Network Management Protocol (SNMP) to query existing network devices for
performance data. The Open Source tool net-snmp can be used to monitor real-
time network performance data straight from the network devices themselves.

The second section of the book presents tools used for monitoring network
performance. Determining network performance is done by sending a known
stream of data between two endpoints located on the network. By measuring
the delays in the data stream, the performance tool can determine what net-
work problems may be present.

xx Introduction

01 433012 FM.qxd 6/16/03 9:06 AM Page xx

Chapter 4, “netperf,” describes the netperf network performance tool,
developed by Hewlett-Packard. The netperf application can be used to send
different types of data streams across a network, and monitor the performance
of each type of data stream.

Chapter 5, “dbs,” discusses the dbs performance tool, developed at the Nara
Institute of Science and Technology, in Japan. The dbs application can be used
to perform network tests between two remote hosts on the network, without
being connected to either one.

Chapter 6, “Iperf,” presents the Iperf application, which was developed at
the National Laboratory for Applied Network Research (NLANR), and is cur-
rently maintained at the University of Illinois. The Iperf application focuses on
how TCP parameters can affect network application performance, and how
fine-tuning TCP host parameters can increase the performance of many net-
work applications.

Chapter 7, “Pathrate,” discusses both the Pathrate and Pathload applica-
tions, developed and maintained by Constantinos Dovrolis, who is currently
working at Georgia Tech. Both applications rely on advanced network statisti-
cal calculations, involving the delays present in transferring packets across
network devices along the path between the two endpoints.

Chapter 8, “Nettest,” describes the Nettest application, developed at the
Lawrence Berkeley Labs as a secure shell for performing network tests
between hosts. The Nettest application uses the OpenSSL security application
to encrypt network performance sessions, and to control who is allowed to run
network tests.

Chapter 9, “NetLogger,” presents a slightly different technique used for
monitoring network application performance. The NetLogger application pro-
vides a set of APIs that is used within network applications for logging net-
work events, such as writing data to the network and reading data from the
network. Once the network log is created, a graphical interface allows you to
monitor each of the network events and determine which events have poor
performance.

Chapter 10, “tcptrace,” discusses the tcptrace application, developed at
Ohio University. The tcptrace application analyzes data captured by the tcp-
dump application, quickly displaying information about each TCP session in
the trace.

Chapter 11, “ntop,” introduces you to the ntop application, developed at the
University of Pisa, in Italy, to produce graphical Web pages showing network
utilization by each device on the network. This helps you determine which
devices are consuming the most resources on the network.

Chapter 12, “Comparing Network Performance Tools,” wraps up the net-
work performance tool section by presenting a sample network environment,
and showing how each tool can be used to monitor network performance on
the sample network.

Introduction xxi

01 433012 FM.qxd 6/16/03 9:06 AM Page xxi

The third section of the book describes how to use network application per-
formance tools to analyze how network applications behave in different net-
work environments. By analyzing the applications in a test network, you can
often see potential problems before the application is released in the produc-
tion network.

Chapter 13, “Measuring Application Performance,” discusses how network
application performance testing tools—both network emulators and network
simulators—can help you determine how applications will perform in the pro-
duction network.

Chapter 14, “dummynet,” describes the dummynet application, which is
available on FreeBSD systems to emulate network behavior using a FreeBSD
host. This enables a single FreeBSD host to be used within a test network to
emulate the network delay, bandwidth limitations, and packet loss of a full
production network.

Chapter 15, “NIST Net,” discusses the NIST Net application, developed at
the U.S. National Institute of Standards and Technology to simulate network
behavior using a Linux system. This application provides the network emula-
tion functions to use a Linux system to model the production network.

Chapter 16, “Network Traffic Generator,” presents the traffic application,
which is used to generate specific data traffic patterns on the network. This can
be used to artificially emulate production network traffic on a test network
using a single host.

Chapter 17, “ns,” describes the Network Simulator application, developed
at the University of California Berkeley as a method to simulate network
behavior without having to actually have a test network available.

Chapter 18, “SSFNet,” discusses the Scaleable Simulation Framework (SSF),
and how it is used to model network behavior, using either C++ or Java.

Chapter 19, “Comparing Application Performance Tools,” wraps up the
final section by showing how to model production networks, and how to use
the emulation and simulation tools presented to predict network application
performance.

Who Should Read This Book

The primary focus of this book is to help network administrators and techni-
cians monitor and analyze network performance. Often it is not easy to deter-
mine what causes network performance problems. The tools presented in the
first two sections of the book can be used in the production network to help
identify the cause of network performance issues. The text explains how to
install and configure each tool, and describes how to use the tool in the pro-
duction network.

xxii Introduction

01 433012 FM.qxd 6/16/03 9:06 AM Page xxii

Because network applications go hand in hand with networks, the sec-
ondary focus of the book is to help in the analysis of network application per-
formance. Both network application developers and network administrators
must test network applications within a test network before deploying them to
the production network. For this to be done properly, the production network
environment must be accurately duplicated within the test network. Open
Source network emulators and simulators make this possible. The book pre-
sents each emulator and simulator tool, showing how it can be used to dupli-
cate the production network environment.

Tools That Are Needed

This book uses mainly Open Source tools intended for the Unix platforms.
Some type of Unix platform is required to install, compile, and operate each of
the tools. The use of Open Source Unix distributions, such as FreeBSD or
Linux, is highly encouraged. All of the tools presented were installed, com-
piled, and tested on a Mandrake Linux 8.0 system (with the exception of
dummynet, which requires a FreeBSD system).

All of the tools are available for download from their respective Internet
Web sites. Some type of Internet access is required to access the tools’ distribu-
tion packages. Of course, the faster the Internet connection, the quicker the
downloads will proceed. Some of the distribution packages are fairly large, so
using a slow-speed modem connection may take a while.

Summary

Trying to troubleshoot network performance issues while customers are com-
plaining is not a fun job. Hopefully this book will present some ideas and
options to help you identify and fix network problems before your customers
notice them. Nothing takes the place of experience. Monitoring and analyzing
network performance when there are no problems often helps in times when
there are problems. Knowing what a healthy network looks like helps in iden-
tifying problems in a sick network.

In today’s environment, there are constant advances in network technology.
One advantage of using Open Source network performance tools is that they
are often updated or replaced to accommodate newer features. You should
always monitor the Internet and network performance newsgroups for new
tools, and advances in the old tools. This will ensure that you will maintain an
efficient and effective network performance toolkit.

Introduction xxiii

01 433012 FM.qxd 6/16/03 9:06 AM Page xxiii

01 433012 FM.qxd 6/16/03 9:06 AM Page xxiv

PA R T

One

Network
Performance Primer

02 433012 PP01.qxd 6/16/03 9:06 AM Page 1

02 433012 PP01.qxd 6/16/03 9:06 AM Page 2

3

Before you dive into detailed discussions of network performance tools, it is a
good idea to first understand what network performance is, and how it can be
measured. This chapter defines network performance, describes the elements
involved in measuring it, and shows techniques many network performance
tools use to measure it

The words that network administrators hate to hear are “The network seems
slow today.” What exactly is a slow network, and how can you tell? Who deter-
mines when the network is slow, and how do they do it? There are usually more
questions than answers when you’re dealing with network performance in a
production network environment.

It would be great if there were standard answers to these questions, along
with a standard way to solve slow network performance. The open source net-
work performance tools presented in this book can help the network adminis-
trator determine the status of the network, and identify the areas of the network
that could be improved to increase performance. Often, network bottle-
necks can be found, and simply reallocating the resources on a network can
greatly improve performance, without the addition of expensive new network
equipment.

Knowing the elements of network performance will help you better under-
stand how the network performance tools work, and how to interpret the vast
amount of information the tools provide. The first section of this chapter
describes the elements involved in determining network performance.

Defining Network Performance

C H A P T E R

1

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 3

The Elements of Network Performance

Much work has been devoted to the attempt to define network performance
exactly. It is not the intention of this book to bore you with numerous equa-
tions that describe theoretical network philosophy about how packets traverse
networks. Network performance is a complex issue, with lots of independent
variables that affect how clients access servers across a network. However, most
of the elements involved in the performance of networks can be boiled down to
a few simple network principles that can be measured, monitored, and con-
trolled by the network administrator with simple—often free—software.

Most network performance tools use a combination of five separate elements
to measure network performance:

■■ Availability

■■ Response time

■■ Network utilization

■■ Network throughput

■■ Network bandwidth capacity

This section describes each of these elements, and explains how network
performance tools use each element to measure network performance.

Availability
The first step in measuring network performance is to determine if the net-
work is even working. If traffic cannot traverse the network, you have bigger
problems than just network performance issues. The simplest test for network
availability is the ping program. By attempting to ping remote servers from
a client device on the network, you can easily determine the state of your
network.

Just about all Unix implementations include the ping program to query
remote hosts for availability. The ping program sends an Internet Control Mes-
sage Protocol (ICMP) echo request packet to the destination host. When the
echo request packet is received, the remote host immediately returns an echo
reply packet to the sending device.

While most network administrators know what the ping program is, few
know that there are lots of fancy options that can be used to perform advanced
testing using the ping program. The format of the ping command is:

ping [-dfnqrvR] [-c count] [-i wait] [-l preload] [-p pattern] [-s

packetsize]

4 Chapter 1

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 4

You can use different combinations of options and parameters to create the
ping test that best suits your network environment. Often, just using the
default options and parameters provides enough information about a network
link to satisfy availability questions.

Receiving an echo reply packet from the remote host means that there is an
available network path between the client and server devices. If no echo reply
packet is received, there is a problem with either a network device or a link
along the path (assuming the remote server is available and answering pings).

By selecting different remote hosts on the network, you can determine if all
of the segments on your network are available for traffic. If multiple hosts do
not respond to a ping request, a common network device is most likely down.
Determining the faulty network device takes some detective work on your
part.

While sending a single ping packet to a remote host can determine the avail-
ability of a network path, performing a single ping by itself is not a good indi-
cator of network performance. You often need to gather more information to
determine the performance of any connections between the client and the
server. A better way to determine basic network performance is to send a string
of multiple ping request packets.

Using Availability Statistics

When multiple ping packets are sent to a remote host, the ping program tracks
how many responses are received. The result is displayed as the percentage of
the packets that were not received. A network performance tool can use the
ping statistics to obtain basic information regarding the status of the network
between the two endpoints.

By default the Unix ping program continually sends ping requests to the
designated remote host until the operator stops the operation by pressing a
Ctrl-C key combination. Alternately, you can use the -c option in the ping com-
mand to specify a specific number of ping requests to send. Each ping request
is tracked separately using the ICMP sequence field.

A sample ping session that uses multiple ping packets looks like this:

$ ping 192.168.1.100

PING 192.168.1.100 (192.168.1.100): 56 data bytes

64 bytes from 192.168.1.100: icmp_seq=0 ttl=255 time=0.712 ms

64 bytes from 192.168.1.100: icmp_seq=1 ttl=255 time=0.620 ms

64 bytes from 192.168.1.100: icmp_seq=2 ttl=255 time=0.698 ms

64 bytes from 192.168.1.100: icmp_seq=3 ttl=255 time=0.662 ms

64 bytes from 192.168.1.100: icmp_seq=4 ttl=255 time=0.649 ms

^C

--- 192.168.1.100 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.620/0.668/0.712/0.033 ms

$

Defining Network Performance 5

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 5

In this example, a response was received for all of the packets that were sent,
indicating no problems on the network. If any of the ping packets do not solicit
a response, it can be assumed that either the echo request packet did not make
it to the remote server, or the remote server’s echo response packet did not
make it back to the pinging client. In either case, something on the network
caused a packet to be lost.

Once you establish that there are lost packets in the ping sequence, you must
determine what caused the packet losses. The two biggest causes of lost pack-
ets are:

■■ Collisions on a network segment

■■ Packets dropped by a network device

Within an Ethernet segment, only one station is allowed to transmit at a
time. When more than one station attempts to transmit at the same time, a col-
lision occurs. Having collisions is normal for an Ethernet network, and not
something that should cause panic for the network administrator.

However, as an Ethernet segment gets overloaded, excessive collisions will
begin to take over the network. As more traffic is generated on the network,
more collisions occur. For each collision, the affected senders must retransmit
the packets that caused the collision. As more packets are retransmitted, more
network traffic is generated, and more collisions can occur. This event is called
a collision storm, and can severely affect the performance of a network segment.

Dropped packets can also result in packet losses. All network devices con-
tain packet buffers. As packets are received from the network, they are placed
in a packet buffer, waiting for their turn to be transmitted. This is demon-
strated in Figure 1.1.

Figure 1.1 Dropping packets in a network device.

packet
buffer

multiport 10/100 switch

100 MB

100 MB

100 MB

100 MBdropped

10 MB

6 Chapter 1

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 6

Each port on a router or switch device contains an individual buffer area
that accepts packets destined to go out the interface. If excessive network traf-
fic occurs, preventing the timely emptying of the buffer, or if more packets
arrive than the port can transmit, the buffer will fill up.

If a network device’s packet buffer gets filled up, it has no choice but to drop
incoming packets. This scenario happens frequently on network devices that
connect to networks running at different speeds, such as a 10/100 switch or
router. If lots of traffic arrives on a high-speed 100-MB connection destined for
a lower-speed 10-MB connection, packets will be backed up in the buffers, and
often overflow, causing dropped packets and retransmissions from the send-
ing devices.

To minimize this effect, most network devices are configured to allocate
ample memory space for handling packet buffers. However, it is impossible to
predict all network conditions, and dropped packets still may occur.

Using Large Ping Packets

Another problem with measuring availability is the size of the packets used in
the ping request. Many network devices handle packets with multiple packet
buffers, based on average packet sizes. Different buffer pools handle different-
sized packets. Too many of one particular size of packet can cause dropped
packets for that size category, while packets of other sizes are passed without
a problem.

For example, switches often have three classes of packet buffers—one for
small packets, one for medium-sized packets, and one for large packets. To
accurately test these network devices, you must be able to send different-sized
packets to test the different packet buffers.

To accommodate this, most network performance tools allow you to alter
the size of the packets used in the testing. When testing networks that utilize
routers or switches, you must ensure that a wide variety of packet sizes are
used to traverse the network.

TI P There have been many instances of security problems with large ping
packets. As a result, most Unix systems only allow the root account to send
large ping packets. You should be careful when sending larger packets to
remote servers, so as to not adversely affect the remote server.

By default, the packet size used in the ping utility is 64 bytes (56 bytes of
data and the 8-byte ICMP header). You can use the -s option to change the
packet size, up to the maximum that is allowed on the network segment (1,500
for Ethernet networks).

Defining Network Performance 7

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 7

After altering the packet size of the ping packets, you can see how this
affects the ping statistics by observing the output from the ping command:

ping -s 1000 192.168.1.100

PING 192.168.1.100 (192.168.1.100):1000 data bytes

1008 bytes from 192.168.1.100: icmp_seq=0 ttl=127 time=2.994 ms

1008 bytes from 192.168.1.100: icmp_seq=1 ttl=127 time=2.952 ms

1008 bytes from 192.168.1.100: icmp_seq=2 ttl=127 time=2.975 ms

1008 bytes from 192.168.1.100: icmp_seq=3 ttl=127 time=2.940 ms

1008 bytes from 192.168.1.100: icmp_seq=4 ttl=127 time=3.133 ms

1008 bytes from 192.168.1.100: icmp_seq=5 ttl=127 time=2.960 ms

1008 bytes from 192.168.1.100: icmp_seq=6 ttl=127 time=2.988 ms

^C

--- 192.168.1.100 ping statistics ---

7 packets transmitted, 7 packets received, 0% packet loss

round-trip min/avg/max/stddev = 2.940/2.992/3.133/0.060 ms

#

In this example, all of the large ping packets were still successful, indicating
that all of the segments between the host and the client were processing the
larger packets without any problems. If you experience packet loss with larger
packets, but not with smaller packets, this often indicates a problem with a
router or switch buffer somewhere in the network. Most router and switch
devices allow the administrator to change the packet buffer allocations to allot
more buffers for a particular packet-size range.

Response Time
As seen in the ping example, while network availability is one element of net-
work performance, it cannot accurately reflect the overall performance of the
network. The network customers’ perception of the network is not limited to
whether or not they can get to an individual server. It also includes how long
it takes to process data with the server.

To obtain a more accurate picture of the network performance, you must
observe how long it takes packets to traverse the network. The time that it
takes a packet to travel between two points on the network is called the
response time.

The response time affects how quickly network applications appear to be
working. Slow response times are often magnified by network applications
that need to send and receive lots of information across the network, or appli-
cations that produce immediate results from a customer entry. Applications
such as TELNET, which require the customer to wait for a keystroke to be
echoed from the remote host, are extremely vulnerable to slow network
response times.

8 Chapter 1

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 8

While network response time is often obvious to customers, trying to mea-
sure the response time between two separate hosts can be a difficult thing to
do. Determining the time it takes for a packet to leave one network device and
arrive at a remote network device is not easy. There must be some mechanism
to time the leaving and arriving events, independent of the two systems on the
network.

When using network performance tools that utilize round-trip response
times, it is always wise to incorporate the remote system’s CPU utilization in
the data taken, to ensure that you are comparing response times run at similar
system loads, eliminating the system-loading factor.

Response-Time Factors

In large networks, there are many factors that can affect response times
between a client and a server. As the network administrator, you can control
some of these factors, but others are completely out of your control. These fac-
tors can include:

■■ Overloaded network segments

■■ Network errors

■■ Faulty network wiring

■■ Broadcast storms

■■ Faulty network devices

■■ Overloaded network hosts

Any one or combination of these factors can contribute to slow network
response time. Measuring the individual factors can be difficult, but the net-
work performance tools presented in this book can measure the overall effect
each factor has on network response times by sending known network traffic
samples and determining how the data traverses the network

Determining Response Time from Ping Packets

As seen in the sample outputs for the ping program, the round-trip response
time values for each ping packet sent are shown in the ping packet statistics:

64 bytes from 192.168.1.100: icmp_seq=0 ttl=255 time=0.712 ms

The response time is shown in milliseconds. For internal LAN connections,
the response times should be well within 1 or 2 milliseconds. For WAN con-
nections, the response times can often be over 200 or 300 milliseconds, depend-
ing on WAN connectivity speeds.

Defining Network Performance 9

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 9

WARN I NG Remember that the ping response time values are round-trip
response times. The current load on the remote system affects these values.

When multiple ping packets are sent, an average of their response times is
calculated and displayed:

round-trip min/avg/max/stddev = 2.940/2.992/3.133/0.060 ms

The response time for a connection can depend on many different factors
within the network connection. As the packets traverse the network, each net-
work device can play a role in the total response time. The network perfor-
mance tool must be able to take into account the response-time factors for each
network connection.

The best use for ping response times is to establish a baseline value, or the
values seen when the network is performing at normal speeds. When cus-
tomers complain about slow network performance, the ping response time
values taken can then be compared against response times taken during nor-
mal network performance. Any drastic deviations in these times can represent
a problem with a network device.

Using traceroute for Redundant Paths

In a network that has redundant paths, it is often desirable to determine which
path packets are taking at any given time. If you determine that packets are not
being routed in the most efficient manner, you can often make simple configu-
ration changes to routers to increase response times.

The Unix traceroute program allows the network administrator to deter-
mine exactly which route packets are taking to get between two points on the
network. The traceroute utility uses the IP Time to Live (TTL) value to pur-
posely force a packet to expire along the path to the destination.

The TTL value specifies how many hops an individual packet can make
before expiring. When a router sees a packet with an expired TTL value, it
should report the problem back to the sending network device. By starting the
TTL value at 1 and incrementing it at each ping attempt, the traceroute utility
forces remote routers along the network path to expire the ping packet and
return an ICMP destination unreachable packet to the client. Since the router
itself must return the packet, each router traversed along the network path is
identified.

The format for the traceroute command is:
traceroute [-dFInrvx] [-f firstttl] [-g gateway] [-i iface] [-m maxttl] [-p port] [q

nqueries] [-s srcaddr] [-t tos] [-w waittime] host [packetlength]
As can be seen from the command-line format, the ping program, like the

traceroute program, has many options that can be used to fine-tune the testing.

10 Chapter 1

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 10

The default values for all of the options can be used to send a simple traceroute
probe to a remote host. The output from a sample traceroute across the Inter-
net to the www.cisco.com host looks like this:

$ traceroute www.cisco.com

traceroute to www.cisco.com (198.133.219.25), 30 hops max, 40 byte

packets

1 209.244.188.162 (209.244.188.162) 175 ms 170 ms 171 ms

2 gige7-0-2.hsipacces1.Cincinnati1.Level3.net (63.212.221.2) 154 ms

150 ms 150 ms

3 ge-6-0-0.mp1.Cincinnati1.Level3.net (64.159.0.173) 152 ms 150 ms

149 ms

4 so-3-0-0.mp2.Chicago1.Level3.net (64.159.1.34) 150 ms 149 ms 150

ms

5 pos9-0.core1.Chicago1.level3.net (209.247.10.170) 150 ms 150 ms 151

ms

6 144.232.26.185 (144.232.8.185) 151 ms 152 ms 151 ms

7 sl-bb20-chi-13-0.sprintlink.net (144.242.26.50) 151 ms 150 ms 150

ms

8 sl-bb20-sj-6-0.sprintlink.net (144.232.8.117) 200 ms 201 ms 203 ms

9 sl-gw11-sj-9-0.sprintlink.net (133.232.3.138) 210 ms 211 ms 210 ms

10 sl-ciscopsn2-11-0-0.sprintlink.net (144.228.44.14) 211 ms 210 ms 210

ms

11 sjce-dirty-gw1.cisco.com (128.107.239.89) 210 ms 210 ms 210 ms

12 sjck-sdf-ciod-gw2.cisco.com (128.107.239.12) 209 ms 209 ms 210 ms

13 www.cisco.com (198.133.219.25) 211 ms 210 ms 211 ms

$

The output from the traceroute program shows every router that responds
to the expired test packet along the path to the destination host. Along with
that information, the round-trip times that it took for the packet to reach each
router are displayed (three separate test packets are sent with the same TTL
value for each test). Remember that these values are round-trip response
times, and can change with different loading on the individual routers.

Networks that use load balancing will show inconsistent route paths
between two points on the network, depending on the network load at the time
of the test. As with other response-time techniques, the best thing to do in these
scenarios is to take baseline tests under various network loads to see how and
when each network path is utilized.

Network Utilization
A major factor in network performance is the utilization of each network seg-
ment along the path between two endpoints. The network utilization represents
the percent of time that the network is in use over a given period. By defini-
tion, individual Ethernet segments can only carry one packet at a time. For any

Defining Network Performance 11

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 11

given moment, the Ethernet segment is either at 100-percent utilization (carry-
ing a packet), or at 0-percent utilization (idle). The network utilization per-
centage shows the percentage of time the network is in use over a set period.

Calculating the network utilization requires you to find out how many bytes
of network traffic are being handled by the network over a set period. This
value depends on the type of network interface that is being monitored.

Half-duplex devices can only carry data in one direction at a time, and
therefore calculating their network utilization involves totaling the input and
output byte counts for a set period, and dividing by the total capacity of the
device interface for that period. To determine the total number of bits received
on the interfaces, each of the packet byte rates is multiplied by 8. This value is
divided by the total interface capacity multiplied by the time interval of the
sample (in seconds):

%utilization = ((datasent + datarecv) * 8) / (intspeed * sampletime) *

100

For example, a 10-MB half-duplex network interface that over a 5-second
period sends 700,000 bytes of data and receives 175,000 bytes would have a
network utilization of:

%utilization = (((700,000 + 175,000) * 8) / (10,000,000 * 5) * 100 = 14%

The 14-percent utilization represents the network utilization only for that
5-second period. It is not uncommon to see high network utilization for a short
period of time, given that Ethernet traffic is often bursty in nature. You have a
problem when you take the same calculation for a longer period of time, such
as a 5- or 30-minute interval, and still get high network utilization.

Although calculating network utilization on an individual network seg-
ment can be easy, determining the network utilization between two separate
endpoints on the network can be complex. You must calculate the network uti-
lization for each segment traversed along the network path, and determine
how each segment’s utilization affects the overall response time of the packet.

Due to the complexity of this, most network performance tools utilize differ-
ent elements—the network throughput and the network bandwidth capacity—
to determine network performance between two remote network endpoints.

Network Throughput
Network throughput is similar in concept to network utilization. The through-
put of a network represents the amount of network bandwidth available for a
network application at any given moment, across the network links. As net-
work applications use network bandwidth, the amount of bandwidth left over
for other applications is decreased. The amount of bandwidth left over is con-
sidered the network throughput.

12 Chapter 1

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 12

Determining network throughput allows the network administrator to find
network bottlenecks that slow down performance over a given network link
between clients and servers. Often a novice network administrator places a
group of clients on a high-speed network device, and the application server on
another high-speed network device, to increase application performance. How-
ever, what the administrator forgets is that the two high-speed devices may be
connected via a slow-speed link. Figure 1.2 demonstrates an example of this.

While the networks that contain the client and server devices are high-speed
and have good network performance, it is the interconnecting network device
that is causing performance problems. First off, the intermediate network link
is limiting the overall speed of the end-to-end link to only 10 MB, no matter
how fast the clients and server are connected to the network. Second, since the
intermediate network device is a shared hub, it may contain other clients and
application servers, which puts additional traffic load on the slow-speed link.

Usually, finding the network bottleneck is not this simple. On complex net-
works, there can be several network devices within the path of clients and
servers. The hardest part of determining the network throughput is calculat-
ing the effect that each intermediate link has on the overall end-to-end net-
work connection.

Calculating network throughput is a mathematical process that is best left to
the mathematical geniuses. It involves sending periodic streams of packets,
and determining the rate at which the server receives the streams. Each stream
sample produces data elements used to determine the amount of bandwidth
remaining on the network link. The streams are increased until the maximum
bandwidth is observed, then quickly backed off so as not to affect the network
performance.

Figure 1.2 Finding the throughput bottleneck.

server

10/100-MB switch

10-MB hub

10/100-MB switch

client

100 MB

100 MB

10 MB

10 MB

Defining Network Performance 13

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 13

Of course, this calculation is extremely dependent on exiting network appli-
cations, and how they load the network at any given time. It is best to calculate
network throughput at different times of the day, and on different days of the
week. This enables you to gather all of the information on different applica-
tions as they are run on the network.

Many new network applications fail due to lack of available network
throughput. If an application is tested in a development environment that does
not include the other applications that will be running on the network, it is
easy to forget about existing network throughput on the production network.

Bandwidth Capacity
Bandwidth capacity is another factor in the determination of network
throughput. The total amount of bandwidth available between two network
endpoints can greatly affect the performance of a network. Devices directly
connected on a 100-MB network switch should have significantly better per-
formance than devices that are remotely connected via a slower T1 circuit.

The ability to quantify this performance difference requires complex net-
work theory to be built into the network performance tool. The network per-
formance tool must be able to determine the possible end-to-end network
bandwidth available on networks with varying link speeds. Each link that a
packet must traverse must be included in the overall network performance of
an application.

In an ideal network scenario, a constant data rate should be maintained
between a client and a server as packets are sent back and forth. The constant
data rate represents the network speed at which the two endpoints are linked
together. By observing the time it takes for a packet to traverse the network,
you can determine the maximum speed of the network link.

As we all know, there is no such thing as an ideal network scenario. In pro-
duction networks, traffic is constantly traveling between network devices,
affecting the perceived speed of a network link. In order to determine the max-
imum bandwidth capacity of a network link, the network performance tool
must do some math tricks.

Two techniques, called packet pairs and packet trains, are used to determine
the maximum network bandwidth capacity of an existing production network
without affecting the normal traffic. First, a pair of packets is sent to a remote
device at a known separation interval (the packet pair). As the packet pair tra-
verses the network, the interval between the two will vary, depending on the
existing traffic (the packet train). Figure 1.3 demonstrates this principle.

14 Chapter 1

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 14

Figure 1.3 Packet separation in different speed segments.

The packets are sent from a device connected to a 100-MB network device.
Along the path to the destination device, the network uses a 10-MB network
link. The packets received by the switch device on the 100-MB network must
be queued and wait their turn before being sent out on the 10-MB link. This
affects the separation between the two packets. Again, on the other end of the
network, the 10-MB link is connected to another switch, which in turn queues
the packets for transmission on the 100-MB network.

When the packets arrive at the destination, the interval separating them is
determined. The difference between the original interval and the calculated
interval represents the loading on the network. Once the load value is calcu-
lated, a large burst of packets can be sent from the client to the server. The rate
at which the packets arrive from the client represents the rate, or speed, at
which the network was able to transport the data. Given the load factor and
the data rate, the network performance tool can calculate the theoretical maxi-
mum speed at which the network link should be able to process data.

Methods of Collecting Performance Data

After determining which network performance elements to monitor, the net-
work performance tool must be able to access data for the elements. Three dif-
ferent methods are used to obtain data from the network:

■■ Querying network devices for stored information

■■ Watching existing traffic on the network for signs of network
performance issues

■■ Generating test traffic to send on the network to test network
performance

Part of your job when evaluating a network performance tool is to deter-
mine how the tool extracts data about the network’s performance, and if that
method is appropriate for your particular network environment. This section
describes the three different data-collecting methods, and shows how they can
differ when collecting data on the network.

client server100-MB
switch

small
packet

gap

10-MB
switch

small
packet

gap
preserved

100-MB
switch

larger packet gap larger packet
gap preserved

Defining Network Performance 15

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 15

Querying Network Devices
One of the simplest methods used to collect network data is to go to the source
of the network, the network devices. When purchasing network devices such
as hubs and switches, you will find that two types of each network device are
available:

■■ Managed network devices

■■ Unmanaged network devices

Managed network devices include management software that collects sta-
tistics about the network traffic traversing the device, whether it is a simple
network hub or a complex network router. Unmanaged network devices do
not collect any statistical information about the network traffic, and cannot be
queried for information.

While managed network devices are usually more expensive than unman-
aged devices, they are well worth the extra price in large networks. Many net-
work management software packages, as well as many freely available open
source network performance tools, use the network device management inter-
face to extract network information from the managed network devices. This
information is invaluable for troubleshooting network problems.

How Tools Query Devices

All managed network devices implement the Simple Network Management
Protocol (SNMP). SNMP provides both a mechanism for storing network data
in a hierarchical database on the network device, and a protocol for querying
the database from a remote device.

All SNMP devices include a common Management Information Base (MIB)
that stores basic network information about the traffic on the device. This
information includes the bytes transmitted and received per interface, the
number and types of errors on the interfaces, and the network utilization on
each interface. This information is invaluable for determining network perfor-
mance on different segments of the network.

Besides the common MIB database objects, most SNMP devices also include
proprietary MIB objects that track information specific to the network device.
SNMP provides an area within the hierarchical database for companies to cre-
ate their own entries to track information specific to their network devices.
This area of the database is called the enterprise MIB. Access to the enterprise
MIB is usually controlled by SNMP community names. A community name is a
password that is used to grant access to specific parts of the MIB database.

16 Chapter 1

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 16

Values to Query

When using SNMP to query network devices, you must know which values
are pertinent for network performance information. There are plenty of data
objects that can be found in the SNMP MIB tables on network devices, and
dumping all of the tables would take an extremely large amount of time and
network bandwidth.

The common MIB database provides much of the basic network perfor-
mance data used to track performance of a network device. The second ver-
sion of the common MIB database (called MIB-2) has been updated to include
many error statistics for network devices.

The MIB-2 database objects provide many useful fields that can be used to
determine the amount of network traffic and errors on a network device.
Querying these values can give you lots of information regarding network
traffic on the device. Table 1.1 shows some of the more useful MIB-2 objects
that should be considered.

Table 1.1 SNMP MIB Network Performance Objects

OBJECT DESCRIPTION

IfType The physical type of interface

IfSpeed The data rate capacity of the interface

IfMTU The size of the largest data packet the interface can
handle

IfAdminStatus The status of the interface (active/inactive)

IfInOctets The total number of octets received by the interface

IfOutOctets The total number of octets sent by the interface

IfInUcasePkts The total number of unicast packets received by the
interface

IfOutUcastPkts The total number of unicast packets sent by the interface

IfInNUcastPkts The total number of non-unicast packets
(broadcast/multicast) received by the interface

IfOutNUcastPkts The total number of non-unicast packets
(broadcast/multicast) sent by the interface

IfInErrors The total number of packets received that contained errors

IfOutErrors The total number of packets that could not be sent
because they contained errors

IfInDiscards The total number of packets received that could not be
processed, even though they did not contain errors

Defining Network Performance 17

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 17

Most of the MIB-2 values are continuous counters. For example, the
ifInOctets object counts the number of bytes (octets) received on the interface
since it was first powered on (or the MIB-2 database was reset). This value can
reach a maximum value, and then roll over to zero and start over. To determine
a data rate, most network performance tools query these values over a set
period of time, and subtract the difference. Care must be taken when doing
this, to ensure that the value has not rolled over to zero between the measur-
ing times, affecting the data results.

Network devices that contain multiple ports (such as switches and hubs)
maintain a separate MIB-2 table for each interface on the device, as well as a
system-wide MIB-2 table. The separate port tables are accessed using special
indexing within the MIB value. Chapter 3, “Network Device Utilization,”
describes how to access this information using SNMP network tools.

Watching Existing Traffic
Another common technique used for collecting network performance data is
to watch existing traffic on the network. A lot of information can be gathered
from the network just by watching the packets that are traveling between net-
work devices.

In order to capture all of the traffic traveling on the network, a device’s net-
work interface must be placed in promiscuous mode. By default, a network inter-
face only accepts packets that are destined for the device, or that are sent out
on a multicast or broadcast address. Promiscuous mode allows the network
interface to read all packets on the network, regardless of their destination.
This feature allows the network device to inspect each packet on the network,
no matter where it came from, and where it is sent.

TI P When attempting to capture traffic on a network, you must be careful of
devices such as switches, bridges, and routers, which segment traffic. If your
network device is on one of these types of devices, it will not see all of the
traffic on the network.

After the network packets have been captured, they must be decoded and
analyzed to see what trends and/or problems exist on the network. A few
items that can be seen by analyzing network traffic are:

■■ Packet retransmissions

■■ Frozen TCP window sizes

■■ Broadcast storms

■■ Network advertisements

■■ Chatty applications

■■ Quality of service applications

18 Chapter 1

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 18

Each of these items can be a potential network performance problem, and
should be watched in the network monitor.

Generating Test Traffic
Many network performance tools generate their own network traffic to deter-
mine the current performance of the network. This technique requires math
skills, as well as a knowledge of network theory.

All network performance tools that analyze network performance by gener-
ating test traffic require two devices on the network. The network performance
along the path between the two devices is determined by using the packet pair
and packet train methods, described previously in the Bandwidth Capacity sec-
tion. This is demonstrated in Figure 1.4.

In Figure 1.4, the network performance tool determines the performance
only between devices A and B. No other paths in the network are tested. In
order to test other paths on the network, the testing devices must be relocated
to other points in the network. Of course the alternative is to have multiple test
device pairs and locate them at different points in the network. The trick is to
place the smallest number of testing points that can cover the largest area on
the network.

As mentioned, calculating network performance requires you to send pairs
and trains of packets across the network. The packet pairs do not take up much
network bandwidth, but the packet trains can place a fair amount of data on
the network. Care should be taken when using network performance tools
that use packet trains, so as not to adversely affect production traffic on the
network.

Figure 1.4 Generating test traffic on a network path.

switch
netw

ork p
ath

switch

switch

A

B

hub

hub

hub

hub hub

Defining Network Performance 19

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 19

Summary

This chapter describes what network performance is, and how a network per-
formance tool can measure it. Network performance incorporates five separate
elements: availability, response time, network utilization, network throughput,
and bandwidth capacity.

The availability of the network is crucial for network applications. Testing
the availability of the network is often done by using a simple ping test to
determine which hosts on the network are reachable. After determining avail-
ability, you can measure the response time for various hosts on the network.
Different response times can be found based on different network link types
and different paths in the network.

Network utilization is measured to determine how much of the network is
being used for applications, and the percentage of error transmissions. A net-
work with high utilization will have an increased amount of errors in the net-
work traffic. Similar to the network utilization are the network throughput
and capacity. The capacity is the total amount of data that can theoretically
pass between two points on the network. This can be affected by different link
speeds across the network, and different types of cables used to connect the
network devices. The network throughput represents the amount of network
bandwidth currently available for applications.

The are three different methods of collecting network performance data
from the network. The Simple Network Management Protocol (SNMP) is used
to query managed network devices for network information. SNMP devices
store network information in the Management Information Base (MIB) data-
base. Information such as bytes received and sent, as well as errors received, is
contained in the MIB database. A remote network management workstation
can query the MIB database using SNMP to retrieve network information
about the device.

Watching network traffic can also determine network performance. Telltale
signs such as broadcast storms and packet retransmissions can be seen by cap-
turing data as it flows through the network. The last method of collecting net-
work performance data is to generate test traffic on the network. Some
network performance tools generate test packets and send them across the net-
work to determine the network capacity and performance. By using packet
pairs and packet trains, network performance tools can calculate the network
information based on packet separation (the spacing between packets) and
throughput rates.

The next chapter describes one of the basic elements of network perfor-
mance monitoring—watching network packets. By observing the actual net-
work traffic, you can often identify the device (or devices) contributing the
most to network load. There are several open source applications that are
available to help you watch network traffic. Each one will be discussed and
demonstrated.

20 Chapter 1

03 433012 Ch01.qxd 6/16/03 9:09 AM Page 20

21

As mentioned in Chapter 1, “Defining Network Performance,” watching net-
work traffic is one way to determine how well the network performs. This
chapter shows you how to install several network-monitoring software pack-
ages for both the Unix and Windows worlds, and how to use them to watch for
network traffic problems.

Watching the traffic that traverses a network can often tell you a lot about
the health of your network. There are many expensive commercial monitoring
tools available to help network administrators capture and decode packets on
the network. These products are often standalone devices whose only function
is to capture packets and monitor network activity.

However, there are also several good Open Source network monitoring
tools that can perform the same functions as the expensive network monitors.
Each of these tools can be loaded on an existing Unix or Windows host to mon-
itor the network and display and decode the packets that it sees. This enables
you to watch the network traffic on a specific server without having to deal
with connecting any extra devices.

Catching All the Traffic

By default, network devices only capture packets that are destined for either
their specific Media Access Control (MAC) address, or a broadcast or multicast
address. To enable a network device to watch other traffic on the network, you

Watching Network Traffic

C H A P T E R

2

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 21

must place the network card in promiscuous mode. Promiscuous mode enables
the network card to forward all packets that it sees to higher-layer programs
on the device.

Unfortunately, different network cards require different software hooks to
enable promiscuous mode and pass captured packets to the higher-layer pro-
grams. To simplify things for programmers, packet-capturing libraries have
been created in both the Unix and Windows worlds to provide a common
application programming interface (API) for packet capturing. The two most
popular packet-capturing libraries are:

■■ The libpcap library for Unix

■■ The winpcap library for Windows

Both of these libraries provide APIs for programs to easily capture packets
as they travel past the network card of the host device.

The libpcap Library
The libpcap library was developed at the Lawrence Berkeley National Labora-
tory, and is now maintained by an organization called the Tcpdump Group.
The libpcap library has been ported to every Unix distribution (including
Linux and FreeBSD) to be used as a common method of capturing packets
from network interface cards. Most Unix distributions include the libpcap
library, and many distributions install it by default.

Downloading and Installing libpcap

If you are interested in using the latest version of libpcap, you can download
the source code from the Tcpdump Group Web site and compile it yourself. At
the time of this writing, the latest version of libpcap is version 0.7.1, which can
be downloaded from www.tcpdump.org/release/libpcap-0.7.1.tar.gz.

After downloading the libpcap distribution file, you must unpack and com-
pile it. The distribution file is a compressed tar file, which means that you must
uncompress it using the gunzip utility, and extract the distribution files using
the tar command. Many implementations of the tar command allow both steps
to be performed at once using the –z option:

tar -zxvf libpcap-0.7.1.tar.gz

The distribution files will be extracted into the libpcap-0.7.1 directory. After
changing to the new directory, you must run the configure script to build a
Makefile file. The configure script checks the Unix distribution for specific sys-
tem and compiler features to customize the libpcap library. To compile the
libpcap library, your Unix distribution must have a C compiler, and the lex and

22 Chapter 2

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 22

bison text parsers. For Open Source Unix distributions such as Linux and
FreeBSD, the gcc, flex, and bison programs provide these functions.

WARN I NG The current libpcap distribution requires the 2.5.4 version (or
later) of flex to compile.

When you run the configure command, you must reference the local copy
of it:

./configure

You should see several lines of output as the configure script checks for sys-
tem and compiler features necessary to build the libpcap library. After running
the configure script, you can use the make command to compile the library.
The output file is called libpcap.a. To install this file on your system, you must
change to the root user, and run the make program again, using the install
option:

make install

This places the libpcap.a library file in the proper location on the Unix sys-
tem, and registers it with the system libraries database. It is now ready to be
used by any program that needs to capture network packets from the system
network card.

Using libpcap

After the libpcap library is created and installed, you can use it to compile
programs that require promiscuous mode access to the network. If you write
programs using the libpcap library, you must include the library file in your
compiles:

gcc program.c -lpcap

TI P Note that, when using the library, you do not specify the full filename on
the compiler command line, just the pcap library name.

The libpcap library contains all of the API function calls that are used by
applications to access packets from the network. If you are compiling the
source code for the tcpdump program (described later in The tcpdump Program
section of this chapter), you must have the libpcap library installed on your
system.

Watching Network Traffic 23

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 23

The winpcap Library
The winpcap library was developed by the NetGroup at the Politecnico di
Torino. It was developed as a libpcap-compatible interface for Windows plat-
forms. As libpcap does for Unix, winpcap allows Windows programs to inter-
face the network card with a common API to read all packets received from the
network.

Downloading and Installing winpcap

The main Web site for winpcap can be found at http://winpcap.polito.it. This
page contains links to several other pages, including full instructions on how
to compile Windows programs with winpcap, as well as the complete winpcap
downloads.

The winpcap download page (http://winpcap.polito.it/install/default.htm)
provides links for several downloads:

■■ The latest winpcap binary package

■■ A developer’s pack that includes library and header files for compiling
applications with winpcap

■■ A source code pack that includes the full source code for the winpcap
library

TI P Besides the most current production version of winpcap, there is often a
development version of winpcap available for testing. As with all development
software, you should be careful not to use this version in a production
environment on a system you would not want to crash.

At the time of this writing, the most current production version of winpcap
is version 2.3. If you are running Windows XP Home Edition or Professional,
you must use at least the 2.3 version. Older versions of the library do not work
on that platform. The binary installation file is downloaded as http://
winpcap.polito.it/install.bin/WinPcap_2_3.exe.

Since the installation file is a binary executable file, after downloading the
installation file, you can run it without modification. The winpcap installation
program contains two separate files. The wpcap.dll file is the direct replace-
ment for the libpcap.a library file for the Windows environment. It provides
the APIs that read packets from the network interface. The packet.dll library
file provides additional functionality by allowing programs to send raw pack-
ets out to the network interface as well.

WARN I NG If you are upgrading the version of winpcap on your system, you
must completely remove it before installing the new version. This can be done
from the Control Panel Add/Remove Programs program.

24 Chapter 2

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 24

Developing Applications with winpcap

If you plan on creating your own network-monitoring programs using the
winpcap library, you must also download the developer’s pack from the win-
pcap Web site. At the time of this writing, the current developer’s pack can be
found at http://winpcap.polito.it/install.bin/Wpdpack_2_3.zip.

Unzipping the pack creates a directory, Wpdpack, with four separate
subdirectories:

■■ Include. The include header files for writing C applications

■■ Lib. The library files for compiling with C applications

■■ Examples. Sample C applications showing how to write winpcap
programs

■■ Drivers. The complete winpcap binary library installation file

As with libpcap, you must use the winpcap library headers and include files
when creating network programs. You may want to move these files to your
C language development environment.

If you want to experiment with the actual source code used to create the
winpcap library, you can download it from the winpcap Web site at http://
winpcap.polito.it/install/bin/WpcapSrc_2_3.zip.

Again, this is distributed as a zip file, and must be unzipped into a working
directory. After you unzip the distribution file, a winpcap directory will be cre-
ated containing all of the source code files. You may notice that many of the
source code files used in winpcap are derived from the libpcap project.

Using winpcap

The winpcap library was written to directly support the existing libpcap
library function calls in the Windows environment. Besides supporting all of
the libpcap function calls, winpcap also supplies a few additional function
calls specifically for Windows. If you are using the WinDump, Analyzer, or
Ethereal packages described later in this chapter, you must have the winpcap
libraries installed.

The tcpdump Program

The most popular network monitor program developed for the Unix environ-
ment has been the tcpdump program. Tcpdump was developed at the
Lawrence Berkeley Laboratories as a way for developers to easily watch net-
work traffic on servers. It places the host network interface in promiscuous
mode, accepting all packets from the network and displaying them in different
formats on the console, or storing them in a file for later analysis.

Watching Network Traffic 25

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 25

The Tcpdump Group now maintains the tcpdump application.
Most Unix distributions include the tcpdump program; however, due to

security concerns, many do not install it by default. When it is installed, usu-
ally you need to have root privileges to run it.

Installing tcpdump
Depending on your Unix distribution, there are several different ways to
install tcpdump. Several Linux distributions use the Resource Package Man-
ager (RPM) method to install binary applications. This section shows you how
to install tcpdump using RPM, as well as how to download the source code
and install it manually on all Unix systems.

Linux RPM Installation

Many Linux distributions use the RPM package handler to install and remove
applications from the system. If your Linux distribution uses RPMs (such as
Red Hat, Mandrake, and Caldera) you can use the rpm installation program to
easily install tcpdump.

A tcpdump rpm file should be included with your Linux distribution. On
my Mandrake version 8.0 Linux system, it is included on the first installation
CD as file tcpdump-3.6.1-1mdk.i586.rpm. The rpm file can be loaded using the
rpm package handler:

#rpm -Uvh tcpdump-3.6.1-1mdk.i586.rpm

You must ensure that you are the root user before attempting to install the
package with the rpm package manager. The three command-line options
used are:

■■ -U to update any existing installed tcpdump application

■■ -v to use verbose mode when installing

■■ -h to use hash marks to show the progress of the install

This command installs the tcpdump application (or upgrades it, if an older
version was installed), showing the progress as it goes along. When the instal-
lation is complete, the tcpdump application should be ready for use.

NOTE The binary distribution of tcpdump includes the libpcap library
compiled into the application, so you do not need to download or install the
libpcap files. If you download the tcpdump source code and compile it, you
must have the libpcap library files installed.

26 Chapter 2

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 26

Downloading the Source Code

If your Unix distribution does not include the tcpdump application, or if you
want to use the latest available version, you can download the source code
from the tcpdump Web site and compile it yourself.

At the time of this writing, the current version of tcpdump is version 3.7.1,
which can be downloaded from www.tcpdump.org/release/tcpdump-3.7.1.tar.gz.

Like the libpcap library distribution, the tcpdump distribution comes as a
compressed tar file that must be uncompressed and expanded into a working
directory. If you compile the tcpdump application, you must have the libpcap
library source code files as well (as discussed in the The libpcap Library section
of this chapter). After tcpdump is compiled, you can remove the libpcap
library files. It is best to keep the two distribution directories close to each
other, possibly under the same directory structure, as the tcpdump compile
process will look for and use the libpcap library files.

Before you can compile tcpdump, you must run the configure program to
detect the system settings and create an appropriate Makefile file. The config-
ure program detects where the libpcap library files are located on the system.
You should see an output line within the configure output that references
where it found the libpcap library file:

checking for local pcap library... ../libpcap-0.7.1/libpcap.a

This example shows that the libpcap library directory was found one direc-
tory level up from where the tcpdump working directory was located. If no
libpcap library files are found on the system, you will see an error message in
the configure output:

checking for local pcap library... not found

checking for main in -lpcap... no

configure: error: see the INSTALL doc for more info

After the configure program has run successfully, you can run make to cre-
ate the tcpdump executable file, and makeinstall (as root) to install it on your
system. Once the executable file is created, you can remove the libpcap and
tcpdump source code files.

Using tcpdump
The first part of using tcpdump is to determine which interface you want to
monitor. Many Unix systems have multiple network interfaces, and possibly
PPP connections as well. You must know which interface you are monitoring
on the system. The interfaces can be displayed with the Unix ifconfig program.

Watching Network Traffic 27

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 27

To display all of the active network interfaces on a system, you must use the –a
option. The following code shows what a sample ifconfig output for a
Linux system looks like:

ifconfig -a

eth0 Link encap:Ethernet HWaddr 00:E0:29:51:06:D2

inet addr:192.168.1.6 Bcast:192.168.1.25 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:1043006 errors:0 dropped:0 overruns:0 frame:0

TX packets:79946 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

RX bytes:334058983 (318.5 Mb) TX bytes:66614501 (63.5 Mb)

Interrupt:10 Base address:0x8000

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:1552 errors:0 dropped:0 overruns:0 frame:0

TX packets:1552 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:151972 (148.4 Kb) TX bytes:151972 (148.4 Kb)

#

This system contains two network interfaces, a network interface card,
called eth0, and the network loopback interface, lo. The loopback interface is
often used for testing network programs without using the actual network.
The ifconfig output also shows the basic information for the network card,
such as the MAC and IP addresses, along with network statistics. On a
FreeBSD system, the output looks like the following:

ifconfig -a

vx0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500

inet 192.168.1.6 netmask 0xffffff00 broadcast 192.168.1.255

ether 00:a0:24:9c:69:02 lp0: flags=8810<POINTOPOINT,SIMPLEX,MULTICAST>

mtu 1500

ppp0: flags=8010<POINTOPOINT,MULTICAST> mtu 1500

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384

inet 127.0.0.1 netmask 0xff000000

#

The default network interface on this device is called vx0. There is also a
PPP connection on this system, called ppp0, as well as the standard loopback
interface, called lo0.

By default, tcpdump monitors the lowest-numbered active interface, which
is listed first in the ifconfig output. To choose a different interface, the –i option
must be used. This command monitors packets sent and received on the PPP
interface of the FreeBSD device shown:

$tcpdump -i ppp0

28 Chapter 2

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 28

There are many command-line options that can be used to modify the
behavior of the tcpdump program. Table 2.1 shows the command-line options
that can be used.

Table 2.1 The tcpdump Command-Line Options

OPTION DESCRIPTION

-a Attempt to convert network and broadcast addresses
to names.

-c Exit after receiving count packets.

-C filesize If the file is larger than filesize, close the current
savefile and open a new one.

-dd Dump packet-matching code as a C program
fragment.

-ddd Dump packet-matching code as decimal numbers
(preceded with a count).

-e Print the link-level header on each dump line.

-E algo:secret Use algo:secret for decrypting IPsec ESP packets.

-f Print foreign Internet addresses numerically.

-F file Use file as input for the filter expression.

-i interface Listen on interface.

-l Make stdout line buffered.

-m module Load SMI MIB module definitions from file module.

-N Don’t print domain name qualification of hostnames.

-O Don’t run the packet-matching code optimizer.

-p Don’t put the interface into promiscuous mode.

-q Quick output. Fewer lines per packet are displayed.

-R Assume ESP/AH packets to be based on old
specification.

-r file Read packets from file.

-S Print absolute, rather than relative, TCP sequence
numbers.

-s snaplen Get snaplen bytes of data from each packet.
The default is 68 bytes.

(continued)

Watching Network Traffic 29

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 29

Table 2.1 (continued)

OPTION DESCRIPTION

-T type This option specifies the type of packet (rtp, snmp,
rtcp, vat, or wb).

-t Don’t print a timestamp on each dump line.

-tt Print an unformatted timestamp on each dump line.

-ttt Print the delta time between packets.

-tttt Print a timestamp in default format proceeded by date
on each dump line.

-u Print undecoded NFS handles.

-v Show verbose output.

-vv Show more verbose output.

-vvv Show even more verbose output.

-w file Write the raw packets to file rather than printing
them out.

-x Print each packet in hex.

-X When printing hex, print ASCII text as well.

Most of the command-line options can be mixed and matched together.
tcpdump allows you to specify as many command-line options as you desire,
separating each with a space:

$tcpdump -i eth0 -s 200 -x

This example instructs tcpdump to monitor the eth0 network interface, cap-
ture and display the first 200 bytes of each packet, and display the results in
hexadecimal format. If no options are specified, only the packet header infor-
mation is displayed. The following code shows a sample output from the
default command:

tcpdump

tcpdump: listening on eth0

18:07:12.648173 192.168.1.6.1043 > shadrach.blum.lan.telnet: . ack

760172632 win

17264 (DF)

18:07:12.648348 shadrach.blum.lan.telnet > 192.168.1.6.1043: P 1:29(28)

ack 0 wi

n 32120 (DF)

18:07:12.848468 192.168.1.6.1043 > shadrach.blum.lan.telnet: . ack 29

win 17236

(DF)

30 Chapter 2

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 30

3 packets received by filter

0 packets dropped by kernel

#

The first line of each displayed packet shows the timestamp indicating
when the packet was received. Next, the vital information for the packet is dis-
played—the source and destination addresses of the connection (the hostname
is used by default if it is known), and any protocol-specific information, such
as TCP flags, as seen in this example.

The WinDump Program

While the tcpdump program is popular in the Unix environment, the Win-
Dump program is used in the Windows environment to capture and display
network packets from a command prompt. This section describes how to
install and use the WinDump network monitor program.

Downloading and Installing WinDump
The WinDump program is available on the Politecnico de Torino Web site. At
the time of this writing the most current version of WinDump is version 3.6.2.
The WinDump program is distributed as a single executable file. The file is not
compressed, so it can be run exactly as downloaded.

The download URL for the WinDump executable is http://windump
.polito.it/install.bin/alpha.WinDump.exe.

There is no installation procedure to do; this is the complete WinDump exe-
cutable file. As long as the winpcap libraries are loaded, you can begin using
WinDump immediately.

Using WinDump
The WinDump program behaves similarly to the tcpdump program, but there
are a few command-line option differences. The WinDump program provides
a command-line option that displays the available network interfaces on the
device:

C:\monitor>windump -D

1.\Device\Packet_{E0D13BFC-D26F-45D6-BC12-534854E3AD71} (Novell 2000

Adapter.)

2.\Device\Packet_NdisWanIp (NdisWan Adapter)

3.\Device\Packet_NdisWanBh (NdisWan Adapter)

C:\monitor>

Watching Network Traffic 31

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 31

The configuration on this sample workstation contains one network card
(emulating a Novell 2000 network adapter), and a modem that has two sepa-
rate PPP connections configured. By default, WinDump will monitor traffic on
the number 1 interface. If you want to monitor traffic on a different interface,
you must specify it on the command line, using the -i option:

C:\monitor>windump -i 2

windump: listening on\Device\Packet_NdisWanIp

Note that the -i option for WinDump can specify either the interface num-
ber, as specified by the -D option, or the full interface text name. If the full text
name is used, it must be specified exactly as shown in the -D option output.

Table 2.2 shows the command line options that are available for the Win-
Dump program.

Table 2.2 The WinDump Command-Line Options

OPTION DESCRIPTION

-a Attempt to convert network and broadcast addresses
to names.

-B size Set the receive buffer size to size.

-c count Capture count packets and stops.

-D Display all available network interfaces on the system.

-e Print the link-level information on each line of the output.

-F file Read the filter expression from the filename file.

-I interface Monitor the network interface. interface can be either the
interface name or a number shown from the -D command.

-n Don’t convert addresses to names.

-N Don’t print fully qualified domain names.

-q Print quick (less) packet information.

-r file Read the packets from dumpfile file.

-S Print absolute TCP sequence numbers.

-s snaplen Capture snaplen bytes from the packets. The default value
is 68.

-t Don’t print a timestamp on each line.

-w file Write the output to file.

-X Print each packet in hex and ASCII.

-x Print each packet in hex.

32 Chapter 2

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 32

As with tcpdump, multiple options can be combined on the command line
to create the network-monitoring environment you need. For example, to cap-
ture the first 200 bytes of each packet, print them in hex, and write the output
to a file, you would type:

C:\>windump -s 200 -x -w testcap

By default, WinDump attempts to capture all packets it sees on the network
interface. Depending on your network (and the placement of your analyzer
workstation on the network), this may be a large amount of traffic. Often it is
difficult trying to track a single IP session within a bunch of extraneous net-
work packets. With WinDump, you can specify a filter to limit the amount of
traffic captured to just the information you are interested in monitoring. The
next section describes how to set monitor filters in WinDump.

Filtering Packets with tcpdump and WinDump

Trying to watch a specific network session while capturing all the packets on
the network can be a difficult thing to do. To make this job easier, both the tcp-
dump and WinDump programs allow you to specify filters on the command
line. A filter can be configured to filter out all background network traffic
except the specific session you are trying to analyze.

The filter uses a specific syntax to define the types of packets to accept. The
filter consists of an expression that each captured packet is compared against.
The expression defines one or more primitives that consist of an ID and one or
more qualifiers. The primitive ID defines the type of packet to capture, such as
TCP or UDP. The qualifiers define values to match against the primitives.

There are lots of primitives that can be used in the filter. Table 2.3 shows
some of the primitive types that can be used.

Table 2.3 The tcpdump and WinDump Primitives

PRIMITIVE DESCRIPTION

dst host host Specifies a hostname or IP address of the
destination host

src host host Specifies a hostname or IP address of the source host

host host Specifies a hostname or IP address of either the
source or destination host

ether dst host Specifies the Ethernet address of the destination host

ether src host Specifies the Ethernet address of the source host

(continued)

Watching Network Traffic 33

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 33

Table 2.3 (continued)

PRIMITIVE DESCRIPTION

ether host host Specifies the Ethernet address of either the source
or destination host

gateway host Specifies the hostname or IP address of a gateway
used by the packet

dst net net Specifies the network name or IP network address
of the destination network

src net net Specifies the network name or IP network address
of the source network

net net Specifies the network name or IP network address
of the source or destination network

net net mask mask Specifies the network name or IP address of net and
the subnet mask of mask

net net/len Specifies the network IP address of net with the
subnet mask of len bits wide

dst port port Specifies the TCP or UDP destination port of port

src port port Specifies the TCP or UDP source port of port

less length Indicates that the packet size is less than length

greater length Indicates that the packet size is greater than length

ip proto protocol Indicates the next-layer IP protocol in the packet

ether multicast Indicates that the packet is an Ethernet multicast
packet

ip multicast Indicates that the packet is an IP multicast packet

ether proto protocol Indicates the next-layer Ethernet protocol in the
packet

Some primitives can be used without qualifiers, while some qualifiers can
be used without primitives. For example, the primitive ip proto tcp can be
shortened to just the qualifier, tcp. This restricts captured packets to just TCP
packets. Some examples of using expressions in the command line are:

tcpdump ip host meshach.isptest.net

The primitive in this example is ip. The qualifier, host meshach.isptest.net,
specifies that only packets sent and received by the host meshach.isptest.net
will be captured.

tcpdump ip host 192.168.1.6 and port not 23

34 Chapter 2

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 34

This example demonstrates a more complicated expression. The first part is
normal; it specifies all packets sent and received by host 192.168.1.6. The sec-
ond part further limits the capture by specifying that the packets should not be
to or from port 23.

The Analyzer Program

The Analyzer program is a Windows application that provides a graphical
environment for capturing and analyzing network packets. It uses the win-
pcap library to capture packets from the network interface on the Windows
system. It has the same functionality as the WinDump program, but with a
more convenient user interface.

To start the Analyzer program, double-click on the analyzer.exe file, or click
on the Analyzer desktop icon if you elected to create it during the installation.
There are four basic functions the analyzer program can perform:

■■ Capture and display network packets

■■ Display packets stored in a file

■■ Capture network statistics

■■ Perform real-time network monitoring

Since the point of this section is to discuss capturing network packets, I will
not describe the network statistics and real-time monitoring functions of the
analyzer program. These are, however, useful for doing network troubleshoot-
ing, and you should investigate them on your own.

To capture network packets, you must click the packet capture icon, which
is the first icon on the third row of toolbars. When you click the icon, a Filter
Selection window appears, as shown in Figure 2.1.

The Filter Selection window allows you to select the network interface to
capture packets from, and to define a filter for the packet capturing. By click-
ing the Select Adapter button, you can select which network adapter to use.
The list that appears should be the same as from the WinDump -D command-
line option. Again, any PPP connections that you have defined will show up
here as well.

If you want to capture all network packets, you must check the Promiscuous
Mode check box; otherwise, all you will see are packets destined for your local
device. After you select the network adapter to use, you may define a specific
filter to use. In the right-hand window, the analyzer program shows a tree of
several common filters. By expanding a particular network layer, you can
select a specific packet type to capture.

Watching Network Traffic 35

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 35

Figure 2.1 Filter Selection window.

After you select the desired filter options and click the OK button, the Ana-
lyzer program begins capturing packets. The Capture in Progress window
appears, showing the elapsed time the capture has been running, how many
packets have been accepted by the filter, how many packets have been ana-
lyzed by the analyzer, and how many packets have been lost (dropped). To
end the capture session, press the Stop button.

When you stop the capture, a Capture document window appears, as
shown in Figure 2.2.

This window contains three sections:

■■ A packet index showing all of the packets captured in order

■■ A hex and ASCII printout of the current packet

■■ A tree view of the packet type information

The tree view contains all of the detailed information about the packet,
divided by the different protocols present in the packet data. For example, for
a typical TELNET session packet, the following protocols would be present:

■■ The Ethernet layer transport information

■■ The IP network layer information

36 Chapter 2

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 36

■■ The TCP transport layer information

■■ The TELNET application data

To successfully trace and debug a network application, you should know
how to decode and understand each of the different layers of information con-
tained in the network packet. The next section shows the different layers
present in the IP network packet, and describes how to decode the information
contained in them.

The Ethereal Program

The Ethereal program is a graphical network-monitoring application that runs
in both the Unix and Windows environments. It uses either the libpcap or win-
pcap library to capture packets from the network interface on the host
machine. It also uses the GTK+ graphical library to produce its windows and
dialog boxes. This enables it to have the same graphical interface in either
operating system.

Figure 2.2 The Analyzer Capture document window.

Watching Network Traffic 37

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 37

Downloading and Installing Ethereal
The Ethereal Web site is located at www.ethereal.com. It includes a download
area that contains both binary and source code distributions for all environ-
ments. The main download URL is www.ethereal.com/distribution/.

If you are using the Windows environment, you can download the binary
distribution file from the Win32 distribution area. At the time of this writing,
the current Windows version of Ethereal is 0.9.7, and it is distributed in the
download file ethereal-setup-0.9.7.exe. You can run this executable file to
install the Ethereal package.

If you are using a Unix environment, you can either download the binary
distribution file for your Unix distribution, or download the source code and
compile the Ethereal package yourself. Either way, you need the following
additional software to install Ethereal in the Unix environment:

The GTK+ libraries, which provide the graphical libraries for the Windows
system

The GLIB libraries, which provide additional graphic libraries for GTK

The libpcap libraries, which provide the packet capture libraries

The ucd-snmp libraries (also called net-snmp), which provide SNMP
decoding capabilities

The zlib libraries, which provide compression utilities for compressing
saved capture files

On my Mandrake Linux system, all of these library packages are available
as RPM installation packages. All of these contain two separate installation
files: a basic library distribution, and a developer’s distribution. If you are
compiling the Ethereal source code, you must also install the development
version of each of these packages, as well as the basic library files.

Using Ethereal
After installing Ethereal on the Unix or Windows system, you can run the
Ethereal executable file to start the program (on Unix systems, you must have
root privileges to capture packets). When the application starts, it produces the
main Ethereal capture screen. The program options are contained in the menu
bar items. If you click the Capture menu item, and select the Start option, the
Capture Options dialog box appears.

The Filter button allows you to define and select packet capture filters, sim-
ilar to the tcpdump and WinDump filter expressions. You can configure and
save several different capture filters, and use them by selecting them at this
point.

38 Chapter 2

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 38

To start the capture, click the OK button in the Capture Options dialog box.
When the capture starts, the Capture dialog box appears, showing how many
packets are being captured by the application. To stop the capture, click the
Stop button.

After the capture session is stopped, Ethereal decodes the packets (which
may take some time for large captures), and displays the results in the main
program window (as shown in Figure 2.3).

The display window is divided into three separate sections:

■■ The top section shows the header information of the captured packets.

■■ The middle section shows the decoded information from the packets.

■■ The bottom section shows the raw hex and ASCII display of the packet
data.

Like the Analyzer program the Ethereal program allows you to step through
each captured packet, showing the details of both the packet header fields and
the data portion of the packet. One nice feature of Ethereal is that it decodes a
lot more packet types for you, allowing you to see what is happening on the
network without having to manually decode packets.

Figure 2.3 The Ethereal packet display window.

Watching Network Traffic 39

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 39

Summary

This chapter shows how you can use standard Unix and Windows hosts to
monitor network traffic, without having to purchase expensive network-
monitoring equipment or software. The libpcap (for Unix) and winpcap (for
Windows) libraries enable applications to access device network interfaces in
promiscuous mode, capturing all packets that traverse the network. After cap-
turing the network packets, you will want to decode their meaning to deter-
mine network performance issues.

There are several Open Source network-monitoring packages that use the
libpcap and winpcap libraries to capture, decode, and display network traffic.
The tcpdump package is the most popular Unix network-monitoring package.
It uses filter options to specify which type of packets to capture. The Win-
Dump program performs the same function in the Windows environment.

If you prefer graphical interfaces, the Analyzer program is a Windows graph-
ical network-monitoring application that can monitor network interfaces and
be configured with capture filters. The Ethereal package is unique in that it can
be used in both the Unix and Windows environments. Both the Analyzer and
Ethereal packages show both decoded and raw packet data, enabling you to
easily analyze network packets.

The next chapter discusses how to determine network device utilization
using SNMP. The snmpwalk and snmpget applications allow you to query
network devices using SNMP, to determine how they are handling network
traffic.

40 Chapter 2

04 433012 Ch02.qxd 6/16/03 9:10 AM Page 40

41

Directly monitoring network devices is an easy way to gather information
about network performance. This chapter describes how to use the Simple
Network Management Protocol (SNMP) to query managed network devices
for performance data. The net-snmp family of SNMP tools for Unix platforms
is used to directly query network devices for performance data.

As described in Chapter 1, “Defining Network Performance,” managed net-
work devices use SNMP to query network devices for information about the
traffic that they are handling. You can use SNMP to obtain baseline informa-
tion about the network data and error rates before doing any external perfor-
mance testing.

The net-snmp Package

To query remote SNMP devices for network information, you must have an
SNMP package running on your system. The most popular SNMP package
available for the Unix platform is the net-snmp package. The net-snmp pack-
age was developed at the University of California, Davis, and is now main-
tained by the net-snmp group. It provides complete SNMP functions for Unix
hosts.

Network Device Utilization

C H A P T E R

3

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 41

NOTE The net-snmp package is a new name for the original ucd-snmp
package, starting at version 5.0. The last version of ucd-snmp was version 4.9.2.
All new versions will use the new name, net-snmp. Many Linux distributions
still include the older ucd-snmp package. Most of the functionality between the
two packages is the same, although the net-snmp package started using
slightly different syntax for command-line options.

The net-snmp package contains several utilities that are useful in communi-
cating with remote network devices via SNMP. The net-snmp package can be
easily loaded on any Unix platform, including Linux and FreeBSD, providing
a framework for network management tools.

The SNMP functions that the net-snmp package provides are:

■■ Send SNMP queries to remote devices

■■ An SNMP agent to respond to SNMP queries from other devices

■■ Send and receive SNMP trap messages

■■ Provide an SNMP API library for other applications

■■ Query remote hosts for netstat command output

The net-snmp package consists of a set of library and executable files, and a
set of configuration files for defining the SNMP agent information. This section
describes the net-snmp package and explains how to use it to obtain network
information from network devices.

Downloading and Installing net-snmp
The main net-snmp Web site, http://www.net-snmp.org, contains informa-
tion about the latest version of net-snmp, along with other miscellaneous
SNMP information. There are several binary versions that can be downloaded,
as well as the source code distribution. The main download site is located at:

http://sourceforge.net/project/showfiles.php?group_id=12694

The current source code version at the time of this writing is net-snmp-5.0.6.
This package includes all of the net-snmp utilities, along with libraries and
man pages. After downloading the source code file, you must compile it on
your Unix system.

Before compiling the software, you must run the configure program to
allow net-snmp to detect what software is installed on the system, and to spec-
ify which features to compile information on for the final executable pro-
grams. The configure program uses several command-line options to modify

42 Chapter 3

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 42

how to compile and install the application. To see a list of all the possible
options, you can use the —help option:

$./configure —help

You can use the standard configure —enable and —disable parameters to
enable or disable features within the net-snmp package. To create a standard
installation with all of the features, just run the configure program with no
options. As the configure program runs, it checks installed software necessary
to support features within the net-snmp package. One of these features is
encryption.

NOTE If you want to implement SNMP version 2 and 3 encryption, you must
have the OpenSSL package libraries installed on your system.

When the configuration runs, it asks some questions to create the configura-
tion files. Most of these questions pertain to the SNMP agent feature of the net-
snmp package, providing the system information details to remote SNMP
devices.

The first question asked is important even if you do not use the SNMP agent
feature. It pertains to the version of SNMP you want to use by default in the
net-snmp utilities:

Default version of SNMP to use (3):

If you are planning on using mostly SNMP version 1 queries, you can enter
a 1 to set it as the default query type. This will enable you to enter SNMP ver-
sion 1 queries on the command lines without having to specify the version. As
you will see later, you can always specify which version of query to use on the
SNMP utility command line.

After the configure program is finished, you must run the make program to
build and install the SNMP utilities:

make

make install

The make install command installs all of the library and executable files, as
well as the manual pages for the software package. Remember that you need
to be logged in as the root user to run the install option. After you run the make
commands, the net-snmp package should be ready to use.

Network Device Utilization 43

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 43

Using net-snmp Utilities
The net-snmp package contains many SNMP utilities that can be used to query
remote network devices for SNMP information. The command line of each
utility uses essentially the same format:

command [options] agent OID

The agent value is the IP address or hostname of the remote SNMP device to
query. The OID value is the MIB structure to send in the query. The MIB struc-
ture can be specified in several different ways:

■■ Using the complete numeric MIB value: 1.3.6.1.2.1.1.3.0

■■ Using the complete text MIB values: iso.org.dod.internet.mgmt.mib-
2.system.sysUpTime.0

■■ Using a shorthand text MIB value, starting from the MIB management
object: system.sysUpTime.0

■■ Using a combination of numeric and text MIB values:
1.3.6.1.2.1.1.sysUpTime.0

WARN I NG Earlier versions of ucd-snmp required that the numeric MIB
values be preceded by a period. Version 5.0 of net-snmp does not have this
requirement. If you are using older versions of ucd-snmp, remember to use
the period at the start of the full numeric MIB value.

The options section of the utility command line allows you to specify one or
more options to modify the behavior of the utility. There are lots of options that
can be used with all of the net-snmp utilities. To see a complete list of the avail-
able options, you can refer to the man page for the generic snmpcmd com-
mand. Although this is not an actual net-snmp command, it is used as a man
page to list all of the common options that can be used on all of the net-snmp
utilities. Table 3.1 lists some of the more common and useful options that you
will run into.

Table 3.1 Some Standard net-snmp Utility Options

OPTION DESCRIPTION

-a prot Sets the authentication protocol to prot

-A passwd Sets the authentication password to passwd

-c comm Sets the community string to comm

-d Dumps the sent and received SNMP packets in
hexadecimal

44 Chapter 3

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 44

Table 3.1 (continued)

OPTION DESCRIPTION

-D [TOKEN] Turns on debugging for the given TOKENs

-e engine Sets the authoritative engine for SNMP version 3 requests
to engine

-I Specifies input parsing options

-l seclevel Sets the security level used in SNMP version 3 requests to
seclevel

-M dir Sets a colon-separated list of directories to search for MIBs

-O Specifies output parsing options

-P Specifies MIB parsing options

-r retries Specifies the number of retries to be used in requests,
with a default of 5

-t timeout Specifies the timeout in seconds between retries, with a
default of 1

-u secname Sets the security name used in SNMP version 3 requests
to secname

-v Specifies the SNMP version to use (overrides the default
set in the configure process)

-x privprot Sets the privacy protocol used for SNMP version 3
messages

-X privpasswd Sets the privacy pass phrase used in SNMP version 3
messages

The –I and –O options allow you to specify options used to parse the inputs
and outputs for the net-snmp commands. These options allow you to specify
how MIBs are searched and displayed in the commands.

The following sections describe some of the more popular SNMP query util-
ities that can be used to query remote SNMP devices for network traffic infor-
mation.

snmpget

The snmpget command queries a remote SNMP device for a single value in the
MIB database, using the SNMP GET command. The command line for
snmpget is:

snmpget [options] agent OID

Network Device Utilization 45

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 45

If you are querying an SNMP version 1 device, you must specify the com-
munity name used with the –c option:

snmpget -c public 192.168.1.100 system.sysUpTime.0

Remember when using the snmpget command that you need to specify the
trailing .0 on the MIB value, to ensure that you are querying a single value in
the database; otherwise, you will get an error.

Some examples of using the snmpget command are:

$ snmpget -c public 192.168.1.100 system.sysUpTime.0

SNMPv2-MIB::sysUpTime.0 = Timeticks: (17134241) 1 day, 23:35:42.41

$

This example queries the 192.168.1.100 host for the sysUpTime MIB-II value.
The returned output contains four different items:

■■ The original MIB value queried: SNMPv2-MIB::sysUpTime.0

■■ The data type of the returned data: Timeticks

■■ The raw value of the returned data: 17134241

■■ The formatted value of the returned data: 1 day, 23:35:42.41

Note that since this was an SNMP version 1 query, a value read community
name for the remote device was specified using the –c option.

An example of the snmpget command that uses the numeric MIB object is:

$ snmpget -c public 192.168.1.100 1.3.6.1.2.1.1.1.0

SNMPv2-MIB::sysDescr.0 = STRING: Bay Networks, Inc., 3000 Chassis,

Ethernet NMM 331XA, Agent V5.3.1

Compiled Date: Jun 22 1995, Time: 14:58:05

$

In this example, the MIB object (sysDescr) was specified on the command
line, using the full numeric MIB version. The returned data for this MIB object
is a string value, with the full text value of the string returned.

snmpgetnext

The snmpgetnext command uses the SNMP GetNext request packet to retrieve
the next value in the MIB table. This is often used when querying a table of val-
ues, such as interface values on a hub or switch. The returned value will spec-
ify the next MIB that should be used to continue walking the table, as well as
the value of the MIB queried.

46 Chapter 3

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 46

An example of the use of snmpgetnext is:

$ snmpgetnext -c public 192.168.1.100 1.3.6.1.2.1.2.2.1

IF-MIB::ifIndex.1 = INTEGER: 1

$ snmpgetnext -c public 192.168.1.100 IF-MIB::ifIndex.1

IF-MIB::ifDescr.1 = STRING: Ethernet

$ snmpgetnext -c public 192.168.1.100 IF-MIB::ifDescr.1

IF-MIB::ifType.1 = INTEGER: ethernetCsmacd(6)

$ snmpgetnext -c public 192.168.1.100 IF-MIB::ifType.1

IF-MIB::ifMtu.1 = INTEGER: 1500

$ snmpgetnext -c public 192.168.1.100 IF-MIB::ifMtu.1

IF-MIB::ifSpeed.1 = Gauge32: 10000000

$ snmpgetnext -c public 192.168.1.100 IF-MIB::ifSpeed.1

IF-MIB::ifPhysAddress.1 = STRING: 0:0:81:24:30:86

$ snmpgetnext -c public 192.168.1.100 IF-MIB::ifPhysAddress.1

IF-MIB::ifAdminStatus.1 = INTEGER: up(1)

$ snmpgetnext -c public 192.168.1.100 IF-MIB::ifAdminStatus.1

IF-MIB::ifOperStatus.1 = INTEGER: up(1)

$ snmpgetnext -c public 192.168.1.100 IF-MIB::ifOperStatus.1

IF-MIB::ifLastChange.1 = Timeticks: (0) 0:00:00.00

$ snmpgetnext -c public 192.168.1.100 IF-MIB::ifLastChange.1

IF-MIB::ifInOctets.1 = Counter32: 481651898

$ snmpgetnext -c public 192.168.1.100 IF-MIB::ifInOctets.1

IF-MIB::ifInUcastPkts.1 = Counter32: 166060

$ snmpgetnext -c public 192.168.1.100 IF-MIB::ifInUcastPkts.1

IF-MIB::ifInNUcastPkts.1 = Counter32: 1935111

$

This example uses the MIB-II interfaces object, which maintains information
and statistics for each physical interface on a network device. Note how each
query produces the next MIB object in the table, along with the MIB value
response. You can continue using the next MIB object to manually walk your
way down the MIB table, viewing all of the values. Or, you can use the snmp-
walk function, discussed next, to do this automatically.

snmpwalk

The snmpwalk command is similar to the snmpgetnext command, in that it
uses the SNMP GetNext request packet to retrieve the next value in the MIB
table—but with a twist. The snmpwalk command automatically queries the
remote device with the MIB that is returned as the next MIB value. This allows
you to retrieve information from an entire table from a single function call.

An example of the use of snmpwalk is:

$ snmpwalk -c public 192.168.1.100 1.3.6.1.2.1.2.2.1

IF-MIB::ifIndex.1 = INTEGER: 1

IF-MIB::ifDescr.1 = STRING: Ethernet

Network Device Utilization 47

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 47

IF-MIB::ifType.1 = INTEGER: ethernetCsmacd(6)

IF-MIB::ifMtu.1 = INTEGER: 1500

IF-MIB::ifSpeed.1 = Gauge32: 10000000

IF-MIB::ifPhysAddress.1 = STRING: 0:0:81:24:30:86

IF-MIB::ifAdminStatus.1 = INTEGER: up(1)

IF-MIB::ifOperStatus.1 = INTEGER: up(1)

IF-MIB::ifLastChange.1 = Timeticks: (0) 0:00:00.00

IF-MIB::ifInOctets.1 = Counter32: 486732814

IF-MIB::ifInUcastPkts.1 = Counter32: 167851

IF-MIB::ifInNUcastPkts.1 = Counter32: 1955195

IF-MIB::ifInDiscards.1 = Counter32: 501

IF-MIB::ifInErrors.1 = Counter32: 0

IF-MIB::ifInUnknownProtos.1 = Counter32: 0

IF-MIB::ifOutOctets.1 = Counter32: 8204530

IF-MIB::ifOutUcastPkts.1 = Counter32: 167436

IF-MIB::ifOutNUcastPkts.1 = Counter32: 34763

IF-MIB::ifOutDiscards.1 = Counter32: 0

IF-MIB::ifOutErrors.1 = Counter32: 0

IF-MIB::ifOutQLen.1 = Gauge32: 0

IF-MIB::ifSpecific.1 = OID: SNMPv2-SMI::mib-2.22

$

As expected, the snmpwalk command walked through all of the objects
under the specified node object, showing the object name and value for each
object.

snmpdelta

Many network statistics rely on obtaining MIB values at regular intervals. The
snmpdelta command allows you to monitor a MIB value at a regular interval,
providing you with information for network calculations. The snmpdelta com-
mand uses the –Cp option to specify how often (in seconds) the new value
should be retrieved. The default is every 1 second.

An example of this command is:

$ snmpdelta -c public -Cp 5 192.168.1.100 1.3.6.1.2.1.2.2.1.10.

1

IF-MIB::ifInOctets.1 /5 sec: 3866

IF-MIB::ifInOctets.1 /5 sec: 2172

IF-MIB::ifInOctets.1 /5 sec: 2314

IF-MIB::ifInOctets.1 /5 sec: 8871

IF-MIB::ifInOctets.1 /5 sec: 2775

IF-MIB::ifInOctets.1 /5 sec: 3744

IF-MIB::ifInOctets.1 /5 sec: 2304

IF-MIB::ifInOctets.1 /5 sec: 12510

IF-MIB::ifInOctets.1 /5 sec: 25124

IF-MIB::ifInOctets.1 /5 sec: 45604

$

48 Chapter 3

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 48

This example uses the MIB-II interfaces object to show the input octets read
by the interface. The output from the snmpdelta command does not display
the actual value of the ifInOctets MIB object. Instead, it displays the change in
the value every 5 seconds.

Standard Network Performance MIBs

Now that you have the net-snmp utilities at your disposal, you can start query-
ing network devices for performance data. The next step is to decide what data
you should mine from the network devices to give you the information you
need. This section describes some of the values that you should look for in net-
work devices to help your study of network performance.

Data Rates
One of the most important items to monitor on network devices is the amount
of traffic they are handling. The data rate of a device can give you important
information about how busy the network segment is, and how overloaded the
network devices may be.

The MIB-II database contains the interfaces MIB object, which tracks infor-
mation about each network interface on the device. You can query the interface
MIB to obtain packet statistics used to analyze network performance.

The interfaces MIB object (1.3.6.1.2..1.2) contains two objects:

■■ ifNumber. The number of network interfaces on the device

■■ ifTable. A table containing one entry for each interface on the device

The ifTable object contains an ifEntry object, which holds the statistical
information for one interface on the device. There is one ifEntry object for each
interface. The ifEntry object contains the objects that hold the statistical infor-
mation about the interface. Table 3.2 shows the important ifEntry objects that
you will want to use to monitor network performance.

Table 3.2 The ifEntry Information Objects

ENTRY DESCRIPTION

ifIndex A unique index value for each interface

ifDescr A description of the interface

ifType The type of interface

ifSpeed The network speed of the interface

(continued)

Network Device Utilization 49

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 49

Table 3.2 (continued)

ENTRY DESCRIPTION

ifAdminStatus The administration status of the interface

ifOperStatus The operational status of the interface

ifInOctets The number of bytes received by the interface

ifInUcastPkts The number of unicast packets received by the interface

ifInNUcastPkts The number of non-unicast packets received by the
interface

ifInErrors The number of errors found on received packets

ifOutOctets The number of bytes sent by the interface

ifOutUcastPkts The number of unicast packets sent by the interface

ifOutNUcastPkts The number of non-unicast packets sent by the interface

Each of these objects can be referenced in net-snmp by the IF-MIB object
name. For example, to display the number of interfaces on a device, you would
use the command:

$ snmpget -c public@100 192.168.1.100 IF-MIB::ifNumber.0

IF-MIB::ifNumber.0 = INTEGER: 155

$

This shows that there are 155 interfaces on this device (a Cisco switch). Next,
you can use the snmpwalk command to obtain the ifInOctets for each of the
device interfaces:

$ snmpwalk -c public@100 192.168.1.100 IF-MIB::ifInOctets

IF-MIB::ifInOctets.1 = Counter32: 3263693885

IF-MIB::ifInOctets.2 = Counter32: 0

IF-MIB::ifInOctets.3 = Counter32: 680005263

IF-MIB::ifInOctets.4 = Counter32: 1535913171

IF-MIB::ifInOctets.5 = Counter32: 0

IF-MIB::ifInOctets.9 = Counter32: 0

IF-MIB::ifInOctets.10 = Counter32: 72

.

.

IF-MIB::ifInOctets.150 = Counter32: 606586528

IF-MIB::ifInOctets.151 = Counter32: 768458000

IF-MIB::ifInOctets.152 = Counter32: 85185680

IF-MIB::ifInOctets.153 = Counter32: 206787112

IF-MIB::ifInOctets.159 = Counter32: 0

IF-MIB::ifInOctets.192 = Counter32: 2215972217

$

50 Chapter 3

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 50

Note that although there are 155 interfaces, they do not necessarily have to
be indexed numerically in order (as seen by the last two index numbers). You
can use the same technique with snmpwalk to obtain the ifOutOctet values for
each interface.

The octet counts are cumulative since the last time the interface was reset. To
obtain the network utilization for an interface, you must take samples over a
set time period, and subtract the values to determine the counts. This is a per-
fect example of the purpose of the snmpdelta utility:

$ snmpdelta -c public@100 -Cp 5 -CT 192.168.1.100 IF-MIB::ifInOc tets.23

IF-MIB::ifOutOctets.23

IF-MIB::ifInOctets.23 IF-MIB::ifOutOctets.23 8080.00 8080.00

42382.00 12810.00 12810.00 174024.00

22527.00 22527.00 141483.00 17827.00

17827.00 170875.00 11703.00 11703.00

90228.00 7804.00 7804.00 65305.00 2913.00 2913.00

48177.00 3916.00 3916.00 40330.00 6367.00 6367.00

50510.00 4257.00 4257.00 20633.00 2934.00 2934.00

53747.00 7157.00 7157.00 274228.00

By using the –CT option, you can format the output to be in tables. You can
also use the –Cs option to timestamp each table entry, and redirect the output
to a file, to analyze at a later time. Once you know the input and output octets
for an interface for a given time period, you can determine the utilization with
the equation:

% Utilization = (((inOctets + outOctets) * 8) / (ifSpeed * time) * 100

In this example, the first entry shows 8080 input octets, and 42382 output
octets. Using the equation, and assuming a 10-Mbps half-duplex line, the %
utilization would be about 0.81 percent.

NOTE Be careful when calculating network utilization using the interface
speed. Remember that full-duplex connections allow twice the amount of
traffic at the same speed, so a 100-Mbps connection would have a real
capacity of 200 Mpbs.

Error Rates
You can also use the same net-snmp technique to calculate error rates on net-
work interfaces. The equation that is commonly used to determine the error
rate of a network interface is:

Error rate = (ifInErrors * 100) / (ifInUcastPkts + ifInNUcastPkts)

Network Device Utilization 51

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 51

Like the percent utilization, the error rate is calculated over a specific time
period. Since all of the values represent changes (deltas), no time value is
required in the equation.

Again, the snmpdelta utility is ideal for obtaining the data necessary for
these calculations:

$ snmpdelta -c public@100 -Cp 60 -Cs 192.168.1.100 IF-MIB::ifInEr

rors.23 IF-MIB::ifInUcastPkts.23 IF-MIB::ifInNUcastPkts.23

[07:51:10 10/7] IF-MIB::ifInErrors.23 /5 sec: 0

[07:51:10 10/7] IF-MIB::ifInUcastPkts.23 /5 sec: 220

[07:51:10 10/7] IF-MIB::ifInNUcastPkts.23 /5 sec: 0

[07:51:15 10/7] IF-MIB::ifInErrors.23 /5 sec: 0

[07:51:15 10/7] IF-MIB::ifInUcastPkts.23 /5 sec: 121

[07:51:15 10/7] IF-MIB::ifInNUcastPkts.23 /5 sec: 1

[07:51:20 10/7] IF-MIB::ifInErrors.23 /5 sec: 0

[07:51:20 10/7] IF-MIB::ifInUcastPkts.23 /5 sec: 0

[07:51:20 10/7] IF-MIB::ifInNUcastPkts.23 /5 sec: 0

[07:51:25 10/7] IF-MIB::ifInErrors.23 /5 sec: 1

[07:51:25 10/7] IF-MIB::ifInUcastPkts.23 /5 sec: 835

[07:51:25 10/7] IF-MIB::ifInNUcastPkts.23 /5 sec: 0

$

Often, to notice errors, you must use the –Cp option to increase the sample
period to a fairly large value, such as 1 minute or more. As can be seen from the
output data, most of the time this interface did not have any input errors to
report. In the one time sample that showed errors, there was 1 error in 835
packets, resulting in a 0.12-percent error rate for that time period.

NOTE You may have noticed the odd community name format used when
accessing the Cisco switch device in the examples. Cisco switches use an SNMP
v2 feature called community string indexing, which references a specific VLAN
number in the community name. This makes it possible to use the same
community name to obtain information from multiple VLANs.

Using Vendor MIBs

Most network device vendors utilize the enterprise MIB object (1.3.6.1.4.1) to
add their own device configurations and statistics, to augment the standard
MIB-II statistics. The IAB assigns child-node values to vendors under this
object. When writing real-world SNMP network applications, you often have
to use enterprise database objects to control network devices and extract use-
ful information.

52 Chapter 3

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 52

This section describes how to interpret vendor MIB data, and how to create
an SNMP shell script to query information from a network device, using
objects from the vendor MIB. This is an SNMP application that has come in
handy for me as a network administrator.

With several Cisco-brand routers on the network, it is nice to see how each
one is working throughout the day without having to manually TELNET to
each router and read the statistics. One useful statistic to monitor on Cisco
routers is the CPU utilization. By watching the CPU utilization of a router, you
can often tell when network segments are being overloaded, or when strange
things are happening on the network. The sample script presented in this sec-
tion sends an SNMP packet to a Cisco router, using a Cisco vendor MIB to
query the 5-minute CPU utilization average on the router.

The CISCO CPU MIB
The first step to writing the SNMP script is to obtain the vendor’s MIB data for
the device you want to monitor.

Fortunately, Cisco provides a large variety of MIB files for all its network
devices, freely available to download at ftp://ftp.cisco.com/pub/mibs/v1/.
Different MIB categories and devices are defined in different MIB files. Usually
a quick search on the Cisco Web page (http://www.cisco.com) produces the
MIB filename that contains the data you are looking for. The MIB information
for router CPU utilization is contained in the OLD-CISCO-CPU-MIB.my file,
which defines the MIBs used for monitoring CPU statistics on Cisco devices.

NOTE There is a newer MIB file available for obtaining CPU statistics, but this
MIB is not guaranteed to be compatible with all of the Cisco router models. The
OLD-CISCO-CPU-MIB.my file is usable with all models of Cisco routers.

The MIB file uses ASN.1 syntax to define each of the separate MIB objects
and object identifiers. The top of the MIB file lists each of the high-level objects
that these MIBs are based on. Depending on how often you want to monitor
CPU utilization on your router, you can use one of three different MIB objects,
shown in Table 3.3.

Table 3.3 The Cisco CPU Utilization MIBs

MIB OBJECT DESCRIPTION

busyPer The 5-second CPU utilization average

avgbusy1 The 1-minute CPU utilization average

avgbusy5 The 5-minute CPU utilization average.

Network Device Utilization 53

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 53

Each MIB object has its own unique object identifier to use to obtain the val-
ues stored in the device database. The ASN.1 definitions of the objects show
the node value for the object, but not the whole object identifier to use. Here
are the three MIB values that can be used:

busyPer OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-only

STATUS mandatory

DESCRIPTION

“CPU busy percentage in the last 5-second

period. Not the last 5 real-time seconds, but

the last 5-second period in the scheduler.”

::= { lcpu 56 }

avgBusy1 OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-only

STATUS mandatory

DESCRIPTION

“1-minute exponentially-decayed moving

average of the CPU busy percentage.”

::= { lcpu 57 }

avgBusy5 OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-only

STATUS mandatory

DESCRIPTION

“5-minute exponentially-decayed moving

average of the CPU busy percentage.”

::= { lcpu 58 }

The ASN.1 notation defines five separate values:

■■ The datatype (called SYNTAX)

■■ The access mode

■■ Whether the object is optional or mandatory in each device

■■ A text description of the object

■■ The ASN.1 definition of the object identifier

The MIB indicates that the avgBusy5 object has a node value of 58, and is a
child node of the lcpu object. This in itself does not give you enough informa-
tion to define the object identifier for the object. You must do some legwork to
determine the complete object identifier.

To find the complete object identifier for the object, you must backtrack
through the MIBs to find each object’s identifier in the chain.

54 Chapter 3

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 54

The lcpu object is defined in the same MIB file. It is defined as:

lcpu OBJECT IDENTIFIER ::= { local 1 }

The lcpu object is defined as node 1 under the local object. So now you at
least know that the avgBusy5 object identifier ends with 1.58.

Unfortunately, the local object is not defined in this MIB file. Fortunately, in
the comments of the MIB file, the local object is referenced as coming from the
CISCO-SMI MIB file.

To find the rest of the MIB object identifier, you must also download the
CISCO-SMI-V1SMI.my MIB file from the Cisco ftp site. In that MIB file, the
local object is defined as:

local OBJECT IDENTIFIER ::= { cisco 2 }

The local object is child node 2 under the cisco object. The cisco object is also
defined in the same MIB file as:

cisco OBJECT IDENTIFIER ::= { enterprises 9 }

OK, now we’re getting somewhere. The cisco object is child node 9 under
the enterprises object. The enterprises object is one of the standard MIB objects,
with an object identifier of 1.3.6.1.4.1.

Putting all of the pieces together, the whole object identifier for the avg-
Busy5 object instance is 1.3.6.1.4.1.9.2.1.58.0. Now that you know what MIB
object to query, you can write an SNMP script to query the router for the avg-
Busy5 MIB object, and run it at 5-minute intervals.

Using the Cisco CPU MIB
If you have done any shell script programming in Unix, this task should be
simple for you. If not, then follow along with this example, and you will
quickly pick up on it.

Obviously, the first thing is to get the command down that will get the avg-
Busy5 MIB object value. This is done using the snmpget command, with the
appropriate command-line parameters. An example of this would be:

snmpget 192.168.1.100 -c public .1.3.6.1.4.1.9.2.1.58.0

The output from this command is the full MIB, the data type of the returned
object, and the value of the returned object:

iso.3.6.1.4.1.9.2.1.58.0 = INTEGER: 31

Network Device Utilization 55

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 55

This output shows that currently, the 5-minute CPU utilization average is 31
percent. While the output from the snmpget provides the information we are
looking for, it is not in a very friendly format. The next step is to spruce things
up a bit.

You can use the awk utility to filter out the unwanted information from the
snmpget output. The awk utility parses lines, and allows you to specify filters
and commands to operate on the data. Describing the whole awk program is
well beyond the scope of this book, but for this utility, we will use the print
function.

The awk process separates each data line into fields based on a separation
token. By default, it uses spaces and tabs to separate fields. Using this
approach, the snmpget output is divided into four fields:

■■ Field1 consists of: iso.3.6.1.4.1.9.2.1.58.0

■■ Field2 consists of: =

■■ Field3 consists of: INTEGER:

■■ Field4 consists of: 31

The information that we need is in field 4 of the data line. By feeding the
snmpget output into an awk command, and telling it to print only field 4, we
can single out the utilization value. In a script, this would look like this:

snmpget 192.168.1.100 -c public .1.3.6.1.4.1.9.2.1.58.0 | awk ‘{print $4}’

The output of this script is just the utilization value, exactly what we
wanted. Now, you can assign the utilization value to a script variable, and do
whatever you want with it.

Besides the utilization value, you will want to get the time (and possibly the
date) when the script ran, to be able to associate the utilization average with
the time when it happened. This can be done using the date command. By
default, the date command displays the full text of the date and time on the
system:

$ date

Fri Oct 4 13:02:26 EST 2002

$

You can use this, as is, in your output file, or you can use the special date for-
matting options:

$ date +”%x %T”

10/04/2002 14:05:36

$

56 Chapter 3

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 56

This format will work perfectly for creating the log file. Now, you can put all
the pieces together in a simple shell script program:

#!/bin/sh

datenow=`date +”%x,%T”`

util=`snmpget 192.168.1.100 -c public .1.3.6.1.4.1.9.2.1.58.0 | awk

‘{print $4}’`

echo $datenow,$util >> utilization.txt

The shell script assigns the output from the date command to the $datenow
variable, and the output from the snmpget (fed through awk) command to the
$util variable (this is done using the backtick characters placed around the
commands). After the variables are created, they can either be displayed on the
console or sent to a text file for later retrieval. In this example, commas are
used to separate the data fields, so that the file can be easily read into a spread-
sheet application, such as Microsoft Excel, and examined.

NOTE Remember to change the mode of the script file so that it can
be executed on the system. This is done using the chmod command:

chmod 700 cisco

The next step is to get the shell script to run every 5 minutes. This is done
with some help from the cron program. The cron program is used to schedule
jobs to perform at predetermined times. The crontab file controls the times the
scheduled job is run. It can be edited using the crontab –e command.

Each line in the crontab file contains information for a single job. A sample
crontab file entry to run the shell script created would look like:

0,5,10,15,20,25,30,35,40,45,50,55 0-23, * * 1-5 /home/rich/cisco

After the crontab file entry is created, the system will automatically run the
script every 5 minutes from Monday to Friday. You may want to change this
schedule, depending on when your network operating times are heaviest.

Summary

The Simple Network Management Protocol (SNMP) allows you to query
remote network devices to easily watch performance on your network. You
can utilize SNMP tools, such as the net-snmp package for Unix hosts, to con-
tact and query network devices.

SNMP utilizes the Management Information Base (MIB) database, which
provides a method for network devices to track basic network statistics for the

Network Device Utilization 57

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 57

segment(s) they are connected to. Basic information—such as the total input
and output bytes, as well as errors received on the network—is stored in the
SNMP database for easy retrieval.

Besides the common MIB database items, most vendors implement their
own database objects to monitor device-specific features, such as CPU utiliza-
tion of the device. You can download the MIB file from the vendor to determine
the appropriate MIB objects to query.

The next chapter begins the Network Performance Tools section by describing
the netperf application. Netperf allows you to monitor network performance
by sending different types of test data between two endpoints, and measuring
the response of the test data.

58 Chapter 3

05 433012 Ch03.qxd 6/16/03 9:10 AM Page 58

PA R T

Two

Network
Performance Tools

06 433012 PP02.qxd 6/16/03 9:10 AM Page 59

06 433012 PP02.qxd 6/16/03 9:10 AM Page 60

61

Part II of this book covers common Open Source tools that can be used to help
analyze the performance of your networks. This chapter introduces the net-
perf program, which can determine TCP and UDP end-to-end performance
across most types of networks.

The netperf program was developed at the Information Network Division
of the Hewlett-Packard Company to help customers benchmark their network
performance using HP Unix hosts. It has been released to the public, and can
be compiled and run on most Unix platforms, including the Linux and
FreeBSD platforms. There are many valuable tests that can be performed using
netperf, allowing you to benchmark different data transfer types across the
network.

This chapter describes the basics of the netperf program, and explains how
to use it to extract useful performance information about your networks and
hosts.

What Is netperf?

The netperf program can be used to measure several different types of perfor-
mance parameters on your network. The netperf program works as a
client/server application, consisting of netserver, a server program that listens
for connections from remote hosts, and netperf, a client program that is used to

netperf

C H A P T E R

4

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 61

initiate the network tests with the server. The client and server programs pass
specified traffic patterns back and forth, measuring performance as the traffic
is passed through the network. The following sections describe the TCP and
UDP traffic tests that netperf can perform.

TCP Network Performance
Many applications use TCP to transfer streams of data between network end-
points. TCP is known for its reliability, but also for its overhead in establishing
network connections and tracking packet sequences (see Chapter 2, “Watching
Network Traffic”). Netperf can be used to simulate three different types of TCP
traffic:

■■ A single TCP connection used to bulk transfer a large quantity of data

■■ A single TCP connection used to transfer client requests and server
responses

■■ Multiple request/response pairs, each one a separate TCP connection

The default test mode in netperf sends blocks of data from the client to the
server, measuring how fast the data is sent and received by the hosts. Parame-
ters can be set to alter some of the variables that affect the performance of the
data transfer, such as the size of the sockets and the size of the buffers used to
send and receive the data.

UDP Network Performance
Applications that do not require a dedicated stream to send data to a remote
host often use UDP. UDP is faster, in that it does not require the overhead of
establishing a connection between the two hosts, but it does not guarantee
delivery of all data packets. The application must perform the task of tracking
packets and retransmitting lost packets. Netperf can perform two types of
UDP packet tests:

■■ A unidirectional bulk data transfer from the client to the server

■■ A request/response session using UDP

Both of the simulated UDP traffic patterns produced by netperf can be used
to determine UDP characteristics of the network. Often, network devices han-
dle UDP packets differently than TCP packets, resulting in drastically different
performance. As with the TCP tests, the netperf parameters that affect the UDP
data transfer, such as buffer sizes, can be altered at the command line.

NOTE When performing UDP tests with netperf, you must be careful not to
set the sending buffer size larger than the receiving buffer size, as data will be
lost, and netperf will produce an error.

62 Chapter 4

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 62

It is important to remember that, since UDP does not guarantee packet
delivery, the data statistics for received packets may be incorrect. When report-
ing UDP traffic statistics from netperf, you should take care to include both the
sending and receiving statistics.

Downloading and Installing netperf

The home Web page for the netperf program can be found at http://www.
netperf.org. It contains information about the netperf program, sample net-
work performance statistics uploaded by users, and, of course, a download
area where you can obtain the program.

Downloading netperf
The main download area for netperf is on an FTP server sponsored by
Hewlett-Packard on the server ftp.cup.hp.com. The netperf distributions can
be found at the URL:
ftp://ftp.cup.hp.com/dist/networking/benchmarks/netperf/

At the time of this writing, the most current production version of netperf
available on the Web site is netperf version 2.2, patch level 2. This is located in
the file netperf-2.2pl2.tar.gz.

After downloading the distribution file, you must uncompress and expand
it into a working directory. Depending on your Unix system, this can be done
either in one step, by using the –z option of the tar command, or in two steps,
by using the gunzip command to uncompress the distribution file, then using
the standard tar expanding command:

tar -zxvf netperf-2.2pl2.tar.gz

The tar expansion creates the directory netperf-2.2pl2, containing all of the
files necessary to compile the netperf application, along with some script files
that make using netperf easier.

Installing the netperf Package
The netperf installation files contain a makefile that must be modified to fit
your Unix environment before the application can be compiled. There are sev-
eral compiler options that must be set, depending on which functions you
want to include in the installed netperf application. Table 4.1 shows a list of the
features that can be compiled into the application.

netperf 63

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 63

Table 4.1 The netperf Compiler Features

COMPILER OPTION DESCRIPTION

-Ae Enable ANSI C compiler options for HP-UX systems.

-DDIRTY Include code to dirty data buffers before sending
them. This helps defeat any data compression being
done in the network.

-DHISTOGRAM Include code to keep a histogram of
request/response times in tests. This is used to see
detailed information in verbose mode.

-DINTERVALS Include code to allow pacing of packets in TCP and
UDP tests. This is used to help prevent lost packets
on busy nerworks.

-DDO_DLPI Include code to test DLPI implementations.

-DDO_UNIX Include code to test Unix domain sockets.

-D$(LOG_FILE) This option specifies where the netserver program
will put debug output when debug is enabled.

-DUSE_LOOPER Use looper or soaker processes to measure CPU
performance.

-DUSE_PSTAT For HP-UX 10.0 or later systems, use the pstat()
function to compute CPU performance.

-DUSE_KSTAT For Solaris 2.x systems, use the kstat interface to
compute CPU performance.

-DUSE_PROC_STAT For Linux systems, use the /proc/stat file to
determine CPU utilization.

-DDO_IPV6 Include code to test Ipv6 socket interfaces.

-U__hpux This is used when compiling netperf on an HP-UX
system for running on an HP-RT system.

-DDO_DNS Include code to test performance of the DNS server.
Experimental in the 2.2 version.

-DHAVE_SENDFILE Include code to test sending data using the
sendfile() function as well as send().

-D_POSIX_SOURCE This is used only for installation on an MPE/ix
system.

-D_SOCKET_SOURCE This is used only for installation on an MPE/ix
system.

-DMPE This is used only for installation on an MPE/ix
system.

64 Chapter 4

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 64

After deciding which features you want (or need) to include in the netperf
program, you must edit the makefile file to add them to (or remove them from)
the appropriate makefile lines:

NETPERF_HOME = /opt/netperf

LOG_FILE=DEBUG_LOG_FILE=”\”/tmp/netperf.debug\””

CFLAGS = -Ae -O -D$(LOG_FILE) -DUSE_PSTAT -DHAVE_SENDFILE -

DDO_FIRST_BURST

The LOG_FILE entry defines where the debug log file should be located on
the host. By default it is placed in the /tmp directory, which will be erased if
the system is rebooted.

The default CFLAGS line is set for compiling netperf on an HP Unix system.
You must modify this value for it to compile on any other type of Unix system.
An example that I used for my Linux system is:

CFLAGS = -O -D$(LOG_FILE) -DDIRTY -DHISTOGRAM -DUSE_PROC_STAT

After modifying the makefile, you must compile the source code using the
make command, and install it using the make command with the install
option:

make

make install

NOTE You must be logged in as root to run the make install option.

After the netperf package is compiled and installed, you must configure
your system to run the netserver program to accept connections from the net-
perf clients.

Running netserver

The netserver program is the application that receives requests from remote
netperf clients, and performs the requested tests, transferring data as neces-
sary. There are two ways to install netserver on a Unix system:

■■ As a standalone application on the server

■■ Automatically running from the inetd or xinetd program

This section describes both of these methods of running netserver. The
method you choose is entirely dependent on your Unix environment.

netperf 65

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 65

Using netserver in Standalone Mode
If you do not plan on using netperf on a regular basis, you can start and stop
the netserver application program as necessary on your Unix system. In the
installation process, the netserver application should have been installed in
the directory specified as the NETPERF_HOME in the makefile (/opt/netperf
by default).

To start netserver, just run the executable file:

$ /opt/netperf/netserver

Starting netserver at port 12865

When netserver starts, it indicates which port it is using to listen for incom-
ing client connections, and it will automatically run in background mode. You
can check to make sure it is running by using the ps command, with the appro-
priate option for your Unix system:

$ ps ax | grep netserver

15128 ? S 0:00 /opt/netperf/netserver

$

As can be seen from this example, the netserver program is running as
process ID (PID) 15128 on the system. To make sure that netserver is indeed lis-
tening for incoming connections, you can use the netstat command to display
all network processes on the system:

$ netstat -a

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address

State

tcp 0 0 *:1024 *:*

LISTEN

tcp 0 0 *:12865 *:*

LISTEN

tcp 0 0 *:mysql *:*

LISTEN

tcp 0 0 *:6000 *:*

LISTEN tcp 0 0 *:ssh *:*

LISTEN

tcp 0 0 *:telnet *:*

LISTEN udp 0 0 *:xdmcp *:*

This is just a partial listing of all the processes listening on the Unix host. The
output from the netstat command shows that the system is listening on TCP
port 12865 for new connections.

66 Chapter 4

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 66

If you start netserver in standalone mode, it will continue to run in the back-
ground until you either reboot the server or manually stop it. To manually stop
netserver, you must use the Unix kill command, along with the PID number of
the running instance of netserver:

$ ps ax | grep netserver

15148 ? S 0:00 /usr/local/netperf/netserver

$ kill -9 15148

$ ps ax | grep netserver

15175 pts/1 S 0:00 grep netserver

$

The –9 option on the kill command stops the netserver program. After stop-
ping the program, you should not see it when performing the ps command.

Autostarting netserver
The Unix system offers two methods for automatically starting network pro-
grams as connection attempts are received. The inetd program is an older pro-
gram that listens for connections on designated ports, and passes the received
connection attempts to the appropriate program as configured in a configura-
tion file. The xinetd program is a newer version that accomplishes the same
task with a slightly different configuration file format.

For the inetd method, you must create an entry in the inetd.conf file for net-
server to be started automatically when a connection attempt is detected. The
line can be placed anywhere in the file, and should look like:

netserver stream tcp nowait root /opt/netperf/netserver netserver

The inetd.conf entry specifies the location of the netserver executable file,
which may be different on your system, depending on how you installed net-
perf. Also, this example uses the root user to start the netserver application.

NOTE Since netserver does not use a protected TCP port number, it can be
started by any user on the system. You may prefer to create a separate user ID
with few or no permissions to start the netserver application.

The xinetd process is similar in function to the original inetd process, but
uses a different format for the configuration file to define the network services
that it supports. Because the xinetd program is not limited to listening to ser-
vices defined in the /etc/services file, it can be used for services other than
network applications. However, it is still a good idea to configure the netserver
entry in the /etc/services file so that you are aware that the application is on
the system. The process for doing this is the same as that for the inetd program,
with the addition of the netserver entry in the list of available ports.

netperf 67

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 67

A sample xinetd configuration file for netserver would look like:

service netserver

{

socket_type = stream

wait = no

user = root

server = /opt/netperf/netserver

}

netperf Command-Line Options

After the netserver program is running on a server, you can run the netperf
client program from any Unix host on the network (including the local host),
to communicate with the server and test network performance. There are
many different command-line options used in netperf to control what kind of
test is performed, and to modify the parameters used in a specific test. The net-
perf command-line options are divided into two general categories:

■■ Global command-line options

■■ Test-specific command-line options

Options within the same category are grouped together on the command
line, with the two categories separated with a double dash:

netperf [global options] -- [test-specific options]

Global command-line options specify settings that define what netperf test
is performed, and how it is executed. These options are used to control the
basics of the netperf test, and are valid for all of the netperf test types. Table 4.2
lists the available global commands in netperf version 2.2.

Table 4.2 The netperf Global Command-Line Options

OPTION DESCRIPTION

-a sizespec Defines the send and receive buffer alignments on the
local system, which allows you to match page boundaries
on a specific system

-A sizespec The same as –a, except that it defines the buffer
alignments on the remote system

-b size Sets the size of the burst packets in bulk data transfer
tests

68 Chapter 4

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 68

Table 4.2 (continued)

OPTION DESCRIPTION

-c [rate] Specifies that CPU utilization calculations be done on the
local system

-C [rate] Specifies that CPU utilization calculations be done on the
remote system

-d Increases the debugging level on the local system

-f meas Used to change the unit of measure displayed in stream
tests

-F file Prefills the data buffer with data read from file, which
helps avoid data compression techniques

-h Displays the help information

-H host Specifies the hostname or IP address of the remote
netperf netserver program

-i min,max Sets the minimum and maximum number of iterations for
trying to reach specific confidence levels

-I lvl,[int] Specifies the confidence level and the width of the
confidence interval as a percentage

-l testlen Specifies the length of the test (in seconds)

-n numcpu Specifies the number of CPUs on the host system

-o sizespec Sets an offset from the alignment specified with the –a
option for the local system

-O sizespec The same as –o, but for the remote system

-p port Specifies the port number of the remote netserver to
connect to

-P [0/1] Specifies to either show (1) or suppress (0) the test
banner

-t testname Specifies the netperf test to perform

-v verbose Sets the verbose level to verbose

-V Enables the copy-avoidance features on HP-UX 9.0 and
later systems

The global command-line options can be specified in any order, as long as
they are in the global option section (listed before the double dash). The –t
option is used to specify the netperf test that is performed. The next section
describes the possible tests that can be performed.

netperf 69

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 69

Measuring Bulk Network Traffic

This section describes the netperf tests that are used to determine the perfor-
mance of bulk data transfers. This type of network traffic is present in many
network transactions, from FTPs to accessing data on shared network drives.
Any application that moves entire files of data will be affected by the bulk data
transfer characteristics of the network.

TCP_STREAM
The default test type used in netperf is the TCP_STREAM test. This test sends
bulk TCP data packets to the netserver host, and determines the throughput
that occurs in the data transfer:

$ netperf -H 192.168.1.100 -l 60

TCP STREAM TEST to 192.168.1.100 : histogram : dirty data

Recv Send Send

Socket Socket Message Elapsed

Size Size Size Time Throughput

bytes bytes bytes secs. 10^6bits/sec

16384 16384 16384 60.03 7.74

$

This example uses two global command-line options, the –H option to spec-
ify the address of the remote netserver host, and the –l option to set the test
duration to 60 seconds (the default is 10 seconds). The output from the netperf
TCP_STREAM test shows five pieces of information:

■■ The size of the socket receive buffer on the remote system: 16384 bytes

■■ The size of the socket send buffer on the local system: 16384 bytes

■■ The size of the message sent to the remote system: 16384 bytes

■■ The elapsed time of the test: 10.02 seconds

■■ The calculated throughput for the test: 7.74Mbps

The basic netperf test shows that the throughput through this network con-
nection is 7.74 Mbps. By default, netperf will set the message size to the size of
the socket send buffer on the local system. This minimizes the effect of the
local socket transport on the throughput calculation, indicating that the net-
work bottleneck between these two devices appears to be a 10-Mbps link, with
a throughput of almost 8 Mpbs—not too bad.

Many factors can affect this number, and you can modify the netperf test to
test the factors. Table 4.3 shows the test-specific options that can be used in the
TCP_STREAM test.

70 Chapter 4

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 70

Table 4.3 TCP_STREAM Test Options

OPTION DESCRIPTION

-s size Sets the local socket send and receive buffers to size bytes

-S size Sets the remote socket send and receive buffers to size bytes

-m size Sets the local send message size to size

-M size Sets the remote receive message size to size

-D Sets the TCP_NODELAY socket option on both the local and
remote systems

Remember to separate any test-specific options from the global options
using a double dash (--). By modifying the size of the socket buffers or the
message size used in the tests, you can determine which factors are affecting
the throughput on the connections.

For example, if you think that an internal router is having problems for-
warding larger packets due to insufficient buffer space, you can increase the
size of the test packets and see if there is a throughput difference:

$ netperf -H 192.168.1.100 -- -m 2048

TCP STREAM TEST to 192.168.1.100 : histogram : dirty data

Recv Send Send

Socket Socket Message Elapsed

Size Size Size Time Throughput

bytes bytes bytes secs. 10^6bits/sec

16384 16384 2048 60.02 7.75

$

In this example, the message size was decreased to 2 KB, and the through-
put remained pretty much the same as with the default larger-sized message
(16 KB). A significant increase in throughput for the smaller message size
could indicate a buffer space problem with an intermediate network device.

UDP_STREAM
Similar to the TCP_STREAM test, the UDP_STREAM test determines the
throughput of UDP bulk packet transfers on the network. UDP differs from
TCP in that the message size used cannot be larger than the socket receive or
send buffer size. If netperf tries to run with a larger message size, an error is
produced:

$ netperf -t UDP_STREAM -H 192.168.1.100

UDP UNIDIRECTIONAL SEND TEST to 192.168.1.100 : histogram : dirty data

udp_send: data send error: Message too long

$

netperf 71

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 71

To avoid this, you must either set the message size to a smaller value, or
increase the send and receive socket buffer sizes. The UDP_STREAM test uses
the same test-specific options as the TCP_STREAM test, so the –m option can
be used to alter the message size used in the test. A sample successful
UDP_STREAM test is:

$ netperf -t UDP_STREAM -H 192.168.1.100 -- -m 102

4

UDP UNIDIRECTIONAL SEND TEST to 192.168.1.100 : histogram : dirty data

Socket Message Elapsed Messages

Size Size Time Okay Errors Throughput

bytes bytes secs # # 10^6bits/sec

65535 1024 9.99 114839 0 94.15

41600 9.99 11618 9.52

$

The output from the UDP_STREAM test is similar to that of the
TCP_STREAM test, except that there are two lines of output data. The first line
shows the statistics for the sending (local) system. The throughput represents
the throughput of sending UDP packets to the socket. For this local system, all
of the packets sent to the socket were accepted and sent out on the network.
Unfortunately, since UDP is an unreliable protocol, there were more packets
sent than were received by the remote system.

The second line shows the statistics for the receiving host. Notice that the
socket buffer size is different on the receiving host than on the sending host,
indicating that 41,600 bytes is the largest UDP packet that can be used with the
remote host. The throughput to the receiving host was 9.52 Mbps, which is rea-
sonable for the network being tested.

Measuring Request/Response Times

One the most common types of network traffic used in the client/server envi-
ronment is the request/response model. The request/response model specifies
individual transactions that occur between the client and the server. Figure 4.1
demonstrates this type of traffic.

The client network device usually sends small packets that query informa-
tion from the server network device. The server receives the request, processes
it, and returns the resulting data. Often the returned data is a large data
message.

The netperf package can be used to test request/response rates both on the
network, where they relate to network performance, and on the client and
server hosts, where rates are affected by system loading.

72 Chapter 4

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 72

Figure 4.1 Request/response network traffic diagram.

TCP_RR
The TCP_RR test tests the performance of multiple TCP request and response
packets within a single TCP connection. This simulates the procedure that
many database programs use, establishing a single TCP connection and trans-
ferring database transactions across the network on the connection. An exam-
ple of a simple TCP_RR test is:

$ netperf -t TCP_RR -H 192.168.1.100 -l 60

TCP REQUEST/RESPONSE TEST to 192.168.1.100 : histogram : dirty data

Local /Remote

Socket Size Request Resp. Elapsed Trans.

Send Recv Size Size Time Rate

bytes Bytes bytes bytes secs. per sec

16384 87380 1 1 59.99 1994.22

16384 16384

$

The output from the TCP_RR test again shows two lines of information. The
first line shows the results for the local system, and the second line shows
the information for the remote system buffer sizes. The average transaction
rate shows that 1,994.22 transactions were processed per second. Note that the
message size for both the request and response packets was set to 1 byte in
the default test. This is not a very realistic scenario. You can change the size
of the request and response messages using test-specific options. Table 4.4
shows the test-specific options available for the TCP_RR test.

request

response

request

response

request

response

client server

netperf 73

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 73

Table 4.4 The TCP_RR Test Options

OPTION DESCRIPTION

-r req,resp Sets the size of the request or response message, or both

-s size Sets the size of the local socket send and receive buffers to
size bytes

-S size Sets the size of the remote socket send and receive buffers to
size bytes

-D Sets the TCP_NODELAY socket option on both the local and
remote system

Using the –r option, you can alter the size of the request and response pack-
ets. There are several different formats you can use to do this:

■■ -r 32, sets the size of the request message to 32 bytes, and leaves the
response message size at 1 byte.

■■ -r 1, 024 sets the size of the response message to 1,024 bytes, and leaves
the request message size at 1 byte.

■■ -r 32,1024 sets the size of the request message to 32 bytes, and the
response message size to 1,024 bytes.

Using the –r option, you can now set meaningful message sizes for the test:

$ netperf -t TCP_RR -H 192.168.1.100 -l 60 -- -r 32,1034

TCP REQUEST/RESPONSE TEST to 192.168.1.100 : histogram : dirty data

Local /Remote

Socket Size Request Resp. Elapsed Trans.

Send Recv Size Size Time Rate

bytes Bytes bytes bytes secs. per sec

16384 87380 32 1034 59.99 551.71

16384 16384

$

With the larger message sizes, the transaction rate dramatically drops to
551.71 transactions per second, significantly lower than the rate obtained with
the single-byte messages. This is more representative of the actual transaction
rate experienced by production applications.

NOTE This transaction rate represents only the network performance and
minimal system handling. An actual network application would incorporate
application-handling delays that would also affect the transaction rate.

74 Chapter 4

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 74

TCP_CRR
Some TCP transactions require a new TCP connection for each request/
response pair. The most popular protocol that uses this technique is HTTP.
Each HTTP transaction is performed in a separate TCP connection. Since a
new connection must be established for each transaction, the transaction rate
is significantly different than the one you would get from the TCP_RR test.

The TCP_CRR test is designed to mimic HTTP transactions, in that a new
TCP connection is established for each transaction in the test. A sample
TCP_CRR test is:

$ netperf -t TCP_CRR -H 192.168.1.100 -l 60

TCP Connect/Request/Response TEST to 192.168.1.100 : histogram : dirty

dataLocal /Remote

Socket Size Request Resp. Elapsed Trans.

Send Recv Size Size Time Rate

bytes Bytes bytes bytes secs. per sec

131070 131070 1 1 60.00 17.25

16384 16384

$

The transaction rate for even the default message size of 1 byte has signifi-
cantly dropped to only 17.25 transactions per second. Again, this difference is
due to the additional overhead of having to create and destroy the TCP con-
nection for each transaction. The TCP_CRR test can also use the same test-
specific options as the TCP_RR test, so the request and response message sizes
can be altered using the –r option.

UDP_RR
The UDP_RR test performs request/response tests using UDP packets instead
of TCP packets. UDP does not use connections, so there is no connection over-
head associated with the UDP_RR transaction rates. A sample UDP_RR test is:

$ netperf -t UDP_RR -H 192.168.1.100 -l 60

UDP REQUEST/RESPONSE TEST to 192.168.1.100 : histogram : dirty data

Local /Remote

Socket Size Request Resp. Elapsed Trans.

Send Recv Size Size Time Rate

bytes Bytes bytes bytes secs. per sec

65535 65535 1 1 60.00 2151.32

9216 41600

$

netperf 75

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 75

The transaction rate for the UDP request/response test was faster than the
TCP request/response transaction rate. Again, if you see a significant drop in
UDP transaction rate from the TCP rate, you should look for network devices
such as routers that use separate buffer spaces or handling techniques for UDP
packets.

Using netperf Scripts

With the vast variety of test-specific options that are available for use, it can be
confusing trying to determine not only which tests to run in your network
environment, but how to configure the individual tests to produce meaningful
results. Fortunately, the netperf designers have helped out, by providing some
specific testing scripts that can be used to test specific network situations.

The snapshot_script provides a general overview of all the TCP and UDP
tests. Seven separate tests are performed by the snapshot_script test:

■■ TCP_STREAM test, using 56-KB socket buffers and 4-KB message sizes

■■ TCP_STREAM test, using 32-KB socket buffers and 4-KB message sizes

■■ TCP_RR test, using 1-byte request packets and 1-byte response packets

■■ UDP_RR test, using 1-byte request packets and 1-byte response packets

■■ UDP_RR test, using 516-byte request packets and 4-byte response
packets

■■ UDP_STREAM test, using 32-KB socket buffers and 4-KB message sizes

■■ UDP_STREAM test, using 32-KB socket buffers and 1-KB message sizes

The snapshot_script also uses the –I global option, which specifies a confi-
dence level for each test. The confidence level ensures that the tests are
repeated a sufficient number of times to establish the consistency of the results.
To limit the number of times the tests are performed, the –i option is used to
specify a minimum number of 3 times, and a maximum number of 10 times.
Since each test is also configured to run for 60 seconds, the seven tests run at a
minimum of 3 times would take 21 minutes to complete.

Before running the script, you must check to see if the netperf executable is
defined properly for your installation environment. The script uses the default
location of /opt/netperf/netperf. If this is not where netperf is installed on
your system, you can either modify the location in the script, or assign the
NETPERF_CMD environment variable before running the script.

To change the script, modify the location on the line:

NETPERF_CMD=${NETPERF_CMD:=/opt/netperf/netperf}

76 Chapter 4

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 76

The /opt/netperf/netperf text defines where netperf should be located on
the system. If you prefer to set an environment variable instead of modifying
the script file, you must set the NERPERF_CMD variable to the location of the
netperf executable. For a bourne or bash shell, the script would look like this:

NETPERF_CMD=/usr/local/netperf/netperf ; export NETPERF_CMD

When the snapshot_script is run, it first silently performs three tests without
displaying the results, as a warmup. After the three tests have been completed,
each test is run again, in succession, with banner text describing which test is
being performed. The output from each test is displayed, showing the stan-
dard information generated from the test. A sample section of the output looks
like:

$ snapshot_script 192.168.1.100

Netperf snapshot script started at Thu Oct 10 14:45:46 EST 2002

Starting 56x4 TCP_STREAM tests at Thu Oct 10 14:46:21 EST 2002

Testing with the following command line:

/usr/local/netperf/netperf -t TCP_STREAM -l 60 -H 192.168.1.156 -i 10,3

-I

99,5 -- -s 57344 -S 57344 -m 4096

TCP STREAM TEST to 192.168.1.100 : +/-2.5% @ 99% conf. : histogram :

interval : dirty data

Recv Send Send

Socket Socket Message Elapsed

Size Size Size Time Throughput

bytes bytes bytes secs. 10^6bits/sec

57344 131070 4096 60.06 6.89

Starting 32x4 TCP_STREAM tests at Thu Oct 10 14:49:21 EST 2002

A line of dashes separates the output for each test run from the other two.
The exact netperf command line used to produce the test is also displayed.

Summary

The netperf program is used to measure network performance for different
types of networks. Netperf’s specialty is measuring end-to-end throughput
and response times between hosts on the network, using both TCP and UDP
data packets.

netperf 77

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 77

The netperf program can be configured to support several types of network
tests from the command-line options. The default netperf test performs a bulk
data transfer using TCP, and determines the throughput speed of the transfer.
Other tests include UDP bulk data transfers, and TCP and UDP request/
response data transfers. Each test can be configured to support different socket
buffer sizes, as well as different message sizes within the test packets.

The next chapter discusses the dbs performance-testing tool. You will see
that it has some similarities to netperf, but there are also some significant dif-
ferences in the ways they are used.

78 Chapter 4

07 433012 Ch04.qxd 6/16/03 9:10 AM Page 78

79

This chapter looks at another network performance tool that can be used to
determine how TCP and UDP traffic is handled on your network. The Distrib-
uted Benchmark System (dbs) allows you to set up simultaneous traffic tests
between multiple hosts on your network, and control the tests from any of the
test hosts, or from a completely different host on the network.

The dbs performance tool was developed at the Nara Institute of Science
and Technology in Japan, by Yukio Murayama, as a method of testing TCP and
UDP functions on a network. The Distributed Benchmark System has the abil-
ity to perform simultaneous network tests, placing a load on the network and
observing how the network handles traffic under the load condition. This
chapter describes the dbs performance tool, along with two separate tools that
are required to use dbs—the ntp network time package and the gnuplot plot-
ting package. A detailed example is presented, showing how you can use dbs
to perform a three-way simultaneous network test, testing network perfor-
mance among three separate hosts at the same time.

dbs Features

The philosophy behind dbs is different from that of other network perfor-
mance tools. While dbs allows you to perform the standard test of sending a
single flow of traffic between two hosts on the network, it also allows you to
perform more complicated tests involving multiple hosts.

dbs

C H A P T E R

5

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 79

Often, network problems aren’t apparent unless the network is operating
under a load condition. Usually, it is not appropriate to test network applica-
tions under a load condition, as it would adversely affect the normal produc-
tion network traffic. To compensate for this, dbs allows you to simulate actual
production traffic flows by generating your own network load for observing
network behavior. As a result, you can test during nonproduction hours,
which won’t affect existing network operations.

The following sections describe the individual features of dbs, and explain
how they relate to testing performance on the network.

The Components of dbs
The dbs application consists of three components that are used to perform the
network tests and display the test results. These programs are:

■■ dbsc A program used to control all the network tests from a single
location

■■ dbsd A program that runs on the test hosts to perform the tests

■■ dbs_view A Perl script that is used to display the results of the tests
in a graphical form

The dbsc program communicates with each of the test hosts, using TCP port
10710. Each test host uses the dbsd program to listen for test commands and
perform tests as instructed. After the tests are performed, the dbs_view pro-
gram is used to view the results.

The dbs Output
The dbs program produces tables of test data that show the output from the
tests performed. Each test produces a separate table, showing the time and
traffic information generated during the test. This information looks like this:

send_sequence send_size send_time recv_sequence recv_size recv_time

0 2048 0.007544 0 2048 0.017666

2048 2048 0.007559 2048 2048 0.018018

4096 2048 0.007570 4096 2048 0.018164

6144 2048 0.007583 6144 2048 0.018338

8192 2048 0.007595 8192 2048 0.018472

10240 2048 0.007609 10240 2048 0.018629

12288 2048 0.007621 12288 2048 0.018744

14336 2048 0.007633 14336 2048 0.018889

16384 2048 0.007646 16384 2048 0.018991

18432 2048 0.007674 18432 2048 0.019329

20480 2048 0.007688 20480 2048 0.019442

22528 2048 0.007700 22528 2048 0.019580

24576 2048 0.007722 24576 2048 0.019688

80 Chapter 5

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 80

Each line of data in the output file shows the results of the traffic as it was
sent by one test host and received by another test host. The timing information
received from the test hosts must be synchronized using the ntp application to
ensure that the data is correct.

After the dbs output file is generated, the dbs_view script can be used to
generate additional tables for different network statistics. From those tables,
dbs_view can produce graphs to show the data’s relation to the communica-
tion session. TCP sessions can be analyzed for communications problems,
such as repeated sequence and acknowledgment information, indicating a
retransmission problem. By observing the data displayed in the graph, you
can see how the sequence numbers were incremented in the test sessions.

Before Installing dbs

As mentioned, the dbs program utilizes both the ntp and gnuplot applications
to perform its functions. Both of these applications are freely available for any
Unix system, and must be installed before installing dbs. This section
describes how to do this.

The ntp Program
Many network applications rely on the time setting on remote hosts to be the
same as their own. The Network Time Protocol (NTP) was developed to allow
systems to synchronize their system clocks with a common time source. There
are several applications available on the Unix platform to synchronize the sys-
tem clock on the host with an NTP server. The ntp application was developed
as a free NTP server and client package, allowing a Unix host to both receive
NTP transactions to synchronize its own clock, and also send NTP transactions
to allow other hosts on the network to synchronize their clocks.

The ntp program can be downloaded from a link on the main ntp Web site
at http://www.ntp.org. At the time of this writing, the current production ver-
sion of ntp available for download is 4.1.1a, which can be downloaded at URL:

http://www.eecis.udel.edu/~ntp/ntp_spool/ntp4/ntp-4.1.1a.tar.gz

WARN I NG Older versions of ntp suffered from a buffer overflow security
bug. If your Unix distribution comes with a version of ntp older than 4.0, please
do not use it. Instead, download the latest version and install it.

dbs 81

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 81

The gnuplot Program
The dbs application generates lots of data from the tests it performs. An easy
way to analyze the data is to put it in graphical form. The dbs_view script uses
the gnuplot program to do that. This program is a freeware application that
runs on Unix systems running the X-Windows graphical display system.

WARN I NG Although gnuplot has the term gnu in it, the application is not
produced or distributed by the GNU project. You should carefully read the
license agreement distributed with gnuplot before using it. While it is freeware,
you are only free to use it, not modify and redistribute it.

The gnuplot program can plot two- and three-dimensional graphs from
either data tables or equations. The results are displayed as a graphical win-
dow with proper axis labeling and legends.

The main Web site for gnuplot is http://www.gnuplot.info. From that site,
you can download the FAQ describing gnuplot, and link to one of several
download sites that contain distributions of gnuplot. At the time of this writ-
ing, the latest version of gnuplot is version 3.7.1. It can be downloaded from
the following URL:

ftp://ftp.gnuplot.info/pub/gnuplot/gnuplot-3.7.1.tar.gz

Downloading and Installing dbs

The dbs application can be downloaded from the dbs Web site at http://
ns1.ai3.net/products/dbs/. This site contains links to the download area,
along with lots of information about how dbs works. At the time of this writ-
ing, the current production version of dbs is version 1.1.5, which can be down-
loaded using the URL:

http://www.kusa.ac.jp/~yukio-m/dbs/software1.1.5/dbs-1.1.5.tar.gz

WARN I NG Even though the filename uses the .gz suffix to indicate it is a
compressed file, it isn’t. You do not need to uncompress the distribution file.

The distribution file must be expanded into a working directory using the
tar command before it can be compiled:

tar -xvf dbs-1.1.5.tar.gz

82 Chapter 5

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 82

This creates the working directory dbs-1.1.5, which contains the source code
package. Several subdirectories are created within the working directory:

■■ doc contains the installation file and the dbs manual pages.

■■ sample contains sample command files and test outputs.

■■ script contains the dbs-view Perl script.

■■ src contains the dbsc and dbsd program source code.

You must perform several steps to compile and install the dbs package prop-
erly. First, you need to create an obj directory within the working directory, to
use as a temporary working directory to hold the object files created by the
compile. This is done using the Unix mkdir command:

[rich@test dbs-1.1.5]$ mkdir obj

After creating the obj directory, you must change to the src directory,
and use the make command to create a working directory specific to your Unix
distribution:

[rich@test dbs-1.1.5]$ cd src

[rich@test src]$ make dir

(cd ../obj/`uname|tr -d ‘/’``uname -r|tr -d ‘/’`; ln -sf

../../src/*.[hc]

.)

cp Makefile ../obj/`uname|tr -d ‘/’``uname -r|tr -d ‘/’`/makefile

[rich@test2 src]$

The make command creates a new subdirectory under the obj directory that
contains links to the source code. This produces a clean work area for you, in
which to perform the source code compile. The new directory is named using
the Unix uname command results for your system. On my test Mandrake sys-
tem, it created the directory Linux2.4.3-20mdk.

Change to the new directory, and examine the generated makefile file to
ensure that it will compile dbs in your Unix environment:

[rich@test src]$ cd ../obj/Linux2.4.3-20mdk

[rich@test Linux2.4.3-20mdk]$ vi makefile

NOTE By default, the makefile is set to install the dbs application programs in
the /usr/local/etc directory (the BIN variable). You may want to change this for
your Unix environment.

dbs 83

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 83

If you are installing dbs in a Linux environment, there is one more change
you will need to make. The tcp.trace.c program uses the nlist.h header file,
which is not present in Linux systems. You must comment this line out from
the source code. The complete line looks like this:

#include <nlist.h>

To comment it out, surround it with the standard C comment symbols, so it
looks like this:

/* #include <nlist.h> */

Then save the file, using the original filename. After this is completed, you
can run the make command to build the executable files. Depending on your
Unix distribution, you may see several warning messages as the compiles are
performed. You should be able to ignore these warning messages. The end
results should produce the two executable files, dbsc and dbsd.

After the executable files are produced, you can install them in the installa-
tion directory specified in the makefile, using the ‘make install’.

WARN I NG In the 1.1.5 version of dbs, the install section of the makefile
has an error. You must change the reference to the dbs_view file from ../script/
dbs_view to ../../script/dbs_view, or it will not be installed in the installation
directory.

When this is complete, the dbsc, dbsd, and dbs_view programs should be
copied to the installation directory. You can add the installation directory loca-
tion (/usr/local/etc by default) to your PATH environment variable to easily
run the dbs application from any directory on your system.

Running the dbsd Program

Each host that will participate in dbs testing must be running the dbsd pro-
gram. The format of the dbsd command is:

dbsd [-p port] [-d] [-D] [-v] [-h host]

The dbs program does not use a configuration file. Instead, it uses command-
line parameters to define its behavior. Table 5.1 describes the parameters that
can be used with the dbsd program.

84 Chapter 5

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 84

Table 5.1 The dbsd Program Parameters

PARAMETER DESCRIPTION

-p port Listen for incoming command connections on port port.

-d Use debug mode, producing verbose output.

-D Use the inetd process to accept incoming connections.

-v Display version number and parameter options.

-h host Only accept command connections from host.

For simple dbs tests, the dbsd program can be run directly from the com-
mand prompt in standalone mode. All debug messages will be sent to the stan-
dard output of the console terminal. For environments that need to perform
frequent tests, you most likely will want to configure inetd or xinetd to run the
dbsd program automatically for each incoming command connection. As with
the netserver application in Chapter 4, an entry must be made in the /etc/ser-
vices file defining the TCP port used for dbsd. By default, it should be 10710:

dbsd 10710/tcp dbsd

If your Unix system uses the inetd application to launch network programs,
the /etc/inetd.conf entry that would be used for dbsd is:

dbsd stream tcp nowait root /usr/local/etc/dbsd dbsd -D

NOTE This example shows the root user being used to start the dbsd
program. For security purposes, you may choose to run it under a different user.

For Unix systems that use the xinetd application to launch network pro-
grams, the dbsd configuration file should contain information similar to that
of the inetd.conf configuration line:

service dbsd

{

socket_type = stream

wait = no

user = root

server = /usr/local/etc/dbsd

server_args = -D

}

dbs 85

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 85

NOTE When using the inetd or xinetd programs to launch dbsd, remember to
include the -D parameter to make it a daemon process.

After you have made the appropriate configuration changes to either the
inetd or xinetd system, you must restart the process for it to recognize dbsd
connections.

Configuring Command Files

After the dbsd program is running on each of the hosts that will participate in
the tests, it’s time to create a command file to control the testing from the dbsc
control program. The dbsc command file is used to:

■■ Define the hosts participating in the test

■■ Define the socket parameters used in the test connections

■■ Define the start, end, and duration of the test

■■ Define the output files used to store data from the test

The command file can define multiple tests that are to be performed. Each
test definition has three sections: the sender parameters, the receiver parame-
ters, and the test parameters. Each of these sections is surrounded with braces,
within the command file. Each individual test itself is also contained within
braces. The basic command file structure looks like this:

Test 1

{

sender {

.. sender commands ..

}

receiver {

.. receiver commands ..

}

.. test commands ..

}

Test 2

{

sender {

.. sender commands ..

}

receiver {

.. receiver commands ..

}

.. test commands ..

}

86 Chapter 5

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 86

This section defines two separate tests within a single command file. Each
test has its own section, which defines the parameters used for the test. When
multiple tests are configured, they can be set to perform on different hosts, and
at either the same or at different times. The following sections of the chapter
describe these command file sections.

Sender and Receiver Commands
The sender and receiver commands define the host configurations that are
used in the test. Both the sending and receiving host addresses are defined,
along with the socket settings and data pattern used for the test. Table 5.2
shows the commands that can be used in the sender and receiver sections.

Table 5.2 The Sender and Receiver Section Commands

COMMAND DESCRIPTION

hostname The host name or IP address of the host performing the
function

hostname_cmd The host name or IP address of the command connection
for the host (usually the same as the hostname, and can
be omitted)

port The port number used for the test. If the host is a sender,
the port can be specified as 0, so the system can choose
any port

So_debug If set to ON, the socket debug option is enabled for the
host

Tcp_trace If set to ON, the TCP_DEBUG option is enabled on the
kernel (if the OS supports it)

No_delay If set to ON, the socket no_delay option is set

recv_buff Sets the size of the socket receive buffer. If omitted, the
default system value is used

send_buff Sets the size of the socket send buffer. If omitted, the
default system value is used

mem_align Arranges the size of both send and receive buffers in
a page boundary

pattern Defines a data pattern used for the test data

dbs 87

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 87

The Pattern Command

Most of these commands are self-explanatory. The pattern command is less so.
The pattern command defines the data that is used for the performance test. Its
format depends on whether it is in the sender or receiver section.

The Sender Pattern

The sender pattern command has the following syntax:

pattern {data size, message size, interval, wait time}

The data size parameter defines the amount of data that is sent in one itera-
tion of the test. The message size parameter defines how much of the data is
contained within a single packet. If the data size is specified as 2,048 bytes, and
the message size is specified at 1,024 bytes, the test will send two 1,024-byte
packets to complete the test. Conversely, if the data size is set to 1,024 and the
message size is set to 2,048, the entire test data will be sent in a single packet.

When multiple packets are sent in the test, the interval parameter defines the
length of time from the start of one packet to the start of the next packet. This
can be used as a throttle mechanism, controlling how fast the packets are sent
to the remote hosts. If this value is zero, the system will send the packets as fast
as possible.

Finally, the wait time parameter defines the amount of time between packets.
This value differs from the interval in that it is measured from the end of one
packet to the start of the next packet. If this value is zero, the system will send
the packets as fast as possible.

A sample sender data pattern command would look like:

pattern {2048, 1024, 0.0, 0.0}

This pattern defines a test using two packets, each containing 1,024 bytes of
data, sent at normal system packet separation.

To complicate things even more, you can specify multiple data patterns
within the same pattern command. A semicolon is used to separate the groups
of parameters:

pattern {2048, 2048, 0.0, 0.0;

2048, 1024, 0.0, 0.0;

10000, 1024, 0.0, 0.0;

1024, 1024, 0.0, 0.0 }

This pattern defines four separate data patterns. Each pattern is used once in
the test, in sequence from the first listed pattern to the last. This test pattern
would produce 14 separate data packets (1 for the first pattern, 2 for the sec-
ond, 10 for the third, and 1 for the fourth). You could alternately specify an
interval or wait time value to separate the data packet streams.

88 Chapter 5

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 88

The Receiver Pattern

The receiver pattern command has the following syntax:

pattern {buffer, message size, interval, wait time}

The buffer parameter defines the total size of the buffer used for receiving the
test data. The message size parameter defines the socket buffer size, represent-
ing the largest packet size that can be received. The interval parameter defines
the time interval for receiving the next message from the sender. Finally, the
wait time parameter defines a system overhead value that can be used to simu-
late a busy host.

WARN I NG Be careful when performing UDP tests. If the message size
parameter is less than the sender’s message size, data will be lost and the
test statistics will be flawed.

A sample receiver pattern command would look like:

pattern {2048, 1024, 0.0, 0.0}

This pattern defines a 2,048-byte buffer to hold the data, and socket buffers
set to 1,024 bytes. No interval or wait time value is set.

Sample Sender and Receiver Sections

A sample sender and receiver command file section would look like:

sender{

hostname = 192.168.1.2;

port = 0;

recv_buff = 32678;

send_buff = 32768;

pattern {2048, 1024, 0.0, 0.0}

}

receiver{

hostname = 192.168.1.100;

port = 2102;

mem_align = 2048;

pattern {1024, 1024, 0.0, 0.0}

}

This sample test defines the two test hosts, and sets the socket information
for the sender, allowing it to use large socket buffers. The receiving host is set
to receive the data using port 2102 (the protocol used will be specified in the
test command section).

dbs 89

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 89

Test Commands
The remaining commands used in the command file define the characteristics
of the test. Table 5.3 describes these commands.

A sample test command section would look like:

file = data/test1;

protocol = TCP;

connection_mode = AFTER;

start_time = 0.0;

end_time = 30;

send_times = 1024;

These commands define that the test data output should be stored in the file
test1, located under the data subdirectory in the current directory. TCP is used
to transfer the data, and the data pattern is repeated 1,024 times, or for 30 sec-
onds, whichever occurs first.

Performing Tests

This section shows the steps necessary to perform a sample dbs test session
from start to finish.

Table 5.3 Test Section Commands

COMMAND DESCRIPTION

File Defines the location of the output data file (as a Unix
pathname)

protocol Defines the protocol used to transmit the data
(TCP or UDP)

connection_mode Defines when the session connection is established,
either BEFORE the data trace is started, or AFTER the
data trace starts

server Defines which host acts as the server device, either the
SENDER or the RECEIVER

end_time Defines when the test will stop (in seconds)

start_time Defines a delay value (in seconds) when the test
should begin

send_times Defines the number of times the test data pattern
should be sent

90 Chapter 5

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 90

Define the Test Environment
This test performs two separate tests between three separate hosts on different
parts of the network simultaneously. This demonstrates the power of the dbs
network performance tool. Testing all three hosts at the same time allows net-
work traffic loads on the internal network devices to be tested.

The test host configurations used in this test are shown in Figure 5.1.
The details of the test are:

■■ Host1 sends a TCP data pattern to Host3

■■ Host2 sends a TCP data pattern to Host1

■■ Host3 sends a TCP data pattern to Host2

Each host sends the same data pattern, which defines a 2K data buffer to
send in 1K messages, with no interval or wait time. This pattern is repeated
1,000 times, or for 60 seconds.

Create the Command File
Since all of the tests are to be performed simultaneously, they must all be con-
figured in the same command file. Figure 5.2 shows the command file used for
the test.

Figure 5.1 Host setup for dbs test.

Host2
192.168.1.2

Host1
192.168.1.1

Host3
192.168.1.3

switch

router

switch

10
10

test1

test2

test3

100

100

100

dbs 91

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 91

Test 1

{

sender {

hostname = 192.168.1.1;

port = 0;

send_buffer = 65535;

recv_buffer = 65535;

pattern {2048, 1024, 0.0, 0.0}

}

receiver {

hostname = 192.168.1.3;

port = 21001;

pattern {2048, 1024, 0.0, 0.0}

}

file = data/test1;

protocol = TCP;

start_time = 0.0;

end_time = 60;

send_times = 1000;

}

Test 2

{

sender {

sender {

hostname = 192.168.1.2;

port = 0;

send_buffer = 65535;

recv_buffer = 65535;

pattern {2048, 1024, 0.0, 0.0}

}

receiver {

hostname = 192.168.1.1;

port = 21001;

pattern {2048, 1024, 0.0, 0.0}

}

file = data/test2;

protocol = TCP;

start_time = 0.0;

end_time = 60;

send_times = 1000;

}

Test 3

{

sender {

sender {

hostname = 192.168.1.3;

Figure 5.2 The test.cmd command file.

92 Chapter 5

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 92

port = 0;

send_buffer = 65535;

recv_buffer = 65535;

pattern {2048, 1024, 0.0, 0.0}

}

receiver {

hostname = 192.168.1.2;

port = 21001;

pattern {2048, 1024, 0.0, 0.0}

}

file = data/test3;

protocol = TCP;

start_time = 0.0;

end_time = 60;

send_times = 1000;

}

Figure 5.2 (continued)

Each test is defined in its own section of the command file. Since the tests
will be performed simultaneously, each of the start_time commands is set to
0.0. If, instead, you want to run the tests separately, you can specify different
start times for each test.

Run the Test
After the test.cmd command file is created, you can use the dbsc controller
program from any host on the network (including one of the test participants)
to start the test:

$ dbsc test.cmd

Command File: OK

Setup:(192.168.1.1.0, 192.168.1.3.21001, TCP):End

Setup:(192.168.1.2.0, 192.168.1.1.21001, TCP):End

Setup:(192.168.1.3.0, 192.168.1.2.21001, TCP):End

Test Start. Test time=80s

Test End.

Results:(192.168.1.1,192.168.1.3,0,21001,TCP):Received

Results:(192.168.1.2,192.168.1.1,0,21001,TCP):Received

Results:(192.168.1.3,192.168.1.2,0,21001,TCP):Received

DBSC: Normal END.

$

The first thing dbsc does is read and parse the command file. If any errors
are found in the command file, an error message is produced, pointing out the
location of the faulty statement. As shown in this example, the command file
was parsed with no errors.

dbs 93

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 93

The next step is for dbsc to send the test information to each of the test par-
ticipants. This is called the Setup section. As seen in the output, each of the
setup commands was successfully sent to the appropriate test host. If any of
the setup commands failed, dbsc would halt the test.

After configuring each of the test participants, dbsc coordinates the start
and end of the test. Since all of the tests in this example ran simultaneously,
there is only one start and end test time. This requires that each of the systems
be synchronized with the clock on the system running dbsc. A small amount of
variance is permitted. If this variance is detected, a warning message will be
produced, but the test will continue. If the clock variance is too great, dbsc will
stop the test and produce an error message.

After the test is completed, the test results are transferred from the test host
back to the host running dbsc. The appropriate data files are created contain-
ing the results from the test.

Analyze the Data
When the test results have been created, it is time to run the dbs_view script to
view and analyze the data. The dbs_view script is unusual in that you do not
directly specify the test data created by the dbsc program. Instead, you must
specify the original command file used to perform the test. The dbs_view
script interprets the command file, and accesses the appropriate data file.

The dbs_view script uses command-line parameters to define which test
results to graph. Table 5.4 shows the possible parameters that can be used.

Table 5.4 The dbs_view Command-Line Parameters

PARAMETER DESCRIPTION

-a area Defines the area of the graph to draw

-color Displays the graph in color when writing to a postscript or
eps output file

-delay Displays delay time at the application level

-dth Displays the throughput relative to the data sent
(bps/bytes)

-eps Outputs the graph as an eps file

-f file Specifies the command file to read

-jitter Displays the application-level jitter

-p Processes data for display

-ps Outputs the graph as a postscript file

-sq Displays the connection sequence numbers

94 Chapter 5

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 94

Table 5.4 (continued)

PARAMETER DESCRIPTION

-sd Displays the connection sequence numbers relative to
data sent

-t time Defines the time interval

-tdelay Displays delay time at the kernel level

-th Displays throughput of the connection

-title Displays the selected title on the graph

-tjitter Displays the kernel-level jitter

-tlost Calculates lost data segments

-trtt Displays round-trip time at the kernel level

-tsq Displays the packet sequence numbers at the kernel level

-tth Displays the throughput at the kernel level

-twin Displays TCP packet window sizes

-ulost Calculates the lost UDP packets

The parameters that display packet statistics must also specify whether
the send (s) or receive (r) data is used. For example, to display the sequence
numbers of the sending data (as shown back in Figure 5.2), you would use the
command:

$ dbs_view -p -f test.cmd -sq s

If you wanted to see the receive sequence numbers, you would use the r
option.

WARN I NG It is important to remember to use the -p option the first time
you display a statistic. dbs_view must create the data file for the statistic from
the raw data before it can be graphed.

The dbs_view graphs are an excellent way to visualize the data extracted
from the tests. A good example of this is to watch the throughput graphs pro-
duced from the sample test:

$ dbs_view -p -f test.cmd -th s

data/test1 Send: Mean Throughput 3.6780 Mbps

data/test2 Send: Mean Throughput 4.9521 Mbps

data/test3 Send: Mean Throughput 6.8266 Mbps

Hit Return Key

$

dbs 95

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 95

The dbs_view program displays the mean throughput of the tests on the
console screen. Going by this information, it appears that the test1 hosts had a
difficult time sending the test data across the network, more so than the other
test hosts. The throughput graph produced by this command is shown in Fig-
ure 5.3.

The throughput graph displays the results of all three tests on a single
graph. This enables you to analyze and compare what was happening during
the tests. As can be seen from this graph, test1 had a terrible throughput rate
while test2 and test3 were running. However, as soon as the other two tests
stopped, the throughput rate for test1 jumped back to a normal range. Obvi-
ously, there was some network congestion involved in the slow throughput
rate (or a poorly performing host).

This kind of information is crucial to identifying network performance
problems. With the information provided by the dbs graph in hand, you can
now configure additional test scenarios to attempt to isolate the performance
problem on the network.

Figure 5.3 The test.cmd throughput graph.

12

10

8

6

4

2

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

test1 send
test2 send
test3 send

Throughput (Mbps)

Time (s)

96 Chapter 5

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 96

Summary

The Distributed Benchmark System (dbs) can be used to perform multiple per-
formance tests on the network, and control the tests from a single point. This
allows you to test multiple hosts and network segments under a load condi-
tion without affecting production network traffic.

The dbs application uses three separate programs to function. The dbsd pro-
gram is the core of the test. It must run on each test host to accept test instruc-
tions from the controller, and perform the desired tests with remote test hosts.
The dbsc program controls the test environment, sending commands to the
individual test hosts on how and when to perform the tests. The dbs_view pro-
gram is used to graph the test results in a user-friendly form.

The next chapter describes the Iperf network performance tool. It can be
used to determine the total network bandwidth available between two points
on the network.

dbs 97

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 97

08 433012 Ch05.qxd 6/16/03 9:10 AM Page 98

99

The next network performance tool to discuss is the Iperf application. Iperf
provides several different types of TCP and UDP communication tests
between two hosts on the network, and can be used in both the Unix and Win-
dows environments. This chapter describes the benefits of Iperf, and explains
how to install and use it in your network environment.

The Iperf application was developed at the National Laboratory for Applied
Network Research (NLANR), and is currently maintained at the University of
Illinois. Its primary purpose is to help system administrators fine-tune TCP
parameters on network applications and servers. Iperf can be used to deter-
mine the standard performance statistics of the network, as well as the TCP
window performance of network test streams between both Unix and Win-
dows hosts. By fine-tuning network hosts and applications, you can improve
the performance of applications within your network environment.

Iperf Features

The Iperf application was designed to work as a simple, interactive application
that allows network and system administrators to see how TCP socket para-
meters used in applications and in host configurations can affect network

Iperf

C H A P T E R

6

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 99

performance. This section describes some of the basic features of Iperf, along
with the concepts behind the features.

The Components of Iperf
The Iperf application consists of an executable file, used as a single application
for both the client and server functions; a Java application that provides a
graphical front end to the Iperf application; and a set of library files used to
provide additional functions for socket programs. This section describes these
pieces of the Iperf application package.

The Iperf Program

Unlike the previous performance tools discussed, the Iperf application uses a
single program that contains both the client and server functions of the appli-
cation. Only a single file (iperf) needs to be loaded on the test devices on the
network, and any device can be used as both a client and a server. The Iperf
application also contains a distribution for the Windows environment, allow-
ing you to use Windows-based workstations or servers as test devices on
the network. This can greatly expand the number of testing devices on the
network.

As with the previous performance tools discussed, when Iperf is run in
server mode, it can be run in either foreground or background mode (both in
the Unix and Windows environments). In the Windows environment, Iperf
can be run as a service, allowing it to operate in the background without inter-
fering with other applications on the workstation or server. In the Unix envi-
ronment, it can be run as a daemon process in the background, without the
help of the inetd or xinetd program. For short-term tests in either environment,
you can run the Iperf program in standalone server mode, providing a quick
and easy way to perform tests.

The jperf Front End

If you download the source code distribution package for Iperf, you get an
additional package (at no additional charge). The jperf package is included as
a graphical front end to Iperf.

Jperf provides a fancy graphical interface to Iperf, allowing you to perform
the same performance tests, and produce the same output results. Each of the
command-line options available in Iperf is provided in various radio buttons
and text boxes in the jperf Java application. All of the Iperf command-line
options available can be set using the jperf front end.

100 Chapter 6

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 100

NOTE To run jperf, you must have a Java runtime or SDK package installed on
the host. Jperf will operate in either a Java 1.1 or 1.2 environment. When you
run jperf, the Iperf executable file for your host environment must also be
available in the PATH environment variable. Jperf is just a front-end program;
it still needs access to the Iperf executable file to perform the network tests.

The Iperf library

One additional feature of the Iperf application is a set of C and C++ library
files that can be used to add functionality to socket-based applications, or to
make normal socket programming functions easier. It is often difficult to cre-
ate network programs using C++ as there are no standard classes available.
The Iperf library provides several classes to help network programmers. Table
6.1 shows the C++ library classes that are included with Iperf.

Besides these C++ library classes, Iperf also contains several C functions
that can be used to make creating and using socket applications easier. These
functions are shown in Table 6.2.

If you do network programming in the Unix environment, these C++ classes
and C functions can save you time by providing commonly used network
functions.

Iperf Tests
The Iperf application provides several network performance tests for both the
TCP and UDP network environments. It can be used to measure the following
TCP network characteristics:

■■ Total bandwidth of the test connection

■■ Stream bandwidth assigned to multiple test connections

■■ Default TCP window size value used by the test host

■■ Default Path MTU Discovery value used by the test host

■■ Router handling of IP Type-of-Service (TOS) packets

Table 6.1 Iperf C++ Library Classes

CLASS DESCRIPTION

Socket Provides simplified socket functions to applications

Queue Provides simplified queue functions to applications

Thread Provides simplified thread functions to applications

Timestamp Provides simplified timestamp functions to applications

Iperf 101

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 101

Table 6.2 Iperf C Functions

FUNCTION DESCRIPTION

getsock_tcp_windowsize(sock) Retrieves the socket send buffer size

setsocket_tcp_windowsize(sock, size) Sets the socket send and receive buffer
sizes

getsock_tcp_mss(sock) Retrieves the socket maximum segment
size value

setsock_tcp_mss(sock, size) Sets the socket maximum segment size
value

readn(sock, *buff, len) Reads a full buffer of data from the
socket

writen(sock, *buff, len) Writes a full buffer of data to the socket

Besides detecting the default in addition to these standard tests, Iperf also
has modes that automatically determine the optimal TCP widow size and
MTU size used for socket connections. This feature alone can greatly improve
network performance when configuring network applications for your net-
work environment.

Besides the TCP tests, Iperf can also be used to measure some UDP network
characteristics:

■■ UDP performance at a specified bandwidth

■■ UDP packet loss in a stream of packets

■■ UDP delay jitter in a stream of packets

■■ UDP multicast packet performance

The UDP multicast test feature of Iperf is unique in that it allows you to set
the Iperf client to send packets to a specific multicast address, and set one or
more Iperf servers to listen to the same multicast address. This allows you to
easily test multicast network performance on separate network segments. This
can often be tricky, as network routers must be configured to provide multicast
support to individual network segments.

Iperf Output
The Iperf application uses the standard console display to output all of the
results from network tests. The format of the test results can be altered by
defining what units of measurement (such as kilobytes, megabytes, or giga-
bytes) to use in the values presented.

102 Chapter 6

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 102

Both the client and server devices used in the test output results from the
test, allowing you to quickly see the results from either host in the test. A
default Iperf test looks something like this:

host1>iperf -s

--

Server listening on TCP port 5001

TCP window size: 8.0 KByte (default)

--

[188] local 192.168.1.100 port 5001 connected with 192.168.1.6 port 1332

[ID] Interval Transfer Bandwidth

[188] 0.0-10.0 sec 110 MBytes 92.3 Mbits/sec

host2$ iperf -c 192.168.1.100

--

Client connecting to 192.168.1.100, TCP port 5001

TCP window size: 16.0 KByte (default)

--

[3] local 192.168.1.6 port 1332 connected with 192.168.1.100 port

5001

[ID] Interval Transfer Bandwidth

[3] 0.0-10.0 sec 110 MBytes 92.3 Mbits/sec

$

The host1 device is used as the Iperf server. Its output shows that the server
is listening for connections on the standard Iperf TCP port (5001), along with
the current value of the TCP window size. When a new connection is accepted,
the remote client IP address and port number are displayed. At the end of the
test (which by default is 10 seconds long), the raw test data is displayed: the
number of bytes transferred between the devices, and the bandwidth calcu-
lated for the transfer.

The client Iperf host (host2) uses the -c option to indicate the address of the
Iperf server to connect to. Similar to the server output, the client output indi-
cates the IP address and TCP port number of the remote server, along with the
current value of the TCP window size of the client machine. When a connec-
tion is established, the information is displayed on a separate line, indicating
both the client and server connection information. When the test is complete,
the test information is displayed, again similar to the server output.

Downloading and Installing Iperf

The Iperf application Web site (http://dast.nlanr.net/Projects/Iperf/) contains
information about the latest release of Iperf (version 1.6.3 at the time of this
writing), as well as links to the download area. The download area contains

Iperf 103

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 103

links for downloading several different binary packages for various platforms
(including MacOS X and Microsoft Windows), as well as the source code pack-
age. If your particular Unix distribution does not have a binary package, you
must download the source code and compile it yourself.

Downloading the Source Code
At the time of this writing, the most current source code distribution URL is:

http://dast.nlanr.net/Projects/Iperf/iperf-1.6.3.tar.gz

Similar to the other package distributions used in this book, the Iperf source
code is distributed as a compressed tar file. To compile the package on a Unix
system, you must first extract it into a working directory:

tar -zxvf iperf-1.6.3.tar.gz

This command creates the subdirectory iperf-1.6.3 under the current direc-
tory, and extracts the Iperf source code package into the directory.

Compiling the Source Code
Once the source code package has been downloaded and extracted into a
working directory, you can compile and install it on your system. The Iperf
application package does not use the configure command, as other packages
do. It uses the make command to both determine system configuration set-
tings and generate the executable files on the system.

WARN I NG The Iperf programs are written in C++. You must have a C++
compiler on your system to compile the Iperf package. The most popular
package for Linux and FreeBSD systems is the GNU C++ compiler, gc++.

When the make program is running, you will see lots of messages indicating
which files are being compiled. When it is done, the iperf executable will
appear in the working directory, along with the jperf script to start the jperf
application, and the jperf.jar Java file that contains the jperf classes.

Installing Iperf
Even though the Iperf executable file will work perfectly fine at this point, it’s
best to place it in a common location so it can be easily accessed. To do this,
you must run the make command again, this time using the install option. The
install option first asks a question about where to install the binary files, then
proceeds with the installation:

104 Chapter 6

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 104

make install

Where should the iperf binary be installed? [/usr/local/bin]

make[1]: Entering directory `/home/rich/iperf-1.6.3/src’

../install-sh -c -d /usr/local/bin

../install-sh -c ../iperf /usr/local/bin

make[1]: Leaving directory `/home/rich/iperf-1.6.3/src’

make[1]: Entering directory `/home/rich/iperf-1.6.3/jsrc’

../install-sh -c -d /usr/local/bin

../install-sh -c ../jperf /usr/local/bin

../install-sh -c -m 0644 ../jperf.jar /usr/local/bin

make[1]: Leaving directory `/home/rich/iperf-1.6.3/jsrc’

#

If you want to use the default installation directory, you can just hit the Enter
key when asked for the path (the path will default to /usr/local/bin). Next the
install process installs both the Iperf and jperf pieces into the selected installa-
tion directory.

Using Iperf

This section shows you how to run various performance tests using the Iperf
application. Except where noted, the Iperf application performs exactly the
same, no matter which platform it is running on.

Starting the Iperf Server
The -s option is used to place the Iperf program in server mode. While in
server mode, Iperf will listen to port 5001 for incoming test connections. As
mentioned earlier in the Iperf Features section, Iperf can be run in server mode
as either a standalone server or a background daemon.

Standalone Mode

When just using the -s option, Iperf operates in standalone mode. All messages
generated by Iperf are displayed on the standard output for the terminal:

$ iperf -s

--

Server listening on TCP port 5001

TCP window size: 8.0 KByte (default)

--

Iperf 105

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 105

By default, Iperf will use the default TCP window size assigned by the host
system. If you want to use an alternate window size, you can use the -w
option:

$ iperf -s -w 130k

--

Server listening on TCP port 5001

TCP window size: 8.0 KByte (WARNING: requested 130 KByte)

--

If the system allows the send and receive socket buffers to be altered, the
new window size will be displayed. If not, a warning message is shown.

Daemon Mode

The -s option can also be used with the -D option, which places the Iperf pro-
gram in background mode (or runs it as a service in Windows platforms):

$ iperf -s -D

--

Server listening on TCP port 5001

TCP window size: 16.0 KByte (default)

--

Running Iperf Server as a daemon

The Iperf daemon process ID : 18074

$

The output from the -s -D options shows that the Iperf program is running
as a daemon, and indicates the PID of the running process.

The output from the Iperf program will still be displayed on the standard
output, at least while the standard output exists. If you prefer, you can redirect
the output to a file, which will then contain all of the output from any tests per-
formed with the Iperf program:

$ iperf -s -D > /home/rich/iperf.log

WARN I NG When redirecting the output to a log file, make sure that you
have proper permissions to create and write to the file, or Iperf will not run.

Performing Simple Tests
After a copy of Iperf is running in server mode, you can run Iperf in client
mode from any other device on the network to connect to the server, using the
-c option, and specifying the hostname or IP address of the Iperf server:

106 Chapter 6

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 106

$ iperf -c 192.168.1.100

--

Client connecting to 12, TCP port 5001

TCP window size: 16.0 KByte (default)

--

[3] local 192.168.1.6 port 1337 connected with 192.168.1.100 port 5001

[ID] Interval Transfer Bandwidth

[3] 0.0-10.0 sec 111 MBytes 93.2 Mbits/sec

$

By default, the client sends 8-KB data packets for 10 seconds to the remote
server. The total amount of data transferred, along with the calculated network
bandwidth, is displayed. You can alter some of the test features using com-
mand-line parameters. Table 6.3 lists the parameters that can be used.

If you want to extend the test to 60 seconds, showing an update every 5 sec-
onds, you use the following command:

$ iperf -c 192.168.1.100 -t 60 -i 5

--

Client connecting to 192.168.1.100, TCP port 5001

TCP window size: 16.0 KByte (default)

--

[3] local 192.168.1.6 port 1340 connected with 192.168.1.100 port 5001

[ID] Interval Transfer Bandwidth

[3] 0.0- 5.0 sec 55.5 MBytes 93.1 Mbits/sec

[3] 5.0-10.0 sec 55.4 MBytes 92.9 Mbits/sec

[3] 10.0-15.0 sec 55.4 MBytes 93.0 Mbits/sec

[3] 15.0-20.0 sec 53.5 MBytes 89.6 Mbits/sec

[3] 20.0-25.0 sec 53.4 MBytes 89.6 Mbits/sec

[3] 25.0-30.0 sec 54.8 MBytes 91.9 Mbits/sec

[3] 30.0-35.0 sec 54.8 MBytes 91.9 Mbits/sec

[3] 35.0-40.0 sec 55.0 MBytes 92.3 Mbits/sec

[3] 40.0-45.0 sec 55.5 MBytes 93.2 Mbits/sec

[3] 45.0-50.0 sec 55.5 MBytes 93.0 Mbits/sec

[3] 50.0-55.0 sec 55.6 MBytes 93.2 Mbits/sec

[3] 55.0-60.0 sec 55.5 MBytes 93.2 Mbits/sec

[3] 0.0-60.0 sec 660 MBytes 92.2 Mbits/sec

$

A report is displayed every 5 seconds of the test. A final report is also dis-
played, showing the results for the overall, 60-second test.

The -P option can be used to run simultaneous tests between the two test
hosts. Each test stream will contain the same data pattern, and the same data
and time limits as defined on the command-line parameters:

$ iperf -c 192.168.1.100 -P 2

--

Client connecting to 192.168.1.100, TCP port 5001

TCP window size: 16.0 KByte (default)

Iperf 107

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 107

--

[3] local 192.168.1.6 port 1346 connected with 192.168.1.100 port 5001

[6] local 192.168.1.6 port 1347 connected with 192.168.1.100 port 5001

[ID] Interval Transfer Bandwidth

[6] 0.0-10.0 sec 55.4 MBytes 46.4 Mbits/sec

[3] 0.0-10.0 sec 55.4 MBytes 46.4 Mbits/sec

$

Both tests are assigned a unique ID value, which allows you to track the test
statistics (especially if you are obtaining interval reports). Note that the total
bandwidth for the individual tests should be similar to the total bandwidth
used for a single test.

Testing TOS Traffic
With the increased use of special-purpose video and audio connections across
networks, it is important to determine if network equipment is handling this
traffic properly. Video and audio traffic must maintain a set bandwidth, or the
result will be choppy and possibly useless display frames and unintelligible
voice.

Most video and audio traffic uses the IP Type-of-Service (TOS) feature to tag
IP packets containing the data as higher priority than regular data packets on
the network. This lets routers identify these packets as higher priority, and
handle them with a higher preference than other packets being routed.

The IP TOS field can identify several different classes of data, shown in
Table 6.4.

Table 6.3 Iperf Client Command-Line Parameters

PARAMETER DESCRIPTION

-f format Sets the units of the output data (b = bits/s, B = bytes/s,
k = Kbits/s, K = Kbytes/s, etc)

-I interval Sets the interval (in seconds) at which Iperf will display a
status report (default = 0, only one report at the end of the
test)

-l length Sets the length of the test data packets (in bytes)

-n num Sets the number of test data packets to send (overrides the
time restriction)

-p port Sets the port to use to contact the server

-t time Sets the time (in seconds) to transmit data packets

-P clients Sets the number of concurrent client connections to clients

108 Chapter 6

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 108

Table 6.4 IP TOS Types

TOS VALUE DESCRIPTION

Minimize cost 0x02 Chooses the routes with the least monetary
cost to send the packet

Maximize reliability 0x04 Chooses the most reliable routes to send
the packet

Maximize throughput 0x08 Chooses the paths with the highest
throughput to send the packet

Minimize delay 0x10 Chooses the paths with the least delay to
send the packet

The -S option can be used on the Iperf client command-line options to spec-
ify the TOS value to use for the test. The value can be entered in hexadecimal
notation (0x02), octal notation (002), or decimal notation (2). A sample test
would look like the following:

$ iperf -c 192.168.1.100 -S 16

--

Client connecting to 192.168.1.100, TCP port 5001

TCP window size: 16.0 KByte (default)

--

[3] local 192.168.1.6 port 1353 connected with 192.168.1.100 port 5001

[ID] Interval Transfer Bandwidth

[3] 0.0-10.0 sec 107 MBytes 89.9 Mbits/sec

$

With TOS traffic, the thing to watch for is whether the bandwidth increases
for different TOS values, indicating that intermediary routers are actually
passing the packets at a higher priority than normal network traffic.

NOTE To utilize the TOS feature of Iperf, you must perform the test across one
or more routers that are configured to handle TOS traffic at a different priority
than normal network traffic.

Testing UDP Traffic
The Iperf application also allows you to test the performance of UDP traffic on
your network. To test UDP traffic, you must use the -u command-line option
on both the server and client programs:

C:\>iperf -s -u

--

Server listening on UDP port 5001

Iperf 109

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 109

Receiving 1470 byte datagrams

UDP buffer size: 8.0 KByte (default)

--

[136] local 192.168.1.100 port 5001 connected with 192.168.1.6 port 1024

[ID] Interval Transfer Bandwidth Jitter Lost/Total

Datagrams

[136] 0.0-10.0 sec 1.3 MBytes 1.0 Mbits/sec 2.084 ms 0/ 893 (0%)

$ iperf -c 192.168.1.100 -u

--

Client connecting to 1192.168.1.100, UDP port 5001

Sending 1470 byte datagrams

UDP buffer size: 64.0 KByte (default)

--

[3] local 192.168.1.6 port 1024 connected with 192.168.1.100 port 5001

[ID] Interval Transfer Bandwidth

[3] 0.0-10.0 sec 1.3 MBytes 1.0 Mbits/sec

[3] Sent 893 datagrams

$

You may notice one thing that’s different with the UDP test—the detailed
test result is shown on the server host, and not the client host. This is due to the
way UDP operates. Since it is not a connection-oriented protocol, the client has
no idea how many packets actually make it to the server. Instead, it can tell the
server how many packets are sent, and the server can determine how many
actually make it.

The other feature of the UDP test is the jitter value. The jitter of a connection
shows the amount of change in the delay between sent packets. If two hosts
are on the same subnet, the jitter value should be extremely small (as shown in
the preceding example). However, if the UDP packets must traverse a large
network that includes switches and routers, the delay between packets may
increase, depending on the load of the network devices.

For packets that contain time-sensitive data (such as voice and video data),
changes in the delay between packets can be devastating. As the delay
between packets increases, the flow of the video or voice data is altered,
severely affecting the end-result of the data.

The UDP option allows only a set bandwidth of data to be sent on the net-
work during the test. By default, this is 1 Mbps of bandwidth. You can alter the
desired bandwidth by using the -b command-line option:

>iperf -s -u

--

Server listening on UDP port 5001

Receiving 1470 byte datagrams

UDP buffer size: 8.0 KByte (default)

--

[136] local 192.168.1.100 port 5001 connected with 192.168.1.6 port 1024

110 Chapter 6

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 110

[ID] Interval Transfer Bandwidth Jitter Lost/Total

Datagrams

[136]0.0-10.0 sec 113 MBytes 94.9 Mbits/sec 0.488 ms 582/81518 (0.71%)

[136] 0.0-10.0 sec 1 datagrams received out-of-order

$ iperf -c 192.168.1.100 -u -b 100M

--

Client connecting to 192.168.1.100, UDP port 5001

Sending 1470 byte datagrams

UDP buffer size: 64.0 KByte (default)

--

[3] local 192.168.1.6 port 1024 connected with 192.168.1.100 port 5001

[ID] Interval Transfer Bandwidth

[3] 0.0-10.0 sec 114 MBytes 95.9 Mbits/sec

[3] Sent 81518 datagrams

$

The test with the larger UDP bandwidth (set to 100 Mbps) resulted in a
few dropped packets (0.71 percent), and one packet received out of order.
However, the overall bandwidth for the UDP session was still close to the test
goal (about 95 Mbps).

NOTE Unfortunately, you cannot use the same Iperf server when testing UDP
and TCP applications. If you need to perform both TCP and UDP simultaneously,
you can run two separate servers, one using the default port number of 5001
and a second with an alternate port number.

Testing Multicast Traffic
As mentioned earlier, one nice feature of Iperf is the ability to test the perfor-
mance of multicast packets on the network. This is done using the -B command-
line option, which allows you to bind the test program to an IP address
different from the one configured on the host:

>iperf -s -u -B 224.100.0.1

--

Server listening on UDP port 5001

Binding to local address 192.168.1.100

Receiving 1470 byte datagrams

UDP buffer size: 8.0 KByte (default)

--

[136] local 192.168.1.100 port 5001 connected with 192.168.1.6 port 1024

[ID] Interval Transfer Bandwidth Jitter Lost/Total

Datagrams

Iperf 111

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 111

[136] 0.0-10.0 sec 113 MBytes 94.9 Mbits/sec 0.293 ms 678/81518 (0.83%)

$ iperf -c 224.100.0.1 -u -b 100M

--

Client connecting to 224.100.0.1, UDP port 5001

Sending 1470 byte datagrams

Setting multicast TTL to 1

UDP buffer size: 64.0 KByte (default)

--

[3] local 192.168.1.6 port 1024 connected with 224.100.0.1 port 5001

[ID] Interval Transfer Bandwidth

[3] 0.0-10.0 sec 114 MBytes 95.9 Mbits/sec

[3] Sent 81518 datagrams

$

Remember to include the -u option, since the multicast test must use UDP
packets. This example also used the -b option to specify the bandwidth to
attempt to send to the remote server. For multicast tests you can also use mul-
tiple servers, as each server should receive the same multicast packets as the
others.

By default, the Iperf multicast test uses an IP Time to Live (TTL) value of 1.
The TTL value is used to define the number of router hops the packet is
allowed to take. Setting the value to 1 restricts it to the local network, with no
router hops.

If you need to perform the multicast test using devices on other subnets, you
must increase the TTL value, using the -T option on the client side:

$ iperf -c 224.100.0.1 -u -b 100M -T 10

This test allows the multicast packets to traverse up to 9 router hops from
the local subnet when the client is located.

WARN I NG Be careful when running multicast tests. First, ensure that any
routers involved in the test are capable of forwarding packets for the specific
multicast group used in the test. Second, do not use arbitrary large values
for the TTL, as your test streams could possibly work their way through your
network routers out onto the Internet (assuming your Internet routers enable
multicast traffic to pass for the group used).

Testing a File Transfer
Besides sending meaningless streams of data to test network performance,
Iperf allows you to test an actual file transfer performance using real-world

112 Chapter 6

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 112

files. This is a nice feature, in that you can use it to predict what type of per-
formance actual client file transfers would realize, without actually moving
the data.

Often, just sending arbitrary data generated in memory on the machine
does not provide an accurate picture of a real data transfer on the network.
When you transfer a file from one host to another, there are also the read and
write speeds on the host disks, along with the CPU load on both systems.

The -F command-line option can be used at the Iperf client side to define a
file that you would like to simulate transferring to the remote server host. The
file can be any type or size, as long as its path relative to the current directory
is defined in the command line:

$ iperf -c 192.168.1.100 -F testfile

--

Client connecting to 192.168.1.100, TCP port 5001

TCP window size: 16.0 KByte (default)

--

[4] local 192.168.1.6 port 1368 connected with 192.168.1.100 port 5001

[ID] Interval Transfer Bandwidth

[4] 0.0- 0.2 sec 2.3 MBytes 88.9 Mbits/sec

$

If the test file is not found, Iperf will revert to performing a default test:

$ iperf -c 192.168.1.100 -F badfile

Unable to open the file stream

Will use the default data stream

Testing TCP Window Sizes
Besides showing the TCP window sizes used by default in the test hosts, Iperf
can calculate the preferred TCP window size for a network connection. This
feature is used to determine the optimal TCP window size to use when trans-
ferring data across the network, given the current network conditions.

The -W command-line option is used with the Iperf client program to allow
Iperf to determine the optimal TCP window size for the test:

>iperf -c 192.168.1.100 -W

--

Client connecting to 192.168.1.100, TCP port 5001

TCP window size: 8.0 KByte (default)

--

[136] local 192.168.1.6 port 1623 connected with 192.168.1.100 port 5001

--

TCP window size: 8.0 KByte (default)

Iperf 113

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 113

[ID] Interval Transfer Bandwidth

[136] 0.0- 1.0 sec 11.1 MBytes 93.3 Mbits/sec

--

TCP window size: 16.0 KByte (default)

[136] 1.0- 2.0 sec 11.1 MBytes 93.1 Mbits/sec

--

TCP window size: 16.0 KByte (default)

[136] 2.0- 3.0 sec 11.1 MBytes 93.2 Mbits/sec

--

TCP window size: 16.0 KByte (default)

[136] 3.0- 4.0 sec 11.1 MBytes 93.2 Mbits/sec

--

TCP window size: 12.0 KByte (default)

[136] 4.0- 5.0 sec 11.1 MBytes 93.1 Mbits/sec

--

TCP window size: 16.0 KByte (default)

[136] 5.0- 6.0 sec 11.1 MBytes 93.3 Mbits/sec

--

TCP window size: 12.0 KByte (default)

[136] 6.0- 7.0 sec 11.0 MBytes 93.1 Mbits/sec

--

TCP window size: 16.0 KByte (default)

[136] 7.0- 8.0 sec 11.1 MBytes 92.8 Mbits/sec

--

TCP window size: 16.0 KByte (default)

[136] 8.0- 9.0 sec 11.1 MBytes 92.9 Mbits/sec

--

TCP window size: 16.0 KByte (default)

[136] 9.0-10.0 sec 11.1 MBytes 92.8 Mbits/sec

--

Optimal Estimate

TCP window size: 8.0 KByte (default)

--

[136] 0.0-10.0 sec 111 MBytes 93.1 Mbits/sec

>

When performing the TCP window-size test, instead of sending a single 10-
second stream of data, Iperf sends 10 1-second streams, altering the TCP win-
dow size of the client during each stream test. It will attempt to match the
stream to the best client TCP window size, given the network utilization at the
time of the test, and the TCP window settings on the server.

Using jperf
If you have the Java runtime or SDK package installed on your system (either
Unix, Mac, or Windows), you can use the jperf program to provide a simple,
graphical interface to the Iperf command line. Figure 6.1 shows the jperf
window.

114 Chapter 6

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 114

Figure 6.1 The jperf window.

You can select which mode you want Iperf to run in (server or client), along
with the address of the remote server if it is running in client mode. There are
text boxes to enter information for each of the different command-line options
that are available. Fields that only apply to the client program are shadowed-
out when the server option is selected.

Summary

The Iperf application is a versatile network performance tool that can be used
in both the Unix and Windows environments. Its specialty is determining opti-
mal TCP window sizes for TCP connections, allowing the system administra-
tor to configure network hosts for optimal performance.

The main feature of Iperf is the ability to determine the TCP window size
that will produce the best throughput for the network conditions. This feature
can be used to determine optimal default network settings for network hosts,
as well as assist network programmers in determining optimal socket buffer
sizes when creating programs to operate in the network environment.

Iperf 115

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 115

The TCP windows size regulates how much data is on the network for a
connection. The receiving host can inform the sending host to either slow
down or speed up the amount of data sent before an acknowledgment packet
is sent. By regulating the data transfer, the receiving host can control how fast
the data is sent on the network.

Iperf also provides a way for you to test how multicast packets are handled
by the network devices. Multicast packets are used to send the same data to
multiple network devices at the same time, with the same packet stream.
Routers must be specifically configured to forward multicast packets, and
often can add delays in processing multicast packets.

The next chapter presents the Pathrate and Pathload tools, which can be
invaluable in determining both the total bandwidth and the available band-
width between two network points.

116 Chapter 6

09 433012 Ch06.qxd 6/16/03 9:10 AM Page 116

117

One of the crucial elements of network performance is bandwidth capacity.
The Pathrate application provides a method for you to determine the total pos-
sible bandwidth capacity for a network link between two endpoints, even
when the link in under load. The Pathrate application has a companion appli-
cation, Pathload, which can be used to determine the actual load on a network
link between two endpoints. This chapter describes how network bottlenecks
can affect your network performance, and how these applications can be used
to find them.

The Pathrate and Pathload applications were developed, and are main-
tained, by Constantinos Dovrolis, who is currently working at Georgia Tech.
Both applications rely on advanced network statistical calculations, involving
the delays present in transferring packets across network devices along the
path between the two endpoints.

The Pathrate application can be used to determine the maximum theoretical
throughput (often called the bottleneck speed) of a network path between two
points, even when parts of the network are under loading conditions (such as
during normal production operations). This value represents the fastest possi-
ble speed at which a packet can be transferred between the two hosts, given
ideal conditions. The Pathload application can be used to determine the
throughput of the link, given the current traffic levels. By using both of these
applications, the network administrator can obtain a clearer picture of the net-
work, and how well traffic is funneling through it.

Pathrate

C H A P T E R

7

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 117

Using Statistics to Measure Bandwidth

The unique feature of Pathrate and Pathload is the way they use statistical
analysis to determine the maximum capacity of an operating network, and
determine the available bandwidth of the network using the statistical data.
This section describes the processes that Pathrate and Pathload use to perform
the calculations and estimate the bandwidth capacity and available bandwidth.

How Pathrate Works
There are several different statistical tests that are performed throughout the
test period. The tests are grouped into phases that are used to obtain different
information about the connection. This section describes each phase of the
Pathrate test.

Initial Phase

In the initial phase of operation, Pathrate sends a limited number of packet
trains to the remote host to “test the waters” of the network link. The packet
trains used vary in size and interpacket gap, allowing for varying network
conditions.

During this phase, Pathrate can use the packet train data to determine if any
special network devices are present within the network link. Two special types
of network devices that Pathrate tests for are:

■■ Load-balancing devices

■■ Traffic-shaping devices

Load-balancing devices allow multiple network lines to be trunked together
to provide a single, larger bandwidth pipe.

In traffic shaping, routers can limit the bandwidth allocated to bursts of
packets, while allowing normal traffic to consume a set (higher) bandwidth.
This helps prevent a single-burst application from dominating the network
bandwidth.

If the network link is not heavily loaded with other traffic, the results from
the initial Pathrate tests may result in a consistent bandwidth calculation value
(or within a small deviation). If this is the case, Pathrate will produce an esti-
mation of the network capacity without performing any other tests.

Phase I

If the initial results vary greatly, Pathrate determines that the link was heavily
loaded, and the application enters the first phase of statistical calculations.

118 Chapter 7

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 118

During this phase Pathrate generates 1,000 variable-length packet pairs to test
the network link.

The Phase I tests perform measurements using groups of 27 packet trains.
Each group maintains a consistent packet size. The first group uses 600-byte
packet sizes, and each successive group increases the packet size by 25 bytes
until the maximum MTU size is reached (1,500 bytes for Ethernet connections).

The results produced by this phase are used to determine trends within the
packet-pairs data, and to determine minimum and maximum values.

Phase II

In Phase II, Pathrate uses 500 large packet trains to attempt a statistical calcu-
lation to determine which of the Phase I results were closest to the true band-
width capacity. Pathrate measures the dispersion of the large packet trains to
estimate the ADR of the connection.

When its statistical analysis has determined which of the results from Phase
I are the most likely candidates for the correct bandwidth, Pathrate reports this
as the capacity estimation.

WARN I NG Since Pathrate uses statistical calculations to determine the final
bandwidth estimate, it is possible that it can determine the wrong value. It is
always best to perform more than one test on the network link to see what
values Pathrate can generate.

How Pathload Works
The Pathload application uses similar statistical calculations to estimate the
current network load between two devices on the network. Pathload sends
packet streams between two points on the network (the test hosts), using
increasing rates (less delay time between packets). The rate at which the pack-
ets are sent is saved as a state variable (R) in the program.

When the rate at which the packets are sent exceeds the available bandwidth
on the network, a delay occurs between the packets, as shown in Figure 7.1.

Figure 7.1 Packet delay introduced by loaded network.

host switch

additional traffic

additional traffic
original

interpacket
gap

interpacket
gap due to

network load

Pathrate 119

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 119

The rate at which the packets are sent is represented by the interpacket
(between sent packets) gap. When the network is loaded, additional packets
from other traffic flows must be interspersed between the original packets,
increasing the interpacket gap. Pathload detects this additional delay, and
determines that the test stream was sent at a rate larger than the available
bandwidth. The rate state variable (R) is then decreased, and another test is
performed. This process is continued until the rate state variable maintains a
value within a predetermined resolution.

NOTE Unlike other network bandwidth calculation programs, Pathload
presents the available bandwidth estimation as a range of possible values.
Since Pathload determines the available bandwidth using statistics, there is
a range of possibilities that could include the actual available bandwidth,
not a set available bandwidth value.

Using Pathrate

This section describes the Pathrate application programs, and how to down-
load and install them on a Unix host on the network.

The Pathrate Programs
The Pathrate application consists of two programs:

■■ pathrate_snd waits for new test connections.

■■ pathrate_rcv establishes connection with the server and begins the
capacity test.

The pathrate_snd program must be running either in background mode or
as a standalone application on a host on the network. The hostname or IP
address of the host running the pathrate_snd program must be specified on
the pathrate_rcv program to identify the remote endpoint. The pathrate_rcv
program establishes a TCP connection using port 48699 to the pathrate_snd
server. The TCP connection is used to send control information between the
two test hosts. After the control connection is established, the test data is sent
from the server program to the receiver, using UDP port 48698.

NOTE Since Pathrate uses nonreserved TCP and UDP ports, you do not have
to be logged in as the root user to use it.

120 Chapter 7

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 120

Downloading Pathrate
The Pathrate application source code can be downloaded from the Pathrate
Web site, www.pathrate.org. At the time of this writing, the current version of
Pathrate is 2.2.1, and can be downloaded using the URL:

http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/pathrate-2.2.1..tar

As usual, you must expand the distribution file into a working directory,
using the tar command:

tar -xvf pathrate-2.2.1.tar

This command creates a working directory pathrate-2.2.1, and places the
source code files in the directory.

Compiling Pathrate
Before building the executable files for Pathrate, there is one decision you need
to make. By default, the pathrate_rcv program produces a fair amount of text
output to the standard output file. If you are connecting remotely to the host to
perform the tests, this traffic could affect the results of the bandwidth tests.
You can prevent pathrate_rcv from displaying the text output by modifying
the makefile file in the source code before compiling. The section of the make-
file to modify looks like:

pathrate_rcv.o: pathrate_rcv.c pathrate.h

$(CC) -c -DVERBOSE_RCV $(CPPFLAGS) $(DEFS) $(CFLAGS) $<

The -D compile option is used to define the VERBOSE_RCV flag. You can
remove this from the line in the makefile to prevent pathrate_rcv from dis-
playing the text output during the tests.

To build the Pathrate executable files, you must use the configure and make
commands:

$./configure

$ make

The configure command performs the usual checks of the system to deter-
mine which libraries are present to compile the programs, and the make com-
mand creates the programs. The result is the pathrate_rcv and pathrate_snd
executable files.

Pathrate 121

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 121

There is no installation procedure for the make command, so you can either
run the Pathrate programs from the working directory, or manually move
them to a common directory, such as /usr/local/bin.

WARN I NG You do not need to be the root user to use the pathrate_snd and
pathrate_rcv programs. If you are using Pathrate on a system that has other
users on it, be careful where you place these executable programs. Any user on
the system could run Pathrate, which may or may not be what you have in mind.

Starting the Pathrate Server
One test host must run the pathrate_snd program, either as a standalone appli-
cation at the command prompt, or as a background process.

WARN I NG The pathrate_snd program cannot be set up as a process in inetd
or xinetd. It must be run from the command prompt. If you want to run
pathrate_snd in background mode, use the ampersand sign.

To run the pathrate_snd program as a standalone process, you simply run it
from the command prompt. When it is started, Pathrate displays a message
indicating that it is waiting for a connection from a remote client:

$ pathrate_snd

Waiting for receiver to establish control stream =>

At this point the pathrate_rcv program can be run from the second test host.

NOTE The pathrate_snd program will only accept one test connection at a
time. You cannot run multiple simultaneous Pathrate tests.

Starting the Pathrate Client
The pathrate_rcv program is used on the client host to initiate the test with the
Pathrate server. The command line uses a single parameter, the hostname or IP
address of the remote Pathrate host:

$ pathrate_rcv 192.168.1.100

The pathrate_rcv program will attempt a TCP control connection to the
remote pathrate_snd program at the specified address. If the VERBOSE_RCV

122 Chapter 7

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 122

flag was left in the makefile when you built the executable files, the pathrate_rcv
program will display the information for the connection, and start the test:

$ pathrate_rcv 192.168.1.100

pathrate run from 192.168.1.6 to 192.168.1.100 on Wed Oct 30 19:24:15

2002

--> Minimum acceptable packet pair dispersion: 42 usec

When the client program connects to the server program, it determines the
minimum acceptable dispersion value for the connection, and displays the
results. This value is used to determine the acceptable values used in the sta-
tistical calculations for the bandwidth.

Pathrate Test Output

The Pathrate application produces lots of output from the various tests that are
performed to determine the network bandwidth. This section describes the
test outputs, and how to interpret the data produced.

Quick Termination Mode
When the Pathrate connection is established, the initial test phase is started,
using increasing length of packet trains to estimate the bandwidth. The output
should look like this:

-- Maximum train length discovery --

Train length: 2 -> 9.7 Mbps

Train length: 3 -> 9.8 Mbps

Train length: 4 -> 9.8 Mbps

Train length: 5 -> 9.7 Mbps

Train length: 6 -> 9.7 Mbps

Train length: 8 -> 9.7 Mbps

Train length: 10 -> 9.7 Mbps

Train length: 12 -> 9.7 Mbps

Train length: 16 -> 9.7 Mbps

Train length: 20 -> 9.7 Mbps

Train length: 24 -> 9.7 Mbps

Train length: 28 -> 9.7 Mbps

Train length: 32 -> 9.7 Mbps

Train length: 36 -> 9.7 Mbps

Train length: 40 -> 9.7 Mbps

Train length: 44 -> 9.7 Mbps

Train length: 48 -> 9.7 Mbps

--> Maximum train length: 48 packets

Pathrate 123

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 123

On a lightly loaded network, the estimated bandwidth for each packet train
should be similar. If the network is more heavily loaded, the estimations will
have a wider variance. Next, the output shows the preliminary measurements
that were made during the packet-train tests (lines slightly modified so they fit
on the page):

-- Preliminary measurements with increasing packet train lengths --

2 -> 9.7 Mbps 9.8 Mbps 9.7 Mbps 9.8 Mbps 9.8 Mbps 9.7 Mbps 9.7 Mbps

3 -> 9.7 Mbps 9.3 Mbps 9.7 Mbps 9.8 Mbps 9.8 Mbps 9.8 Mbps 9.7 Mbps

4 -> 9.8 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps

5 -> 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.8 Mbps 9.7 Mbps 9.8 Mbps

6 -> 9.7 Mbps 9.7 Mbps 9.6 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps

7 -> 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.5 Mbps 9.7 Mbps 9.7 Mbps

8 -> 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps

9 -> 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.3 Mbps 9.7 Mbps

10 -> 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.7 Mbps 9.5 Mbps 9.7 Mbps

--> Resolution: 5 kbps

The resulting resolution shows that the results from the initial phase tests
were within 5 kbps of each other. This qualified for the quick termination
mode, and a final bandwidth capacity estimation is displayed:

--> Coefficient of variation: 0.001

Sufficiently low measurement noise - `Quick-termination’

Final capacity estimate : 9.7 Mbps to 9.7 Mbps

$

The final estimation of the bandwidth capacity of this link was 9.7 Mbps.
The actual limiting link in this path was a 10-Mbps hub connection. In this test,
Pathrate correctly determined the bandwidth of the network link tested. How-
ever, during this test there was minimal load on the network. In the next test,
Pathrate will have to deal with a much more heavily loaded network.

Full Testing Mode
If the network link that is being tested has traffic on it (as will be the case in
most instances), and the load on the network is more than light, it is more dif-
ficult for Pathrate to determine the limiting bandwidth capacity. In these sce-
narios, Pathrate cannot perform a quick termination mode test, and must
perform all of the tests, as outlined in the How Pathrate Works section.

124 Chapter 7

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 124

Initial Phase Results

Pathrate determines when it must perform a full test by analyzing the results
of the initial phase tests. If the deviation between the test samples is large,
Pathrate automatically starts the Phase I tests:

-- Preliminary measurements with increasing packet train lengths --

2 -> 7.5 Mbps 8.7 Mbps 7.5 Mbps 8.2 Mbps 8.0 Mbps 8.1 Mbps 8.5 Mbps

3 -> 8.4 Mbps 8.3 Mbps 9.6 Mbps 8.4 Mbps 9.7 Mbps 8.4 Mbps 8.9 Mbps

4 -> 796 kbps 805 kbps 8.7 Mbps 837 kbps 9.6 Mbps 9.4 Mbps 8.8 Mbps

5 -> 7.2 Mbps 9.1 Mbps 6.0 Mbps 9.0 Mbps 9.2 Mbps 8.6 Mbps 6.1 Mbps

6 -> 9.6 Mbps 9.3 Mbps 9.2 Mbps 9.4 Mbps 8.8 Mbps 9.5 Mbps 6.6 Mbps

7 -> 9.4 Mbps 9.0 Mbps 9.3 Mbps 9.1 Mbps 7.8 Mbps 9.3 Mbps 6.9 Mbps

8 -> 1.9 Mbps 9.3 Mbps 7.2 Mbps 8.8 Mbps 9.3 Mbps 9.4 Mbps 9.8 Mbps

9 -> 7.4 Mbps 2.4 Mbps 9.6 Mbps 9.4 Mbps 9.4 Mbps 9.5 Mbps 2.0 Mbps

10-> 2.7 Mbps 9.4 Mbps 9.1 Mbps 9.4 Mbps 9.2 Mbps 9.4 Mbps 9.1 Mbps

--> Resolution: 425 kbps

The results from the preliminary measurements show a wide range of test
results from the initial tests. This wide range of results is due to the loading of
the network path by additional traffic. The resolution of the test results is
much larger than that produced in the quiet network environment (425 kbps
versus 5 kbps from the quick termination test). With the large variance of data,
Pathrate cannot make a determination of the bandwidth capacity, and must
continue with the other phases of the test.

Phase I Results

Pathrate automatically starts the Phase I test, initiating the packet-train tests
with the remote server, and displaying the results to the standard output. The
Phase I test consists of multiple groups of 27 packet trains. Each packet within
the group test is set to a specific packet size. The packet size is increased by 25
bytes for each successive group until the maximum MTU size has been
reached. For an Ethernet connection, this value is 1,500 bytes.

The results from each packet-train group are displayed on the standard out-
put, along with the Phase I results:

-- Local modes --

* Mode: 9.5 Mbps to 9.8 Mbps - 534 measurements

Modal bell: 736 measurements - low : 7.4 Mbps - high : 10.3 Mbps

* Mode: 6.7 Mbps to 7.1 Mbps - 60 measurements

Modal bell: 198 measurements - low : 5.9 Mbps - high : 8.2 Mbps

After the last packet-train group is processed, the statistical information is
presented, showing the estimates of the bandwidth capacity based on the
information presented in the Phase I test results. Automatically, the Phase II
tests are started.

Pathrate 125

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 125

Phase II Results

The Phase II test attempts to estimate the ADR using 500 separate packet
trains. Each packet train is 48 packets, and the packet sizes are set for each train
at the maximum MTU size for the interface. At the end, the Phase II results are
displayed:

-- Local modes --

* Mode: 9.4 Mbps to 9.8 Mbps - 499 measurements

Modal bell: 499 measurements - low : 9.4 Mbps - high : 9.8 Mbps

After obtaining all of the data from the Phase I and Phase II tests, Pathrate is
prepared to estimate the bandwidth of the network link:

The capacity estimate will be based on the ADR mode.

--> Asymptotic Dispersion Rate (ADR) estimate: 9.6 Mbps

--> Possible capacity values:

9.5 Mbps to 9.8 Mbps - Figure of merit: 38.82

--> There are no Phase I modes larger than the ADR

--> The capacity estimate will be based on figure of merit of Phase II

measurements

9.4 Mbps to 9.8 Mbps - Figure of merit: 99.80

Final capacity estimate : 9.4 Mbps to 9.8 Mbps

$

Due to the extra traffic found on the network link, Pathrate was not able to
return as narrow an estimate for the final capacity value as the quick termina-
tion mode test, but again, the final result is accurate for the network link used.

WARN I NG The results of the Pathrate tests are dependent on the CPU load
of the test systems. It is recommended to use Pathrate on systems that are not
heavily (or at all) loaded.

After the test is over, the pathrate_snd program will reset and be ready to
accept a new connection for another test.

126 Chapter 7

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 126

Using Pathload

This section describes the Pathload application programs, and how to down-
load and install them on a Unix host on the network for testing the available
network bandwidth.

Pathload
Similarly, the Pathload application consists of two programs:

■■ pathload_snd waits for new test connections.

■■ pathload_rcv establishes connection with the server and begins the
capacity test.

The pathload_snd program must be running to accept connection requests
from remote hosts. It can be run as either a background mode daemon or a
standalone application from the command prompt. The pathload_rcv pro-
gram uses the remote hostname or IP address on the command line to specify
the location of the Pathload server.

Downloading and Configuring Pathload
The Pathload application can also be found at the Pathrate Web site, www
.pathrate.org. At the time of this writing, the current version of Pathload is
1.0.2, and can be found at the URL:

http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/pathload_1.0.2.tar.gz

Since this file is a compressed tar file, you must either uncompress it using
the gunzip program, or use the -z option with the tar command:

tar -zxvf pathload_1.0.2.tar.gz

This command creates the working directory pathload_1.0.2, and places the
source code files into the directory. To build the Pathload executable files, you
must use the configure and make commands:

$./configure

$ make

As usual, the configure program is used to determine the appropriate files
required to build the executable programs, pathload_snd and pathload_rcv.

Pathrate 127

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 127

The Pathload application works similarly to the Pathrate application, in that
you must start a server program on one test host before the client program can
be started on another test host.

Starting the Pathload Server
The pathload_snd program can be started either in background mode (using
the ampersand sign after the command) or as a normal application on the com-
mand prompt:

$ pathload_snd

Like the Pathrate application, Pathload displays a message indicating that it
is waiting for a connection attempt from a client:

Waiting for receiver to establish control stream =>

The server program is now ready to accept connections from remote clients.

NOTE The pathload_snd program will only accept one test connection at a
time. You cannot perform simultaneous tests using Pathload.

Starting the Pathload Client
The pathload_rcv program must be started on a remote host, specifying two
command-line parameters:

pathload_rcv hostname resolution

The hostname parameter defines the hostname or IP address of the host that
is running the Pathload server program. The resolution parameter defines the
precision (in Mbps) with which Pathload should estimate the available band-
width on the network link. Pathload will stop when the different bandwidth
estimates fall within the defined resolution value.

Once pathload_rcv starts, it attempts to establish the TCP control connection
with the Pathload server specified on the command-line parameter:

$ pathload_rcv 192.168.1.100 1

Receiver 192.168.1.6 starts measurements on sender 192.168.1.100 at

Wed Oct 30 19:37:51 2002

Requested bandwidth resolution :: 1.00

Minimum packet spacing :: 225 usec

Max rate 53.33mbps : Min rate 1.17mbps

Estimate Asymptotic Dispersion Rate (ADR) -- 9.59 (mbps)

128 Chapter 7

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 128

Once the control connection is established, the Pathload fleet tests will auto-
matically begin. The results of each fleet test, along with the final results, will
be displayed on the standard output of the device from which pathload_rcv
was run. The next section discusses the pathload_rcv output.

Pathload Output

The pathload_rcv output displays the values used for a particular fleet test,
along with the results from the fleet test for each test performed. The fleet test
information output looks like:

Receiving Fleet 0

Fleet Parameter(req):: R=9.57Mbps, L=713B, K=100packets, T=620usec

Lossrate per stream :: :0.0:0.0:0.0:0.0:0.0:0.0:0.0:0.0:0.0:0.0:0.0:0.0

Fleet Parameter(act):: R=9.57Mbps, L=713B, K=100packets, T=627usec

CS @ sender :: [0][0][0][4][2][0][2][2][1][0][0][1]

Discard[0] :: [0][0][0][0][0][0][0][0][0][0][0][0]

Trend per stream[12]:: UNNNNUNNNNNN

Aggregate trend :: NO TREND

Rmin :: 9.57Mbps

Each set of fleet test results is displayed separately. The fleet number is dis-
played in the first line of the output. The fleet test results are displayed within
eight separate lines of information:

■■ The fleet parameters requested by the client program

■■ The loss rate per test stream in the fleet

■■ The fleet parameters used by the server program

■■ The number of context switches detected by the receiver

■■ The number of packets discarded per stream

■■ The relative one-way packet delay trend

■■ The aggregate trend of the fleet

■■ The state variable updated by the fleet results

At the end of the fleet tests, a final group of results is displayed, showing the
estimated available bandwidth of the network link.

Requested Fleet Parameters
The first line of the fleet output displays the fleet parameters that are set for the
tests:

Fleet Parameter(req):: R=9.57Mbps, L=713B, K=100packets, T=620usec

Pathrate 129

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 129

The fleet parameters are:

■■ The rate of the packets sent during the fleet (R)

■■ The size of the data packets used in the fleet test (L)

■■ The number of packets per stream (K)

■■ The interpacket spacing used for the test (T)

These values are statistically determined at the beginning of the first fleet
test, and altered as necessary during successive fleet tests.

Loss Rate per Stream
The second line of the fleet output displays the packet loss during the test:

Lossrate per stream :: :0.0:0.0:0.0:0.0:0.0:0.0:0.0:0.0:0.0:0.0:0.0:0.0

Since the fleet tests use UDP packets, it is possible that some will not make
it from the server to the client hosts on the network. This information shows
the loss results from each of the 12 packet streams used within the fleet test.
The results are presented as a percentage of lost packets. For heavily loaded
networks, this value can become quite large:

Lossrate per stream :: :0.0:0.0:0.0:4.0:33.0:0.0:0.0:0.0:0.0:0.0:0.0:7.0

This test had one stream that had a fairly large amount of packet loss
(33 percent). If only a few streams have packet loss, Pathload will continue
with the tests. However, if more than half of the streams have lost packets,
Pathload will abort the fleet test and move on to a new fleet test:

Lossrate per stream ::

:18.0:0.0:41.0:19.0:0.0:0.0:3.0:0.0:44.0:0.0:0.0:13.0

Atleast 50% stream were marked as lossy.

Server Fleet Parameters
The parameters specified in the request parameters are not necessarily the
same parameters that the server will accept for the fleet test. The actual para-
meters accepted by the Pathload server are presented in the third output line:

Fleet Parameter(act):: R=9.57Mbps, L=713B, K=100packets, T=627usec

By comparing the accepted parameters with the requested parameters, you
can see that the server did not accept the interpacket spacing value requested
by the client, but instead used its own value.

130 Chapter 7

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 130

Context Switches
The fourth output line in the fleet test identifies the number of context switches
that occurred on the server for each test stream (as identified by the client):

CS @ sender :: [0][0][0][4][2][0][2][2][1][0][0][1]

Each bracketed number represents the number of context switches in the
fleet test stream. Excessive context switches indicate additional server load,
and may affect the results of the Pathload bandwidth estimations.

Packet Discards
The number of packets discarded in the stream due to errors is reported in the
fifth output line:

Discard[0] :: [0][0][0][0][0][0][0][0][0][0][0][0]

Each bracketed number represents the number of packets discarded within
the fleet stream. As with the packet loss item, if a sufficient number of packets
are discarded in a test, Pathload will abort the fleet test and start a new one.

Relative One-Way Packet Delay Trend
The relative one-way packet delay trend is shown on the sixth line of the fleet
output. It identifies the delay trend for each individual stream in the fleet test:

Trend per stream[12]:: UNNNNUNNNNNN

Each character represents the trend for an individual stream. The characters
used are:

■■ I (increasing trend)

■■ N (no trend)

■■ U (unusable)

The number of streams within the fleet is shown in the brackets (some indi-
vidual streams may have been aborted within the fleet test due to packet loss
or discards).

An increasing delay trend rate indicates that the server is sending data to the
client at a higher rate than the network bandwidth can accommodate. The
results of the streams within the fleet test are then aggregated for the next out-
put line.

Pathrate 131

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 131

Fleet Aggregate Trend
The seventh output line indicates the overall aggregate delay trend for the fleet
test:

Aggregate trend :: NO TREND

The possible values for this item are:

■■ INCREASING. The overall fleet test shows an increasing trend of delay
times.

■■ NOTREND. The overall fleet test does not show an increasing trend of
delay times.

■■ GREY. The individual stream tests were inconclusive.

The three different aggregate trend values are based on the number of indi-
vidual stream test results within the fleet test:

Trend per stream[10]:: IIIUIIIIUI

Aggregate trend :: INCREASING

As seen in this example, if more than half of the stream tests indicate an
increasing trend, the fleet test aggregate trend is set to INCREASING, and the
R value used in the next fleet test is decreased. Also:

Trend per stream[12]:: UNNNNNNNNNNN

Aggregate trend :: NO TREND

If more than half of the stream tests indicate no trend, the fleet test aggregate
trend is set to NOTREND, and the R value used in the next fleet test is
increased.

Trend per stream[12]:: IINIUINIINII

Aggregate trend :: GREY

The GREY aggregate trend indicates that a mix of increasing delay trends
and no trends and/or unusable trends appears in the stream tests. Due to the
wide mix of results, Pathload cannot determine a clear aggregate value for the
fleet test. This can happen with tests performed during bursty network activ-
ity, when some streams are affected by high network traffic load, and others
aren’t.

132 Chapter 7

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 132

State Variable Updated
The result of the fleet test is some type of update to one of the variables tracked
by Pathload in the statistical analysis of the network bandwidth:

Rmin :: 9.57Mbps

This output shows that the minimum R value should be set to 9.57 Mbps for
the next fleet test. This usually indicates that the R value used in the next fleet
test will be set to 9.57 Mbps. Table 7.1 shows the values that can be altered by
the fleet test.

Don’t be confused by the Rmin and Rmax values. The Rmin value repre-
sents the maximum bandwidth that produced a NOTREND result, which
should be the minimum R value that could be the actual network bandwidth.
Pathload calculates the grey region values depending on the network condi-
tions at the time of the test, and modifies them as appropriate, depending on
the data results.

Final Test Results
Pathload continues to perform fleet tests until one of two conditions is met:

■■ Two successive fleet tests produce a bandwidth rate that is within the
specified resolution value.

■■ The bandwidth rate falls within the grey region.

The final output consists of four output lines:

Exiting due to user specified resolution

Measurements finished at Wed Oct 30 19:01:13 2002

Measurement latency is 39.46 sec

Available bandwidth range : 9.57-10.76 (Mbps)

$

Table 7.1 Pathload State Variables

VARIABLE DESCRIPTION

Rmin The maximum rate that produced a NOTREND result

Rmax The minimum rate that produced an INCREASING trend

Gmax The maximum rate that produced a GREY result

Gmin The minimum rate that produced a GREY result

Pathrate 133

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 133

The latency of the network connection is displayed, along with the esti-
mated bandwidth values calculated by Pathload. The first line produces a text
message that indicates the reason why the Pathload tests terminated. These
values are shown in Table 7.2.

WARN I NG At the time of this writing, Pathload version 1.0.2 could only
determine network bandwidths within the range of 1.5 Mbps to 120 Mbps.

The results from the Pathload test should reflect the approximate network
bandwidth available given the current loading conditions of the network.

Summary

This chapter describes the Pathrate and Pathload applications. The Pathrate
application can be used to determine the maximum bandwidth capacity
between two points on the network. This information is often hard to obtain
when you are working with WAN connections, especially on networks that
you do not control. The Pathload application allows you to determine the
available bandwidth on the network, given the current network traffic load.

Table 7.2 Pathload Termination Messages

MESSAGE REASON FOR TERMINATION

Exiting due to user specified resolution The rate of two successive fleet tests
was within the resolution value
specified by the command prompt
parameter.

Exiting due to grey region The rate estimated by Pathload is
within the grey region, indicating that
further tests would not produce more
precise results.

Exiting with a wider range due to a At least one fleet test was unable to
time interval error use the interpacket spacing requested

by the client.

Exiting with a wider range due to a The bandwidth rate reached the
MAX_RATE constraint maximum rate that Pathload can

generate.

Exiting with a wider range due to a The bandwidth rate reached the
MIN_RATE constraint minimum rate that Pathload can

generate.

134 Chapter 7

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 134

Pathrate and Pathload both use packet pairs and packet trains to determine
the network speed information. By sending pairs of packets at a known rate,
Pathrate can observe the rate at which the packets are received by the remote
client, and calculate the network bandwidth. These calculations are performed
using statistical methods, determining the range of available network speeds.

By using Pathrate you can determine the maximum network bandwidth
that can be attained by a network application. This feature helps you locate
network bottlenecks by identifying slower links in the network. Pathload
allows you to determine the available bandwidth in links, helping you find
overutilized links in the network.

The next chapter discusses the Nettest application, which allows you to per-
form network bandwidth tests remotely, using a secure network connection.

Pathrate 135

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 135

10 433012 Ch07.qxd 6/16/03 9:10 AM Page 136

137

The next network performance tool discussed is the Nettest application. Nettest
allows you to perform network tests using a secure connection between
the testing hosts, preventing unauthorized users from initiating bandwidth-
consuming network tests.

The Nettest application was developed at the Lawrence Berkeley Labs as a
secure shell for performing network tests between hosts. Nettest uses the
OpenSSL package to provide a secure TCP communication channel between
test hosts, while allowing host authentication using digital certificates.

What Is Nettest?

The Nettest application consists of four main parts:

■■ The main lblnettest application

■■ Secure certificates and private keys to authenticate and encrypt test
connections

■■ The ACLFile authentication file

■■ A group of test applications to perform network performance tests

Nettest

C H A P T E R

8

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 137

This section describes these parts, and explains how they interact to provide
the Nettest application environment.

The lblnettest Application
The main application program for Nettest is the lblnettest program. This pro-
gram is used as both the client and server program for the test connection. As
with other network performance tools, when used in server mode the lblnettest
program can be run either in standalone mode or as a background daemon.

NOTE The executable program is called lblnettest to distinguish it from
the nettest application produced by Cray Research, used to test network
performance for Cray systems.

The Nettest application uses three types of hosts for network tests. The mas-
ter host is used to initiate tests between the test hosts. The master host can be
one of the hosts participating in the network test, or it may be a host separate
from the test hosts. This is demonstrated in Figure 8.1.

The sender and receiver hosts are the two hosts that participate in the net-
work test. The sender host, obviously, is used to send network traffic to the
receiver host. Within a single Nettest test, you can instruct the hosts to switch
roles to test network performance in both directions on the connection.

Figure 8.1 A sample Nettest test environment.

master

receiver

sender

switch

switch

hub

138 Chapter 8

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 138

Certificates and Keys
Nettest uses OpenSSL to initiate a secure SSL communication channel for the
tests. OpenSSL requires a private key to encrypt data sent on the network. The
private key must be kept secret to ensure the security of the communication.

A digital certificate is used to identify and authenticate the host that is
requesting the Nettest test. The digital certificate file contains information
about the identity of the host, and a digital signature from a certificate author-
ity (CA) verifying the identity. The CA is an organization that customers can
trust to ensure that the identity contained in the certificate is valid. For the pur-
poses of Nettest, you can create your own certificate authority, and sign your
own digital certificates.

The ACLFile File
Besides using secure communication for the performance tests, Nettest also
provides a mechanism for authenticating hosts involved with the test. Only
hosts specified in the ACLFile file will be allowed to participate in network
performance tests.

The ACLFile file contains the DN of the host (as specified in the certificate
file) and the permissions the host has within the Nettest environment. A sam-
ple entry from the ACLFile file looks like:

name /C=Your_Country/ST=State/L=City/O=Org/OU=Department/CN=CA

rights read, write, execute

Each entry in the ACLFile file contains two lines. The first line defines the
DN as specified in the certificate used to authenticate the host. The second line
defines the rights that the host will have within the Nettest environment. Each
host must have at least two entries in the ACLFile file:

■■ An entry for the CA used to authenticate the host

■■ An entry for the host DN

Nettest must know the CA used to authenticate the certificate received by
the test host. The CA.pem file must also be present with the ACLFile file to
identify the CA certificate.

Test Applications
Once the remote host is authenticated, you can perform several different types
of tests within the connection. By default, Nettest uses the Iperf performance

Nettest 139

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 139

tool (see Chapter 6, “Iperf”) to perform several different types of network per-
formance testing. As described in Chapter 6, the Iperf tool can provide a
method for network administrators to test different features of the network,
performing a wide array of tests from a single Nettest connection.

Besides the default Iperf tests, Nettest can also incorporate several other
tests within its test suite:

■■ UDP connectivity and response time

■■ Multicast connectivity and response time

■■ TCP parameter tuning

■■ pipechar

■■ Traceroute

The UDP and multicast tests are included to allow a host to send packets to
a receiving host, and determine the round-trip response time for the packets.

NOTE If you are testing multicast packets on a network, remember that any
routers between the two test hosts must be configured to forward multicast
packets.

The traceroute application is a separate application that shows the router
hops between two points on the network. It must be installed as an application
on the system before installing Nettest. Many Unix systems include the Trace-
route application as part of the standard network functions.

The pipechar network performance tool is also a separate test application
that is provided by The Lawrence Berkeley Labs. It can be downloaded from the
Web site www-didc.lbl.gov/pipechar/, and installed separately from Nettest.

The OpenSSL Package

The OpenSSL package has become the most popular method used by open
source programs to supply SSL functionality. OpenSSL provides an open
source set of libraries and utilities that enable a network application to incor-
porate SSL versions 1.0, 2.0, and 3.0 as well as TLS.

You can download the OpenSSL package from the OpenSSL Project Web site
(http://www.openssl.org). At the time of this writing there are two versions of
the package that are available for downloading. The main package (openssl-
0.9.6g) is used to add SSL capabilities to network applications by supplying a
set of C APIs and header files.

Alternately, you can download (openssl-0.9.6g-engine) a package that
contains only the OpenSSL engine that can be interfaced to external crypto
hardware. The OpenSSL Project expects these two versions to merge when
version 0.9.7 is released.

140 Chapter 8

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 140

You can also download the latest version of OpenSSL from the OpenSSL
FTP server:

ftp://ftp.openssl.org/source/

At the time of this writing, the latest production version available is openssl-
0.9.6g.tar.gz. Once the source code distribution is downloaded, it can be
unpacked into a working directory using the tar command:

tar -zxvf openssl-0.9.6g.tar.gz

This command creates the directory openssl-0.9.6g and places the source
code there. You must change to the working directory to complete the rest of
the installation.

As with other open source packages, the first step is to run the config pro-
gram. The config program determines the operating environment of your
Unix system and prepares the necessary makefiles for the make program.

By placing parameters on the config command line, you can configure spe-
cial features and modify default values of the OpenSSL program. Table 8.1 lists
the options that can be used with the config program.

Once you determine which (if any) options are required for your environ-
ment, you can run the config program:

./config

Table 8.1 OpenSSL Config Options

OPTION DESCRIPTION

--prefix=DIR This option defines the directory of the OpenSSL libraries,
binary files, and certificates (default = /usr/local/ssl).

- -openssldir=DIR Defines the directory for the OpenSSL certificates. If no
prefix is defined, library and binary files are also placed
here (default = /usr/local/ssl).

no-threads Don’t include support for multithreaded applications.

threads Include support for multithreaded applications.

no-shared Don’t create shared libraries.

shared Create shared libraries.

no-asm Don’t use assembler code.

386 Use the 386 instruction set code only
(default = 486 code).

no-cipher Do not include support for specified encryption type.

Nettest 141

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 141

The config program attempts to automatically determine the type of Unix
system you are compiling OpenSSL on, and creates the OpenSSL makefiles
accordingly. If for some reason the config program has difficulty determining
your Unix system type, you can manually define it, using the Configure
program.

The Configure program performs the same function as the config program,
but it also allows you to manually define your Unix system from a long list of
possibilities. You can run the Configure program with no parameters to see the
system types defined.

After running the config (or Configure) program, you can use the make pro-
gram to create the binary files and libraries, the make test program to test the
created files, and the make install program to install the OpenSSL files in the
location specified in the config program.

WARN I NG You must have root privileges to run the make install command
to install OpenSSL in the appropriate directories.

Downloading and Installing Nettest

The Nettest application home page is located at http://www-itg.lbl.gov/
nettest/. The Nettest Web site contains information about Nettest, along with
links to other network projects at Lawrence Berkeley Labs. This section
describes how to download, compile, and install the Nettest application on a
Unix system.

Downloading Nettest
The Nettest source code distribution can be found in the Downloads link on
the Nettest home page. At the time of this writing, the current version of
Nettest is 0.2b1, and can be downloaded from the URL:

http://www-itg.lbl.gov/nettest/download/files/nettest-src-V0.2b1.tar.gz

As usual, the distribution file must be uncompressed and untarred into a
working directory before you can begin compiling. This can be done using the
gunzip and tar programs, or on some systems, just the tar command with the
-z option:

tar -zxvf nettest-src-V0.2b1.tar.gz

This creates a working directory of nettest, and places the source code in
subdirectories under the nettest directory.

142 Chapter 8

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 142

Before Compiling
The Nettest application relies heavily on the Domain Name System (DNS)
when specifying hostnames used as test hosts. It expects all test hosts to be reg-
istered within DNS for the tests to work properly. When performing tests on
networks that do not use DNS (or when using test machines that are not regis-
tered within the company DNS database), you first must do some tricks to fool
Nettest. This section describes the tasks that I had to perform to get Nettest to
work on my non-Internet network.

Define All Test Hosts

Since Nettest expects to use DNS hostnames for all test hosts, things can get
sticky for standalone networks (as was the case in my test network). Even
when you specify all IP addresses as test hosts, Nettest attempts to resolve the
IP addresses to hostnames, and complains if it can’t. If your test systems are
not registered in the DNS system, you must ensure that each test system
knows all of the other test systems by both name and address.

The way to do this is the /etc/hosts file. This file allows you to specify a list
of IP addresses and hostnames that are frequently used by the system. Each
line on the /etc/hosts file represents a single host entry. The format of the
entry is:

IPaddress hostname [alias]

The IPaddress field represents the numeric IP address (also called the quad
dotted address). The hostname must be separated from the IP address by at
least one tab. Following the hostname, one or more host aliases can be listed.

There should already be two entries in the /etc/hosts file for your own sys-
tem. You must add entries for all of the test hosts used for Nettest. A sample
/etc/hosts file looks like:

127.0.0.1 localhost.localdomain localhost

192.168.1.2 shadrach.ispnet1.net shadrach

192.168.1.100 meshach.ispnet1.net meshach

192.168.1.6 abednago.ispnet1.net abednago

The first line defines the special localhost address, which is often used for
TCP/IP communications within the same host. The second line identifies the
actual hostname and IP address of the local host. Subsequent lines are used to
define other hosts on the local network.

After the test hosts have been defined for each host used in the Nettest tests,
you must also ensure that the /etc/hosts file will be used by the Unix system.
For Linux systems, this is determined by the /etc/host.conf file. This file
defines how the system will perform hostname lookups.

Nettest 143

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 143

There are several lines that may be present in the /etc/host.conf file. To
ensure that the system will use the /etc/hosts file, the pertinent /etc/host.conf
line is:

order hosts,bind

The order line defines how hostname lookups will be performed, and in
what order the methods will be tried. The hosts entry instructs the system to
perform hostname lookups from the /etc/hosts file first, then use the DNS
system (bind) if the hostname is not found in the /etc/hosts file.

Modify the Source Code

Unfortunately, the Nettest source code uses the Unix gethostbyaddr() function
to find the host’s hostname based on its IP address. On my Linux system, even
though I had the information in the /etc/hosts table, this function produced
an error, and the Nettest application failed.

NOTE This section pertains to a change I made in the source code for Nettest
to work properly in my Linux environment (kernel 2.4.3). If you are using
Nettest on a Sun server, you may or may not experience similar problems. The
Nettest source code modified in this section uses different function calls for
Sun systems.

To solve this problem, you must modify one source code file in the Nettest
distribution package. The file is network.cc, located under the src directory of
the working directory:

nettest/src/common/network.cc

First, it’s a good idea to copy the original file to a backup file:

$ cp network.cc network.cc.org

Next, you can use the Unix editor of your choice, and modify the network.cc
file. The gethostbyaddr() function is used on line 143 of the source code; you
can find it by searching for the function, or going directly to the source code
line—whichever is easier in your editor.

After finding the line, comment it out by placing two forward slashes on the
start of the line. Since the line is broken into two lines, you will have to com-
ment out the second line as well. When you are done, it should look like this:

// local_host_p = gethostbyaddr((const char*)&local_name.sin_addr,

// sizeof(local_name.sin_addr), AF_INET);

144 Chapter 8

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 144

In place of this function call, I used the Unix gethostbyname() function, and
specified the full test hostname of the host system:

local_host_p = gethostbyname(“shadrach.ispnet1.net”);

This new function call specifically states the hostname of the local host with-
out using any type of hostname lookup system.

After saving the changes, you can proceed with the normal installation
instructions.

Compiling and Installing Nettest
After downloading and modifying the necessary Nettest files, you can begin
compiling the source code to produce the executable program. Unlike the
other software installation packages covered so far in this book, Nettest does
not provide a standard configure script to run. Instead, it uses the autoconf
program to produce the configure script.

Change to the src subdirectory of the distribution working directory, and
run the autoconf program:

[rich@shadrach src]$ autoconf

On my Linux system, when I ran the autoconf program, I saw several warn-
ing messages on the screen:

configure.in:526: warning: AC_TRY_RUN called without default to allow

cross compiling

This did not appear to affect the outcome of the Nettest compile. When the
autoconf program is finished, it produces the configure script that you can run
to prepare for compiling. Before running the configure program, you should
change to the build directory for your platform:

$ cd ../build/linux

$../../src/configure

When in the build directory, you must reference the configure script located
in the src directory, using the standard Unix notation. The configure script
checks the settings for the system you are trying to build Nettest on, and also
asks you a few questions about the Nettest environment you want to create.
The first two questions relate to the location of the Nettest binary, and the loca-
tion of the OpenSSL installation on the system:

Nettest 145

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 145

Where is the install location? [/usr/local/bin]

Where is the top of your SSL installation? [/usr/local/ssl]

openssl libs are at: /usr/local/ssl/lib

openssl headers are at: /usr/local/ssl/include/openssl

You can press the Enter key to accept the default values shown in the brack-
ets, or enter new information and press Enter. The next question may be some-
what confusing:

Configure Nettest to support Sender-Only tests? [no]

It is asking if you want to include any of the other tests besides the standard
Iperf network tests in the Nettest installation. If you answer Yes, it asks you
which other tests to include, along with the directory where they can be found:

Select Optional SO Method Tests:

If you select a test you’ll need to provide nettest with the location

of the binary.

These tests are run as separate processes.

Use traceroute? [no]

Yes

Path to traceroute binary? [/usr/local/bin/traceroute]

/usr/sbin/traceroute

Use pipechar? [no]

Is this the configuration you want? [yes]

At the end of the questions, the configure program allows you to redo any
answers, and then proceeds with the rest of the configure process.

When this is completed, you can create the executable file by running the
make program with the all option:

$ make all

After this finishes, you can install the lblnettest executable file into the
installation directory specified in the configure process by changing to the root
user and running the make program with the install option.

Creating Certificates and Keys

After installing Nettest, you must prepare for your Nettest environment. To do
this you must either create your own certificates and keys to use, or obtain
them from a commercial CA company. The OpenSSL application provides a

146 Chapter 8

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 146

way for you to create your own certificates and keys that can be used in
Nettest. This section describes how to use OpenSSL to create the proper cer-
tificates and keys to use for the Nettest hosts on your network.

Creating a Certificate Authority
First, you must establish a CA certificate and key that will be used to validate
your actual certificates and keys used for Nettest. This is done using the req
option in OpenSSL:

$ openssl req -out CA.pem -new -x509 -days 3650

This command instructs OpenSSL to create a new X.509 certificate, called
CA.pem, and allows it to be valid for 10 years (the default is 30 days). By
default, OpenSSL will also create the private key in the file privkey.pem.

When the process starts, OpenSSL will ask you for a pass phrase to be asso-
ciated with the certificate. By entering in a secret phrase, you can prevent
others from using the certificate without authorization.

WARN I NG It is extremely important to remember the pass phrase you use
when creating keys and certificates. If you forget them, you will not be able to
use the keys or certificates, and will have to create new ones.

While it creates the certificate and key, OpenSSL asks several questions that
will be used to identity the CA. You don’t necessarily have to provide useful
information for the questions, but it helps to provide information pertinent to
your environment:

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:Indiana

Locality Name (eg, city) []:Indianapolis

Organization Name (eg, company) [Internet Widgits Pty Ltd]:NetworkTest

Organizational Unit Name (eg, section) []:Chapter8

Common Name (eg, YOUR name) []:CA

Email Address []:

This information identifies the CA entity used to sign all of the certificates
and keys used in the Nettest tests. This information must also be entered
into the ACLFile file in Nettest (as explained later in the Creating the ACLFile
Filesection).

You can use the OpenSSL verify option to test the certificate:

$ openssl verify -CAfile CA.pem CA.pem

CA.pem: OK$

Nettest 147

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 147

The Openssl verify option tests the CA.pem file against the CA.pem CA
(which should obviously work). This test will be more useful for the other cer-
tificates you generate in the next steps.

Creating the Client Certificate and Key
After creating the CA certificate and private key, you can create the certificate
and key used on the client Nettest host. Again, this is done using OpenSSL.

The first step is to create the key used on the client host:

$ openssl genrsa -des3 -out client.key 1024

This command generates a new 1,024-bit private key for the client host.
Again, you must enter a pass phrase when creating the key. It is extremely
important to remember the pass phrase used to create the client key, as you
will need to use it within Nettest to access the key.

Once the client key is created, you can use it to create the client certificate:

$ openssl req -key client.key -new -out client.req

To create the certificate, you must first enter the pass phrase that was used
to create the client key. Next, OpenSSL asks the standard questions again to
identify the organization that the certificate represents. Again, you do not need
to answer these questions accurately, but it helps when identifying the client
host. This information will also have to be configured into the ACLFile file for
Nettest.

After creating the client certificate, you must sign it using the CA certificate
and key. Before you can do this, you must create a serial file that keeps track
of the number of certificates signed by the CA. This can be done using the
command:

$ echo 00 > cert.srl

The client certificate can now be signed by the CA:

$ openssl x509 -req -in client.req -CA CA.pem -CAkey privkey.pem -

CAserial cert.srl -out client.pem

Signature ok

subject=/C=US/ST=Indiana/L=Indianapolis/O=NetworkTest/OU=Chapter8/

CN=client

Getting CA Private Key

Enter PEM pass phrase:

$

OpenSSL will display the certificate subject, which should be the informa-
tion you entered when creating the client certificate. Next, you must enter the

148 Chapter 8

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 148

pass phrase for the CA certificate. The output file is the completed client cer-
tificate, signed by the CA.

The client.key, client.pem, and CA.pem files must be transferred to the client
Nettest host. By default, Nettest uses the certificate file nettest.pem, and the
key file key.pem. To make life easier, you can rename the files to these default
values:

$ cp client.pem nettest.pem

$ cp client.key key.pem

The files must be placed in the directory from which you plan to run Nettest.

WARN I NG Don’t forget to copy the CA.pem file to the directory where you
will be running Nettest. Nettest will not work if you don’t.

Creating the Server Certificate and Key
Next, you can create the server Nettest certificate and private key files, using
the same technique as for the client files:

openssl genrsa -out server.key 1024

openssl req -key server.key -new -out server.req

openssl x509 -req -in server.req -CA CA.pem -CAkey privkey.pem -CAserial

cert.srl -out server.pem

As with the client certificate, you must enter a pass phrase when creating the
server key, and you must enter your organization information to identify the
server entity. This information will be shown when you create the signed
server.pem file:

subject=/C=US/ST=Indiana/L=Indianapolis/O=NetworkTest/OU=Chapter8/

CN=server

After creating the server certificate (server.pem) and key (server.key), you
can copy them to the appropriate directory on the Nettest server host, and
rename them to nettest.pem and key.pem if you wish. Don’t forget to put a
copy of the CA.pem file in the directory as well. You are now ready to modify
the ACLFile file for the Nettest installation.

Creating the ACLFile File

The ACLFile file defines which hosts are allowed access to Nettest, and what
type of access they are allowed. The ACLFile file must be created in the direc-
tory where you are running the lblnettest application.

Nettest 149

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 149

The first entry defines the CA certificate that was used to certify the client
and server certificates:

name /C=US/ST=Indiana/L=Indianapolis/O=NetworkTest/OU=Chapter8/CN=CA

rights read, write, execute

The first line defines the DN of the CA, as defined when you created (or
received) the CA certificate. You can see this value by using the -text option in
OpenSSL:

$ openssl x509 -text -in CA.pem

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 0 (0x0)

Signature Algorithm: md5WithRSAEncryption

Issuer: C=US, ST=Indiana, L=Indianapolis, O=NetworkTest,

OU=Chapter8, CN=CA Validity

Not Before: Nov 7 18:04:36 2002 GMT

Not After : Nov 4 18:04:36 2012 GMT

Subject: C=US, ST=Indiana, L=Indianapolis, O=NetworkTest,

OU=Chapter8, CN=CA

The Subject: line defines the DN of the certificate. This must match the entry
in the ACLFile file (using slashes instead of commas in the DN).

The rights that are assigned to the host are listed after the DN. To grant all
rights to a test host, you must specify the read, write, and execute attributes.

After the CA is defined, the DN for the remote host is defined. On the server
host, you must define the client certificate, and vice versa. Again, you can use
the OpenSSL -text option to view the actual DN in the certificate, to use the
proper definition in the ACLFile file.

Using Nettest

Now that Nettest is installed and configured, you are ready to test it out. The
lblnettest program is used on both the client and server hosts. The lblnettest
operation is controlled by command-line parameters. Table 8.2 defines the
parameters that are available.

Table 8.2 lblnettest Command-Line Parameters

PARAMETER DESCRIPTION

-h hostname Define the master host for the test.

-c cert Define the client certificate file to use if not using the
default nettest.pem file.

150 Chapter 8

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 150

Table 8.2 (continued)

PARAMETER DESCRIPTION

-k key Define the client key file to use if not using the default
key.pem file.

-a phrase Define the client pass phrase required for the connection.

-b phrase Define the local nettest.pem and key.pem pass phrase.

-s Place Nettest in server mode, waiting for new connection
attempts.

-d Run Nettest as a daemon process.

-D debug Define a debug level for more verbose output.

The following sections describe how to use the Nettest application in a test-
ing environment.

Starting a Nettest Session
Any remote host participating in the Nettest test must have the lblnettest pro-
gram running in server mode, either as a standalone application or as a dae-
mon. To start Nettest in standalone mode, you can use the following command:

$./lblnettest -s

Nettest Nov 6 2002 00:20:06

For Client cert/key pair (entered on Command Line):

Enter a Passphrase to decrypt private key:

For nettest.pem, key.pem :

Enter a Passphrase to decrypt private key:

Waiting for a connection

When the lblnettest program starts in server mode, it first asks for the
pass phrases used for both the clients and the local nettest.pem file (this is
the pass phrase you used when creating the key files). After you enter the
proper pass phrases, lblnettest begins listening for remote connections.

One host in the test must define the master host, which is used to control the
tests. The master can be any host that is placed in server mode. If you are using
only two hosts for the tests, then the master will be the server host. To initiate
the tests, on the client host enter the command:

$./lblnettest -h 192.168.1.100

Nettest Nov 6 2002 00:22:26

For Client cert/key pair (entered on Command Line):

Enter a Passphrase to decrypt private key:

For nettest.pem, key.pem :

Nettest 151

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 151

Enter a Passphrase to decrypt private key:

Select an option

u = udp connectivity and round trip time

m = multicast connectivity and round trip time

i = tcp throughput (iperf test)

w = traceroute

p = pipechar

t = tuned tcp (determine optimal tcp parameters)

c = change Test Master

o = change Requester’s result reporting (printing to stdout)

D = change Debug Level

q = quit

The -h command-line option is used to define the hostname or IP address of
the remote Nettest server that will be used as the master. As with server mode,
lblnettest first asks for the correct pass phrases for the client and local keys.
After you enter the pass phrases, a menu is displayed showing the options that
can be used in the program.

Performing Tests
You can select the desired test from the client menu presented by Nettest
(some items may not be available if the application has not been installed, such
as pipechar).

After you select a menu option to start a test, a series of questions is pre-
sented, allowing you to define the hosts and parameters used for the test. After
the questions are answered, the test begins, and the test results are displayed
at both test hosts. A sample UDP RTT test looks like:

U

Enter test Receiver and Sender Names

or Return[] for Default

Who is the Sender? [] 192.168.1.6

Who is the Receiver? [] 192.168.1.100

Sender : abednago.ispnet1.net

Receiver: meshach.ispnet1.net

Number of RTT tests? [10]

Port number? [3642]

152 Chapter 8

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 152

Nettest provides some default values that you can use for the tests. To accept
the defaults, just press Enter. To use different values, enter the value at the
prompt.

NOTE Notice that, even though the test hosts were defined by address,
Nettest converted the address to hostnames. This is why it is important to
include the hostnames in the /etc/hosts file (or have them defined in DNS).

When you have finished answering the questions, Nettest displays the test
connection string it will send to the master host, and asks if you want to con-
tinue with the test:

**

*** Sender-Recv TEST REQUEST ***

Debug / Test / master / sender / receiver / parameters

0/udpping/abednago.ispnet1.net/abednago.ispnet1.net/meshach.ispnet1.net/

-n 10 -p 3642

**

Continue? [y]-yes []-no : y

The test connection string defines the values used in the test to the master
host, allowing it to perform the test automatically. If you need to change any of
the values, you can select the -no option and redefine the values. If you select
-yes, to continue with the test, Nettest displays the test environment values.

After the test environment values have been displayed, Nettest starts the
test. Unfortunately, the test selection menu appears before the test results are
displayed. When the test is complete, the results are shown in the defined out-
put (the standard output by default) on both test hosts:

Unicast RTT (msec) to abednago.ispnet1.net

Test : -n 10 -p 3642

Average RTT: 0.560125

Maximum RTT: 0.648

Minimum RTT: 0.528

Last RTT: 0.551

You can then select another test to perform, or quit the application by select-
ing the q option. If you select the i option to perform Iperf tests, you must
select the Iperf command-line parameters used for the test from the supplied
menu.

Nettest 153

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 153

NOTE At the time of this writing, Nettest version 0.2b1 included Iperf version
1.2, which is older than the current Iperf version shown in Chapter 6. The
available Iperf tests are slightly different in this version than in the current
version, so be careful when selecting the Iperf test option in Nettest.

Summary

The Nettest application allows you to perform network tests in a secure envi-
ronment. This is done using the OpenSSL SSL package, which encrypts net-
work sessions.

The Nettest application not only uses encrypted sessions, but also requires
hosts participating in the network tests to authenticate themselves before
granting them access to the test. This prevents unauthorized participants from
initiating bandwidth-intensive tests. Each host participating in the network
test must be assigned a certificate, and the master host must identify the cer-
tificate and grant the host rights.

Once the network hosts have been authenticated, you can perform several
different types of network tests using Nettest, including tests contained in the
Iperf network performance tool. This allows you to perform many different
tests from a single network connection, without having to reconnect to remote
test hosts for each test.

The next chapter describes another product of Lawrence Berkeley Labs, the
Netlogger application. Netlogger allows you to perform detailed end-to-end
analysis of distributed network applications, providing a graphical tool that
can assist in determining network and application performance.

154 Chapter 8

11 433012 Ch08.qxd 6/16/03 9:10 AM Page 154

155

So far, all of the network performance tools discussed in this book have directly
measured network bandwidth. The NetLogger application differs from the
others in the way it is used to indicate performance. Instead of measuring net-
work activity, NetLogger does what its name says, it logs network (and other)
actions into a log file. You can analyze the log file after the testing to look for
problems and trends. This chapter describes the NetLogger application,
explains how to install it, and demonstrates how to use it to watch network
application behavior on your network.

The NetLogger application is another product of the Lawrence Berkeley
Labs, and was developed to help provide a method to monitor distributed net-
work applications. When distributed network applications suffer performance
problems, it is often difficult to determine the cause of the slowness. The prob-
lem could be network loading, host loading, poor disk access times, or a host
of other problems. The NetLogger application allows you to place monitoring
points within network applications to timestamp and log activities within the
program. After the program has finished, you can use a graphical analysis tool
provided with NetLogger to analyze the trends in the log data.

NetLogger

C H A P T E R

9

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 155

What Is NetLogger?

The NetLogger application contains a whole suite of programs, scripts, and
APIs that are used to assist you in monitoring distributed network applica-
tions. This section describes the various pieces and parts of the NetLogger
application.

NetLogger APIs
The core of NetLogger is not a program, but a set of programming libraries.
The NetLogger application provides several libraries of NetLogger methods
for interfacing within application programs. The NetLogger distribution
includes APIs that can be used in the following languages:

■■ C

■■ C++

■■ Fortran

■■ Java

■■ Perl

■■ Python

Each API contains methods for creating and opening a NetLogger session,
and for writing event entries into the NetLogger session.

NOTE At the time of this writing (NetLogger version 2.0.12), all of the
NetLogger APIs rely on the core C language API. This means that, although
there are APIs for generic languages such as Java, the NetLogger APIs will only
work on a Unix platform. It is anticipated that future versions of NetLogger will
work on other computer platforms.

NetLogger Host and Network Monitoring Tools
While it is extremely useful to have the NetLogger APIs to help monitor net-
work applications, not everyone has the luxury of being able to plug monitor-
ing methods into source code. The NetLogger application also contains some
canned scripts that allow you to monitor standard host and network features
without having to modify applications.

One of the canned applications is nl_tcpdump. This program modifies the
original tcpdump program (see Chapter 2, “Watching Network Traffic”) to
output network traffic events in NetLogger log file format. This enables you to
easily detect errors in network connections without having to pore over lots of

156 Chapter 9

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 156

lines of tcpdump output. You can also graphically analyze the tcpdump out-
put from a network trace, using the NetLogger nlv program (discussed in the
NetLogger Graphical Tool section).

Besides the tcpdump program, NetLogger also has versions of the common
vmstat and netstat Unix programs that are used to monitor system resources.
By performing the vmstat or netstat commands at constant intervals, and
sending the output to a log file, you can analyze trends in system and network
usage and performance.

NetLogger Log File
As mentioned, the NetLogger APIs send monitored events to a log file. Net-
Logger uses two special file formats for logging events received from applica-
tions. One format uses a standard text log entry format called Universal
Logging Message (ULM). The ULM format contains both NetLogger core infor-
mation and user-defined event information specific to the application being
monitored. The core information includes:

■■ A timestamp in the format YYYYMMDDhhmmss.ssssss (using
Universal Time Coordinates, or UTC)

■■ The host name of the originating host

■■ The program name of the originating program

■■ A security level (Emergency, Alert, or Usage)

■■ An event name defined in NetLogger

Each field in the log entry is prefaced by the field name, followed by an
equal sign, and then the field value:

DATE=20021115194512.033423

The fields within the log entry are separated by blank spaces:

DATE=20021115194525.321690 HOST=shadrach.ispnet1.net PROG=test_prog

LVL=Usage NL.EVNT=event

After the core information, additional user-defined fields may be added to
define values present in the event being monitored. The user-defined fields
should store data that can be used for analyzing the log file after the applica-
tion has finished. The format of the user-defined fields is:

PROGRAM.FIELD

Where PROGRAM is the program name, and FIELD is the field identifier.
The PROGRAM and FIELD names can contain up to four characters each.

NetLogger 157

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 157

The NetLogger session can store log files in several different methods:

■■ As a text or binary file on the local host

■■ Using the netlogd program running on the local or a remote host to
write to a text file

■■ Using the standard Unix syslogd logging facility on the local or a
remote host

■■ Using the netarchd program, which interfaces with a database file, on
the local or a remote host

NetLogger Graphical Tool
The NetLogger application includes the nlv program for graphically analyzing
log files. The nlv program analyzes a single NetLogger log file and displays
the timestamped events in a graphical environment. Displaying the events
often makes it easier to see problems, especially problems concerning timing
issues, such as excessive network transmission times.

The NetLogger application also contains tools that can be used to merge
multiple log files into a single log file, allowing you to display the results from
multiple tests in a single nlv graph. This feature allows you to compare tests,
and helps identify bottlenecks and other performance problems.

Downloading and Installing NetLogger

The main Web page for NetLogger is maintained at http://www-didc.lbl.gov/
NetLogger. This page contains information about NetLogger, as well as the
download link for current versions of NetLogger. There are three separate dis-
tribution files that are used for each version of NetLogger:

■■ A source code file for any Unix platform

■■ A Linux binary distribution file

■■ A Solaris binary distribution file

This section describes how to download and install NetLogger using the dif-
ferent distribution files.

Source Code Distribution File
The source code file can be downloaded and built on most Unix platforms. At
the time of this writing, the most current version is version 2.0.12, and can be
downloaded at the URL:

ftp://george.lbl.gov/pub/NetLogger/netlogger-2.0.12.src.tar.gz

158 Chapter 9

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 158

If you plan on compiling the nlv program, you must also have three sepa-
rate library files:

■■ TCL version 8.1

■■ Tk version 8.1

■■ Tk BLT widgets version 2.4.i

You must have the correct versions of these libraries for the NetLogger
application to compile properly on the system. The NetLogger download Web
page includes two distribution files for these libraries—one for Linux systems,
and one for Solaris systems:

ftp://george.lbl.gov/pub/NetLogger/netlogger-nlv.libs.linux.tar.gz

ftp://george.lbl.gov/pub/NetLogger/netlogger-nlv.libs.solaris.tar.gz

These distributions files contain the necessary libraries to compile the nlv
program included in the NetLogger source code distribution file.

Before beginning the compile process, you must first create a couple of
directories, and move the nlv library files into the work area. After changing to
the working directory, you must create a build directory where all of the work
will be done:

[rich@shadrach netlogger-2.0.12.src]$ mkdir build

[rich@shadrach netlogger-2.0.12.src]$ cd build

[rich@shadrach build]$ mkdir lib

After you create the build directory, a lib directory is created to hold the
libraries required for nlv. These can be obtained from uncompressing the
library distribution file:

tar -zxvf netlogger-nlv.libs.linux.tar.gz -C netlogger-

2.0.12.src/build/lib

Now that the source code and library files are extracted and in the proper
place, you can start the compile process to create the executable files. From the
build directory, you must run the configure program located in the root of the
working directory:

[rich@shadrach build]$../configure

The configure program performs the usual process of determining which
elements are required to compile the programs, and creating the necessary
makefile for the compile process. At the end of the process, a summary is dis-
played, showing the configure results.

NetLogger 159

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 159

After the configure program finishes, you can use the make command to
build the executable and library files.

Binary Distribution File
The NetLogger application has prebuilt binary distributions for both the Linux
and Solaris platforms. At the time of this writing, the most current binary dis-
tribution file available can be downloaded from the URLs:

ftp://george.lbl.gov/pub/NetLogger/netlogger-2.0.12.bin.linux.tar.gz

ftp://george.lbl.gov/pub/NetLogger/netlogger-2.0.12.bin.solaris.tar.gz

NOTE If you download the binary distribution file, you do not need to
download the nlv library files.

After downloading the binary distribution file, you can extract it to a work-
ing directory, using the standard tar command. The complete NetLogger
application is contained within the binary distribution, including the API
libraries and the nlv program. You must still use the make install command to
install the NetLogger libraries into the proper place on your system.

Using the APIs

The core of NetLogger is the ability to add monitoring functions within appli-
cations. The API functions provide a way to insert monitoring points within
applications, to log events as they happen in the program. This section
describes the API functions, and explains how to use them within applications.

Functions
The NetLogger APIs contain methods that are used to control how and where
NetLogger events are logged. While different languages use different method
names, each of the basic methods contains the same format. This section
describes the basic format of the NetLogger APIs.

Open

The Open API initiates the connection from the application to the NetLogger
log file. Only one connection to a NetLogger log file can be open per Open
statement. To log events to multiple logs, you must have multiple Open state-
ments, one for each log file connection.

160 Chapter 9

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 160

The standard format of the Open API is:

Open(URL, [host], [prog], [flags])

The only required field in the Open API is the URL. The URL points to the
location of the NetLogger log file. There are three different schemes that can be
used for the URL:

■■ x-netlog://host[:port] specifies a netlogd host at address host and
optional port port.

■■ x-syslog:// specifies the syslog logging facility on the local host.

■■ file:// specifies using a local file.

The host field defines an option hostname or IP address to use as the HOST
field in the event log. By default, NetLogger uses the local hostname of the sys-
tem. The prog field defines the program name used in the PROG field in the
event log. By default the word unknown is used as the program name. You can
replace this value with the name of the application being monitored.

The flags field indicates the output option that is being used to log the event.
Table 9.1 shows the flag values that can be used.

The ENV flag is extremely useful in test environments. Instead of hard-
coding the URL in the application, you can use the ENV flag to set the URL of
the logging method in an environment variable on the system. This provides
great flexibility by allowing you to easily change the logging location. Besides
the URL value, a switch is also defined, NETLOGGER_ON. When this envi-
ronment value is false, the NetLogger API will not log events to the log file.
When it is set to true (or not defined), the NetLogger API sends events to the
log file defined in the NETLOGGER_DEST environment variable. This vari-
able must have the same format as the URL field in the Open API.

Table 9.1 Open Flag Values

VALUE DESCRIPTION

ULM Use ULM text entries in the event log.

BIN Use binary messages in the event log.

XML Use XML-formatted entries in the event log.

ENV Override the URL value with system environment setting
NETLOGGER_DEST.

FLUSH Flush each message as it is written to the log file.

STREAM_FILE When in BIN mode, this value instructs NetLogger to write
messages to the log file similar to a network socket.

ANNOUNCE Write an NL_START event before the logged event, and write
an NL_END event after the logged event.

NetLogger 161

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 161

The output of the Open API method is a handle to the log file device. This
must be used in calls to the Write API to indicate which log file to write
events to.

A sample Open statement from the C API methods is:

NetLoggerOpen(“x-netlog://shadrach.ispnet1.net”);

This statement opens the log file from the netlogd host shadrach.ispnet1.net,
logging events as ULM text messages.

Write

To send events to the log file you must use the Write API. The Write API sends
information to the event log, using the format selected in the Open statement.
The Write format is:

Write(handle, level, event_name, format_string, value_list)

The handle field identifies the open log file device as returned by the Open
API function call. The level field defines the logging level that is used to iden-
tify the event. This level is an integer field, with 0 being the lowest level, and
255 being the highest.

The event_name field identifies the name of the NetLogger event that is used
to log the events. A single event name can be used to identify the same type of
events logged within an application. Events logged with the same event name
will be easier to identify within the log file, especially if you are logging dif-
ferent types of data (such as disk access times and network access times). Each
event name used must use a unique format string.

WARN I NG Do not use different format strings with the same event name in
the Write method (called overloading). If you need to log different information
from the same application, use separate event names for the different informa-
tion formats. If you overload an event name, unpredictable results will occur.

The format_string field defines the user-defined event log fields that are sent
to the log file. The format of the format string is:

“name=format_code name=format_code name=format_code...”

The name field defines the name of the user-defined field. As mentioned in
the NetLogger Log File section, the user-defined fields should follow a set pattern
of PROGRAM.FIELD, where PROGRAM is the program name, and FIELD is
the parameter to monitor. Each field should be four or fewer characters.

The format_code field identifies the type of data that will be placed in the
field. Table 9.2 shows the data types that can be used.

162 Chapter 9

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 162

Table 9.2 Write Method Format Codes

CODE DESCRIPTION

%s A string value of up to 255 characters

%d A 32-bit integer value

%f A 32-bit floating-point value

%ld A 64-bit integer value

%lf A 64-bit floating-point value

The format code is used similarly to the C language printf formats. It is a
placeholder that defines the type of data that is identified in the value_list field.

For example, a sample C language Write API would look like:

NetLoggerHandle nlh;

int ret;

nlh = NetLoggerOpen(“x-netlog://shadrach.ispnet1.net”);

ret = NetLoggerWrite(nl, 0, “NetworkData”, “recv=%d sent=%d errors=%d”,

recv, sent, errors);

This code snippet opens a connection to the netlogd server on host
shadrach.ispnet1.net, and logs an event message called NetworkData. The
event message includes three user-defined fields, indicating three different
data points within the application program.

Close

To properly terminate a NetLogger session, you must call the Close API
method. This method properly disconnects the application from the log file
device:

Close(handle)

The handle field identifies the log file device opened using the Open API
method call. The Close call flushes any unwritten events to the log file before
closing the device. The C API function call looks like:

NetLoggerClose(nlh);

For log files that are cached, such as a database log file using netarchd, it is
crucial that any unwritten events be flushed from the queue. If you need to
perform this task without closing the log file device, you can use the Flush API
method:

Flush(handle)

NetLogger 163

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 163

Libraries
The NetLogger APIs have been created for several different programming lan-
guages. This section describes how to use the libraries and function calls avail-
able for the C programming language.

The NetLogger C APIs are provided in the shared library file libnetlogger.so.
If you run the standard install make option, this file is installed in the directory
/usr/local/lib. To run applications that use NetLogger APIs, you must ensure
that the libnetlogger.so file is in your library path.

Table 9.3 shows the main C NetLogger API function calls that are available.

Table 9.3 Main NetLogger C Functions

FUNCTION DESCRIPTION

NetLoggerOpen() Opens a new handle to a NetLogger file

NetLoggerOpenWithTrigger() Opens a new handle that uses a trigger
configuration file

NetLoggerWrite() Writes an event to the open NetLogger handle

NetLoggerWriteList() Writes a list of events to an open NetLogger handle

NetLoggerGTWrite() Writes an event using a user-defined timestamp

NetLoggerGTWriteList() Writes a list of events using a user-defined
timestamp

NetLoggerWriteMessage() Writes a message to the open NetLogger handle

NetLoggerFlush() Flushes any unwritten events to the log file

NetLoggerClose() Closes an open NetLogger handle

To compile C programs that use the NetLogger APIs, you must link them
with the libnetlogger.a library file, and use the header file /usr/local/
include/netlogger.h. These files provide the NetLogger API functions for pro-
gramming C applications. A sample C application that uses the NetLogger
APIs is shown in Figure 9.1.

To compile this program, you must use the following command:

$ cc -o test test.c -L/usr/local/lib -lnetlogger

This command produces the program file test, which can be run to produce
the NetLogger file test.log in the current directory.

WARN I NG To run C programs that use the NetLogger APIs, the location of
the NetLogger shared library must be defined. The easiest way to do this is to
specify the directory location in the LD_LIBRARY_PATH environment variable.

164 Chapter 9

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 164

#include <stdio.h>

#include “/usr/local/include/netlogger.h”

int main()

{

NetLoggerHandle nlh;

int ret;

nlh = NetLoggerOpen(“file://test.log”, “shadrach.ispnet1.net”,

“TestProgram”, 0);

if (!NetLoggerIsValid(nlh))

{

fprintf(stderr, “Improper NetLogger file device”);

return 1;

}

ret = NetLoggerWrite(nlh, 0, “TestData”, “test=%d”, 100LL);

NetLoggerClose(nlh);

return 0;

}

Figure 9.1 Sample C NetLogger program.

The following is the output from the test program:

$ LD_LIBRARY_PATH=/usr/local/lib ; export LD_LIBRARY_PATH

$./test

$ cat test.log

DATE=20021114144648.237137 NL.EVNT=TestData HOST=shadrach.ispnet1.net

PROG=TestProg LVL=0 test=100

$

The test.log log file contains an entry from the NetLoggerWrite command in
the test program. Notice how the individual fields in the entry were created
using the data from the NetLoggerOpen and NetLoggerWrite function calls.

Using nlv

The nlv application is possibly the most valuable, but also the most compli-
cated, NetLogger application. This section describes how to configure and use
nlv to help analyze NetLogger log files.

Types of nlv graphs
Before diving into the nlv configuration files, it is a good idea to see what nlv
does. The nlv program can read a NetLogger log file, and graph events on a
timeline, showing when events occurred in relation to one another. This is an

NetLogger 165

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 165

excellent technique to use for watching host and network performance issues,
such as how long a data transfer took reading data from the disk, versus how
long it took sending the data across the network.

nlv uses three different types of graphs to display event data:

■■ point. Displays individual data points within an event on a timeline

■■ load-line. Uses a line to connect individual data points within an
event, forming a simple graph

■■ life-line. Displays a set of events as a single line, showing the path
between events

The point graph is the simplest way to show data in nlv. It is used to show
occurrences of individual events against the timeline. This graph is used to
show events that have no specific value, but are worth seeing when they
trigger.

The load-line graph takes the point graph one step further. The load-line
graph is used to graph events that can have multiple values, such as the uti-
lization of a system.

The life-line graph is where nlv can really show its usefulness. Often when
analyzing a process it is desirable to see which events within the process took
the longest time. This is where the life-line graph comes in. By using a timeline
to map out the times when monitored events occurred, you can see how much
time each event required, relative to the other events in the process. This is
shown in Figure 9.2.

Figure 9.2 Sample nlv life-line graph.

END_WRITE

START_WRITE

END_READ

START_READ
0 1 2 3 4 5 6 7 8 9 10 1211

Time (s)

166 Chapter 9

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 166

By analyzing the graph in Figure 9.2, you can see that the disk read process
took longer than the network write process, indicating a disk bottleneck for
this system.

The trick to converting the raw NetLogger log files into pretty graphs is all
in the nlv configuration files. The next section describes how to configure nlv
to graphically display your data.

Configuring nlv
There are three configuration files that are required to use nlv to analyze a
log file:

■■ bltGraph.pro

■■ nlv-main.cfg

■■ nlv-keys.cfg

This section describes what these configuration files are, and how to build
each of them to analyze a log file.

The bltGraph.pro File

The bltGraph.pro file controls how nlv prints graphs. It maps the graphical
coordinates of the graphs produced in nlv to Postscript coordinates for print-
ing. The nice thing about the bltGraph.pro file is that it never changes. It is pro-
vided in the NetLogger distribution and can be used as is. The location of the
bltGraph.pro file in the distribution working directory is:

nlv/cfg/bltGraph.pro

To use this file, you must put it in one of three locations:

■■ $NLHOME

■■ $NLHOME/etc

■■ the current directory when running nlv

The $NLHOME environment variable points to the location where you
want to keep the NetLogger files. This can be any directory on the host, and does
not have to be (and probably shouldn’t be) the NetLogger working directory.

The nlv-main.cfg File

The nlv-main.cfg file is used to define configuration parameters for how the
nlv program operates. It defines settings for the nlv window, icons, graphs,
and printing. A sample nlv-main.cfg file is located in the distribution working

NetLogger 167

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 167

directory in the nlv/cfg subdirectory. In most cases you can use this sample nlv-
main.cfg file without modification. Like the bltGraph.pro file, it must be located
in either the current directory, or in either the $NLHOME or $NLHOME/
etc directory.

The nlv-main.cfg file is a text file that contains one nlv option per line. There
are two formats that are used for the options. The first format:

option parameter

defines a single parameter for an option, such as:

AutoResize 0

which indicates that the nlv window will not automatically resize if the graph
becomes larger. For options that require more than one parameter, the format is:

option list parameter1, parameter2, ...

Using the list keyword lets nlv know that there is more than one parameter
associated with the option. An example of this would be:

color-ip list #f00 #0f0 #99f #aa0 #0aa #a0a #b23 #23b

There are lots of options that can be used to customize the look and feel of
the nlv window. Table 9.4 shows some of the more common options that can
be used in the nlv-main.cfg file.

Table 9.4 nlv-main.cfg Options

OPTION DESCRIPTION

AutoLegendRefresh Command used to refresh display when legend entry
buttons are clicked (default: 1)

AutoResize Command used to enlarge the window if the graph
expands (default: 1)

Color-ip Color map used for displaying individual graphs

Color-winbg Window background color

Color-graphbg Graph background color

Lpr Command used to print a postscript file (default: lpr)

Lpropts Additional options used to print a postscript file
(default: -h)

MaxGraphElements Number of graphical elements viewable at once
(default: 2,500)

168 Chapter 9

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 168

Table 9.4 (continued)

OPTION DESCRIPTION

Printers Names of available printers

StartMode Mode to display the graphs in (can be either Play or
Pause) (default: Pause)

TimeUnit The unit of time used on the X axis (default:
milliseconds)

You can look at the sample nlv-main.cfg file provided with the NetLogger
distribution, and modify the options necessary to run nlv on your system.

The nlv-keys.cfg File

The nlv-keys.cfg file defines how the log information will be displayed in nlv.
This file is crucial to displaying the monitored data. It defines which events are
graphed, and how they are graphed. Since the nlv-keys.cfg file is specific to an
individual log file, it should be kept in the same directory as the log file.

The basic unit within the nlv-keys.cfg file is the eventset. An eventset defines
one or more specific event types that are graphed within nlv. All events in the
log with the defined event values are contained within the eventset for display.
How the events are displayed is defined within the eventset definition. You
can specify multiple eventsets within a single nlv-keys.cfg file, to graph more
than one event at a time.

The eventset definition contains keywords that are used to define the para-
meters used to graph the event. Table 9.5 shows the keywords used.

Table 9.5 net-keys.cfg Eventset Keywords

KEYWORD DESCRIPTION

eventset Defines the NetLogger event to graph

annotate Lists the fields used for annotating events

events List of the events contained in the eventset

group List of fields used for grouping events

groupalias Aliases to use for hostnames

id List of fields to use for identifying connected events

rotateclients Indicates if ids will continually change during program execution

type Defines the type of graph

val Scaled value used for point or load-line graphs

NetLogger 169

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 169

The easiest way to describe the nlv-keys.cfg file is to show a few examples
and walk through them. The first example shows a simple life-line graph for a
series of events logged in a log file:

Sample eventset

eventset +SEND_DATA {

{type line}

{ events {+START_READ +END_READ +START_SEND +END_SEND} }

}

The first line in the configuration file starts with the pound sign, indicating
that it is a comment. Since each nlv-keys.cfg file is unique for a set log file, it is
best to identify the associated log file within the comments.

The second line defines the name of the eventset. Notice that there is a plus
sign before the name. This is used to indicate that the eventset will be dis-
played by default on the nlv graph. If you do not want the eventset displayed,
you can use a minus sign. The entire eventset is contained within braces. Indi-
vidual options within the eventset are also contained with braces, and when
multiple values are used for an option, they are also contained within braces.

After the eventset is declared, the type of graph used is defined, using the
type statement. The three graph types are defined using the keywords:

■■ line (for a life-line graph, the default if no type statement is present)

■■ load (for a load-line graph)

■■ point (for a point graph)

After the type of graph is declared, the list of events graphed must be
defined. In this case, the graph will show the time elapsed between specific
events, so the events to display are listed. As with the eventset, a plus sign is
used to indicate which events will be displayed on the graph, and a minus sign
is used to hide events when the graph is drawn.

To show multiple graphs based on a value within the event, you can use the
id option. The id option defines which field within the event log will be used
to distinguish graphs. You can use user-defined fields to separate the graphs—
for example, defining separate reads and writes to separate data files. An
example of this would look like:

multiple graph config file

eventset +SEND_DATA {

{ id FILE.READ }

{ type line }

{events { +START_READ +END_READ +START_SEND +END_SEND } }

}

170 Chapter 9

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 170

This nlv-keys.cfg file uses the user-defined field FILE.READ, which is used
to identify the read/write session to track. To test this environment, you can
create a sample program to generate the logfile. Figure 9.3 shows the sample.c
program, which generates these events.

After creating the sample.c program, compile and run it to generate the sam-
ple.log NetLogger log file with the appropriate entries. The log file output
should look like this:

DATE=20021115180028.465153 NL.EVNT=START_READ HOST=shadrach.ispnet1.net

PROG=TestProg LVL=0 FILE.READ=1

DATE=20021115180028.465511 NL.EVNT=START_READ HOST=shadrach.ispnet1.net

PROG=TestProg LVL=0 FILE.READ=2

DATE=20021115180030.467402 NL.EVNT=END_READ HOST=shadrach.ispnet1.net

PROG=TestProg LVL=0 FILE.READ=1

DATE=20021115180030.467561 NL.EVNT=START_SEND HOST=shadrach.ispnet1.net

PROG=TestProg LVL=0 FILE.READ=1

DATE=20021115180031.477400 NL.EVNT=END_READ HOST=shadrach.ispnet1.net

PROG=TestProg LVL=0 FILE.READ=2

DATE=20021115180031.477444 NL.EVNT=START_SEND HOST=shadrach.ispnet1.net

PROG=TestProg LVL=0 FILE.READ=2

DATE=20021115180033.487401 NL.EVNT=END_SEND HOST=shadrach.ispnet1.net

PROG=TestProg LVL=0 FILE.READ=2

DATE=20021115180034.497400 NL.EVNT=END_SEND HOST=shadrach.ispnet1.net

PROG=TestProg LVL=0 FILE.READ=1

As expected, each event is logged with the appropriate event name, and the
FILE.READ user-defined field value. Now, you can run the nlv program using
the sample.log log file and the nlv-keys.cfg configuration file. Figure 9.4 shows
the output generated from this test.

#include <stdio.h>

#include “/usr/local/include/netlogger.h”

int main()

{

NetLoggerHandle nlh;

int ret;

nlh = NetLoggerOpen(“file://sample.log”, “shadrach.ispnet1.net”,

“SampleProgram”, 0);

if (!NetLoggerIsValid(nlh))

{

fprintf(stderr, “Improper NetLogger file device”);

return 1;

}

ret = NetLoggerWrite(nlh, 0, “START_READ”, “FILE.READ=%d”, 1LL);

Figure 9.3 The sample.c program. (continued)

NetLogger 171

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 171

ret = NetLoggerWrite(nlh, 0, “START_READ”, “FILE.READ=%d”, 2LL);

sleep(2);

ret = NetLoggerWrite(nlh, 0, “END_READ”, “FILE.READ=%d”, 1LL);

ret = NetLoggerWrite(nlh, 0, “START_SEND”, “FILE.READ=%d”, 1LL);

sleep(1);

ret = NetLoggerWrite(nlh, 0, “END_READ”, “FILE.READ=%d”, 2LL);

ret = NetLoggerWrite(nlh, 0, “START_SEND”, “FILE.READ=%d”, 2LL);

sleep(2);

ret = NetLoggerWrite(nlh, 0, “END_SEND”, “FILE.READ=%d”, 2LL);

sleep(1);

ret = NetLoggerWrite(nlh, 0, “END_SEND”, “FILE.READ=%d”, 1LL);

NetLoggerClose(nlh);

return 0;

}

Figure 9.3 (continued)

Figure 9.4 nlv output for sample.log.

172 Chapter 9

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 172

You can see the two separate graphs generated, one for each FILE.READ
event series. From this graph you can see the time that elapsed for each moni-
tored event.

Summary

The NetLogger application can help you watch system and network events as
they play out within application programs. The NetLogger package includes
APIs that can be added to programs to log specific events as they occur within
the program. This provides great flexibility in creating your own monitoring
environment.

Besides the API functions, NetLogger also includes some scripts that can be
used to monitor standard system and network performance, such as the
vmstat and netstat statistics from the system, and network retransmissions
and window sizes from the tcpdump output. This information can be saved in
NetLogger format for analysis.

You can point multiple hosts to the same log file using the netlogd and
netarchd programs. The netlogd program listens to TCP port 14830 for incom-
ing events, and stores them in a standard NetLogger log file. The netarchd pro-
gram performs the same function, but interfaces with a mySQL or postgresql
database to store the events in a database format. These programs provide the
functionality of enabling multiple hosts to generate events within a single log
file. This enables you to watch distributed network applications from all
points of interest.

The nlv program is a great tool within NetLogger for graphically displaying
the data within the log files. Presenting the information graphically often
makes it easier to detect trends, and compare response times between events
in the application.

The next chapter discusses the tcptrace application. The tcptrace program
can extract information from standard tcpdump files to help you see problems
occurring within the existing network traffic. This can be a valuable tool for
determining host problems on the network.

NetLogger 173

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 173

12 433012 Ch09.qxd 6/16/03 9:10 AM Page 174

175

The tcptrace application does not perform network tests itself. Instead, it is
used to analyze network traces performed with tcpdump, and a few other sim-
ilar packet-capturing applications. This chapter describes how to use tcptrace,
along with the xplot and jPlot graphical programs used to produce graphs
with tcptrace data.

The tcptrace application was developed by Shawn Ostermann at Ohio
University as a method of analyzing TCP sessions captured with the tcpdump
application. tcptrace can be used to analyze network throughput, packet
round-trip times, sequences, retransmissions, window sizes, and other TCP fea-
tures of network sessions. This information can then be plotted, using the xplot
or jPlot programs, to produce graphical information about network sessions.

What Is tcptrace?

The tcptrace application is an extremely useful tool for finding network prob-
lems by analyzing TCP sessions on the network. Often, network problems
appear as quirks within TCP sessions, such as retransmitted packets or poor
round-trip times.

tcptrace

C H A P T E R

10

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 175

The tcptrace application can analyze TCP sessions captured from several
different applications:

■■ tcpdump

■■ WinDump

■■ snoop

■■ etherpeek

■■ HP NetMetrix

The tcpdump and WinDump applications were both described in Chapter 2,
“Watching Network Traffic,” and will be used to produce the examples in this
chapter. The snoop application can be found on Sun Solaris workstations and
servers, while the etherpeek application is a commercial Windows network-
monitoring product.

The tcptrace application can be run in two modes. In console mode, infor-
mation from the TCP sessions is displayed in a text format on the terminal,
showing each session found in the dump file, and some basic information
about the session. In graphical mode, session information is placed in separate
files that can be used by the xplot or jPlot applications to produce graphs
showing trends and features of the TCP sessions.

Console Mode
When run in console mode, tcptrace decodes the trace file and shows varying
levels of information regarding the sessions found in the trace. By default, the
sessions and their status are identified, along with the total number of packets
sent between the hosts:

$ tcptrace test1

1 arg remaining, starting with ‘test1’

Ostermann’s tcptrace -- version 6.2.0 -- Fri Jul 26, 2002

6828 packets seen, 6828 TCP packets traced

elapsed wallclock time: 0:00:00.819992, 8326 pkts/sec analyzed

trace file elapsed time: 0:01:56.243460

TCP connection info:

*** 6 packets were too short to process at some point

(use -w option to show details)

1: 192.168.1.2:1027 - 192.168.1.1:23 (a2b) 2> 1<

2: 192.168.1.2:1028 - 192.168.1.1:23 (c2d) 161> 161< (complete)

3: 192.168.1.2:1029 - 192.168.1.1:21 (e2f) 34> 27< (complete)

4: 192.168.1.1:1051 - 192.168.1.2:113 (g2h) 1> 1< (reset)

5: 192.168.1.1:20 - 192.168.1.2:1030 (i2j) 6> 4< (complete)

6: 192.168.1.1:20 - 192.168.1.2:1031 (k2l) 1070> 688< (complete)

176 Chapter 10

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 176

7: 192.168.1.1:20 - 192.168.1.2:1032 (m2n) 1409> 932< (complete)

8: 192.168.1.1:20 - 192.168.1.2:1033 (o2p) 6> 4< (complete)

9: 192.168.1.1:20 - 192.168.1.2:1034 (q2r) 1394> 927< (complete)

$

The tcptrace output shows each detected session, and assigns a unique label
to each session. In this example, the first session detected was between hosts
192.168.1.2 port 1027 and 192.168.1.1 port 23. This session is labeled as session
a2b. The second session is labeled c2d, the third, e2f, and so on. These session
labels are important when you are using tcptrace in graphical mode, as this is
how the session graph files are labeled.

Graphical Mode
One of the best features of tcptrace is the ability to produce TCP session infor-
mation in a graphical form. When you store the TCP session information in
xplot formatted files, you can use tcptrace to produce xplot graphs of the ses-
sion information. Figure 10.1 shows a sample xplot graph of tcptrace session
data.

Figure 10.1 tcptrace session data.

tcptrace 177

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 177

This sample graph shows the packets per second of the captured network
traffic, separated by TCP port number. Using this information you can quickly
see where the majority of the network traffic originated (in this example, an
FTP session on port 20). tcptrace can graph several different types of TCP
information:

■■ Throughput

■■ Round-trip time values

■■ Time sequence plots

■■ Outstanding data

■■ Segment size

This information can be plotted for each session detected by tcptrace in the
trace file. This can produce lots of graphs from a single trace file, so tcptrace
also includes features that allow you to plot individual parameters for each
session.

Downloading and Installing tcptrace

The tcptrace Web site is located at http://irg.cs.ohiou.edu/software/tcptrace/
index.html. It contains links to various help pages for tcptrace, along with a
link to the download area. In the download area, you can download the source
code distribution of tcptrace, a Linux binary distribution package, or a Win-
dows binary package. At the time of this writing, the current version of tcp-
trace is version 6.2.0, and can be downloaded from the URLs:

http://irg.cs.ohiou.edu/software/tcptrace/download/tcptrace-6.2.0.tar.gz

http://irg.cs.ohiou.edu/software/tcptrace/download/tcptrace-

6.2-0.i386.rpm

http://irg.cs.ohiou.edu/software/tcptrace/download/win_tcptrace-

6.2.0.zip

The first download URL is for the complete source code distribution for
Unix platforms. The second download URL is the Linux binary distribution
package using the RPM package installer. The last download URL is the Win-
dows binary distribution package, using the ZIP package installer.

The most versatile installation option is to compile tcptrace directly from the
source code distribution. This method has been known to work on several dif-
ferent Unix platforms. As usual, you must uncompress and expand the source
code distribution file into a working directory, using the gunzip and tar com-
mands. This creates a working directory tcptrace-6.2.0 (for the current version
of tcptrace). All of the source code files are located under this structure.

178 Chapter 10

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 178

To build the executable file, you must change to the working directory, and
use the configure and make commands, as usual:

$./configure

$ make

NOTE To build the tcptrace program, you must have the libpcap library
installed on your Unix system. If you have installed tcpdump on your system,
this should already be present. The process of downloading and installing the
libpcap library was described in Chapter 2.

If you want to install tcptrace into a common location on the system, you
can run the make install script, which places the tcptrace executable file in the
/usr/local/bin directory. tcptrace does not require any special privileges to
run on the system, as it does not interact directly with the network interfaces.
It just needs to read saved tcpdump trace files.

Using tcptrace in Console Mode

After installing tcptrace using one of the install methods, you can begin ana-
lyzing tcpdump files. Remember, the application is called tcptrace because its
main purpose is to analyze TCP sessions. It has limited UDP capabilities. This
section describes how to use the various command-line options for displaying
session information in standard text format on the console.

Using Basic Command-Line Options
By default, tcptrace produces information directly on the console. There are
many command-line options that can be used to modify the display results.

Standard Session Output

There are 18 command-line options that can be used to modify the format of
the tcptrace output sent to the console. Table 10.1 lists these options.

Table 10.1 tcptrace Console Mode Options

OPTION DESCRIPTION

-b Show a brief listing of the TCP sessions (the default output).

-d Debug mode. Display additional information while processing.

(continued)

tcptrace 179

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 179

Table 10.1 (continued)

OPTION DESCRIPTION

-D Display all values in decimal.

-e Extract data contents of each TCP session to a file.

-l Show a detailed listing of the TCP sessions.

-n Don’t attempt to resolve hostnames.

-Ofile Dump matching packets to a separate tcpdump dump file.

-p Display packet information for each packet.

-P Display packet information for specific packets.

-r Show round-trip time statistics.

-s Use short (unqualified) hostnames.

-t Show progress by displaying packet numbers while
calculating.

-u Perform minimal UDP packet processing.

-w Display any warning messages while analyzing packets
(default is don’t display warnings).

-W Show estimated congestion window values.

-q Show no output (used when using modules or producing
graph files).

-X Display all values in hexadecimal.

-Z Dump raw round-trip times to file.

The -l option shows detailed information about each TCP session detected
in the dump file. A sample session detailed listing looks like:

TCP connection 9:

host q: 192.168.1.1:20

host r: 192.168.1.2:1034

complete conn: yes

first packet: Tue Nov 19 07:18:32.319212 2002

last packet: Tue Nov 19 07:18:33.164690 2002

elapsed time: 0:00:00.845478

total packets: 2321

filename: test1

q->r: r->q:

total packets: 1394 total packets: 927

ack pkts sent: 1393 ack pkts sent: 927

pure acks sent: 2 pure acks sent: 925

180 Chapter 10

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 180

sack pkts sent: 0 sack pkts sent: 0

max sack blks/ack: 0 max sack blks/ack: 0

unique bytes sent: 1979018 unique bytes sent: 0

actual data pkts: 1390 actual data pkts: 0

actual data bytes: 1979018 actual data bytes: 0

rexmt data pkts: 0 rexmt data pkts: 0

rexmt data bytes: 0 rexmt data bytes: 0

zwnd probe pkts: 0 zwnd probe pkts: 0

zwnd probe bytes: 0 zwnd probe bytes: 0

outoforder pkts: 0 outoforder pkts: 0

pushed data pkts: 367 pushed data pkts: 0

SYN/FIN pkts sent: 1/1 SYN/FIN pkts sent: 1/1

req sack: Y req sack: Y

sacks sent: 0 sacks sent: 0

urgent data pkts: 0 pkts urgent data pkts: 0 pkts

urgent data bytes: 0 bytes urgent data bytes: 0 bytes

mss requested: 1460 bytes mss requested: 1460 bytes

max segm size: 1460 bytes max segm size: 0 bytes

min segm size: 72 bytes min segm size: 0 bytes

avg segm size: 1423 bytes avg segm size: 0 bytes

max win adv: 32120 bytes max win adv: 8760 bytes

min win adv: 32120 bytes min win adv: 164 bytes

zero win adv: 0 times zero win adv: 63 times

avg win adv: 32120 bytes avg win adv: 5812 bytes

initial window: 2920 bytes initial window: 0 bytes

initial window: 2 pkts initial window: 0 pkts

ttl stream length: 1979018 bytes ttl stream length: 0 bytes

missed data: 0 bytes missed data: 0 bytes

truncated data: 1959558 bytes truncated data: 0 bytes

truncated packets: 1390 pkts truncated packets: 0 pkts

data xmit time: 0.842 secs data xmit time: 0.000 secs

idletime max: 47.5 ms idletime max: 47.1 ms

throughput: 2340709 Bps throughput: 0 Bps

Each TCP session is shown, along with the pertinent TCP information for
each side of the connection (in this example, from host q to host r, and from host
r to host q). Since this is an FTP session, the numbers are somewhat one-sided.
Most of the information presented in the detailed listing is self-explanatory.

If you would like to see the actual packets in a session, you can use the -p
option. This prints out a short description of each packet:

Packet 2992

Packet Length: 1514 (saved length 68)

Collected: Tue Nov 19 07:18:00.122965 2002

ETH Srce: 00:e0:7d:74:df:c7

ETH Dest: 00:e0:7d:75:3e:6d

Type: 0x800 (IP)

IP VERS: 4

IP Srce: 192.168.1.1

tcptrace 181

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 181

IP Dest: 192.168.1.2

Type: 0x6 (TCP)

HLEN: 20

TTL: 64

LEN: 1500

ID: 2340

CKSUM: 0xa89c

OFFSET: 0x4000 Don’t Fragment

TCP SPRT: 20

DPRT: 1032

FLG: -A---- (0x10)

SEQ: 0x1be7dc33

ACK: 0x00051582

WIN: 32120

HLEN: 20

CKSUM: 0x4527

DLEN: 1460 (only 14 bytes in dump file)

data: 1460 bytes

The packet information shows header information for the Ethernet, IP, and
TCP layers. The -p option displays information for all of the packets in all of
the captured sessions. You can use the -P option to limit the packets displayed.
When you want to limit the packets displayed, there are additional command-
line options that must be used to define the packet or session ranges to ana-
lyze. Table 10.2 shows these options.

By using the -o option, you can analyze a single TCP session in the dump
file. The command:

tcptrace -P -o3 test1

prints the packet header information for packets contained in session 3 within
the test1 dump file.

Table 10.2 tcptrace Packet-Limiting Options

OPTION DESCRIPTION

-iN Ignore packets contained in session N.

-oN[-M] Include packets contained in sessions N through M.

-c Ignore packets in incomplete sessions.

-BN Start the analysis at segment N.

-EN Stop the analysis at segment N.

182 Chapter 10

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 182

tcptrace Filters

While the -o option can be used to limit the analysis to one or more sessions,
this still can produce lots of unwanted packets. You can fine-tune the display
of sessions in tcptrace output by using the -f filter option to select specific
types of packets to analyze.

The -f option allows you to create filter expressions that will be compared
against each packet in the dump file. Only sessions that contain one or more
packets matching the filter expression will be processed.

NOTE The filter expression does not limit the output to individual packets,
only to sessions. If one packet in a session matches a filter expression, the
entire session is analyzed.

The filter expressions can be as simple or as complex as you require, using
arithmetic and Boolean operations to check values. For example, to see only
sessions that had a throughput higher than 10,000 Bps, you could use the
command:

$ tcptrace -f’thruput>10000’ test1

The output of this command shows the sessions that match the criteria. You
can then combine the filter with other command-line options (including mod-
ules) to limit the sessions used in the analysis.

There are lots of variables that can be used to filter packets in the sessions.
The complete filter list can be seen by using the -hfilter command-line option
for tcptrace. Table 10.3 shows a few of the more popular values that can be
used.

Table 10.3 Some tcptrace Filter Variables

VARIABLE DESCRIPTION

bad_behavior Bad TCP packet within the session

data_bytes Bytes of data within the packet

data_segs Segments (packets) of data

data_segs_push Packets with the TCP PUSH flag set

Hostadr The host IP address

Hostname Full hostname

Mss Maximum segment (packet data) size

(continued)

tcptrace 183

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 183

Table 10.3 (continued)

VARIABLE DESCRIPTION

out_order_segs Out of order packets

Portname Service name of the port number (as seen in the
/etc/services file)

retr_max Maximum number of retransmissions of a single
packet

rexmit_bytes Total number of retransmitted bytes in the session

reset_count Number of packets containing a TCP RESET flag

rtt_min Minumum round-trip time value

rtt_max Maximum round-trip time value

Thruput Session throughput value

unique_bytes Non-retransmitted bytes

urg_data_bytes Number of bytes within packets with TCP URGENT
flag set

urg_data_pkts Number of packets with TCP URGENT flag set

win_max Maximum TCP window size advertisement

win_min Minimum TCP window size advertisement

win_zero_ct Number of packets with the TCP window size set
to zero

By default, each variable specified applies to both hosts in the TCP session.
To further define each variable, you can add a prefix of c_ to specify only client
values, and s_ for only server values. Thus, to see the sessions that have a zero
window size value for the server host, you would use the command:

tcptrace -f’s_win_zero_ct>0’ test1

Using the command:

tcptrace -f’win_zero_ct>0’ test1

allows sessions with either client or server zero window sizes. This would be
equivalent to the filter:

tcptrace -f((c_win_zero_ct>0)OR(s_win_zero_ct>0)) test1

184 Chapter 10

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 184

Using Module Options
Besides performing normal packet decoding, tcptrace includes special mod-
ules that are programmed to produce specialized formatted output for specific
types of TCP sessions, or for specific session information. Table 10.4 shows the
modules that are included in tcptrace version 6.2.0.

Each of these modules can be used to produce useful information about the
TCP connections contained in the dump file. To specify a module, you must
use the -x option and the module name:

tcptrace -xrealtime test1

Some modules also contain options that can be used to further define how
the module uses and outputs data. To separate the module options from the
command-line options, the module options should be enclosed in double
quotes immediately after the module name:

tcptrace -xcollie”-n” test1

This command uses the collie module, but specifies the -n option, which
does not display the heading labels for the data. Some modules have lots of
options, while others have none. To view a listing of all the modules and their
options, you can use the -hxargs option of tcptrace:

tcptrace -hxargs

Table 10.4 tcptrace Modules

MODULE DESCRIPTION

collie Displays general information about each connection detected

HTTP Displays specific information on HTTP sessions

realtime Displays connection information in time-order

rttgraph Displays information about round-trip times

slice Generates traffic information by time slice

tcplib Generates a tcplib formatted data file

traffic Creates information about overall traffic statistics

tcptrace 185

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 185

You can use the collie module to display information about each individual
session in a dump file:

Session Start: Tue Nov 19 07:17:59.197779 2002

Session End: Tue Nov 19 07:18:01.342226 2002

Source IP address: 192.168.1.1

Source Port: 20

Source Fully Qualified domain name: 192.168.1.1

Destination IP address: 192.168.1.2

Destination Port: 1032

Destination Fully Qualified domain name: 192.168.1.2

Bytes Transferred Source to Destination: 1979018

Bytes Transferred Destination to Source: 0

Packets Transferred Source to Destination: 1409

Packets Transferred Destination to Source: 932

To see the overall statistics of the sessions, you can use the slice and traffic
modules. Both of these modules produce separate data files that contain the
output information. The slice module produces the file slice.dat, which looks
like this:

date segs bytes rexsegs rexbytes new active

------------- -------- -------- -------- -------- -------- --------

07:16:59.206839 59 2663 0 0 2 2

07:17:14.206839 172 37882 0 0 1 1

07:17:29.206839 3 136 0 0 1 1

07:17:44.206839 32 4200 0 0 1 3

07:17:59.206839 1772 1584382 0 0 2 3

07:18:14.206839 2388 2080318 0 0 0 3

07:18:29.206839 68 8080 0 0 1 3

07:18:40.450300 2334 2072607 0 0 1 2

The slice data shows, by time slice, the number of new sessions started, the
number of active sessions detected, and information about the individual
packet segments seen. The traffic module produces two data files:

■■ traffic_byport.dat shows traffic information sorted by TCP port.

■■ traffic_stats.dat shows overall traffic statistics.

The traffic_byport.dat file shows general information per port:

Overall totals by port

TOTAL bytes: 5790268 pkts: 6828 conns: 9 tput: 4916 B/s

Port 20 bytes: 5733948 pkts: 6440 conns: 5 tput: 49430 B/s

Port 21 bytes: 3554 pkts: 61 conns: 1 tput: 30 B/s

Port 23 bytes: 52666 pkts: 325 conns: 2 tput: 454 B/s

Port 113 bytes: 100 pkts: 2 conns: 1 tput: 0 B/s

Port 1027 bytes: 148 pkts: 3 conns: 1 tput: 1 B/s

Port 1028 bytes: 52518 pkts: 322 conns: 1 tput: 452 B/s

186 Chapter 10

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 186

This table can be used to analyze which TCP port (application) produced the
most traffic within the dump file, and the average throughput of the traffic.
The overall statistics for all the sessions in the dump file are stored in the
traffic_stats file:

Overall Statistics over 116 seconds (0:01:56.243460):

5790268 ttl bytes sent, 49916.103 bytes/second

5790268 ttl non-rexmit bytes sent, 49916.103 bytes/second

0 ttl rexmit bytes sent, 0.000 bytes/second

6828 packets sent, 58.862 packets/second

0 connections opened, 0.000 conns/second

1 dupacks sent, 0.009 dupacks/second

0 rexmits sent, 0.000 rexmits/second

average RTT: 67.511 msecs

Graphical Programs

An excellent feature of tcptrace is that it can produce graphs showing the
information displayed in the console mode options. Actually, saying that tcp-
trace produces graphs is a bit of a misnomer. In reality, it produces data files
that can be used to produce graphs. To view the tcptrace graphs you must have
either the xplot or jPlot program. Both of these applications can read the data in
the tcptrace graph files and produce graphs showing the session information.

This section describes how to download and install both the xplot and jPlot
applications.

xplot
The xplot application was developed by Tim Shepard at MIT for plotting infor-
mation generated from the tcpdump application. The xplot application reads
text files containing graphing instructions, and plots the necessary points,
lines, and axis to visualize the graph.

WARN I NG xplot uses X-Windows to display the graphs. Both the X-Windows
operating environment and the X-Window development library must be installed
on the host system before compiling xplot. Most Unix systems install the
X-Windows environment by default, but the development libraries must be
installed separately. Consult your particular Unix distribution information
regarding these files.

The main xplot Web site is located at http://www.xplot.org. At the time of
this writing, the current xplot release was version 0.90, but an interim patch

tcptrace 187

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 187

was released to fix a color problem that appears on some Unix systems. The
interim release can be downloaded from the URL:

http://www.xplot.org/xplot/xplot-0.90.7.tar.gz

The xplot source code distribution file must be uncompressed and
expanded into a working directory. As usual, you must run the configure pro-
gram so the makefile will be created with the pertinent information for your
system (including the specific location of the X-Window library files on the
system). After the configure program finishes, you must run the make pro-
gram to build the xplot executable file.

jPlot
The jPlot application was also developed at Ohio University as a Java version
of xplot. It incorporates the features of xplot, including the ability to read xplot
graph files. This allows jPlot to read and graph the xplot output files generated
by tcptrace. Since it is a Java application, it can be used on any platform that
supports Java. This enables you to view tcptrace files from almost any host
platform.

NOTE At the time of this writing, the jPlot authors recommend using Java
version 1.3 when using jPlot. Future versions of jPlot are expected to be
compatible with newer versions of Java.

JPlot can also be downloaded from the tcptrace Web site. There is a separate
link called Useful Companion Programs, that contains the links for download-
ing jPlot. There are two separate download files: one is a .tar.gz distribution for
Unix platforms, and the other is a .zip distribution for Windows platforms:

http://irg.cs.ohiou.edu/software/tcptrace/jPlot/download/jPlot.1.0.0beta

.tar.gz

http://irg.cs.ohiou.edu/software/tcptrace/jPlot/download/jPlot.1.0.0beta

.zip

Both distributions include the same files. The jPlot distribution files contain
all of the Java source code used to create the application, as well as a premade
jar file that contains all of the compiled classes. With the jar file, you do not
need to compile the source code; just use the jPlot.jar file to use the application.

To run jPlot, you must specify the jPlot.jar file in the -classpath command-
line option, along with the jPlot application name:

java -classpath jPlot.jar jPlot file

188 Chapter 10

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 188

Using tcptrace in Graphical Mode

After installing xplot or jPlot, you are ready to start graphing information con-
tained in the captured sessions. This section describes how to produce graphs
showing network performance features.

Standard Graphs
There are several command-line options that can be used to generate standard
TCP information graphs from tcptrace. Table 10.5 lists the options.

The tcptrace graphing options behave differently than the console mode
options. Instead of directly creating and displaying the graph, tcptrace creates
data files used by xplot or jPlot to display one or more graphs. When you use
the graphing options, by default, graphs are generated for all of the sessions
contained in the dump file, two files for each session (one for each direction of
the session). If there are lots of sessions in the dump file, this will create lots of
graphs.

Throughput Graph

The -T option produces graphs showing the throughput of each session in the
dump file. Each graph is identified by the session label (such as a2b), along
with the tput identifier (indicating that it is a throughput graph), followed by
an extension of .xpl:

$ tcptrace -T -o6 test1

1 arg remaining, starting with ‘test1’

Ostermann’s tcptrace -- version 6.2.0 -- Fri Jul 26, 2002

6828 packets seen, 6828 TCP packets traced

elapsed wallclock time: 0:00:00.241991, 28215 pkts/sec analyzed

trace file elapsed time: 0:01:56.243460

TCP connection info:

*** 1 packets were too short to process at some point

(use -w option to show details)

6: 192.168.1.1:20 - 192.168.1.2:1031 (k2l) 1070> 688< (complete)

$ ls -al *.xpl

-rw-r--r-- 1 rich rich 61401 Nov 21 09:35 k2l_tput.xpl

-rw-r--r-- 1 rich rich 112 Nov 21 09:35 l2k_tput.xpl

$

tcptrace 189

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 189

Table 10.5 Standard Graphs

OPTION GRAPH

-T Throughput

-R Round-trip time

-S Time sequence

-N Outstanding data

-F Segment size

-G All graphs

As can be seen, you can use the -o option to limit the graphs produced to a
specific session (or group of sessions). The tcptrace command shows the ses-
sions that are graphed, along with the session label (k2l in this example). The
graphs produced are k2l_tput.xpl and l2k_tput.xpl. Depending on the type of
connection, one graph may have more useful information than the other (such
as in an FTP transfer where the bulk of the information is being sent one way).

You can use the xplot or jPlot application to display either an individual ses-
sion graph, each graph separately, or each graph in the same graph window.
Figure 10.2 shows a sample throughput graph generated from a TCP session.

Figure 10.2 Sample throughput graph.

190 Chapter 10

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 190

The throughput graph shows three types of data. The dots (shown in yellow,
if in color) each represent the calculated throughput for each individual seg-
ment. This is calculated from the formula:

(segment size)/((end time of segment)-(end time of previous segment))

The varying line (shown in red, if in color) represents the throughput aver-
age over a set number of dot data points. By default, tcptrace uses the previous
10 data points to produce the average throughput. You can change this value
using the -A command-line option, along with the number of data points to
use in the average:

tcptrace -T -A5 test1

This command calculates the throughput average after every five data
points. The curved line (shown in blue, if in color) shows the third type of data.
This is the throughput average calculated from the start of the session up to the
calculation point. This value will show the more consistent throughput value.

Both xplot and jPlot also allow you to zoom in on the graph to see more
detail. As you can see in Figure 10.3, the data plotted produced a graph with a
wide range of values. By selecting the more active area of the graph and zoom-
ing in, you can see more detail.

Time Sequence Graph

The -S option produces a time sequence graph. This graph is one of the most
useful graphs for troubleshooting network problems. It shows the time
sequence of how packets are sent, and how the receiving host acknowledges
them. Lots of additional features are included in the time sequence graph, such
as retransmitted packets and zero TCP window sizes. Figure 10.3 shows a sam-
ple time sequence graph of a single FTP session.

There are several different lines, shapes, and letters that appear on the time
sequence graph. Table 10.6 describes what the different lines in the graph
represent.

Table 10.6 Time Sequence Graph Lines

OBJECT DESCRIPTION

Yellow line The receive window size as advertised by the receiver

Green line The ACK values returned by the receiver

Green ticks Duplicate ACKS detected

Yellow ticks Duplicate receive window size advertised

(continued)

tcptrace 191

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 191

Table 10.6 (continued)

OBJECT DESCRIPTION

White arrows Sent packet segment, showing the SEQ numbers
contained in the packet

Red Arrow Duplicate (retransmitted) packet segments

White diamond A packet segment that contained the TCP PUSH flag

By observing the lines in the graph, you can see the characteristics of the ses-
sion. Under normal conditions, the slopes of the lines should mirror each
other, and represent the throughput of the packets. You can zoom in on a sec-
tion of the graph to see how the packet segments are sent to the receiver. There
should be multiple packets sent to the receiver, up to the next window-size
level (the yellow line). When the packet segments match the window size, you
should see the ACK value reach the window size, and a new window size is
generated. This cycle continues until all of the data has been transmitted.

Besides the plotted lines, you may see several different characters appear on
the graph. Table 10.7 describes what these characters represent.

Figure 10.3 Sample time sequence graph.

192 Chapter 10

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 192

Table 10.7 Time Sequence Graph Characters

CHARACTER DESCRIPTION

SYN A TCP SYN flag detected (indicating the start of a session)

R A retransmitted segment (shown by the red arrow line)

3 A triple duplicate ACK of a segment

HD A hardware duplicate address detected

P A zero window size probe packet

U A TCP URGENT flag detected (indicating special data)

S A selective ACK (ACKing packets before the window size
reached)

O An out-of-order packet

Z A zero window size advertisement by the receiver

CE Congestion experienced

CWR Congestion window reduced

You can use these objects to determine the flow of the session, and see if a
device is sending lots of zero window size packets.

Traffic Module Graphs
Besides the standard command-line options for generating graphs, the traffic
module contains several options for producing graphs of its own. Each graph
is identified by an option under the -xtraffic command-line option. As men-
tioned in the Using Module Options section, you must enclose module options
in single quotes after the module name:

tcptrace -xtraffic’-A’ test1

Lots of different types of graphs can be generated from the traffic module.
Table 10.8 lists the graphs that are available, and their option names.

Table 10.8 Traffic Module Graphs

OPTION FILENAME DESCRIPTION

-A traffic_active.xpl Active connections

-B traffic_bytes.xpl Bytes per second

-C traffic_openclose.xpl Open and Closed session totals

(continued)

tcptrace 193

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 193

Table 10.8 (continued)

OPTION FILENAME DESCRIPTION

-H traffic_halfopen.xpl Half-open connections

-K traffic_pureacks.xpl Pure ACKs per second

-L traffic_loss.xpl Losses per second

-O traffic_open.xpl Open connections

-I traffic_I_open.xpl Instantaneous open connections

-P traffic_packets.xpl Packets per second

-Q traffic_idle.xpl Idle connections

-R traffic_rtt.xpl Round-trip time

-T traffic_data.xpl Total data sent

-D traffic_long.xpl Long-duration connections

-G Produce all graphs

Most of the traffic module graphs separate out information based on TCP
port number; thus, each graph will show multiple lines, one for each port
present in the session. Like standard graphs, the traffic module graphs show
individual data points, along with separate lines to show averages.

Summary

The tcptrace application is an excellent way to decode network captures per-
formed using the tcpdump (or a similar) package. Instead of having to pore
over line after line of trace information, you can look at the perfectly formatted
tcptrace information.

tcptrace can produce information in two separate formats. The first format
is as text output, showing each detected TCP session, along with pertinent
TCP information for the session. This allows you to see which sessions are
using the most bandwidth on the network, and which sessions are experienc-
ing network problems, such as retransmitted packets.

The second tcptrace output format is a graphical mode. Graph files are pro-
duced of the TCP session information found in the dump file. You must use the
xplot or jPlot graphing programs to analyze the graphing data. Often, being
able to see the data graphed out allows trends and abnormalities to be seen
more easily.

194 Chapter 10

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 194

The next chapter describes another application that analyzes existing
network data. The ntop application produces graphical results of real-time
network data as seen from the monitoring device. This allows you to monitor
actual data to look for network problems as they occur, as well as see cumula-
tive network information, such as protocol distribution. With this feature, you
can easily see what types of traffic are present on your network, and the per-
centage of bandwidth they are consuming.

tcptrace 195

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 195

13 433012 Ch10.qxd 6/16/03 9:11 AM Page 196

197

The ntop application demonstrates still another type of network performance
tool. ntop monitors network traffic that traverses the host network connection.
By analyzing packet headers, ntop can watch for trends in the network traffic,
and display charts and graphs showing network application trends. This can
be extremely helpful when you don’t know what types of packets are present
on busy networks, or which hosts generate or receive the bulk of the network
traffic. This chapter describes how to install and configure ntop to monitor net-
work traffic on your network, and shows you how to use its information to
watch your network performance.

The ntop application was developed at the University of Pisa in Italy to help
network administrators determine which devices are consuming the most
resources on a network. Like the Unix top program, which shows what pro-
grams consume the most system resources, ntop shows network usage based
on which hosts and protocols are consuming the most network resources.
Identifying applications and hosts that are the most active on the network
often allows you to rearrange existing network resources to accommodate the
traffic patterns.

ntop

C H A P T E R

11

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 197

What Is ntop?

The ntop application consists of a single program (ntop) that provides the fol-
lowing functions:

■■ Monitors network packets on a host network interface

■■ Stores packet header information in a local database

■■ Provides a Web interface for users to display network information
using charts and graphs

The ntop application uses the libpcap Unix packet capture library for all of
its packet capturing (see Chapter 2, “Watching Network Traffic,” for more
information on the libpcap library). Once the packet is captured, ntop places
the header information into a database (either a proprietary ntop database or
a standard SQL database, such as mySQL). ntop is not concerned about the
data contents of the packets. Instead, it only reads the pertinent IP, TCP, or
UDP header information to determine the who, what, where, and when of the
network traffic. This information is stored in the database, and can be retrieved
using a standard Web browser from any network client.

There are two classes of information that can be retrieved from the ntop
database:

■■ Network traffic measurements

■■ Network traffic monitoring

The following sections describe how ntop is used to record and observe
these two classes of traffic information.

Traffic Measuring
The ntop application can be used to determine the network bandwidth uti-
lization on a local network. Both the total network bandwidth utilization and
individual host bandwidth utilization are tracked by analyzing the packets on
the network. Here are some of the bandwidth elements that are tracked by
ntop.

Data Received

The ntop application tracks how much data is received by each host identified
on the network (the destination host in the IP header). The data is displayed in
five different categories, shown in Table 11.1.

198 Chapter 11

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 198

Table 11.1 Data Received Categories

CATEGORY DESCRIPTION

Protocol Displays data received by protocol (such as IP, IPX, Decnet,
and Appletalk)

TCP/UDP Displays data received by TCP/UDP application port (such as
FTP, Telnet, SMTP, and DNS)

Throughput Displays bits per second of received data (shown as actual,
average, and peak throughput)

Host Activity Displays the time of day each host was actively receiving
data

NetFlows Shows NetFlow activity

Each of these categories displays the received data information in chart for-
mat. The chart is sorted based on the received data rate. This feature allows
you to see which hosts are receiving the most data on the network. It can be
used to identify busy servers that could be segmented to another place on the
network to increase performance.

Data Sent

The ntop application also tracks the sending hosts, and the type of data sent by
each host. As with the data received, the data sent is displayed in five different
categories (the same categories as for the received data). Each of these cate-
gories displays the sent data information in chart format. The chart is sorted
based on the sent data rate. This feature allows you to see which hosts are
sending the most data on the network. Often, busy clients can be moved to
switched environments to help distribute the network load.

Network Throughput

The network throughput is displayed using graphs, showing the average net-
work load at different points of time. The first graph shows the network
throughput for the last 60 minutes. If ntop has been running longer than one
hour, a second graph is generated, showing a 24-hour graph of network
throughput. If ntop has been running longer than one day, a third graph is
generated, showing a 30-day graph of network throughput. These additional
graphs can be used to see trends in network throughput, or to determine if any
one day of the week or time of day demonstrates a higher network throughput
than any other.

ntop 199

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 199

Traffic Monitoring
Besides seeing how much data is traversing the network, ntop also provides
information on the type of traffic that is present. This information can help you
determine what applications are consuming bandwidth on the network, and
take appropriate actions. This section describes the different types of data ntop
monitors.

Statistics

The ntop application maintains statistics for different packet features. These
statistics show how much traffic of a specific type has been seen by ntop, as
well as indicating which hosts have produced the different types of network
traffic.

Multicast

The Multicast statistic display shows a chart containing information about
each host that has either sent or received multicast packets on the network.
The multicast packets received category indicates the type of multicast packets,
using the standard multicast network addresses. You can track multicast
applications by the network address used in the multicast.

Traffic

The Traffic statistic displays information about all the packets captured by
ntop. It produces five separate pie charts, showing:

■■ Packet destination type (multicast, broadcast, or unicast)

■■ Packet size

■■ Packet protocol (IP, fragmented IP, or non-IP)

■■ IP TTL values

■■ Remote host distance (hop counts)

This basic information about the packets traversing the network can be used
as an overall barometer to determine the health of the network. You can often
tell if the network is experiencing problems by comparing these values against
values recorded during normal network activity.

Hosts

The Hosts statistic chart shows network throughput for each host seen on the
network, sorted by the most active. This display shows the hostname (if
found), the IP address and MAC address of the host, and a bar graph showing
the relative bandwidth consumption of the host. This chart makes it easy to
find busy hosts on the network.

200 Chapter 11

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 200

Domains

The Domains statistic chart shows all of the network domains found in host-
names listed as either the source or destination of captured packets. Each
domain name is listed with its bytes sent and received statistics, and a per-
centage of the total network traffic that the domain data represents.

IP Traffic

The ntop application monitors all IP traffic seen on the network interface and
divides it into three categories, based on the location of both hosts in an IP ses-
sion. The statistics for each category are displayed in separate data charts.

Remote to Local

This chart displays network traffic sent by remotely located hosts destined for
hosts on the local network. The hostname and IP address, along with the total
bytes sent and received for each remote host, are displayed in the chart. At the
bottom of the chart, the total bandwidth consumption from this traffic is
shown. These statistics show how much network traffic is generated from
remote hosts sending data to local hosts.

Local to Remote

This chart displays network traffic sent by hosts on the local network destined
for hosts on remote networks. Again, the hostname and IP address, along with
the total bytes sent and received, are displayed in the chart.

Local to Local

The local to local chart displays network traffic sent by hosts on the local net-
work destined for other hosts on the local network. As with the other cate-
gories, the hostname and IP address for each local host is shown, along with
the total bytes sent and received.

IP Protocols

Besides separating the network traffic by host, ntop also keeps statistics for
each protocol within the IP packets, such as TCP and UDP. Each IP application
is tracked to determine which hosts are using it (local or remote hosts), and
how much traffic it has generated. This information allows you to monitor
which network applications are consuming the most network bandwidth.

Distribution

The Distribution statistics appear in both a pie chart and a text chart, showing
how the IP applications are distributed between local and remote hosts. Each
category is shown within the pie chart, allowing you to see which hosts are
contributing the most to the network bandwidth.

ntop 201

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 201

Besides the pie chart, each category of traffic is shown in a separate data
chart, showing exactly which IP application (shown by TCP or UDP service
name) is producing traffic on the network. The traffic is displayed using both
raw numbers of bytes seen and a bar graph showing the percentage of the
overall network traffic contributed by the application.

Usage

The Usage statistics chart shows each individual IP service detected in the net-
work traffic. Both the service name (such as Telnet or FTP) and the TCP or UDP
port number assigned to the service are displayed. After the service informa-
tion, the clients and servers that were seen using the service are displayed.

This information can be used to detect which IP applications are being
used on the network, along with the clients and servers that are using the
applications.

Sessions

The Sessions statistics chart shows all active IP sessions detected on the net-
work. Each session is displayed in a separate chart, showing the hosts involved
in the session, the session start and end times, and how long the session has
been active. The amount of data sent and received in the session is also dis-
played in the chart.

Routers

If any routers are detected on the network, ntop shows the Router statistics
chart, which displays each detected router and the hosts that have forwarded
packets through the router.

It is usually common knowledge what routers are connected to a network.
However, it is also possible for ordinary hosts to unwittingly act as routers, if
they have multiple network cards connected to separate networks. The ntop
application can detect and display these hosts and the hosts that have been
forwarding packets through them. This can help you detect back doors to the
network and block them.

Before Installing ntop

There are a few things that you must do on the host system before installing
and running ntop. This section describes these functions, and explains how to
prepare the system for ntop.

202 Chapter 11

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 202

Creating the ntop User ID
Although the ntop application must be started by the root user (so it can access
the promiscuous mode on the network card), after it starts it can switch to
using a normal user account on the sytstem. This feature should be used if at
all possible, because it can help prevent hackers from having control of the
host if they happen to break into the ntop program.

The user ID created for ntop should have extremely limited privileges on
the host system. Ideally, it should not have write permission on any system
area of the file system (such as /usr/sbin or /etc), limiting the damage that can
be done if ntop is compromised.

Different Unix systems have different ways to create new user accounts.
Most Linux systems use the adduser program. There are lots of fancy options,
depending on your Linux environment and how you create new users. The
default method:

adduser ntop

(1) creates the user ntop, using the next available user ID number, (2) creates a
group called ntop, using the next available group ID number, and (3) creates a
home directory ntop in the default home directory location (usually /home).
By default, the ntop user will have full permissions for its home directory, and
limited access to system areas (read only). You can take advantage of the ntop
home directory to place all ntop-related database and log files there. This
ensures that the ntop user will have access to the necessary files, and that other
users on the system will not be able to modify them.

NOTE If you do not want to automatically create a home directory for ntop,
use the -M command-line option for adduser.

Loading Support Software
There are plenty of support packages that must be present on the host system
for ntop to compile and run properly. Besides the normal C compiler programs
and libraries, ntop also requires:

■■ The autoconf and automake programs

■■ The gawk program

■■ The gdbm packages (including development files)

■■ The libpcap library

ntop 203

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 203

■■ The OpenSSL package (if you want to use secure HTTP connections)

■■ The mySQL package (if you want to use a mySQL database to store
information)

The autoconf and automake packages are installed by default on most Linux
distributions. If you are using another type of Unix platform, you may have to
download these packages and install them yourself. Both of these packages
can be found at the GNU Foundation Web site (http://www.gnu.org).

WARN I NG At the time of this writing, the current stable version of ntop,
2.1.3, could work with most of the recent versions of autoconf. Unfortunately,
the current development version of ntop, 2.1.51, requires the latest version
of autoconf, 2.50, or higher. I assume that this will be the case when this
development version becomes the latest stable version. In this case, you may
have to upgrade the autoconf program on your Unix distribution to compile
ntop.

Downloading and Installing ntop

The main Web site for ntop is located at http://www.ntop.org. From this main
page, there is a download link, which points to the ntop area on the Source-
Forge download server.

The main SourceForge Web page shows the current development release
source code available for download (currently 2.1.50). To see the latest stable
ntop release, click the View ALL Project Files link. This page shows all of the
available ntop distribution downloads.

The stable release represents the ntop distribution that is known to work in
most Unix environments. You can download the stable source code distribu-
tion, or the RPM binary distribution, from the SourceForge download Web
site. At the time of this writing, the current stable source code distribution of
ntop can be downloaded from the URL:

http://prdownloads/sourceforge.net/ntop/ntop-2.1.3.tar.gz?download

This link takes you to a download area, which allows you to select the server
from which to download the distribution file. The source code distribution file
is a standard .tar.gz file, which needs to be uncompressed and expanded into
a working directory, using the tar command.

NOTE Alternately, you can download the binary RPM distribution, and use the
RPM installation program to install it. The RPM package will check the system
for software dependencies, and inform you if any additional software packages
are required.

204 Chapter 11

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 204

Compiling and Installing gdchart
To create all of the fancy graphs used on the Web pages, ntop uses the gdchart
application. gdchart is an open source application that provides libraries for
easily drawing graphs and pie charts. Before you can begin the ntop compile,
you must first compile and install the gdchart library. Fortunately, this pack-
age is included with the ntop source code distribution. The gdchart distribu-
tion is located under the ntop-2.1.3 directory in the gdchart0.94c subdirectory.
This contains the source code for gdchart and its required libraries. You must
create the library files for each of the required packages before compiling
gdchart, and subsequently, ntop.

To start off, change to the gdchart0.94c directory, and run the configure pro-
gram. This creates the makefile for the gdchart libraries. However, before you
can build the gdchart libraries, you must create the libraries that it requires
(the gd and zlib libraries). The gd libraries are used to create PNG and JPEG
images, which are used to display the fancy graphs on the ntop Web page. The
zlib library is used for data compression of the graphs.

First, you must create the zlib library. This is located in the directory zlib-
1.1.4, under the gdchart0.94c directory. After changing to this directory, run the
standard configure and make programs to create the zlib library files.

Next, you must create the libpng library. Change to the gd-1.8.3/libpng-
1.2.1 directory (in case you are getting lost in directories, you should now be in
the ntop-2.1.3/gdchart0.94c/gd-1.8.3/libpng-1.2.1 directory). Instead of using
the configure program, the libpng application contains sample makefiles for
different Unix platforms in the scripts directory. Each platform makefile is
named makefile.platform, where platform represents your Unix distribution
name (such as hpux, linux, macosx, and so on).

WARN I NG While the makefile samples are created for different Unix
platforms, there is one exception to this rule. If your Unix distribution is using
the GNU C compiler (gcc), you should use the makefile.gcc sample file, no
matter what your Unix distribution is.

Copy the appropriate makefile for your particular Unix distribution to the
libpng-1.2.1 directory (make sure you rename it Makefile):

[rich@shadrach libpng-1.2.1]$ cp scripts/makefile.gcc Makefile

Now that there is a makefile, you can run the standard make command to
build the proper libpng libraries.

Now that you’ve created all of the necessary libraries, you can finally com-
pile the gdchart library. Go to the gdchart0.94c directory, and run the make
program. If all went well, you should get a clean compile, which creates the
library file libgdchart.a.

ntop 205

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 205

NOTE If you are using the GNU C compiler to build ntop, you can run the
buildAll.sh script in the gdchart0.94c directory to perform all of the above
steps automatically.

As a last step before compiling ntop, it is a good idea to install the gdchart
and zlib libraries on the host system. While some systems do not require this
step to compile ntop, many do. To install the libraries, change to the appropri-
ate directories, and run the make program with the install option (make
install) as the root user.

NOTE The libpng library does not include an install option in the makefile.
ntop will need to find this library to compile properly. You must copy the
libpng.a file to a common library directory on your system (such as /usr/lib),
or to the ntop distribution working directory.

Compiling ntop
Now that all of the pieces are ready, you can begin the ntop compile process.
You may notice that ntop does not have a configure script in the working
directory. The ntop distribution uses a different script file to create the config-
ure program script: autogen.sh.

The autogen.sh script is located in the ntop-2.1.3/ntop directory. When you
run the autogen.sh script, it will automatically build the configure script, and
run it. You will see the standard configure script output, looking for packages
and files within the system. After the autogen.sh script finishes, it displays a
message showing the ntop configuration that will be created by the compiler.

If you are satisfied with the compiler options, you can run the make pro-
gram to create the ntop executable file. After creating the executable file, you
can install it to the installation directory by running the make program with
the install option (again as root user).

Running ntop

The ntop program is an extremely versatile application, which allows you to
specify many options for how it runs. Unfortunately, with versatility comes
complexity. There are lots of command-line options that must be set for ntop to
work properly. This section describes how to get started using ntop for your
network environment.

206 Chapter 11

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 206

Starting ntop for the First Time
The first time you run ntop, it must create the databases that it needs to track
network information, as well as set the password used by the administrator
account (called admin). This requires a special session to be started, separate
from a normal ntop session.

Since ntop attempts to place the network interface cards in promiscuous
mode, you must be the root user to start ntop. The -A command-line option is
used to tell ntop to prompt for the admin password, and to stop ntop. You will
also want to use the -P option, which allows you to specify where the ntop
database files will be located. The easiest place to put them is in the newly cre-
ated home directory for ntop, /home/ntop. You will also probably want to use
the -u option, which allows you to specify ntop to run as the ntop user ID.

A sample ntop first session should look like this:

/usr/local/bin/ntop -P /home/ntop -u ntop -A

04/Dec/2002 19:34:39 Initializing GDBM...

04/Dec/2002 19:34:39 Started thread (1026) for network packet analyser.

04/Dec/2002 19:34:39 Started thread (2051) for idle hosts detection.

04/Dec/2002 19:34:39 Started thread (3076) for DNS address resolution.

04/Dec/2002 19:34:39 Started thread (4101) for address purge.

Please enter the password for the admin user:

Please enter the password again:

04/Dec/2002 19:34:46 Admin user password has been set.

#

The admin user password is used for changing settings and permissions
from the ntop Web interface. Be sure to set the password to something that will
not easily be determined (but, of course, don’t forget what you set it to).

After the admin password is set, ntop will exit back to the command
prompt. You can see what files were created by looking in the /home/ntop
directory (or whatever directory you specified as the default directory):

ls -l /home/ntop

total 160

-rw-rw-r-- 1 root root 12288 Dec 4 13:36 LsWatch.db

-rw-r--r-- 1 root root 12348 Dec 4 14:12 addressCache.db

-rw-r--r-- 1 root root 19184 Dec 4 14:12 dnsCache.db

-rw-r--r-- 1 root root 12288 Dec 4 13:34 hostsInfo.db

-rw-r--r-- 1 root root 12437 Dec 4 13:36 ntop_pw.db

-rw-r--r-- 1 root root 12517 Dec 4 13:36 prefsCache.db

#

These files are the database files (in gdbm format) used to contain all of the
network information retrieved from the network monitoring. The ntop Web
interface can be used to extract the information from these databases.

ntop 207

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 207

ntop Command-Line Parameters
After the first run of ntop to create the database files and the admin password,
you are ready to start ntop for real. There are lots of command-line parameters
that can be used when starting ntop. Table 11.2 shows some of the more com-
mon command-line parameters, and what they are used for.

Table 11.2 ntop Command-Line Parameters

PARAMETER DESCRIPTION

-a Specifies the location of the Web server access log

-c Specifies that idle hosts are not purged from the database

-d Runs ntop as a daemon process

-f Specifies a traffic dump file

-i Specifies interface name (or names) to monitor

-l Specifies a file to dump captured packets to

-p Specifies the TCP/UDP protocols to monitor

-q Creates a file in which to place suspicious-looking packets
found on the network

-u Specifies the username or ID of a user ntop should run as
after initializing

-w Specifies the HTTP server port number (the default is 3000)

-A Prompt to set the admin password

-B Specifies a tcpdump expression for filtering monitored
packets

-L Sends all ntop output to the syslog instead of standard
output

-M Merges data from all network interfaces instead of keeping
them separate

-O Specifies a directory in which to place captured packets
(if enabled)

-P Specifies a directory in which to place ntop database files

-S Saves traffic information on shutdown (default is start fresh
on each startup)

-W Specifies for ntop to run in secure web mode, and sets the
port number (default is 3001)

208 Chapter 11

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 208

Using ntop Command-Line Parameters
With a plethora of different command-line options, you can fine-tune ntop to
perform many different monitoring functions. The amount and type of traffic
that ntop monitors greatly depend on where it is plugged into the network.
This section describes some different scenarios for using ntop, and explains
how to configure ntop to produce meaningful information for the scenario.

Monitoring Network Traffic

The most basic use for ntop is to allow an existing network device to monitor
network traffic. When using an existing host, you will most likely want to
place the ntop log and database files in a separate directory apart from the nor-
mal system files, allowing only the ntop user ID access to them. You will also
want to run ntop as a background process, and redirect any messages gener-
ated by ntop to the standard system log.

The following command shows ntop running as a daemon process, using
the /home/ntop directory for the database files and for the HTTP access log.
Any standard ntop messages will be logged in the normal system log file,
using syslog:

/usr/local/bin/ntop -d -P /home/ntop -u ntop -a /home/ntop/access.log

-L

Wait please: ntop is coming up...

#

That’s it—no other information is displayed on the terminal. All of the ntop
information is sent to the standard log file for your Unix system. On my Linux
distribution, it is placed in the /var/log/messages file.

Note that there are several separate threads started for various ntop func-
tions. If you look at the running processes, you should see each of the ntop
threads running:

ps ax | grep ntop

1878 ? S 0:00 /usr/local/bin/ntop -d -P /home/ntop -u ntop -L -a /h

1879 ? S 0:00 /usr/local/bin/ntop -d -P /home/ntop -u ntop -L -a /h

1880 ? S 0:00 /usr/local/bin/ntop -d -P /home/ntop -u ntop -L -a /h

1881 ? S 0:00 /usr/local/bin/ntop -d -P /home/ntop -u ntop -L -a /h

1882 ? S 0:00 /usr/local/bin/ntop -d -P /home/ntop -u ntop -L -a /h

1883 ? S 0:00 /usr/local/bin/ntop -d -P /home/ntop -u ntop -L -a /h

1884 ? S 0:00 /usr/local/bin/ntop -d -P /home/ntop -u ntop -L -a /h

1885 ? S 0:00 /usr/local/bin/ntop -d -P /home/ntop -u ntop -L -a /h

#

In this instance, there are eight total ntop processes running on the system
after ntop is started.

ntop 209

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 209

Analyzing a tcpdump Dump File

The ntop application can also be used to analyze sessions contained in a tcp-
dump file. The -f option tells ntop to take its network data from a stored tcp-
dump file instead of from a network interface. This feature can be invaluable
in analyzing captured network traffic.

Remember that once the dump file has been read by ntop, all of the data will
be available on the ntop Web page interface. No additional data will be cap-
tured from the network interface(s). Depending on the data present in the
dump file, it is possible that not all of the ntop statistics pages will have useful
information. Figure 11.1 shows a sample statistics page from a sample FTP ses-
sion captured by tcpdump.

The ntop chart shows both hosts involved in the FTP transfer. You can click
on either host IP address to display detailed statistics about the host, and the
data that was transferred.

Figure 11.1 ntop data received window.

210 Chapter 11

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 210

ntop Access Log File
Each time the ntop Web server is accessed, it logs the access into a log file as an
entry. By default, the log file is ntop.access.log, and is located in the directory
from which ntop was started (assuming that the user ID that ntop is running
under has write permissions to the directory). You can use the -a option to
specify an alternate location for the access log file (as shown in the previous
command-line example).

Each item retrieved from the ntop Web server is logged in the database, cre-
ating quite a lot of entries for a single access. A few sample entries look like:

192.168.1.6 - - [04/Dec/2002:18:23:39 -0500] - “GET / HTTP/1.1” 200 1484 4

192.168.1.6 - - [04/Dec/2002:18:23:39 -0500] - “GET /index_top.html

HTTP/1.1” 200 2301 5

192.168.1.6 - - [04/Dec/2002:18:23:39 -0500] - “GET /index_inner.html

HTTP/1.1” 200 1443 4

192.168.1.6 - - [04/Dec/2002:18:23:39 -0500] - “GET /home.html HTTP/1.1”

200 1056/3046 22

192.168.1.6 - - [04/Dec/2002:18:23:39 -0500] - “GET /functions.js

HTTP/1.1” 404 675 0

192.168.1.6 - - [04/Dec/2002:18:23:39 -0500] - “GET /functions.js

HTTP/1.1” 200 624/1740 8

The entries are recorded using the standard Apache Web server log format.
The remote host IP address, the time the access occurred, the file downloaded,
and information about the bytes transferred are displayed.

Viewing ntop Data

Using the ntop Web interface puts lots of network data at your disposal. Most
of the data charts and graphs are fairly self-explanatory. This section guides
you through some of the data, explaining which pieces to watch to gain infor-
mation about your network.

Connecting to ntop
The ntop application contains a built-in Web server, so connecting to ntop is a
snap. By default, the ntop Web server listens to TCP port 3000, so it should not
interfere with any other Web servers running on the host (unless, of course,
they too are using port 3000). You can always change the Web server port,
using the -w command-line parameter. After connecting to the ntop host, you
should see the main ntop Web page.

ntop 211

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 211

There are five network information categories to choose from, along with one
administration category. To access the individual categories from this page, you
must click on one of the tabs at the top of the page:

■■ Data Rcvd contains information about received data.

■■ Data Sent contains information about sent data.

■■ Stats contains information about packets (packet size, packet type, and
network load).

■■ IP Traffic contains information about IP packet trends (senders and
receivers).

■■ IP Protos contains information about IP application distribution.

■■ Admin allows you to reset statistics, shut down the server, and create
and modify ntop users.

When you click on each of the general tabs, a new frame appears on the left
side of the window, providing additional menu items to select. Each menu
contains links to additional Web pages that contain the individual charts and
graphs used to display the data.

Watching Hosts
The information about each host captured by ntop is stored in the ntop data-
base. You can easily find information about individual hosts in the Data Rcvd
and Data Sent sections. The main charts for these categories show the proto-
cols, activity times, and throughputs for each host detected on the network.
Figure 11.2 shows a sample throughput chart for the Data Rcvd category.

This chart displays the actual, average, and peak throughput for each host
detected, in both bits per second and packets per second. This information can
be used to detect busy hosts on the network.

By clicking on a single host entry, you can see the overall information about
that host. Figure 11.3 shows an individual host information Web page.

Lots of useful information is available on the host information page. The
Total Data Sent entry shows not only the total amount of data sent, but also if
there was any data sent in retransmitted packets. A high percentage value here
could indicate a network problem.

You can also compare the Sent vs. Recvd packets and data lines. In this
example, the packets sent and received are close, but the data is vastly differ-
ent. This indicates that most of the data was sent from the host to the remote
device, although the packet counts were similar. Most likely, an acknowledg-
ment packet was sent for almost every data packet. This could be indicative of
a small TCP window size on the host or the client.

212 Chapter 11

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 212

Figure 11.2 Data Rcvd host throughput chart.

Figure 11.3 ntop host information page.

ntop 213

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 213

Watching Network Traffic
The ntop application also provides charts and graphs allowing you to monitor
the overall network performance. The most obvious graph is the Network
Load page, available under the Stats category tab.

By watching the graph(s) available on that page, you can monitor the net-
work segment load at each time of the day or week. Often, data trends can be
detected, such as high data volumes that are present at the same time of day
(or day of the week). Remote host backups and regular file transfers often
cause this. Figure 11.4 shows a sample network load graph.

When ntop is first started, only a single graph is displayed, showing the net-
work load values for the last 60 minutes. After ntop has been running for an
hour, a second graph is displayed on the same page, showing the network load
for the previous 24 hours. After ntop has been running for a day, a third graph
is displayed on the same page, showing the network load for the previous 30
days. This information can be used to help detect trends, or allow you to detect
odd network loads.

Figure 11.4 ntop network load graph.

214 Chapter 11

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 214

Summary

The ntop application monitors network activity, and stores statistical informa-
tion about the traffic. You can access the statistical information using the ntop
Web page, which provides an easy, graphical way to analyze the network
information.

The ntop application provides information about the type of traffic seen on
the network. This includes protocols, applications, hosts, and network band-
width. Using this information, you can easily monitor and analyze what is hap-
pening on the network. You can use the protocol distribution information to
determine what protocols are prevalent on the network. The application infor-
mation shows which applications (such as Telnet, FTP, or HTTP) are producing
the most network traffic, and what hosts are participating in the applications.

Since the ntop data can be accessed via any Web browser, you do not even
need to be located on the same network as the ntop host. You can access the
ntop network information from any location that can access the host via HTTP.
If the host is accessible from the Internet, you can access your network infor-
mation from anywhere.

The next chapter rounds off the network performance tools section by show-
ing a few network scenarios, and explaining which tools could be used to
determine network performance. When you know what tools to use when,
you can quickly and easily determine network performance, and possibly
determine solutions to network problems.

ntop 215

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 215

14 433012 Ch11.qxd 6/16/03 9:11 AM Page 216

217

Now that you have a toolkit full of tools to use for network performance test-
ing, its time to learn when to use each one while troubleshooting your network.
This chapter first presents a simple wrap-up of each tool, describing what each
is best at. This should provide you with a handy one-stop-shopping reference
guide to the tools. Next, different scenarios are presented, showing how dif-
ferent tools can be used both to test networks and to gather different types of
network information.

Each of the network performance testing tools presented in this book has
unique characteristics. By knowing when to use each tool, you can make the
most of your network-testing time, and find network problems more quickly.
To recap, the network performance tools are:

■■ netperf

■■ dbs

■■ Iperf

■■ Pathrate

■■ Nettest

■■ NetLogger

■■ tcptrace

■■ ntop

Comparing Network
Performance Tools

C H A P T E R

12

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 217

Tools for Testing the Network

The first class of tools is those that send test data across the network to deter-
mine network characteristics. These tools provide a way for you to determine
the overall throughput of the network, along with some basic characteristics,
such as network speed and dropped packets.

One of the biggest complaints of network customers is network response
times. The network administrator must always be aware of the network per-
formance, and how it affects application response times for customers. Having
tools available to help detect when network response times are slowing down
can be an advantage for all network administrators.

The main feature of many of the network performance tools is the ability to
test network bandwidth and response times. Since there are many different
ways to transmit data across the network, there are also many different tests
that can be performed on the network to measure response times. The two
most common methods of transferring data across the network are:

■■ Bulk data transfers, such as network copies and FTP sessions

■■ Request/response pairs, such as HTTP sessions between Web browsers
and servers

This section shows how to use the proper network tool to help troubleshoot
problems with the different types of network traffic.

Bulk Data Transfers
Bulk data transfers, such as FTP sessions and file copies, are often difficult to
diagnose when customers begin having response time problems. Often, per-
forming a simple ping of the remote host proves nothing, as the simple ping
packet has no problem reaching the host, and can possibly even reach the host
in normal time. The problem is often due to dropped packets, causing packet
retransmissions.

However, that is not the only cause of poor response time in bulk data trans-
fers. Bulk data transfers are dependent on many different variables:

■■ How quickly the sending host can read the data from its disk

■■ How quickly the receiving host can write data to its disk

■■ How much data the receiving host can accept at a time
(TCP window size)

■■ The network bottleneck speed between the two hosts

■■ The network utilization at the time of the data transfer

218 Chapter 12

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 218

Often, before anyone even looks at the server variables, it is the network
administrator’s responsibility to prove that the network is not the cause of the
poor response times. You must devise a strategy for quickly determining if the
network is the source of the poor response time.

A strategy to use for testing bulk data transfer problems is to examine the
network path between the two endpoints. You must determine both the maxi-
mum network speed between the two endpoints and the actual network band-
width available for the application during normal production hours. The
following sections describe how to use the different tools to accomplish this.

Using Pathrate to Find the Network Bottleneck

The first step is to determine the maximum network speed available between
the two hosts. This value will greatly affect the overall performance of the data
transfer. As discussed in Chapter 1, “Defining Network Performance,” even
though the hosts may be connected to the network at high speeds, there could
always be a limiting link between the host connections. Your job is to find the
limiting link.

The Pathrate application attempts to determine the overall throughput
between two endpoints on the network. This will give you an idea of the net-
work connectivity between the hosts having the data transfer problems.

Ideally, you should place the two Pathrate hosts on the same segments as
the data transfer hosts (or even use the same hosts, if they are Unix devices).
This will provide the best information about the network links.

NOTE If you are using separate hosts for the Pathrate test, make sure that
they connect to the network at the same speeds as the actual hosts.

The Pathrate application uses two programs: (1) pathrate_snd, to wait for
client connections, and (2) pathrate_rcv, to connect to the remote host running
pathrate_snd. Performing the Pathrate test on two hosts produces the follow-
ing result:

$./pathrate_rcv 192.168.1.6

pathrate run from 192.168.1.1 to 192.168.1.6 on Wed Dec 11 19:20:11 2002

--> Minimum acceptable packet pair dispersion: 42 usec

-- Maximum train length discovery --

Train length: 2 -> 9.7 Mbps

Train length: 3 -> 9.7 Mbps

Train length: 4 -> 9.7 Mbps

Train length: 5 -> 9.7 Mbps

Train length: 6 -> 9.7 Mbps

Train length: 8 -> 9.7 Mbps

Train length: 10 -> 9.7 Mbps

Comparing Network Performance Tools 219

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 219

Train length: 12 -> 9.7 Mbps

Train length: 16 -> 9.7 Mbps

Train length: 20 -> 9.7 Mbps

Train length: 24 -> 9.6 Mbps

Train length: 28 -> 9.7 Mbps

Train length: 32 -> 9.7 Mbps

Train length: 36 -> 9.6 Mbps

Train length: 40 -> 9.7 Mbps

Train length: 44 -> 9.7 Mbps

Train length: 48 -> 9.7 Mbps

--> Maximum train length: 48 packets

-- Preliminary measurements with increasing packet train lengths --

Train length:2 -> 9.7Mbps 9.6Mbps 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps

9.7Mbps

Train length:3 -> 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps

9.7Mbps

Train length:4 -> 9.8Mbps 9.7Mbps 9.8Mbps 9.8Mbps 9.7Mbps 9.8Mbps

9.7Mbps

Train length:5 -> 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps

9.8Mbps

Train length:6 -> 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps

9.7Mbps

Train length:7 -> 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps

9.8Mbps

Train length:8 -> 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps

9.7Mbps

Train length:9 -> 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps

9.7Mbps

Train length:10-> 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps 9.7Mbps

9.7Mbps

--> Resolution: 2 kbps

--> Coefficient of variation: 0.000

Sufficiently low measurement noise - `Quick-termination’

Final capacity estimate : 9.7 Mbps to 9.7 Mbps

$

As can be seen from the Pathrate output, the estimated network bottleneck
speed between the two devices is 9.7 Mbps. This would be consistent with a
10-Mb network connection. This shows that somewhere along the network
path, a 10-Mb connection is the limiting link.

The fact that a 10-Mb connection is the limiting link doesn’t mean that it is
the cause of the poor response times. If this network configuration has always
been there, the customers should not have noticed any difference in perfor-
mance. The next step is to determine if something has happened to cause the
link to become saturated.

220 Chapter 12

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 220

Using netperf to See Actual Network Bandwidth

Now that you know there is a 10-Mb connection between the two endpoints,
you can start looking at the traffic that is traversing that link. The netperf
application allows you to perform multiple bulk data transfer tests to see the
available bandwidth in the network link.

Since the problem has been noticed on bulk data transfers, you can use the
stream mode of netperf to send a constant stream of data between the test
hosts. This test will help determine the speed at which the bulk data transfer
will occur.

The first netperf test uses the default TCP stream test. The default test time
of 10 seconds is probably not a good representation of an actual data transfer.
You might want to select a longer test time, such as two or more minutes:

$./netperf -H 192.168.1.6 -l 300

TCP STREAM TEST to 192.168.1.6 : histogram : interval : dirty data

Recv Send Send

Socket Socket Message Elapsed

Size Size Size Time Throughput

bytes bytes bytes secs. 10^6bits/sec

32768 16384 16384 300.04 6.90

$

This example of the network bandwidth test shows a fairly low throughput
level for the link, slightly less than 7 Mbps. This value shows that the transfer
has a fairly good throughput value. The next step is to find out if this is the lim-
iting factor in the bulk data transfer.

You can use the tcp_stream_script script file in netperf to perform multiple
TCP stream tests, each using a different message size. This test can help deter-
mine if there could be a router problem between the two network endpoints.
Routers (and sometimes switches) use different buffer pools for different sizes
of network packets. Sometimes a router buffer pool for one size of packet will
overflow, causing the router to randomly drop packets of that size, while the
other buffer pools are just fine. By using different message sizes, you can see if
the throughput is similar for each test. A sampling of the total output looks like
this:

$./tcp_stream_script 192.168.1.6

./netperf -l 60 -H 192.168.1.6 -t TCP_STREAM -i 10,2 -I 99,5 -- -m 4096

-s 57344 -S 57344

TCP STREAM TEST to 192.168.1.6 : +/-2.5% @ 99% conf. : histogram :

interval : dirty data

Comparing Network Performance Tools 221

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 221

Recv Send Send

Socket Socket Message Elapsed

Size Size Size Time Throughput

bytes bytes bytes secs. 10^6bits/sec

57344 131070 4096 60.06 6.89

./netperf -l 60 -H 192.168.1.6 -t TCP_STREAM -i 10,2 -I 99,5 -- -m 8192

-s 57344 -S 57344

TCP STREAM TEST to 192.168.1.6 : +/-2.5% @ 99% conf. : histogram :

interval : dirty data

Recv Send Send

Socket Socket Message Elapsed

Size Size Size Time Throughput

bytes bytes bytes secs. 10^6bits/sec

57344 131070 8192 60.07 6.86

.

.

./netperf -l 60 -H 192.168.1.6 -t TCP_STREAM -i 10,2 -I 99,5 -- -m 32768

-s 8192 -S 8192

TCP STREAM TEST to 192.168.1.6 : +/-2.5% @ 99% conf. : histogram :

interval : dirty data

Recv Send Send

Socket Socket Message Elapsed

Size Size Size Time Throughput

bytes bytes bytes secs. 10^6bits/sec

8192 65536 32768 60.01 8.48

If you wish to submit these results to the netperf database at

http://www.cup.hp.com/netperf/NetperfPage.html, please submit each

datapoint individually. Individual datapoints are separated by

lines of dashes.

$

222 Chapter 12

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 222

Although the larger packets in the TCP stream test had a faster throughput,
it is not significantly faster, so it does not indicate a router buffer problem. It
appears that something has overloaded the network link. The next step is to
try to determine what is overloading the network.

Using ntop to Analyze Network Traffic

Determining what traffic is present on a network path is often a tricky thing to
do. The hardest part is determining the point in the path where you should
take your samples. Depending on where the bulk data transfer is traversing
the network, you may have to sample several points on the network to deter-
mine where the network bottleneck is located.

Since the goal is to see what network traffic is clogging the bulk data trans-
fers, ideally you want to find the bottleneck point in the network, and deter-
mine what traffic is passing through it. Mapping out the network path
between the two endpoints is helpful in getting a handle on where the bottle-
neck can be. Once the bottleneck is found, try to place the network monitor on
it and capture packets for a while.

NOTE Many switches have the ability to set a port in monitor mode, where it
can snoop on the traffic present on another port on the switch. You can use this
feature to capture packets for ntop.

After letting ntop collect network data for a while, you can connect to the
ntop host, using your Web browser, and watch the data statistics. First, you
should check out the Stats category of data, starting with the Traffic menu
item. This will give you a quick overview of the traffic seen on the network
segment. Figure 12.1 shows the traffic distribution based on destination type.

The traffic distribution shows that the majority of the packets were unicast
packets—that is, they were destined for a single host. If the majority of the traf-
fic on a segment is broadcast packets, then you may have a broadcast storm on
your hands.

The next thing to check is the protocol that is the most prevalent in the cap-
tured packets. Figure 12.2 shows the protocol distribution section of the Traffic
menu item graph.

Comparing Network Performance Tools 223

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 223

Figure 12.1 Network packet destination distribution.

Figure 12.2 Network packet protocol distribution.

224 Chapter 12

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 224

From the graph and data shown in Figure 12.2, it is obvious that the major-
ity of the network traffic is TCP applications. The next step is to find out what
applications are causing the traffic. Figure 12.3 shows the TCP/UDP applica-
tion distribution found in the captured network packets.

By observing the graph in Figure 12.3, you can see that the majority of the net-
work traffic seen on the segment is FTP-related. This shows that the bulk data
transfer is consuming most of the available network bandwidth already. No
additional network traffic appears to be hampering the network response times.

Using NetLogger to Analyze Host Functions

With the network showing no signs of problems, the next step is to try to deter-
mine if either of the hosts is the problem. This is right up NetLogger’s alley.

You can either add NetLogger API calls to existing network applications, or,
if you do not have access to the network application source code, you can cre-
ate your own test application that logs the read, write, and network times for
a data transfer across the network. To observe the complete process in a single
NetLogger graph, you should log both host entries to a single log file. This can
be accomplished by two different methods. You can create two separate log
files, one on the client and another one on the server, and merge them together
(remember to synchronize the system clocks). Alternately, you can use the
netarchd program on a single host to accept log entries from both hosts into a
single log file.

After the test log file is created, you can view it using the nlv_view program.
Figure 12.4 shows a sample log file graph from two simple network tests on
the same graph.

The test graph shows that the time it took the receiving host to write the data
to disk was longer than the network transfer process. This indicates that the
response time problem could most likely be related to the disk access speed on
the receiving host.

Request/Response Traffic
Thanks to the popularity of Web servers, another common type of network
traffic is the request/response packet pair. This traffic results in a client Web
browser sending a short Web request packet for a Web page, and the Web
server responding with a larger Web response packet. The problem with this
short exchange is that it is encapsulated within a TCP session, which means
that plenty of TCP overhead packets are required to establish the session, pass
the data, and close the session.

While an individual Web session may not be a problem for the network, hav-
ing hundreds (or even thousands) of sessions traversing across a network link
can cause a problem. This section shows how to simulate and track Web traffic
on the network, to watch the performance characteristics of the network links.

Comparing Network Performance Tools 225

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 225

Figure 12.3 Network packet application distribution.

Figure 12.4 Graph of data read, network transfer, and write.

226 Chapter 12

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 226

Using netperf to Simulate HTTP Traffic

The netperf application can also be used to simulate HTTP traffic on a local
network. The TCP_CRR test can be used to perform simple multiconnection
request/response sessions, which simulates normal HTTP trafic.

By default, the TCP_CRR test uses small packet sizes for both the request
and the response. In reality, while the request packet is often small (just the
URL of the Web site), the response packet returned by the Web server may be
quite large. To make the test more realistic, you should specify a larger response
packet size. It is also a good idea to take samples at varying test duration
lengths. A sample set of tests looks like this:

$./netperf -t TCP_CRR -H 192.168.1.1 -- -r 32,1034

TCP Connect/Request/Response TEST to 192.168.1.1 : interval : dirty data

Local /Remote

Socket Size Request Resp. Elapsed Trans.

Send Recv Size Size Time Rate

bytes bytes bytes bytes secs. per sec

32768 32768 32 1034 10.00 339.56

16384 87380

$./netperf -H 192.168.1.1 -t TCP_CRR -l 60 -- -r 32,1034

TCP Connect/Request/Response TEST to 192.168.1.1 : interval : dirty data

Local /Remote

Socket Size Request Resp. Elapsed Trans.

Send Recv Size Size Time Rate

bytes bytes bytes bytes secs. per sec

32768 32768 32 1034 60.01 342.79

16384 87380

$./netperf -t TCP_CRR -H 192.168.1.1 -l 300 -- -r 32,1034

TCP Connect/Request/Response TEST to 192.168.1.1 : interval : dirty data

Local /Remote

Socket Size Request Resp. Elapsed Trans.

Send Recv Size Size Time Rate

bytes bytes bytes bytes secs. per sec

32768 32768 32 1034 300.02 340.31

16384 87380

$

This test shows the use of three different test lengths: 10 seconds, 60 seconds,
and 300 seconds. Some servers can sustain short bursts of sessions, but have
problems when the bursts become longer. By selecting three different test
lengths, you can observe if there is any decrease in the transaction rate.

This test shows that the network link (and host hardware) can support about
340 transactions per second. Of course, this test doesn’t take into account any
database requirements on the server side.

Comparing Network Performance Tools 227

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 227

Using tcptrace to Watch HTTP Sessions

If you want more information about how each individual HTTP session
behaves, you can use tcpdump to trace the netperf test session, and then ana-
lyze the captured data using tcptrace.

WARN I NG You won’t want to capture a netperf session that’s too long.
As seen in the statistics above, there are over 300 sessions per second.
A 10-second netperf test will generate 3,000 TCP sessions! You would not
want to trudge through any more than that.

On the same host that you are using for the netperf test (either the client or
the server), start the tcpdump monitor, using the command:

tcpdump ip host hostname -w test.dmp

This monitors all traffic from the specified host hostname. You should use the
hostname of the remote device from the host performing the capture. All of the
captured packets will be stored in the test.dmp file.

When the netperf test is complete, you can analyze the sessions in the
test.dmp file with the tcptrace program. You will see lots of sessions, all of
which are similar, with the exception of the control sessions at the start and
end of the test. You can zero in on a single session using the -o command
option, and display the statistics from the session using the -l option:

$ tcptrace -l -o6 test2

1 arg remaining, starting with ‘test2’

Ostermann’s tcptrace -- version 6.2.0 -- Fri Jul 26, 2002

33973 packets seen, 33973 TCP packets traced

elapsed wallclock time: 0:00:00.604255, 56222 pkts/sec analyzed

trace file elapsed time: 0:00:14.006799

TCP connection info:

3397 TCP connections traced:

================================

TCP connection 6:

host k: 192.168.1.1:5140

host l: 192.168.1.6:1898

complete conn: yes

first packet: Thu Dec 12 18:36:35.928762 2002

last packet: Thu Dec 12 18:36:35.931551 2002

elapsed time: 0:00:00.002789

total packets: 10

filename: test2

k->l: l->k:

total packets: 5 total packets: 5

ack pkts sent: 4 ack pkts sent: 5

pure acks sent: 2 pure acks sent: 2

228 Chapter 12

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 228

sack pkts sent: 0 sack pkts sent: 0

max sack blks/ack: 0 max sack blks/ack: 0

unique bytes sent: 32 unique bytes sent: 1034

actual data pkts: 1 actual data pkts: 1

actual data bytes: 32 actual data bytes: 1034

rexmt data pkts: 0 rexmt data pkts: 0

rexmt data bytes: 0 rexmt data bytes: 0

zwnd probe pkts: 0 zwnd probe pkts: 0

zwnd probe bytes: 0 zwnd probe bytes: 0

outoforder pkts: 0 outoforder pkts: 0

pushed data pkts: 1 pushed data pkts: 1

SYN/FIN pkts sent: 1/1 SYN/FIN pkts sent: 1/1

urgent data pkts: 0 pkts urgent data pkts: 0 pkts

urgent data bytes: 0 bytes urgent data bytes: 0 bytes

mss requested: 1460 bytes mss requested: 1460 bytes

max segm size: 32 bytes max segm size: 1034 bytes

min segm size: 32 bytes min segm size: 1034 bytes

avg segm size: 31 bytes avg segm size: 1032 bytes

max win adv: 33580 bytes max win adv: 5840 bytes

min win adv: 32546 bytes min win adv: 5840 bytes

zero win adv: 0 times zero win adv: 0 times

avg win adv: 33210 bytes avg win adv: 5840 bytes

initial window: 32 bytes initial window: 1034 bytes

initial window: 1 pkts initial window: 1 pkts

ttl stream length: 32 bytes ttl stream length:1034 bytes

missed data: 0 bytes missed data: 0 bytes

truncated data: 0 bytes truncated data: 992 bytes

truncated packets: 0 pkts truncated packets: 1 pkts

data xmit time: 0.000 secs data xmit time: 0.000 secs

idletime max: 1.9 ms idletime max: 2.0 ms

throughput: 11474 Bps throughput: 370742 Bps

$

By looking at the long view of an individual session, you can see what is
happening on the network and the server. In this sample session, you can see
that there were no retransmitted packets and no zero window size packets.
Everything appears to be working just fine.

You can also use the tcptrace -S option to produce a graph showing the time
sequence of the request/response test. By observing the time sequence graph
of the packets, you can see any retransmitted packets or duplicate ACKS, both
of which can affect the response time of the session.

Analyzing Production Traffic

Although performing network tests using canned test packages is a good way
to observe the network’s behavior, there is still no substitute for real produc-
tion data on the network. The tcptrace and ntop applications can be used to
watch for potential problems in existing network traffic.

Comparing Network Performance Tools 229

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 229

It is good to see actual network sessions of different types, so as to know
when you see something that is not normal. This section shows how to use the
tcptrace and ntop applications to watch different types of common IP sessions.

Analyzing an FTP Session
When watching FTP sessions, it is important to watch the packet retransmis-
sions. Retransmitted packets can greatly increase the time that it takes to trans-
fer the file across the network. Packet retransmissions often indicate a network
problem somewhere in the network path between the two endpoints, either an
overloaded segment or a bad network device.

The tcpdump application can be used to capture the FTP session data. This
can be done by placing the capture host along the network path of the two test
endpoints, or even by capturing packets directly on one of the two test end-
point hosts. The tcpdump command to capture all FTP data is:

tcpdump tcp port 20 or tcp port 21 -w test.dmp

This command monitors the network for traffic destined to (or originating
from) TCP ports 20 (FTP data) and 21 (FTP control). This ensures that the entire
FTP session will be captured. The -w parameter is also used to store the cap-
tured packets into a dump file, called test.dmp in this example. Once the FTP
session has been captured, you can use the tcptrace and ntop applications to
analyze it.

Using tcptrace

The first step is to see what TCP sessions are found in the FTP trace. This can
be done using the default settings for tcptrace:

$ tcptrace test.dmp

1 arg remaining, starting with ‘test.dmp

‘Ostermann’s tcptrace -- version 6.2.0 -- Fri Jul 26, 2002

15470 packets seen, 15470 TCP packets traced

elapsed wallclock time: 0:00:00.316019, 48952 pkts/sec analyzed

trace file elapsed time: 0:00:40.241734

TCP connection info:

*** 32 packets were too short to process at some point

(use -w option to show details)

1: 192.168.1.6:1057 - 192.168.1.1:21 (a2b) 84> 67< (complete)

2: 192.168.1.1:20 - 192.168.1.6:1059 (c2d) 5> 3< (complete)

3: 192.168.1.1:20 - 192.168.1.6:1060 (e2f) 747> 438< (complete)

4: 192.168.1.1:20 - 192.168.1.6:1061 (g2h) 1528> 895< (complete)

5: 192.168.1.1:20 - 192.168.1.6:1062 (i2j) 157> 90< (complete)

230 Chapter 12

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 230

6: 192.168.1.1:20 - 192.168.1.6:1063 (k2l) 5> 3< (complete)

7: 192.168.1.1:20 - 192.168.1.6:1064 (m2n) 749> 445< (complete)

8: 192.168.1.1:20 - 192.168.1.6:1065 (o2p) 1525> 871< (complete)

9: 192.168.1.1:20 - 192.168.1.6:1066 (q2r) 156> 90< (complete)

10: 192.168.1.1:20 - 192.168.1.6:1067 (s2t) 5> 3< (complete)

11: 192.168.1.1:20 - 192.168.1.6:1068 (u2v) 746> 434< (complete)

12: 192.168.1.1:20 - 192.168.1.6:1069 (w2x) 1525> 860< (complete)

13: 192.168.1.1:20 - 192.168.1.6:1070 (y2z) 156> 91< (complete)

14: 192.168.1.1:20 - 192.168.1.6:1071 (aa2ab) 5> 3< (complete)

15: 192.168.1.1:20 - 192.168.1.6:1072 (ac2ad) 746> 430< (complete)

16: 192.168.1.1:20 - 192.168.1.6:1073 (ae2af) 1525> 838< (complete)

17: 192.168.1.1:20 - 192.168.1.6:1074 (ag2ah) 156> 89< (complete)

$

For a single FTP session, there were 17 different TCP sessions generated. You
may be wondering how this can be. For the FTP session, a single FTP control
session is established. This should be seen in session 1 of the trace. A partial
long display of the session looks like:

$ tcptrace -l -o1 test.dmp

1 arg remaining, starting with ‘test.dmp’

Ostermann’s tcptrace -- version 6.2.0 -- Fri Jul 26, 2002

15470 packets seen, 15470 TCP packets traced

elapsed wallclock time: 0:00:00.178000, 86910 pkts/sec analyzed

trace file elapsed time: 0:00:40.241734

TCP connection info:

17 TCP connections traced:

TCP connection 1:

host a: 192.168.1.6:1057

host b: 192.168.1.1:21

complete conn: yes

first packet: Thu Dec 12 19:48:34.815585 2002

last packet: Thu Dec 12 19:49:15.057319 2002

elapsed time: 0:00:40.241734

total packets: 151

filename: test.dmp

Sure enough, this session shows host b as using TCP port 21, the FTP control
port. The FTP control session is what the client uses to send the FTP com-
mands to the server, and the server uses it to send the response back.

For each file transferred via FTP, a separate FTP data session is used. This
results in a new TCP session for each file transferred. This is why there can be
so many TCP sessions in a single FTP session.

NOTE As a side note, each time you perform a dir command in an FTP
session, an FTP data session is opened to receive the directory listing
information, resulting in yet another TCP session to add to the list.

Comparing Network Performance Tools 231

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 231

You can use the tcptrace -o option to analyze an individual TCP session
within the trace, such as using the -l option to produce a long listing of an
actual file transfer. You can also use the -S and -o options to produce a time
sequence graph of a particular transfer:

tcptrace -S -o4 test.dmp

For this example, the files g2h_tsg.xpl and h2g_tsg.xpl are created. You can
view these with xplot or jPlot to see the time sequence trends for the file trans-
fer. Figure 12.5 shows the sample g2h_tsg.xpl file graphed.

Note that the time sequence graph shows a perfect stairstep sequence. This
indicates a good session, as one host is acknowledging data packets in the
proper order in which they were sent, and no duplicate packets (retransmis-
sions) are sent. You can zoom in on the graph to observe individual packets, to
see if any duplicate ACKS or TCP window sizes are present.

Figure 12.5 Sample FTP data session time sequence graph.

232 Chapter 12

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 232

Using ntop

You can use the ntop application to analyze the tcpdump dump file for packet
and protocol characteristics. To use ntop on a file instead of actual network
traffic, you must use the -f option:

ntop -d -u ntop -P /home/ntop -a /home/ntop/ -L -f /home/ntop/test.dmp

This command starts ntop as a background daemon, uses the ntop data-
bases in the /home/ntop directory, and logs any messages in the standard sys-
tem log files. After the ntop application starts, you can access it using any Web
browser, at the host IP address and port 3000.

The Data Rcvd and Data Sent categories show information about the hosts
involved in the FTP session, along with the statistics of the data transfers. Fig-
ure 12.6 shows a sample Data Rcvd category window with the Throughput
menu option.

Figure 12.6 Data Received information for FTP session.

Comparing Network Performance Tools 233

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 233

You can see detailed information about each host by clicking on the host
address link in the chart. Figure 12.7 shows this display.

The detailed host information shows how much data was sent by each host,
and how much of the data sent was due to retransmitted packets.

Analyzing a Telnet Session
Telnet sessions are unique in that they are very sensitive to network delays.
Every time a Telnet user types a character on the display screen, it must imme-
diately be sent to the remote host, and the echo must then be returned to the
client, before the character appears on the screen. This process magnifies even
the slightest network delay.

As with the FTP trace, you can use the filtering capabilities of tcpdump to
watch individual Telnet sessions on the network:

tcpdump ip host 192.168.1.1 and tcp port 23 -w test2.dmp

This command looks specifically for packets to and from IP address
192.168.1.1 using the Telnet TCP port (23). Depending on where and what you
are monitoring, you may have to change the actual command. Again, the -w
option is used to create a dump file for the captured packets.

Figure 12.7 Detailed host information for FTP session.

234 Chapter 12

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 234

Using tcptrace

Unlike the FTP session, a single Telnet session produces only one TCP session.
This makes analyzing the tcptrace files much easier. The output from the long
view display of tcptrace for the session looks like:

$ tcptrace -l test2.dmp

1 arg remaining, starting with ‘test2.dmp’

Ostermann’s tcptrace -- version 6.2.0 -- Fri Jul 26, 2002

349 packets seen, 349 TCP packets traced

elapsed wallclock time: 0:00:00.047788, 7303 pkts/sec analyzed

trace file elapsed time: 0:00:52.136647

TCP connection info:

1 TCP connection traced:

TCP connection 1:

host a: 192.168.1.6:1076

host b: 192.168.1.1:23

complete conn: yes

first packet: Thu Dec 12 19:51:05.875319 2002

last packet: Thu Dec 12 19:51:58.011966 2002

elapsed time: 0:00:52.136647

total packets: 349

filename: test2.dmp

a->b: b->a:

total packets: 191 total packets: 158

ack pkts sent: 190 ack pkts sent: 158

pure acks sent: 87 pure acks sent: 13

sack pkts sent: 0 sack pkts sent: 0

max sack blks/ack: 0 max sack blks/ack: 0

unique bytes sent: 151 unique bytes sent: 44062

actual data pkts: 102 actual data pkts: 144

actual data bytes: 151 actual data bytes: 44062

rexmt data pkts: 0 rexmt data pkts: 0

rexmt data bytes: 0 rexmt data bytes: 0

zwnd probe pkts: 0 zwnd probe pkts: 0

zwnd probe bytes: 0 zwnd probe bytes: 0

outoforder pkts: 0 outoforder pkts: 0

pushed data pkts: 102 pushed data pkts: 144

SYN/FIN pkts sent: 1/1 SYN/FIN pkts sent: 1/1

req sack: Y req sack: Y

sacks sent: 0 sacks sent: 0

urgent data pkts: 0 pkts urgent data pkts: 0 pkts

urgent data bytes: 0 bytes urgent data bytes: 0 bytes

mss requested: 1460 bytes mss requested: 1460 bytes

max segm size: 10 bytes max segm size: 1460 bytes

min segm size: 1 bytes min segm size: 1 bytes

avg segm size: 1 bytes avg segm size: 305 bytes

max win adv: 17520 bytes max win adv: 32120 bytes

min win adv: 16130 bytes min win adv: 32120 bytes

zero win adv: 0 times zero win adv: 0 times

Comparing Network Performance Tools 235

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 235

avg win adv: 17130 bytes avg win adv: 32120 bytes

initial window: 6 bytes initial window: 12 bytes

initial window: 1 pkts initial window: 1 pkts

ttl stream length: 151 bytes ttl stream length: 44062 bytes

missed data: 0 bytes missed data: 0 bytes

truncated data: 0 bytes truncated data: 43013 bytes

truncated packets: 0 pkts truncated packets: 64 pkts

data xmit time: 52.003 secs data xmit time: 52.085 secs

idletime max: 8182.4 ms idletime max: 8382.0 ms

throughput: 3 Bps throughput: 845 Bps

$

Since the Telnet session is only one TCP session, you can see all of the infor-
mation from the session in the single listing. Similarly, when you plot the ses-
sion information in a time sequence graph, you will see all of the packets for
the session. Figure 12.8 shows the time sequence graph for the sample Telnet
session.

Unlike the FTP data session, the Telnet session does not produce a nice
stairstep graph. Since the data transfer in a Telnet session is not consistent, you
will see long periods of time (relative to the packet transmission times) of no
activity in the session. You will have to zoom in on specific sections of the ses-
sion to see any useful information.

Figure 12.8 Sample Telnet time sequence graph.

236 Chapter 12

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 236

Using ntop

Again, as with the FTP session, you can use the ntop application to analyze the
captured Telnet session using the -f ntop command-line option. After ntop
starts, you can use your Web browser to see the session information displayed
from ntop.

Summary

This chapter discussed all of the network performance tools presented in Part
II, showing how each one can be used in a testing environment to produce use-
ful information. Different tools have different strong points, and knowing
when to use which tool can simplify the task of network monitoring.

The first set of tools represents tools that can be used to produce test traffic
on the network, and measure the bandwidth, round-trip times, and other
packet parameters. These tools are invaluable when you are trying to identify
network bottlenecks and high-utilization points. By producing your own traf-
fic, you can observe the behavior of the network for specific types of applica-
tions. The netperf, dbs, Iperf, Pathrate, and Nettest applications provide
functions for generating network traffic and observing the results.

The second set of tools represents tools that can be used to analyze captured
network data. This allows you to use normal network traffic and analyze how
it behaves on the network. Watching busy hosts, protocols, and network seg-
ments can show you how to reallocate network resources to accommodate
your production data. The tcptrace and ntop applications are useful in per-
forming these tasks.

This chapter concludes the section on network performance tools. The next
chapter begins Part III of the book, “Application Performance Tools,” which
discusses ways to test network applications before they hit your network.
When you understand how an application works in a network environment,
you can more easily modify your network (or the application) to make it work
peacefully with other network applications.

Comparing Network Performance Tools 237

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 237

15 433012 Ch12.qxd 6/16/03 9:11 AM Page 238

PA R T

Three

Application
Performance Tools

16 433012 PP03.qxd 6/16/03 9:11 AM Page 239

16 433012 PP03.qxd 6/16/03 9:11 AM Page 240

241

Part III of this book approaches network performance from a different per-
spective. Not only is it crucial to have the network configured for maximum
performance, it also helps to have network applications that are configured to
operate efficiently across the network. This part of the book describes some
methods and tools that can be used to help determine how an application will
behave within your network environment. By modeling the network, you can
observe how network applications behave within the model environment, and
extrapolate from the results an idea of how the application would behave in
the production network environment. This chapter provides an overview of
the methods used for modeling production networks and using those models
to test network applications.

Trying to determine how an application will perform on a network is often
a task that falls to the network administrator. While programmers work to
make network applications functional for their customers, they sometimes for-
get to consider how the application will affect the existing production net-
work, or conversely, how the existing production network will affect the
application’s performance. Often, customers, programmers, and network
administrators do not find out that a new network application is the cause of
network performance issues (or again, that the network is responsible for net-
work application performance issues) until it is too late.

Measuring Application
Performance

C H A P T E R

13

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 241

This chapter begins by introducing the concept of network modeling, by
showing the different methods used for testing network applications. All of
the network models described are ways that programmers and network
administrators have used to determine how a network application might per-
form within the production network environment.

Methods of Testing Network Applications

The point of testing network applications is to observe how an application will
perform when run on a network. In today’s world of “do everything on the
network,” each network application is competing for network resources with
lots of other applications, from bulk file transfers to Web browsing. The key to
good network application performance is to determine how an individual
application will behave in your particular network environment.

There are four basic methods that can be used for testing network applications:

■■ Using a test network

■■ Using the production network

■■ Using a network emulator

■■ Using a network simulator

Each of these testing environments has a unique set of benefits and challenges
for programmers and network administrators. This section walks through each
of the test environments, and describes the pros and cons of each.

The Test Network
Creating a test network is the most common method used in programming
shops. It is usually the quickest and easiest solution for testing network appli-
cations. Unfortunately, it can also produce the least useful results. It is not
uncommon for a network application to perform flawlessly within the test net-
work, but fail miserably when placed in the production network environment.
Most test networks fail to take into consideration the problems associated with
the actual production network.

Usually, the test network is nothing more than a group of workstations con-
nected together on a standalone network where no other applications are run-
ning. This can create a false sense of security for the application developers, as
real network problems are not addressed in the application. To create a useful
test network, the testers should attempt to mimic the network problems of the
production network (discussed later in the Modeling Network Problems section).

242 Chapter 13

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 242

Production Network
The most accurate method to use for testing network applications is to run the
application in the production network environment. This ensures that all of
the network factors present in the production network will affect the applica-
tion, as in real life, which makes it the best method of determining if the net-
work will affect application performance, or if the application will affect
network performance. Of course, there are downsides to testing on the pro-
duction network.

Often it is not feasible for the application to be developed on the production
network. Often, application developers are not located in the same area where
the application will be run, making it impossible for them to use the produc-
tion network for testing. This is the case for almost all commercial network
applications used. However, even with in-house programming, the program-
mers often do not have access to the application area where the program will
be run.

Even when the application developers do have access to the production net-
work, it is not always a good idea to test the application on the network. There
have been incidents of runaway applications that consumed the entire band-
width of a production network, effectively crashing the network for other pro-
duction data. In environments where high availability is a necessity, this could
cause catastrophic results.

Network Emulation
The compromise between the test and production network is the network emu-
lation. A network emulation is a canned environment, where all of the prob-
lems and issues found in the production network are duplicated within a test
network environment. Creating a standard test network, but including one or
more devices that are capable of emulating the behavior and characteristics of
the production network, will accomplish this.

The key to network emulation is to have devices that can introduce network
problems into the test network environment. There are two common methods
that are used for this purpose:

■■ Have network devices that produce network traffic, emulating
production traffic on the test network.

■■ Have network devices that can accept packets, and delay, drop,
or misorder them, as in the production environment.

The following sections describe how these two methods are used.

Measuring Application Performance 243

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 243

Network Traffic Generator

The first method consists of network devices that can produce network traffic
that mimics the traffic found in the production network. Just as the netperf net-
work performance tool was capable of sending test data streams similar to
application traffic, a network traffic generator can send traffic emulating any-
thing from FTP data transfers and interactive Telnet sessions to database access
and Web browsing. Many advanced network emulation devices also include
options to combine different types and amounts of traffic generated, such as
emulating 10 FTP users and 100 Web browser users simultaneously.

By adding one or more network traffic generators to a simple test network,
you can more accurately observe how the network application will perform
given other network traffic. While this is still not a complete emulation of the
production environment, it gets the tester closer to the desired results.

Not only can network traffic generators be used to test network applica-
tions, they are also used to test the performance of network devices. Many
network administrators use network traffic generators to simulate normal net-
work traffic for switches, routers, and WAN links. By simulating the actual
traffic that could be present during normal production times, you can observe
the behavior of the network devices before customers complain.

Network Emulation Device

Instead of generating network traffic for the test network, the second type of
network emulation device provides a way to model an entire production net-
work within one or more devices. As packets enter the network emulator, they
are processed to simulate network problems that could be present on the pro-
duction network. The network emulation device plugs in between the client
and server devices testing the network application.

For packets to pass from the client to the server, they must pass through the
network emulator. The emulator is configured to process each packet in some
manner, depending on the type of network emulated, before it is passed to the
server. The idea is to inflict the same network problems on each packet sent as
would be seen on the production network.

To accomplish this, most network emulators create one or more pipelines
between the device input and output. As packets are received on the input,
they are fed through the pipelines on their way to the output. Within each
pipeline, the packets are subjected to different delays, errors, and even drops
before they are sent to the device output. This is demonstrated in Figure 13.1.

244 Chapter 13

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 244

Figure 13.1 Network emulation within the pipeline.

The network emulator sends packets between the different pipelines ran-
domly, so each of the network effects is distributed among the incoming pack-
ets. The pipeline can perform the network emulation using either hardware or
software solutions. Often the pipelines are implemented internal network
functions within the emulation device, such as interprocess communication
(IPC) on Unix systems.

Network Simulation
Network simulators perform network-modeling functions completely within
a software environment. Mathematical algorithms are used to model the
behavior of each network link and device, and also represent the data pro-
duced and consumed by the network application. The way the mathematical
algorithms work on the input data is similar to the way the actual production
network would affect the data, using delays, drops, and out-of-order packets.
Each device within the network path is modeled, with the individual models
connected together within the simulation.

The network model connects the hubs, links, and router models together to
produce a single network model. The output from one device model is fed into
the input of another device model, representing the various aspects of the net-
work connections. Using this technique, any type of network can be modeled
in the network simulation environment.

Modeling application data can be tricky. Just like the network traffic gener-
ators, network simulators must simulate different types of network traffic. The
only difference is that the simulators do it mathematically, without using real
packets. By sending data streams that represent real traffic, the network simu-
lation can produce results showing how the output of each network device
would look.

client server
delay

drop packet

Error injector

Network 1 Network 2

Network Emulator

Measuring Application Performance 245

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 245

A network simulator does not have to process information at the same speed
as the modeled network (real-time processing). The purpose of the network
simulator is not to simulate real-time data, but to produce results that indicate
what the overall performance of the network application would be, given the
modeled network. There are basically two types of network simulators:

■■ Discrete event

■■ Analytical

Discrete Event

Discrete event simulators perform calculations on individually simulated
packets, just as a network would see each packet of a data stream and process
it. Each network device and each data packet in the data stream is simulated.
This produces the most realistic information, modeling the behavior of the net-
work as data streams are handled.

Unfortunately, this simulation method is computationally intensive, requir-
ing lots of calculations for each packet within the data stream and each net-
work device handling the packet along the network path. To simulate large
quantities of network traffic within large networks, discrete event simulators
often have to perform calculations for hours, and even days, before producing
results.

Analytical

Analytical simulators attempt to decrease the calculation times by using math-
ematical equations to estimate the behavior of different network devices and
the way they would handle particular types of traffic. Each network device is
simulated using a simple mathematical equation, and each data stream is rep-
resented as information passes through the equations.

Instead of having to process each packet through each device, the analytical
simulator just needs to process a group of calculations on input data. This
results in extremely fast simulation results, although they are not as accurate
as the discrete event results.

Modeling Network Problems

No matter which network-testing method you use, to fully test a network
application, you must be able to simulate the way the application behaves
within the normal network environment. This means that the method must be
robust enough to simulate all of the problems associated with busy networks.

246 Chapter 13

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 246

Each of these problems must be duplicated within the network model used to
predict the performance of the network. There are several problems that must
be taken into consideration:

■■ Network bandwidth constraints

■■ Packet errors

■■ Lost packets

■■ Out-of-order packets

■■ Delayed packets

This section explains each of these problems, how they can affect a network
application running on a production network, and how the network model
must take them into consideration when producing test results.

Bandwidth Constraints
A network application should never assume unrestrained communication
between network devices. One of the primary factors in determining network
application performance is how often the application sends data across the net-
work. The network can make or break the network application’s performance.

Network applications that send lots of packets between devices are depen-
dent on the efficiency of the network. Any delays between packets introduced
by busy networks can be catastrophic for the application. It should be a fun-
damental design goal of all network application programmers to minimize the
data traffic that must traverse the network.

There are many applications that violate this principle. Database applica-
tions are usually the biggest culprits. There are two basic ways to perform
client/server database functions across the network.

In the first method, the database engine is located on the client device, while
the database data is located on the server. For a simple data query, the database
engine must select each record within the database index to look for the query
result. This requires each index record to be passed across the network to the
client, causing lots of network traffic.

In the second method, the database engine is located on the server device,
along with the database data. The client contains simple code that sends the
query to the database engine, which then does all of the database index
lookups internally, and sends a single response with the result. This method
produces minimal network traffic, and is more network-friendly, especially for
slower networks.

In both scenarios it is crucial to model how much network bandwidth is being
consumed by the network application. The key is knowing the characteristics of
the network application, and being able to quantify those characteristics. Net-
work traffic generator applications can be used to simulate the network traffic

Measuring Application Performance 247

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 247

generated by each type of database application—either in real life, by sending
dummy database packets across the network, or in simulation, by performing
the calculations necessary to simulate the traffic.

Packet Errors
The network application should also be prepared to deal with faulty data
received in packets. Most network applications that use the TCP or UDP pro-
tocols do not have to worry about this, as it is taken care of at the network
level. However, applications that use their own protocols must be prepared to
handle errors.

The most common method used in network applications to handle packet
errors is the checksum method. Most standard protocols provide a system for
calculating a checksum of the data contained in the packet, and including the
value within the packet (the checksum part of the packet is set to zero for the
calculation). The receiving device must extract the checksum value, perform
its own checksum calculation, and compare the two values. If the values
match, the packet is assumed to be error-free.

NOTE There are lots of methods for calculating checksums. The most
common method used for network packets uses 16-bit arithmetic to break the
packet into 16-bit chunks, add them, and take the complement of the result.

Network models simulate network errors by injecting errors within a cer-
tain percentage of packets received in the model. Network emulation devices
do this by purposely altering the packet before it is forwarded to the output.
Network simulators perform this task mathematically.

Lost Packets
Besides error packets, the network application should also be prepared to deal
with missing packets. While applications that use TCP don’t have to worry
about this, it is a big concern for applications that use UDP for communications.

For applications in which lost packets are devastating, a trustworthy proto-
col, such as TCP, is recommended. Barring a total network failure, this will
cause the underlying network devices to ensure that the remote host receives
each packet sent. This often requires retransmission of packets that are not
acknowledged as being received. While it is perfectly normal to have some
retransmitted packets on the network, too many may be an indication of a net-
work problem, such as an overloaded switch or router that is dropping packets.

For some applications, however, lost packets are not a problem. Applica-
tions that transmit information at regular intervals can just send another data

248 Chapter 13

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 248

sample with either updated information or duplicated information, and go
about their business. UDP does not provide a method for tracking packets. The
receiving device does not recognize any packets lost in the network. Network
game applications often use UDP for its quick turnaround times (no connec-
tion establishment phase is required). Most multiplayer network games send
out user information (such as location, health status, and so on) at preset inter-
vals to each of the players. If a status packet is lost, the next one updates the
player information on the clients.

Simulating lost packets is not too difficult for network models. Network
emulators can be set to drop packets as either a percentage of the overall data
stream or as a random event occurring over a set amount of time. Network
simulators represent dropped packets as retransmissions (as the sender must
retransmit the dropped packets). Retransmitted packets appear as additional
packets within the data stream, increasing the bandwidth required for the data
stream.

Similarly, many network emulators and simulators also model decimated
packets. Decimated packets occur when a network device drops a fixed amount
of traffic—for example, when a router or switch runs out of buffer space and
drops entire data streams (as described in the Modeling Network Devices section,
presented later in this chapter). Instead of dropping a percentage of packets,
the model drops a set number of packets within the same data stream, for
example, losing 10 packets in a row within the stream. The results of this can
be significantly different from the results of dropping just a single packet
within the data stream. Sometimes, network applications that can recover
from dropped packets will crash and burn as a result of decimated packets.

Out-of-Order Packets
Another UDP problem is out-of-order packets. This problem is most often seen
in WAN environments, where multiple network paths can be taken between
two endpoints. If any network routers are performing dynamic routing, there
is no guarantee that all of the transmitted packets will take the same path to
reach the same destination. With all of the different WAN connectivity options
available (56 kbps, T1, ISDN, DSL, ATM), it is possible that some packets will
take a slower path than others will.

This can result in packets arriving at intervals different from those at which
they were sent. If the delays between paths are long enough, the packets can
even arrive out of order. Figure 13.2 demonstrates this problem.

It is up to the network application to ensure that the out-of-order packets
are reassembled back in the proper order. This of course will slow down
application-processing time, and cause performance problems.

Measuring Application Performance 249

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 249

Figure 13.2 Packets arriving out of order at the client.

Network emulation devices simulate out-of-order packets by creating mul-
tiple pipelines to process incoming packets, and delaying one pipeline more
than another. As a result, some packets are processed more quickly than
others, causing them to be sent out ahead of time, which creates out-of-order
packets. Of course, you don’t want all of the packets within a data stream to be
out-of-order, just a percentage of them. This requires the pipeline to use ran-
dom amounts of delays within the pipeline, changing delay values over the
period of the data stream.

Delayed Packets
With the increase of voice and video applications on the network, network
delay has become a hot topic of discussion. Any delays introduced by the net-
work between the two endpoints can be devastating to the quality (or even
availability) of the voice or video stream.

There are plenty of opportunities for delays to be introduced in the packet
flows. Any device that must handle the packet and retransmit it is suspected of
injecting a delay in the process. Overloaded switches and routers are the prime
suspects, as well as overambitious firewalls.

Many network device vendors implement an IP quality of service (QoS) fea-
ture, allowing voice and video packets to be marked as having high priority.

Even with QoS features on routers, however, there is no guarantee that pack-
ets will arrive at the same intervals at which they were sent from the server. As
routers become congested and reach their buffer limits, processing times can
become longer, and even high-priority packets will be delayed.

Creating network delays is not difficult within the network emulator or sim-
ulator; the hard part is knowing how much and how often packets should be
delayed to replicate the production network environment. There are several
different methods used to simulate network delays:

client server

5 54

4

3

3

2

2

1

1

4 5 2 3 1

Packet-Switching Network

250 Chapter 13

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 250

Fixed delay. This method produces a fixed amount of delay between data
packets.

Uniform increase delay. Produces a variable amount of delay between
data packets. The delay time increases by a fixed amount for each
packet.

Exponentially increasing delay. Produces a variable amount of delay
between data packets. The delay time increases exponentially for each
packet.

Gaussian distribution delay. This is the most common method used.
It provides a fixed distribution for the amounts of delay used on the
network data.

Modeling Network Devices

Not only do network emulators and simulators have to model network prob-
lems, they also need to model the specific behaviors of different types of
network devices. Different types of network devices require different types
of models to emulate the way they handle and/or process packets. This sec-
tion describes the characteristics of different types of network devices, and
explains how those characteristics are modeled within network emulators and
simulators.

Hubs
A network hub is used to connect multiple devices together on a shared net-
work medium. All packets sent to the hub by any device are forwarded to
every port on the hub (except the port that received the packet).

Since the network hub operates as a shared medium, its performance is
directly related to how much traffic is present on all of the hub ports at any
given time. The hub software sequentially handles each packet received by
each port. This behavior is modeled as a single packet queue, operating in first
in, first out (FIFO) mode.

The network speed of the hub is represented by the capacity of the FIFO
queue. The faster the network hub, the larger the queue (more packets can be
processed in the same amount of time). Figure 13.3 demonstrates this principle.

Each port on the hub places packets into the single packet queue. The hub
removes each packet individually from the queue, and sends it to all of the
ports on the hub. When the queue fills up (which represents network over-
load), packets are dropped, representing network problems such as collisions
and error packets on an overloaded network hub.

Measuring Application Performance 251

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 251

Figure 13.3 Modeling a network hub.

The idea for modeling network hubs is to determine how much traffic
causes the network hub to fill. This can be the result of either a short burst of
network traffic from a single device, or a sustained network load caused by
lots of network traffic. In either situation, the model must account for which
packets will cause errors, and how many errors.

Switches
Like the hub, the network switch also connects multiple devices together on
the network. However, instead of blindly forwarding each packet out every
port, the switch examines the destination of each packet, and forwards the
packet only to the port where the destination is supposed to reside.

To perform this task, the switch must maintain large tables of MAC
addresses, so it can tell which devices are located on which switch port by their
MAC address. This greatly complicates the packet-forwarding process, and
creates a much more complicated model.

Instead of a single queue, switches are usually modeled as multiple queues,
two queues for each port on the switch. As a new packet is received on a port,
it is placed in an input queue for the port. After the switch has examined the
packet and determined which port it must be forwarded to, the packet is
placed in an output queue for the appropriate port. Figure 13.4 demonstrates
this process.

The network switch model must account for situations in which one or more
port queues fill up with packets, and drop packets. This situation results in
missing packets for the network application. The trouble with the switch
model is that, although a single port queue may be full, other ports can handle
network traffic just fine. Of course, when a switch’s processing capabilities are
overloaded due to excessive network traffic, packets are delayed (and possibly
dropped) across all of the switch ports.

packets coming in from ports

packets going out to ports

252 Chapter 13

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 252

Figure 13.4 Modeling a network switch

Routers
Routers present a wide array of modeling problems. Routers perform many
functions, and each function must be accurately modeled. Obviously, the basic
function of routers is to forward packets between networks. To perform this
process requires three functions:

■■ Receive a packet on a network interface

■■ Examine the packet and determine the destination

■■ Send the packet out the appropriate network interface

The receiving and sending functions are usually modeled similarly to the
switch and hub interfaces, as a simple queue—two queues for each router
interface (one for input and one for output). The size of the interface queues is
related to the speed of the network interface. Since routers are often used to
connect dissimilar networks, this can be somewhat tricky.

Since the port queues can be different sizes, it is very possible that one inter-
face can overrun another interface, for instance if a 100-MB LAN sends lots of
packets out a T1 Internet connection. Because of this probability, most routers
also incorporate some type of buffering system for the interfaces, to help
reduce packet loss. To complicate things even more, many routers supply dif-
ferent sizes of buffers for different sizes of packets. Since smaller-sized packets
are more common than larger-sized packets, more buffers are allocated for
them. Of course this complicates the router model.

The interesting part to model is the lookup function. The router must use
tables to store information about which networks are connected to which
interfaces, and which remote networks can be accessed through which inter-
faces. These tables must then be referenced for each packet received by the
router. This is often the bottleneck function within the router.

The lookup table can be modeled using a simple packet delay function, sim-
ilar to that of the switch model. Of course, the packet delay injected by the

processing delay

port
queues

switch ports

switch model

Measuring Application Performance 253

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 253

lookup table is not consistent, so the packet delay model should include a way
to randomize the delays caused by the router.

Besides the basic router functions, there are some advanced functions that
also require modeling:

■■ Quality of service (QoS)

■■ Weighted fair queuing (WFQ)

■■ Stochastic fair queuing (SFQ)

■■ Random early detection (RED)

The following sections describe these router features, and how they are
often modeled.

Quality of Service

The quality of service function on routers allows applications to use the IP
Type-of-Service (ToS) field to indicate priority packets. When the router deter-
mines that a packet is marked at a higher priority, it moves the packet ahead in
the queue of packets waiting to be processed.

The job of the network model is to be able to model situations in which all
traffic is at the same priority, and those in which there is a mix of high- and
low-priority traffic. Obviously, in a mixed situation, when the router becomes
overloaded, the first packets to be dropped should be the lower-priority pack-
ets. This results in the high-priority packets having a lower packet drop rate
(close to zero) than the lower-priority packets.

Weighted Fair Queuing

Routers apply the weighted fair queuing (WFQ) method to help balance
packet streams received from different sources. Instead of allowing a single
network source to monopolize the network resources, the router attempts to
forward packets from multiple sources in a fair and equal manner.

This may result in packets being dropped from busy sources more fre-
quently than from sources sending fewer packets. It is assumed that the busy
sources will recover from the loss of packets more quickly than the sources
sending fewer packets.

Stochastic Fair Queuing

Routers also can apply the stochastic fair queuing (SFQ) method to help bal-
ance packet streams received from different sources. Instead of tracking which
network devices are sending the most traffic, SFQ uses multiple queues, and

254 Chapter 13

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 254

distributes the received packets equally among the queues. Each queue is then
processed in a round-robin fashion, assigning equal priority to each queue.

The SFQ method does not solve the problem of a single network device
monopolizing the network bandwidth, but it does provide a method for
attempting to equally distribute the chance of dropped packets among differ-
ent network data streams.

Random Early Detection

Random early detection (RED) is a technique used by routers to drop packets
fairly, when buffers are becoming overloaded. In a normal situation, a router
will accept incoming packets on interfaces until the specific packet buffer
assigned to the interface, or packet size, is full. When the buffer becomes full,
all incoming packets are dropped until more room becomes available in the
buffer.

The problem with this method of dropping packets is that a single applica-
tion with a large amount of data can fill the buffer, and other smaller applica-
tions will suffer, as their packets are dropped along with the packets from the
network-hogging application. This method is referred to as the tail-drop FIFO
method.

RED helps make this system fair by attempting to intelligently drop packets
before the buffer actually fills. The router must identify which source device is
sending more packets than others, and attempt to drop more packets from that
source than from others. Due to the nature of TCP, as more packets are dropped
from the busy source, the source should throttle the packet transmissions,
thereby reducing the bandwidth it consumes.

Modeling RED is often difficult, and not many network emulators or simu-
lators tackle that situation. Usually RED doesn’t play into router behavior
until network overload conditions are present.

Firewalls
With the increase of hacking on networks connected to the Internet, firewalls
have become commonplace in most corporate networks (and even many home
networks). Unfortunately, firewalls add another element to the network that
can affect the performance of network applications.

While firewalls protect our networks from intruders, the downside is that
protection comes at a price—performance. Each packet that traverses the fire-
wall must be checked against a database, or access control list (ACL). The ACL
contains rules that define the level of protection the firewall offers. There are
several different types of traffic that the firewall can be configured to block:

Measuring Application Performance 255

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 255

■■ Packets going to a specific IP address

■■ Packets coming from a specific IP address

■■ Packets containing a specific protocol (such as ICMP or UDP)

■■ Packets containing a specific application (such as FTP, Telnet, or Web)

The trick with firewalls is to configure them to be secure enough to prevent
unauthorized users from accessing network resources, but not so strict that
each packet must be compared against dozens of rules. The more rules con-
tained in the ACL, the more delay introduced by the firewall.

As you would expect, the firewall’s main network problem is packet delay,
although it is not unheard of to see packet loss associated with a firewall. Mod-
eling a firewall in a network requires adding additional delays to the network
path, along with possible packet loss.

Wide Area Networks
While modeling LANs requires building networks of hubs and switches, mod-
eling WANs presents another problem. There are many different methods that
are used to create a WAN, each with different characteristics. The two most
common techniques used to create WANS are:

■■ Point-to-point networks

■■ Packet-switching networks

The following sections describe these two methods, and explain how they
are modeled in emulation and simulation software.

Modeling Point-to-Point Networks

A point-to-point network directly connects two endpoints with a single trans-
mission link, such as a T1 or OC-3 line. Point-to-point networks incorporate
three components in the model:

■■ The sending overhead

■■ The receiving overhead

■■ The transmission overhead

The sending and receiving overhead models are similar to the standard hub
method of creating input and output queues for the incoming and outgoing
packets. The transmission overhead is somewhat different.

Each network link will contain its own delay function, along with a particu-
lar amount of packet error. Both of these problems must be modeled in the
emulation or simulation, to accurately duplicate the WAN environment.

256 Chapter 13

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 256

Modeling Packet-Switching Networks

While point-to-point networks have dedicated links between the endpoints in
the network, packet-switching networks introduce multiple paths to end-
points. Packet-switching networks consist of a series of routers interconnected
to produce a grid, providing multiple paths between any two points on the
network.

Each packet transmitted from one endpoint to another is handled indepen-
dently from the rest of the data stream. As a router in the packet-switching net-
work receives each packet, it determines the best path to its destination. As
network links become congested, alternate routes are taken.

As packets going between the same two network endpoints can traverse dif-
ferent routers, there is no way to determine exactly how much delay will be
injected into any packet’s path. Since each packet within the same data stream
can take a different route, there is also no guarantee that the packets will arrive
at the destination endpoint in the same order in which they were sent.

This out-of-order problem was discussed earlier in the Modeling Network
Problems section. The WAN model must incorporate a method to randomly
mix up packets, so it is possible for them to arrive out of order at the endpoint
model.

Wireless Networks
With the increased use of wireless networks, network models must provide
methods to model wireless behavior. While wireless networks provide func-
tions similar to those of LANs, they also present some unique problems to net-
work traffic that must be accounted for in the network models.

Due to the behavior of the wireless radio transmissions, simulating errors
within the wireless network can be a major task. Often, a full simulation of a
wireless environment is impossible, as the vast amount of data required to sim-
ulate the radio propagation and energy consumption can be overwhelming.

To compensate for the varying quality of wireless network behavior, most
wireless network models focus on the effect of the slower network speed intro-
duced by the wireless network. In most LAN situations, the wireless network
is the bottleneck within the network path, and should be considered the limit-
ing factor within the network model.

Due to the significantly slower wireless network speed (usually less than
3 Mbps), packet overhead (such as TCP/IP headers) has a greater affect on the
data stream. Packet size becomes a driving issue in wireless networks, as
smaller packets result in larger overhead, and lower data throughput.

Network emulators and simulators must be capable of varying the packet
sizes within the model to account for the lower bandwidth associated with
wireless networks.

Measuring Application Performance 257

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 257

Summary

Determining how network applications will behave on the production net-
work is often the job of the network administrator. Fortunately, there are lots
of tools available that can be used to perform this task. This chapter describes
the various methods of determining how an application will perform on the
network.

There are many different ways to test network applications. The easiest
method is usually to create a small standalone test network of a few worksta-
tions and servers. The downside to using a test network is that it does not
accurately duplicate the production network environment. Alternately, some
network testing can be done on the actual production network. This provides
the best method for determining how a network application will perform for
customers. Unfortunately, it is often not possible to use the production net-
work, and sometimes it is dangerous to test new applications on the produc-
tion network.

To solve the testing dilemma, many network administrators are turning to
network emulation and simulation. Network emulators provide a way to feed
actual network application data through a device that emulates the actual pro-
duction network, and watch the results. The benefit to network emulation is
that the actual network application can be used without having to use the
actual production network.

Network simulators allow networks and applications to be mathematically
modeled, producing a generic test environment to help determine how the
application will perform. The downside to network simulators is that they do
not use the actual network application, but rather an estimation of the type of
data it will produce on the network. Network simulators can also require lots
of processing time, for performing calculations to simulate each network
device and link in the network path.

Both network emulators and simulators must be able to accurately model
the devices found on the network and also the problems associated with net-
works. Each network device has unique characteristics that must be accurately
modeled, using either mathematical equations or a combination of hardware
and software. Each of the different problems found on the network, such as
packet loss, delays, and errors, must also be factored into the emulation or sim-
ulation.

The next chapter begins the network application testing toolkit by describ-
ing the dummynet application, which can be used to emulate a production
network environment on a single network device. When application data is
fed into dummynet, the output data will look as if it has passed through the
emulated network.

258 Chapter 13

17 433012 Ch13.qxd 6/16/03 9:11 AM Page 258

259

This chapter introduces the first network emulation tool, dummynet. The
dummynet application provides a method for network administrators to
emulate network problems such as delayed packets, dropped packets, and
network errors. First the chapter discusses dummynet, and how it works.
Next, a discussion of the ipfw program, the main building block of dummynet,
is presented. Finally, the chapter describes in detail how dummynet is
installed and configured, and offers some examples of ways to configure dum-
mynet to emulate different types of networks.

FreeBSD, another open source Unix distribution, includes the ipfw applica-
tion, which is used for providing firewall functions within FreeBSD to process
incoming and outgoing packets. By using the firewall features, ipfw can drop,
delay, and limit the bandwidth of packets traversing the FreeBSD system. The
dummynet application, created by Luigi Rizzo, exploits the features of ipfw by
using them to create a network emulation system. The next section describes
dummynet, and how it can be used in different network environments to emu-
late serious network problems.

dummynet

C H A P T E R

14

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 259

What Is dummynet?

The dummynet application is an internal FreeBSD system facility that manip-
ulates IP packets as the kernel handles them. The dummynet system can pro-
vide the following network emulation features:

■■ Bandwidth restrictions

■■ Multipath packet routes

■■ Packet delays

■■ Packet loss

■■ Finite packet queues

■■ Weighted fair queuing

You can combine different dummynet features within a single dummynet
implementation to create a system that closely emulates the behavior of your
production network.

WARN I NG Since dummynet uses the IP firewall features of FreeBSD, it can
only be used to emulate IP network behavior. Only applications that use IP can
be tested with dummynet.

dummynet Features
The dummynet system works by creating communication pipes between the
input and output network facilities of the FreeBSD device. Each communica-
tion pipe can be configured separately with individual dummynet features.
Figure 14.1 shows a simple dummynet configuration that includes three com-
munication pipes.

Two pipes are used for handling packets received on the standard system
network interface card, while the third pipe handles packets sent from the sys-
tem out to the network interface card. Each pipe acts independently from the
other, processing packets according to its own rule set.

The first two pipes are configured in a weighted fair queuing (WFQ) system,
dividing incoming packets between the two pipes, based on a WFQ algorithm.
Each pipe is configured with a set bandwidth limitation, allowing only a set
number of packets to traverse the pipe for a given time. This can be used to
emulate specifically sized network links, from slow WAN links to high-speed
Ethernet links.

Also associated with the first pipe is a packet loss directive. The packet loss
is defined as a percentage of the overall network traffic in the pipe. This feature
emulates a consistent packet drop situation, such as a faulty network device or
bad cabling.

260 Chapter 14

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 260

Figure 14.1 Simple dummynet configuration with three pipes.

The second pipe includes a queue limitation. When the pipe queue is full,
packets will be dropped, as with a switch or router buffer overload. Since both
pipes are combined in a WFQ system, there is a chance that incoming packets
will be serviced by either pipe.

The third pipe handles packets sent from the system to the network. Again,
it includes simple delays and queue limitations to emulate problems found on
the production network.

Using the dummynet Host
There are basically three different ways to implement a dummynet host in a test
network:

■■ As a standalone test host

■■ On a bridge connected between network segments

■■ On a router connected between networks

The first method implements dummynet directly on the application host.
The dummynet configuration handles all packets received by the test host
before they get to the application, and also handles all packets sent by the
application before they go to the network. This is shown in Figure 14.2.

As packets are received from the network, they are fed through the dum-
mynet system, which emulates network problems by using delays, packet loss,
and bandwidth limitations. After the packets emerge from the dummynet sys-
tem, they are received by the network application running on the test host, and
processed normally.

network interface card

operating system

drop
packets queue delay

queueWFQ

dummynet 261

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 261

Figure 14.2 Using dummynet on a test host.

When the network application is prepared to send packets to the network,
the dummynet system intercepts them, and again applies the configured net-
work emulation rules to the packets. After they emerge from dummynet, they
are placed on the network and will be received by the appropriate test host.

The second and third methods require the FreeBSD system running dum-
mynet to have two network cards. Each network card is placed on a separate
network segment, as shown in Figure 14.3.

Figure 14.3 Using dummynet as a network bridge or router.

NIC1

server

NIC2

dummynet

serverclient

Network 1 Network 2

network interface card

application

server

dummynet

client

262 Chapter 14

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 262

All traffic from one network to the other must pass through the FreeBSD
system, and dummynet. The second method uses the FreeBSD bridging facili-
ties, connecting two network segments on the same subnet. Network traffic that
must traverse from one network segment to the other must pass through the
dummynet system, which then injects the configured network problems into
the network traffic.

This method provides an easy way to emulate network problems in an exist-
ing test network. Since the FreeBSD system is configured as a bridge, no net-
work configuration is required, and test network traffic can pass with no
configuration requirements on the test hosts.

The third method uses the FreeBSD routing facilities to act as a router
between network subnets. As packets are passed through the router, the dum-
mynet system intercepts them and provides the configured network problems.
To use the FreeBSD routing system, you must configure the test network to
work on two separate subnets.

The ipfw Application

The dummynet system uses the FreeBSD ipfw firewall application to create
the pipes and network problem emulation. The ipfw application hooks
directly into the FreeBSD kernel-level packet-handling facility, filtering pack-
ets as the kernel receives them.

The ipfw application is configured using one or more rule sets that define its
behavior. Each rule set is numbered, and rules are processed in numerical
order. Both incoming and outgoing packets are matched against the ipfw rule
sets. If a packet matches a rule, the rule is performed on the packet (delaying
it, dropping it, limiting its bandwidth, and so on). There can be up to 65,535
separate rule sets defined in the ipfw filter.

WARN I NG While it is possible to have up to 65,535 rules defined, each rule
requires processing time on the system. Defining lots of rules can significantly
slow down the performance of the system, also affecting the network
emulation.

The default ipfw configuration always contains one rule:

deny all from any to any

This rule prevents all IP traffic from traversing the FreeBSD system (the
details of the rule format will be discussed later in the Using ipfw Rules section).
This blocks all IP traffic unless it is specified to be passed by a rule.

dummynet 263

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 263

NOTE It is possible to alter the kernel configuration to change the default
firewall behavior from blocking to accepting all packets. This will be discussed
in the Installing dummynet section.

The next section describes the ipfw command-line options, and how they
can be used to emulate different network problems.

Each ipfw rule is defined from the command-line options. This creates lots
of options that can be used on the command line. There are five basic options
that control ipfw, shown in Table 14.1.

After the general command-line options, each ipfw function has its own set
of options used for handling the rule set. This section defines the basic ipfw
commands that are used in the firewall configuration.

Creating New Rules
To add new rules to the ipfw filter, you must use the add command-line
option. The format of the add ipfw command line is:

ipfw [-q] add [number] [prob value] action [log logamount number] proto

from src to dst [via name | ipno] [options]

Rule Number

The first option available is the optional number value. As mentioned, each rule
is assigned a number, and processed in order of rule number. If no number is
specified, ipfw assigns it a number 100 higher than the highest existing rule
number.

Table 14.1 ipfw General Command-Line Options

OPTION DESCRIPTION

-a Track the number of packets matching the rule.

-f Don’t ask for confirmation when performing commands.

-q Quiet mode. No verbose output displayed for the command.

-t Track last match timestamp of packets matching the rule.

-N Attempt to resolve IP addresses and service ports in output.

264 Chapter 14

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 264

Rule Probability

The prob option assigns a probability, where value is a floating-point number
from 0 to 1, representing the probability that the rule will be matched. This fea-
ture allows you to assign processes that do not necessarily happen on a regu-
lar basis, such as packet drops. The ipfw application will apply the rule to only
a number of packets within the probability of the total number of packets.

Rule Action

The action option defines the action ipfw should take with the packet, should
the packet match the rule set definition. Table 14.2 lists the different actions
that can be taken.

Table 14.2 ipfw Action Options

ACTION DESCRIPTION

allow Allows all packets that match the rule

deny Discards packets that match the rule

unreach code Discards packets that match the rule, and sends an ICMP
unreachable packet with code code to the source

reset Discards packets that match the rule, and sends a TCP RST
packet to the source

count Updates the rule counters that match the rule

divert port Redirects packets that match the rule to the port port

tee port Sends a copy of packets that match the rule to the port port

fwd ipaddr Changes the next hop for packets matching the rule to the
host address or name ipaddr

pipe pipenbr Passes the packet to a dummynet pipe

skipto number Skips all subsequent rules to rule number number

uid user Matches all TCP or UDP packets sent and received by user
user (by name or UID)

gid group Matches all TCP or UDP packets sent and received by group
group (by group name or GID)

dummynet 265

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 265

As seen from Table 14.2, for using ipfw with dummynet, the pipe option
will be used. This redirects all packets matching the rule to the appropriate
dummynet pipe. Once the packet is forwarded to the dummynet pipe, the
dummynet rules are applied to the packet.

Rule Logging

The log option instructs ipfw to log matching packets to the system console if
the IPFIREWALL_VERBOSE kernel option is used (this is described in the
Configuring dummynet section). The log amount value number defines how
many packets for the rule will be logged. After that value, no more packets will
be logged to the console.

Rule Definition

This defines the rule specifics:

proto from src to dst

The proto value defines the protocol for the rule. The only possible values are
IP, TCP, UDP, ICMP, or numeric value representing a protocol value found in
the /etc/protocols file. The src and dst values represent the source and desti-
nation values within the IP packet header. These values can be specified using
the following formats:

■■ IP address (Only a specific IP address matches the rule.)

■■ IP address/bits (an IP address with a subnet mask represented by the
network bits)

■■ IP address:mask (an IP address with a specific subnet mask)

■■ any (All IP addresses are matched.)

When using TCP or UDP, you may also specify the port by either port num-
ber or service name. An example of an ipfw rule would be:

ipfw add 100 allow tcp from any to any 80

This rule allows any connection to the HTTP port from any device.

Listing Rules
After creating rule sets, you will want to list them. The list option is used to list
either all the rule sets (the default action) or an individual rule set (when sup-
plied an individual rule number). The format is:

ipfw list [number]

266 Chapter 14

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 266

When you are listing the rules, they are displayed as they are when entered
on the command line. An example of a rule set listing is:

ipfw list

00001 allow tcp from any to any 80

00002 deny icmp from any to any

00003 deny tcp from any to 192.168.0.6 23

65535 allow ip from any to any

#

The first three rules are configured rules added by the administrator. The
first rule allows all network traffic destined for the HTTP port (80) to pass
through the firewall. The second rule blocks all ICMP packets from passing
through, while the third rule blocks all Telnet sessions (port 23) with the local
firewall address.

The fourth rule is the default rule for the system. In this case, the default rule
is set to allow all IP access from any device on the network.

To test the ICMP restriction rule, you can attempt to ping a host on the net-
work, going through the firewall:

ping 192.168.1.6

PING 192.168.1.6 (192.168.1.6) 56 data bytes

ping: sendto: Permission denied

ping: sendto: Permission denied

ping: sendto: Permission denied

ping: sendto: Permission denied

#

As can be seen from the output, the firewall software at the system kernel
blocked all of the ping packets. Similarly, you can test the Telnet rule set by
attempting to Telnet to the address blocked by the firewall:

telnet 192.168.0.6

Trying 192.168.1.6...

telnet: Unable to connect to remote host: Permission denied

#

As expected, the firewall rules blocked the Telnet connection attempt.

Removing Rules
Once a rule set is added to the rule list, it remains active until either the system
is rebooted or the rule is manually removed. You can manually remove rules
using the delete option:

ipfw delete number

dummynet 267

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 267

The number parameter specifies the rule number to delete. If you want to
delete all of the rule sets contained in the firewall, you can use the flush option:

ipfw flush

When this command is executed, ipfw asks if you are sure you want to
remove all of the rules from the firewall. You must respond to the question
with a y to delete all of the rules.

NOTE If you use the -f command-line option, ipfw will not ask you to confirm
your decision. Use this feature with caution, however, as all of the rules will be
deleted.

After the flush command is executed, all of the rules (with the exception of
the default rule) will be removed. The default rule cannot be removed from the
system.

dummynet Rules

As seen in the The ipfw Application section, the ipfw program can create a pipe
to dummynet to pass packets through for processing. Once dummynet has the
packets, it uses its own command-line options to configure how the pipe han-
dles the packets.

To build a dummynet connection, you first must have an ipfw pipe:

ipfw add pipe 1 ip from any to any

This command creates a single pipe (number 1) that matches all IP packets
from any source and going to any destination. After the pipe is created, it must
be configured with specific dummynet network emulation features. This is
done with the config command:

ipfw pipe 1 config ...

After the config command, any dummynet command can be entered. The
next section describes these commands.

dummynet Commands
After creating the dummynet pipe in ipfw, you can configure the pipe to emu-
late the necessary network problems. The following sections show the specific
dummynet commands available.

268 Chapter 14

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 268

Bandwidth

The bandwidth emulation of the pipe can be configured using the bw option. If
no bandwidth value is specified, there are no bandwidth limitations placed on
the pipe. However, to emulate specific network link speeds, a bandwidth value
can be specified using a numeric value, along with the units of measurement:

■■ bit/s

■■ Kbit/s

■■ Mbit/s

■■ Byte/s

■■ Kbyte/s

■■ Mbyte/s

There should be no space between the numeric value and the unit designa-
tion. An example of configuring a dummynet pipe to emulate a 10-MBps LAN
connection would look like:

ipfw pipe 1 config bw 10Mbit/s

There is one word of caution when using bandwidth emulation. Many net-
work links provide full-duplex operation. If a single pipe is configured for
handling traffic in both directions, the bandwidth value represents the amount
of bandwidth allotted for both directions of traffic. To properly emulate a full-
duplex connection, you must create two pipes, and allocate the same band-
width for each pipe:

ipfw add pipe 1 ip from any to any out

ipfw add pipe 2 ip from any to any in

ipfw pipe 1 config bw 100Mbit/s

ipfw pipe 2 config bw 100Mbit/s

This example creates two separate pipes, one for incoming traffic and
another for outgoing traffic. Each pipe is allotted a 100-Mbps bandwidth, thus
emulating a full-duplex 100-MBps fast Ethernet connection.

Delay

The amount of delay introduced into the pipe stream is controlled by the delay
option. The value specified should be in milliseconds. Thus, to introduce a
100-millisecond delay on a pipe, you would use the command:

ipfw pipe 1 config delay 100 ms

dummynet 269

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 269

Again, you should use caution when configuring the delay value. Pay close
attention to how the pipe is configured. If it is a two-direction pipe, the delay
value will be added twice to the data stream, thus doubling the delay value.

Random Packet Loss

The percent of packets purposely dropped from the data stream can be config-
ured using the plr option. The value specified should be a floating-point
number between 0 (for no packet loss) and 1 (for 100 percent packet loss). To
introduce a 5-percent packet loss on a pipe, you would use the command:

ipfw pipe 1 config plr 0.05

As with the other configuration options, you must pay attention to how the
pipe is configured, as a two-directional pipe will double the packet loss value
and produce results that you may not want.

There is no set method that is used to drop packets. Packets are randomly
dropped from the data stream, using the specified drop percent. The packet
drop is based on packet numbers, not on byte counts, so small packets have
just as much chance of being dropped as large packets.

Queue Size

The pipe also contains a queue used for holding all packets for the data stream.
The size of the holding queue for the pipe is controlled by the queue option. The
queue size can be specified in three units:

■■ Number of packets held

■■ Bytes held

■■ Kbytes held

When no units are specified for the value, the value represents the number
of packets held in the queue for processing. When the queue fills up, any
received packets are dropped (emulating a busy switch or router buffer).
When the bytes or Kbytes unit is specified, the value represents the number of
bytes that the queue will hold before packets are dropped. When no queue
value is specified, the default is 50 packets. If the incoming packets are being
sent faster than the pipe is processing them (for example, if a delay or a band-
width limitation is present) the queue will fill up, and packets will be dropped.

When dummynet drops packets from the queue, it is done based on the
queue configuration. If the queue is handling data based on packet count,
excessive packets will be dropped on a packet-by-packet basis. If the queue is
configured based on the number of bytes (or kilobytes) held, then data is still
dropped based on packets, although the incoming packets will be matched
against the available bytes in the queue.

270 Chapter 14

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 270

Configuring WFQ
To emulate WFQ in dummynet, you must use the ipfw queue option to create
a queue of multiple pipes. Each pipe can be assigned a weight value to repre-
sent how much of the data flow it should receive.

To create a queue, you must assign it a unique number (from 1 to 65,535),
and use the config option to assign values to it:

ipfw queue 1 config ...

Once the queue is created, it can be assigned to an existing pipe, and assigned
a weight value (for WFQ) and a queue size and packet loss rate (separate from
the pipe configuration). The command:

ipfw queue 1 config pipe 1 weight 30 plr 0.01

assigns queue 1 to pipe 1, gives it a weight of 30, and assigns a packet loss rate
of 1 percent.

Configuring Multipath Links
The dummynet configuration also allows you to emulate networks that contain
multiple paths between endpoints, as is often the case in WAN environments.
For this, you use the ipfw prob option, assigning a specific probability to mul-
tiple pipes in the same path:

ipfw add prob 0.75 pipe 1 ip from 192.168.0.0/24 to localhost

ipfw add pipe 2 ip from 192.168.0.0/24 to localhost

ipfw pipe 1 config bw 128Kbit/s delay 100ms

ipfw pipe 2 config bw 56Kbit/s delay 200ms

In this example, two separate pipes are defined between the local host and
the local network, representing two separate network paths. The first pipe is
assigned a bandwidth of 128 Kbps, representing a fast ISDN link, along with a
small amount of delay. The second link is assigned a smaller bandwidth of
56 Kbps, representing a backup 56K modem link.

The data stream is divided between the two different pipes using a proba-
bility matrix. For three-quarters of the time, the data will be matched with the
first pipe, providing a fast 128-Kbps connection speed. For the remaining
quarter of the time, the data stream will be assigned to the 56K pipe.

Installing dummynet

Before you can use dummynet on the FreeBSD system, you must configure the
FreeBSD system to use the firewall software. This includes ensuring that the

dummynet 271

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 271

appropriate kernel hooks are in place so ipfw can intercept packets at the ker-
nel level. If your FreeBSD installation already has firewall and dummynet sup-
port configured into the kernel, you can skip this section. Otherwise, this
section describes how to configure the FreeBSD kernel to use dummynet.

Kernel Options
Since dummynet is a kernel-level facility in FreeBSD, there are several kernel
options that must be configured for dummynet to operate. Besides the dum-
mynet kernel options, you must also have the firewall kernel options installed.
Table 14.3 lists the various kernel options that are used for dummynet.

Each of these kernel options must be set using the OPTION command in the
kernel configuration file. The kernel configuration file is located in the
/usr/src/sys/arch/conf directory, where arch represents the platform name.
For IBM-compatible workstations, this is the i386 directory. A default kernel is
located in the file GENERIC. This should be copied to a separate file before
you work on it.

NOTE You must be the root user to work in the kernel section of the
operating system.

Once the copy of the kernel configuration file is made, you can edit it and
add the appropriate OPTION lines:

OPTION IPFIREWALL

OPTION DUMMYNET

After saving the new kernel configuration file, you must build a new kernel
with the firewall and dummynet options.

Table 14.3 dummynet and Firewall Kernel Options

OPTION DESCRIPTION

IPFIREWALL Adds firewall support to the kernel

IPFIREWALL_VERBOSE Enables logging of firewall events

IPFIREWALL_VERBOSE_LIMIT Sets the limit of firewall log events

IPFIREWALL_DEFAULT_TO_ACCEPT Sets the firewall to accept packets by default

DUMMYNET Enables dummynet

NMBCLUSTER Sets the number of network buffers
available

HZ Sets the system timer granularity

272 Chapter 14

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 272

Building a New Kernel

WARN I NG Installing a new kernel is a dangerous procedure. Please make
sure you have a copy of the old kernel available (preferably on a bootable
floppy disk), in case anything goes wrong. If not, your system may become
unbootable, and that could be bad—very bad.

With the new copy of the kernel configuration file complete, you can run the
config program to create the necessary files for compiling the new kernel:

config DNKernel

After performing several steps, the config program will finish, and you are
ready to compile the new kernel. The config program creates a separate direc-
tory with the files necessary for the compile operation. You must first change
to that directory, and then run the make command with the depend option:

cd /usr/src/sys/compile/DNKernel

make depend

The name of the directory created by config will match the name of your
copy of the kernel configuration file (remember that it is case sensitive). The
depend option checks the files for dependencies, and creates the appropriate
files for the final compile. Next, you can run the make command to compile
and create the new kernel, and run make install to install the new kernel.

NOTE When the new kernel is installed, the old kernel is moved to
/kernel.old. Make sure you keep this kernel, because if any problems occur
with the new kernel, you will have to copy this kernel to use (assuming you
remembered to make a floppy to boot from).

After the new kernel is created, you must reboot the system for it to take
effect. When the new system comes back up, it should be ready to accept ipfw
commands to control both the ipfw and dummynet applications.

Installing PicoBSD
If you are not adventurous enough to modify your existing FreeBSD kernel, or
you do not have a FreeBSD system handy to work with, you can still experi-
ment with dummynet. The dummynet Web site contains a link to PicoBSD, a
FreeBSD implementation that fits on a single bootable floppy.

The dummynet Web site is run by Luigi Rizzo, the person who created dum-
mynet. It is located at http://info.iet.unipi.it/~luigi/ip_dummynet/. To copy

dummynet 273

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 273

the PicoBSD floppy, you need both the binary image and a program to write it
to a floppy. If you have a running FreeBSD system, you can use the dd pro-
gram to copy the binary image to a blank floppy disk in the floppy drive. If
you do not have a FreeBSD (or Unix) system available, you can use a DOS util-
ity to copy the file to a floppy disk. The most common program used is
rawrite.exe, which is also available on the dummynet Web site. The URLs are:

http://info.iet.unipi.it/~luigi/ip_dummynet/pico.000608.bin

http://info.iet.unipi.it/~luigi/ip_dummynet/rawrite.exe

After downloading both files, you can use dd or rawrite to copy the
PicoBSD binary to a blank 1.44-MB floppy disk. When the disk is complete,
you can boot any workstation with the floppy, and run the PicoBSD system.
The root password is ‘setup’.

The PicoBSD system includes both ipfw and dummynet, as well as drivers
for ppp communication, and some network interface card support.

Controlling dummynet
After dummynet has been configured into the kernel, you can control the way
both dummynet and the firewall software operate on the system, using the
sysctl program.

WARN I NG The sysctl program is used to view and modify settings within the
kernel. As with any kernel operation, be careful when modifying the kernel on a
production system. Although kernel changes made with sysctl will reset after a
boot, you may not want to do this on a production system.

The sysctl program accesses kernel values in a hierarchical manner, similar
to the Management Information Base (MIB) structure shown in Chapter 3,
“Network Device Utilization.” To access individual values, you must know
where they are located in the hierarchy. The values used for the firewall and
dummynet are located in the net.inet.ip hierarchy.

To check to ensure that the firewall software has been properly added to the
kernel, you can view the net.inet.ip.fw.enable value:

$ sysctl net.inet.ip.fw.enable

net.inet.ip.fw.enable: 1

$

The result shows that the value is set to 1, indicating that the firewall soft-
ware has been enabled. Another useful value is net.inet.ip.fw.one_pass. This
value controls how packets are handled by the firewall.

274 Chapter 14

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 274

When the net.inet.ip.fw.one_pass value is set to 1, the firewall will drop the
packet out as soon as it matches a single rule. If the value is set to 0, the packet
will be reinjected back into the firewall starting at the next rule in order. By
default, this value is set to 1, dropping the packet as soon as it matches a sin-
gle rule in the firewall.

If you are using the dummynet host as a bridge device in the network, you
must also set the bridging software to pass through the firewall. This is han-
dled by two values:

net.link.ether.bridge

which enables bridging when set to 1, and:

net.link.ether.bridge_ipfw

which instructs the kernel to pass bridged packets through the firewall soft-
ware when set to 1.

Testing dummynet

After installing ipfw and dummynet on your FreeBSD system (or loading
PicoBSD from floppy), you can experiment with setting network emulation
environments. This section describes a few tests you can perform to see how
dummynet operates.

Setting Network Delays
First, let’s set up a simple network delay emulation, and see how it behaves on
a network test. This example will create a dummynet pipe for all ICMP traffic,
and delay it by 100 ms.

Before starting the network emulation, let’s first see the network delay asso-
ciated with an unencumbered connection. This can be tested by pinging either
a remote network host or the local host:

ping localhost

PING localhost (127.0.0.1): 56 data bytes

64 bytes from 127.0.0.1: icmp_seq=0 ttl=255 time=0.039ms

64 bytes from 127.0.0.1: icmp_seq=1 ttl=255 time=0.015ms

64 bytes from 127.0.0.1: icmp_seq=2 ttl=255 time=0.009ms

64 bytes from 127.0.0.1: icmp_seq=3 ttl=255 time=0.018ms

--- localhost ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.09/0.020/0.039/0.11 ms

dummynet 275

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 275

Since the ping is just for the local host, the round-trip time should be pretty
fast. Now, create a pipe to handle all ICMP packets, and place a delay of 10 ms
in the pipe:

ipfw add pipe 1 icmp from any to any

ipfw pipe 1 config delay 10 ms

ping localhost

PING localhost (127.0.0.1): 56 data bytes

64 bytes from 127.0.0.1: icmp_seq=0 ttl=255 time=39.752ms

64 bytes from 127.0.0.1: icmp_seq=1 ttl=255 time=39.991ms

64 bytes from 127.0.0.1: icmp_seq=2 ttl=255 time=39.991ms

64 bytes from 127.0.0.1: icmp_seq=3 ttl=255 time=39.991ms

--- localhost ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max/stddev = 39.752/39.931/39.991/0.103 ms

Wow. Now the ping times are close to 40 ms. Instead of adding the 10-ms
delay, dummynet added a 40-ms delay to the data stream. How did that hap-
pen? The answer is in the way dummynet handles traffic.

The dummynet rule created did not specify which packets would be han-
dled, so both incoming and outgoing packets were subjected to the 10-ms
delay. That automatically doubled the delay from 10 ms to 20 ms for each
packet. Not only does the ping program send out one packet, it also must
receive one packet (the ping return packet), requiring two packets to pass
through the firewall. Since each packet is subject to the 20-ms delay, now you
have two 20-ms delays to wait for, or a total of 40 ms of delays. This is demon-
strated in Figure 14.4.

Figure 14.4 Running a ping session through dummynet.

NIC1

dummynet

ping application

10-ms delay

10-ms delay

10-ms delay

10-ms delay

276 Chapter 14

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 276

To test this theory, you can create a new dummynet emulation, this time
placing a delay only on outbound packets:

#ipfw flush

#ipfw add pipe 1 icmp from any to any out

#ipfw pipe 1 delay 10 ms

Now, watch the ping delays generated. Sure enough, the delay is now
reduced to just 20 ms (remember, you are still dealing with two ICMP packets—
thus the double delay).

Setting Network Bandwidths
You can also easily test dummynet emulation on the session bandwidth. Try
creating a half-duplex dummynet pipe that emulates a 56-Kbps modem link,
and then test a Telnet session on it:

#ipfw flush

#ipfw add pipe 1 ip from any to any

#ipfw pipe 1 config bw 56Kbit/s delay 100 ms

This configuration creates a single pipe through dummynet handling all IP
traffic, and assigns it a 56-Kbps bandwidth. Not only is the bandwidth limited,
but an additional delay is added, emulating various network devices that may
have to handle the packets along the network path.

After creating the pipe, you can Telnet to either the local host or a remote
host on the network. You should notice that the Telnet session is not smooth.
Due to the way Telnet behaves (each single character entered must be echoed
by the remote host), it is very susceptible to network delays. The additional
delay and bandwidth limitation now affect the behavior of the Telnet session.
It now behaves just as if you were dialing in on a 56-Kbps modem link. Now
maybe you have an idea of how your dial-in customers feel.

Summary

The dummynet application demonstrates the use of common techniques in
network emulation. A simple FreeBSD system can be used in a test network
environment to emulate the behavior of different types of networks and net-
work devices.

Dummynet can be used to emulate different types of network links from
56-Kbps lines to full-duplex 100-Mbps Fast Ethernet connections. It can also
emulate network delays, drops, and errors associated with network devices
such as switches and routers.

dummynet 277

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 277

Dummynet uses the FreeBSD ipfw firewall software. The firewall software
must be configured into the FreeBSD kernel to intercept packets as they tra-
verse the system kernel between the network interface card(s) and the operat-
ing system. By intercepting all packets, the firewall software can inject delays
and errors into the data streams before they get to their destination.

The next chapter discusses the NIST Net network emulator. This application
provides network emulation functions similar to those offered by dummynet,
but in a slightly different environment, using a different type of interface.

278 Chapter 14

18 433012 Ch14.qxd 6/16/03 9:11 AM Page 278

279

This chapter discusses another network emulation package, NIST Net. The
NIST Net application provides network emulation functions on Linux work-
stations and servers. You can use NIST Net to emulate network problems such
as packet loss, delays, bandwidth limitations, and drops. This chapter
describes the NIST Net application, how to install it on your Linux system, and
how to use it to emulate different types of network environments on your test
network.

The NIST Net application was developed (not surprisingly) at the U.S.
National Institute of Standards and Technology (NIST), by the Internetwork-
ing Technology Group, as a method to test the network dynamics of IP net-
works. Since it incorporates network emulation techniques, it performs
equally well emulating various types of network scenarios.

What Is NIST Net?

The NIST Net application consists of five different parts:

■■ A Linux kernel module that intercepts network packets

■■ A command-line tool to add, remove, and modify network emulation
rules

NIST Net

C H A P T E R

15

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 279

■■ A graphical X Windows tool to add, remove, and modify network
emulation rules

■■ A Linux kernel module and application to monitor rule behavior and
statistics

■■ A Linux kernel module to intercept network packets and redirect them
to an alternate location

This section describes each of these pieces, and discusses how they work
together to make the NIST Net application a full-featured network emulation
tool.

NIST Net Emulations
The NIST Net application is a robust emulator that provides several different
types of network emulation. These emulation types can be combined to emu-
late an entire network environment within the single test box. The different
types of emulations supported are:

■■ Bandwidth limitation

■■ Packet delay

■■ Packet reordering

■■ Packet loss

■■ Packet duplication

■■ Packet diversion

The following sections describe each of these emulation features, and how
they are implemented within NIST Net.

Bandwidth Limitation

NIST Net allows you to configure the Linux kernel to limit network traffic to a
set bandwidth, emulating different types of network links. After you specify
the desired bandwidth in bytes per second, NIST Net throttles the incoming
packet stream to control the number of bytes passed through the kernel.

If the incoming packet stream is less than the desired bandwidth limitation,
no packet delays are performed (at least, not from the bandwidth limiter; a
separate packet delay may still be used). If the incoming packet stream exceeds
the desired bandwidth limitation, NIST Net delays the packets to match the
appropriate output speed.

For calculating the packet stream bandwidth, the current packet is not taken
into account. This presents a slight problem, in that there are different ways to
send the packet stream within the time limit. NIST Net gives you three options:

280 Chapter 15

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 280

■■ The data is sent at the start of the time period.

■■ The data is sent in the middle of the time period.

■■ The data is sent at the end of the time period.

Depending on the rate of the data passing through NIST Net, the different
options may produce different results.

Packet Delay

NIST Net can inject three different types of delay into the packet stream:

■■ A fixed delay

■■ A variable delay, controlled by the user

■■ A distributed delay, changing the delay values according to packet
traffic

With three different types of packet delays available, NIST Net allows you
to configure your emulation to match many different types of network scenar-
ios. NIST Net contains a default distribution delay that modifies packet delay
based on a mathematical distribution table. The variable delay provides a
method for you to define a new distribution table to load into the NIST Net
kernel module.

Packet Reordering

NIST Net also provides packet-reordering emulation. Packet reordering often
is a result of multipath networks (usually WANs that use packet switching),
where packets sent via different paths arrive at the destination at different
times.

This is emulated in NIST Net by dividing the packet stream into separate
streams, and injecting different delay values into each stream. If the difference
between the injected delays is large enough, one stream should arrive signifi-
cantly earlier than the other stream. This provides a simple packet-
reordering algorithm, whereby a set number of packets arrive out of order at
the destination.

Packet Loss

NIST Net provides two different methods for packet loss:

■■ Uniform percentage of dropped packets

■■ Traffic-dependent packet drop

NIST Net 281

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 281

The traffic-dependent packet drop method uses the derivative random drop
(DRD) method of dropping packets from the incoming packet stream. DRD is
a modification of the random early drop (RED) method discussed in Chapter
13, “Measuring Application Performance.” While it still incorporates the func-
tionality of RED (the ability to drop more packets from busy packet streams
than from slower packet streams), it provides a simpler mechanism to deter-
mine which packets should be dropped.

Packet Duplication

A nice feature that NIST Net incorporates is the ability to duplicate packets
within the data stream. The duplication value is set as a percentage of packets
within the stream. By duplicating a percentage of packets, you can observe
how the application (or network device) handles random duplicate data pack-
ets within the data stream. This feature allows you to emulate retransmitted
packets within the network.

Packet Diversion

Another interesting feature of NIST Net is the ability to divert packets from the
data stream to an alternate network address and port. Some type of network
application must then capture the diverted packets. Since the diverted packets
can be sent to another network address, the application does not have to reside
on the same device as NIST Net.

By diverting packets, you can easily monitor the amount and types of pack-
ets traversing the kernel. The diverting software allows you to specify what IP
sessions to divert by source and destination addresses, as well as source and
destination port numbers. This enables you to monitor specific network appli-
cation traffic on the device.

The NIST Net Kernel Module
Like dummynet, NIST Net must intercept network packets as they traverse the
operating system kernel. While dummynet has to be compiled into the FreeBSD
kernel to operate, NIST Net takes advantage of the modular Linux kernel.

From Linux kernel version 2.2 on, one nice feature of the Linux kernel is that
it has been designed to be modular. The kernel consists of two separate parts:

■■ Core features that are compiled into the kernel to provide the basic
functionality of the system

■■ Kernel modules that can be loaded and unloaded at will

282 Chapter 15

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 282

Many Linux kernel functions have been moved to modular programs that
can be loaded and unloaded from the core kernel at any time during the sys-
tem operation. This helps prevent the kernel bloat of the past, when all system
drivers had to be compiled into the kernel at once. Providing kernel modules
allows the core kernel to be modified with only the modules that are required
for a particular system.

The NIST Net application is installed as a kernel module, and can be inserted
or removed at any time from the running Linux system, without adversely
affecting the operation of the system. The insmod program is used to install
the NIST Net modules. The insmod command line looks like:

insmod [-fhkLmnpqrsSvVxXyY] [-e persist_name] [-o module_name]

[-O blob_name] [-P prefix] module [symbol=value...]

As you can see from the command line, there are lots of options for the ins-
mod program. Table 15.1 shows the options that are available.

Table 15.1 insmod Command-Line Options

OPTION DESCRIPTION

-f Force the module to load even if the kernel version does not
match.

-k Set the auto-clean flag on the module, allowing the module to
be removed when it is not in use.

-L Set a lock to prevent simultaneous loads of the module.

-m Display a load map of the module.

-n Go through the steps of loading the module without actually
loading it.

-p Probe the module to determine if it would successfully load.

-q Quiet mode, do not print a list of unresolved symbols.

-r Install non-root modules.

-s Redirect all output to the syslog instead of the terminal.

-S Force the module to have kallsyms debugging data.

-v Use verbose mode.

-x Do not export the module’s external symbols.

-X Export the module’s external symbols.

-y Do not add ksymoops debugging data.

(continued)

NIST Net 283

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 283

Table 15.1 (continued)

OPTION DESCRIPTION

-Y Add ksymoops debugging data.

-o Specifically provide the module name.

-O Specify the binary object name used for the module.

-P Specify a prefix to use for the module, such as a version name.

-e Specify any persistent data used by the module.

Under normal conditions, the NIST Net module can be installed using ins-
mod without any additional command-line parameters. The output from the
insmod program shows the location of the module file used:

insmod nistnet

Using /lib/modules/2.4.3-20mdk/misc/nistnet.o

#

If you need to remove the NIST Net module, you can use the rmmod
command:

rmmod [-aehrsvV] module

Just like the insmod program, rmmod uses several different command-line
options to modify its behavior. Table 15.2 shows the command-line options
that are available.

Again, under normal conditions, the NIST Net module can be removed
using rmmod without any additional command-line parameters.

Table 15.2 rmmod Command-Line Options

OPTION DESCRIPTION

-a Remove all modules (usually not a good idea).

-e Save persistent data for the module, without unloading it.

-r Remove a module stack.

-s Redirect all output to the syslog.

-v Use verbose mode.

-V Display the version of rmmod.

284 Chapter 15

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 284

The NIST Net Configuration Tools
After the NIST Net module is loaded into the kernel, you must control the way
it handles network traffic. This is done using two separate tools:

■■ cnistnet (a command-line text-based interface)

■■ xnistnet (an X Windows graphical interface)

Each of these tools can be used to turn the NIST Net network emulation on
and off, add, modify, and remove rules, and obtain statistics about running
rules.

Unlike dummynet, NIST Net provides the ability to turn the network emu-
lation on and off without having to remove the rules. You can easily move back
and forth between normal and network-emulation operations:

cnistnet -d

ping localhost

PING localhost.localdomain (127.0.0.1) from 127.0.0.1 : 56(84) bytes of

data.

64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=0 ttl=255

time=111 usec

64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=1 ttl=255

time=60 usec

64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=2 ttl=255

time=58 usec

64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=3 ttl=255

time=44 usec

--- localhost.localdomain ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max/mdev = 0.044/0.068/0.111/0.026 ms

cnistnet -u

ping localhost

PING localhost.localdomain (127.0.0.1) from 127.0.0.1 : 56(84) bytes of

data.

64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=0 ttl=255

time=100.122 msec

64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=1 ttl=255

time=100.055 msec

64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=2 ttl=255

time=100.149 msec

64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=3 ttl=255

time=100.099 msec

--- localhost.localdomain ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max/mdev = 100.055/100.106/100.149/0.226 ms

#

NIST Net 285

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 285

In this example, a rule is used to delay packets to and from the local host by
100 ms. When NIST Net is turned off (using the -d option), the ping results are
about 68 microseconds. After NIST Net is turned on (using the -u option), the
ping results are about 100 milliseconds. The emulation rule can be enabled
or disabled at will, providing great flexibility when testing the network
emulation.

WARN I NG One important thing to remember about NIST Net is that, unlike
dummynet, the NIST Net emulation only affects one direction of the packet
stream. Thus, when you specify a delay value, such as 100 ms, that value is
not doubled for the emulation, as it was in dummynet.

The cnistnet tool handles rules based on the source and destination
addresses within the rule. Different rules can be used to affect the behavior of
packet traffic between different endpoints on the network (including the local
host). Source and destination addresses can be specified in numeric or host-
name format, and host or network format. A TCP or UDP port number can also
be added to the source or destination address to indicate a specific network
application. A few examples would be:

192.168.1.1 192.168.1.6 (all IP traffic between the hosts)

192.168.1.0 192.168.5.0 (all IP traffic between the networks)

0.0.0.0 192.168.1.6:80 (all HTTP traffic going to host 192.168.1.6)

shadrach.ipsnet1.net 0.0.0.0 (all IP traffic from host shadrach)

After you define the source and destination addresses, the specific network
emulation values are specified, such as bandwidth, delays, and loss (see the
Using NIST Net section).

The xnistnet tool provides the same functionality as the cnistnet tool, except
in a graphical environment. Figure 15.1 shows a sample xnistnet window.

You can define the source and destination addresses using the same format
options as with cnistnet in the appropriate text boxes. Each network emulation
value can also be set within the appropriate text box on the xnistnet window.

The NIST Net Optional Tools
Besides the basic network emulation functions, NIST Net also provides two
add-on modules and related programs. This section describes the additional
modules and their associated programs.

WARN I NG Only one add-on module can be active at a time, so care must be
taken when using the add-on modules.

286 Chapter 15

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 286

Figure 15.1 The xnistnet window.

mungebox

The mungebox application allows you to watch the statistics of the NIST Net
emulation, separately from the NIST Net module. The mungebox application
uses its own module, mungemod, which creates its own device, /dev/munge-
box, which interfaces with the NIST Net module. This allows the mungebox
program to access information from the NIST Net emulator. The mungebox
program is used to provide statistical information about the performance of
the NIST Net module.

The mungebox application is important not so much for what it does, but
more for what it demonstrates. The mungebox application demonstrates how
to write applications that interface with NIST Net to extract information from
the NIST Net module.

nistspy

The nistspy application also interfaces with the NIST Net module. The spy-
mod module is used to create a device (/dev/spymod) that redirects traffic
from NIST Net to a user-specified destination.

This provides a method to watch network traffic in real time from a separate
network address (the destination can be specified as a hostname or IP address,
and a TCP port number). By redirecting all traffic to an alternate destination,
you can set up a monitor application to watch all of the network traffic defined
in the NIST Net rules.

NIST Net 287

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 287

Downloading and Installing NIST Net

This section describes how to obtain the NIST Net application, and install it on
your Linux system.

Downloading NIST Net
The NIST Net main Web page is located at http://snad.ncsl.nist.gov/itg/
nistnet. This page contains information about NIST Net, as well as links to an
installation guide Web page, and instructions on how to use NIST Net.

To download NIST Net, you must go to the installation guide Web page, and
access the download form Web page (http://snad.ncsl.nist.gov/itg/nistnet/
requestform.html). Although NIST Net is free software, NIST requires that you
fill out a simple questionnaire before being able to download the software. The
questionnaire only asks a few questions (such as your company or organiza-
tion name, your area of interest, and an email address). After answering the
questions, you are taken to a download area where you can download the
latest version of NIST Net (at the time of this writing, it is version 2.0.12).

The NIST Net application is distributed in source code. You must compile
the source code to produce the NIST Net modules and application programs.
The distribution file is in the standard compressed tar format (nistnet.2.0.12
.tar.gz). You must uncompress and untar the distribution into a working direc-
tory. The command:

tar -zxvf nistnet.2.0.12.tar.gz

creates the working directory nistnet, and places all of the source code files in
a directory structure beneath it.

Compiling NIST Net
Unfortunately, the NIST Net application requires quite a few different things
to be present on the system before you can successfully compile the programs.
The two main things that must be present are:

■■ The system kernel source files

■■ The X Windows development files

Each of these presents its own set of problems when you are trying to pre-
pare the system for NIST Net.

288 Chapter 15

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 288

Getting the Required Files

Although NIST Net does not require you to recompile the Linux kernel, you
must have the kernel source files installed on your system. This allows the
NIST Net application to compile with the appropriate header file information
for the kernel.

Most Linux distributions include the kernel source files as an add-on pack-
age. My Mandrake 8.0 Linux system uses the Linux version 2.4.3 kernel,
included in the kernel-source RPM package on the secondary CD-ROM con-
tained in the package. Unfortunately, you cannot just install the kernel-source
RPM package by itself. I had to load quite a few additional RPM packages
before I could load the kernel source. The packages I had to load on my system
were:

■■ bison-1.28-8mdk.i586.rpm

■■ byacc-1.9-9mdk.i586.rpm

■■ db3-devel-3.1.171mdk.i586.rpm

■■ egcs-1.1.2-44mdk.i586.rpm

■■ egcs-cpp-1.1.2-44mdk.i586.rpm

■■ flex-2.5.4a-14mdk.i586.rpm

■■ libncurses5-devel-5.2-12mdk.i586.rpm (some Linux systems call this
ncurses-devel)

Each of these RPM packages must be installed using the rpm program:

rpm -Uvh bison-1.28-8mdk.i586.rpm

After all of the packages are installed, you can install the actual kernel-
source package (kernel-source-2.4.3-20mdk.i586.rpm on my system).

Besides the standard kernel source files, you must also have the current
kernel configuration files available for NIST Net. These are the files used to
determine which drivers are loaded in the current kernel, and how they are
loaded. Many Linux systems include these files by default (they were installed
by default on my Mandrake 8.0 Linux sytem). If they are not included, or are
not configured for the current kernel, you must recreate them manually.

This is done by changing to the /usr/src/linux directory, and running the
make command with either the config or menuconfig option (the menuconfig
option provides simpler menu options for installing kernel drivers).

WARN I NG When recreating the kernel configuration files, make sure that
you include all of the drivers required for your system.

NIST Net 289

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 289

After the configuration files are created, you must run the make program
again with the dep option.

Once the kernel-source package is installed, you must also install an X Win-
dows development library. There are several different X Windows libraries
that are used in the Linux world. My Mandrake 8.0 Linux uses the XPM X Win-
dows library, which is included in the libxpm4-devel-3.4k-16mdk.i586.rpm
distribution RPM package. The NIST Net Web page indicates that it can also be
used with the Athena Xaw, Xaw3d, and neXtaw libraries.

Compiling the Source Code

After installing all of the required libraries and kernel files, you are ready to
start compiling the actual NIST Net application. The nistnet working directory
contains the standard configure script, which is used to check the system for
the necessary files, and to create the makefile used to compile the program.

Before running the configure script, you can view the Config file located in
the nistnet directory. There are a few options (such as the bandwidth delay
handling options) that can be modified and set to the values you require for
your network emulation environment.

When running the configure script, it will ask you a couple of questions:

$./configure

Kernel headers found at /lib/modules/2.4.3-20mdk/build/include/linux

Add explicit congestion notification (ECN) support [yes]?

Add class/type of service (COS) support [no]?

The first thing the configure script does is search for the kernel source files.
If they are not found on the system, an error message is displayed, and the con-
figure script stops. After finding the kernel source files, the configure script
asks if you want to use explicit congestion notification (ECN) support. This
uses the TCP ECN feature to notify network devices when the network (or in
this case, the network emulation) is getting overloaded. If the TCP device sup-
ports ECN, it should automatically start throttling packets to help reduce the
congestion. ECN support will be included by default if you hit the Enter key
for the question.

The second question asks if you want to include IP class of service (CoS)
support. This includes the standard IP Type of Service (ToS) as well as the newer
CoS protocol used to prioritize packets within the IP packet stream. If you need
to emulate networks that support CoS applications (such as streaming audio or
video), you should include CoS support in the NIST Net emulation.

After the configure script finishes, you are ready to compile the NIST Net
application. One makefile is used to compile all of the kernel modules and
application programs associated with NIST Net. From the nistnet directory,

290 Chapter 15

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 290

just run the make and make install programs (you will have to be the root user
to run the make install program). This installs the NIST Net kernel modules in
a common location in a subdirectory under the /lib/modules directory, where
the system modules are stored. On my system, they are located in the directory:

/lib/modules/2.4.3-20mdk/misc

The module names are:

■■ mungemod.o (the mungebox module)

■■ nistnet.o (the main NIST Net module)

■■ spymod.o (the nistspy module)

The command-line executable files (cnistnet, mungebox, and nistspy) are
placed in the /usr/local/bin directory, while the xnistnet X Windows applica-
tion is placed in the X Windows application directory (/usr/X11R6/bin on my
system).

NOTE NIST Net also includes an additional executable file, hitbox, which is
now obsolete, but still provided for backwards compatibility. Use the cnistnet
program instead.

Loading NIST Net
Before you can start NIST Net, you must first load the nistnet kernel module.
This can be done directly, using the insmod program, or you can use the
Load.Nistnet script file located in the NIST Net working directory. One nice
feature of using the Load.Nistnet script is that it attempts to protect the
enhanced real-time clock (RTC) character device driver.

Unfortunately, NIST Net conflicts with the RTC driver on Linux systems. To
avoid this, the Load.NistNet script attempts to unload the rtc module from the
kernel before loading the NIST Net module. If this is not done, the rtc module
will not function properly, even after the NIST Net module is unloaded.

There is one caveat to this. Many Linux systems (including my Mandrake
distribution) load the RTC driver as part of the core kernel drivers, and not as
a module. If this is the case, you cannot unload the RTC module before
installing NIST Net. You will see this if you use the Load.Nistnet script:

./Load.Nistnet

rmmod: module rtc is not loaded

Couldn’t find rtc module - /dev/rtc will be mostly

unusable after running nistnet. Sorry about that....

To prevent this message, recompile rtc

NIST Net 291

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 291

(Enhanced Real Time Clock Support, under

character devices) as a module.

Using /lib/modules/2.4.3-20mdk/misc/nistnet.o

nistnet module installed

#

As the message states, you should rebuild the Linux kernel (using the make
menuconfig described in the Compiling NIST Net section earlier), and specify
that the RTC driver be loaded as a module. Within the menuconfig menus, the
RTC support will appear under the character devices section. Select M (for
module) from the menuconfig options. After you do this, the RTC support is
contained in the rtc module, which can be loaded and unloaded as necessary.

When the NIST Net module has been installed, the device /dev/nistnet
should be available on the system. Now you are ready to test out the NIST Net
installation.

Using NIST Net

This section describes the methods that are used to configure NIST Net to
emulate different network environments. Most of the scenarios are similar to
the way the dummynet system was configured, creating separate rules for
each emulation scenario.

Using cnistnet
The cnistnet tool uses command-line options to add, modify, and remove emu-
lation rules, as well as show statistics about the rules. Table 15.3 shows the
command-line options available for cnistnet.

Table 15.3 cnistnet Command-Line Options

OPTION DESCRIPTION

-a Adds a new rule definition

-d Disables the NIST Net rules

-D n Turn on debugging with level n (1 = minimum, 9 = maximum)

-F Flushes the NIST Net emulation queues

-G Shows global statistics

-K Kickstarts the clock

-r Removes a rule definition

292 Chapter 15

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 292

Table 15.3 (continued)

OPTION DESCRIPTION

-R Displays the current rule table (add -n to show address in
numeric format)

-s Displays the current statistics for each rule

-S Constantly displays the current statistics for each rule

-u Disables the NIST Net rules

-U Turns off debugging

The -a, -r, -s, and -S options all specify a source and destination address pair to
uniquely define the rule. The format of the source and destination addresses is:

-a src[:port[.protocol]] dst[:port[.protocol]] [cos]

The first two options listed are the source and destination addresses the rule
applies to. The addresses are specified using the format:

address[:port[.protocol]]

The address can be specified using a hostname, a numeric host IP address
value, or a network IP address value. If the address specified is a network, traf-
fic from any host on that network will be affected by the rule.

By default, the rule will apply to all IP packets from (or to) the specified
address. You can also specify an optional port number, to further define the
traffic (such as port 80 for HTTP traffic). By default, the port number will apply
to both TCP and UDP ports. You can further define the protocol if necessary
(using tcp or udp).

After the source and destination addresses are specified, the Class of Service
(CoS) value may be entered, if you are using a specific CoS for the rule (and
CoS support was enabled when you compiled NIST Net).

When adding a new rule, you must specify the add new keywords after the
destination address. Next, a list of emulation options that are desired for the
rule must be specified. Each emulation option uses a special command-line
option. These options are shown in Table 15.4.

Table 15.4 cnistnet New Rule Options

OPTION DESCRIPTION

—bandwidth Specifies the bandwidth limitation (in bytes per second)

—delay Specifies the delay (in milliseconds)

(continued)

NIST Net 293

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 293

Table 15.4 (continued)

OPTION DESCRIPTION

—drop Specifies the drop percentage

—drd Specifies the DRD minimum and maximum values

—dup Specifies the duplicate packet percentage

For example, to specify a rule for the local host that limits the bandwidth
to 7,000 bytes/second, adds a 100-millisecond delay, drops 3 percent of the
packets, and duplicates 5 percent of the packets, you would use the following
command:

cnistnet -a localhost localhost add new --bandwidth 7000 --delay 100 -

-drop 3 --dup 5

addnistnet: localhost:0 to localhost:0 (prot 0 cos add),

delay 100.000000 (sigma 0.000000 corr 0.000000),

bandwidth 7000, drop 3.000000 (corr 0.000000),

dup 5.000000 (corr 0.000000),

drdmin 0, drdmax 0, drdcongest 0

#

When the command is executed, NIST Net returns the status of the request.
The complete rule is displayed, along with any error messages that may result
(for instance, if the NIST Net module is not loaded).

You can display the active rules at any time by using the -R option:

cnistnet -R

cnistnet -a localhost.localdomain localhost.localdomain --delay 100.000

--drop 2.9999 --dup 5.0003 --bandwidth 7000

#

Notice that the rule is displayed exactly as it would be typed on the com-
mand line. There is a reason for this. When the NIST Net module is unloaded
(either manually, or due to a reboot), all of the entered rules are lost. If you are
using a complicated emulation with lots of rules, it can be tedious having to
reload all of the rules every time the system is rebooted.

Instead, you can redirect the output of the -R command option to a file, and
turn the file into an executable script:

cnistnet -R > rules.nist

chmod 700 rules.nist

Now, after the rules are flushed from the module, all you need to do is run
the rule script file to automatically replace all of the rules with a single
command.

294 Chapter 15

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 294

After loading the rules, you can start NIST Net using the -u command-line
option. After a while, you can observe the statistics, using either the -s (for one
sample) or -S (for continuous sampling) option:

cnistnet -s localhost localhost

statnistnet: localhost -> localhost (0)

n_drops rand_drops drd_drops mem_drops drd_ecns dups last packet

size qsize bandwidth total bytes

2 2 0 0 0 9 1041531601.109551

56 0 140 6608

#

When specifying the -s and -S options, remember to specify the source and
destination addresses that identify the rule you want to monitor. This output
shows that indeed some packets have been dropped and duplicated on the
emulator.

Besides the fixed values for packet delay, drops, and duplicates, you can
also define distributions for variable delays, drops, and duplicates. The distri-
bution information is added as an additional value with the original informa-
tion, separated with a forward slash.

To specify a delay distribution, you must specify the mean value as the fixed
delay entry, and the standard deviation as a second value:

cnistnet -a localhost localhost add new —delay 100 2.12

This rule defines a mean delay of 100 ms, with a 2.12-ms standard deviation.
To also incorporate a correlation value, you must use the forward slash:

cnistnet -a localhost localhost add new —delay 100 2.12/0.95

The drop and duplication correlation values can also be defined with their
fixed percentage values, in the same way:

cnistnet -a localhost localhost add new —drop 5.0/0.65 —dup 2.0/0.76

Using xnistnet
The xnistnet program provides the same functionality as the cnistnet program,
but in an easier-to-view graphical form. When you start the xnistnet program,
a blank form appears (unless there are already rules configured in the running
NIST Net module. This is shown in Figure 15.2.

NIST Net 295

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 295

Figure 15.2 Blank xnistnet form.

Within the xnistnet form, you can scroll across the window panes for the
addresses and rule definitions, by clicking on the scroll bar on the bottom.
What may not be obvious, however, is the way it scrolls. If you click the left
mouse button on the scroll bar, the window shifts to the left. To get the win-
dow to scroll back to the right, you must click the right mouse button.

Creating Rules

The left-hand xnistnet window provides text boxes for the source and destina-
tion addresses that the rule applies to, and for the CoS value, as well as a but-
ton to click if you want to remove an existing rule from the emulator.

As with cnistnet, you can enter the source and destination values either as
hostnames or IP addresses, along with an optional port number and protocol
name. Figure 15.3 shows the localhost values entered into the address area,
and the individual emulation values set for the rule.

After the rule emulation values have been configured, you must click the
Update button to activate the rule on the emulator. If the NIST Net emulator is
not enabled, you must click the Emulator On button to enable the emulator.
When the emulator is running, the button name changes to Emulator Off. You
can click that button to disable the NIST Net emulator.

296 Chapter 15

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 296

Figure 15.3 xnistnet emulation rule text boxes.

Modifying Rules

The right-hand xnistnet window provides text boxes both for the emulation
rule values and rule statistics output. This provides a method to easily view
the rule statistics in real time. The first set of text boxes shows the current emu-
lator values for the rule. The emulator values are:

■■ Delay (in milliseconds)

■■ Delay standard deviation (in milliseconds)

■■ Bandwidth (in bytes per second)

■■ Drop (in percentage of packets per data stream)

■■ Duplicate (in percentage of packets per data stream)

■■ DRDmin (the minimum packet queue, in packets)

■■ DRDmax (the maximum packet queue, in packets)

After the emulation rule values, the emulation statistical information is dis-
played, also using text boxes. The values displayed are:

■■ The running average bandwidth value (in bytes per second) passing
through the rule

■■ The total number of dropped packets resulting from the rule

NIST Net 297

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 297

■■ The total number of duplicated packets resulting from the rule

■■ The time the last packet was processed by the rule (in milliseconds)

■■ The size of the last packet processed by the rule (in bytes)

■■ The number of packets in the rule queue waiting to be processed

■■ The total number of bytes processed by the rule

These values are shown in Figure 15.4.
The emulation statistical values are updated continuously, as long as the

emulator is enabled, and the xnistnet application is running. This provides a
handy way to monitor the activity on all of the rules from one place.

Summary

This chapter discussed the NIST Net network emulation package. NIST Net
provides a way to emulate different network environments from a Linux sys-
tem using standard network connections and kernel packet processing. Since
NIST Net can be used on any Linux system, it provides an inexpensive method
to emulate networks in test environments.

The NIST Net application is installed as a Linux kernel module. Since it is a
kernel module, it can be loaded and unloaded at any time, without affecting
the operating system. This feature enables you to experiment with the network
emulation features without adversely affecting any other applications using
the system.

Figure 15.4 xnistnet emulation statistical values.

298 Chapter 15

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 298

NIST Net uses both a command-line program and an X Windows program
to allow you to define and customize network emulation features. NIST Net
provides emulation for bandwidth limitation, packet delays, packet drops,
and packet duplication. Each of these features can be defined in rules that
apply to specific network and/or host addresses, allowing you to configure
several different rules for different network situations.

The next chapter describes a slightly different approach to network emula-
tion. The Network Traffic Generator application provides a method for actu-
ally generating different types of network traffic on a test network, providing
an environment that can emulate different types of cross-traffic on a produc-
tion network.

NIST Net 299

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 299

19 433012 Ch15.qxd 6/16/03 9:11 AM Page 300

301

This chapter describes a different method of simulating network traffic on a
test network. The Network Traffic Generator application allows a single Unix
workstation or server to emulate network traffic generated by multiple net-
work workstations. You can use this technique to emulate production network
traffic on test networks. The first part of this chapter explains the concept of a
network traffic generator. A description of the Network Traffic Generator
application follows, with instructions for installing and using it.

As described in Chapter 13, “Measuring Application Performance,” testing
network applications on a test network does not necessarily provide accurate
results. The test network does not properly duplicate the network environ-
ment present in normal production network traffic. To duplicate the produc-
tion network environment, you must inject cross-traffic on the test network
that emulates normal production data. The Network Traffic Generator appli-
cation can be used to generate different types of network traffic, in varying
quantities, from a single network host. This section describes the Network
Traffic Generator application.

What Is Network Traffic Generator?

Robert Sandilands developed the Network Traffic Generator application pri-
marily as a method for creating sample network traffic to test network equip-
ment. It also performs well as a generator of sample network traffic on test

Network Traffic Generator

C H A P T E R

16

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 301

networks, emulating production traffic. This section describes how Network
Traffic Generator works, and the different program pieces that are involved in
using it.

How Network Traffic Generator Works
The Network Traffic Generator application was designed to be a modular
application, providing a way for programmers to expand its functionality by
creating additional modules. The modules are divided into four categories:

■■ The core module

■■ The protocol module

■■ The payload module

■■ The reply module

Figure 16.1 demonstrates how these modules fit together.
The following sections describe each of the different modules.

The Core Modules

The core modules provide the basic functionality for the application. They
define whether the Network Traffic Generator application will behave as a
client device or as a server device.

The server module listens for incoming network connection attempts, and
services them according to the configuration of the protocol and reply mod-
ules. One server module can service multiple client connections. As each new
connection is received, a new instance of the server module is spawned to han-
dle the individual client connection. Currently, the only server module pro-
vided is the basic module, which can handle packets of any size up to 100
Kbytes. After the server accepts the client connection, it processes incoming
packets from the client, and responds in a manner appropriate to the specified
response module.

Figure 16.1 The Network Traffic Generator model.

payload
module

protocol
module

response
module

protocol
module

client
module

server
module

302 Chapter 16

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 302

The client module attempts to connect to a remote server device using a
specified protocol module. The number of clients used is specified in the client
module. Currently, the only client module available is the fixed module, which
provides a fixed number of client instances to handle the specified client con-
nections. Each client handles a single connection to the server.

The Protocol Modules

The protocol modules define the network protocol used to communicate
between the client and the server. Obviously, both must be using the same pro-
tocol to properly communicate.

Different protocol modules can produce different types of network traffic.
Currently, Network Traffic Generator provides two protocol modules:

■■ tcp

■■ udp

The tcp module provides connection-oriented communications between the
client and server. Each TCP connection must be established using the standard
TCP SYN-ACK handshake method, and each connection must be closed using
the FIN-ACK method. Creating connections for each test session produces
more network overhead for the test. Besides the normal TCP overhead, TCP
connections also must account for each packet transmitted between the hosts,
resulting in the possibility of packet retransmissions and duplicate packets.

The udp module provides connectionless communications between the
client and server. Since the communication is connectionless, it is possible to
have packet loss within the data stream. The udp module does not account for
packet loss, so any dropped packets are not detected or retransmitted.

The Payload Modules

The payload modules define how the client transmits data to the server. There
are currently three different payload modules available:

■■ fixed

■■ increasing

■■ random

The fixed payload module provides a data payload of a fixed size for each
test packet. The size of the payload is specified when the client module is
started, and must be at least 8 bytes. Currently, the maximum payload size
supported by Network Traffic Generator is 100 Kbytes.

The increasing payload module increases the size of the sent packets during
the length of the communication session. The payload size starts out at a spec-
ified size, and increments by a specified amount either until the end of the

Network Traffic Generator 303

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 303

session, or until it reaches a specified maximum value, or 100 Kbytes. The
number of times each size packet is sent can also be specified when the client
starts.

The random payload module selects a randomly sized data payload for
each packet in the communication session. The minimum and maximum val-
ues can be specified when the client starts. The number of times each size of
packet is sent can also be specified.

The Response Modules

The way the server module responds to client packets is controlled in the
response module. Currently there are two response modules available:

■■ ack

■■ echo

The ack response module instructs the server to respond to each data packet
received from the client with a simple 8-byte acknowledgment packet. This
response is used for both TCP and UDP protocols.

The echo response module instructs the server to respond to each data
packet received from the client with the contents of the original data packet
received.

WARN I NG Using the echo response module should double the network
bandwidth used by Network Traffic Generator, as each data packet is sent
twice on the network (once from the client to the server, and again from the
server back to the client).

The Network Traffic Generator Programs
The Network Traffic Generator application uses two separate programs to per-
form the traffic generating. This section describes the two programs, and
explains how they are used to create the artificial network traffic on the test
network.

Command-Line Interface

The Network Traffic Generator application incorporates command-line inter-
face programs to control the server and client programs.

304 Chapter 16

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 304

The trafserver program is the server side of the Network Traffic Generator
application. It listens for incoming connection attempts from the client pro-
gram, and handles each connection as a separate instance.

The trafclient program is the client side of the Network Traffic Generator
application. It is used to send packets to the server program from a remote
device on the network. There can be multiple client programs connecting to
the same server program, as demonstrated in Figure 16.2.

The test network can contain multiple server and client programs running
on separate devices on the network. A single client device can emulate multi-
ple production clients, so only one client is required to emulate production
traffic on a single subnet. If you want to emulate traffic on several subnets, you
can set up a single client device on each subnet, and have them emulate multi-
ple production clients sending data to a single host server. By forcing the
clients to connect to servers on other subnets, you can also test network
devices, such as routers or switches, for any loading problems.

X Windows Interface

The Network Traffic Generator application also includes an X Windows inter-
face version of the command-line programs. The xtrafserver and xtrafclient
programs provide a graphical interface to the trafserver and trafclient pro-
grams. The values that are normally entered as command-line options are
instead entered as text box values on the X Windows interface.

NOTE The X Windows interface programs require the Kylix Linux libraries to
compile and run. Installing these libraries is covered in the Downloading and
Installing the Package section.

Figure 16.2 The Network Traffic Generator server and client programs.

test client test server

router

test client test server

Network Traffic Generator 305

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 305

Generating Network Traffic

The advantage of using the Network Traffic Generator application is its ability
to emulate different types and quantities of network traffic from a single client
device. This enables the network administrator to inject network traffic pat-
terns in test networks while testing network applications.

Depending on the type of network traffic present on your production net-
work, you will want to emulate different forms of traffic. The most common
forms of traffic seen on production networks are:

■■ Bulk data transfers

■■ Client/server transactions

■■ Connectionless communication

This section describes these different types of network traffic, and explains
how the Network Traffic Generator emulates them.

Bulk Data Transfers
Bulk data transfers are often used in networks to transfer data files from one
network device to another. Whether the operation is performed by a standard
FTP file transfer, or by copying a file to a network file server drive, the format
of the network traffic is similar: one device sends large packets of data to
another device, which acknowledges the packets with a small ACK packet. Of
course, this process is repeated many times during the course of the file trans-
fer, as demonstrated in Figure 16.3.

Figure 16.3 Bulk data transfer characteristics.

data

ACK

data

ACK

data

ACK
test

client
test

server

306 Chapter 16

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 306

Since the bulk data transfer must use guaranteed packet delivery, almost all
data transfer methods use a connection-oriented protocol, such as TCP. This
ensures that the data packets sent to the remote device are received error-free
and in the proper order. Of course, the connection-oriented protocols also can
produce packet retransmissions, which will cause additional network load.

During the course of the bulk data transfer, network utilization often reaches
peak levels, as the data stream is sent to the remote device. This produces net-
work degradation for the duration of the data transfer.

The bulk data transfer environment is emulated in Network Traffic Genera-
tor using the payload module. You can set the payload for each data packet to
any size (currently from 8 bytes to 100,000 bytes). The packet size you select
should match the block size used in the data transfer method you are emulat-
ing. Many network file systems use 4,000-byte block sizes to transfer data.

The response module used should be the ack module. This module just
sends a simple 8-byte acknowledgment packet back to the sending device,
without duplicating the actual data transferred.

Client/Server Transactions
Client/server transactions are common in networks that use database systems
such as Oracle or Microsoft SQL Server. The client application sends short
database requests to the server, which processes each request and sends a
larger data stream back in response to the query. This characteristic is demon-
strated in Figure 16.4.

Figure 16.4 Client/Server transaction characteristics.

query

response

query

response

query

response
test

client
test

server

Network Traffic Generator 307

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 307

In many ways, the client/server transaction produces the opposite traffic
pattern from the bulk data transfer pattern. The client sends smaller query
packets (usually less than 1,000 bytes) to the server, which in turn sends larger
response packets containing data back to the client. The response packets are
usually not a set size, but can be a random amount of data, depending on the
query results.

While the server response packets are larger than the client query packets,
they are usually smaller than the bulk data transfer packets, as the returned
data query is usually limited in size.

Connectionless Communication
Connectionless communication network patterns are not often found in pro-
duction networks, except when there are managed network devices. Managed
network devices use the SNMP protocol to communicate with configuration
devices (as described in Chapter 3, “Network Device Utilization”).

Most connectionless communication is performed using the UDP protocol.
Since the transactions are connectionless, there is no guarantee that the pack-
ets will arrive at the intended destination. At times of high network utilization,
connectionless sessions are often plagued with high packet loss rates, resulting
in an increase of packet retransmissions (which of course just adds to the net-
work utilization problem).

Downloading and Installing the Package

The Network Traffic Generator application can be downloaded as a source
code distribution file to compile on your Unix system. This section describes
the steps to download, compile, and install Network Traffic Generator.

Downloading
The main Web site for Network Traffic Generator is located at:

http://galileo.spaceports.com/~rsandila/traffic.html

This page contains links to the Network Traffic Generator download page,
located at the SourceForge Web site. Currently, there are two supported ver-
sions of Network Traffic Generator. The older version is called traffic, and
contains code that is copyrighted by Robert Sandilands’ former employer,
Secure Worx South Africa (Pty) Ltd. The newer version, called newtraffic, is a
completely new package, solely developed, released, and maintained by
Sandilands.

308 Chapter 16

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 308

WARN I NG The really confusing part of the situation is that the newtraffic
distribution file is called traffic, which is the same as the old distribution file
name. Make sure you download from the newtraffic-source area on SourceForge.

At the time of this writing, the current version of traffic is 0.1.3, and it is
available in three different distribution formats:

■■ A compressed and tarred source code distribution: traffic-0.1.3.tgz

■■ An RPM packaged source code file: traffic-0.1.3.-2mdk.src.rpm

■■ A zipped distribution file: traffic-0.1.3.zip

Any one of the source code distribution files can be used to create the work-
ing directory, called traffic-0.1.3. All of the source code files are placed in the
working directory.

Before Compiling
Before you can compile the traffic-0.1.3 file, you must first make sure you have
all the necessary pieces on your system. Specifically, there are two different
packages that you must make sure you have installed:

■■ fastdep

■■ Kylix libraries

fastdep

Traffic uses the fastdep application, created by Bart Vanhauwaert, which is a
fast dependency generator for C and C++ programs. If your Unix distribution
does not install fastdep by default, it may be included as an additional pack-
age in your distribution.

If it is not included in your Unix distribution, you can download the source
code (or binary files for Linux) from the fastdep Web site, located at:

http://www.irule.be/bvh/c++/fastdep/

The Web site contains the source code distribution as fastdep.tar.gz, or a
binary Mandrake Linux distribution file as fastdep-0.14-1.i586.rpm. If you
download the binary rpm distribution, you can install it using the standard
RPM package installer program.

If you download the source code, you must uncompress it into a working
directory (fastdep-0.14 at the time of this writing), and use the configure and
make programs to compile it.

Network Traffic Generator 309

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 309

WARN I NG Both fastdep and traffic use C++ code. You must ensure that you
have a proper C++ compiler (such as the GNU g++ package) installed on your
system.

Kylix Libraries

If you plan on using the X Windows graphical interface program xtrafserver or
xtrafclient, you must have the Kylix libraries and runtime installed on your
Linux system.

Kylix is a Borland compiler product for the Linux environment. Applica-
tions created using Kylix must have the Kylix runtime libraries installed on the
Linux system to operate. Applications that include Kylix function calls must
have the Kylix compiler libraries installed to compile properly on the system.

In the case of traffic, both the Kylix compiler libraries and runtime libraries
must be installed on the Linux system for traffic to compile and run. The Kylix
libraries are freely available for download from the Kylix library Web site,
kylixlibs, also maintained on the SourceForge Web site:

http://kylixlibs.sourceforge.net/index.html

The Kylixlibs project maintains packages for Red Hat, Mandrake, and Debian
Linux distributions. The list of library files that must be downloaded is:

■■ kylixlibs3-borqt

■■ kylixlibs3-runtime

■■ kylixlibs3-borstlctrl

■■ kylixlibs3-unwind

■■ kylixlibs3-qt

Each of these files has a unique filename for the specific Linux distributions.
Download the library set appropriate for your distribution, and use the distri-
bution package installer program to install them.

WARN I NG The Kylix libraries require the Xfree86 version 4.1 or newer
libraries. My old Mandrake 8.0 system only had version 4.0.3 libraries, and had
to be upgraded. If you are planning to use the X Windows traffic programs, it is
probably easier to install a newer Linux installation package, preferably one of
the ones that has Kylix library support.

310 Chapter 16

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 310

Compiling and Installing
After the kylixlib packages are installed, you are ready to compile traffic on
your system. You must be in the working directory (traffic-0.1.3) to compile the
package.

The distribution uses the autoconf program to create the configure script, so
the first step is to run autoconf from the working directory. This creates the
standard configure script, which can then be run to prepare for compiling the
application. If you want to include the xtrafserver and xtrafclient programs, you
must use the --with-kylix command-line option with the configure command:

$./configure --with-kylix

As usual, the configure script checks the system for software dependencies,
and creates an appropriate makefile. After the makefile is created, you use the
make program to compile the source code and create the executable programs,
and the install option of the make program to install the executable files in a
common location. For most Unix distributions, the trafserver and trafclient
programs are placed in the /usr/local/bin directory. For these programs to
work, they must have access to each of the module libraries used by Network
Traffic Generator. These module libraries are stored in a separate location from
the executable programs. On my Linux system, they were stored in
/usr/local/lib/traffic. Table 16.1 lists the library files that were installed.

Table 16.1 Network Traffic Generator Library Files

LIBRARY USED BY DESCRIPTION

client_fixed.so trafclient The fixed client module

payload_fixed.so trafclient The fixed-size payload
module

payload_increasing.so trafclient The increasing size
payload module

payload_random.so trafclient The random size payload
module

protocol_tcp.so trafclient and trafserver The TCP protocol module

protocol_udp.so trafclient and trafserver The UDP protocol module

reply_ack.so trafserver The acknowledgment
reply module

reply_echo.so trafserver The echo reply module

server_basic.so trafserver The basic server module

Network Traffic Generator 311

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 311

Using Network Traffic Generator

After the executable and library files are installed, you can start using Network
Traffic Generator to emulate traffic on your test network. This section describes
the different features of the trafclient and trafserver programs, along with
some instructions on how to set up a test environment for network application
testing.

WARN I NG The Network Traffic Generator application is intended to
generate network traffic on test networks. Using it on a production network
will impede the flow of production network traffic.

Command-Line Options
The trafclient and trafserver command-line programs both require options
to configure the client and server modules. This first section describes the
command-line options required to configure Network Traffic Generator to
generate specific types of network traffic.

Server

The trafserver program must know which server and reply modules to use,
along with the specific protocols and ports used for the test traffic. All of these
variables must be configured on the command line when starting trafserver.
The format of the trafserver command line is:

trafserver -sn servermode -rn replymod [-L librarypath] protocol port ...

The first two options on the command line define the server and reply mod-
ules used for the test server. At the time of this writing, there is only one server
module available, the basic module. There are two possible reply modules, ack
and echo. As mentioned earlier in the How Network Traffic Generator Works sec-
tion, the ack module returns a simple acknowledgment packet to the client,
while the echo module returns the entire client packet.

After specifying the server and reply modules, you can optionally define the
location of the traffic library files. If you have followed the standard install
procedures, this should not be necessary.

The final options to define are the protocol modules and port numbers used.
You can define multiple protocol and port pairs, up to the length limitation of
the command line. The trafserver program will listen for incoming connection
attempts for the protocol defined on the port numbers defined.

312 Chapter 16

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 312

A sample trafserver session would look like this:

$ trafserver -sn basic -rn ack tcp 9050 udp 9050

trafserver Starting

Initializing Reply

Initializing Protocols

Initializing Servers

Starting servers. Press ENTER to end.

This command starts two server sessions, one listening on TCP port 9050,
and a second one listening on UDP port 9050. Both servers will use the basic
server module, along with the ack reply module. The trafserver program will
block the terminal that it is started on, until you press the Enter key to stop the
servers.

WARN I NG Unix ports 0 through 1023 are restricted to the root user. If you
select port numbers above 1023, you do not have to be the root user to use
trafserver.

Client

The trafclient program also needs information to contact the server program
and send test packets. As with the trafserver program, trafclient gets the
required information from the command-line options. The format of the traf-
client command line is more complex, as there are more modules to have to
define values for.

There are three categories of options that you must configure on the com-
mand line:

■■ The client module options

■■ The protocol module options

■■ The payload module options

The client module options are shown in Table 16.2.

Table 16.2 trafclient Client Module Options

OPTION DESCRIPTION

-cn Defines the client module name (currently, only fixed is available)

-cmin Defines the minimum number of client connections

-cmax Defines the maximum number of client connections

(continued)

Network Traffic Generator 313

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 313

Table 16.2 (continued)

OPTION DESCRIPTION

-cinc Defines the increment value of client connections

-ctim Defines the time the client will send packets

-n Defines the number of client sessions created

For the fixed client module, only the -cmax and -n options are available. It is
best to match the -cmax and -n values, so a separate client session can be cre-
ated for each session used in the test. The protocol module options are shown
in Table 16.3

The destination protocol, address, and port values must match the values
used on the remote server. Finally, the payload module options must be
defined. These are shown in Table 16.4.

Different payload modules require different options. The fixed payload
module only uses the -pmax option to define the fixed payload size. All pack-
ets in the test will use the same number of bytes. The increasing payload mod-
ule uses the -pmin, -increment, and -time options to set the minimum packet
size (-pmin), the number of packets of that size that will be sent (-time), and the
number of bytes the packets will increase by (-increment). Here are some sam-
ple payload options:

■■ -pn fixed -pmax 100 sends fixed packets of 100 bytes.

■■ -pn increasing -pmin 10 -pmax 100 -increment 10 sends one packet of
10 btyes, then one packet of 20 bytes, and so on up to a 100-byte packet.

■■ -pn random -pmin 10 -pmax 100 -time 10 sends 10 packets of a random
size between 10 and 100 bytes, then sends 10 more packets of a random
size, and so on until stopped.

Table 16.3 trafclient Protocol Module Options

OPTION DESCRIPTION

-dn Defines the protocol module name (currently either tcp or udp)

-da Defines the destination address of the remote server

-dp Defines the destination port number of the remote server connection

314 Chapter 16

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 314

Table 16.4 trafclient Payload Module Options

OPTION DESCRIPTION

-pn Defines the payload module name (fixed, increasing, or random)

-pmin Defines the minimum number of bytes in the payload

-pmax Defines the maximum number of bytes in the payload

-increment Defines the increment value used to increase the payload size

-time Defines the number of packets to send at a specific size

A sample complete trafclient session should look like this:

$ trafclient -cn fixed -cmax 100 -n 100 -da 192.168.1.6 -dp

9050 -dn tcp -pn fixed -pmax 100

trafclient Starting

Initializing Payloads

Initializing Protocols

Starting clients. Press ENTER to end.

When the client is started, it attempts to connect to the remote server
defined, establishes the defined number of sessions (100 in this example), and
begins the packet transfers according to the defined protocol and payload val-
ues. To stop the clients, you must press the Enter key.

WARN I NG Network Traffic Generator continuously transmits packets from
the client to the server—there is no dead time. Configuring lots of clients will
put a continual load on the network. This may or may not be what you want.
Use caution when performing the tests.

Setting Up a Test
Now that you have functional server and client hosts, the trick is to determine
how to best use them to emulate a production network. Two things to take into
consideration when using a test network are (1) where the test client and
servers are placed in the test network, and (2) the type of network traffic they
are configured to emulate. This section discusses some pitfalls to watch out for
when using Network Traffic Generator in a test network environment.

Network Traffic Generator 315

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 315

Test Host Placement

In networks that are divided by routers or switches, you must be careful to
strategically place the client devices on the network to load the appropriate
network links. Figure 16.5 shows a sample test network environment.

The central switch in the test network controls the traffic flow between the
devices. Placing the traffic generator server and client on separate ports on the
switch will provide extra load for the switch, but will have no impact on the
network application server and clients. This scenario does not accurately
depict a production network environment.

A better solution for test networks is to use shared network hubs, along with
multiple traffic-generating clients and servers. This scenario is shown in Fig-
ure 16.6.

In this test network, each segment from the router contains both network
application clients and Network Traffic Generator clients. The Network Traffic
Generator servers are located both on the same segment as the network appli-
cation server, and on an alternate segment. This configuration helps produce
varying traffic load on different segments that will directly affect the network
application clients and server.

Test Host Configuration

After determining the proper location for the test hosts, you must determine
what type of network traffic they should emulate. As mentioned earlier, in the
Generating Network Traffic section, there are basically three types of network
traffic that can be generated by Network Traffic Generator:

■■ Bulk data transfer

■■ Client/Server transactions

■■ Connectionless communication

Figure 16.5 A poor test network using Network Traffic Generator.

network
application

client

test
client

test
server

switch

network
application

server

316 Chapter 16

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 316

Figure 16.6 A better test network using Network Traffic Generator.

The different network traffic types are emulated using the protocol and pay-
load settings on trafclient, and the reply settings on trafserver. For both bulk
data and client/server emulation transfers, use the ack server module. This
accurately emulates the one-sided data transfer feature. The payload module
can be varied, depending on the type of traffic emulated. For bulk data traffic,
you should use a fixed payload type, as data is usually transferred in set
blocks. For client/server transactions, it is best to use the random payload
module.

It is also best to utilize different clients implementing different protocol,
payload, and reply settings on the same network to emulate different types of
network traffic on the production network.

Watching the Test Traffic
As you have noticed from the sample trafserver and trafclient sessions, no
information about the actual traffic is presented by Network Traffic Generator.
All it does is produce the network traffic; it does not indicate anything about
the response times or network load present during the test.

To obtain this information, you will have to turn to the network perfor-
mance tools presented in Part II of this book. One of the easiest tools to use in
this scenario is the tcptrace tool, which can read captured tcpdump or Win-
Dump files and display the IP session statistics.

For the sample session, I used a 10-client TCP session using the ack server
module, and random payloads from 100 bytes to 1,000 bytes. This was gener-
ated by means of the following command line:

trafclient -cn fixed -cmax 10 -n 10 -pn random -pmin 100 -pmax 1000 -da

192.168.1.6 -dp 9050 -dn tcp

hub hub
test

client
test

client

test
client

test
server

switch

network
application

client

network
application

server

Network Traffic Generator 317

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 317

Before the client started, I started tcpdump on the server device, capturing
all packets destined to TCP port 9050, and storing them in a capture file:

tcpdump tcp port 9050 -w test.cap

After allowing the client to run for a few minutes, I stopped the client and
server, and also stopped the tcpdump program. The resulting capture file can
be analyzed by the tcptrace application:

$ tcptrace test.cap

1 arg remaining, starting with ‘test.cap’

Ostermann’s tcptrace -- version 6.2.0 -- Fri Jul 26, 2002

29420 packets seen, 29420 TCP packets traced

elapsed wallclock time: 0:00:00.883518, 33298 pkts/sec analyzed

trace file elapsed time: 0:00:13.088615

TCP connection info:

1: 192.168.1.1:2267 - 192.168.1.6:9050 (a2b) 1544> 1543< (complete)

2: 192.168.1.1:2268 - 192.168.1.6:9050 (c2d) 1528> 1527< (complete)

3: 192.168.1.1:2269 - 192.168.1.6:9050 (e2f) 1434> 1434< (complete)

4: 192.168.1.1:2270 - 192.168.1.6:9050 (g2h) 1469> 1469< (complete)

5: 192.168.1.1:2271 - 192.168.1.6:9050 (i2j) 1439> 1439< (complete)

6: 192.168.1.1:2272 - 192.168.1.6:9050 (k2l) 1517> 1517< (complete)

7: 192.168.1.1:2273 - 192.168.1.6:9050 (m2n) 1474> 1474< (complete)

8: 192.168.1.1:2274 - 192.168.1.6:9050 (o2p) 1445> 1445< (complete)

9: 192.168.1.1:2275 - 192.168.1.6:9050 (q2r) 1475> 1475< (complete)

10: 192.168.1.1:2276 - 192.168.1.6:9050 (s2t) 1386> 1386< (complete)

$

As expected, 10 separate client sessions between the two hosts were cap-
tured. You can use the -l option to analyze one specific session to see the packet
statistics:

$ tcptrace -o3 -l test.cap

1 arg remaining, starting with ‘test.cap’

Ostermann’s tcptrace -- version 6.2.0 -- Fri Jul 26, 2002

29420 packets seen, 29420 TCP packets traced

elapsed wallclock time: 0:00:00.359822, 81762 pkts/sec analyzed

trace file elapsed time: 0:00:13.088615

TCP connection info:

10 TCP connections traced:

================================

TCP connection 3:

host e: 192.168.1.1:2269

host f: 192.168.1.6:9050

complete conn: yes

first packet: Thu Jan 9 15:15:38.474352 2003

last packet: Thu Jan 9 15:15:51.558120 2003

318 Chapter 16

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 318

elapsed time: 0:00:13.083767

total packets: 2868

filename: test.cap

e->f: f->e:

total packets: 1434 total packets: 1434

ack pkts sent: 1433 ack pkts sent: 1434

pure acks sent: 3 pure acks sent: 3

sack pkts sent: 0 sack pkts sent: 0

max sack blks/ack: 0 max sack blks/ack: 0

unique bytes sent: 790451 unique bytes sent: 11432

actual data pkts: 1429 actual data pkts: 1429

actual data bytes: 790451 actual data bytes: 11432

rexmt data pkts: 0 rexmt data pkts: 0

rexmt data bytes: 0 rexmt data bytes: 0

zwnd probe pkts: 0 zwnd probe pkts: 0

zwnd probe bytes: 0 zwnd probe bytes: 0

outoforder pkts: 0 outoforder pkts: 0

pushed data pkts: 1429 pushed data pkts: 1429

SYN/FIN pkts sent: 1/1 SYN/FIN pkts sent: 1/1

req 1323 ws/ts: Y/Y req 1323 ws/ts: Y/Y

adv wind scale: 0 adv wind scale: 0

req sack: Y req sack: Y

sacks sent: 0 sacks sent: 0

urgent data pkts: 0 pkts urgent data pkts: 0 pkts

urgent data bytes: 0 bytes urgent data bytes: 0 bytes

mss requested: 1460 bytes mss requested: 1460 bytes

max segm size: 999 bytes max segm size: 8 bytes

min segm size: 100 bytes min segm size: 8 bytes

avg segm size: 553 bytes avg segm size: 7 bytes

max win adv: 5840 bytes max win adv: 34560 bytes

min win adv: 5840 bytes min win adv: 5792 bytes

zero win adv: 0 times zero win adv: 0 times

avg win adv: 5840 bytes avg win adv: 34271 bytes

initial window: 804 bytes initial window: 8 bytes

initial window: 1 pkts initial window: 1 pkts

ttl stream length:790451 bytes ttl stream length:11432

bytes

missed data: 0 bytes missed data: 0

bytes

truncated data: 747581 bytes truncated data: 0

bytes

truncated packets: 1429 pkts truncated packets: 0

pkts

data xmit time: 11.140 secs data xmit time: 11.108

secs

idletime max: 1919.6 ms idletime max: 1881.8

ms

throughput: 60415 Bps throughput: 874

Bps

$

Network Traffic Generator 319

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 319

This produces lots of information about the packets involved with the test
traffic. Two interesting statistics to note are the max and min segment (packet)
sizes:

max segm size: 999 bytes

min segm size: 100 bytes

Just as I had specified, the maximum packet size in the session was just
under 1,000 bytes, and the minimum packet size was 100 bytes.

Summary

This chapter described the Network Traffic Generator application, which is
used to generate network traffic on test networks. The traffic generated can
emulate different types of network applications, such as bulk data transfers
and client/server transactions.

The Network Traffic Generator application uses a modular approach to
implementing the different types of network traffic. The modules define how
the client and server functions operate—that is, how the server responds to
client packets (for instance, echoing them back or simply acknowledging
them) and how the client module sends packets to the server (for instance, the
size of the packet data).

There can be multiple Network Traffic Generator clients communicating
with a single server host. You should use enough client devices on the network
to accurately emulate production network traffic on the test network. The layout
of the test network is crucial to the operation of the test network traffic. Using
routers and switches can often segment generated traffic away from the network
application traffic, nullifying the test traffic. Placing test clients on the same
network segments as the network application clients, and the test server on the
same segment as the network application server will produce optimal results,
placing network traffic on the same network path as the test application.

The next chapter introduces the ns application. The ns application performs
network simulation, modeling network behavior mathematically, and display-
ing the expected results.

320 Chapter 16

20 433012 Ch16.qxd 6/16/03 9:11 AM Page 320

321

This chapter introduces the Network Simulator (ns) application, which is used
to simulate network behavior using C++ and OTcl programs. Network simu-
lators perform all of the network simulations in software. No actual packets
are used in the simulation. Even the data packets supplied to the simulator are
simulated. This chapter first describes the Network Simulator application, and
explains how it simulates different network objects. Instructions for down-
loading and installing the software follow (this is definitely one of the more
complicated packages presented in this book). Finally, some examples of net-
work simulation using ns are presented, showing how to model basic network
environments using ns, and how to interpret the resulting data.

The Network Simulator package was developed at the University of Cali-
fornia Berkeley as a method to simulate network behavior without having to
actually use a test network. This allows network administrators to play “What
if?” games, by easily creating different network environments to test network
application performance. This section describes the Network Simulator appli-
cation, and explains how it is designed to simulate networks.

What Is ns?

The Network Simulator application consists of a single program, ns (not to be
confused with the application package name). The ns program reads a network

ns

C H A P T E R

17

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 321

model, defined as an OTcl program, either from a command-line interface or
from a program file, and executes it. The OTcl program defines the desired net-
work elements being simulated, the input data used in the network simula-
tion, and the data to produce as output.

NOTE The OTcl language is an extension to the Tcl/Tk language, and is used
for object-oriented programming. It was developed at MIT and released to the
public to support object-oriented programming in Tcl.

The ns program by itself just produces trace files that show the behavior of
the network model during the simulation. For the average network adminis-
trator, this is not too useful. To help analyze the simulation output, there are
two companion programs that can be used with ns. The following section
describes the ns application programs, and explains how they are used to com-
pletely model and analyze a network.

Network Simulator Programs
The Network Simulator application itself consists of a main program used to
run the network simulation, and some support programs used to view and
interpret the simulation and results. This section describes the parts included
in the Network Simulator application.

ns

The ns program is the meat of the Network Simulator application. It is used to
run the network simulation defined in a supplied OTcl program. While the
network simulation program is run, the ns program provides two types of out-
put mechanisms:

■■ A trace file that records each individual packet as it is processed in the
simulator

■■ A monitor file that records packet statistics and counts as packet
streams are processed in the simulator

The trace file includes information used to track the progress of each simu-
lated packet as it traverses nodes in the network. There are two formats of
trace files, one used for ns, and another used for the nam program, discussed
in the next section.

The monitor file can be used to plot network utilization, packet drops, and
other network features after the simulation is complete. The xgraph applica-
tion is used to plot information stored in the monitor file.

322 Chapter 17

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 322

In order to process the output information, the Network Simulator package
includes two other programs, which are discussed next.

nam

The Network Animator (nam) program was also developed at the University
of California Berkeley, and is used to read the output of the ns program, and
graphically display the results of the simulation. Each node and link in the
simulation is defined in the output file, and displayed in the graphical model,
as shown in Figure 17.1.

The nam program has the ability to step through the ns output file and recre-
ate the network simulation in graphical format. As each network application
transmits data on the simulated network, nam displays the packets as they
travel along the links from node to node.

With the nam program you can change the speed of the simulation, as well
as stop and start the simulation at any point during the simulator time period.
These controls allow you to zoom in on a specific event within the simulation
and observe the behavior of the network devices being simulated.

Figure 17.1 Sample Network Simulator simulation output.

ns 323

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 323

xgraph

The xgraph application, also developed at the University of California Berke-
ley is used to display the monitor data files in a graphical format. Much like
the gnuplot and xplot applications, this application uses the X Windows envi-
ronment to graph the monitor data files against the timeline generated during
the network simulation.

Network Model Elements
Each network element must be modeled within the simulation, including
network devices, network links, network protocols used, and network appli-
cations. Each network element is defined in ns using C++ classes. The charac-
teristics and behaviors of each element are configured into the class, and used
within the Tcl program.

Network Nodes

The basic building blocks of a network model are the end nodes and the links
that connect them. Network Simulator models nodes in two separate forms:

■■ Unicast node. Sends data to only one remote node at a time (the default
behavior)

■■ Multicast node. Sends data to multiple remote nodes at one time

Nodes are used to connect protocols and applications as they send data
between the nodes. Each node provides either a source or destination point for
the application simulation.

Nodes are created using the set command:

set n0 [new Simulator node]

set n1 [new Simulator node]

These lines create two separate nodes, labeled n0 and n1. As each node is
created, it is assigned a unique identifier in the simulator. The node ID is
shown as each command is entered:

% set n0 [new Simulator node]

_o4

% set n1 [new Simulator node]

_o11

%

The node ID is used internally to identify the node, while the OTcl program
references the node using the node label.

324 Chapter 17

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 324

Network Links

Just as in the real network, nodes are connected together with links. The links
provide a way to inject delays, bandwidth limitations, errors, and packet loss
between nodes. There are two basic types of links provided in the simulation:

■■ Simplex links. Provide only one-way data passage

■■ Duplex links. Provide two-way data passage

These links represent point-to-point connections, such as those between
routers, and between a LAN switch and a network device. When creating the
link, you must specify some parameters that define how the link behaves in
the simulation. The formats of the link commands are:

new Simulator simplex-link node1 node2 bw delay queuetype

new Simulator duplex-link node1 node2 bw delay queuetype

The parameters used to define the link are:

■■ node1 The starting point of the link (order is important for simplex
links)

■■ node2 The ending point of the link (again, order is important for
simplex links)

■■ bw The bandwidth limitation of the link, specified as a value and units
(such as 10 Mb)

■■ delay The delay injected into the link, specified as a value and unit
(such as 100 ms)

■■ queuetype The queuing model the link uses to queue packets

The simulator provides several types of queuing methods to handle packets
as they traverse the link. The available queuing methods are DropTail (a FIFO
method), FQ (fair queuing), SFQ (stochastic fair queuing), RED (random early
detection), and DRR (deficit round-robin queuing).

Some sample link definitions:

% new Simulator duplex-link $n0 $n1 10Mb 100ms DropTail

_o18

% new Simulator simplex-link $n2 $n3 10Mb 100ms RED

_o25

% new Simulator duplex-link $n1 $n2 56Kb 400ms SFQ

_o32

%

As you can see in the examples, as each network link is created, it is assigned
a unique link ID for the simulator. Unlike nodes, links are not assigned labels,
as they are not referenced within the OTcl program.

ns 325

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 325

While network link models work fine for point-to-point connections, they
do not accurately simulate multipoint connections, such as shared LAN envi-
ronments. For this, Network Simulator has a special model class.

NOTE Not all LAN devices must be modeled using the ns LAN models. For
example, a switch device provides multiple point-to-point connections. Each
switch connection can be modeled using a duplex-link model.

The make-lan method uses a list of nodes that are connected together in a
single shared LAN environment. The bandwidth of the LAN, along with the
delay, queue type, and channel type are defined in the creation of the LAN:

new Simulator make-lan “$n0 $n1 $n2 $n3” 10Mb 10ms LL Queue/DropTail

Mac/Csma/Cd

This LAN definition creates a four-node 10-Mb Ethernet LAN. After the
LAN is created, the nodes within the LAN can be assigned agents and proto-
cols, just as with point-to-point links.

Network Agents

The agent models represent endpoints where network packets are created and
consumed. These models reflect the protocols that are used in the network,
and the way the individual protocols transmit data across the network.

There are lots of different agents that can be used to represent different types
of protocols (and different behavior within protocols). The main agents that
are used in network simulations are:

■■ TCP models a TCP sending device (sends a packet and waits for an
acknowledgement).

■■ UDP models a UDP sending device (sends packets without waiting
for acknowledgments).

■■ TCPSink models a TCP receiving device (sends a small acknowledg-
ment for each packet received).

■■ NULL models a UDP receiving device (accepts packets but takes no
action).

■■ LossMonitor is a special model that keeps packet statistics on accepted
and lost packets.

As you can probably tell, two separate agents simulate a single network
connection model. The agent pair represents the sending device and the
receiving device in the connection session. Each agent must be assigned to a

326 Chapter 17

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 326

node in the model, and only one agent instance can be used with another agent
instance (two remote senders cannot communication with a single receiver;
two receivers must be assigned to the node).

To assign agents to nodes, you must use the attach-agent command. The
sequence looks like:

set udp0 [new Agent/UDP]

new Simulator attach-agent $n0 $udp0

set null0 [new Agent/Null]

new Simulator attach-agent $n1 $null0

After the two agent objects are defined and attached to nodes, you can cre-
ate a connection between them using the connect command:

new Simulator connect $udp0 $null0

This creates the link between the UDP sender model and the NULL receiver
model. After the agent connection is created, you can use it to pass application
data between nodes.

Network Applications

The application models simulate data traffic on the network. Just as in net-
work emulation, different types of network applications require different
types of simulations. Network Simulator provides for several application
models, as well as allowing you to create your own using C++ classes.

There are three main application class models used:

■■ Application/Traffic generates artificial traffic patterns.

■■ Application/Telnet generates traffic simulating a normal Telnet session.

■■ Application/FTP generates traffic simulating a normal FTP session.

The Telnet and FTP applications produce data streams that you should be
familiar with. The Telnet application sends short bursts of short packets, sim-
ulating a remote terminal sending characters to a remote Telnet server. The
server in turn sends a long burst of packets, simulating a response from the
server. The time between sessions is random, simulating work being done on
the client end before sending data. The FTP application simulates the sending
of long data packets to the remote node, and the remote node sending a short
acknowledgment packet in return.

Both the Telnet and FTP applications must be attached to a TCP agent to
operate properly (they both require acknowledgments from the remote node).
The commands to do this are:

ns 327

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 327

set ftp1 [new Application/FTP]

$ftp1 attach-agent $tcp0

set telnet1 [new Application/Telnet]

$telnet1 attach-agent $tcp1

The Traffic application consists of four separate subapplications:

■■ Traffic/Exponential

■■ Traffic/Pareto

■■ Traffic/CBR

■■ Traffic/Trace

The Exponential traffic application generates network traffic in on-and-off
cycles. During an on cycle, traffic is sent at a constant bit rate to the receiver.
During the off cycle, no traffic is generated. The time between the on and off
periods is determined by an exponential distribution. You can set the average
burst and idle times, the rate used to send the packets, and the packet size for
the application. The commands to do this would be:

set exp1 [new Application/Traffic/Exponential]

$exp1 set packetSize_ 500

$exp1 set burst_time 500ms

$exp1 set idle_time_ 500ms

$exp1 set rate_ 200k

$exp1 attach-agent $udp0

The Pareto traffic application also generates network traffic in on-and-off
cycles, but uses a Pareto distribution. It includes a shape_ parameter that
allows you to define the shape parameter used :

set par1 [new Application/Traffic/Pareto]

$par1 set packet_Size_ 500

$par1 set burst_time_ 500ms

$par1 set idle_time_ 500ms

$par1 set rate_ 200k

$par1 set shape_ 1.75

$par1 attach-agent $udp0

The CBR traffic application generates packets continually at a constant bit
rate. The packet size, bit rate, interval between packets, and maximum number
of packets to send can all be specified for the CBR application:

set cbr1 [new Application/Traffic/CBR]

$cbr1 set packetSize_ 500

$cbr1 set rate_ 200k

$cbr1 interval_ 50ms

$cbr1 maxpkts_ 2000

328 Chapter 17

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 328

The Trace application is different in that it generates traffic based on data
contained in a trace file. After the application is created, the trace file used
must be assigned to the new object:

set tfile [new Tracefile]

$tfile filename trace.out

set tr1 [new Application/Traffic/Trace]

$tr1 attach-tracefile $tfile

The trace file format consists of multiple text lines, each containing two 32-
bit fields. The first field defines, in microseconds, the time until the next packet
will be generated. The second field defines the size in bytes of the next packet.

After the applications are defined, you must define when they are started
and stopped in the simulation. The at command is used to define these values.
Time within the simulation is defined in seconds, and can be specified as a
floating-point value. An example of defining an application would be:

new Simulation at 1.0 “$ftp1 start”

new Simulation at 3.75 “$ftp1 stop”

This defines the starting and stopping times for the application defined by
the ftp1 label. The FTP application will start 1 second after the start of the sim-
ulation, and stop 3.75 seconds into the simulation.

ns Modeling Language
All of the network elements are combined in a single OTcl program to produce
the desired network environment model. The assigned label for the element
(prefixed with a dollar sign, as in shell script programming) references ele-
ments within the program. You can also use labels to create shortcuts, such as
when using the new Simulator tag seen in all of the commands.

Besides the simulation elements, you can also define procedures that com-
bine commands into a single function. This is most commonly done when ref-
erencing the closing commands to end the simulation.

The easiest way to demonstrate a Network Simulator model is to show a
simple example:

set ns [new Simulator]

set nf [open out.nam w]

$ns namtrace-all $nf

set n0 [$ns node]

set n1 [$ns node]

$ns duplex-link $n0 $n1 10Mb 10ms DropTail

ns 329

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 329

set tcp1 [new Agent/TCP]

$tcp1 attach-agent $n0

set sink1 [new Agent/TCPSink]

$sink1 attach-agent $n1

$ns connect $tcp1 $sink1

set ftp1 [new Agent/FTP]

$ftp1 attach-agent $tcp1

proc finish {} {

global ns nf

close $nf

exec nam $nf &

exit 0

}

$ns at 1.0 “$ftp1 start”

$ns at 3.5 “$ftp stop”

$ns at 4.0 “finish”

$ns run

You should recognize most of the commands used in this model. The first
two commands are new, but easily understood. The first command creates a
label to use for the pesky new Simulator tag. This enables you to use the label
instead of having to type the full tag all the time. The second command creates
an output file for the results from the simulation, and assigns a label to the file-
name. The output file is created in nam format, allowing the nam program to
interpret the output and draw the simulation.

Next, two nodes are defined, along with a duplex link that connects them.
After that, a TCP agent is created and assigned to one node, and then a
TCPSink agent is created on the other node. The two agents are connected
together to provide a data path for the application, using the connect com-
mand. An FTP application is then defined, and attached to the TCP agent.
Finally, a procedure called finish is created, which closes the output file that
was defined and runs the nam program to examine the output file.

At the end of the program, the application start and stop times are defined,
along with the time the finish procedure is started. Finally, the run command
is used to start the simulation.

Downloading and Installing ns

As mentioned at the start of this chapter, the Network Simulator application is
one of the most complex applications covered in this book. It requires lots of

330 Chapter 17

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 330

different packages to operate on the Unix system. Fortunately, there is a handy
package provided that includes all of the necessary programs.

Downloading
The Network Simulator Web site, located at http://www.isi.edu/nsnam/ns/,
contains links to many different ns resources, including the download page.
From the download page you can download different versions and packages
for ns. At the time of this writing, the most current version of ns is available at
the URL:

http://www.isi.edu/nsnam/dist/ns-src-2.1b9a.tar.gz

This download is just for the ns application. If you want to download the
package that provides all of the applications necessary to run ns, download
the file:

http://www.isi.edu/nsnam/dist/ns-allinone-2.1b9a.tar.gz

The ns-allinone package contains the applications shown in Table 17.1.

Table 17.1 ns-allinone Package Contents

PACKAGE DESCRIPTION

Tcl version 8.3.2 Required

Tk version 8.3.2 Required

OTcl version 1.0a8 Required

ns version 2.1b9a Required

nam version 1.0a11a Optional (used to display ns output)

xgraph version 12 Optional (used to display monitor files)

cweb version 3.4g Optional (used for documenting programs)

SGB version 1.0 Optional (Stanford GraphBase application for
describing graphs)

gt-itm version 1.1 Optional (used with SGB to graphically create ns
model files)

sgb2ns version 1.1 Optional (used to convert gt-itm SGB files to ns
OTcl files)

zlib version 1.1.3 Optional (used for nam)

ns 331

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 331

That’s a lot of packages included in one distribution file. Some of the pack-
ages included in the allinone distribution are optional. If do not want to down-
load the allinone package (the distribution file is over 48 Mb in size), you can
download the required packages separately, from their respective download
Web sites, but I recommend just biting the bullet and downloading the allin-
one distribution.

After downloading the distribution file, you can uncompress it into a work-
ing directory using the standard tar command. The working directory created
is ns-allinone-2.1b9a.

Compiling and Installing
The allinone distribution package includes a shell script that can be run to
compile all of the included packages at once. The install script should be run
from the working directory. Be prepared for a long compile session, as each
individual package is configured and compiled. When the install is complete,
all of the executable files are located in the bin subdirectory within the work-
ing directory. You can copy these files to a standard location on your system
for easier access.

Validating the Installation
You can validate the ns installation using the validate script, located in the ns-
2.1b9a subdirectory of the allinone working directory. The validate script is
used to test the ns installation using test OTcl scripts that produce known out-
put results. The validation tests will run for quite a long time, but should all
produce positive results.

NOTE If you have downloaded the required ns pieces individually and cannot
get the validate test to work, consider downloading the allinone package and
manually installing the pieces you want. Each of the individual pieces is
dependent on specific release versions of other pieces.

Performing a Network Simulation

Now that the ns application environment is installed, you are ready to begin
modeling and simulating a network environment. This section describes the
events necessary to simulate a network, and to analyze the output from the
simulation.

332 Chapter 17

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 332

Figure 17.2 Test network configuration.

Creating the Simulation Model
The first step, obviously, is to determine the network you want to simulate,
and to create the OTcl program that models the network. For this example, we
will construct a simple switched network environment, with multiple
switches connected to a router, sending data to a remote router. The network
layout is shown in Figure 17.2.

This network shows clients connected to three network switches connected
to a single router with a T1 link to another router. The network model will sim-
ulate the network switches and clients as an individual node producing traffic
to the router. Obviously, the bottleneck in this network will be the T1 line con-
necting the two routers together. The point of the simulation is that it allows
you to watch network traffic as it traverses the T1 link.

To help you watch the traffic on the network, the simulator will use a con-
stant bit rate source from each switch to the server. In a real-world network
simulation, you could use the FTP or Telnet application source to watch the
type of network traffic that generates the worst conditions for the T1 link.

The OTcl program created to model the network is shown in Figure 17.3.

set ns [new Simulator]

set nf [open out.nam w]

set f1 [open out1.tr w]

set f2 [open out2.tr w]

set f3 [open out3.tr w]

set f4 [open outtot.tr w]

$ns namtrace-all $nf

$ns color 1 Blue

$ns color 2 Red

$ns color 3 Green

set n0 [$ns node]

Figure 17.3 The test.tcl model program. (continued)

switch
10 MB

10 MB

10 MB T1 link - 1.5 MBswitch router router

switch

ns 333

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 333

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

$ns duplex-link $n0 $n3 10Mb 20ms DropTail

$ns duplex-link $n1 $n3 10Mb 20ms DropTail

$ns duplex-link $n2 $n3 10Mb 20ms DropTail

$ns duplex-link $n3 $n4 1.5Mb 200ms SFQ

$ns duplex-link-op $n3 $n4 queuePos 0.5

set udp0 [new Agent/UDP]

$ns attach-agent $n0 $udp0

$udp0 set class_ 1

set udp1 [new Agent/UDP]

$ns attach-agent $n1 $udp1

$udp1 set class_ 2

set udp2 [new Agent/UDP]

$ns attach-agent $n2 $udp2

$udp2 set class_ 3

set sink0 [new Agent/LossMonitor]

$ns attach-agent $n4 $sink0

set sink1 [new Agent/LossMonitor]

$ns attach-agent $n4 $sink1

set sink2 [new Agent/LossMonitor]

$ns attach-agent $n4 $sink2

$ns connect $udp0 $sink0

$ns connect $udp1 $sink1

$ns connect $udp2 $sink2

set cbr0 [new Application/Traffic/CBR]

$cbr0 set packetSize_ 500

$cbr0 set rate_ 750k

$cbr0 attach-agent $udp0

set cbr1 [new Application/Traffic/CBR]

$cbr1 set packetSize_ 500

$cbr1 set rate_ 750k

$cbr1 attach-agent $udp1

set cbr2 [new Application/Traffic/CBR]

$cbr2 set packetSize_ 500

$cbr2 set rate_ 750k

$cbr2 attach-agent $udp2

proc record {} {

global sink0 sink1 sink2 f1 f2 f3 f4

set ns [Simulator instance]

Figure 17.3 (continued)

334 Chapter 17

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 334

set time 0.1

set bw0 [$sink0 set bytes_]

set bw1 [$sink1 set bytes_]

set bw2 [$sink2 set bytes_]

set now [$ns now]

puts $f1 “$now [expr $bw0/$time*8/1500000]”

puts $f2 “$now [expr $bw1/$time*8/1500000]”

puts $f3 “$now [expr $bw2/$time*8/1500000]”

puts $f4 “$now [expr ($bw0+$bw1+$bw2)/$time*8/1500000]”

$sink0 set bytes_ 0

$sink1 set bytes_ 0

$sink2 set bytes_ 0

$ns at [expr $now+$time] “record”

}

proc finish {} {

global ns nf f1 f2 f3 f4

$ns flush-trace

close $nf

close $f1

close $f2

close $f3

close $f4

exit 0

}

$ns at 0.0 “record”

$ns at 0.5 “$cbr0 start”

$ns at 1.0 “$cbr1 start”

$ns at 2.0 “$cbr2 start”

$ns at 3.5 “$cbr0 stop”

$ns at 3.75 “$cbr1 stop”

$ns at 4.0 “$cbr2 stop”

$ns at 5.5 “finish”

$ns run

Figure 17.3 (continued)

This model creates five nodes (one for each switch, and one for each router).
A 10-Mb point-to-point link is created for each switch to the router, and a 1.5-
Mb point-to-point link is used for the connection between the two routers. The
queuing method defined for the router link emulates the stochastic fair queu-
ing method used by the router. The duplex-link-op command:

$ns duplex-link-op $n3 $n4 queuePos 0.5

ns 335

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 335

is used to monitor the queue for the link between the two routers (the T1 link).
This will graphically display how packets are queued in the router, and when
(or if) any packets are dropped.

Each of the switch nodes is assigned a UDP agent, and the remote router is
assigned three LossMonitor agents (remember, each agent can only process
one remote agent). The LossMonitor agent will allow you to monitor the bytes
received during the simulated packet streams.

To generate data, the CBR application is used, providing a constant bit
stream (set at 750 Kb per second) from each of the hubs to send to the router.

Four separate monitor files are created, called f1, f2, f3, and f4. Data is added
to each file using the record procedure. The LossMonitor application value
bytes_ is used to extract the number of bytes received by the server over a set
time period. The value is used to calculate a bandwidth value for each stream,
and total all of the streams together. After the calculation, the bytes_values are
reset to zero, to start over. The record procedure is started at the beginning of
the simulation, and kicks itself off every tenth of a second.

A closing procedure (called finish) is created to stop the trace and cleanly
close all of the output files. This procedure can also be used to automatically
start the nam or xgraph program, but for now just have it exit the simulation
so you can run the nam and xgraph programs manually.

After the procedures, the schedulers are defined, indicating when each
application will start sending data, and when they will stop. This simulation
ramps up the data by starting each hub’s traffic separately from the others, and
letting it run concurrently with the other hub traffic. Obviously, three links,
each running at a data rate of 750 Kbps, will overrun the 1.5-Mbps T1 link, but
that is the point of this simulation.

NOTE After getting the hang of manually creating the OTcl model program,
try the gt-itm program. It allows you to graphically design the model, and then
produces a file that can be converted to an ns OTcl program using the sgb2ns
program (also included in the allinone distribution).

Running the Simulation
After saving the OTcl program in a file (called test.tcl for this example), you
can start the network simulation and allow it to run:

$ ns test.tcl

If all goes well, the simulation should be completed and should create the
desired output files. If any errors occur in processing the model file, they are
displayed:

336 Chapter 17

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 336

$ ns test.tcl

can’t read “odp0”: no such variable

while executing

“$ns attach-agent $n0 $odp0”

(file “test.tcl” line 31)

$

This example should produce five separate output files:

$ ls -al out*

-rw-r--r-- 1 rich rich 1281048 Jan 16 18:47 out.nam

-rw-r--r-- 1 rich rich 1715 Jan 16 18:47 out1.tr

-rw-r--r-- 1 rich rich 1667 Jan 16 18:47 out2.tr

-rw-r--r-- 1 rich rich 1555 Jan 16 18:47 out3.tr

-rw-r--r-- 1 rich rich 1766 Jan 16 18:47 outtot.tr

$

The out.nam file contains the simulation information necessary for nam to
display the network simulation. The nam file contains lines for each object and
event in the simulation. A partial listing of the out.nam file looks like:

V -t * -v 1.0a5 -a 0

A -t * -n 1 -p 0 -o 0xffffffff -c 31 -a 1

A -t * -h 1 -m 2147483647 -s 0

c -t * -i 1 -n Blue

c -t * -i 2 -n Red

c -t * -i 3 -n Green

n -t * -a 4 -s 4 -S UP -v circle -c black -i black

n -t * -a 0 -s 0 -S UP -v circle -c black -i black

n -t * -a 1 -s 1 -S UP -v circle -c black -i black

n -t * -a 2 -s 2 -S UP -v circle -c black -i black

n -t * -a 3 -s 3 -S UP -v circle -c black -i black

l -t * -s 0 -d 3 -S UP -r 10000000 -D 0.02 -c black -o right-up

l -t * -s 1 -d 3 -S UP -r 10000000 -D 0.02 -c black -o right

l -t * -s 2 -d 3 -S UP -r 10000000 -D 0.02 -c black -o right-down

l -t * -s 3 -d 4 -S UP -r 10000000 -D 0.02 -c black -o left

q -t * -s 4 -d 3 -a 0.5

q -t * -s 3 -d 4 -a 0.5

+ -t 0.5 -s 0 -d 3 -p cbr -e 500 -c 1 -i 0 -a 1 -x {0.0 4.0 0 -------

null}

- -t 0.5 -s 0 -d 3 -p cbr -e 500 -c 1 -i 0 -a 1 -x {0.0 4.0 0 -------

null}

h -t 0.5 -s 0 -d 3 -p cbr -e 500 -c 1 -i 0 -a 1 -x {0.0 4.0 -1 -------

null}

The first character in the output file identifies the type of event the record
represents. Table 17.2 shows the different types of records that can be present.

ns 337

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 337

Table 17.2 The nam Trace File First Character

CHARACTER DESCRIPTION

V Defines the nam version required to process the trace file

w Defines a wireless node

A Defines hierarchical address information

c Defines the color used to represent the object

n Defines a node

l Defines a network link

q Defines a queue

+ Defines when a packet enters the network queue

- Defines when a packet leaves the network queue

h Defines a network hop for the packet

r Defines that the packet was received by the final
destination

a Defines an agent

Each record type uses its own parameters to define the information repre-
sented by the record. The -s parameter is used to identify the source informa-
tion, and the -d parameter is used to define the destination information.

The monitor files produce the output defined in the record process, the time
of the monitor sample, and the bandwidth value for the link.

Using nam
After the namtrace output file is created, you can use the nam program to
process it:

$ nam out.nam

The nam program reads the namtrace file, and generates the simulation lay-
out. The nodes and links are displayed on the graph, showing the basic net-
work layout. You can click the Re-layout button to rearrange the layout to your
liking. The timeline at the bottom shows the simulation time, and the pointer
shows where in the simulation nam is currently showing. The step slider
allows you to set the speed that the simulation runs at.

When you click the play button (the right arrow button) the simulation
starts. Colored blocks traversing the network indicate simulated data packets
sent by the nodes. The length of a block depicts the size of the packet relative
to the speed of the link. For example, the 500-byte data blocks used in this

338 Chapter 17

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 338

example appear larger when they traverse the T1 link than when they traverse
the 10-Mb link.

As the simulation runs, at some point node 3 must queue packets. The
queued packets are displayed as a line above the node, as shown in Figure 17.4.

As the simulation continues, the node queue fills up, and packets must be
dropped. Blocks falling off the queue to the bottom of the display indicate this.
Since each data stream is represented as a different color, you can see that the
stochastic fair queuing algorithm is working—an equal number of data from
each stream is dropped.

You can experiment with different settings in the OTcl model program and
see the results in the nam display. Changing the speeds of the network links
and the rate of the CBR streams can have dramatic effects on the simulation.

Using xgraph
The monitor trace files can be displayed using the xgraph program. You can
either display each monitor trace file individually, or all of them on a single
graph:

$ xgraph out1.tr out2.tr out3.tr outtot.tr

Figure 17.4 nam display of running simulation.

ns 339

21 433012 Ch17.qxd 6/16/03 9:11 AM Page 339

The output from the xgraph program is shown in Figure 17.5.
Three of the graphs show the bandwidth of the T1 line for each individual

data stream. The total bandwidth is also shown on the graph. Notice how as
the bandwidth hits 100 percent, the individual data streams are throttled back
due to the packet drops from the router queue. You can use this technique to
plot any of the variables from the LossMonitor agent.

Summary

The Network Simulator application is used to programmatically simulate a
network environment. This allows you to observe network device behavior
without having to construct the actual network.

Each element in the network environment is modeled using a C++ routine.
This includes network device nodes, such as hubs, switches, and routers, as
well as network links. Different elements display different characteristics, such
as packet delays, packet loss, and packet processing. The simulation models
account for the different characteristics within the C++ code.

Figure 17.5 xgraph display of monitor trace files.

340 Chapter 17

21 433012 Ch17.qxd 6/16/03 9:12 AM Page 340

Network Simulator then uses the OTcl programming language, developed
at MIT, to allow the network administrator to easily create model files defining
how the individual network elements are configured. Using the OTcl lan-
guage, the network administrator does not need to know the C++ modeling
language used by the Network Simulator application.

After the model is created, it is run from the command-line ns program. The
ns program steps through the model, injecting data packets into the network
as defined in the network model program. Network output is sent to several
different files used both to trace the network activity and to monitor network
events.

The output files produced by ns can be examined using the nam and xgraph
applications. The nam program reads the ns trace file output and graphically
simulates the network configuration and events. This provides a real-time
graphical display of the simulation behavior. The xgraph program is used to
graph the network monitor events, showing network utilization and packet-
loss statistics.

The next chapter presents the Scalable Simulation Framework (SSF) appli-
cation. The SSFNet application uses SSF to provide another programmatic
simulation for networks, using either the C++ or Java language. There are
many different implementations of the SSFNet application available, both
open source and commercial. Chapter 18 discusses the open source versions of
SSFNet that can be used to simulate network environments.

ns 341

21 433012 Ch17.qxd 6/16/03 9:12 AM Page 341

21 433012 Ch17.qxd 6/16/03 9:12 AM Page 342

343

This chapter presents the SSFNet application, another network simulation
package. SSFNet uses the Scalable Simulation Framework (the SSF part), a
standard simulation language, to implement simulation models of various
network elements and traffic (the Net part). First, this chapter discusses the
role of SSF in network modeling, and explains how SSFNet uses SSF to model
network elements. Next, a discussion of how to install SSFNet and use it to
model simple network environments is presented.

There are two popular implementations of SSF available for network
administrators to use for network simulation:

■■ The Dartmouth SSF package (DaSSF)

■■ Renesys Corporation’s Raceway package (SSFNet)

Both packages use SSF classes to implement network models for simulating
large-scale network behavior. The DaSSF package uses C++ classes to model
devices, links, and events, while SSFNet uses Java classes. Due to the simplicity
of the SSFNet package (and Java), it was used for the examples in this chapter.

NOTE While the core SSF classes are open source, the Renesys implemen-
tation of SSF is done using proprietary software. The SSFNet implementation
requires a license from Renesys corporation. However, SSFNet is free for

SSFNet

C H A P T E R

18

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 343

students, faculty, and staff members of educational institutions, as well as
for U.S. government employees (there is also a 30-day free trial available to
commercial users). The concepts explained in this chapter regarding network
modeling using SSF also apply to the DaSSF package, which is freely available
to all.

What Is SSF?

SSF is used to model discrete event simulation. A set of application program-
ming interfaces (APIs) is created in a common language to provide object-
oriented models for elements used in the simulation. Once the models are cre-
ated, they can be used in any type of simulation that requires those types of
elements. There are five base classes used to define the SSF environment:

■■ Entities

■■ Processes

■■ Events

■■ In Channels

■■ Out Channels

Each of these base classes is described in the following sections.

Entities
The term entity, within SSF, refers to objects that can own processes and chan-
nels. Each entity within the SSF model can be aligned (or connected with)
other entities.

An entity is the base object, which is allowed to send and receive data within
the network simulation. Entities can be monitored to observe how much data
the model processes, and how that data is processed.

Processes
Entities contain processes, which control the information generated and
requested by the entities. Processes owned by different entity groups may exe-
cute concurrently in the simulation. A fairness policy is implemented that pre-
vents any one process from being executed twice within the same simulation
time.

Processes are controlled by process states, which indicate the execution state
the process is in. The execution state indicates whether a process is ready to be

344 Chapter 18

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 344

run, or if it is suspended, waiting for a resource. The scheduling procedure
within SSF schedules processes as they become available to run. Processes that
are suspended waiting for a specific simulation time are given higher priority
than processes suspended waiting for resources.

Events
The simulation is controlled by a series of events that occur during the course
of the simulation. The simulation events are configured to simulate data traf-
fic, and the way entities handle data traffic.

Events may be saved and released as they are processed. This enables mon-
itoring of the events as the simulation progresses. Events may also use aliasing
to create pointers to events.

In Channels
In Channels are used to receive data within the SSF simulation for the entity.
Each In Channel is mapped to zero or more Out Channels to create a commu-
nication channel between entities. Entities receive events from the In Channels
and process the events.

Out Channels
Out Channels are used in an entity to send data to other entities within the SSF
simulation. Each Out Channel is mapped to zero or more In Channels to create
a communication channel between entities. Once the entity processes the
events, any data produced from the event can be forwarded via the Out Chan-
nel to other entities.

What Is SSFNet?

The SSFNet application package contains a complete Java implementation of
the SSF engine, along with complete Java models of network devices, links,
and protocols. This section describes SSFNet, and explains how it is used to
model a network environment.

Libraries
The SSFNet package contains the SSF libraries within Java .jar files. The .jar
files contain the Java class files for each simulation model. The two main pack-
ages are SSF.OS and SSF.Net.

SSFNet 345

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 345

The SSF.OS package is used to model the host and protocol characteristics
within the framework. The main classes contained within the SSF.OS pack-
age are:

■■ ProtocolGraph, which defines protocols used for hosts

■■ ProtocolSession, which defines the communication method used for
the protocol

■■ ProtocolMessage, which defines the packet used in the ProtocolSession
carrying simulated data

Individual protocol models (such as SSF.OS.IP, SSF.OS.TCP, and SSF.OS.UDP)
are contained within the SSF.OS package. Each protocol model defines the
characteristics of a different type of network communication type (such as con-
nectionless traffic for UDP models, and connection-oriented traffic for TCP
models).

The SSF.Net package also contains classes for modeling network objects,
including devices, interfaces, links, and routers. The main classes contained
within the SSF.Net package are:

■■ Net, which defines the network configuration

■■ Host, which defines host endpoints on the network

■■ Router, which defines network interconnection devices

■■ NIC, which defines network interfaces for hosts and routers

■■ Link, which defines connections between hosts and router interfaces

Each of these elements is defined in the simulation configuration file using
a special modeling language.

Domain Modeling Language (DML)
Networks are modeled within SSF using DML. The DML program specifies
the network devices, links, and protocols used within the simulation, using a
simplified language notation rather than forcing network modelers to pro-
gram in the SSF implementation language (usually C++ or Java).

The DML specification provides a standard format for defining elements
within the model. The format contains DML expressions, which are lists of
space-separated key and value pairs.

Each value is encapsulated with brackets, indicating the start and end of the
value:

key [value]

346 Chapter 18

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 346

Different keys can be separated with spaces or carriage returns:

key1 [value1] key2 [value2]

key3 [value3]

There may also be definitions of keys within value descriptions:

key1 [key2 [value2]]

This section describes the elements used to create a DML definition for a
network.

Networks

Individual networks are defined using the Net tag. The network definition
includes the hosts, links, routers, and protocols necessary to complete the sim-
ulation. Each network must be assigned a unique network ID value, which is
used to identify hosts within the network. An unidentified top-level network
must be defined to represent the entire simulation network. It looks something
like this:

Net [

definitions for common network attributes

Net [id 1

definitions for network 1 hosts

]

net [id 2

definitions for network 2 hosts

]

]

This definition defines a network simulation of two separate networks. Each
network is configured by the attributes defined within its value sections. For
creating duplicate networks, the id_range attribute can be used instead of the
id attribute:

Net [id_range [from 1 to 5]

definitions for all the networks

]

This creates five separate networks, each with common configurations, such
as hosts and links (as you will see in the Hosts section, hosts are addressed by
network ID as well as host ID, so having duplicate host IDs on separate net-
works is OK).

SSFNet 347

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 347

There are attributes used in the top-level Net definition to define network-
wide features necessary to control the behavior of the simulation. They are:

■■ frequency

■■ randomstream

■■ traffic

The frequency attribute is used to define the clock tick increment within the
simulation. The frequency of the overall network must be set to a value equal
to or higher than the fastest link speed used in the network definition (see the
Links section).

Net [

frequency 100000000

]

This defines a 100-Mb clock increment for the overall network, and assumes
that the fastest link in the network is 100 Mb.

The randomstream attribute is used to define how random numbers are
generated for data streams within the simulation. The format of the random-
stream attribute is:

randomstream [

generator generatorname

stream streamname

reproducibility_level instancetype

]

The generator value defines the type of random number generator used for
the simulation. There are three values that can be used:

■■ MersenneTwister is the strongest uniform pseudo-random number
generator available.

■■ Ranlux is an advanced pseudo-random number generator based on the
RCARRY algorithm.

■■ Java is the standard Java Random() function.

The stream value defines a string to seed the random number generator. The
reproducibility_level value defines how many instances of the random num-
ber generator will be produced within the simulator. This defines how entities
acquire random numbers, and whether the random number generator instances
are shared between entities. The possible values for this are:

■■ timeline. All entities share the same random number generator in
sequence.

■■ host. All random numbers required within a host definition share the
same random number generator.

348 Chapter 18

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 348

■■ protocol. All random numbers required within a protocol definition
share the same random number generator.

■■ distribution. Every random number request from all entities has its
own independent random number generator.

The traffic attribute defines the traffic patterns generated within the simula-
tion. Hosts are configured as clients and servers within the simulation, and the
traffic attribute defines which clients communicate with which servers. The
pattern key is used to define the client and server addresses:

traffic [

pattern [

client clientaddr

servers [nhi serveraddr port portaddr]

]

]

The clientaddr and serveraddr values define specific hosts defined within the
simulation. The simulation client ID references the client used for the traffic
pattern. One traffic pattern defines the connection for a single client. Multiple
pattern keys can be defined for a single traffic attribute.

There may be more than one servers value defined for the client. Each
servers value defines the address of a server (including the interface value), as
well as a port number used for the connection. An example of this would be:

traffic [

pattern [

client 1

servers [nhi 3(0) port 1600]

servers [nhi 4(0) port 1600]

]

pattern [

client 2

servers [nhi 5(0) port 1600]

]

]

Hosts

Within the network definition, hosts define endpoints that contain client or
server objects to send and receive traffic on the network. The host attribute is
defined as:

host [

id idvalue

interface [

interface definitions

SSFNet 349

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 349

]

graph [

protocols defined for the host

]

]

Hosts are identified by both the network ID and host ID numbers, separated
with a colon. Thus, host 1:3 identifies host 3 on network 1.

Interfaces on a host (yes, there can be more than one) are identified with the
interface attribute. Attributes for the interface are:

interface [

id value

bitrate speed

latency delay

buffer size

flaky prob

queue queuename

tcpdump dumpfile

]

A unique id value must be specified for the interface on the host. A specific
interface on the host is referenced by the interface number within parentheses—
the address 3(0) references interface 0 on host 3. The speed of the interface is
defined by the bitrate attribute (in bits per second). The latency attribute
allows you to define a delay value for the interface if necessary.

Some more exotic attributes include setting the buffer size (in bytes) of the
interface, setting a packet drop probability (using flaky) setting a queuing
method (the default is dropTailQueue), and defining a tcpdump file to send all
the simulated packet traffic to.

The graph attribute is used to ProtocolGraph objects supported by the host.
Individual protocol definitions are described later in the Protocols section.

Links

After defining networks and hosts, you will want to connect the hosts within
the network together. This is done using the link attribute. Each of the host
interfaces connected together on the same link are defined using the attach
attribute, along with a delay value (in seconds) set for the entire link:

link [attach 1(0) attach 2(0) attach 3(0) delay 0.005]

This definition connects three host interfaces together in a single link, and
assigns a delay of 5 ms to the link. A simple network configuration would look
like:

350 Chapter 18

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 350

Net [

frequency 100000000

host [

id 1

interface [id 0 bitrate 10000000 latency 0.001]

]

host [

id 2

interface [id 0 bitrate 10000000 latency 0.001]

]

link [attach 1(0) attach 2(0) delay 0.005]

]

Of course, this simple network definition doesn’t do anything yet, but it
shows the basics for defining hosts and links within the network. Next it’s time
to define a router, which allows communication between hosts on different
networks.

Routers

The router attribute is used to simulate a router device connected between net-
works. The format of the router attribute is:

router [

id value

interface [

interface definition

]

graph [

protocol definitions

]

route [

detailed router definitions

]

]

As with hosts, routers are addressed by a specific router ID value (they must
be unique on each network, including host addresses), and one or more inter-
face ID values. The interface definitions are the same as used for the host
attribute.

The graph attribute is used to specify the protocols used by the router (as
described in the Protocols section, next). The route attribute is used to specify
additional router attributes that modify the behavior of the router. The most
common route attribute is dest. It is used to define a default interface for net-
work traffic to be forwarded to, if it is not found in the routing table:

SSFNet 351

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 351

router [

id 1

interface [id_range [from 0 to 5] bitrate 10000000 buffer 8000]

route [dest default interface 0]

]

In this sample configuration, the default route path is interface 0 on the
router. Any packets entering the router that do not have a specific destination
defined in one of the other interfaces will be automatically forwarded to inter-
face 0.

Protocols

Host and router entities must know how to communicate on the simulated
network. Configuring different protocol layers within the device ensures this.
Each protocol necessary for communication must be defined in the graph
attribute, using the ProtocolSession attribute. Protocols are defined in top-
down order.

The ProtocolSession protocols are contained in the SSF.OS class. Different
SSF implementations contain different sets of protocols. Table 18.1 lists the
protocols that are available in the SSF.Net package.

The session is defined using the format:

ProtocolSession [

name protname use class

additional attributes

]

Table 18.1 SSFNet Protocols

PROTOCOL DESCRIPTION

IP The base-level IP support

TCP.tcpSessionMaster TCP session support

UDP.udpSessionMaster UDP session support

Socket.socketMaster Socket programming interface

TCP.test.tcpClient TCP client device

TCP.test.tcpServer TCP server device

OSPF.sOSPF OSPF routing protocol

BGP4.BGPSession BGP4 routing protocol

352 Chapter 18

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 352

Each protocol type can be defined by additional attributes that are specified
within the ProtocolSession. Each protocol type has its own set of attributes
that are used to control the behavior of the protocol. The tcpClient protocol
type defines the characteristics of a standard TCP client device. It uses these
attributes:

■■ start_time defines when the client should start sending packets.

■■ start_window defines a window of time from the start_time when the
client can start sending packets.

■■ show_report determines if output information should be produced
when a packet is sent.

■■ debug determines if debug information should be produced.

■■ file_size sets the amount of data that will be transferred.

■■ request_size sets the size of the response packets.

A sample configuration would look like:

host [

id 1

interface [id 0 bitrate 10000000 latency 0.005]

graph [

ProtocolSession [name TCPServer use SSF.OS.TCP.test.tcpServer]

ProtocolSession [

name TCPClient use SSF.OS.TCP.test.tcpClient

start_time 1.0

start_window 1.0

file_size 50000000

request_size 10

]

ProtocolSession [name socket use SSF.OS.Socket.socketMaster]

ProtocolSession [name tcp use SSF.OS.TCP.sessionMaster]

ProtocolSession [name ip use SSF.OS.IP]

]

]

This example specifies both a client and server session on the same host;
thus, this host can be used as both a client and a server in the simulation.

Downloading and Installing SSFNet

As mentioned in the chapter introduction, there are a few different SSF imple-
mentations available to simulate network operations. The Renesys corporation
implements SSF technology in the SSFNet package a collection of Java
libraries. The SSFNet package includes the standard open source SSF classes,

SSFNet 353

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 353

as well as additional proprietary kernel and support libraries used for SSF and
DML.

Since SSFNet is implemented as a set of Java libraries (.jar files), it can be
used on any platform that supports Java. This means that you can run SSFNet
simulations on both your Unix hosts and your Windows workstations. This
section describes how to download and install the SSF.Net package for either
environment.

NOTE The SSFNet Java libraries require that either the Java runtime
environment (JRE) or Software Development Kit, Standard Edition (J2SE)
be installed on the system. The current version of these is 1.4.1, patch 01,
which is available on the Sun Java Web site (http://java.sun.com).

Downloading
The main SSFNet Web page is supported by the SSF project, and is located at
www.ssfnet.org. It contains documentation and tutorials on using SSFNet to
simulate network behavior. There are also links to places to download SSF
implementations.

The SSFNet distribution is supported by Renesys on its own Web site. You
must connect to a registration Web page to register for downloading the soft-
ware. At the time of this writing, the current version of SSFNet is 1.4, and the
registration page is located at:

http://www.renesys.com/cgi-bin/raceway1.4

The registration page requests that you fill out a simple form, and then
emails you a pass phrase and URL to download the actual software.

NOTE Corporate users of SSFNet can download a 30-day trial copy of SSFNet.
This is the full working version without any limitations. License fees are used to
support development of SSFNet.

The download file is a gnuzipped tar file: ssfnet_raceway[1].tar.gz.

Installing
After downloading the distribution file, you must uncompress and unpack it
into a directory. The distribution file contains both the source code for SSFNet
and the precompiled Java libraries, so it is ready for installation. If you want to
unpack the distribution into a permanent directory, you can use the -C option
of the tar command:

tar -zxvf ssfnet_raceway[1].tar.gz -C /usr/local

354 Chapter 18

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 354

This command creates the directory /usr/local/ssfnet, and places all of the
library and source code files there.

Creating a Development Environment
Since the SSFNet classes are contained in Java libraries, they must be available
for the Java runtime environment to locate when executing SSFNet simula-
tions. This requires you to set up environment variables on the system to point
to the location of the jar files, as well as the Java runtime files.

In order to run the java command-line program from any location on your
system, you should add the location of the java file to the PATH environment
variable. On my Linux system, it is located in the directory /usr/java/
j2sdk1.4.1_01/bin. This location will vary, depending on your system installa-
tion, and whether you loaded the JRE or J2SE Java package.

On Unix systems, the PATH environment variable can be modified from the
profile file in your $HOME directory. On my Mandrake system, this is actually
.bash_profile. On some Unix systems it is called just .profile. You do not want
to replace the existing PATH variable, but add the new path to it:

export PATH=$PATH:/usr/java/j2sdk1.4.1_01/bin

On Windows systems, the PATH environment variable is modified from the
System Properties dialog box. This can be reached by either selecting Start,
Settings, Control Panel from the Start menu, then selecting the System icon, or
by right-clicking on the My Computer desktop icon, then selecting the Proper-
ties menu item. Windows NT, 2000, and XP all allow you to set environment
variables for the currently logged-in user, or system-wide variables if you have
Administrator privileges. The new path for the java executable file should be
appended to the existing PATH environment variable.

After setting the PATH environment variable, you must set the CLASSPATH
environment variable, for Java to find the SSFNet Java classes. There are five
paths that must be added to the CLASSPATH:

■■ /usr/local/ssfnet/lib/raceway.jar (the Renesys SSFNet libraries)

■■ /usr/local/ssfnet/lib/ssfnet.jar (the standard SSF.Net libraries)

■■ /usr/local/ssfnet/lib/cernlite.jar (the random number generators)

■■ /usr/local/ssfnet/lib/regexp.jar (the utilities library package)

■■ /usr/local/ssfnet/src/ (the source code top-level directory)

Again, you can add these values to the existing CLASSPATH environment
variable in the .profile (or .bash_profile) file in the $HOME directory:

export CLASSPATH=$CLASSPATH:/usr/local/ssfnet/lib/raceway.jar:

/usr/local/ssfnet/lib/ssfnet.jar:/usr/local/ssfnet/lib/cernlite.jar:

/usr/local/ssfnet/lib/regexp.jar:/usr/local/ssfnet/src/

SSFNet 355

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 355

The Windows version of the CLASSPATH can also be set from the System
Properties dialog box, as with the PATH environment variable.

After setting the PATH and CLASSPATH environment, you must log out
and log back in to acquire the new settings. You can test to see if they are set by
trying to run SSFNet without specifying a DML file:

$ java SSF.Net.Net

--

| Raceway SSF 1.1b01 (15 March 2002)

| (c)2000,2001,2002 Renesys Corporation

|

| ??

|

--

Syntax: Net [-check]

[-dump]

[-relax]

[-ip a.b.c.d/m]

maxtime dmlfile1 [dmlfile2 [...dmlfileN]]]

-check: schema-check the input DML file(s) first

-dump: dump NHI/CIDR/IP address tables, but don’t actually run the

model

-relax: fail to enforce strict rules about CIDR/IP attributes

-ip addr: allocate IP addresses from the given block (default:

0.0.0.0/0)

$

This shows that both the Java executable file and the SSFNet library files are
accessible from the working directory.

Using SSFNet

Now that you have SSFNet installed, it is time to create a test model and
observe how it is simulated within the SSFNet environment. This section
walks through the process of creating a network model, and watching the out-
put from SSFNet as it is simulated.

Creating a Model
For this exercise, you will create a simple network model containing three
clients located on a 10-MB LAN, along with a router. The router connects to
another router at 1.5 Mb (simulating a T1 link). Connected to the remote router
is a server device. Figure 18.1 shows a diagram of this configuration.

356 Chapter 18

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 356

Figure 18.1 Sample network configuration.

The sample network is set to emulate all three clients sending traffic to the
remote server at a constant rate. This should overrun the T1 line, which will
limit the throughput to the server. The DML code used to simulate this net-
work is shown in Figure 18.2.

Net [

frequency 10000000

randomstream [

generator “MersenneTwister”

stream “stream1”

reproducibility_level “timeline”

]

traffic [

pattern [

client 1

servers [nhi 4(0) port 1600]

]

pattern [

client 2

servers [nhi 4(0) port 1600]

]

pattern [

client 3

servers [nhi 4(0) port 1600]

]

]

host [

idrange [from 1 to 3]

interface [id 0 bitrate 10000000]

Figure 18.2 DML model of sample network. (continued)

client

client
router

server

10-MB network10-MB network

router

client
T1 link

SSFNet 357

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 357

nhi_route [dest default interface 0 next_hop 10(0)]

graph [

ProtocolSession [

name TCPclient use SSF.OS.TCP.test.tcpClient

start_time 1.0

start_window 1.0

file_size 1000000

request_size 10

show_report true

]

ProtocolSession [name socket use

SSF.OS.Socket.socketMaster]

ProtocolSession [name tcp use SSF.OS.TCP.tcpSessionMaster

tcpinit[

show_report true

]

]

ProtocolSession [name ip use SSF.OS.IP]

]

]

host [

id 4

interface [id 0 bitrate 10000000 tcpdump test.dmp]

nhi_route [dest default interface 0 next_hop 11(0)]

graph [

ProtocolSession [

name TCPServer use SSF.OS.TCP.test.tcpServer

port 1600

request_size 10

show_report true

]

ProtocolSession [name socket use

SSF.OS.Socket.socketMaster]

ProtocolSession [name tcp use SSF.OS.TCP.tcpSessionMaster

tcpinit[

show_report true

]

]

ProtocolSession [name ip use SSF.OS.IP]

]

]

router [

idrange [from 10 to 11]

interface [id 0 bitrate 10000000]

interface [id 1 bitrate 1500000]

graph [ProtocolSession [name ip use SSF.OS.IP]]

Figure 18.2 (continued)

358 Chapter 18

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 358

route [dest default interface 1]

]

link [attach 1(0) attach 2(0) attach 3(0) attach 10(0)]

link [attach 11(0) attach 4(0)]

link [attach 10(1) attach 11(1)]

]

Figure 18.2 (continued)

Most of the lines in this model are straightforward. First, the network defi-
nition defines the simulation frequency at 10000000 (as this is the fastest link
rate), a randomstream is defined for the entire simulation, and the traffic pat-
terns are defined. Three separate patterns are defined, one from each client to
the host.

Next, the three client hosts are defined. This is different from what you have
seen earlier, as all three hosts are defined in a single host attribute. The idrange
attribute is used to specify all three hosts at once. Each of the hosts has a single
network interface, set for 10 Mb, along with the tcpClient protocol and neces-
sary subprotocols. The tcpClient protocol has additional attributes defined,
such as the size of the file to transfer (1 Mb). The show_report attribute is used
to output information from each client as it starts the file transfer.

The nhi_route attribute is similar to the route attribute described in the
Routers section. Since the model does not specify IP addresses, the route path
for each host must be specified. The nhi_route attribute allows you to specify
the default interface to use, along with the address of the device that will for-
ward packets to the next network:

nhi_route [dest default interface 0 next_hop 10(0)]

The server host is defined next. When the interface is defined, an additional
attribute is included:

interface [id 0 bitrate 10000000 tcpdump test.dmp]

The tcpdump subattribute is used to tell SSFNet to record all of the simu-
lated packets sent and received on this interface to a file in tcpdump format.
This allows you to use tcpdump and tcptrace to analyze the simulation traffic
(as will be discussed in the Interpreting the Results section). The tcpServer pro-
tocol is defined for the server, specifying the show_result subattribute to dis-
play the events during the simulation.

The routers are defined in a single router attribute section. Each router has
two interfaces, a 10-Mb connection to the networks, and a 1.5-Mb interface to
simulate the T1 connection. The routers must simulate the IP protocol so they
can forward IP packets between the networks.

SSFNet 359

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 359

Finally, the links connecting the devices are defined. The first link definition
defines the LAN connection between the three client hosts and the first router.
The second link definition defines the LAN connection between the server
host and the second router. The final link definition defines the T1 connection
between the two routers.

Running the Simulation
After creating the DML model, you can run it through the SSFNet simulator,
using the java command line, along with the SSF.Net.Net base class. The for-
mat of the SSFNet line is:

java SSF.Net.Net time modelname

where time defines the amount of time (in seconds) you want the simulation to
run, and modelname defines the DML file you want to use in the simulation.

Running the simulation produces the following results:

$ java SSF.Net.Net 100 test.dml

--

| Raceway SSF 1.1b01 (15 March 2002)

| (c)2000,2001,2002 Renesys Corporation

|

| ??

|

--

CIDR IP Block b16 NHI

-- 0.0.0.0/27 0x00000000

0 0.0.0.0/29 0x00000000 1(0) 2(0) 3(0) 10(0)

1 0.0.0.12/30 0x0000000c 11(0) 4(0)

2 0.0.0.8/30 0x00000008 10(1) 11(1)

NHI Addr CIDR Level IP Address Block % util

-- -- 0.0.0.0/27 56.25

** Using specified 100.0ns clock resolution

--- Phase I: construct table of routers and hosts

--- Phase II: connect Point-To-Point links

--- Phase III: add static routes

Net config: 6 routers and hosts

Elapsed time: 0.725 seconds

** Running for 1000000000 clock ticks (== 100.0 seconds sim time)

1.0897069 TCP host 3 src={0.0.0.3:10001} dest={0.0.0.14:1600} Active

Open

1.0902842 TCP host 4 src={0.0.0.14:1600} dest={0.0.0.3:10001} SYN recvd

360 Chapter 18

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 360

1.9199429 TCP host 2 src={0.0.0.2:10001} dest={0.0.0.14:1600} Active

Open

1.9204565 TCP host 1 src={0.0.0.1:10001} dest={0.0.0.14:1600} Active

Open

1.9205202 TCP host 4 src={0.0.0.14:1600} dest={0.0.0.2:10001} SYN recvd

1.9210338 TCP host 4 src={0.0.0.14:1600} dest={0.0.0.1:10001} SYN recvd

15.1613078 [sid 1 start 1.0897069] TCPclient 3 srv 4(0) rcvd 1000000B

at 568.52kbps - read() SUCCESS

15.1613078 TCP host 3 src={0.0.0.3:10001} dest={0.0.0.14:1600}Active

Close

15.1618851 TCP host 4 src={0.0.0.14:1600} dest={0.0.0.3:10001}Active

Close

15.1618851 TCP host 4 src={0.0.0.14:1600}dest={0.0.0.3:10001}Passive

Close

17.7129151 [sid 1 start 1.9199429] TCPclient 2 srv 4(0) rcvd 1000000B

at 506.554kbps - read() SUCCESS

17.7129151 TCP host 2 src={0.0.0.2:10001} dest={0.0.0.14:1600}Active

Close

17.7134924 TCP host 4 src={0.0.0.14:1600} dest={0.0.0.2:10001}Active

Close

17.7134924 TCP host 4 src={0.0.0.14:1600}dest={0.0.0.2:10001}Passive

Close

17.721875 [sid 1 start 1.9204565] TCPclient 1 srv 4(0) rcvd 1000000B

at 506.283kbps - read() SUCCESS

17.721875 TCP host 1 src={0.0.0.1:10001} dest={0.0.0.14:1600} Active

Close

17.7224523 TCP host 4 src={0.0.0.14:1600} dest={0.0.0.1:10001}Active

Close

17.7224523 TCP host 4 src={0.0.0.14:1600}dest={0.0.0.1:10001}Passive

Close

--

| 1 timelines, 5 barriers, 24171 events, 3374 ms, 8 Kevt/s

--

$

The simulation is allowed to run for 100 seconds, although, as seen in the
output, it only took slightly less than 18 seconds for it to complete the data
transfers. After the opening banner, SSFNet lists the networks that it identified
in the DML file. Since no IP addresses were defined, SSFNet shows the
assigned address ranges for each network.

Next, SSFNet uses three phases to interpret and run the model. If any errors
are encountered during the individual phases, a Java runtime error will be
produced.

WARN I NG Unfortunately, the Java runtime errors produced by SSFNet
are not self-explanatory. Often lots of guessing and digging are required to
determine what part of the DML file produced the error. Often, starting out
simple and building parts of the network allows you to isolate what piece
causes a particular Java error message.

SSFNet 361

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 361

After the three phases are complete, the output generated from any show-
report attributes is displayed as the simulation runs. As seen in this example,
each of the clients displays when the TCP connection is started, when the data
is transferred, and when the connection is closed. Likewise, the server host
also indicates its progress during the simulation. This feature enables you to
watch the network connections, and determine if things are progressing the
way you intended them to progress.

After the simulation is complete, you can analyze any dump files that were
created from the hosts.

Interpreting the Results
When the tcpdump attribute is used on an interface, a complete tcpdump for-
matted dump file is created with the simulation packets. As SSFNet creates
actual IP packets, you can analyze the produced dump file using both the tcp-
dump program and the tcptrace program, described in Chapter 10, “tcptrace.”

In this example, the server host creates the tcpdump file test.dmp, contain-
ing all of the packets received and sent by the host (host number 4 in this
example). You can perform a quick analysis of the traffic using the default tcp-
trace command:

$ tcptrace test.dmp

1 arg remaining, starting with ‘test.dmp’

Ostermann’s tcptrace -- version 6.2.0 -- Fri Jul 26, 2002

5883 packets seen, 5883 TCP packets traced

elapsed wallclock time: 0:00:05.239794, 1122 pkts/sec analyzed

trace file elapsed time: 0:00:16.633536

TCP connection info:

1: 0.0.0.3:10001 - 0.0.0.14:1600 (a2b) 981> 980< (complete)

2: 0.0.0.2:10001 - 0.0.0.14:1600 (c2d) 981> 980< (complete)

3: 0.0.0.1:10001 - 0.0.0.14:1600 (e2f) 981> 980< (complete)

$

As expected, three separate connection sessions were observed, one for each
client host sending the data file to the server host. Note how SSFNet assigned
a unique IP address to each of the hosts in the simulation, even though they
were not specifically configured in the DML model.

As with any tcpdump dump file, you can use the tcptrace -l and -o options
to observe the details for a single session:

tcptrace -l -o1 test.dmp

This command produces the detailed results of the first client’s network
traffic. You can observe the network behavior as the client sent the 1-Mb data
file to the server.

362 Chapter 18

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 362

You can also use the tcptrace graphical features to graph the network behav-
ior during the simulation. The command:

tcptrace -G -o1 test.dmp

generates several important graphs showing the network behavior of the sim-
ulated data transfer. Figure 18.3 shows the standard throughput graph gener-
ated from the data.

As seen from the figure, the throughput dramatically drops off as all of the
data transfers from the clients kick in. Figure 18.4 shows the round-trip time
(RTT) graph of the data transfer.

The round-trip time indicates that, as expected, the T1 link between the
client and host has slowed things down considerably.

After observing the basic network simulation results, you can modify the
model to observe different types of data transfers. Instead of defining all three
clients in one host attribute, you can create three separate host attributes—
each one transferring different types and sizes of data—and even define dif-
ferent start times for each.

Figure 18.3 Throughput of simulated data transfer from client 1.

SSFNet 363

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 363

Figure 18.4 Round-trip time of data transfer from client 1.

Summary

The Scalable Simulation Framework (SSF) provides a robust modeling environ-
ment for simulating entities, events, and processes in different types of situa-
tions. The SSFNet application uses SSF to model network behavior, modeling
network devices, links, and protocols.

SSFNet uses Java to create class models for hosts, routers, network links,
and protocols that can be combined together to simulate a large network envi-
ronment. Once the network model is defined, simulations can be performed
showing how each network device and link will perform given different net-
work conditions.

SSFNet has the ability to create standard tcpdump dump files containing the
network traffic generated by the network simulation. The dump files can then
be analyzed using tcpdump and tcptrace to observe how the simulated net-
work handled the data traffic.

The final chapter in this book wraps up the network application performance
section by presenting a sample production network environment and test
application. Each of the network application performance tools presented in
this section is used to simulate and emulate the production environment, and
the test results will be compared against the real-world network performance.

364 Chapter 18

22 433012 Ch18.qxd 6/16/03 9:12 AM Page 364

365

Now that you have a whole suite of network application performance tools
available for use, it would be a good idea to see a specific example of how each
one can be used within a production application environment. This chapter
wraps up the book by presenting a sample production network and applica-
tion, and walking through the use of simulation and emulation tools to see
what type of application performance to expect.

The whole purpose of network emulation and simulation is to observe net-
work behavior without affecting the actual production network. Part III of this
book presented several tools that can be used to either emulate or simulate a
production network in a controlled environment, allowing you to test network
application performance. The first section of this chapter explains how to cre-
ate network models to accurately emulate or simulate network application
performance.

Modeling the Production Environment

The first step to network emulation or simulation is to produce an accurate
model of the production network. Sometimes this can be a difficult task. In
these days of complicated switches, routers, and client devices, tracing the
end-to-end path between two network endpoints is not easy.

Comparing Application
Performance Tools

C H A P T E R

19

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 365

It is usually best to simplify the network model as much as possible. If there
are lots of components between the network endpoints, often simply model-
ing the bottleneck points is enough for the model to make an accurate estimate
of network performance. If you have several 100-Mb switches connected
together, passing data off to a router connected with a T1 link to the Internet, a
model of traffic to and from the Internet does not need to include all of the
switch devices. The network performance will be most affected by the perfor-
mance of the router, with minimal effect from the switches. To model this net-
work you can create a detailed model of the router behavior, and model the
switches as just additional delay in the network.

The Production Network
This chapter demonstrates how to emulate and simulate a common network
problem—connecting customers to applications on remote servers. Often net-
work applications are tested in test environments in which all workstations and
servers are local. However, in the production network environment, remote
offices are often connected to the network to access the application. The net-
work shown in Figure 19.1 contains several layers of hubs, switches, and
routers between the client and server within a corporate network environment.

This figure shows a typical production network configuration. In this exam-
ple there are two separate corporate buildings, each containing customer
workstations and a local server. Workstations on customers’ desktops are con-
nected to a shared hub in a wiring closet. The hubs for each floor are connected
to a switch, which in turn is connected via a high-speed link to a central core
switch and router. Each switch in the building operates on a separate VLAN,
maximizing network performance. The servers are directly connected to the
central switch, also to maximize performance.

Figure 19.1 Complicated production network environment.

hub hub switch

100-Mb links

hub hub

hub hub

hub hubswitch

switch

switch

100-Mb links

100-Mb links

100-Mb links

server server

switch switch

router router

1-Gb link 1-Gb link

1-Gb link 1-Gb link

client workstations client workstations

Building 1 Building 2

T1
link

366 Chapter 19

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 366

The two buildings are connected via a T1 link, using routers connected to
the central switches. Customers can connect to the server in either building to
access applications and data. However, if a network application is fielded on a
single server, customers located in the remote building must traverse the T1
link to access the application. This is where the bottleneck occurs, and where
network modeling must be done to observe just how much slower the appli-
cation’s performance will be for those customers.

Modeling the Network
Instead of trying to model the entire corporate network environment, you can
break the network down into a series of black-box components, each with spe-
cific behavioral characteristics. Figure 19.2 shows a simplified model of the
complicated network.

The simplified network consists of two separate switch networks, connected
via a T1 link (using routers). Each switch network connects endpoint devices
to a common node, representing the internal building network. This node will
introduce a small amount of delay into the data path, but does not adversely
affect the network traffic too much. Since the bottleneck on the internal net-
work is the 100-Mb links from the workstations to the hubs, the link from the
device nodes to the switch node is set to 100 Mb. The network bottleneck pro-
duced by the T1 link is modeled using both router endpoints and a 1.5-Mb
link.

NOTE This model assumes that the local switches will not experience
overloading with normal network traffic. If this occurs in your network,
you will want to also model the queue behavior within the switches and
determine how that affects the network application performance.

Figure 19.2 Simplified model of the production network.

client client

server server
router router

local area network local area network

100 Mbps 100 Mbps

1.5 Mbps

Comparing Application Performance Tools 367

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 367

The point of these tests is to determine the response times that should be
expected when a customer accesses a network application on a remote server,
and when the customer accesses the same application on a local server. This
should provide a good benchmark to determine how the T1 link affects the
performance of the network application.

For the purposes of this example, let’s assume that the network application
is a client/server-based application. The customer workstation sends small
query packets to the server, and receives larger response packets containing
the query information. A 10-Mb data file size will be used to model the amount
of data returned by the server from multiple client queries. This should pro-
duce a large enough data sample to determine the effect of the T1 link on the
network application.

NOTE With the client/server model, you can perform the data transfer in
either direction, as the same results should apply to both directions of data
travel.

Using ns

The first simulation generated uses the ns application. For the ns simulation, a
model must be created, using the OTcl language, that accurately simulates
both the network environment and the network application data traffic pat-
tern. This section explains how to create a model, run the simulation, and
interpret the results.

Building the Model
The ns OTcl model must include nodes to simulate the network environment
model shown in Figure 19.2. Each node must be defined, along with the links
connecting the nodes, and the protocols used to transfer the data. A diagram of
the ns model is shown in Figure 19.3.

The ns network model uses nodes to represent each of the network devices
in the simplified network model. Each link must be defined to represent the
bandwidth and delay present in the production system.

Since ns only produces trace files of the simulation, to determine the amount
of time required to transfer 10 Mb of data between the client devices and the
server, you must process the data in the trace file. To produce the trace file, you
must configure the trace feature to track the data packets as they are sent and
accepted by the devices.

368 Chapter 19

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 368

Figure 19.3 ns network model diagram.

The resulting OTcl model is shown in Figure 19.4.

set ns [new Simulator]

set nf [open out.nam w]

set nf2 [open out.tr w]

$ns namtrace-all $nf

$ns trace-all $nf2

$ns color 1 Blue

$ns color 2 Red

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

set n5 [$ns node]

set n6 [$ns node]

$ns duplex-link $n0 $n1 100Mb 10ms DropTail

$ns duplex-link $n1 $n2 100Mb 10ms DropTail

$ns duplex-link $n2 $n3 1.5Mb 0ms SFQ

$ns duplex-link $n4 $n3 100Mb 10ms DropTail

$ns duplex-link $n5 $n4 100Mb 10ms DropTail

$ns duplex-link $n6 $n4 100Mb 10ms DropTail

$ns duplex-link-op $n2 $n3 queuePos 0.5

set tcp0 [new Agent/TCP]

$ns attach-agent $n0 $tcp0

$tcp0 set class_ 1

set ftp1 [new Application/FTP]

Figure 19.4 Network model for the ns simulation. (continued)

FTP client

node 0

FTP client

node 5

TCPSink

node 6

node 1 node 4

node 2 node 3

100 Mbps
10 ms delay

100 Mbps
10 ms delay

100 Mbps
10 ms delay

100 Mbps
10 ms delay

100 Mbps
10 ms delay

1.5 Mbps
0 ms delay

Comparing Application Performance Tools 369

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 369

$ftp1 attach-agent $tcp0

set tcp1 [new Agent/TCP]

$ns attach-agent $n5 $tcp1

$tcp1 set class_ 2

set ftp2 [new Application/FTP]

$ftp2 attach-agent $tcp1

set sink1 [new Agent/TCPSink]

$ns attach-agent $n6 $sink1

set sink2 [new Agent/TCPSink]

$ns attach-agent $n6 $sink2

$ns connect $tcp0 $sink1

$ns connect $tcp1 $sink2

proc finish {} {

global ns nf nf2

$ns flush-trace

close $nf

close $nf2

exit

}

$ns at 1.0 “$ftp1 start”

$ns at 1.0 “$ftp2 start”

$ns at 3.0 “$ftp2 stop”

$ns at 60.0 “$ftp1 stop”

$ns at 70.0 “finish”

$ns run

Figure 19.4 (continued)

The simulation model defines six nodes, and connects them using the
appropriate network link speeds and delays. Each of the Ethernet links has a
10-ms delay added, to model the delay induced by the switch devices in the
network. One node on each network is configured to be an FTP client using the
FTP application model, while a single end node is configured to be the FTP
server using the TCPSink agent model. This configuration allows a constant
data transfer between the client nodes and the server node.

370 Chapter 19

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 370

Running the Model
After creating and saving the simulation model, you can run it using the ns
command-line program:

$ ns test.tcl

Depending on the speed of your Unix host, the simulation may run for a few
seconds, then finish. After it finishes, you should see two files: out.nam and
out.tr. The out.nam file contains the network simulation data for the nam ani-
mator program. The out.tr file contains the network simulation regarding the
raw data transfers.

You can observe the network in action by using the nam program with the
out.nam file:

$nam out.nam

This starts the nam application, and loads the data from the out.nam file.
You may want to click the Relayout button a few times, until the network lay-
out suits your taste. Figure 19.5 shows the basic layout of the network simula-
tion, along with packets as they are being processed.

Figure 19.5 The nam network simulation display.

Comparing Application Performance Tools 371

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 371

You can watch the queue status of the router devices as packets are passed
from the remote client to the server device.

Interpreting the Results
After the ns simulation is run, you can analyze the out.tr file to observe the
data transfers. A sample of the out.tr contents looks like:

+ 1 0 1 tcp 40 ------- 1 0.0 6.0 0 0

- 1 0 1 tcp 40 ------- 1 0.0 6.0 0 0

+ 1 5 4 tcp 40 ------- 2 5.0 6.1 0 1

- 1 5 4 tcp 40 ------- 2 5.0 6.1 0 1

r 1.010003 0 1 tcp 40 ------- 1 0.0 6.0 0 0

+ 1.010003 1 2 tcp 40 ------- 1 0.0 6.0 0 0

- 1.010003 1 2 tcp 40 ------- 1 0.0 6.0 0 0

r 1.010003 5 4 tcp 40 ------- 2 5.0 6.1 0 1

+ 1.010003 4 6 tcp 40 ------- 2 5.0 6.1 0 1

- 1.010003 4 6 tcp 40 ------- 2 5.0 6.1 0 1

r 1.010006 4 6 tcp 40 ------- 2 5.0 6.1 0 1

The trace file shows the status of each simulated packet at any given time in
the simulation. The format of the trace file is:

event time src dst pkttype pktsize flags fid srcaddr dstaddr seqnum pktid

The event field defines the status of the packet record. A plus sign indicates
that the packet has been placed in the queue for the associated source and des-
tination node link. A minus sign indicates that the packet has been removed
from the link queue, while a letter r indicates that the destination node has
received the packet. You can use this information to monitor the amount of
data that is received by each node in the simulation.

The goal of this simulation was to watch how long it would take each client
to send 10 Mb of data to the server. You can use the trace file to watch the data
packets as they are received within the network, and count the data. To ensure
that you are tracking data from the right client, you need to choose two points
in the network that are unique to the individual client data paths. Monitoring
data received by node 4 from node 3 ensures that it is data received from client
0, while monitoring data received by host 4 from node 5 ensures it is from
client 5.

You can write a simple shell script to create an output file containing the
time field and the sum of the packet size field for specific source and destina-
tion nodes. A sample would look like this:

cat out.tr | grep ^r | grep “3 4 tcp 1040” | awk ‘{old = old + $6;

printf(“%f\t%d\n”, $2, old)}’ > out.34

372 Chapter 19

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 372

This script scans the trace file, looking for received packets (the ^r part)
from host 3 to host 4 (the 3 4 part) that contain data (the 1040 part). That infor-
mation is fed into an awk script, which sums the packet sizes, and prints the
time and the packet size sum value. The result is redirected to an output file.
The result of the output file looks like:

$ head out.34

1.096288 1040

1.101835 2080

1.162349 3120

1.167940 4160

1.173487 5200

1.179034 6240

1.228499 7280

1.234046 8320

1.239593 9360

1.245139 10400

$

By changing the host numbers in the shell script, you can produce a similar
file for the data between hosts 5 and 4, showing the local client data path. Now,
you can use the xgraph program to chart both data lines and observe the data
streams, as shown in Figure 19.6.

Figure 19.6 xgraph display of the data traffic.

Comparing Application Performance Tools 373

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 373

As seen in the xgraph display, both of the data streams start at 1 second into
the simulation. The data stream from client 5 to the server reached 10 Mb at
about 11 seconds into the simulation, while the data stream from client 0 to the
server reached the 10-Mb data mark at about 55 seconds. This indicates that
the remote client transfer took about 54 seconds, while the local client transfer
took about 10 seconds.

Performing additional analysis of the trace output, you can compare the
individual times for each data stream. It took on average 6 ms for one data
packet to traverse the network from the remote client to the server, while it
took less than 1 ms for the same data to traverse the local network from the
local client. A 5-ms difference does not seem like a long time, but, as seen in
this example, when large amounts of data are traversing the network, it adds
up to a large overall performance delay.

Using SSFNet

Next up is the SSFNet model. To simulate the model network, you must create
a DML program defining the network devices and links, along with the proto-
cols used. This section describes the steps necessary to build an SSFNet model
and observe the results.

Building the Model
The SSFNet DML model must define the pertinent devices and links to simu-
late from the production network. Figure 19.7 shows the SSFNet model used to
simulate the sample network.

Figure 19.7 SSFNet network model.

host 0 host 3

host 4

router 1 router 2

100 Mbps

100 Mbps

100 Mbps

100 Mbps

100 Mbps

100 Mbps

1.5 Mbps

1.5 Mbps

0 0

0

0 0

0

1 1

374 Chapter 19

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 374

The SSFNet network model uses the Ethernet LAN modeling feature to sim-
ulate the speed and delay present in the internal switch network within the
buildings. This greatly simplifies the model. Each device must also have the
proper interfaces configured (shown by the small numbers on the nodes) to
represent the link speeds in the model. Figure 19.8 shows the resulting DML
model code.

Net [

frequency 1000000000

randomstream [

generator “MersenneTwister”

stream “stream1”

reproducibility_level “timeline”

]

traffic [

pattern [

client 0

servers [nhi 4(0) port 1600]

]

pattern [

client 3

servers [nhi 4(0) port 1600]

]

]

host [

id 0

interface [id 0 bitrate 10000000]

route [dest default interface 0]

graph [

ProtocolSession [

name TCPclient use SSF.OS.TCP.test.tcpClient

start_time 1.0

start_window 1.0

file_size 10000000

request_size 40

show_report true

]

ProtocolSession [name socket use SSF.OS.Socket.socketMaster]

ProtocolSession [name tcp use SSF.OS.TCP.tcpSessionMaster

tcpinit[

show_report true

]

]

ProtocolSession [name ip use SSF.OS.IP]

Figure 19.8 SSFNet DML model. (continued)

Comparing Application Performance Tools 375

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 375

]

]

host [

id 3

interface [id 0 bitrate 100000000]

nhi_route [dest default interface 0 next_hop 2(0)]

graph [

ProtocolSession [

name tcpClient use SSF.OS.TCP.test.tcpClient

start_time 1.0

start_window 1.0

file_size 10000000

request_size 40

show_report true

]

ProtocolSession [name socket use SSF.OS.Socket.socketMaster]

ProtocolSession [name tcp use SSF.OS.TCP.tcpSessionMaster

tcpinit [

show_report true

]

]

ProtocolSession [name ip use SSF.OS.IP]

]

]

host [

id 4

interface [id 0 bitrate 100000000 tcpdump test7.dmp]

nhi_route [dest default interface 0 next_hop 2(0)]

graph [

ProtocolSession [

name TCPServer use SSF.OS.TCP.test.tcpServer

port 1600

request_size 10

show_report true

]

ProtocolSession [name socket use SSF.OS.Socket.socketMaster]

ProtocolSession [name tcp use SSF.OS.TCP.tcpSessionMaster

tcpinit[

show_report true

Figure 19.8 (continued)

376 Chapter 19

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 376

]

]

ProtocolSession [name ip use SSF.OS.IP]

]

]

router [

id 1

interface [id 0 bitrate 100000000]

interface [id 1 bitrate 1500000]

graph [ProtocolSession [name ip use SSF.OS.IP]]

route [dest default interface 1]

]

router [

id 2

interface [id 0 bitrate 100000000]

interface [id 1 bitrate 1500000]

graph [ProtocolSession [name ip use SSF.OS.IP]]

route [dest default interface 1]

]

link [attach 0(0) attach 1(0) delay 0.010]

link [attach 1(1) attach 2(1)]

link [attach 2(0) attach 3(0) attach 4(0) delay 0.010]

]

Figure 19.8 (continued)

Hosts 0 and 3 are configured as TCP client devices, capable of sending a 10-
Mb file using standard TCP. Host 4 is configured as a TCP server device,
accepting the 10-Mb file stream from the clients, and returning an acknowl-
edgment packet. Two router devices are configured to simulate the T1 link
within the production network. Since no IP addresses are assigned to the sim-
ulation, default routes are specified for each device on the network. Both of the
local networks are modeled using a single LAN connecting the devices, and a
10-ms delay period.

Running the Model
The SSFNet model is run using the java command-line interpreter, along
with the SSF.Net.Net base class used in the Raceway SSFNet system. Since
each of the client devices and the server device use the show_report feature,
you can observe the start and end of the data streams. The output looks like:

$ java SSF.Net.Net 100 test.dml

--

| Raceway SSF 1.1b01 (15 March 2002)

Comparing Application Performance Tools 377

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 377

| (c)2000,2001,2002 Renesys Corporation

|

| ??

|

--

CIDR IP Block b16 NHI

-- 0.0.0.0/27 0x00000000

0 0.0.0.12/30 0x0000000c 0(0) 1(0)

1 0.0.0.8/30 0x00000008 1(1) 2(1)

2 0.0.0.0/29 0x00000000 2(0) 3(0) 4(0)

NHI Addr CIDR Level IP Address Block % util

-- -- 0.0.0.0/27 56.25

** Using specified 1.0ns clock resolution

--- Phase I: construct table of routers and hosts

--- Phase II: connect Point-To-Point links

--- Phase III: add static routes

Net config: 5 routers and hosts

Elapsed time: 0.667 seconds

** Running for 100000000000 clock ticks (== 100.0 seconds sim time)

1.919942997 TCP host 3 src={0.0.0.2:10001} dest={0.0.0.3:1600} Active

Open

1.920456578 TCP host 0 src={0.0.0.13:10001}dest={0.0.0.3:1600} Active

Open

1.930046197 TCP host 4 src={0.0.0.3:1600} dest={0.0.0.2:10001} SYN recvd

1.941005111 TCP host 4 src={0.0.0.3:1600} dest={0.0.0.13:10001} SYN

recvd

14.39844274 [sid 1 start 1.919942997] tcpClient 3 srv 4(0) rcvd

10000000B at 6411.027kbps - read() SUCCESS

14.39844274 TCP host 3 src={0.0.0.2:10001} dest={0.0.0.3:1600} Active

Close

14.40854594 TCP host 4 src={0.0.0.3:1600} dest={0.0.0.2:10001} Active

Close

14.40854594 TCP host 4 src={0.0.0.3:1600} dest={0.0.0.2:10001} Passive

Close

57.521336685 [sid 1 start 1.920456578] TCPclient 0 srv 4(0) rcvd

10000000B at 1438.826kbps - read() SUCCESS

57.521336685 TCP host 0 src={0.0.0.13:10001} dest={0.0.0.3:1600} Active

Close

57.541885218 TCP host 4 src={0.0.0.3:1600} dest={0.0.0.13:10001} Active

Close

57.541885218 TCP host 4 src={0.0.0.3:1600} dest={0.0.0.13:10001} Passive

Close

--

| 1 timelines, 5 barriers, 117752 events, 7450 ms, 17 Kevt/s

--

$

378 Chapter 19

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 378

By analyzing the output from the simulation, you can see the start and stop
times for each data stream. The next step is to analyze this information to see
how the data transfers performed.

Interpreting the Results
From the output data produced by SSFNet, you can determine the time it took
for each individual data transfer. For the slow link from host 0 to host 4, the
transfer started at about 1.92 seconds in the simulation, and finished at about
57.52 seconds, for a total transfer time of about 55.6 seconds, very close to what
the ns test predicted.

For the local file transfer, the transfer again started at about 1.92 seconds in
the simulation, and finished at about 14.4 seconds, for a total transfer time of
about 12.5 seconds. The ns prediction for this value was a little less close, but
still in the same ballpark. Remember, the point of the simulation is to compare
the two transfer times, which in both cases, so far, indicate that remote clients
will observe a significant decrease in performance when running the network
application.

Using dummynet

The first network emulator package to test is the dummynet application. This
is used to create a test network environment on a FreeBSD system that can
emulate the actual production network. This section explains how to create the
dummyet network emulation, and how to observe network application behav-
ior within the test network.

Building the Emulation Environment
Since the dummynet application intercepts packets at the kernel level of the
FreeBSD system, you can configure dummynet to affect data traffic either
between two installed network cards, or from the local system to the network
card or to itself. For this test, I will configure dummynet to intercept packets
between itself and a remote device on the test network. The test network appli-
cation will be an FTP session from the local machine to the remote test host.

Dummynet builds rules that affect network traffic as it traverses the system
kernel. A single rule will define the total network behavior between the two
endpoints. You must incorporate all network delays and bandwidth limita-
tions within the single rule.

WARN I NG Remember that dummynet affects the network traffic both when
it enters the kernel and as it leaves the kernel, so any delays configured must
be cut in half.

Comparing Application Performance Tools 379

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 379

Since dummynet uses the ipfw program, you must clear out any existing
rules that may affect the test, and then enter the rules necessary to create the
emulation rule:

ipfw flush

Are you sure [yn] y

ipfw add pipe 1 tcp from 192.168.1.1 to 192.168.1.6

ipfw add pipe 2 tcp from 192.168.1.6 to 192.168.1.6

ipfw pipe 1 config bw 1.5Mb/s delay 10ms

ipfw pipe 2 config bw 1.5Mb/s delay 10ms

The first command clears any existing rules in the ipfw table. The second
command creates a pipe used for all TCP traffic originating from the local host
IP address to the specific IP address of the remote test host. The next command
creates a second pipe handling traffic in the opposite direction.

After the two pipes are created, they can be configured for the appropriate
network bandwidth limitation and delay time. These create an emulation
environment for the T1 router and incorporate a network delay representing
the delay found on the local network switches. After the first emulation is
complete, you must remove these rules, using the flush option, and create two
new rules using the 100-Mbps link speed to emulate the local client test.

Running the Emulation
After creating the first set of emulation rules, you can begin a simple network
application test by starting an FTP session between the test hosts and sending
a 10-Mb file to represent the data stream between the hosts. First, you must
create a sample 10-Mb file to use.

I like to echo a string of a known size to a file, then ping-pong copy the file
to another file until the size is appropriate:

$ echo 0123456789012345678901234 > test

$ cat test > test1

$ cat test1 >> test

$ cat test >> test1

.

.

$ ls -al test

-rw-r--r-- 1 rich rich 10000000 Jan 28 15:39 test

$

This example creates a 25-byte file, and continually concatenates it onto a
work file until the file size is 10 Mb. When the test file is complete, you are
ready to start the FTP session:

380 Chapter 19

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 380

$ ftp 192.168.1.6

Connected to 192.168.1.6.

220 ProFTPD 1.2.2rc1 Server (ProFTPD Default Installation)

Name (192.168.1.6:rich): rich

331 Password required for rich.

Password:

230 User rich logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> put test

local: test remote: test

200 PORT command successful.

150 Opening BINARY mode data connection for test.

226 Transfer complete.

10000000 bytes sent in 56.3 secs (1.8e+02 Kbytes/sec)

ftp>

As seen in the FTP session output, it took 56.3 seconds to transfer the 10-Mb
file between the two hosts. This is consistent with the data seen in the network
simulations. Next, flush the existing rules, and add the rules to emulate the
100-Mbps link speed:

ipfw pipe 1 config bw 100Mb/s delay 10ms

Again, send the sample file via FTP, and watch the results. This time the FTP
output shows the total transfer time for the 10-Mb file as 11 seconds. Both of
these values are right in line with the results seen in the network simulations.

Using NIST Net

The next network emulation package to test is the NIST Net application. This
application allows you to emulate the production network on a Linux system.
This section explains how to create the NIST Net model, and how to observe
network application behavior within the test network.

Building the Emulation Environment
Like dummynet, NIST Net can be used as either a bridge device between sep-
arate network segments, a router device between different subnetworks, or a
standalone emulator, affecting only traffic within the local loopback address.
In both the bridging and routing scenarios, you must have two network cards
in your Linux system, and configure the system for either bridging or routing.
You can configure the NIST Net module to affect only specific packets for spe-
cific IP addresses, port numbers, and protocols.

Comparing Application Performance Tools 381

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 381

For this example, I configured NIST Net to affect all IP network between the
local host device and a specific remote IP address connected via a 100-Mb hub
on a test network. No external traffic will be present to taint the test samples.
For the network application, I will FTP a 10-Mb file to emulate the client/
server transactions for 10 Mb of data.

With NIST Net, you must emulate all the production network characteristics
within a single model command line. This forces you to determine the end-to-
end bandwidth limitations, as well as any delays, packet drops, and retrans-
missions. As with the dummynet model, the NIST Net model defines the
bottleneck speed along the network path, and incorporates any network
delays that are present. For this emulation, I will use a 1.5-Mbps bottleneck
speed to represent the T1 line limitation for the remote client, and a 100-Mbps
bottleneck speed for the local client. The remote click will use a 20-ms delay
representing both sets of local switches in the network path, while the local
client will use a single 10-ms delay.

WARN I NG Remember that NIST Net specifies the network bandwidth value
as bytes per second, not bits per second. You must divide the network speed by
8 to use the correct speed emulation.

The commands used to start and configure NIST Net for the first test are:

Load.Nistnet

cnistnet -a 192.168.1.6 192.168.1.1 add new --bandwidth 187500 --delay

20

cnistnet -a 192.168.1.1 192.168.1.6 add new --bandwidth 187500 --delay

20

cnistnet -u

The first command loads the NIST Net kernel module. You should receive a
confirmation message indicating that the module loaded properly (it has been
omitted from this output). The second command defines the NIST Net rule
used to limit the bandwidth to 1.5 Mbps (187,500 bytes per second), set a delay
for 20 ms between the hosts, and of course, define the source and destination
hosts for the test.

The third line creates a second rule that duplicates the settings of the first
rule, but for the return direction of the connection path. Finally, the NIST Net
emulation is started, using the -u command-line option.

WARN I NG Don’t forget to use the -u option to start the emulator. Without
it, the configured rules will not be active and affect network traffic.

382 Chapter 19

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 382

Running the Emulation
After NIST Net has been started, you can create a test file to FTP between the
two test hosts. Any standard method of creating a 10-Mb file can be used.

Now that you have a test file, you can begin the emulated network transfer:

ftp> put test

local: test remote: test

200 PORT command successful.

150 Opening BINARY mode data connection for test.

226 Transfer complete.

10000000 bytes sent in 54.8 secs (1.8e+02 Kbytes/sec)

As you can see from the FTP output, the NIST Net emulator did its job, lim-
iting the bandwidth of the file transfer so it took 54.8 seconds. Next you must
change the rules to reflect a 100-Mbps bandwidth, emulating the local client
connection to the server:

cnistnet -a 192.168.1.1 192.168.1.6 add new —bandwidth 12500000 —delay

10

The results from this test indicated that the transfer took 11.5 seconds.
Again, this is similar to the other emulation and simulation results.

Final Results

After running the network emulators and simulators, you now have a good
idea of how the network application will perform on the actual production
network. Table 19.1 recaps the results from each of the tests.

As you can see from the test results, all of the tools produce somewhat sim-
ilar results for the production network. Now, it is time to watch the real net-
work application perform on the production network, to see if the tools are
accurate.

Table 19.1 Test Recap

LOCAL CLIENT REMOTE CLIENT
TEST TRANSFER (SEC) TRANSFER (SEC)

ns 10 54

SSFNet 12.5 55.6

dummynet 11 56.3

NIST Net 11.5 54.8

Comparing Application Performance Tools 383

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 383

Again, a simple FTP session is used to transfer a 10-Mb file between hosts on
the network. The first test uses hosts separated by a T1 link, connecting two
remote networks:

ftp> put test

local: test remote: test

200 PORT command successful.

150 Opening BINARY mode data connection for test.

226 Transfer complete.

10000000 bytes sent in 58.6 secs (1.5e+02 Kbytes/sec)

The actual data transfer across the T1 link took 58.6 seconds, which is con-
sistent with the simulation and emulation results. All of the network applica-
tion performance tools were close enough to the correct answer that they could
be relied on to determine other network application behavior. You can also
fine-tune each of the network models to more accurately represent the actual
production network environment.

Summary

This section of the book presented five different scenarios for testing network
application performance for a production network environment. This chapter
concluded the section by comparing the tools in a common scenario.

The first step to working with network application performance tools is to
properly model the production network and application data. Most produc-
tion networks are complicated, and trying to model every network device
would be impractical. Instead, you must determine which network devices
and links are the bottlenecks, and which ones contribute to network problems
such as delays, dropped packets, and packet retransmissions. After creating a
simplified version of the production network, you are ready to simulate and
emulate.

Both of the network simulation tools presented, ns and SSFNet, model net-
work devices, links, and data, using configuration files. By defining only the
simplified network elements in the simulation, you can easily create an accu-
rate simulation environment that will produce data consistent with the real
production network. This enables you to perform lots of “what if”, easily mod-
ifying the simulation configuration by moving network devices into different
locations, increasing or decreasing network link speeds, and modifying net-
work application data that traverses the network.

The network emulation tools presented, dummynet and NIST Net, both
modify data traffic as it traverses the system kernel. By placing the emulation
tool between two endpoints (or between a remote endpoint and the tool host,

384 Chapter 19

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 384

using the tool host as the local endpoint), you can force actual network traffic
to be modified by the emulation. Configuring the emulation tools is similar to
configuring the network simulator models. Each emulator must have rules
defined for how the data traffic flow will be affected. By limiting the band-
width of the data flow to the network bottleneck speed, and adding delays,
dropped packets, and retransmissions as necessary, you can easily emulate the
production network environment within a test network.

As seen from the results, each of the network application performance tools
produced results that were consistent with the actual results observed on the
production network. This proves that you can indeed easily duplicate produc-
tion network performance with a simplified test network environment.

This chapter concludes our walk through network performance tools. I hope
you have enjoyed your experience with each of the tools, and will continue to
learn and experiment in your network environment. With the advent of new
network devices (and network applications), there is always something new to
learn in the field of network performance. Hopefully this book has presented
a good place to start, and you will continue your education in the field. The
following appendix contains lots of Web resources for network performance. It
is a good idea to stay in touch with the latest trends and ideas, to keep your
network running smoothly. Happy networking.

Comparing Application Performance Tools 385

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 385

23 433012 Ch19.qxd 6/16/03 9:12 AM Page 386

387

One of the advantages of using open source tools is their availability on the
Internet. There are scores of Web sites devoted to network performance issues
and the tools used to monitor and analyze network performance. This appen-
dix lists some of the resources that are available for each of the tools presented
in this book. As with any Internet resource, the URLs provided are subject to
change.

Network Monitoring Tools

■■ The tcpdump Web site: www.tcpdump.org

■■ The libpcap library: www.tcpdump.org/release/libpcap-0.7.1.tar.gz

■■ The winpcap library: http://winpcap.polito.it/install/default.htm

■■ The windump application:
http://windump.polito.it/install.bin/alpha.WinDump.exe

■■ The Analyzer application: http://analyzer.polito.it/

■■ The Ethereal application: www.ethereal.com/distribution/

Resources

A P P E N D I X

24 433012 AppA.qxd 6/16/03 9:12 AM Page 387

SNMP Tools

■■ RFC 1157 (SNMP v1): ftp://ftp.rfc-editor.org/in-notes/rfc1157.txt

■■ RFC 1155 (MIB): ftp://ftp.rfc-editor.org/in-notes/rfc1155.txt

■■ RFC 1158 (MIB-II): ftp://ftp.rfc-editor.org/in-notes/rfc1158.txt

■■ Net-snmp: www.net-snmp.org

■■ Cisco MIBs: ftp://ftp.cisco.com/pub/mibs/v1/

netperf

■■ The netperf Web page: www.netperf.org/netperf/NetperfPage.html

■■ The netperf mailing list archive: www.netperf.org/netperf/training/
netperf-talk/index.html

■■ The netperf manual: www.netperf.org/netperf/training/netperf.ps

dbs

■■ The dbs Web page: http://ns1.ai3.net/products/dbs/

Iperf

■■ The Iperf Web page: http://dast.nlanr.net/Projects/Iperf/

Pathrate

■■ The Pathrate Web page: www.pathrate.org

■■ Pathrate tutorial: http://www.cc.gatech.edu/fac/Constantinos
.Dovrolis/pathrate_tutorial.html

388 Appendix

24 433012 AppA.qxd 6/16/03 9:12 AM Page 388

Nettest

■■ The Nettest Web page: www-itg.lbl.gov/nettest/

■■ OpenSSL Web page: www.openssl.org

■■ The pipechar application: http://www-didc.lbl.gov/pipechar/

NetLogger

■■ The NetLogger Web page: http://www-didc.lbl.gov/NetLogger

■■ The MySQL Web page: www.mysql.org

■■ The nl_tcpdump Web page: www.ittc.ku.edu/projects/enable/
tcpdump

tcptrace

■■ The tcptrace Web page: http://irg.cs.ohiou.edu/software/tcptrace/
index.html

■■ The xplot Web page: www.xplot.org

ntop

■■ The ntop Web page: www.ntop.org

dummynet

■■ The dummynet Web page: http://info.iet.unipi.it/~luigi0/
ip_dummynet/

■■ The PicoBSD download: http://info.iet.unipi.it/~luigi/
ip_dummynet/pico.000608.bin

Resources 389

24 433012 AppA.qxd 6/16/03 9:12 AM Page 389

NIST Net

■■ The NIST Net Web page: http://snad.ncsl.nist.gov/itg/nistnet/

Network Traffic Generator

■■ The traffic Web page: http://galileo.spaceports.com/~rsandila/
traffic.html

ns

■■ The Network Simulator Web page: www.isi.edu/nsnam/ns/

SSFNet

■■ The SSFNet Web page: www.ssfnet.org

390 Appendix

24 433012 AppA.qxd 6/16/03 9:12 AM Page 390

391

Index

A
ACLFile file, 139, 149–150
analytical simulators, 246
Analyzer, 35–37
application performance. See perfor-

mance (application); tools
attach-agent command, 327
autostarting netserver, 67–68
availability, 4–8. See also pinging

B
bandwidth. See also throughput

bottleneck speed, 117
capacity, determining. See Pathrate
constraints, and application

performance, 247–248
constraints, emulating, 280–281
description, 14–15
emulation, 269, 277
maximum capacity, determining, 14.

See also Pathload; Pathrate
viewing actual, 221–223

bandwidth, testing. See also Pathload;
Pathrate

finding bottlenecks, 219–220
fleet aggregate trend, 132

full testing mode, 124–126
loss rate per stream, 130
online resources, 388
output, 123–126, 129–134
packet discards, 131
quick termination mode, 123–124
relative one-way packet delay

trend, 131
requested fleet parameters, 129–130
server fleet parameters, 130
starting the client, 122–123, 128–129
starting the server, 122, 128
state variable speed, 133
statistical tests, 118–119
statistical tests of bandwidth,

119–120
bltgraph.pro file, 167
bottleneck speed, 117
bottlenecks, troubleshooting, 219–221
bulk data transfers

generating test traffic, 306–308
troubleshooting, 218–225

C
CA (certificate authority), 139, 147–149
certificates, 139, 146–149

25 433012 index.qxd 6/16/03 9:12 AM Page 391

392 Index

charts. See graphs
Cisco CPU MIB, 53–57
clients, test environment

configuring, 313–315
starting, 128–129
transaction generation, 307–308,

313–315
client/server transactions, generating

test traffic, 307–308
Close API, 163
collecting performance data. See data

collection
collision storms, 6
connectionless communication,

generating test traffic, 308
console mode, tcptrace, 176–177
context switches, 131

D
daemon mode, Iperf, 106
data collection, 16–19. See also MIB;

SNMP
data rates, monitoring, 49–51
dbs (Distributed Benchmark System).

See also Iperf; netperf
analyzing data, 94–96
components, 80
configuring command files, 86–90
dbsc command file, 86–93
dbsd program, running, 84–86
dbs_view script, 94–96
downloading, 82–84
gnuplot program, 82
host configuration, defining, 87
installation preparation, 81
installing, 82–84
ntp program, 81
online resources, 388
output, 80–81
pattern command, 88
performance test data,

defining, 88–89

plotting graphs, 82
receiver command, 87
receiver pattern command, 89
sample test session, 90–96
sender command, 87
sender pattern command, 88
starting a test, 93–94
synchronizing host times, 81
test commands, 90
test environment, defining, 91

dbsc command file, 86–93
dbsd program, running, 84–86
dbs_view script, 94–96
delay, dummynet rule, 269–270
delayed packets, 250–251
delays

changes in, 110
emulating, 275–277, 281
relative one-way packet delay

trend, 131
setting, 275–277
simulating, 250–251

devices
querying, 16–18, 49–52. See also MIB;

net-snmp; SNMP
simulating, 251–257
utilization. See utilization

discrete event simulators, 246
Distributed Benchmark System (dbs).

See dbs
Distribution statistics, 201–202
DML (domain modeling

language), 346–353
domain modeling language

(DML), 346–353
Domains statistics, 200
Dovrolis, Constantinos, 117
dropped packets. See packets, losing
dummynet. See also NIST net;

simulation
bandwidth, setting, 277
building the emulation environment,

379–380

25 433012 index.qxd 6/16/03 9:12 AM Page 392

Index 393

controlling, 274–275
delays, setting, 275–277
description, 260
features, 260–261
firewalls, 263–264, 273–274
on a floppy disk, 273–274
FreeBSD program, 273–274
implementing a host, 261–263
installing, 271–275
ipfw program, 263–264
kernel, building, 273
kernel options, 272
online resources, 389
PicoBSD, 273–274
running the emulation, 380–381
testing, 275–277
Web site about, 273

dummynet rules
bandwidth emulation, 269
command-line options, 264–266
commands, 268–270
creating, 264–266
delay, 269–270
description, 268
listing, 266–267
logging, 266
maximum number of, 263
multipath links, configuring, 271
queue size, 270
random packet loss, 270
removing, 267–268
WFQ, configuring, 271

duplex links, 325

E
emulation. See also dummynet;

NIST net; simulation
application performance, 243–245
bandwidth, 269, 277, 280–281
delays, 269–270, 275–277
environment, building, 379–382
firewalls, 263–264, 273–274

FreeBSD program, 273–274
implementing a host, 261–263
ipfw program, 263–264
kernel, building, 273
kernel options, 272
logging, 266
multipath links, configuring, 271
networks. See dummynet; NIST Net
online resources, 389–390
packets, 270, 281–282
PicoBSD, 273–274
queue size, 270
redirecting traffic, 287
running, 380–381, 383
viewing statistics, 287
Web site about, 273

encryption, 139
entities, 344
error rates, calculating, 51–52
Ethereal, 37–39
events, 345

F
fastdep, 309–310
FIFO (first in, first out) mode, 251
file transfers, testing, 112–113
filtering packets, 33–35
filters, tcptrace, 183–184
firewalls

emulating, 263–264, 273–274
simulating, 255–256

fleet aggregate trend, 132
FreeBSD, 273–274
FTP session analysis, 230–234
full testing mode, Pathrate, 124–126

G
gdchart, 205–206
gnuplot, 82
graphical analysis tool, 158, 165–173
graphical mode, tcptrace, 177–178,

189–194

25 433012 index.qxd 6/16/03 9:12 AM Page 393

394 Index

graphical user interface, Iperf,
100–101, 114–115

graphs
creating with gdchart, 205–206
Domains statistics, 200
FTP session analysis, 232
gnuplot program, 82
host information, 212–213
Hosts statistics, 200
IP traffic, 201
Multicast statistics, 200
nam (Network Animator) program,

323, 338–339
Network Load Page, 214
ns (Network Simulator), 323–324,

338–340
plotting, 82
stairstep sequences, 232
tcptrace, 187–188
Telnet session analysis, 236
throughput, 189–191
time sequence, 191–193
traffic module, 193–194
Traffic statistics, 200

H
host function analysis, 221–223
host information, 212–213
Hosts statistics, 200
HTTP sessions

traffic simulation, 227
watching, 228–229

hubs, simulating, 251–252

I
ifNumber object, 49
ifTable object, 49
in channels, 345
insmod command, 283–284
IP protocols, statistical analysis,

201–202

IP traffic, watching, 201
Iperf. See also dbs; netperf

compiling source code, 104
components, 100–101
daemon mode, 106
downloading, 103–105
file transfers, testing, 112–113
graphical front end, 100–101
graphical interface, 114–115
installing, 103–105
Iperf library, 101
Iperf program, 100
jperf, 114–115
jperf front end, 100–101
multicast traffic, testing, 111–112
online resources, 388
output, 102–103
running a test, 106–108
standalone mode, 105–106
starting the server, 105–106
TCP window sizes, testing, 113–114
test types, 101–102
TOS traffic, testing, 108–109
UDP traffic, testing, 109–111

ipfw, 263–264

J
jitter value, 110
jperf, 100–101, 114–115
jPlot, 188

K
keys, 139, 148–149
Kylix libraries, 310

L
lblnettest, 138
libpcap library, 22–23
links, 325–326

25 433012 index.qxd 6/16/03 9:12 AM Page 394

Index 395

links, simulating, 350–351
logging. See also NetLogger

analyzing host functions, 225
closing a log file, 163
closing a session, 163
graphical analysis tool, 158, 165–173
log files, 157–158, 160–163
monitoring tools, 156–157
with ntop, 211
online resources, 389
opening a log file, 160–162
source code distribution file, 158–160
writing to a log file, 162–163

loss rate per stream, 130
LossMonitor agent, 326
lost packets, 248–249

M
Management Information Base (MIB).

See MIB
MIB (Management Information Base).

See also net-snmp; SNMP
Cisco CPU MIB, 53–57
monitoring changes, 48–49
net-snmp, specifying numeric

values, 44
network performance objects, 17
querying devices, 16–18, 49–52
querying the database, 45–48
vendor-provided, 52–57

modeling. See simulation
modeling language, ns (Network

Simulator), 329–330
module options, tcptrace, 185–187
monitoring network traffic.

See watching traffic
multicast node, 324
Multicast statistics, 200
multicast traffic, testing, 111–112
Murayama, Yukio, 79

N
nam (Network Animator), 323,

338–339
Nara Institute of Science and

Technology, 79
NetLogger

analyzing host functions, 225
APIs, 156, 160–165
binary distribution file, 160
bltgraph.pro file, 167
Close API, 163
closing a session, 163
downloading, 158–160
functions, 160–163
graphical analysis tool, 158, 165–173
installing, 158–160
libraries, 164–165
log file, 157–158
monitoring tools, 156–157
nlv program, 158, 165–173
nlv-keys.cfg file, 169–173
nlv-main.cfg file, 167–169
online resources, 389
Open API, 160–162
opening a log file, 160–162
source code distribution file, 158–160
Write API, 162–163
writing to a log file, 162–163

netperf. See also dbs; Iperf; netserver
command-line options, 68–69
compiler features, 64
description, 61
downloading, 63
installing, 63–65
online resources, 388
scripting, 76–77
simulating HTTP traffic, 227
TCP network performance, 62
TCP_CRR test, 75
TCP_RR test, 73–74
TCP_STREAM test, 70–71

25 433012 index.qxd 6/16/03 9:12 AM Page 395

396 Index

netperf (continued)
throughput testing, 70–72
UDP network performance, 62–63
UDP_RR test, 75–76
UDP_STREAM test, 71–72
viewing actual bandwidth, 221–223

netserver. See also netperf
autostarting, 67–68
description, 65
standalone mode, 66–67

net-snmp package
description, 41–42
downloading, 42–43
help, 43
installing, 42–43
listing options, 43

net-snmp utilities
data rates, 49–51
error rates, 51–52
querying network devices, 49–52
snmpdelta, 48–49
snmpget, 45–46
snmpgetnext, 46–47
snmpwalk, 47–48
standard options, 44–45

Nettest
ACLFile file, 139, 149–150
CA (certificate authority), 139,

147–149
certificates, 139, 146–149
command-line parameters, 150–151
compiling, 143–146
defining test hosts, 143–144
description, 137–138
downloading, 142
installing, 145–146
keys, 139, 148–149
lblnettest program, 138
modifying source code, 144–145
online resources, 389
OpenSSL package, 140–142

running tests, 152–154
starting a session, 151–152
test applications, 139–140

network agents, 326–327
Network Load Page, 214
network performance. See specific

aspects of performance
elements of. See availability;

bandwidth; response time;
throughput; utilization

securing the test environment.
See Nettest; security, test
environment

Network Traffic Generator
bulk data transfers, 306–308
client configuration, 313–315
client/server transactions, 307–308
command-line interface, 304–305
command-line options, 312–320
compiling, 309–311
connectionless communication, 308
core modules, 302–303
description, 302–303
downloading, 308–309
fastdep program, 309–310
functional description, 302–304
generating network traffic, 306–308
host configuration, 316–317
host placement, 316
installing, 311
Kylix libraries, 310
online resources, 390
payload modules, 303–304
protocol modules, 303
response modules, 304
server configuration, 312–313
test setup, 315–320
trafclient program, 313–315
trafserver command, 312–313
watching test traffic, 317–320
X Windows interface, 305

25 433012 index.qxd 6/16/03 9:12 AM Page 396

Index 397

networks
availability, 4–8. See also pinging
devices. See devices
links, 325–326
monitoring. See watching traffic
nodes, 324
percentage of time in use.

See utilization
performance tools. See tools
problems, simulating, 246–251
simulating. See simulation
traffic, watching. See watching traffic
traffic generators, 244. See also

Network Traffic Generator
utilization. See utilization

NIST Net. See also dummynet;
simulation

building the emulation environment,
381–382

compiling, 288–291
configuration tools, 285–287
description, 279–280
downloading, 288–292
insmod command, 283–284
installing, 283–284, 288–292
kernel module, 282–284
loading, 291–292
mungebox, 287
nistspy, 287
online resources, 390
removing, 284
rmmod command, 283–284
RTC driver conflicts, 291–292
running the emulation, 383

NIST Net emulations
bandwidth limitations, 280–281
packet delay, 281
packet diversion, 282
packet duplication, 282
packet loss, 281–282
packet reordering, 281

redirecting traffic, 287
viewing statistics, 287

NIST Net rules
adding/removing, 285–286, 292–296
cnistnet, 285–286, 292–295
creating, 296–297
modifying, 285–286, 297–298
xnistnet, 285–286, 295–296

nistspy, 287
nlv, 158, 165–173
nlv-keys.cfg file, 169–173
nlv-main.cfg file, 167–169
nodes, 324
ns (Network Simulator). See also

emulation; SSFNet
attach-agent command, 327
building a model, 333–336, 368–370
compiling, 332
description, 321–322
downloading, 330–332
graphical output, 323–324, 338–340
installation validation, 332
installing, 330–332
LossMonitor agent, 326
modeling language, 329–330
nam (Network Animator) program,

323, 338–339
network agents, 326–327
network applications, 327–329
network links, 325–326
network model elements, 324–329
network nodes, 324
ns program, 322–323
NULL agent, 326
online resources, 390
results interpretation, 372–374
running a model, 371–372
running a simulation, 336–338
TCP agent, 326
TCPSink agent, 326
UDP agent, 326
xgraph program, 324, 339–340

25 433012 index.qxd 6/16/03 9:12 AM Page 397

398 Index

ns program, 322–323
ntop. See also tcpdump; Windump

command-line parameters, 208–211
compiling, 206
description, 198
Distribution statistics, 201–202
Domains statistics, 200
downloading, 204
FTP session analysis, 233–234
gdchart, 205–206
graphs, creating, 205–206
host information, 212–213
Hosts statistics, 200
installation preparation, 202–204
installing, 204
IP protocols, 201–202
IP traffic, 201
logging, 211
Multicast statistics, 200
online resources, 389
password, 207
Router statistics, 202
Sessions statistics, 202
starting, 207
support software, loading, 203–204
tcpdump file analysis, 210
Telnet session analysis, 237
traffic measurements, 198–199
traffic monitoring (watching),

200–202, 209, 214, 223–225
Traffic statistics, 200
Usage statistics, 202
user ID, creating, 203
viewing data, 211–214

ntop.access log file, 211
ntp, 81
NTP (Network Time Protocol), 81
NULL agent, 326

O
Open API, 160–162
OpenSSL package, 140–142

OPTION command, 272
OTcl language, 322
out channels, 345
out-of-order packets, 250

P
packet pairs, 14
packet trains, 14
packets

buffers, 7
change in delay, 110
delays, emulating, 281
discards, 131
diversion, emulating, 282
duplication, emulating, 282
errors, and application

performance, 248
expiration limits, setting, 10–11
filtering, 33–35
jitter value, 110
losing, causes of, 6–7
loss, emulating, 281–282
out-of-order, 250
redundant paths, identifying, 10–11
reordering, emulating, 281
sizing, 7
time to live, 10–11
tracing routes, 10–11

packet-switching networks,
simulating, 257

passwords, ntop, 207
Pathload

configuring, 127–128
context switches, 131
downloading, 127–128
final test results, 133–134
fleet aggregate trend, 132
loss rate per stream, 130
output, 129–134
packet discards, 131
programs, 127
relative one-way packet delay

trend, 131

25 433012 index.qxd 6/16/03 9:12 AM Page 398

Index 399

requested fleet parameters, 129–130
server fleet parameters, 130
starting the client, 128–129
starting the server, 128
state variable speed, 133
statistical tests of bandwidth, 119–120

pathload_rcv, 127
pathload_snd, 127
Pathrate

compiling, 121–122
downloading, 121
finding bottlenecks, 219–220
full testing mode, 124–126
online resources, 388
output, 123–126
programs, 120
quick termination mode, 123–124
starting the client, 122–123
starting the server, 122
statistical tests of bandwidth,

118–119
pathrate_rcv, 120
pathrate_snd, 120
pattern command, 88
payload modules, 303–304
performance (application). See also

tools (application performance)
bandwidth constraints, 247–248
creating a test network, 242
delayed packets, 250–251
lost packets, 248–249
network traffic generators, 244
out-of-order packets, 250
packet errors, 248
simulating networks. See emulation;

simulation
testing methods, 242–246
testing on a production network, 243

performance (network). See tools
(network performance); specific
aspects of performance

PicoBSD, 273–274

ping command, 4–5
pinging

determining response time, 9–10
large ping packets, 7–8
sample session, 5–6

pipes. See dummynet
plotting graphs. See graphs
point-to-point networks,

simulating, 256
private keys, 139, 148–149
processes, 344–345
programs for performance testing.

See tools
promiscuous mode, 22
protocol modules, 303
protocols, simulating, 352–353

Q
QoS (quality of service),

simulating, 254
querying

devices, 16–18, 49–52. See also MIB;
net-snmp; SNMP

MIB database, 45–48
quick termination mode, Pathrate,

123–124

R
random number generator, 348–349
receiver command, 87
receiver pattern command, 89
RED (random early detection),

simulating, 255
redirecting traffic, emulation, 287
redundant paths, identifying, 10–11
relative one-way packet delay

trend, 131
requested fleet parameters, 129–130
request/response times, measuring,

72–76. See also netperf

25 433012 index.qxd 6/16/03 9:12 AM Page 399

400 Index

request/response traffic,
troubleshooting, 225–229

response modules, 304
response time

description, 8–11
determining from ping packets, 9–10
factors, 8
measuring. See netperf
tracing packet routes, 10–11

response time measurement.
See netperf

Rizzo, Luigi, 259
rmmod command, 283–284
Router statistics, 202
routers, simulating, 253–255, 351–352
RTC driver conflicts, 291–292

S
Sandilands, Robert. See utilization
Scalable Simulation Network (SSF),

344–345
security

ACLFile file, 139, 149–150
buffer overflow, 81
CA (certificate authority), 139,

147–149
certificates, 139, 146–149
digital certificates, 139
encryption, 139
keys, 139, 148–149
large ping packets, 7

security, test environment. See also
Nettest

ACLFile file, 139, 149–150
CA (certificate authority), 139,

147–149
certificates, 139, 146–149
defining test hosts, 143–144
keys, 139, 148–149
online resources, 389
OpenSSL package, 140–142

running tests, 152–154
starting a session, 151–152
test applications, 139–140

sender command, 87
sender pattern command, 88
server fleet parameters, 130
servers, test environment. See also

netserver
configuring, 312–313
transaction generation, 307–308,

312–313
Sessions statistics, 202
SFQ (stochastic fair queuing), simulat-

ing, 254–245
Simple Network Management Proto-

col (SNMP). See SNMP
simplex links, 325
simulation. See also emulation; ns;

SSFNet
building a model, 333–336, 356–360,

368–370, 374–377
creating a development

environment, 355–356
DML (domain modeling language),

346–353
firewalls, 255–256
graphical output, 323–324, 338–340
hosts, 349–350
hubs, 251–252
language, ns (Network Simulator),

329–330
links, 350–351
modeling language, 329–330
network agents, 326–327
network applications, 327–329
network delays, 250–251
network devices, 251–257
network links, 325–326
network model elements, 324–329
network nodes, 324
network problems, 246–251

25 433012 index.qxd 6/16/03 9:12 AM Page 400

Index 401

network traffic. See Network Traffic
Generator

networks, 245–246, 347–349. See also
ns; SSFNet

online resources, 390
packet-switching networks, 257
point-to-point networks, 256
protocols, 352–353
QoS (quality of service), 254
random number generator, 348–349
RED (random early detection), 255
results interpretation, 362–364,

372–374, 379
routers, 253–255, 351–352
running a model, 371–372, 377–379
running a simulation, 336–338,

360–362
SFQ (stochastic fair queuing), 254–245
switches, 252
WANs (wide are networks), 256–257
wireless networks, 257

sizing packets, 7
SNMP (Simple Network Management

Protocol), 16–18. See also MIB; net-
snmp package

SNMP continuity names, 16
snmpdelta command, 48–49
snmpget command, 45–46
snmpgetnext command, 46–47
snmpwalk command, 47–48
software for performance testing.

See tools
SSF (Scalable Simulation Network),

344–345
SSFNet. See also emulation; ns

building a model, 356–360, 374–377
creating a development environ-

ment, 355–356
description, 345
DML (domain modeling language),

346–353
downloading, 353–354

hosts, simulating, 349–350
installing, 354–355
libraries, 345–346
links, simulating, 350–351
networks, simulating, 347–349
online resources, 390
protocols, simulating, 352–353
random number generator, 348–349
results interpretation, 362–364, 379
routers, simulating, 351–352
running a model, 377–379
running a simulation, 360–362

stairstep graph sequences, 232
standalone mode

Iperf, 105–106
netserver, 66–67

state variable speed, 133
statistical analysis

bandwidth. See Pathload; Pathrate
Distribution statistics, 201–202
Domains statistics, 200
Hosts statistics, 200
IP protocols, 201–202
Multicast statistics, 200
Router statistics, 202
Sessions statistics, 202
Traffic statistics, 200
Usage statistics, 202

stochastic fair queuing (SFQ),
simulating, 254–245

switches, simulating, 252
synchronizing host times, 81

T
tail-drop FIFO method, 255
TCP agent, 326
TCP network performance.

See also dbs
description, 62
request/response times, measuring,

72–76

25 433012 index.qxd 6/16/03 9:12 AM Page 401

402 Index

TCP network performance (continued)
TCP_CRR test, 75
TCP_RR test, 73–74
TCP_STREAM test, 70–71
throughput testing, 70–71

TCP sessions, tracing. See tcptrace
TCP traffic analysis. See dbs; Iperf;

netperf
TCP window sizes, testing, 113–114
TCP_CRR test, 75, 227
tcpdump. See also ntop; tcptrace;

Windump
command-line options, 29–30
downloading, 27
filtering packets, 33–35
installing, 26
using, 27–31

tcpdump file analysis, 210
TCP_RR test, 73–74
TCPSink agent, 326
TCP_STREAM test, 70–71
tcptrace. See also tcpdump; Windump

command-line options, 178–182
console mode, 176–187
description, 175–176
downloading, 178–179
filters, 183–184
FTP session analysis, 230–232
graphical mode, 177–178, 189–194
graphical programs, 187–188
installing, 178–179
jPlot program, 188
module options, 185–187
online resources, 389
Telnet session analysis, 235–236
throughput graph, 189–191
time sequence graph, 191–193
traffic module graph, 193–194
watching HTTP sessions, 228–229
watching test traffic, 317–320
xplot program, 187–188

Telnet session analysis, 234–237
testing. See also tools

environment security. See Nettest;
security, test environment

file transfers, 112–113
methods, application performance,

242–246
multicast traffic, 111–112
on a production network, 243
TCP window sizes, 113–114
throughput, 70–72
TOS traffic, 108–109
UDP traffic, 109–111

throughput. See also bandwidth
description, 12–13
graphing, 189–191
measurement. See netperf
measuring. See netperf
testing, 70–72

time, synchronizing across hosts, 81
time to live, setting, 10–11
Time to Live (TTL), 10–11
tools (application performance)

cnistnet, 285–286, 292–295
emulating networks. See dummynet;

NIST Net
mungebox, 287
NIST Net configuration, 285–287
nistspy, 287
simulating network traffic. See Net-

work Traffic Generator
simulating networks. See ns; SSFNet
xnistnet, 285–286, 295–296

tools (network performance)
Analyzer program, 35–37
data collection. See MIB; SNMP
determining bandwidth capacity. See

Pathrate
Ethereal program, 37–39
libpcap library, 22–23
logging. See NetLogger

25 433012 index.qxd 6/16/03 9:12 AM Page 402

Index 403

network monitoring, 387
querying devices. See MIB; net-snmp;

SNMP
response time measurement. See net-

perf
SNMP, 388
TCP sessions, tracing. See tcptrace
TCP traffic analysis. See dbs; Iperf;

netperf
throughput measurement.

See netperf
tracing network activity. See tcptrace
UDP traffic analysis. See dbs; Iperf;

netperf
watching traffic, 22–25, 35–39. See

also ntop; tcpdump; WinDump
winpcap library, 22–25

TOS traffic, testing, 108–109
traceroute command, 10–11
tracing. See also ntop; tcpdump; tcp-

trace; Windump
Distribution statistics, 201–202
Domains statistics, 200
filtering packets, 33–35
filters, 183–184
FTP session analysis, 230–234
graphical mode, 177–178, 189–194
graphical programs, 187–188
graphs, creating, 205–206
host information, 212–213
Hosts statistics, 200
IP protocols, 201–202
IP traffic, 201
logging, 211
Multicast statistics, 200
online resources, 389
Router statistics, 202
Sessions statistics, 202
tcpdump file analysis, 210
Telnet session analysis, 235–237
throughput graph, 189–191

time sequence graph, 191–193
traffic measurements, 198–199
traffic module graph, 193–194
traffic monitoring (watching),

200–202, 209, 214, 223–225
Traffic statistics, 200
Usage statistics, 202
viewing data, 211–214
watching HTTP sessions, 228–229
watching test traffic, 317–320

trafclient, 313–315
traffic

measurements. See ntop
monitoring. See watching traffic
test, generating, 19. See also net-

works, traffic generators
traffic, generating for tests. See also

Network Traffic Generator
bulk data transfers, 306–308
client configuration, 313–315
client/server transactions, 307–308
connectionless communication, 308
host configuration, 316–317
host placement, 316
online resources, 390
server configuration, 312–313
test setup, 315–320
watching test traffic, 317–320

traffic analysis. See also dbs; Iperf;
netperf; netserver

analyzing data, 94–96
daemon mode, 106
dbsc command file, 86–93
dbsd program, running, 84–86
dbs_view script, 94–96
file transfers, testing, 112–113
graphical interface, 100–101, 114–115
host configuration, defining, 87
multicast traffic, testing, 111–112
online resources, 388
output, 80–81, 102–103

25 433012 index.qxd 6/16/03 9:12 AM Page 403

404 Index

traffic analysis (continued)
performance test data, defining,

88–89
plotting graphs, 82
running a test, 106–108
sample test session, 90–96
simulating HTTP traffic, 227
standalone mode, 105–106
starting a test, 93–94
starting the server, 105–106
synchronizing host times, 81
TCP network performance, 62
TCP window sizes, testing, 113–114
test commands, 90
test environment, defining, 91
test types, 101–102
throughput testing, 70–72
TOS traffic, testing, 108–109
UDP network performance, 62–63
UDP traffic, testing, 109–111
viewing actual bandwidth, 221–223

Traffic statistics, 200
trafserver command, 312–313
troubleshooting

bottlenecks, 219–221
bulk data transfers, 218–225
FTP session analysis, 230–234
host function analysis, 221–223
network problems, simulating,

246–251
request/response traffic, 225–229
simulating HTTP traffic, 227
Telnet session analysis, 234–237
traffic analysis, 221–223
viewing actual bandwidth, 221–223
watching HTTP sessions, 228–229

TTL (Time to Live), 10–11

U
ucd-snmp. See net-snmp
UDC network performance. See dbs
UDP agent, 326

UDP network performance
description, 62–63
throughput testing, 71–72
traffic, testing, 109–111
traffic analysis. See dbs; Iperf; netperf
UDP_RR test, 75–76
UDP_STREAM test, 71–72

UDP_RR test, 75–76
UDP_STREAM test, 71–72
ULM (Universal Logging Message)

format, 157
unicast node, 324
Universal Logging Message (ULM)

format, 157
Usage statistics, 202
utilities. See tools
utilization, 11–12. See also MIB;

net-snmp; SNMP

V
Vanhauwaert, Bart, 309

W
WANs (wide are networks),

simulating, 256–257
watching traffic. See also ntop;

tcpdump; WinDump
Analyzer program, 35–37
catching all traffic, 21–25
description, 18–19
Ethereal program, 37–39
libpcap library, 22–23
ntop program, 200–202, 209, 214
promiscuous mode, 22
winpcap library, 22–25

WFQ (weighted fair queuing)
configuring, 271
simulating, 254

WinDump. See also ntop; tcpdump;
tcptrace

command-line options, 32–33
downloading, 31

25 433012 index.qxd 6/16/03 9:12 AM Page 404

Index 405

filtering packets, 33–35
installing, 31
using, 31–33

winpcap library, 22–25
wireless networks, simulating, 257
Write API, 162–163

X
X Windows interface, 305
xgraph, 324, 339–340
xplot, 187–188

25 433012 index.qxd 6/16/03 9:12 AM Page 405

	Network Performance

Open Source Toolkit Using Netperf, tcptrace,

NIST Net, and SSFNet
	Network Performance

Open Source Toolkit

Using Netperf, tcptrace,

NIST Net, and SSFNet
	Copyright
	Contents
	Acknowledgments

	Introduction
	Overview
	How This Book Is Organized
	Who Should Read This Book
	Tools That Are Needed
	Summary

	PART

One

Network

Performance Primer
	Chapter 1 Defining Network Performance
	The Elements of Network Performance
	Availability
	Using Availability Statistics
	Using Large Ping Packets

	Response Time
	Response- Time Factors
	Determining Response Time from Ping Packets
	Using traceroute for Redundant Paths

	Network Utilization
	Network Throughput
	Bandwidth Capacity

	Methods of Collecting Performance Data
	Querying Network Devices
	How Tools Query Devices
	Values to Query

	Watching Existing Traffic
	Generating Test Traffic

	Summary

	Chapter 2 Watching Network Traffic
	Catching All the Traffic
	The libpcap Library
	Downloading and Installing libpcap
	Using libpcap

	The winpcap Library
	Downloading and Installing winpcap
	Developing Applications with winpcap
	Using winpcap

	The tcpdump Program
	Installing tcpdump
	Linux RPM Installation
	Downloading the Source Code

	Using tcpdump

	The WinDump Program
	Downloading and Installing WinDump
	Using WinDump

	Filtering Packets with tcpdump and WinDump
	The Analyzer Program
	The Ethereal Program
	Downloading and Installing Ethereal
	Using Ethereal

	Summary

	Chapter 3 Network Device Utilization
	The net- snmp Package
	Downloading and Installing net- snmp
	Using net- snmp Utilities
	snmpget
	snmpgetnext
	snmpwalk
	snmpdelta

	Standard Network Performance MIBs
	Data Rates
	Error Rates

	Using Vendor MIBs
	The CISCO CPU MIB
	Using the Cisco CPU MIB

	Summary

	PART

Two

 Network

Performance Tools
	Chapter 4 netperf
	What Is netperf?
	TCP Network Performance
	UDP Network Performance

	Downloading and Installing netperf
	Downloading netperf
	Installing the netperf Package

	Running netserver
	Using netserver in Standalone Mode
	Autostarting netserver

	netperf Command- Line Options
	Measuring Bulk Network Traffic
	TCP_ STREAM
	UDP_ STREAM

	Measuring Request/ Response Times
	TCP_ RR
	TCP_ CRR
	UDP_ RR

	Using netperf Scripts
	Summary

	Chapter 5 dbs
	dbs Features
	The Components of dbs
	The dbs Output

	Before Installing dbs
	The ntp Program
	The gnuplot Program

	Downloading and Installing dbs
	Running the dbsd Program
	Configuring Command Files
	Sender and Receiver Commands
	The Pattern Command
	Sample Sender and Receiver Sections

	Test Commands

	Performing Tests
	Define the Test Environment
	Create the Command File
	Run the Test
	Analyze the Data

	Summary

	Chapter 6 Iperf
	Iperf Features
	The Components of Iperf
	The Iperf Program
	The jperf Front End
	The Iperf library

	Iperf Tests
	Iperf Output

	Downloading and Installing Iperf
	Downloading the Source Code
	Compiling the Source Code
	Installing Iperf

	Using Iperf
	Starting the Iperf Server
	Standalone Mode
	Daemon Mode

	Performing Simple Tests
	Testing TOS Traffic
	Testing UDP Traffic
	Testing Multicast Traffic
	Testing a File Transfer
	Testing TCP Window Sizes
	Using jperf

	Summary

	Chapter 7 Pathrate
	Using Statistics to Measure Bandwidth
	How Pathrate Works
	Initial Phase
	Phase I
	Phase II

	How Pathload Works

	Using Pathrate
	The Pathrate Programs
	Downloading Pathrate
	Compiling Pathrate
	Starting the Pathrate Server
	Starting the Pathrate Client

	Pathrate Test Output
	Quick Termination Mode
	Full Testing Mode
	Initial Phase Results
	Phase I Results
	Phase II Results

	Using Pathload
	Pathload
	Downloading and Configuring Pathload
	Starting the Pathload Server
	Starting the Pathload Client

	Pathload Output
	Requested Fleet Parameters
	Loss Rate per Stream
	Server Fleet Parameters
	Context Switches
	Packet Discards
	Relative One- Way Packet Delay Trend
	Fleet Aggregate Trend
	State Variable Updated
	Final Test Results

	Summary

	Chapter 8 Nettest
	What Is Nettest?
	The lblnettest Application
	Certificates and Keys
	The ACLFile File
	Test Applications

	The OpenSSL Package
	Downloading and Installing Nettest
	Downloading Nettest
	Before Compiling
	Define All Test Hosts
	Modify the Source Code

	Compiling and Installing Nettest

	Creating Certificates and Keys
	Creating a Certificate Authority
	Creating the Client Certificate and Key
	Creating the Server Certificate and Key

	Creating the ACLFile File
	Using Nettest
	Starting a Nettest Session
	Performing Tests

	Summary

	Chapter 9 NetLogger
	What Is NetLogger?
	NetLogger APIs
	NetLogger Host and Network Monitoring Tools
	NetLogger Log File
	NetLogger Graphical Tool

	Downloading and Installing NetLogger
	Source Code Distribution File
	Binary Distribution File

	Using the APIs
	Functions
	Open
	Write
	Close

	Libraries

	Using nlv
	Types of nlv graphs
	Configuring nlv
	The bltGraph. pro File
	The nlv- main. cfg File
	The nlv- keys. cfg File

	Summary

	Chapter 10 tcptrace
	What Is tcptrace?
	Console Mode
	Graphical Mode

	Downloading and Installing tcptrace
	Using tcptrace in Console Mode
	Using Basic Command- Line Options
	Standard Session Output
	tcptrace Filters

	Using Module Options

	Graphical Programs
	xplot
	jPlot

	Using tcptrace in Graphical Mode
	Standard Graphs
	Throughput Graph
	Time Sequence Graph

	Traffic Module Graphs

	Summary

	Chapter 11 ntop
	What Is ntop?
	Traffic Measuring
	Data Received
	Data Sent
	Network Throughput

	Traffic Monitoring
	Statistics
	IP Traffic
	IP Protocols

	Before Installing ntop
	Creating the ntop User ID
	Loading Support Software

	Downloading and Installing ntop
	Compiling and Installing gdchart
	Compiling ntop

	Running ntop
	Starting ntop for the First Time
	ntop Command- Line Parameters
	Using ntop Command- Line Parameters
	Monitoring Network Traffic
	Analyzing a tcpdump Dump File

	ntop Access Log File

	Viewing ntop Data
	Connecting to ntop
	Watching Hosts
	Watching Network Traffic

	Summary

	Chapter 12 Comparing Network Performance Tools
	Tools for Testing the Network
	Bulk Data Transfers
	Using Pathrate to Find the Network Bottleneck
	Using netperf to See Actual Network Bandwidth
	Using ntop to Analyze Network Traffic
	Using NetLogger to Analyze Host Functions

	Request/ Response Traffic
	Using netperf to Simulate HTTP Traffic
	Using tcptrace to Watch HTTP Sessions

	Analyzing Production Traffic
	Analyzing an FTP Session
	Using tcptrace
	Using ntop

	Analyzing a Telnet Session
	Using tcptrace
	Using ntop

	Summary

	PART

Three

 Application

Performance Tools
	Chapter 13 Measuring Application Performance
	Methods of Testing Network Applications
	The Test Network
	Production Network
	Network Emulation
	Network Traffic Generator
	Network Emulation Device

	Network Simulation
	Discrete Event
	Analytical

	Modeling Network Problems
	Bandwidth Constraints
	Packet Errors
	Lost Packets
	Out- of- Order Packets
	Delayed Packets

	Modeling Network Devices
	Hubs
	Switches
	Routers
	Quality of Service
	Weighted Fair Queuing
	Stochastic Fair Queuing
	Random Early Detection

	Firewalls
	Wide Area Networks
	Modeling Point- to- Point Networks
	Modeling Packet- Switching Networks

	Wireless Networks

	Summary

	Chapter 14 dummynet
	What Is dummynet?
	dummynet Features
	Using the dummynet Host

	The ipfw Application
	Creating New Rules
	Rule Number
	Rule Probability
	Rule Action
	Rule Logging
	Rule Definition

	Listing Rules
	Removing Rules

	dummynet Rules
	dummynet Commands
	Bandwidth
	Delay
	Random Packet Loss
	Queue Size

	Configuring WFQ
	Configuring Multipath Links

	Installing dummynet
	Kernel Options
	Building a New Kernel
	Installing PicoBSD
	Controlling dummynet

	Testing dummynet
	Setting Network Delays
	Setting Network Bandwidths

	Summary

	Chapter 15 NIST Net
	What Is NIST Net?
	NIST Net Emulations
	Bandwidth Limitation
	Packet Delay
	Packet Reordering
	Packet Loss
	Packet Duplication
	Packet Diversion

	The NIST Net Kernel Module
	The NIST Net Configuration Tools
	The NIST Net Optional Tools
	mungebox
	nistspy

	Downloading and Installing NIST Net
	Downloading NIST Net
	Compiling NIST Net
	Getting the Required Files
	Compiling the Source Code

	Loading NIST Net

	Using NIST Net
	Using cnistnet
	Using xnistnet
	Creating Rules
	Modifying Rules

	Summary

	Chapter 16 Network Traffic Generator
	What Is Network Traffic Generator?
	How Network Traffic Generator Works
	The Core Modules
	The Protocol Modules
	The Payload Modules
	The Response Modules

	The Network Traffic Generator Programs
	Command- Line Interface
	X Windows Interface

	Generating Network Traffic
	Bulk Data Transfers
	Client/ Server Transactions
	Connectionless Communication

	Downloading and Installing the Package
	Downloading
	Before Compiling
	fastdep
	Kylix Libraries

	Compiling and Installing

	Using Network Traffic Generator
	Command- Line Options
	Server
	Client

	Setting Up a Test
	Test Host Placement
	Test Host Configuration

	Watching the Test Traffic

	Summary

	Chapter 17 ns
	What Is ns?
	Network Simulator Programs
	ns
	nam
	xgraph

	Network Model Elements
	Network Nodes
	Network Links
	Network Agents
	Network Applications

	ns Modeling Language

	Downloading and Installing ns
	Downloading
	Compiling and Installing
	Validating the Installation

	Performing a Network Simulation
	Creating the Simulation Model
	Running the Simulation
	Using nam
	Using xgraph

	Summary

	Chapter 18 SSFNet
	What Is SSF?
	Entities
	Processes
	Events
	In Channels
	Out Channels

	What Is SSFNet?
	Libraries
	Domain Modeling Language (DML)
	Networks
	Hosts
	Links
	Routers
	Protocols

	Downloading and Installing SSFNet
	Downloading
	Installing
	Creating a Development Environment

	Using SSFNet
	Creating a Model
	Running the Simulation
	Interpreting the Results

	Summary

	Chapter 19 Comparing Application Performance Tools
	Modeling the Production Environment
	The Production Network
	Modeling the Network

	Using ns
	Building the Model
	Running the Model
	Interpreting the Results

	Using SSFNet
	Building the Model
	Running the Model
	Interpreting the Results

	Using dummynet
	Building the Emulation Environment
	Running the Emulation

	Using NIST Net
	Building the Emulation Environment
	Running the Emulation

	Final Results
	Summary

	Appendix Resources
	Network Monitoring Tools
	SNMP Tools
	netperf
	dbs
	Iperf
	Pathrate
	Nettest
	NetLogger
	tcptrace
	ntop
	dummynet
	NIST Net
	Network Traffic Generator
	ns
	SSFNet

	Index

