Layer Four Traceroute (and related tools)

A modern, flexible path-discovery solution with advanced
features for network (reverse) engineers

VOSTROM

S0, what Is path discovery and why is it important”?

Path discovery is the act of finding the path packets
take between two network hosts

0 '. -
8
A0 o ©

_ _ 9

VOSTROM

S0, what Is path discovery and why is it important”?

It’s important because as networks get larger and more
complicated, finding the gateway that is mishandling your
communications can be difficult

0 '. -
8
A0 o ©

_ _ 9

VOSTROM

How do we perform path discovery?

The common ‘traceroute’ program was created as a

simple way to find the path packets will take between you
and another network host

Invented by Van Jacobson at LBL in 1988

It has remained largely unchanged ...

&

VOSTROM

S0, how does traceroute work?

MTU (normally 1500 bytes)

IPv4 Datagram

Version Al
(4 bits) Length ToS (8 bits) Total length (16 bits)
(4 bits)
: Flags _
IPID (16 bits) (3 bits) Fragment offset (13 bits)

TTL (8 bits) Protocol (8 bits) Header checksum (16 bits)

Source IP (32 bits)

Destination IP (32 bits)

Options (if any)

Data (payload)

NOTE: In IPv6, TTL is now called “hop limit”

How do routers deal with TTLs?

RFC 1812, page 84:

A router MUST generate a Time Exceeded message Code 0 (In Transit) when it discards a
packet due to an expired TTL field. A router MAY have a per-interface option to disable
origination of these messages on that interface, but that option MUST default to allowing the
messages to be originated.

RFC 1812, page 85:

The Time-to-Live (TTL) field of the IP header is defined to be a timer limiting the lifetime of a
datagram....When a router forwards a packet, it MUST reduce the TTL by at least one. If it
holds a packet for more than one second, it MAY decrement the TTL by one for each second.

If the TTL is reduced to zero (or less), the packet MUST be discarded, and if the destination
is not a multicast address the router MUST send an ICMP Time Exceeded message, Code O
(TTL Exceeded in Transit) message to the source. Note that a router MUST NOT discard an IP
unicast or broadcast packet with a non-zero TTL merely because it can predict that anoth
router on the path to the packet's final destination will decrement the TTL to zero.

VOSTROM

S0, we can gradually increment the TTL to discover
each hop, one-by-one. The process looks like this:

@ Send packet with TTL 1 to endpoint/target

@ First router in the path gets the packet, decrements the
TTL by 1 (making it zero), discards the packet, and sends
us back an ICMP “TTL exceeded in transit” message,
thereby exposing itself in our path to the target

& We have discovered hop 1 (TTL1)

& Now, send a packet with a TTL of 2 and so on.....

repeating until we receive a response from the targetg

VOSTROM

Works great. But it begs questions...

@ What layer-4 protocol do we use to send the TTL-
doctored IP packets? Will it be filtered?

© If we send/receive one TTL at a time, it’s slow. But if we
send more than one TTL before waiting for a reply, how
do we know which hop is replying to which TTL?

&

VOSTROM

In 1988...

@ We use UDP because it’s *really* easy to implement

@ We’ll send more than one packet before waiting for
replies, but we’ll send each packet to a different UDP port
so we can tell the replies apart.

@ This works because routers send back the contents of

&

the layer-4 packet header INSIDE the ICMP “TTL
exceeded” messages

10 VOSTROM

ook familiar?

lerminal bash

cli$ traceroute 215.239,37.599

traceroute to 216.239.37.99 (216.239.37.990, 64 hops max, 0 byte pockets
la, 17171 (1o, 17,1710 12.65%4 me 2.86%2 mz 3.455 ms
ok ok
gE. 18,14, 73 (6E2.10.14.73 14,690 ms 14.622 m=s 12,749 ms
BE. 1.8, 233 (6E.10.8.2330) 13.092 m= 12.7683 m= 13.834 m=
nrfhkdsrj@d-ge@d /@5, rd. hr.cox.net (BE.12.14.320 15,404 me 15.42360 m= 17.230 ms
nrfkbbrc@Zpoz@l@dl. rd.hr.codonet (BE2.1.80.267 17.134 m= 13.514 m=z 17.285 ms
azhbbbri@l-z010@ . r2. os.cok.net (0E.1.0. 2180 16.622 mz 17.429 m= 17.394 ms
BE. 105, 30,118 (6E.185.30.1187 19,306 me 16.604 ms 19,208 ms=
210,220, 49, 38 (216,230,493 17,165 me 1E.032 ms 1E.025 ms
e 14.232.96 (F2014.232.960 19,090 me 16.8V0 ms F2.14.232.98 (F2.14.232.980 1V.0EO ms

215,239, 45,118 (216, 239,45, 1180 20,126 ms 19.094 ms 19.160 ms
* ok ok

¥ ¥

¥
*
¥

¥ ¥

VOSTROM

12

Notice anything?

39, 37,99

71701 (g

1o, 1
* ok ¥

*

Iy [O T O

v 0D D e

I--
L.

110 (216, 249,45, 110) 2

lerminal

i’ thE Mmax

bash — ttypl

, i byte packets

AY m=

M=
= 15,426 m= 17.2326
13.514 m= 17

232.98]

17050 m=

VOSTROM

hings have changed since 1988

14

Challenges and Limitations (changes since 1988)

@ Networks filter packets (firewalls were invented)
& Network/Port Address Translation widely adopted

& The TCP protocol has become the heavy lifter

&

VOSTROM

15

Challenges and Limitations (changes since 1988)

@ Routers differentiate/prioritize between TCP/UDP/ICMP

@ Network allocations are disparate and organized by ASN,
not class-based addressing or even CIDR

@ Can’t trust whois registry network data when it comes to
private networks (ISPs)

@ There is no “what’s causing my connectivity problem”
network tool or even a standard workflow to follow

VOSTROM

16

Oh, and the backbone is growing...

1486808

1208488

1808488

Sa80E

eBEAA

Actiwve EBEGP entries (FIEX

40884

chEan

29

1)

21

2z

23

24

a5
Date

=)

e

28

99

5 15]

VOSTROM

We need a new path discovery tool

We need a new path discovery tool

@ We need to be able to differentiate between different layer-4
protocols (TCP, UDP, ICMP)

@ Networks are big and non-contiguous in terms of IPv4
address space. We need to rationalize where our packets are
based on autonymous system (AS) boundaries, not just just
|IP addresses

& We know routing changes frequently and network registries
like the RADB don’t usually have the right information, so we
also need a new tool to track routing changes and registry

information as things change 9

» & We're in a hurry, so path discovery should be fast VOSTROM

—Nnter Layer Four Traceroute

and Prefix Whols

20

Layer Four Traceroute: Major Features

& Supports path discovery using multiple layer-4 protocols
@ Understands “state” to discover firewalls in the path

@ Understands “load balancing” to discover LBs

& Can connect to multiple sources to resolve AS information

& Supports esoteric characteristics such as IP ToS field

@ Fast and extremely user-configurable 9

VOSTROM

21

Layer Four Traceroute: Layer 47

& Can send both TCP and UDP probes
@ Can listen for TCP/UDP/ICMP responses
& Can modulate “state” in probes to detect filters

@ Can take advantage of layer-4 protocols’ specific
attributes to increase speed and target precision

@ Find arbitrary src/dst combos that are unfiltered

& Speed increases of 2-20x

&

VOSTROM

Let’s take a look at LFT’s average probe...

20 bytes

D
iy | P Frame artivany

Source port (16 bits probe Destination port (16 bits)

ID tag

Sequence number (32 bits)

Acknowledgy” modulate bits)
state

HIEEeIT Reserved .
len : Ul A S F Wlndow size (16 bits)
@ bits) || ©PItS)

TCP Checksum (16 bits)

Urgent pointer (16 bits)

Options (if any)

Data (payload)

Example of LFT’'s Speed

clif§ time traceroute -n 4.2.2.1
traceroute to 4.2.2.1 (4.2.2.10, 64 hops ma=, 4 byte pockets
13.17.17.1 5.1859 m= 3.329 mz 3.223 m=s

31 secs

1

E

3 62.10.14.69 17.101 me 14.5214 ms 11.236 ms

4 62,.10,5.229 15,573 ms 14.162 m=z 12.491 ms

5 62.10.14.20 14.381 me 12.358 ms 15.430 ms and /\C - no
6 62.10,15.1 12.941 ms 15.214 m=z 16.716 ms

712,118, 122.77 18.561 ms 12.781 ms 19.700 ms

2 12.123.9.1@6 19,120 ms 21.438 ms 20,447 ms reSUlt

9 12.123.9.81 17.1¥1 ms 21.006 ms 19.272 ms
1e
11
1.2
AL

209, 244,219,141 19,817 ms 15.784 m=s 21.602 ms

4.82.121.13 20,904 ms 21,225 ms 4.65.121.141 19.414 m=
oK K

Bm3l.B23=
Bmd, pad =
Pmd . B1E=
cli§ i N |
TTL LFT trace to 4.2.2.1:20/tcp
1 18.17.17.1 4.3m=
¥+ [heglected] no reply pockets receiwved from TTL 2
3 B6E.10.14.69 11.0ms
4 B2.10. 2,229 13.4ms
5 6E.19.14.29 11.3ms
6 B2.10.15.1 11.1m=
¢ 12.118.122.77 19.0ms
2 12.123.9.1068 19.0ms= 1 -7 secs
O 12.123.9.8]1 16.7ms '
10 209.244,219,141 16.5ms d I
11 4.62.121.77 lo.dms an resu t'
12 [target] 4.2.2.1:20 16, 2m=

Pml. rols=
Emi, @A 3=

Pmd. G123 VOSTROM

—xample of LFT’s Advanced Features

lerminal — bash — ttypl
cli$ 1+ -EUS 4.2.2.1
LFT trace started ot @&6- Hnr—Hh 22:19:45 GMT
TTL LFT trace to wn ari.sys.gtet.net (4.2.2.17:80/tcp
b, 17.17.1 26.6 Jms
[neglected] no rHLI} packets received from TIL 2
ars lH 14 B 14 2011, dm=
- 0

rrJ h:rz: cox.net (G2.18.14.29% 20.0/11. 2ms firewall
: detected

e

I Ny [oS T B]

¢
o

[TerHﬂllj ThH HHHt HHTHHH, Moy
ge-9-0-53. hzal .wazhingtond. 1&.:1 i
[target] '-.-'n:z:n:—r:nr"'L.- ::.gtei.r‘uat I-J-:Zl
+FUEE fintzhed at

1
*
11

-

LFT times itself in UTC, shows elapsed time, and
discovers a firewall in the path.

VOSTROM

26

—xample of LFT’s Advanced Resolution Capabilities

lerminal — bash — ttypl

cli$ 1t -rWS waww, google. com
TTL LFT trace to 216..239,37.99:20/tcp
1 [1a215] [M-GENGQTEC] 1@.17.17.1 3.3m=

** [nheglected] no reply packets received from TTL 2 Target

3 [22773] [CCINET-2] 68.10.14.73 12.6ms
4 [22 [CCINET-2Z] 68.

3] [CCINET-2] nrtkdzrio 5 : “d.hr.cos.net (Q8.18.14,.330 11.2m= p AS N
E B i o A1, rd.hr. cox. :':E‘t :Z::EIE: . ll. @267 ll-l B :E:rrI O en) S
73 15 ~doaz.cok.net (OE.1.0.2180 17.%ms
it 2 o5 2o 116 and
L 12184 Tl E g 4. 141 19, om=
Netnames

12 [1516%] [GOoG0L A
clif []

LFT resolves both ASNs and Network names. LFT also
iIndicates the port combination used resulted in the target
attempting a SWHS (3-way handshake).

VOSTROM

What'’s Prefix Whols and why is it necessary”?

» \We need to resolve the origin-as of a packet (and other
helpful routing info). Quickly.

» We need to do it from anywhere without a route-view
and without managing a telnet session to a route-view
server/router

» Doing it within a shell by issuing one command would
be really nice

» Doing it from PHP would be nice too 9

27 VOSTROM

Why ASN Resolution Matters

@ Security/Authenticity of global BGP prefix announcements
IS questionable. Prefix Hijacking is commonplace now
with spamming, DoS, etc.

& Accounting, peering (justification), critical infrastructure

@ Display of routing related information

&

28 VOSTROM

29

Related Projects

Cymru’s l

whois.cymru.com

provides AS Info, some registrar
information (ASname/

ORGname), hand

es bulk nicely,

quick, surtable out

but format

RIPE NCC’s l

riIswhois.ripe.net

sophisticated, data from many
routing peers, RPSL-compliant,

quick

&

VOSTROM

Why Another?

1. Open source so you can run your own with YOUR
specific RIB and modify as needed

2. We noticed a few “differences” in the output of existing
services (unreliable/assumptive RIB)

3. We needed something we could scale to handle large
data sets for our research projects and shouldn’t rely on
public services

4. We wanted flexible/different output formats 9

30 VOSTROM

Project Components

Q “pwhois-updatedb” agent that periodically updates a
relational database after parsing a RIB digest. Can
retrieve the RIBs by:

@ Downloading RIB digests from routeviews.org

& Building a RIB digest from your router through an
automated telnet session

Q “pwhoisd” server process that answers queries on port
tcp/43.

31 VOSTROM

Project Components

@ “pwhois C library” C-Language programming library that
provides a streamlined way of accessing whois-type
information from pWhols and other whois servers.

@ “pwhois PHP library” PHP-Language (5.x+) programming
library that provides convenient access to pWhols using
PHP-native socket interface (no more /usr/bin/whois calls)

&

32 VOSTROM

Project Components

@ “whob” simplified whois/pwhois client for network
engineers. Less crap to parse, most of the content you
care about.

e “pWidget” Apple Mac OS X dashboard client with access
to pWhols through the simplequery HTTP interface. Just
your basic eye candy.

&

33 VOSTROM

Software Components

+ > 9
A n
83 || $5 || o
e T E O <
Prefix Whols Server]
: tcp/43 (whois) socket]
4 ™~ ™~
C PHP
Library Library
' ' ' I
0 i
m S| 3
@) L—_ = o E
= O O
= S|l &°®
= ‘B
-
[5]
o
o
A
\

pwhois-updatedb
- maintenance

interface libraries
- language-dependent

clients
direct-interface clients

simple web clients
- interfacing through an
HTTP shim to pWhols

Usage Examples

Using whois clients to Interact with pWhols

VOSTROM

Using a Standard whois client

800 Terminal — bash — ttypl

cli} whoiz -h wholiz.pwhois.net 4.2.2.1
IF: 4.2.2.1

Origin-A5:

Prefia: 4.

A%-Fath:

Org-Name: vel 3 Communications, LLC
Net-Name: LYLT-ORG-4-2

Cache-Date: 1141725%9a1

clif

c11% whoh
4.2.2.1 |
cli%
cli%
c11% whoh

G5, 73, 200,

cli%

cli%

c11% whoh
4.2.2.1 |
clif []

Some Unigue WhoB Features

lerminal bash 72x25

e e |
> o | I:||‘:

) I-l- VAL SR I | a=- pat h 3256 | LWLT-0RG-4-2

-E 85,73, 00,8

@ | origin-as 565 (05.73.0.0/15870 | rodb-oz ¥ll

-o 4.2.2.1
arigin-os 3356 (4.0. 27 | Lewel 3 Communicationsz, Inc.

More Unigue WhoB Features

lerminal — bash 72%25
c1if whaob -n weww, google. com
60,102, 7. 184 | origin-os 15169 (66,182.7.@7240 | GO0GLE-2
c1if whob -a weww, google. com
Hseplaying all routes whose Origin-45 1z 15169, (he potient)

Origin-A5: 15165

Frefis: Create-Date Modity-Date
| Mewt-Hop A%-Fath
A2 Apr 26 2005 17:54:227 Moy 12 2005 16:85
3356 1
Apr 26 A5 17:54: 22 Moy 12 2005 16:85

3356 1

Apr 26 A5 17:54:22 May 12 2065

3356 1

Apr 26 A5 17:54:22 Moy 12 2005 16:85
32385 1
Apr 26 17:54: 2; Moy 12 2005 16:85
32385 1

Apr 29 A a5 45 May 12 20@5
Moy 12 2005 16:@85

Moy 12 2885

't can get ugly...

lerminal — bash 123x26
c1if whob -optRu 4.2.2.1
4.2.2.1 | origin-as 3350 (4.0, 21 1 12-May-25 23:33:34 GMT | radb-ao= ; ; 335¢ W Communications, Inc.

clif []

Prefix Whols, the Widget?

' 184,695
Q- 4.2.2.1) prefixes

IP 4.2.2.1
Origin-AS 3356
Prefix 4.0.0.0/8
AS-Path 3356
Cache-Date 2005-08-30T10:05:01+00:00

—asy to access from a C program

SESNS h| whois.h
4] whois.h:1 = <Mo selected symbol= = wl v W | E,
A must be called BEFORE making any queries */ =

wold w_init{void};

A return the origin-azn according to the RADE in "3386" format */
int w_lookup_as{char #3;

A return the origin-azn according to Cyrmu in "3356" format */
int w_lookup_as_cymru{char #3;

A return the origin-asn according to the RIPE RIS in "33B6" format */
int w_lookup_os_riswhois{char #);

¥ return the origin-azn according to pwhoiz in "3386" format */
int w_lookup_os_pwhois{char #3;

A return the network name from the regiztrar in a string */
char #w_lookup_netname{char #3;

A return the organization name from the regiztrar in a string */
char #w_lookup_orgname{char #3;

A return g pointer to on ip_list_orray {see gbove) containing
an '‘asn' to each corresponding 'ipaddr ' according to Cwmru ¥
int w_lookup_as_cymru_bu lk{struct ip_list_arraoy*);

A% return g pointer to on ip_list_orray ({see gbove) containing
an 'asn' to each corresponding 'ipoddr ' according to pwhoiz %/
int w_lookup_os_pwhois_bulk{struct ip_list_orray*}; |

A% return g pointer to on ip_list_orray {see gbove) containing '
an 'azn' to each corresponding 'ipaddr ' according to RIS whoiz %S "
int w_lookup_os_riswhois_bulk{struct ip_list_orray#); -

—asy to access from a PHP script

/**

*

* Prefix WhoIs Bulk Query Interface

*

* ——- a native interface to Prefix WhoIs implemented in PHP*
*

* * requires PHP >= 5
*

* Simply call doPWLookupASBulk(array S$SqueryArray) and it will
* return an associative array of AS numbers indexed by the
* IP addresses passed to it in the $queryArray argument.

*

*/

function doPWLookupASBulk(S$Squeryarray) {

Spwserver = 'whois.pwhois.org'; // Prefix WhoIs Server (public)

Spwport = 43; // Port to which Prefix WhoIs listens
$socket timeout = 20; // Timeout for socket connection operations
$socket delay = 5; // Timeout for socket read/write operations
------------ SNIP

// An example of calling the function...

Stest array = array('4.2.2.1','12.0.0.0");

if (! ($pwresp = doPWLookupASBulk($test array))) {
print "<h2>Your query wasn't answered.</h2>\n";
exit();

foreach ($pwresp as $ip => Sas) {
print 'IP: '.$ip.', ASN: '.$as.'
';
}

Please support our research by purchasing a book

EXTREME
EXPLOITS

;‘JAdvanced Defenses Agamst 3
"Hardcore Hacks :

- - -
-l Vlctor Oppleman ~
Networ kS
Author nSpe \k '” nd|Patent-holder

.

¢ \ Olwer Frledrlchs "

'S r Manager at Syman W
rity Re - e N

se
S

‘Brett Watson -

The Secrets to Carrier
Class Network
Security

Coming Soon...

whols.pwhois.org

http://pwhois.org

victor @ pwhois.org

http://pwhois.org
http://pwhois.org

