
Layer Four Traceroute (and related tools)
A modern, flexible path-discovery solution with advanced
features for network (reverse) engineers

So, what is path discovery and why is it important?

Path discovery is the act of finding the path packets
take between two network hosts

2

So, what is path discovery and why is it important?

It’s important because as networks get larger and more
complicated, finding the gateway that is mishandling your
communications can be difficult

3

How do we perform path discovery?

The common ‘traceroute’ program was created as a
simple way to find the path packets will take between you
and another network host

Invented by Van Jacobson at LBL in 1988

It has remained largely unchanged ...

4

So, how does traceroute work?

Header checksum (16 bits)

Destination IP (32 bits)

Options (if any)

Data (payload)

Source IP (32 bits)

Protocol (8 bits)TTL (8 bits)

IPID (16 bits) Fragment offset (13 bits)
Flags

(3 bits)

Total length (16 bits)ToS (8 bits)
Header
Length
(4 bits)

Version
(4 bits)

IPv4 Datagram
M

TU
 (n

or
m

al
ly

 1
50

0
by

te
s)

NOTE: In IPv6, TTL is now called “hop limit”

How do routers deal with TTLs?	

RFC 1812, page 84:

 A router MUST generate a Time Exceeded message Code 0 (In Transit) when it discards a
packet due to an expired TTL field. A router MAY have a per-interface option to disable
origination of these messages on that interface, but that option MUST default to allowing the
messages to be originated.

RFC 1812, page 85:

 The Time-to-Live (TTL) field of the IP header is defined to be a timer limiting the lifetime of a
datagram....When a router forwards a packet, it MUST reduce the TTL by at least one. If it
holds a packet for more than one second, it MAY decrement the TTL by one for each second.

 If the TTL is reduced to zero (or less), the packet MUST be discarded, and if the destination
is not a multicast address the router MUST send an ICMP Time Exceeded message, Code 0
(TTL Exceeded in Transit) message to the source. Note that a router MUST NOT discard an IP
unicast or broadcast packet with a non-zero TTL merely because it can predict that another
router on the path to the packet's final destination will decrement the TTL to zero.

7

So, we can gradually increment the TTL to discover
each hop, one-by-one. The process looks like this:

Send packet with TTL 1 to endpoint/target

First router in the path gets the packet, decrements the
TTL by 1 (making it zero), discards the packet, and sends
us back an ICMP “TTL exceeded in transit” message,
thereby exposing itself in our path to the target

We have discovered hop 1 (TTL1)

Now, send a packet with a TTL of 2 and so on.....
repeating until we receive a response from the target

8

Works great. But it begs questions...

What layer-4 protocol do we use to send the TTL-
doctored IP packets? Will it be filtered?

If we send/receive one TTL at a time, it’s slow. But if we
send more than one TTL before waiting for a reply, how
do we know which hop is replying to which TTL?

9

In 1988...

We use UDP because it’s *really* easy to implement

We’ll send more than one packet before waiting for
replies, but we’ll send each packet to a different UDP port
so we can tell the replies apart.

This works because routers send back the contents of
the layer-4 packet header INSIDE the ICMP “TTL
exceeded” messages

10

Look familiar?

11

Notice anything?

12

Why didn’t it
finish?

Things have changed since 1988

Challenges and Limitations (changes since 1988)

Networks filter packets (firewalls were invented)

Network/Port Address Translation widely adopted

The TCP protocol has become the heavy lifter

14

Challenges and Limitations (changes since 1988)

Routers differentiate/prioritize between TCP/UDP/ICMP

Network allocations are disparate and organized by ASN,
not class-based addressing or even CIDR

Can’t trust whois registry network data when it comes to
private networks (ISPs)

There is no “what’s causing my connectivity problem”
network tool or even a standard workflow to follow

15

Oh, and the backbone is growing...

16

We need a new path discovery tool

We need a new path discovery tool

We need to be able to differentiate between different layer-4
protocols (TCP, UDP, ICMP)

Networks are big and non-contiguous in terms of IPv4
address space. We need to rationalize where our packets are
based on autonymous system (AS) boundaries, not just just
IP addresses

We know routing changes frequently and network registries
like the RADB don’t usually have the right information, so we
also need a new tool to track routing changes and registry
information as things change

We’re in a hurry, so path discovery should be fast18

Enter Layer Four Traceroute

and Prefix WhoIs

Layer Four Traceroute: Major Features

Supports path discovery using multiple layer-4 protocols

Understands “state” to discover firewalls in the path

Understands “load balancing” to discover LBs

Can connect to multiple sources to resolve AS information

Supports esoteric characteristics such as IP ToS field

Fast and extremely user-configurable

20

Layer Four Traceroute: Layer 4?

Can send both TCP and UDP probes

Can listen for TCP/UDP/ICMP responses

Can modulate “state” in probes to detect filters

Can take advantage of layer-4 protocols’ specific
attributes to increase speed and target precision

Find arbitrary src/dst combos that are unfiltered

Speed increases of 2-20x
21

Let’s take a look at LFT’s average probe...

Options (if any)

TCP Checksum (16 bits)

Data (payload)

Urgent pointer (16 bits)

Window size (16 bits)

Acknowledgement number (32 bits)

Sequence number (32 bits)

Source port (16 bits) Destination port (16 bits)

Header
len

(4 bits)

Reserved
(6 bits)

U A P R S F

TCP Frame
20

 b
yt

es
arbitrary arbitrary

probe
ID tag

modulate
state

Example of LFT’s Speed

24

31 secs
and ^C -- no

result

1.7 secs
and result!

Example of LFT’s Advanced Features

25

firewall
detected

LFT times itself in UTC, shows elapsed time, and
discovers a firewall in the path.

Example of LFT’s Advanced Resolution Capabilities

26

Target
open, ASNs

and
Netnames

LFT resolves both ASNs and Network names. LFT also
indicates the port combination used resulted in the target
attempting a 3WHS (3-way handshake).

What’s Prefix WhoIs and why is it necessary?

‣ We need to resolve the origin-as of a packet (and other
helpful routing info). Quickly.

‣ We need to do it from anywhere without a route-view
and without managing a telnet session to a route-view
server/router

‣ Doing it within a shell by issuing one command would
be really nice

‣ Doing it from PHP would be nice too

27

Why ASN Resolution Matters

Security/Authenticity of global BGP prefix announcements
is questionable. Prefix Hijacking is commonplace now
with spamming, DoS, etc.

Accounting, peering (justification), critical infrastructure

Display of routing related information

28

Related Projects

Cymru’s
whois.cymru.com

provides AS info, some registrar
information (ASname/
ORGname), handles bulk nicely,
quick, suitable output format

RIPE NCC’s
riswhois.ripe.net

sophisticated, data from many
routing peers, RPSL-compliant,
quick

29

Why Another?

1. Open source so you can run your own with YOUR
specific RIB and modify as needed

2. We noticed a few “differences” in the output of existing
services (unreliable/assumptive RIB)

3. We needed something we could scale to handle large
data sets for our research projects and shouldn’t rely on
public services

4. We wanted flexible/different output formats

30

Project Components

“pwhois-updatedb” agent that periodically updates a
relational database after parsing a RIB digest. Can
retrieve the RIBs by:

Downloading RIB digests from routeviews.org

Building a RIB digest from your router through an
automated telnet session

“pwhoisd” server process that answers queries on port
tcp/43.

31

Project Components

“pwhois C library” C-Language programming library that
provides a streamlined way of accessing whois-type
information from pWhoIs and other whois servers.

“pwhois PHP library” PHP-Language (5.x+) programming
library that provides convenient access to pWhoIs using
PHP-native socket interface (no more /usr/bin/whois calls)

32

Project Components

“whob” simplified whois/pwhois client for network
engineers. Less crap to parse, most of the content you
care about.

“pWidget” Apple Mac OS X dashboard client with access
to pWhoIs through the simplequery HTTP interface. Just
your basic eye candy.

33

Software Components

Usage Examples

Using whois clients to Interact with pWhoIs

Using a Standard whois client

Some Unique WhoB Features

More Unique WhoB Features

It can get ugly...

Prefix WhoIs, the Widget?

Easy to access from a C program

Easy to access from a PHP script

/**
 *
 * Prefix WhoIs Bulk Query Interface
 *
 * -- a native interface to Prefix WhoIs implemented in PHP*
 *
 * * requires PHP >= 5
 *
 * Simply call doPWLookupASBulk(array $queryArray) and it will
 * return an associative array of AS numbers indexed by the
 * IP addresses passed to it in the $queryArray argument.
 *
 */

function doPWLookupASBulk($queryarray) {

$pwserver = 'whois.pwhois.org'; // Prefix WhoIs Server (public)
$pwport = 43; // Port to which Prefix WhoIs listens
$socket_timeout = 20; // Timeout for socket connection operations
$socket_delay = 5; // Timeout for socket read/write operations

------------ SNIP

 // An example of calling the function...

 $test_array = array('4.2.2.1','12.0.0.0');
 if (!($pwresp = doPWLookupASBulk($test_array))) {
 print "<h2>Your query wasn't answered.</h2>\n";
 exit();
 }

 foreach ($pwresp as $ip => $as) {
 print 'IP: '.$ip.', ASN: '.$as.'
';
 }

Please support our research by purchasing a book

The Secrets to Carrier
Class Network

Security

Coming Soon...

USE IT whois.pwhois.org

GET IT http://pwhois.org

REACH OUT victor @ pwhois.org

http://pwhois.org
http://pwhois.org

